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Abstract

We report on.our efforts to develop robot controller
composition techniques in the context of dexterous
“batting” maneuvers. A robot with a flat paddle is
required to strike repeatedly at a falling ball until it is
brought to zero velocity at a specified position. The
robot’s workspace is cluttered with obstacles that dis-
connect the freespace formed when the ball and pad-
dle remain in contact — the machine is forced to “let
go” for a time in order to bring the ball to the de-
sired state. The controller compositions that we cre-
ate will guarantee that a ball introduced in the “safe
workspace” remains there and is ultimately brought
to the goal. We believe that the developing systems
discipline described here may be extended to build
a variety of useful dexterous machines that are simi-
larly single-minded in their pursuit of the user’s goal
behavior and ability to surmount unanticipated per-
turbations along the way.

1 Introduction

Presumably, robots are to be programmed by their
“higher level masters” using symbols relating to
states of the world that the robot is supposed to bring
into being. A central problem of robotics concerns
the translation of such symbol sequences into actu-
ator and sensor policies that carry out the intended
goals. Assume that the symbols are defined unam-
biguously enough to imply or at least to be consistent
with a partition on the state space of the world to be
manipulated. In other words, some symbols connote
a specific state {or an equivalence class of states that
are all equally valid) that should be visited, while oth-

ers connote states that should be avoided. However
fuzzy or approximate their relation to the continuum
of world states, let us suppose that no pair of symbols
must be interpreted to connote cells that overlap. Un-
der such an assumption, the robot symbol-to-signal
problem amounts to the design of controllers capable
of guaranteeing passage of the world’s states to and
from cells of a specified partition

We are pursuing an approach to autonomous robot
design that seeks to achieve user goals that are en-
coded by such siate space goal and obstacle sets,

. Our architecture implements event driven robot poli-

cies whose closed loop dynamics drive the coupled
robot-environment state toward a goal set and away
from obstacles. We strive to develop control algo-
rithms that are sufficiently tractable as to allow cor-
rectness guarantees as well. Thus, we have focused
theoretical attention on “practicable stability mech-
anisms” —- dynamical systems for which effectively
computable local tests provide global conclusions —
in first and second order settings. At the same time,

-we have focused experimental attention on building a

distributed computational environment that supports
flexibly reconfigurable combinations of sensor and ac-
tuator hardware controllers, motion estimation and
control algorithms, and event driven reference trajec-
tory generators. The result has been a series of lab-
oratory robots that exhibit indefatigable goal seek-
ing behavior albeit in a very narrow range of tasks.
Specifically, we have concentrated on tasks requiring
dynamical dexterity — the ability to perform work
on the environment by effecting changes in its kinetic
as well as potential energy.

From the viewpoint of the symbol-to-signal prob-
lem our robot architecture provides tunable families
of flows whose deployment is defined by a “control



partition” — an assighment of cells to controllers —
which induces on the world’s state space a compos-
ite law of motion. Suppose a robot equipped with
such an architecture is presented with the user’s com-
mands in the form of these symbol sequences. It be-
comes the duty of a robot interpreter to design a con-
trol partition that suitably refines the command par-
tition so that all command symbol sequences can he
realized by the appropriate composition of controller
primitives. In this paper we consider the simplest
possible command lexicon — goal cells comprised of
singletons and obstacle cells of a particularly simple
shape — and hand build an interpretation. In so do-
ing, we are becoming convinced that a wide range
of behaviors incorporating dynamical dexterity may
be forthcoming from our present palette of “control
primitives.” We hope to see emerge from this work a
systems theory for forming their purposeful composi-
tion in a theoretically verifiable manner.

2 A Family of Dynamically
Dexterous Controllers

We are interested in encoding and achieving user
goals taking the form of a desired set of world states,

G C TB. A controller, @, achieves those goals if G is

an attracting invariant subset, in which case we are
interested in rendering its domain of attraction, D(®)
as large as possible.

We have developed over the last five years an ap-
proach to robot controller design that accomplishes
these goals by essentially re-shaping the total energy
exchanged between the robot and its environment.
This section reviews some of these prior ideas as back-
ground for discussing the compositions introduced in
the next section — the central concern of this paper.

2,1 Physical Models

Since we require the robot to bat at falling objects,
we are concerned here with a model of the collisions
and the kinematics of the robot that controls their
occurrence. We shall restrict attention to the colli-
sions of a point with a plane since the falling objects
are all balls at present. We shall relate the abstract
kinematics to the particular case of the “Buehgler” a
three degree of freedom direct drive machine pictured
in Figure 1, which we have discussed in a variety of
other settings [1, 2].

Figure 1: The Buehgier Arm

2.1.1 Flight

It is conventent fo decompose the configuration space
of the ball, B = JR? into the direct sum of a two di-
mensional “horizontal” subspace and one dimensional
“vertical” subspace, B = H & V, respectively. The
ball’s dynamics are decoupled in the two subspaces
and if b = (h,v) then the Newtonian flight model is

given by
(1)

In order to preserve notational consistency, we will
find it convenient to denote the states (positions and

velocities) of a ball by Th: = (b, b) €TB:=Bx R®
— and similarly for the horizontal and vertical com-
ponents, as well as the robot generalized coordinates,
2,8,§, to be introduced below. Thus, (1) may be
rewritten in first order form as

fl:O;

= —.

T
Fy(Th) = g é Th
Fy(Tv) = g é T”“'T[ 2 ]
(2)
and integrated ! as
et
FH(Th) = [ ?”:: gﬁ))
ATGORES R
th(Th) C= g ;}Tv—t’Y[t{2:|
(3)

1 Here and in the sequel, we denote the flow generated by

a vector field — in the present instance, F{) — by F' (),
Fay

and the pre-image of a set, S, under that flow, by F— (§) =

Ur<oF (5) .



2.1,2 Collisions

As in {3, 4] we will assume that the components of
the ball’s velocity tangent to the paddle at instant of
contact are unchanged, while the normal component
is governed by the simplistic (but standard [5]) coeffi-
cient of restitution law yielding a change in the bali’s
velocity after impact

Ab= (14 a)nn"(¥ — b), (4)

where n denotes the unit normal vector o the paddle
at a hitting point b, and ¢ denotes the linear velocity
of the paddle at that point. It will be useful to re-
write this in state space form as defining a function
of the ball’s state after collision, T, as a function of
the ball and robot’s state prior to collision.

TV = C(Tb, Tr). (5)

2.2 Robot Models

Note from (4) that a completely specified collision
between a controlling surface and a controlled point
mass requires six “dynamical” degrees of freedom —
five kinematic degrees of freedom (three in position to
make contact at the desired point; two in orientation
to achieve the desired normal) and one velocity free-
dom, r. In principal, each kinematic degree of free-
dom adds a velocity freedom as well (away from kine-
matic singularities). Further, in the physical world,
the controlling surface must be at least partially ex-
tended in space (as opposed to the mathematical ab-
straction of an infinitesimal patch) and this effectively
adds two additional degrees of freedom, albeit with
kinematic range limited by the extent of the surface.
From these considerations, a three actuated degree of
freedom kinematic chain with a physically extended
hitting surface should in principal have sufficient de-
grees of freedom to bat a point mass in a completely
controlled manner,

In practice, velocity magnitudes are limited by
actuator constraints, and the robot’s accuracy in
achieving a dynamical set point — a specified ve-
locity at a specified position — is far worse than its
kinematic accuracy. When the physical extent of the
hitting surface is smaller than the dynamical set point
resolution, the additional kinematic degrees of free-
dom it might have afforded are lost.

Our Buehgler robot is a three degree of freeom
kinematic chain whose dynamical accuracy arguably
represents the present state of the art in the field
because it has direct drive actuators and a sophisti-
cated adaptive inverse dynamics joint space controller
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[6). Moreover, the hitting surface is a rectangular
plane that extends roughly eighty by ten centimeters
in space. Nevertheless, our lab experience has con-
vinced us that the narrow dimension of the paddle
is too small toc be useful as a source of additional
kinematic freedom (the minimal range of this “ex-
tra” joint is negligible with respect to the workspace
of the machine). Thus, we work with a four degree
of freedom kinematic model (three revolute degrees of
Jjoint space freedom and one additional prismatic {ree-
dom down the eighty centimeter length of the pad-
dle). Thus there arises the necessity of applying four
degrees of kinematic freedom to a five degree of free-
dom problem,

The kinematic modeling in this section assumes
a paddle of infinitesimal width and infinite length.
Endowing the robot with an understanding of the
length limits of its paddle will be addressed in Sec-
tion 4 when the notion of a dynamical obstacle is
introduced.

2.2.1 The Kinematics of Normals

Let § represent (in homogeneous coordinates) a pla-
nar transformation taking points in the unit box,
& C {0,1] x [0,1] diffeomorphically onto the hitting
surface (in the case of our robot, a plane) expressed

. with respect to the gripper frame, F,. For the Bue-

hgler arm that we use, the width of the paddle is suf-
ficiently small relative to the length that we never use

it in manipulations, thus § = [0,1]. Associated with
each point on the surface, p(s) is the unit normal,
fi(s), again, the homogeneous coordinate representa-
tion of the vector with respect to F,. Denoting by
N(3) = B x S? the bundle of unit normal vectors at
each cartesian point, the paddle’s “Gauss map” [7] is
now parametrized as

N:S - N@):sw [i(s),i(s))  (6)

For the Bueghler arm, the surface is a plane and thus
fi is constant, )

Denote by H{q) the robot’s forward kinematic map
taking a configuration, ¢ € @, to the homogeneous
matrix representation of the gripper frame with re-
spect to the base. The world frame representation of
any paddle normal at a point is thus specified by the
extended forward kinematic map, G : Q@ — N(38)

G :(§) — [n(@), p(D)]) = H(gIN(s) ™

Wherefz(q,s)eé::gxs,




The linear velocity of the hit point due the robot’s
motion may now be written explicitly as

dimQ

f= E (-Dq.'H (Q)) : p(s)q."' (8)
i=1

2.2.2 The Inverse Kinematics of Points and
Normals

Denote by G;;! the inverse normal relation defined by
G. That is, given a desired normal n € 82, G;!(n)
denotes the set of generalized coordinates, § € Q that
achieve it. For the four degree of freedom Buehgler
arm, G;;1(n) turns out to be a two dimensional sur-
face which is easily parameterized by the horizontal
workspace,  C B. In other words, for each hori-
zontal position and normal vector, there is only one
height above the floor at which the paddle achieves
the desired normal. When we wish to pin down which
horizontal position, h € 7, has been selected we will
write G{",;ih]:(u) and this specifies a unique jointspace

element, § € Q.

Denote by G; ! the inverse point relation defined
by G. That is, given a desired spatial position, b €
B, G, 1(1‘;») denotes the set of generalized coordinates
§ € Q that achieve it. For the Buehgler with its
essentially spherical kinematics and radially aligned.
wrist, G;'l(b) turns out to include all g3 € S, In
other words, to reach a specified spatial position there
remains only a freedom in wrist rotation. When we
wish to pin down which wrist angle, g3 € S1, has been
selected we will write G‘M 3(b), and this specnﬁes a
unique jointspace element.

Lying in the total conﬁgurat:on space, B x @, is

the contact submanifold , € £ B x G 1(h), of balls
that are touching the robot For the Buehgler this
is a union of all the “wrist” contacts,

c=|J ¢,

g2 €S

1= Bx Gph g 0. (9)

2.8 The Control Architecture

To aid the reader in making sense of the discussion
(and notation!) to follow, it seems worth pointing
out from the beginning that there will be two differ-
ent “time-scales” of interest over which control must
be asserted and studied. There are the continuous
states, (T'q, Tb) governed by the the integrated flight
mode] driving the robot’s reaction according to a
“mirror law” as dictated by the controller, ®*, which
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will be discussed first. Depending upon the con-
troller, ®, selected, the ball may experience a flight
phase. Tor each flight there is a ball apez that we
denote Th — the state of a ball following an impact
with the robot at which its vertical velocity vanishes
—— governed by the closed loop dynamics, fg induced
by &.

2.3.1 The Sensing, Planning and Actuating
Subsystems

QOur “Cyclops” stereo vision system delivers a stream
of image plane centroid pairs, i, obtained by taking
first moments over windows managed in a manner de-
termined by the sensor’s “perceptual state,” d that we
denote ¢ = s4(b) [8]. The perceptual state, d, evolves
according to the dynamics of an estimation scheme,
£, and driven by the sensors’ centroid | reports, i, to
arrive at a state estimate for the ball, 7%,

d = E(d,{)
T = eq(f). (10)
Since balls usually go in and out of viewing range
or are otherwise occluded, this system is designed to
operate for periods of time when only one or possibly
neither camera delivers data, The estimator (10) then
functions as a predictor, a monocular observer, or a
stereo observer according to switching logic specified
in a state-based manner [8].

Reference trajectories, T'¢*(¢) are tracked by an
adaptive inverse dynamics controller

T_q =CG(TQqu‘) (11)
6 =0(TqTq")

that has been documented at length in [6].

Given a stream of estimator data describing the
environment’s state, b a smooth map,

m:T8B— Q, (12)
from ball siates to robot joit’aj'i positions, generates
trajectories of the form, m o T%(t), that (along with
their time derivatives) can be fed to the controller
(11) as reference signals, T¢*. Buehler called m a
mirror law since a robot that successfully tracks b
w1th b and Tq with Tq behaves as though it were
“mirroring” the environment (in some inverted or
distorted manner that obviously depends upon the
choice of m).2

2Thia represents an extreme form of Andersson’s [§] policy



2.3.2 Continuous Closed Loop Dynamics, @

Given a model of the environment’s dynamics, e.g.
(2), one may examine the overall “filter” from sensor
stream to robot motion as a continuous dynamical
system,

Th = F (1)
®¢ d = E(d,s4(TH))

Tq¢ = Cyp(Tq,Tmoeqosa{b)),
on an extended state, space, X :=TB x D x TQ,
z = ®(z),

It is now convenient to assume that the extended
dynamics on & have a “fast” component that col-

lapses onto T8 3. Under these “collapsed” assump-
tions, we have T'q¢ = T'm o T'b so that

®*(z) & (F*, Tm o F)(Th)

(13)

(19)

Two examples of closed loop flows relevant to the
concerns of this paper now follow. In the first case,
a tracking law, mp, causes the robot to follow the
ball without making contact so that ®¢ is defined
on all of X. In the second case, a palming law, mp,
actually effects changes in the ball’s dynamics when
on the contact set, C, so that the interesting closed
loop behavior oceurs on a restricted submanifold of
X.

The Tracker: &7 Surely the simplest instance of
a useful flow is that induced by the horizontal “track-
ing” mirror,*

mp = G{;;lo] (m3cb), (15)
developed by Rizzi to keep the Buehgler’s paddle “un-
der” .the horizontal projection, of a falling ball. It is
immediate from (14) that when the robot tracks this
reference, Tq — Tq*, we have myb = 75 G(g).

of “keeping your eye on the ball” and works admirably well as a
means of entraining the robot's actions with the environment
it seeks to alter. It has the obvious drawback of requiring
unwavering attention from the sensor system (10) that can be
ammended to a greater or lesser extent as desired by adding
state.

3 When 6 is held constant in {11) then Tq(£) — T'¢*(¢) [6],
uniformly, We contim}? to work on the problem of demonstrat-
ing that (10) implies T4(t} — Tb(t) uniformly, but the present
paper leaves no room for a discussion of the technical issues
involved. Laboratory experience indicates that these uniform
convergence rates are sufficiently “fast” relative to the ball’s
dynamics that they can be ignored at the higher level, Estab-
lishing conditions on the underlying computational environ-
ment that guarantee this situation remains an open problem
that we have considered only sketchily to date [2),

* The symbol n denotes a projection onto the subspace
indicated in the subscript.
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The Palmer: &p
derivative” mirror,

Consider the “proportional

mp(T5) = Gl (La(h* — h) - L3h) - (16)

where L = [L3, Lo} are constant matrices. This map
is introduced to correct for deviations from the hori-
zontal setpoint, Th* = (h*,0). A one degree of free-
dom version of this mirror was introduced by Buehler
for the planar arm and generalized by Rizzi for the
spatial Buehgler arm. If the ball remains on the pad-
dles and the robof tracks this reference trajectory
then the ball’s horizontal dynamics (1) are altered

as
0

h= T [I - nnT] 0
=Y
so that ®p implements a classic “ball-on-beam” con-
troller. The robot rolls the ball about on the paddle
bringing it eventually to the horizontal position, h*
at zero velocity,

(17)

2.3.3 Discrete Closed Loop Dynamics fg

We now add a “batting” mirror law, mp. Once the
ball leaves the paddle the robot will need to con-
stantly revisit it in order to maintain control. Thus,

~common sense dictates that the most basic criterion

of any reasonable trajectory generator (13) is to ar-
range for such “returns” from all non-goal states so
that the robot is at least guaranteed of “getting a
crack” at them. Indeed, all of our re-grasping gener-
ators to date, whether for dynamical manipulation or
quasi-static assembly achieve this property, We are
led to consider as state space a “Poincaré Section” in
& that we will term the dynamical workspace. There
follows a description of general return maps, fs, in-
duced by controllers, ®, that guarantee return. This
section concludes with a presentation of mp and the
return map, fp, that it generates,

The Dynamical Workspace Denote by I =
IC C TQ x TB the impact set — those states (con-
figuration and velocity) where the robot is touching
the ball. Denote by 74 the time of first return to 7
— that is, the solution for # of the inclusion

et (z) ez

The reference generators we build guarantee that Z
is always in the domain of 7. under the dynamics, ®

3).



Instead of working in the pre- or post- contact
states we will find it useful to work in a different
transverse “section” along the trajectories of & —
the apex coordinates. Denote by 7, the time that
a rising ball (e.g., just after impact) will reach its
apex — that is, the time to achieve zero vertical ve-
locity. Denote by 7, the time to impact from apex
— that is, the first as a function of T6, Denote an
apex state as Th:; = e (T6) = (_h,m, where the
velocity component of the vertical component is zero
— Ty = (%,0).

Of course, the dynamical workspace also has a rep-
resentation in the apex coordinates, 7 = F7 (Z), and
it is on this set that we are interested in computing
the return maps.

The General Return Map The effect of the
robot on the environment results from integrating
forward from a previous post contact state, z) to
the next contact state, applying the impact model
at that point and picking off resulting environment
state, This induced behavior is denoted

fo(Th) = F™ o C(¥F™ (Tb) ,Tmo F™ (T) ). (18)

where we have expressed the map in apex coordinates
on 7T,

It is now clear that the iterates of (18) govern the.

future evolution of the environment. The prime ex-
ample is f% of such a closed loop map relevant to
the concerns of the paper now follow. Note again,
while the mirror laws, m, take their domain on the
contimuious ball flight, Tb, the closed loop maps, fz
take their domain on the discrete sequence of apex
states, T& induced by the mirror law.

The Vertical Batter: g Buehler’s original con-
struction [3] was a one degree of freedom mirror law,

mb(Tv) : = (TD)G;(v) (19)

for a2 “gedanken” prismatic robot piston (i.e., a ma-
chine whose “kinematics,” G, are given by the iden-
tity map on V). He showed that this yields a con-
troller, ®} , that induces a unimodal closed loop
map,

for(To) = (a+x(1+))’Tv  (20)

[10, 11], on TV subject to the flight dynamics (2).
Since & in (19) amounts to a “proportional control”
with respect to the desired total energy, one obtains
a globally asymptotically stable vertical period or-
bit. Beyond this strong stability mechanism, these
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maps offer as well a cascade of period doubling bi-
furcations [4] that can be readily tuned in the mirror
law itself, m}; {11). In other words, G(®%) can be
tuned via gains in the robot controller (13) to con-
sist of a single point (a periodic vertical trajectory
passing through the same apex point}, two points (a
doubly periodic vertical trajectory passing through a
high apex and then a lower apex), four points, and
so on. Moreover, regardless of the setting, this goal
is achieved by all (excepting at most a set of measure
zero) initial conditions originating in an arbitrarily
large bounded interval of the state space.

3 New Controllers from Old:
Compositions

Given two goals, 1, Ga, and two flows, @), &, whose
associated discrete maps, fz,, fo, achieve them, we
would like to build composition procedures that al-
low them both to be achieved by the same robot.
Given the architecture described in the previous sec-
tion, such compositions arise from a suitable com-
bination of the respective mirror laws, m;, my. In
this section we introduce three disctinet composition
techniques,

The first two techniques represent past work. In
practice, we have developed a family of working con-
trollers for juggling, ¢, [3, 2], that we build up
from the simpler “batting,” &5, “palming,” ®p, and
“tracking,” ®p, controllers discussed above. The
juggling machines work quite reliably in the labo-
ratory. Both our planar and our Buehgler robots
juggle for literally hours at a time, resist severe,
nearly adversarial perturbations, and display the pre-
dicted response to tuning. We review in this section
our present understanding of the theoretical basis for
their success,

The final composition technique represents work in
progress, and we reserve the next section of the paper
for a detailed account of its application (alongside of
the previous two techniques whose efficacy is now a
matter of record).

3.1 “Interleaving” Compositions: A

At the center of our interest in dynamical dexterity
is the possibility of achieving several different tasks
at the same time with one robot. Thus, the most
important composition technique that we have de-
veloped addresses the necessity of sharing actuated



degrees of freedom between competing tasks,

3.1.1 Imterpolation

The common mechanism we have developed for shift-
ing the robot’s “attention” between one or the other
eontroller obtains from a partition on the relevant
features of the environment, that express the respec-
tive “urgency” of the competing tasks. Since the tra-
jectory controller (11) can only track smooth trajec-
tories, we implement this partition via an analytic
interpolation function,

Ao(z, ) 2 { ;’

where o is an analytic version of the standard parti-
tion of unity [12].

to=1
o =10

(21)

3.1.2 Planar One-Juggle

We have been able to build “jugglers” by interleaving
palming and batting controllers,

®% = o} A 0.

Buebler 5 original mirror, iy, was formed as the
sum my + mp, of the palmer and batter. The associ-
ated controller, & worked extremely well in the labo-
ratory. Unfortunately, fg  proved to be analytically
intractable because the time of flight,r,, associated
with this strategy requires the solution of a transcen-
dental implicit function. Nevertheless, intuition held
that the periodic vertical impacts introduced an ef-
fective sampling interval on the horizontal double in-
tegrator (17}, imposing a discrete second order linear
proportional derivative closed loop

é (7. —l}'ra)I ]"T_ﬁ-[- [ 'r}I ] "::2)

where ny, : =73 n(§) denotes the component in the %
subspace of the paddle normal at impact and

u: =n(g)’ (b— r‘)

denotes the difference in linear velocity at hit point
between the paddle and ball arising from (4) and (8).
Unfortunately, no closed form expression of the re-
sulting closed loop, fq,?r has ever been derived, While
it is easy to show that fs3, has a locally attract-
ing fixed point, the global stabahty properties of this
mapping have never been established. We will in-
stead, develop a new version of juggling.

f@},(ﬁ) P [

(23)
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Rizzi [13] introduced a solvable planar one-juggle
via the following mirror law,

m3(Th) = Ay, (m};,ﬂ)

+mp o F'™e (T¥)

that achieves the vertical velocity of mL (19) with
paddle postion and attitude at impact specified by
m}b (16) by “switching” on the relative time to con-
tact, ¢/7.. In this sense, we consider 9% to be the
interleaved composistion of @} and &,

(24)

The closed loop map is given by
T f.;,: (Tv) + & (Th)
fuy (Tv, Th} = { Fo (TR) + 82(T)
=for X fo1, +6

(28)

where the § entries represent hlgher order coupling
terms that vanish at the setpoint Ty JTh .

3.2 Parallel Compositions, x

When the distinct goals require fewer degrees of free-
dom than available to the robot, then both should be
implemented simultaneously, The parallel composi-
tion, ®; x P is intended to realize this end.

The Spatial One-Juggle To get a three degree of
freedom a generalization of the planar juggler con-
troller to the spatial Buehgler arm, we used the two
new degrees of freedom to implement the tracker m.

(26)

m§ i =mj +mp
and thus,
8% = 0% x (@) AT)).

3.3 Sequential Compositions, \/

Say that controller ®; prepares controller &,, de-
noted &y = @, if its goal lies within the domain of
the second G(®,) C D(®2). For any set of controllers,
U = {®1,...,Pxn}, this relation induces a directed
generally cyclic graph.

Assuming that the overall task goal set, G, co-
incides with the goal set of at least one controller,
G(®;) = G, then by starting with &; and recursively
tracing the relation backwards through the corre-
sponding graph, one arrives at g C U — the set
of all controllers from whose domains the overall goal
might be eventually reached by switching from one




to the next: the domain of a properly conceived com-
posite controller, ® = \/ Uiy, should then be

D(\/ug) = | r@.

®clig
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Such a sensor based composite results naturally
from a partition of 7 into cells “governed” by the
mernbers of Uy as follows. The relation, >, induces
a partial order (possibly more than one) on Ug with
a minimal element, ®;, as may readily be computed
by pruning the original graph into an acyclic graph
with root at ®; (e.g., perform a breadth-first search
back from that node} that we call a preparation
graph for ®; and denote by I'. This partial order
now induces a partition on the dynamical workspace,
Z, obtained from an arrangement of the domains,
{D(®:)}g,cu,: of the participating controllers in the
obvious manner®,

We have achieved reasonable experimental success
with algorithms of this form where the placement and
tuning (hereafter referred to as the deployment) of the
individual controllers is carefully designed by hand.
We report here a specific instance of such a “hand-
designed” deployment. Ultimately we expect to build
systems where the controller deployment is automat-
ically generated from user-specified task goals.

4 Application: Obstacle Avoid-
ance

Juggling and hopping are examples of dynamical ma-
nipulations that incur the repeated need for “re-
grasping” — letting go of the manipuland while in
the course of bringing it to some more desired state.
The need for regrasping arises in many robotic ma-
nipulation scenarios, assembly being among the most
important. We now explore the composition of bat-
ting controllers to dodge obstacles that would other-
wise have disconnected the configuration space.

4.1 Obstacles and Safety

A barrier for the robot, O C R, or ball, O3 C B
consists of those states that entail either one pen-
etrating a physical object. A workspace obstacle,

5For example, controller ®; is assigned that portion of its
domain, D{®1), not contained in that of any “}>-lesser” con-
troller; controller $34; is assigned the portion of its domain
not contained in that of either a »--lesser controller one of index
i<k
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O: =0 Umg (ZNnz'Or), corresponding to a ball
barrier comprises the union of the ball barrier with
those nearby ball states that the robot cannot reach
while itself avoiding a robot barrier. The first return
of a ball with respect to a workspace obstacle, is de-
fined to be its urgency , 70 : F~(0) —» RY. ©

Say that a robot policy (13) @ is safe with respect
to © if there can be found an open subset in the free
dynamical workspace, 7,

Do(®):= {b€ F~ (0) ND(P) : 7a(b) < 70(b)}
that is left invariant by fs,
f2(Po(®)) C Do(?) (28)

In other words, a safe controller for O yields a safe
domain of states, Do(®), from which it can be as-
sured that forthcoming contact will be made before
the ball penetrates the obstacle and that this assur-
ance will remain after the next contact. Notice that
for any obstacle and controller, a safe domain is in-
variant during flight, F'* (Do(®)) C Do(®), by its
very definition. Thus, once & has been selected, only
a violation of our models — e.g., a perturbation dur-
ing flight or impact, a overly large observer error, etc.
— can cause a transition out of Do (®).

4.2 Safe Deployments

To achieve obstacle avoidance in the previous sec-
tion, we have used numerical methods to compute
conservative approximations to the set fg (O). Sup-
pose the controller @ = $p Adp is the composition of
controllers that decouple the horizontal and vertical
degrees of freedom of the bali,

fo = fop X fop.

Suppose, moreover, as in this problem, that the ob-
stacle set is cylindrical over H. Then we may use the
factor fp, alone as the mechanism of safety — i.e.,
we will use conservative approximations to the safe
space defined by ®p

So(®p): = f3,(0)

to plan our avoidance maneuvers.

4.3 Juggling Across a Horizontally
Disconnected Workspace

We now introduce to the robot’s workspace a flat ob-
stacle at the height of the paddle when held flat. Fig-

$The notation of this paragraph was introducedin footnotes
4 and 1
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Figure 2: Horizontal configuration space with obsta-
cle and visual boundaries.

ure 2 depicts the obstacle’s locus within the planar set
defined by these horizontal robot configurations — an
annular region owing to the paddle’s finite length —
intersected with the horizontal projection of the vi-
sual workspace. It should be clear from the figure
that the pure palming controller, ®p, sees a discon-
nected workspace, Thus, in addressing the problem
of how to bring a ball from one to the other con-
nected component, we encounter a simple case of the
situations described above wherein a re-grasp maneu-
ver is necessary to the success of the task, This sec-

tion describes our application of the safe deployment

methodology to the re-grasping problem.

When a controller has a goal within a convex do-
main, then it is not critical what trajectory the state
of the ball takes inside the domain as it moves fo-
ward the goal, It is enough to know that the domain
is invariant, and the goal is attracting. In fact, lit-
tle changes whether we consider the ball dynamics
disciete or continuous. On the other hand, in the
presence of a disconnected workspace there must be
at least one controller with a domain of attraction
to its goal that is disconnected. Since the domain of
attraction of an equilibrium state for any continuous
dynamical system is homeomorphic to a ball, we re-
quire in this application a controller that induces a
discrete dynamical system,

As we have described in the previous sections, the
juggling controller, ®; induces just such a discrete
dynamics on the impact set, Z. Moreover, when the
vertical component is precisely regulated, Tv = Tv*,
then the juggling mirror law, & selects impacts over
this horizontal workspace. In this case, we have

fa,(T) = f@},(T”‘) X fq:}.("‘*'?th)

and we may use fpa, its “r)-sampled discrete ver-

Figure 3: Empirically derived estimate for the hori-
zontally safe juggling domain. The symbol(s) X ()
denote the points which failed (succeeded) in remain-
ing within the robot’s annular and visual workspace
under the action of ®;.

sion” to plan deployments of ®%. In this paper we
have used conservative numerical simulations of the
closed loop dynamics to achieve the desired safe de-
ployment.

4,3,.1 A Numerical Approximation to fQ%

In Figure 3, we display test data used to formulate
an approximation of the safe domain for the juggling
controller operating within the bounded workspace
formed from the robot’s paddle and visible region
— the region of Figure 2 with no flat obstacle in-
scrted. The “4” symbols represent starting condi-
tions which the robot was unable {o regulate safely,
and the ”.” symbols represent starting conditions suc-
cessfully brought to the set point.

In Figure 4, we display the same test data run
through the numerical simulation of the robot op-
erating under ®;. Since all but one of the starting
conditions that failed on the real robot failed in simu-

lation, we are persuaded that the simulation provides

a conservative approximation to the robot’s true ac-
tions.
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Figure 4: Numerically derived estimate for the hor-
izontally safe juggling domain. The symbol(s) “+”
(“”) denote(s) the points which failed (succeeded)

in remaining within the robot’s annular and visual

workspace under the action of the numerical simula-
tion of &;.
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Figure 5: Simulation results: the largest safe subset
of the free workspace defined by @®;.
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Figure b depicts the results of a simulation run to
establish the largest safe domain of ®; with respect
to the disconnected obstacle-cluttered free workspace
illustrated in Figure 2. The shaded region consists
of free points that reach the goal - the spot la-
belled “4” in the figure — and remain free (that is,
they stay clear of the obstacle, stay within the vis-
ible workspace, and remain within the reach of the
paddle) along the way. This, of course, is merely the
zero velocity subset of a four dimensional region that
extends in a rather complicated manner into TH.

4.3.2 A Computationally Derived Safe De-
ployment

At the present time, we have no convenient means
of parametrizing the largest safe subset of ®; {(whose
projection onto A is depicted in Figure 5). Yet to
build the sequential compositions laid out in this pa-
per we require just such a parametrization. Thus, we
are led to find smaller safe domains whose shape is
more readily represented. Ellipses make an obvious
candidate shape and have an analytical justification
described in the appendix.

In Figure 6, we show four slices through the surface
of an invariant four-dimensional ellipscid, along with
the same slices of the forward image of that surface
computed by a numerical simulation of & operating
under the mirror law, my. Although these pictures
do not in themselve suffice to guarantee invariance
they provide a useful visulization of what is going on.
Indeed, these four projections were used as the pri-
mary tool in a search by hand for an invariant ellip-
soid using the simulation, When a promising candi-
date was created by rotating and elongating the four-
dimensional ellipsoid, the forward image was tested
for inclusion in the original ellipse. After many trials,
the ellipse shown in Figure 6 was found and shown to
mabp entirely within itself. ¥ '

Once a single invariant ellipsoid is found for a par-
ticular set point, several of such ellipsoids may be
placed within the workspace by making rotationally
symmetric copies (the mirror law, my, is rotationally
symmetric). This allows us to create a complex con-
troller on each side of the obstacle. The one on the
goal side draws all states within the copies of the in-

¥This process will be sped up enormously by access to an
analytically tractable return map of a kind introduced in the
appendix. Even without analytical results, the search for in-
variance could be automated by recourse to positive definite
programming (convex nonlinear programming problem) on the
parameters (in this case, the entries of a positive definite ma-
trix) defining the shape of the invariant set.
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Figure 6: Four 2-D slices of the invariant ellipse.
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variant domain toward the task goal point (which is
assumed to be the goal of one of the constituent con-
trollers). The one on the disconnected-from-goal side
draws a similar union of domains to a goal point near
the obstacle. The next task is to develop a controller

that will cross the obstacle.

To get across the obstacle, we start with two con-
trollers and domains of interest — the highest priority
pre-obstacle controller, and the lowest priority post-
obstacle controller, each with its own invariant do-
main, The latter will form the basis of the jumping,
or trans-obstacle controller. Since the pre-obstacle
controller will regulate the ball to arbitrary accu-
racy (at least in simulation), we can choose a small
neighborhood around that set point as a “launch-
ing pad” for the trans-obstacle controller. Having
chosen such a ball, we take the forward image un-
der the mirror law in simulation. The result may no
longer be invariant, but we can readily find an ellip-
soid that contains it. The new “containing” ellipsoid
is now mapped forward and its image is once again
contained in some new ellipsoid. Iterating this pro-
cess, we eventually find an invariant ellipsoid that
contains the forward image of the n** “container” el-
lipsoid and lies within the original invariant domain.
The union of all these ellipsoids is invariant and safe
under the trans-obstacle controller, as the forward
image of each member of the union is fully contained
within another, and they all lead into the safe invari-
ant domain already found. In Figure 7 we show a
union of ellipsoids created by this process projected
onto four orthogonal planes.

In Figure 8, we depict the the entire hand-crafted
deployment discussed so far by projecting the domain
of each onfo the horizontal configuration space intro-
duced in Figure 2. There are a total of fifteen ellip-
soids for nine different controllers, the union of six of
them associated with the trans-obstacle controller,

The deployment of Figure 8 gives rise to a safe
controller under the \/ composition described previ-
ously. Unfortunately, due to the conservative nature
of our numerical procedure, the domain of atiraction
of the composite is not large enough to lend confi-
dence that a ball eould easily be introduced into it.
Worse, given the inevitable infidelities of the robot
and ball with respect to the ideal models (1), {5),
(7), a physical implementation will remain roughly
faithful to the simulation results, but inevitably de-
part frequently enough and with significant enough
magnitude that some further “safety net” is required
to bring balls that start (or, “unexpectedly stray”)
outside the domain of the composite back into it.
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o Figure 9: The implemented deployment, adding
a “catch-all” (an ellipsoidal approximation to the
o largest safe domain) to supplement the jump con-
02 troller.
23
ol For purposes of this initial study, we have chosen
s to use very coarse (and, unfortunately, not necessar-
ily conservative) approximations to the largest safe
o domain of ®; depicted in Figure 5. These take the
oz} form of large ellipses that share some of their bound-
o ary (at zero velocity) with the disconnecting obsta-
cle as depicted in Figure 9. The robot is assigned
F o the corresponding juggling controller whenever the
ot ball is outside the domain of the sequential compos-
ite depicted in Figure 8, yet still within the reachable
o2y workspace.
04
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4.3.3 Empirical Results to Date

Fi_gure 7: Jump controller invariant union of ellip- In figure 10 we show several typical traces of the con-
soids. trol mode plotted against time, with the height of the
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Figure 10: Anecdotal time trace of vertical position
and mode number for a typical run.

Figure 11: Horizontal projection of the sample trace
above.

ball also plotted to provide a sense of time scale. 8

Figure 11 now plots for this same typical run the
horizontal positions at each hit (depicted by a box
symbol in the plot) to convey a sense of where the
domains for these various controllers reside in the
workspace,
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