
Technical Report: MS-CIS-05-20
Optimal Control of Software ensuring Safety and

Functionality

Arvind Easwaran, Sampath Kannan, Insup Lee
arvinde, kannan, lee@cis.upenn.edu

University of Pennsylvania, Philadelphia

October 11, 2005

Abstract

Existing verification and validation methodologies can detect software violations very
effectively but fail to provide any mechanism for correcting faults once they are detected.
Detection of faults, their diagnosis and corrective actions are all essential components of
any software rectification framework. In this paper, we propose a framework for correc-
tion of violations in software systems ensuring that the desired goals of the system are
achieved. We describe a stochastic finite state machine used to abstract a software system
along with the uncertainty in its operating environment. Safety property violations and
satisfaction of functionalities are abstracted using penalties and rewards on the states,
respectively. Rectification of software is then formulated as a stochastic optimal control
problem over this abstraction. Algorithms polynomial in the size of the abstraction have
been developed for solving this optimization problem exactly. The paper also applies the
developed framework to a variety of examples from different domains.

1 Introduction

Software systems are designed and implemented to satisfy certain predetermined user re-
quirements. These user requirements identify functionalities desired from the system in ad-
dition to safety properties it is expected to possess. Errors in design or implementation often
result in the user requirements not being met. Although verification and validation tech-
niques can determine the presence of such errors (especially safety violations), they fail to
correct the system in order to prevent their occurrence. Correction techniques must preserve
functionality while preventing the occurrence of safety violations. Control theory plays a
significant role in control of engineering systems. Analogously, we aim to control a soft-
ware system minimizing violations of safety properties and simultaneously maximizing the
achievable goals in the system.

Formal models help in unambiguously describing software systems and also in arguing
formally about properties that the system possesses. Software correction can be facilitated
if the system is abstracted as a formal model. Any software system interacts with an un-
predictable operating environment. Since the execution of the system depends on the en-
vironment, any abstraction of the system must capture this uncertainty. Control actions on

1

the abstract formal model would result in modifications to the model leading to a correct
system. The abstraction must then capture the cost of control that the controller will incur
for execution of control actions on the system. Cost of control must depend on the criticality
of the part of the system being modified. Controllability of an execution point refers to the
ability of the controller to execute control actions at that point. In practice, not all execution
points in a software system are controllable and hence abstractions must capture the notion
of uncontrollability in the system. Controllers must also preserve functionalities of the sys-
tem while preventing safety property violations. Abstractions must then identify execution
points that either achieve system goals or result in safety property violations.

In this paper, we describe a finite state machine based formal model used to abstract
software systems. This model abstracts the uncertainty in the operating environment as
well as the cost of control for the system. Rewards associated with satisfaction of goals and
penalties for safety violations are used to prevent violations while preserving functional-
ity. Control actions on this model involve blocking a subset of the transitions of the finite
state machine. We then formulate the optimal stochastic control problem in terms of the ab-
stracted model and allowed control actions. Stochasticity results in optimization of expected
values of control costs, rewards and penalties. Optimality is achieved by minimizing cost of
control and penalties and simultaneously maximizing rewards. Minimizing control cost en-
sures that control is achieved by expending the least effort in terms of modifying the system.
Maximizing rewards results in maximizing available functionalities in the system and mini-
mizing penalties results in minimizing the safety violations. Note that if a safety violation is
catastrophic, the abstraction can assign infinite penalty to the corresponding system state to
ensure that the optimal control policy never allows the system to enter that state. Algorithms
with running time polynomial in the size of the abstraction are then described for solving
this optimization problem. Related work is discussed towards the end of the paper.

2 Motivation

In this section we describe three problems from different domains which will motivate the
need for a general framework for control of software.

2.1 Assuring Quality of Service for Web Services

A web service application consists of a web server providing services to various distributed
clients using multiple servers [26]. The distributed clients send service requests to the web
server which then executes the requests on its servers. The web service application software
basically performs two jobs. It controls admission of all the incoming service requests and
schedules the waiting service requests on idle servers. Quality of service (QoS) parameters
like maximum latency are associated with incoming service requests. Latency for a service
request can be defined as the time between the arrival of the request at the web server and the
completion of service of that request by the server. These parameters are previously agreed
upon by the client and the server. An architecture for a typical web service application is as
shown in Figure 1.

Every service request from a distributed client belongs to the same fixed class or priority.
The web server has one accept queue per class. The admission control software monitors
the service requests arriving from distributed clients. Based on the control logic of the ad-

2

Accept queue 2

Accept queue m

S 1

S 2

S n

Accept queue 1
S
C

H
E

D

U
L

E
R

O

I

S

N

S
I

M

D

A

.

.

.

.

.

.

.

.

.
.
.
.

Remote clients

requesting services

Figure 1: Web Service Software Architecture

mission controller, it will determine whether to accept a particular service request. If the
admission controller accepts a service request, then that request is queued into an accept
queue determined by the class of the request. The task scheduling software is responsible
for scheduling of service requests waiting for service in the accept queues. Whenever any
server on the web server becomes idle, the scheduling software will determine the next ser-
vice request to be processed by the idle server. The scheduler will make use of the current
latency (time since arrival) and the priority of waiting requests to determine the next request
to be processed. Once allocated to a server, requests will be executed to completion. The
goal of the web server software (admission controller and task scheduler) is to ensure that
the QoS requirements of all the accepted requests are satisfied (different request classes will
in general have different QoS requirements). We will present a more detailed model of this
application as an example of the general framework we develop in the next few sections.

2.2 Dynamic Power Management

Application of embedded devices in various domains has resulted in growing importance
for reducing power consumption in hardware components. Dynamic power controller is
a specialized control software that aims to reduce the power consumption of a hardware
component by predicting the arrival of requests that use the component. An architecture for
the dynamic power controller along with the system is as shown in Figure 2. The architec-
ture consists of a set of service requesters also known as clients (SR1, · · · , SRm) requesting
services from the system. The system has a set of request queues of fixed size (Q1, · · ·Qn),
one for each class or priority. We assume that all the requests from a particular client be-
long to the same class. The service provider (SP) is the hardware component that processes
requests waiting for service. The provider can be in one of three states depending on the
amount of power it is consuming. It consumes the maximum power when it is in the ’active’
state (processing request), the least power when it is in ’sleep’ state and moderate power
when it is in ’idle’ state (waiting for request). Changing the state of SP from ’idle’ to ’sleep’
or from ’sleep’ to ’active’ will consume a fixed amount of power and time. The dynamic
power manager (DPM) is responsible for controlling the state of the service provider. DPM
uses current occupation levels of the queues and prediction of request arrivals to determine
the state of the provider. If a new request for a particular class arrives when the queue is
full, then that request will be dropped. Further each class has a QoS parameter which de-
termines the maximum allowed latency for that request class. The DPM must not only
minimize power consumption but must also reduce request loses and ensure satisfaction of
QoS requirements. The DPM determines the state of the provider that results in minimiza-

3

SR_1

SR_m

Q_1

Q_n

.

.
.
.
.

.

Dynamic Power Manager

SP

Figure 2: Dynamic Power Controller

tion of power consumption and request loss and simultaneously leads to satisfaction of QoS
requirements using its prediction for future request load on the SP .

2.3 Aircraft Routing under Weather Uncertainty

Explosive growth of air travel has resulted in increased delays most of which are weather in-
duced. Traditional routing strategies for aircrafts use the weather predictions to completely
avoid bad weather zones in the flight path. Although this strategy results in a safe route, it is
extremely conservative in terms of the distance traveled by the aircraft to reach its destina-
tion. The weather bureau makes predictions of storms which are revised periodically. These
predictions identify storm zones in the airspace along with a probabilistic estimate for the
occurrence of storm in that zone between two predictions. Current routing strategies ignore
the probabilities completely and avoid all storm zones in their path planning algorithms.
They also do not update the planned route periodically in response to new predictions of
storms. Nilim et. al. in papers [23, 22] have formulated the aircraft path planning problem
under storms as a Markov decision process. The path planner is required to compute a route
for the aircraft that minimizes the distance traveled and also ensures that the path is not af-
fected by any storm. Standard optimization algorithms for Markov decision processes like
policy iteration using bellman recursion are then employed to determine a route that will
minimize the expected distance traveled by the aircraft from a given source to destination.
Algorithms for solving optimization problems over Markov decision processes like policy
iteration using bellman recursion have poor running times when there are exponentially
many actions at each state. This is true for the aircraft path planning problem because two
different routes can be optimal under expectation from a given state. We will formulate this
path planning problem in our framework which will then result in an efficient algorithm for
solving the optimization problem.

3 Finite State Abstraction and Problem Statement

A software system consists of sequential execution of finite number of discrete steps. This
system can be represented abstractly by a finite state machine M . To capture the uncertainty
in the operating environment, the transitions of M can have associated probabilities. A map-
ping of states to rewards/penalties helps determine whether they violate safety properties

4

or satisfy some functionality. Each transition of M represents an action that the software sys-
tem may execute when the system is at the source state of that transition. In this paper we
assume that blocking the execution of these transitions are the only possible control actions.
Blocking a transition t in M results in a reduced finite state machine in which transition t
is disabled. Control actions blocking transitions are simple to implement and can satisfy
the objective of preventing safety violations ensuring maximization of existing functionality.
Cost of control can then be associated with transitions which identifies the cost incurred by
the system in implementing control actions. To model uncontrollable transitions we let the
cost of control for these transitions be infinite.

Definition Formally, a finite state machine abstraction for a software system can be repre-
sented by a labeled graph M = (S, s, T,Σ, F) where,

• S is the set of states of M and s ∈ S is the initial state. Assuming there are n states in
the model, let the states be numbered 1 thru n with start state s = 1 wlog. We assume
that all the states i ∈ S are reachable from the start state.

• T is the set of transitions where {i, j} ∈ T represents a transition from state i to state j.

• Σ is the set of events and F ⊆ S is the set of final states of M . States in F do not have
any outgoing transitions.

• Each transition {i, j} ∈ T in the graph has the following parameters:

– Event ei,j ∈ Σ abstracting a set of instructions executed by the target system.
– Conditional probability pi,j that the system takes this transition given that the

system is in the source state of this transition.
– Cost of blocking ci,j ∈ R+ which represents the cost that the controller will incur

if a control action blocks this transition.

• Each state i ∈ S has a reward/penalty parameter ri ∈ R. If state i violates a safety
property then ri is positive. But if the state satisfies some system functionality then ri

is negative.

Let pi,j = ci,j = 0 if transition {i, j} does not exist in model M . Also let ∀i ∈ S\F,
∑n

j=1 pi,j =
1. This assumption ensures that when the system reaches a state i in the abstraction, it will
take one of the outgoing transitions at that state. A control action on M involves block-
ing a subset of the transitions. The set of all control actions for M can then be given as
CAM = {A|A ⊆ T} where A ∈ CAM is the set of transitions blocked by control action A.
Hence the total number of control actions |CAM | for M is equal to 2|T | where |T | is the to-
tal number of transitions in M . The reduced finite state machine to which control action
A ∈ CAM has been applied will be referred to as the controlled system and denoted by M A.
Let Ai = {{i, j}|({i, j} ∈ A)} where A ∈ CAM denote the set of outgoing transitions blocked
at state i under control action A. Also let cA

i,j be the cost of control for transition {i, j} un-
der control action A. cA

i,j = ci,j if {i, j} ∈ A and is 0 otherwise. In a controlled system M A

with non-empty Ai, since some of the outgoing transitions at state i are blocked, conditional
probabilities on the remaining unblocked transitions will violate the probability distribution
assumption stated earlier. Transition probabilities at state i must then be modified (normal-
ized) to generate a distribution. This situation is shown in Figure 3 which shows a partial

5

j

k

l

i

c3, p3
ri

rl

rk

rjc1, p1

c2, p2

(a) Initial Abstraction

j

l

i

c3, p3/(p1 + p3)
ri

rl

rjc1, p1/(p1 + p3)

(b) Controlled Abstraction

Figure 3: Dynamic Probabilities for Transitions

finite state machine M consisting of states i, j, k and l. Figure 3(a) shows M prior to ap-
plication of control action and Figure 3(b) shows the controlled system M A after a control
action Ai = {i, k} has been applied. As shown in Figure 3(b), probabilities of the unblocked
transitions have to be normalized to maintain the probability distribution property at state i.

Let pA
i,j define the new conditional probability of transition {i, j} when control action A

is applied to M .

pA
i,j = pi,j/(

∑

k:{i,k}6∈A pi,k) If ({i, j} 6∈ A)

pA
i,j = 0 otherwise

Given a model M we would like to determine a control action A such that the controlled
system MA has the least expected total cost at its start state as compared to any other control
action. We will now formulate the objective function for this control problem. Two factors
that contribute to the total cost are the control cost for blocking transitions and the net ex-
pected penalty and reward in the modified transition system. Blocking a transition may
increase the total cost due to a non-negative cost of blocking associated with that transition.
If any state in MA is reachable from the start state, then the reward or penalty at that state
will contribute to the total cost as well. If the state is a desired state then it will reduce the
total cost and if it is a violating state then it will result in an increase in the total cost. Since
the state machine is stochastic, we can calculate expected values for costs incurred at states.
We now formally define the objective function for the expected value of the total cost at any
state of M for a particular control action A. The optimal stochastic control problem can then
be defined as minimizing this objective function at the start state s = 1 over all possible
control actions CAM .

Definition The expected cost at a state i ∈ S under a control action A ∈ CAM for M =
(S, s, T,Σ, F) is,

6

EA
i = ri +

n
∑

j=1

cA
i,j +

n
∑

j=1

(pA
i,j × EA

j) (1)

At state i, the controller will get a reward or penalty of ri for reaching that state. It will
also incur the blocking cost which is given by

∑n
j=1 cA

i,j under control action A. Further, the
controller will incur an expected cost given by

∑n
j=1(p

A
i,j ×EA

j) for all successor states j (pA
i,j

is 0 if j is not a successor state of i or if {i, j} is blocked under A). EA
j is the expected total

cost at state j under control action A. The optimal stochastic control problem can now be
defined as,

Definition Given M = (S, s, T,Σ, F) compute,

min
A∈CAM

{EA
1 } = min

A∈CAM
{r1 +

n
∑

j=1

cA
1,j +

n
∑

j=1

(pA
1,j × EA

j)} (2)

where EA
j is the optimal expected total cost at state j under control action A.

Since arbitrary transition systems can be decomposed into strongly connected components
(SCCs) connected by a directed acyclic graph (DAG), we consider in turn the control of a
DAG and the control of SCCs and put these together to achieve control of general systems.

4 Optimal Control of Directed Acyclic Graphs

In this section we will describe a dynamic programming algorithm for solving the optimiza-
tion problem given by Eq. (2) for the case when M is a directed acyclic graph (DAG). We will
also prove for DAGs that the objective function satisfies the optimal substructure property.

4.1 Optimal Substructure Property of the Objective Function

Assume E∗
1 is the optimal cost for the start state s = 1 and that this optimal cost is incurred

when control action A is applied to M i.e, EA
1 = E∗

1 and it is given by,

EA
1 = r1 +

n
∑

j=1

cA
1,j +

n
∑

j=1

(pA
1,j × EA

j) (3)

Let RA
1 ⊆ S denote the set of successor states of state 1 in M A (states in S with incoming tran-

sitions from 1 under control action A) such that |RA
1 | = k. Let the expected total cost at each

of the states in RA
1 be suboptimal. Consider the k subproblems of determining the optimal

expected total costs at the k states in RA
1 where for each state j ∈ RA

1 optimization is done
over the subgraph Mj of M originating from j and only having states reachable from j. Let
∀j ∈ RA

1 , E
Bj

j denote the optimal expected total cost obtained by solving the subproblems
where Bj denotes the optimal control action associated with subgraph Mj . Since each Mj is
a DAG, the optimal expected total cost at any state of Mj is independent of the transitions
and paths that lead to that state. Hence the control actions {Bj |j ∈ RA

1 } do not conflict at any
state which occurs in more than one subgraph. In other words, the control actions specified

7

by the set {Bj |j ∈ RA
1 } at a state l that occurs in more than one subgraph are all equiva-

lent. Since E
Bj

j are optimal expected costs for all j in the set RA
1 and EA

j are sub-optimal,

we know that ∀j ∈ RA
1 , E

Bj

j < EA
j . Now, consider the control action C = A1

⋃

j∈RA
1

Bj . The
corresponding expected total cost at state 1 for the entire graph M is given by,

EC
1 = r1 +

∑n
j=1 cC

1,j +
∑n

j=1(p
C
1,j × EC

j)

= r1 +
∑n

j=1 cA
1,j +

∑n
j=1(p

A
1,j × E

Bj

j) by definition of C and DAG property of M

< r1+
∑n

j=1 cA
1,j +

∑n
j=1(p

A
1,j×EA

j) since ∀j ∈ RA
1 , E

Bj

j < EA
j and pA

1,j is a probability measure

= EA
1 = E∗

1 using Eq. (3)

This implies that E∗
1 was not optimal which is a contradiction. Hence the objective func-

tion given in Eq. (2) satisfies the optimal substructure property and we can use a dynamic
programming algorithm to solve the optimization problem.

4.2 Dynamic Programming Algorithm for DAGs

The recursive equation of the objective function in Eq. (2) is given by,

E∗
i = ri + min

Ai

{
n

∑

j=1

cA
i,j +

n
∑

j=1

(pA
i,j × E∗

j)} (4)

where E∗
j is the optimal cost for state j under some control action Aj and A =

⋃n
j=1 Aj .

A naive algorithm will first topologically sort the states using TOPOLOGICAL-SORT al-
gorithm given in [9] in time O(m+n) where m is the number of transitions in M . It will then
evaluate the expected costs at states in the order of reverse topological sort using Eq. (4).
Since M is a DAG, the optimal costs at all successor states of i would already have been
computed before computing the cost at state i if states were considered in reverse topo-
logical order. For each state i, the algorithm will evaluate the expected cost for all possi-
ble control actions and then pick the control action giving the least expected cost. Since
Ai ⊆ {{i, k}|({i, k} ∈ T)} for any state i, the time to compute the objective function at that
state is O(2odi) where odi is the out degree of state i. Hence the total running time of the
algorithm is O(m + n) + O(n2n) = O(n2n). Next we exploit a structural property of M to
produce a polynomial time algorithm. We first describe the algorithm and then give a proof
of its correctness.

4.2.1 Improved Dynamic Programming Algorithm

The improved algorithm for solving the optimization problem given in Eq. (4) is described
in Algorithm 1. This algorithm topologically sorts the state space and evaluates costs at
states in reverse order of the sort as in the naive approach. But at each state of M , instead
of evaluating the objective function for all possible control actions, it determines optimal
control by evaluating the objective function for only a polynomial subset of the control ac-
tions. This is possible because of a structural property of M that this algorithm exploits.

8

Consider some state i of M for which the algorithm is currently determining the optimal
control action. Since M is a DAG, the optimal cost at all successor states of i is known.
The procedure shown in Algorithm 1 first evaluates the total expected cost at state i assum-
ing all outgoing transitions are unblocked. It then blocks an arbitrary outgoing transition
and evaluates the new expected cost. If the new cost is smaller than the current expected
cost, then the algorithm permanently blocks this transition. It then repeats this process until
blocking transitions leads to no further decrease in the expected total cost at state i. Cor-
rectness of this approach is proved in Section 4.2.2 of this paper. The running time of this
algorithm at each state i is O(od2

i) (since in each execution of the loop at least one transi-
tion is blocked and each step takes at most O(odi) time to execute). Hence the total run-
ning time over all states is O(

∑

i∈S od2
i) and the total running time of the entire algorithm is

O(m + n) + O(
∑

i∈S od2
i) = O(

∑

i∈S od2
i).

Algorithm 1 OptConDAGS
1: Topologically sort vertex set using TOPOLOGICAL-SORT algorithm
2: Initialize optimal control action A = φ

//Evaluate costs in reverse topological order
3: for Each state i in reverse topological order do
4: Let EA

i = ri +
∑n

j=1(p
A
i,j × E∗

j) //Assuming all outgoing transitions are unblocked
//Let Q be a queue containing all outgoing transitions of i in arbitrary order

5: while Exists transition in Q whose blocking reduces objective value do
6: Block transition at the head of Q ({i, k} = pop(Q))

//Compute new objective function value
7: EB

i = ri + cB
i,k +

∑n
j=1(p

B
i,j × E∗

j) where B = A ∪ {i, k}
//If objective function value reduces, then block {i, k}

8: if EB
i < EA

i then
9: EA

i = EB
i and A = B

10: end if
//If objective function value does not reduce then push {i, k} back into Q

11: if EB
i ≥ EA

i then
12: push({i, k})
13: end if
14: end while
15: end for

4.2.2 Proof of Correctness of the Algorithm

Let S1 ⊂ S \ {i} be some arbitrary subset of states and let S2 = S \ (S1 ∪ {i}). Consider the
following equations which denote the expected cost at some state m (m ∈ S) during various
stages of the algorithm given in Algorithm 1,

E1 = EA
m = rm +

∑

j∈S2
(pA

m,j × EA
j) +

∑

j∈S1
(pA

m,j × EA
j) + pA

m,i × EA
i where Am = φ

E2 = EB
m = rm + cB

m,i +
∑

j∈S2
[(pA

m,j × EA
j)/(1 − pA

m,i)] +
∑

j∈S1
[(pA

m,j × EA
j)/(1 − pA

m,i)]
where B = A ∪ {m, i}

9

E3 = EC
m = rm +

∑

j∈S2
[(pA

m,j × EA
j)/(1 − R)] + M + (pA

m,i × EA
i)/(1 − R) where R =

∑

j∈S1
pA

m,j, C = A ∪ {{m, j}|j ∈ S1} and M =
∑

j∈S1
cC
m,j

E4 = ED
m = rm +

∑

j∈S2
[(pA

m,j × EA
j)/(1 − R − pA

m,i)] + cD
m,i + M where D = C ∪ {m, i}

E1 is the objective function value at the beginning of the algorithm for state m. E2 is the
value when transition {m, i} has been blocked. E3 represents the value of the function when
transitions to j ∈ S1 from m have been blocked but {m, i} has not yet been blocked. E4 rep-
resents the value when transitions to j ∈ S1 from m and transition {m, i} have been blocked.
We now prove that,

Theorem 4.1 (E1 > E2) ∧ (E1 > E3) ⇒ (E3 > E4)

Proof Using equations for E1 and E2 we get,

E1−E2 = pA
m,iE

A
i −cB

m,i−
∑

j∈S2
[(pA

m,j×EA
j)(pA

m,i)/(1−pA
m,i)]−

∑

j∈S1
[(pA

m,j×EA
j)(pA

m,i)/(1−

pA
m,i)] > 0

Also, from equations for E1 and E3 we get,

E1−E3 = −pA
m,iE

A
i (R/(1−R))−M −

∑

j∈S2
[(pA

m,j ×EA
j)(R/(1−R))+

∑

j∈S1
(pA

m,j ×EA
j) > 0

Substituting this equation in the equation for E1 − E2 we get,

pA
m,iE

A
i (1−R−pA

m,i)/[(1−pA
m,i)(1−R)]−cB

m,i−MpA
m,i/(1−pA

m,i)−
∑

j∈S2
[(pA

m,j×EA
j)pA

m,i/[(1−

pA
m,i)(1 − R)]] > 0

pA
m,iE

A
i (1−R−pA

m,i)/[(1−pA
m,i)(1−R)]−cB

m,i−
∑

j∈S2
[(pA

m,j ×EA
j)pA

m,i/[(1−pA
m,i)(1−R)]] > 0

since M is positive

⇒ pA
m,iE

A
i /(1 − R) − cD

m,i(1 − pA
m,i)/(1 − R − pA

m,i) −
∑

j∈S2
[(pA

m,j × EA
j)pA

m,i/[(1 − R)(1 −

R − pA
m,i)]] > 0 since cB

m,i = cD
m,i

⇒ pA
m,iE

A
i /(1 − R) − cD

m,i −
∑

j∈S2
[(pA

m,j × EA
j)pA

m,i/[(1 − R)(1 − R − pA
m,i)]] > 0 since

R + pA
m,i ≥ pA

m,i

⇒ E3 > E4 2

This implies that if blocking a transition {m, i} reduces the expected cost at state m at some
stage in the algorithm, then transition {m, i} will be blocked in the optimal control action as
well. This proves correctness of the algorithm described in Section 4.2.1.

5 Optimal Control of Strongly Connected Components

In this section we assume wlog that states {1, · · · , n} of a finite state machine M with state
space S = {1, · · · ,m} where n ≤ m form a strongly connected component S1 (SCC). We also

10

assume that all control costs, rewards and penalties are finite. Uncontrollable transitions and
critical safety violations can be specified by assigning very high but finite costs and penalties
to the transitions and states, respectively. We will show that in general, the optimization
problem defined in Eq. (2) need not have a solution for strongly connected components. We
will then modify the objective function to ensure existence of a unique solution for general
SCCs and also describe an efficient algorithm for solving the same.

5.1 Conditions for Existence of Optimal Solution

A strongly connected component is called terminal when all the vertices in the SCC have
transitions only to vertices in the same SCC [9]. Any strongly connected component which
is not terminal is called a non-terminal SCC. We will show that for a fixed control action, the
stochastic control problem has a solution if and only if the SCC is non-terminal. This implies
that the optimization problem restricted to S1 given by Eq. (2) has a solution if and only if S1

is a non-terminal SCC. We then modify the objective function with discounted rewards and
penalties to guarantee existence of a solution for terminal SCCs.

5.1.1 Objective Function Formulation for a Fixed Control Action

From Eq. (2) the objective function restricted to S1 for a fixed control action A is given as,

EA
1 = r1 +

∑n
j=1(c

A
1,j) +

∑n
j=1(p

A
1,j × EA

j) (5)

where EA
j = rj +

∑n
i=1(c

A
j,i) +

∑n
i=1(p

A
j,i × EA

i)

Let for control action A, Mj = rj +
∑n

i=1(c
A
j,i), pA

j,i = pj,i and EA
j = Ej . If S1 is non-terminal

(n < m), then we can assume the expected costs for states not in S1 with transitions from S1

be known. Further, if a state i in S1 has a transition to a state k not in S1, then we assume
that the expected cost incurred by state i from state k is absorbed in the constant Mi. Thus
the control problem given in Eq. (5) can be represented as a set of n simultaneous equations
with n expected cost variables. Let E represent the column vector (E1 · · ·En), M represent
the column vector (M1 · · ·Mn), I denote the n×n identity matrix and P be the row stochastic
matrix,

P =

p1,1 p1,2 p1,n

p2,1 p2,2 p2,n

.

.
pn,1 pn,2 pn,n

(6)

The set of n linear simultaneous equations with n expected cost variables is then given by,

E = M + P × E ⇒ (I − P)E = M (7)

Thus a solution to the simultaneous equation set given in Eq. (7) gives the value E1 = Es for
the objective function given by Eq. (5).

5.1.2 Existence of a Solution for Non-Terminal SCCs

We now show that the matrix (I − P) is non-singular whenever S1 is a non-terminal SCC.
In Eq. (7), P is an irreducible, non-negative and stochastic matrix. From Perron-Frobenius

11

theorem [24], the largest unique eigenvalue r for P is given by the equation,

r = maxi(
n

∑

j=1

pi,j) If mini(
∑n

j=1 pi,j) = maxi(
∑n

j=1 pi,j)

mini(

n
∑

j=1

pi,j) < r < maxi(

n
∑

j=1

pi,j) Otherwise

From the theory of Markov chains [29, 24], we know that for a stochastic, irreducible
matrix P , P k/sk −→ 0 as k −→ ∞ if and only if s > r where r is the Perron-Frobenius eigen-
value. Putting s = 1, we get P k −→ 0 as k −→ ∞ if and only if 1 > r (this is the condition
for a transient class). Also, for a real matrix P such that P k −→ 0 as k −→ ∞, (I − P)−1

exists and is given by (I − P)−1 =
∑∞

k=0 P k. Combining this with the Perron-Frobenius
theorem we get that Eq. (7) has an unique solution if and only if

∑n
j=1 pi,j ≤ 1,∀1 ≤ i ≤ n

and ∃i,
∑n

j=1 pi,j < 1

This condition implies that Eq. (7) has a unique solution if and only if any one vertex in
the SCC has a transition to a state not in the SCC (non-terminal SCC). Hence we have shown
that the stochastic optimal control problem can be solved exactly for non-terminal SCCs.

5.1.3 Modified Objective Function for Terminal SCCs

For matrix P in Eq. (7), we have
∑n

j=1 pi,j ≤ 1,∀i : 1 ≤ i ≤ n with strict equality for states
with transitions only to states in the SCC. If S1 is terminal, then each row of the matrix
(I − P) in Eq. (7) will sum to 0 and hence its determinant will be 0. Hence the stochastic
optimal control problem as defined by Eq. (2) need not have a solution for terminal strongly
connected components.

In practice, most abstractions for software systems result in a terminal strongly connected
component because of the ability of the system to reset itself to the start state from any other
state. Hence we will modify the objective function defined in Eq. (2) to ensure existence of a
solution for terminal SCCs. We will modify these equations by discounting the contribution
of rewards and penalties to the expected cost at a state. Discounted rewards and penalties,
derived from the theory of Markov decision processes [6, 27], captures the notion that the
contribution of reward or penalty from a state farther in the future must be exponentially
smaller than the contribution from a state nearer in the future. Let 0 < α < 1 be a fixed
discount factor for the terminal strongly connected component S1. The modified objective
function with discount factor α is then given by,

E1 = M1 + α
n

∑

j=1

(p1,j × Ej) (8)

where Ej is defined similarly. In vector notation this equation is given by,

E = M + αP × E ⇒ (I − αP)E = M (9)

Consider any terminal strongly connected component S1. Let S′
1 be a non-terminal strongly

connected component generated from S1 by adding a new transition from every state in S1

to a single new dead state. For each old transition in S1 let its probability of occurrence

12

in S′
1 be multiplied by a factor α. Further, let the conditional probability on every new

transition in S ′
1 be (1−α) and the reward associated with the dead state be 0. The discounted

reward control problem given by Eq. (9) for S1 is then equivalent to the standard control
problem given by Eq. (7) for the non-terminal SCC S ′

1. Since the matrix αP can be mapped
to an equivalent stochastic matrix for a non-terminal SCC as described, from Section 5.1.2
we know that (I − αP) is non-singular and hence the discounted reward control problem
given by Eq. (9) has a unique solution for any general SCC.

5.2 Algorithm for Stochastic Optimal Control of SCCs

In Section 5.1, we showed that the stochastic control problem for a fixed control action can be
formulated as a set of n linear simultaneous equations with n variables as given by Eq. (9).
We also showed that Eq. (9) has a unique solution for any general SCC. A naive algorithm
for solving the stochastic optimal control problem solves such simultaneous equations for
every possible control action in the abstraction M . Since at each state of M , an exponential
number of control actions exist (each transition can be blocked or unblocked), we would be
required to solve an exponential set of simultaneous equations. This leads to an algorithm
which is exponential in the size of the input abstraction M . In this section, we will formulate
this stochastic optimal control problem for SCCs as a linear programming problem (LPP)
and give a polynomial time algorithm for solving this LPP.

5.2.1 Stochastic Optimal Control using Ellipsoid Algorithm

The objective function for stochastic optimal control of a finite state machine M is given by
the equation,

min
A∈CAM

{EA
1 } = min

A∈CAM
{r1 +

n
∑

j=1

(cA
1,j) +

n
∑

j=1

(pA
1,j × EA

j)} (10)

where, EA
j is the expected total cost at state j under control action A. Since the discounted

reward control problem for terminal SCCs can be mapped to an equivalent standard control
problem for non-terminal SCCs, we only consider the objective function for non-terminal
SCCs in this section. We now construct a linear programming problem (LPP) equivalent to
the stochastic optimal control problem given by Eq. (10). Let, Ei,∀1 ≤ i ≤ n be the linear
program variables where EA

i are specific values for the variables. Let M Ai = ri +
∑n

j=1 cA
i,j

and pA
i,j = pAi

j . The equivalent LPP formulation for Eq. (10) is then given by,

Definition Maximize : E1 = Es

Subject To : Ei ≤ MAi +
∑n

j=1[Ej × pAi

j], ∀Ai,∀1 ≤ i ≤ n

This objective function is certainly convex and hence the ellipsoid algorithm can be used
to solve this LPP in time polynomial in the number of LPP variables (polynomial in the size
of the abstraction M). Interior point algorithms like Karmarkar’s do not perform well in the
presence of exponential number of LPP constraints. The ellipsoid algorithm starts by con-
taining the feasible region within a ellipsoid and then generates a sequence of ellipsoids each
of successively smaller volume. In each iteration, the algorithm examines the center of the
ellipsoid for feasibility. The algorithm then determines a half-space defined by a hyperplane
passing through the center. If the current center is not feasible, then the hyperplane can be

13

obtained by identifying a violating constraint of the LPP using a separation oracle. A sepa-
ration oracle is a black box, which when given a point in space either identifies a violating
constraint in the LPP for that point or declares that the point is feasible. For the ellipsoid
algorithm to run in polynomial time, this separation oracle must be able to generate results
in polynomial time as well. If the center is feasible, then the algorithm uses the objective
function cut to eliminate feasible points with objective value no better than its value at the
current center. A new ellipsoid is then generated by finding the minimum volume ellipsoid
containing the half-ellipsoid obtained by the intersection of the hyperplane and the current
ellipsoid. One can then show that after a polynomial number of iterations, the volume of the
ellipsoid is small enough such that the feasible point generated is very close to the optimal
value.

In order that the ellipsoid algorithm execute in time polynomial in the number of LPP
variables, a polynomial time separation oracle is required. For the LPP given in Defini-
tion 5.2.1 a polynomial time separation oracle can be generated using the algorithm de-
scribed in Section 4.2.1. Given a point in the solution space of the LPP (values for Ei), the
oracle needs to either identify a violating constraint if the point is infeasible or declare that
the point is feasible. Since the different number of possible control actions for the abstraction
M is exponential in the size of the abstraction, the number of LPP constraints are also expo-
nential. Hence a naive algorithm which tests every constraint will take exponential time to
determine a violating constraint. Instead, the separation oracle can run the algorithm given
in Algorithm 1 at each state of M to identify a violating constraint in polynomial time. For
each state i there are exponential number of constraints in the LPP corresponding to the ex-
ponential number of control actions at that state. For a given point in the solution space,
the algorithm can determine the least value of the expected cost at some state i using the
given expected costs at its successor states. This least value of the expected cost at state i
corresponds to some control action at state i and hence corresponds to a particular LPP con-
straint. If this least value determined by the algorithm is smaller than the value of Ei at the
current point in the solution space, then the corresponding LPP constraint is a violating con-
straint. The minimum over all right hand sides of the LPP constraints in Definition 5.2.1 for
a state i is equivalent to the objective function as given by Eq. (2) for the algorithm at state
i. Thus by running Algorithm 1 at each state of M we can identify a violating constraint for
the point if it is infeasible. Since the ellipsoid algorithm executes in time O(n6) and the sepa-
ration oracle can run in time O(

∑n
j=1 od2

j) for each step, we get a polynomial time algorithm
for the optimal stochastic control problem for general SCCs.

5.2.2 Equivalence of Optimization Problems defined by Eq. (10) and Def. 5.2.1

Let the solution to the LPP problem given in Def. 5.2.1 be achieved when control action is
a =

⋃n
i=1 ai where ai is control action at state i. Let the values of LPP variables E1 thru En for

this optimal point be Ea
1 thru Ea

n respectively. Since Ea
1 is an optimal value for the LPP, there

are atleast n LPP constraints which are tight for the point (Ea
1 , · · · , Ea

n) such that each Ei

appears on the LHS of at least one of them. If there exists some Ek for which no constraint
with Ek on the LHS is tight, then Ek can be increased without violating any constraint,
thereby leading to an eventual increase in E1 because the component is strongly connected.
In particular, the n constrains corresponding to the control actions (a1, · · · , an) must be tight.
Let these n constraints with LHS E1 thru En be labeled C1 thru Cn, respectively. Eq.(10)
solves sets of simultaneous equations one for each control action and chooses the action

14

which results in the least value for E1. The tight satisfaction of constraints C1, · · · , Cn also
gives a solution to Eq.(10) for control action a.

We now show that any further increase in E1 will always result in violation of some LPP
constraint. Let for some state k the expected total cost Ek = Ea

k be increased by an amount
equal to the minimum slackness among all the LPP constraints with Ek on the LHS except
constraint Ck. Suppose wlog that succk = {k + 1, · · · k + j|k + j ≤ n} represents the set of
successor states of k in M . The LHS of the constraint labeled Ck is now Enew

k = Ea
k + c where

c is the amount by which Ek was incremented. This implies that constraint Ck is currently
being violated. On the RHS of Ck we compute the expected value of total costs at states
in succk. Increase in the RHS value of constraint Ck depends on a weighted average of the
increase in the total costs at each state in succk. To ensure that the constraint is not violated,
each of Ek+1 thru Ek+j must increase by an amount equal to c (maximum increase in any cost
is c). But this is not possible because the component is a non-terminal strongly connected
component. There is at least one path with non-zero probability starting from some state
(k + l) ∈ succk that leaves the strongly connected component. Then Enew

k+l < Ea
k+l + c and

hence RHS of constraint Ck can never increase by c. Thus constraint Ck will always remain
violated and hence the value of E1 cannot be increased beyond Ea

1 . Similarly it can be shown
that any value of E1 which is smaller than Ea

1 will not give a solution to Eq.(10) for any
control action because there will never be n tight constraints in the LPP. Since no value of
E1 smaller than Ea

1 provides a solution for Eq. (10) and no value of E1 bigger than Ea
1 can

satisfy the LPP constraints, control action a must be the optimal control action generating the
minimum value of expected total cost at state 1. This proves equivalence of the optimization
problems defined by Eq. (10) and Def. 5.2.1.

6 Optimal Stochastic Control of Generic Graphs

Section 4 describes a dynamic programming algorithm for the determination of optimal
stochastic control for abstractions which are DAGs. Section 5 describes the LPP formulation
and the ellipsoid algorithm which can be used to compute the optimal stochastic control for
abstractions which are SCCs. In this section we combine these two algorithms to generate
an algorithm for determination of optimal stochastic control for any generic abstract finite
state machine.

6.1 Algorithm for Generic Finite State Machines

A SCC graph for any finite state machine M is a directed acyclic graph with nodes identify-
ing the strongly connected components of M . Given M with strongly connected components
scc1, · · · scck, the SCC graph SCCM will have k vertices corresponding to the k strongly con-
nected components of M . Further there will be an edge between vertices scci and sccj in
SCCM if and only if there exists an edge between some vertex in scci and some vertex in
sccj in M [9]. The algorithm for computing the optimal stochastic control action for M
is given in Algorithm 2. This algorithm will first construct the SCC graph SCCM for M
and then topologically sort the vertices of SCCM . For each vertex scci of SCCM in reverse
topological order, if the vertex is a non-trivial SCC (SCC with more than one state in M)
then the algorithm would use the LPP formulation and the ellipsoid algorithm described in
Section 5. For each possible start state of scci (state in M belonging to scci and having an in-

15

coming transition from another SCC of M), the algorithm would run the ellipsoid algorithm
and determine the optimal expected cost at that state. The LPP formulation for different
start states will differ only in the objective function with the constraints remaining the same.
If the vertex scci is a trivial SCC then the algorithm would use the algorithm described in
Section 4 to compute its optimal cost.

Algorithm 2 OptConGeneric
1: Compute SCC graph SCCM for M using STRONGLY-CONNECTED-COMPONENTS
2: Topologically sort the vertex set scc1, · · · , scck of SCCM using TOPOLOGICAL-SORT

//For each vertex of SCCM compute the expected optimal cost. If vertex is a trivial SCC
then use dynamic programming algorithm else use ellipsoid algorithm.

3: for Each vertex scci in reverse topological order do
4: if scci is a trivial SCC of M representing state j then
5: Compute Ej by running the algorithm OptConDAGS at state j
6: Store optimal control action A and optimal cost EA

j at state j
7: end if
8: if scci is a non-trivial SCC of M then
9: Determine states Start = {l1, · · · lp} of M in scci to which there are incoming transi-

tions in M from other SCCs of M //Identify all possible start states for scci

//Compute optimal cost for each start state
10: With each state j in Start as start state of scci, compute optimal expected cost using

ellipsoid algorithm described in Section 5
11: Store optimal control action A and optimal cost EA

j at state j
12: end if
13: end for

The SCC graph SCCM can be constructed in time O(m+n) using the algorithm STRONGLY-
CONNECTED-COMPONENTS given in [9] where m is the number of transitions and n is
the number of vertices in M . Topological sort of the SCC graph can be done using the algo-
rithm TOPOLOGICAL-SORT given in [9] in time O(l + k) where l is the number of edges
and k is the number of vertices in SCCM (l ≤ m and k ≤ n). For each vertex of SCCM , if it
is a trivial SCC then we run the dynamic programming algorithm once. If it is a non-trivial
SCC having j vertices of M , then we run the ellipsoid algorithm at most j times. Each run
of the dynamic programming algorithm or the ellipsoid algorithm is polynomial in the size
of the abstraction and the ellipsoid algorithm is run at most a polynomial number of times.
Hence the total running time of this generic algorithm is also polynomial in the size of the
abstraction.

7 Stochastic Optimal Control of Web Servers

In this section, we will abstract the web service application given in Section 2 as a finite state
machine. We can then formulate the problem of satisfying QoS requirements by the web
server as a stochastic optimal control problem. Solution to this problem will generate an
admission controller and a task scheduler for the web server which will guarantee that QoS
requirements for all the accepted service requests are satisfied optimally.

16

7.1 Framework Assumptions

Stochastic optimal control algorithms designed in this paper have running times polynomial
in the size of the abstraction. These algorithms would be efficient for a web server framework
only if the framework can be abstracted as a finite state machine. In this framework, we
assume that the web server has a fixed number of request classes with a finite buffer for the
accept queues of each class. Since the queues are finite, the state space of the abstraction for
this system will also be finite. Let m be the number of different classes of service requests
where a higher class implies higher quality of service. Further, let time be abstracted or
discretized as a fixed quantum t and let n be the number of servers on the web server. We
assume that the arrival process for each request class is a Poisson arrival process with a fixed
arrival rate. We also assume that time abstraction t is small enough such that the probability
of more than one arrival for a class within t time units is 0. Let Li,∀1 ≤ i ≤ m represent the
size of the accept queues. For each class i we assume that we are given,

• Poisson arrival rate λi for service requests. λi is the average number of request arrivals
for class i in a time interval of length t. For stability, the request arrival rate for a class
must be smaller than the request service rate for that class. Since service time for any
request is greater than t (time is discretized in steps of t), λi is less than or equal to one.

• Worst case execution time (WCET) for requests. Let WCETi be the WCET for class i
where WCETi = Kt such that K ∈ I+.

• Probability distribution DETi for execution times of requests. This distribution is de-
fined for an interval of length WCETi and is discretized with respect to time quantum
t.

• Quality of service requirement for the class as a deadline Di ≥ WCETi. Di is the
maximum latency within which any request of class i must be processed by the web
server.

7.2 State Space

A state in the abstract state machine consists of,

• State of all the accept queues given by ∀1 ≤ k ≤ m,Ak = 〈AT 1
k , AT 2

k , · · · , AT ik
k 〉 where

ik ≤ Lk. AT j
k ≤ 0 is the arrival time for the jth request of class k in accept queue

Ak. This arrival time is discretized with respect to t and represents the arrival time of
the request backward in time i.e., AT j

k is decremented by t with each progress of time
transition. To ensure finiteness of the abstraction, we will store only a finite history of
request arrival times. As soon as a particular service request’s arrival time exceeds the
QoS deadline for that class (|AT i

k| > Dk), AT i
k will be abstracted to a constant L for all

future states indicating that the service request has violated its QoS requirements.

• State of all the servers given as S = {〈AT j
k , ET j

k 〉|(1 ≤ k ≤ m) ∧ (1 ≤ j ≤ n)}. Further,
|S| ≤ n where |S| is the cardinality of the set S. AT j

k is the arrival time in accept queue
and ET j

k ≤ 0 is the execution time of the request currently executing on server j and
belonging to class k. ET j

k and AT j
k are decremented by t with each progress of time

transition.

17

• AR = i indicating arrival of a service request of class i in the previous step (any state
with incoming transition representing arrival of request). If no request arrived in the
previous step, then AR = φ.

• ER = 〈j1, · · · , jl〉 where jl ≤ m and ja < jb,∀a < b indicating that requests of class j1

thru jl have expired in the previous step (any state where the arrival times of requests
of classes j1 thru jl have just become L thereby indicating violation of QoS require-
ments). If no request expired in this state, then ER = φ.

• SS indicating whether a start of service transition can occur at this state or not (SS = true
indicates that start of service transitions can occur at this state). SS is set to true on
completion of service of a request, arrival of a new request in an empty accept queue
with idle servers in the system or on progress of time with idle servers in the system.

7.3 Transition Set and State Classification

Different transitions in the abstract state machine include,

• ak indicating arrival of a new service request for class k. On execution of this transition
variable AR gets updated to AR = k

• acc indicating acceptance of a new service request into the accept queue. If AR = k,
then execution of this transition will result in the queue Ak = 〈AT 1

k , AT 2
k , · · · , AT ik

k 〉

being updated to Ak = 〈AT 1
k , AT 2

k , · · · , AT ik+1
k 〉 with AT ik+1

k = 0 and AR is set to φ.

• rej indicating rejection of the recently arrived service request. On execution of this
transition, AR gets updated to AR = φ and the accept queues remain unchanged.

• T indicating progress of time by the fixed quantum t. On execution of this transition,
all the arrival times get updated to AT i

k = AT i
k − t and all the execution times get

updated to ET i
k = ET i

k − t. For any request at the head of accept queues, if arrival time
AT 1

k satisfies the condition |AT 1
k | > Dk, then AT 1

k = L and ER = ER ∪ k. SS is set to
true if the system has idle servers.

• rem indicating removal of the expired service request at the head of the queue ER
from the web server. If ER = 〈jk, · · · , jl〉, then jk is removed from queue ER and AT 1

jk

is removed from queue Ajk
.

• ret indicating that the recently expired request at the head of the queue ER must be
retained in the system for delayed servicing. If ER = 〈jk, · · · , jl〉, then jk is removed
from queue ER.

• cj indicating completion of service of request executing on server j. Set S gets updated
to S = S \ {〈AT j

k , ET j
k 〉} and SS is set to true.

• sj
k indicating start of service of request at the head of queue Ak on server j. The server

state S gets updated to S = S ∪ {〈AT j
k , ET j

k 〉} with ET j
k = 0 and AT j

k = AT 1
k where

AT 1
k is the arrival time of request at the head of queue Ak. AT 1

k is removed from queue
Ak and if |S| = n, then SS is set to false.

18

• na indicating no assignment of service request to any server resulting in variable SS
being set to false.

Transitions of type T, cj and ak with very high control costs are assumed to be uncontrol-
lable. Also, every path in the machine between a sj

k transition and a cj transition is assumed
to have atleast one occurrence and atmost WCETk occurrences of transition T . The state
space of this abstraction is classified as follows.

• Environment State: This is an uncontrollable state with outgoing transitions of type
T, cj and ak. This state is identified by the boolean expression (AR = φ) ∧ (ER =
φ) ∧ (SS = false). At this state, either a new service request could arrive based on
the poisson arrival process associated with each class or a currently executing request
could finish execution based on its execution time distribution or time could progress
without any other event occuring.

• Admission Control State: This state is identified by a non-empty value for AR. The
only outgoing transitions at this state are acc and rej which control the admission of
the recently arrived service request. If the accept queue is full, then this control state
will only have one outgoing transition labeled rej.

• Server Assignment State: This state is represented by the variable SS having value
true. Outgoing transitions at this state are server assignment transitions (sj

k) and no
assignment transition (na) where j is the lowest numbered idle server at the current
state. For each request class k with a non-empty queue, there will be one server assign-
ment transition sj

k. No assignment transitions will be used by the scheduler to prevent
starvation of higher priority requests by lower priority ones.

• Expired Request State: This state is represented by a non-empty queue ER. The only
outgoing transitions at this state are rem and ret indicating either removal or retain-
ment of the expired request at the head of queue ER.

7.4 Rewards, Control and Stochasticity

Penalties will be associated with states which indicate recent expiry of a service request
(AT i

k set to L in this state). Higher the class of the expired request, higher would be the
penalty. Penalties will also be associated with states indicating expiry of requests currently
executing on the server. Rewards will be associated with states indicating completion of
service prior to the expiry of the request ((AT j

k ≤ Dk) ∧ (cj has just occurred)). Again,
higher the request class, higher would be the reward for that state. Appropriate rewards for
requests of different classes along with the na transitions will prevent starvation of a higher
class request by a lower class request. Start of service (sj

k), no assignment (na), acceptance
or rejection of requests (acc, rej) and removal or retainment of expired requests (rem, ret)
are the only controllable transitions in this machine. Control cost incurred by the controller
in executing control actions will be 0 for all the transitions.

Consider some control state i (admission control, server assignment or expired request)
of this web server abstraction. Since the cost of control of all the outgoing transitions is 0,
the optimal expected total cost at this state will be equal to the minimum value of the opti-
mal costs at all the successor states of i. The corresponding control action would then block

19

t 2t0

0.2

1

time

probability

Probability Distribution for cj

|ET
j
k |

Figure 4: Probability Distribution for Service Time

all the outgoing transitions at state i except the one that leads to the successor state with
the least expected cost. If more than one successor state has the same minimum expected
cost, then any of them can be chosen as the successor state in the controlled system. Thus
the control algorithm at any control state will first identify the successor state with the least
expected cost among all the successor states and then will block all but one transition. Since
the algorithm is independent of the probability distribution of the outgoing transitions, any
probability distribution of these transitions would result in the same optimal control. In par-
ticular, assigning equal probabilities to all the outgoing transitions is also a valid assignment.

Control algorithm described in Section 4.2.1 and the LPP formulation given in Section 5.2.1
can be modified for this web server abstraction. Greedy algorithm given in Section 4.2.1 can
be simplified to identify the successor state with the least expected cost among all the suc-
cessor states of any given control state. If there are more than one such successor states, then
the algorithm can pick any one of them arbitrarily. It can then generate the control action for
this control state by blocking all but one transition. Thus the complexity of the algorithm can
be reduced from O(od2

i) for a control state i to O(odi). LPP formulation given in Section 5.2.1
can also be simplified by reducing the number of constraints at all the control states. Since
optimal control action can result in only a single transition remaining unblocked, we only
have a linear number of possible optimal control actions at any state. Hence the number of
constraints at any control state in the LPP formulation will also be linear in the out-degree
of the state. It is important to note that control algorithms for the web server abstraction are
simplified only because transitions do not have any control costs associated with them.

At all the environment states, probability of occurrence of transitions depends on the
poisson arrival rates for various classes and also on the distribution of execution times for the
currently executing requests. For example let the probability distribution for the execution
time of a certain request of class k be as given in Figure 4. Let the current state of the machine
be such that the request has already executed for time t (ET j

k = −t) and let there be only
one server in the system. We further assume that there are only two classes of requests in
the system, one with arrival rate λ1 = 0.5 and the other with arrival rate λ2 = 0.4. The
probabilities on various transitions for this example web server is as shown in Figure 5.
Transition a1 represents the occurrence of an event where a new request of class 1 arrives
and no request of class 2 arrives and request on server j does not finish its execution. The
probability of occurrence of this event is 0.21 ((1− 0.2)× (1− (λ2e

−λ2))×λ1e
−λ1 normalized

with other probabilities). Transitions a2 and cj similarly represent arrival of a new request of
class 2 and completion of service of request on server j, respectively. Transition T represents

20

rej, 0.5

acc, 0.5

T, 0.49

a1, 0.21

a2, 0.18

cj, 0.12

Figure 5: Probability Assignment for Transitions

the event where neither a new request arrives nor the currently executing request finishes its
execution. Since any subset of the events a1, a2 or cj can occur, the abstraction must represent
all possible interleavings of these events.

8 Dynamic Power Management

We will now abstract the dynamic power controller described in Section 2 in our framework
and design an optimal dynamic power manager (DPM).

8.1 Power Controller Abstraction

Let n be the number of request classes in the system where a higher class implies higher
quality of service. We assume that the request arrival process of each class i is modeled as
a Poisson process with fixed arrival rate λi. λi is the average number of request arrivals
for class i in a time interval of length t (t is the fixed quantum of discretization for time in
our abstraction). We further assume that t is small enough for the probability of more than
one arrival within the interval to be 0. Each request class i has a worst case execution time
(WCETi) for requests. The service time of requests in each class is given by a bounded
probability distribution DETi which is discretized in time quantum t. To guarantee stability,
the request arrival rate must be smaller than request service rate and hence we require that
∀i, λi ≤ 1. Further each request class has a quality of service parameter Di ≥ WCETi

which gives the maximum latency within which requests in that class must be processed.
We assume that pending requests in the queue are scheduled by a fixed priority scheduler
that processes a request if and only if there are no pending higher priority requests.

A state in the abstraction is represented by the size of all the request queues and the state
of the service provider SP . Size of queue can be further abstracted into either being ’full’,
’empty’ or ’partial’. Thus any state in the system abstraction has one variable for the state
of SP and n variables for the states of the n request queues. It also has other variables like
arrival time of requests to keep track of the latency. Loss of request can be determined by a

21

variable which is set to true only when the queue for a class is full and a new request for that
class arrives. Uncontrollable transitions in the abstraction are arrival of a new request for
class i (ai), progress of time by fixed quantum t (T) and completion of service of a request
(c). Controllable transitions in the abstraction are changing the state of SP from ’idle’ to
’sleep’, ’sleep’ to ’active’ or letting the state remain unchanged. On the execution of a T
transition, current time of the system is increased by t. On the occurrence of ai, the request
loss and queue variables for class i are updated appropriately. On the occurrence of a c
transition, state of SP is changed to ’idle’. On the occurrence of controllable transitions, the
state of SP is changed accordingly. Whenever the state of SP changes from ’idle’ to ’sleep’
or from ’sleep’ to ’active’, a T transition will be forced to account for the latency incurred
by the system as a result of the state change. Treatment similar to web servers for requests
failing to meet QoS requirements will guarantee finiteness of the state space.

The state space of this abstraction can be classified into controllable and uncontrollable
states depending on their outgoing transitions. Each state with an incoming c transition
indicates completion of service. Depending on the latency incurred by the request a reward
or penalty will be associated with such a state. A penalty will be incurred at a state where
the request loss variable is true and also at states where the state of SP is ’idle’ indicating
loss of power. Cost of control will be associated with controllable transitions indicating no
change of state (to force a change of state, transitions indicating no change of state have to
be disabled). This cost of control must be proportional to the loss of power as a result of the
state change. Uncontrollable transitions (arrival, completion and progress of time) will have
transition probabilities based on the arrival process and probability distribution for request
completion. All the outgoing transitions at a controllable state will have equal probabilities.
Executing the optimization algorithm described in this paper will result in simultaneous
minimization of power loss, request loss and request latencies.

9 Aircraft Path Planning with Weather Uncertainty

We now describe the aircraft path planning problem formally and abstract it into our frame-
work so that efficient optimization algorithms can be used to compute the optimal route.

9.1 Problem Statement

We consider a two-dimensional airspace split into N square grids for routing of an aircraft.
Suppose each square grid i is represented by a two-dimensional point (xi, yi). Let (x1, y1) be
the source point of the aircraft in the airspace and (x2, y2) be the destination point. The path
planner must generate a route from the source point (x1, y1) to the destination point (x2, y2).
The aircraft is assumed to travel at a constant height with a constant velocity. We also assume
that the airspace under consideration is affected by k storms. The weather bureau makes
predictions for each of the k storms periodically. We assume time to be abstracted in periods
of T where T is the period with which the weather bureau makes predictions. At each
prediction stage, the bureau generates a probability distribution pm = (pm,1, pm,2, · · · , pm,N)
for each storm m over the entire abstracted airspace. For each grid i in the airspace, pm,i gives
the probability that storm m will be in grid i within time T given the current position of the
storm. Given the current position of the storm and assuming that in time T the storm can
travel a distance of at most one grid, the number of grids that the storm can reach within an

22

interval of length T is a very small subset of N . Hence the probability vector pm will always
be sparsely populated with most entries being 0. Given this information, the goal of the path
planner is to determine a route for the aircraft from a given source to destination that will
minimize the distance traveled by the aircraft. The calculated route must avoid all storms
in the airspace and the route of the aircraft must be updated after every new prediction of
storms is received i.e., after every T time units.

9.2 Path Planner Abstraction

We now formulate the aircraft path planning problem in our framework. Each state in our
abstraction represents the current position of the aircraft in the airspace ((x, y)) along with
the positions of each of the k storms. Hence the total state space of the abstraction is N×N k =
Nk+1 which is very large. But, since the storm location between successive decision epochs
does not change much (it can move to neighboring grids only), the actual state space at each
prediction stage is a very small subset of N k+1. Also, in practice the number of storms k
will be a small constant and hence the state space will only be polynomially bigger than N .
There are two types of transitions in the abstraction.

• Uncontrollable storm transitions which track the movement of storms in space. These
transitions are probabilistic (depending on the current weather prediction) and track
the movement of storms from one grid to another.

• Controllable aircraft transitions which track the movement of the aircraft from one grid
to another neighboring grid. From a given state, all the outgoing aircraft transitions are
assumed to have the same probability. The aircraft is equally likely to go to any of the
neighboring grids until a particular control action is applied by the path planner.

Outgoing transitions of a particular state in the abstraction are either all storm transi-
tions or all aircraft transitions. States with only storm transitions are called uncontrollable
states and those with only aircraft transitions are called controllable states. A high penalty
will be associated with states which represent the presence of the aircraft and any one of
the k storms in the same grid in airspace. A reward will be associated with states that iden-
tify the presence of the aircraft at the destination (x2, y2). Storm transitions will have very
high control costs associated with them to abstract their uncontrollability. Control costs on
controllable transitions (aircraft transitions) will be used to identify transitions that take the
aircraft closer to the destination as compared to its current position. Let (x, y) be the current
position of the aircraft and N(x, y) denote the set of neighboring grids of grid (x, y). The
control cost for a transition that takes the aircraft from its current position (x, y) to a new
grid (l,m) ∈ N(x, y) is given by,

cl,m = ||(x, y) − (x2, y2)|| − ||(l,m) − (x2, y2)|| + |min(i,j)∈N(x,y)(||(x, y) − (x2, y2)|| − ||(i, j) −
(x2, y2)||)|

where ||.|| represents the euclidian distance between the two grid points and |.| represents
the absolute value. This cost function ensures that control costs are all non-negative and pro-
portional to the reduction in the distance of the aircraft from its destination. If the aircraft
moves closer to its destination as a result of taking a transition then the control cost for that

23

transition will be very high thereby discouraging blocking of that transition by control ac-
tions. Optimization algorithms given in this paper can now be used to compute an optimal
route for the aircraft which minimizes the distance traveled in expectation and simultane-
ously avoids all the storms.

10 Related Work

A substantial body of work exists in the area of application of linear control theory to soft-
ware systems. In this approach, a non-linear software system is approximated with a linear
model using estimation techniques. Proportional-integral or proportional-integral-derivative
controllers are then developed for such linear approximate models. Controllers for control-
ling the performance of web servers [3, 1, 11, 19, 28], balancing load in networks or dis-
tributed systems [35, 8], providing differentiated caching services [21], controlling conges-
tion in networks [5], adaptive web content delivery [2] and dynamically adapting real-time
systems to overloads and deadline misses [20] have all been developed. In [30] the authors
use a queuing model to first predict the behavior of a network server and then use the pre-
diction for controlling server performance. Any error in prediction is corrected by linear
feedback control using a linear approximate model. All these papers develop control tech-
niques to achieve higher level business goals like bounded response time, utilization, service
rate etc. A single linear approximate model for software systems in the presence of unpre-
dictable operating environment is difficult to achieve. The controller framework developed
in this paper is significantly different from empirical design methodologies employed by
these papers. Our abstraction of software as a finite state machine helps to represent the sys-
tem accurately. Further, the fine-grained state space model allows us to argue about control
of safety property violations in addition to achieving the higher level business goals.

In [16] the authors have modeled the network bandwidth allocation problem as a Markov
decision process where optimization is in terms of a utility function. The utility function for
each user assigns a reward proportional to the amount of bandwidth allocated to the user.
In [23, 22] the authors have formulated an aircraft routing problem under storms as a Markov
decision process. In [10] the author has described a reachability problem in Markov decision
processes where an optimal policy maximizes the probability of reaching a subset of the
state space. Standard algorithms for Markov decision processes like policy iteration using
bellman recursion are then used to solve these optimization problems. These algorithms
have poor worst case running time especially when there are exponentially many different
control actions in the model. Abstracting these problems in our framework will result in
improved objective functions and will also facilitate use of efficient algorithms described in
this paper.

In [34] the authors have modeled an extremely restricted discrete event system using
max-plus linear algebra. They have then developed model based prediction and control
mechanism where the only control possible is delaying the time instant when the next in-
put is given to the model. Our framework is capable of modeling a more general software
system and also provides more generic control actions. Fuzzy control is a non-linear con-
trol methodology which uses linguistic rules for controller design. Since computing systems
are non-linear, fuzzy control can be applied directly without the need to generate a linear
approximate model. [12, 17] have applied fuzzy control to control QoS in web servers and
network flow. Fuzzy control is a heuristic control mechanism which lacks the formal analyti-

24

cal strengths of optimization based techniques that we have developed. Feedback controlled
software [13] using pseudo energy functions is a reactive control framework where control
actions are executed on detection of deviation of the software from its goal. The framework
does not deal with safety violations nor does it consider the stochasticity inherent in software
systems.

Dynamic power management (DPM) [25] aims to control the power consumption of var-
ious system components based on the history of request arrivals. The paper has developed
an objective function that aims to minimize the expected long run average response time of
the system under constraints of bounded long run average power consumption and request
losses. The DPM problem can be formulated in our framework where proper assignment
of rewards and penalties to states can generate an objective function which not only mini-
mizes the response time but also minimizes power consumption and request losses. Hence it
would no longer be required to specify arbitrary bounds on power consumption and request
losses that the formulation in paper [25] necessitates. Paper [4] describes the application of
real-time AI techniques to a flight control system using CIRCA(Cooperative Intelligent Real-
Time Control Architecture). The motion of the aircraft along with the unpredictable environ-
ment is modeled as a stochastic state machine. The paper then uses stochasticity to eliminate
low probability regions in this model from being used for motion planning. CIRCA is then
used on the restricted model to generate control actions ensuring prevention of failure and
progress towards goal. Use of AI techniques in determining control and exploration of lim-
ited state space renders this technique sub-optimal. The paper also assumes that recovery
from failure is always possible which is difficult to achieve in software systems.

Recovery oriented computing paradigm [7, 32, 33] aims to develop a software develop-
ment and verification framework for developing highly available large scale Internet sys-
tems. Aspect oriented programming [15, 14] is a software design framework that assists in
designing highly modularized software. It complements object oriented methodology and
aims to separate concerns or aspects that crosscut multiple classes. Both these frameworks
use qualitative techniques to design goal specific software and also involve substantial hu-
man understanding. Our framework develops an optimal software design that achieves the
desired goals optimally under stochasticity with little human intervention. Edit automata
described in [18] is a mechanism for enforcing security policies like access control, availabil-
ity etc in software. Edit automata does not handle uncontrollable system events and lacks
any notion of optimal control under stochasticity. Optimal control of hybrid systems de-
scribed in [31] models the hybrid system as a Markov chain with continuous dynamics at
each state. Control actions in the system modify the continuous dynamics at states driving
the system away from bad states. Algorithms given in the paper are heuristic and opti-
mization is done over a finite horizon. We are interested in discrete systems and provide
polynomial time exact optimization algorithms for controlling such systems.

11 Conclusion

In this paper we have developed a framework based on stochastic finite state machines for
abstracting software systems and their unpredictable operating environment. Safety viola-
tions and functionalities in the software are abstracted as penalties and rewards on the states,
respectively. We have then formulated the stochastic control problem that aims to minimize
the safety property violations and simultaneously maximize the goals achieved by the sys-

25

tem. Algorithms with running time polynomial in the size of the abstraction have also been
developed for solving the optimization problem exactly. Any software system which can be
abstracted in the given framework can be optimally controlled using the approach described
in this paper.

Improving the running times of the algorithms described in this paper is one direction for
future work. Statically analyzing the software system model and computing optimal control
would be extremely inefficient if the abstraction is large which is true for many software
systems. We are interested in exploring modifications to the framework and algorithms
given in this paper for dynamic control of software. At runtime, the dynamic controller can
explore a small subset of the system state space and optimally control the explored system.

References

[1] T. Abdelzaher and K. Shin. End-host architecture for qos-adaptive communication. In
In Proceedings of the Fourth IEEE Real-Time Technology and Applications Symposium. IEEE
Computer Society, 1998.

[2] Tarek F. Abdelzaher and Nina Bhatti. Web server qos management by adaptive content
delivery. In In International Workshop on Quality of Service, 1999.

[3] Tarek F. Abdelzaher and Kang G. Shin. Qos provisioning with qcontracts in web and
multimedia servers. In In Proceedings of the 20th IEEE Real-Time Systems Symposium. IEEE
Computer Society, 1999.

[4] E. M. Atkins, E. H. Durfee, and K. G. Shin. Plan development using local probabilistic
models. In In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence,
Aug 1996.

[5] Lotfi Benmohamed and Semyon M. Meerkov. Feedback control of congestion in packet
switching networks: The case of a single congested node. IEEE/ACM Transactions on
Networks, 1(6):693–708, 1993.

[6] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control: 2nd Edition. Athena
Scientific, Nashua, NH, 2001.

[7] Goerge Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox.
Microreboot - a technique for cheap recovery. In In Proceedings of the 6th Symposium on
Operating System Design and Implementation, 2004.

[8] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Request redirection algorithms
for distributed web systems. IEEE Transactions on Parallel and Distributed Systems, 14(4),
2003.

[9] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to
Algorithms: 2nd Edition. McGraw-Hill Book Company, New York, NY, 2001.

[10] Beauquier D. Markov decision processes and deterministic buchi automata. Fundamenta
Informaticae, 49:1–13, 2002.

26

[11] Y. Diao, Neha Gandhi, Joseph L. Hellerstein, S. Parekh, and D. M. Tilbury. Using
mimo feedback control to enforce policies for interrelated metrics with application to
the apache web server. In In Proceedings of the 8th IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2002.

[12] Yixin Diao, Joseph L. Hellerstein, and Sujay Parekh. Optimizing quality of service using
fuzzy control. In In Proceedings of the 13th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management. Springer-Verlag, 2002.

[13] William B. Dunbar, Eric Klavins, and Stephen Waydo. Feedback controlled software
systems. In California Institute of Technology Technical Report: CaltechCDSTR:2003.002,
2003.

[14] Tzilla Elrad, Mehmet Aksits, Gregor Kiczales, Karl Lieberherr, and Harold Ossher. Dis-
cussing aspects of aop. Communications of the ACM, 44(10), 2001.

[15] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming: Intro-
duction. Communications of the ACM, 44(10), 2001.

[16] Suresh Kalyanasundaram, Edwin K. P. Chong, and Ness B. Shroff. Optimal resource al-
location in multi-class networks with user-specified utility functions. Comput. Networks,
38(5):613–630, 2002.

[17] Srinivasan Keshav. A control-theoretic approach to flow control. In In Proceedings of the
Conference on Communications Architecture & Protocols. ACM Press, 1991.

[18] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security, 4(1–2):2–16, 2005.

[19] Chenyang Lu, Tarek F. Abdelzaher, John A. Stankovic, and Sang H. Son. Feedback con-
trol architecture and design methodology for service delay guarantees in web servers.
In University of Virginia Technical Report: CS-2001-06, 2001.

[20] Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher, Gang Tao, Sang H. Son, and
Michael Marley. Performance specifications and metrics for adaptive real-time systems.
In In Proceedings of the IEEE Real-Time Systems Symposium. IEEE, 2000.

[21] Ying Lu, Avneesh Saxena, and Tarek F. Abdelzaher. Differentiated caching services; a
control-theoretical approach. In In Proceedings of the 21st IEEE International Conference on
Distributed Computing Systems. IEEE, 2001.

[22] Arnab Nilim and Laurant El Ghaoui. Robust markov decision processes with uncertain
transition matrices. In UC Berkeley Technical Report: M04/26, 2004.

[23] Arnab Nilim, Laurant El Ghaoui, Mark Hansen, and Vu Duong. Trajectory-based air
traffic management (tb-atm) under weather uncertainty. In 4th USA/EUROPE ATM
Research and Development Seminar, 2001.

[24] J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, New York, 1998.

[25] G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy optimization for
dynamic power management. In In Proceedings of the 35th annual conference on Design
automation. ACM Press, 1998.

27

[26] P. Pradhan, R. Tewari, S. Sahu, C. Chandra, and P. Shenoy. An observation-based ap-
proach towards self-managing web servers. In 10th International Workshop on Quality of
Service, 2002.

[27] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons., New York, 1994.

[28] Anders Robertsson, Bjom Wittenmark, and Maria Kihl. Analysis and design of ad-
mission control in web-server systems. In In Proceedings of the IEEE American Control
Conference. IEEE, 2003.

[29] E. Seneta. Non-negative Matrices and Markov Chains: 2nd Edition. Springer Verilag, 1981.

[30] Lui Sha, Xue Liu, Ying Lu, and Tarek Abdelzaher. Queueing model based network
server performance control. In In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium. IEEE Computer Society, 2002.

[31] Ling Shi, Alessandro Abate, and Shankar Sastry. Optimal control for a class of stochastic
hybrid systems. In In Proceedings of the 43rd IEEE Conference on Decision and Control.
IEEE, Dec 2004.

[32] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy.
Recovering device drivers. In In Proceedings of the 6th Symposium on Operating System
Design and Implementation, 2004.

[33] Stanford University and Univ. of California at Berkeley. Recovery oriented computing.
In http://roc.cs.berkeley.edu/.

[34] T.J.J. van den Boom, B. De Schutter, G. Schullerus, and V. Krebs. Adaptive model pre-
dictive control for max-plus-linear discrete event input-output systems. IEE Proceedings
– Control Theory and Applications, 151(3):339–346, 2004.

[35] L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. W. W. Yang. Load balancing of multipath
source routing in ad hoc networks. In In Proceedings of IEEE International Conference on
Communications. IEEE, 2002.

28

