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Abstract

The most common approaches to automatic emotion recognition rely on utterance-level prosodic features. Recent studies have shown
that utterance-level statistics of segmental spectral features also contain rich information about expressivity and emotion. In our work we
introduce a more fine-grained yet robust set of spectral features: statistics of Mel-Frequency Cepstral Coefficients computed over three
phoneme type classes of interest — stressed vowels, unstressed vowels and consonants in the utterance. We investigate performance of our
features in the task of speaker-independent emotion recognition using two publicly available datasets. Our experimental results clearly
indicate that indeed both the richer set of spectral features and the differentiation between phoneme type classes are beneficial for the
task. Classification accuracies are consistently higher for our features compared to prosodic or utterance-level spectral features. Com-
bination of our phoneme class features with prosodic features leads to even further improvement. Given the large number of class-level
spectral features, we expected feature selection will improve results even further, but none of several selection methods led to clear gains.
Further analyses reveal that spectral features computed from consonant regions of the utterance contain more information about emo-
tion than either stressed or unstressed vowel features. We also explore how emotion recognition accuracy depends on utterance length.
We show that, while there is no significant dependence for utterance-level prosodic features, accuracy of emotion recognition using class-

level spectral features increases with the utterance length.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Emotion content of spoken utterances is clearly
encoded in the speech signal, but pinpointing the specific
features that contribute to conveying emotion remains an
open question. Descriptive studies in psychology and lin-
guistics have mostly dealt with prosody, concerned with
the question how an utterance is produced. They have
identified a number of acoustic correlates of prosody
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indicative of given emotions. For example, happy speech
has been found to be correlated with increased mean fun-
damental frequency (F0), increased mean voice intensity
and higher variability of FO, while boredom is usually
linked to decreased mean FO and increased mean of the
first formant frequency (F1) (Banse and Scherer, 1996).
Following this tradition, most of the work on automatic
recognition of emotion has made use of utterance-level
statistics (mean, min, max, std) of prosodic features such
as FO, formant frequencies and intensity (Dellaert et al.,
1996; McGilloway et al., 2000). Others employed Hidden
Markov Models (HMM) (Huang and Ma, 2006; Fernan-
dez and Picard, 2003) to differentiate the type of emotion
expressed in an utterance based the prosodic features in a
sequence of frames, thus avoiding the need to compute
utterance-level statistics.
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On the other hand, spectral features, based on the short-
term power spectrum of sound, such as Linear Prediction
Coeflicients (LPC) and Mel-Frequency Cepstral Coeffi-
cients (MFCC), have received less attention in emotion rec-
ognition. While spectral features are harder to be
intuitively correlated with affective state, they provide a
more detailed description of speech signal and, thus, can
potentially improve emotion recognition accuracy over
prosodic features. However, spectral features, which are
typically used in speech recognition, are segmental and
convey information on both what is being said and how it
is being said. Thus, the major challenge in using spectral
information in emotion analysis is to define features in a
way that does not depend on the specific phonetic content
of an utterance, while preserving cues for emotion
differentiation.

Most of the previous methods that do use spectral fea-
tures ignore this challenge by modelling how emotion is
encoded in speech independent of its phonetic content.
Phoneme-level classification of emotion has received rela-
tively little attention, barring only a few exceptions. For
example the work of Lee et al. (2004) takes into account
phonetic content of speech by training phoneme-dependent
HMM for speaker-dependent emotion classification. Sethu
et al. (2008) used phoneme-specific Gaussian Mixture
Models (GMM) and demonstrated that emotion can be
better differentiated by some phonemes than others. How-
ever, such phoneme-specific approach cannot be directly
applied to emotion classification due to sparsity of pho-
neme occurance.

In this paper, we present novel spectral features for emo-
tion recognition computed over phoneme type classes of
interest: stressed vowels, unstressed vowels and consonants
in the utterance. These larger classes are general enough
and do not depend on specific phonetic composition of
the utterance and thus abstract away from what is being
said. Unlike previous approaches which used spectral fea-
tures, our class-level spectral features are technically simple
and exploit linguistic intuition rather than rely on sophisti-
cated machine learning machinery.

We use the forced alignment between audio and the
manual transcript to obtain the phoneme-level segmenta-
tion of the utterance and compute statistics of MFCC from
parts of the utterance corresponding to the three phoneme
classes. Compared to previous approaches which use utter-
ance-level statistics of spectral features, the advantage of
our approach is two-fold. Firstly, the use of phoneme clas-
ses reduces dependence of the extracted spectral features on
the phonetic content of the utterance. Secondly, it captures
better the intuition that emotional affect can be expressed
to a greater extent in some phoneme classes than others,
and, thus, increases the discriminating power of spectral
features.

In our work we analyze performance of phoneme class
spectral features in speaker-independent emotion classifica-
tion of English and German speech using two publicly
available datasets (Section 5). We demonstrate that class-

level spectral features outperform both the traditional pro-
sodic features and utterance-level statistics of MFCC. We
test several feature selection algorithms in order to further
improve emotion recognition performance of class-level
spectral features and evaluate contributions from each
phoneme class to emotion recognition accuracy (Section
7). Our results indicate that spectral features, computed
from the consonant regions of the utterance, outperform
features from both stressed and unstressed vowel regions.
Since consonant regions mostly correspond to unvoiced
speech segments which are not accounted for by prosodic
features derived from pitch and intensity profiles, this
result implies that class-level spectral features can provide
complimentary information to both utterance-level pro-
sodic and spectral features.

Finally, cross-corpus comparisons of emotion recogni-
tion motivated an analysis of the impact of utterance length
on classification accuracy which, to the best of our knowl-
edge, has not been addressed in the literature (Section 6).
We investigate this dependence using synthetic emotional
speech data constructed by concatenating short utterances
from LDC dataset. We demonstrate that, while there is no
significant dependence for utterance-level prosodic fea-
tures, performance of class-level spectral features increases
with utterance length, up to utterance length of 16 sylla-
bles. Further increases in utterance length do not seem to
affect performance. It should be noted that these results
are obtained using concatenated emotional speech and
need to be cross-validated on naturally spoken emotional
corpora when appropriate corpora become available.

2. Prior work

Although the main body of previous work on emotion
recognition in speech uses suprasegmental prosodic fea-
tures, segmental spectral features which are typically
employed in automatic speech recognition have also been
studied for the task. The most commonly used spectral fea-
tures for emotion recognition are Mel-Frequency Cepstral
Coefficients (MFCC) (Tabatabaei et al., 2007; Lee et al.,
2004; Kwon et al., 2003; Neiberg et al., 2006; Schuller
et al.,, 2005; Luengo et al., 2005; Hasegawa-Johnson
et al., 2004; Vlasenko et al., 2007; Grimm et al., 2006;
Schuller and Rigoll, 2006; Meng et al., 2007; Sato and
Obuchi, 2007; Kim et al., 2007; Hu et al., 2007; Shafran
et al., 2003; Shamia and Kamel, 2005; Vlasenko et al.,
2008; Vondra and Vich, 2009; Wang and Guan, 2005).
As in automatic speech recognition, MFCC are extracted
using a 25 ms Hamming window at intervals of 10 ms
and cover frequency range from 300 Hz to the Nyquist
frequency.

In addition to MFCC, the log-energy as well as delta
and acceleration coefficients (first and second derivatives)
are also used as features. A low-frequency version of
MFCC (Neiberg et al., 2006) which uses low-frequency filt-
erbanks in 20-300 Hz range has been found not to provide
emotion recognition performance gains. Other spectral fea-
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ture types used for emotion recognition are Linear Predic-
tion Cepstral Coefficients (LPC) (Nicholson et al., 2000;
Pao et al, 2005), Log Frequency Power Coefficients
(Nwe et al., 2003; Song et al., 2004) and Perceptual Linear
Prediction (PLP) coefficients (Scherer et al., 2007; Ye et al.,
2008). Prior approaches which used spectral features for
emotion recognition in speech are summarized in Table 1.

The majority of spectral methods for emotion recogni-
tion make use of either frame-level or utterance-level fea-
tures. Frame-level approaches model how emotion is
encoded in speech using features sampled at small time
intervals (typically 10-20 ms) and classify utterances using
either HMMs or by combining predictions from all of the
frames. On the other hand, utterance-level methods rely on
computing statistical functionals of spectral features over
the entire utterance.

2.1. Frame-level methods

HMMs have been applied with great success in auto-
matic speech recognition to integrate frame-level informa-
tion, and can be used similarly for emotion recognition as
well. One group of HMM-based methods models all
utterances using a fixed HMM topology independent of
what is being said. In this case, each emotion is repre-
sented using its own HMM. Ergodic HMM topology is
often used in order to accommodate varying utterance
length.

Unlike automatic speech recognition in which HMM
states usually correspond to sub-phoneme units, there is
no clear interpretation for the states of emotion-level
HMM which are employed as a mean to integrate frame-
level information into a likelihood score for each emotion.
For example, Nwe et al. (2003) trained speaker-dependent,
four-state ergodic HMMs for each emotion. To classify a
novel utterance into an emotion category, likelihood scores
of the utterance features given each emotion were evalu-
ated using the trained HMMs. The utterance is classified
as expressing the emotion which yields the highest likeli-
hood score. This method achieved 71% accuracy in classi-
fying the six basic emotions in speaker-dependent
settings, but its speaker-independent performance was not
investigated. Song et al. (2004) proposed a straightforward
extension of this approach to estimate three discrete emo-
tion intensity levels by effectively treating each emotion’s
intensity levels as a separate category. Another group of
HMM-based approaches aims to integrate emotion labels
into automated speech recognition systems. This is typi-
cally accomplished by building HMMs with emotion-
dependent states. Meng et al. (2007) proposed joint speech
and emotion recognition by expanding the dictionary to
include multiple versions of each word, one for each emo-
tion. Emotion classification was then performed using
majority voting between emotion labels in the hypothesis
obtained using standard decoding algorithms. A similar
emotion-dependent HMM approach was also used by
Hasegawa-Johnson et al. (2004) to differentiate between

confidence, puzzle and hesitation affective states in an intel-
ligent tutoring application. Lee et al. (2004) train phoneme-
dependent HMMs in order to take into account phonetic
content of speech. During the training stage, emotion-
dependent HMMs were constructed for each of the five
phoneme classes — vowels, glides, nasals, stops and fric-
atives. In order to classify an utterance, its likelihood
scores given each emotion were computed and the emotion
with the maximum likelihood score was chosen as the deci-
sion. However, this approach was only tested for speaker-
dependent emotion recognition using a proprietary data-
base which consisted of recording from a single speaker.

Another popular approach to emotion recognition at
frame-level is to ignore temporal information altogether
and treat acoustic observations at each time frame as
the values of independent, identically distributed random
variables. Under this assumption, Gaussian Mixture
Models (GMMs) are commonly used to model condi-
tional distributions of acoustic features in the utterance
given emotion categories. Neiberg et al. (2006) used
GMMs trained on the extracted MFCC and pitch fea-
tures to classify utterances into neutral, negative and posi-
tive emotion categories in call center and meeting
datasets. Luengo et al. (2005) also employed GMMs to
classify utterances from a single speaker database into
the six basic emotions. A real-time systems for discrimi-
nating between angry and neutral speech was imple-
mented in Kim et al. (2007) using GMMs for MFCC
features in combination with a prosody-based classifier.
Vondra and Vich (2009) applied GMMs to emotion rec-
ognition using a combined feature set obtained by concat-
enating MFCC and prosodic features. Hu et al. (2007)
employed the GMM supervector approach in order to
extract fixed-length feature vectors from utterances with
variable durations. A GMM supervector consists of the
estimated means of the mixtures in GMM. A mixture
model was trained for each utterance and GMM super-
vectors were used as features for support vector machine
classifiers. Frame-wise emotion classification based on
vector quantization techniques was used by Sato and
Obuchi (2007). In the training stage, a set of codewords
was obtained for each emotion. In order to classify an
input utterance, an emotion label was computed for each
frame by finding the nearest emotion codeword. Finally,
the whole utterance was classified using a majority voting
scheme between frame-level emotion labels. It was demon-
strated that such a simple frame-wise technique outper-
forms HMM-based methods. Vlasenko et al. (2007)
integrated GMM log-likelihood score with commonly-
used suprasegmental prosody-based emotion classifiers in
order to investigate combination of features at different
levels of granularity. Sethu et al. (2008) used phoneme-
specific GMMs and demonstrated that emotion can be
better differentiated by some phonemes than others. How-
ever, such phoneme-specific approach cannot be directly
applied to emotion classification due to sparsity of pho-
neme occurance.
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Prior work on emotion recognition in speech using spectral features.

Reference Language Spectral features Granularity Use of prosody Classifier Speaker independence
Neiberg et al. (2006) Swedish, English MFCC Frame 17 GMM
Luengo et al. (2005) Basque MFCC Frame v HMM
Hasegawa-Johnson et al. (2004) English MFCC Frame I HMM
Meng et al. (2007) German MFCC Frame HMM
Sato and Obuchi (2007) English MFCC Frame Voting I
Kim et al. (2007) English MFCC Frame GMM
Hu et al. (2007) Mandarin MFCC Frame GMM, SVM
Shafran et al. (2003) English MFCC Frame I HMM
Vondra and Vich (2009) German MFCC Frame I GMM I
Pao et al. (2005) Mandarin LPC, MFCC ... Frame HMM, kNN I
Nwe et al. (2003) Burmese, Mandarin LFPC Frame HMM
Song et al. (2004) Mandarin LFPC Frame HMM
Scherer et al. (2007) German PLP Frame kNN
Vlasenko et al. (2007) German, English MFCC Frame I GMM
Utterance SVM
Sethu et al. (2008) English MFCC Frame 4 GMM
Lee et al. (2004) English MFCC Phoneme HMM
Tabatabaei et al. (2007) English MFCC Utterance 17 SVM
Kwon et al. (2003) English, German MFCC Utterance 1% SVM, LDA 7
Schuller et al. (2005) German MFCC Utterance I SVM, AdaBoost »~
Grimm et al. (2006) English MFCC Utterance 4 Fuzzy logic
Wang and Guan (2005) Multiple MFCC Utterance I LDA
Ye et al. (2008) Mandarin MFCC, PLP Utterance SVM
Schuller and Rigoll (2006) German MFCC Segment v Various
Shamia and Kamel (2005) English MFCC Segment 4 kNN, SVM
Nicholson et al. (2000) Japanese LPC Segment I NN
This paper English, German MFCC Phoneme I SVM 4

2.2. Utterance-level methods

In contrast to frame-level approaches, utterance-level
methods rely on extracting fixed-length feature vectors.
Such features are usually composed of various statistics
of acoustic parameters computed over the entire utterance.
Commonly-used statistics are mean, standard deviation,
skewness and extrema values. In utterance-level emotion
recognition, statistics of spectral features are often com-
bined with statistics of prosodic measures, and classifica-
tion is performed using both sources of information. For
example, Kwon et al. (2003) used statistics such as mean,
standard deviation, range and skewness of pitch, energy
and MFCC to recognize emotions using Support Vector
Machine (SVM) classifiers. Similarly, 276 statistical func-
tionals of pitch, energy, MFCC and voice quality measures
along with linguistic features were used in Schuller et al.
(2005). Instead of computing independent statistics, Ye
et al. (2008) used covariance matrices of prosodic and spec-
tral measures evaluated over the entire utterance. Since
positive-definite covariance do not form a vector space,
classification has to be performed using manifold learning
methods. Schuller and Rigoll (2006) investigated levels of
granularity finer than the entire utterance. In particular,
they demonstrated that statistics of spectral and prosodic
features computed over speech segments obtained by split-
ting utterances at fixed relative positions (such as halves
and thirds) can improve recognition performance over

the utterance-level features. Shamia and Kamel (2005)
computed prosodic and spectral features for each voiced
segment of the utterance and constructed segment-level
emotion classifier. In order to classify an utterance, the
posterior class probability was evaluated by combining
posterior probabilities of each voiced segment in the
utterance.

3. Databases

In our work we used two publicly available databases of
emotional speech: an English emotional speech database
from Linguistic Data Consortium (LDC) (2002) and Berlin
database of German emotional speech (Burkhardt et al.,
2005).

3.1. LDC emotional speech database

The LDC database contains recording of native English
actors expressing the following 15 emotional states: neutral,
hot anger, cold anger, happy, sadness, disgust, panic, anxiety
(fear), despair, elation, interest, shame, boredom, pride and
contempt. In addition, utterances in LDC database vary by
the distance between the speaker and the listener: tet a tet,
conversation and distant. In our experiments we consider
only the utterances corresponding to “conversation” dis-
tance to the listener and the six basic emotions which
include anger (hot anger), fear, disgust, happy, sadness
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and neutral. There are 548 utterances from seven actors
(three female/four male) corresponding to these six basic
emotions from LDC database. Almost all of the extracted
utterances are short, four-syllable utterances containing
dates and numbers (e.g. “Nineteen hundred”). Note that
emotion labels of utterances in LDC database were not val-
idated by external subject assessment as done in the crea-
tion of other databases (such as Berlin Emotional Speech
Database). Instead, each utterance is simply labeled as
the intended emotion given to the speaker at the time of
recording. As a result, some of the utterances might not
be that good examples of the intended emotion and could
even be perceived by listeners as expressing a different emo-
tion altogether. Such characteristics of the corpus are likely
to negatively affect emotion recognition accuracy.

3.2. Berlin emotional speech database

Berlin dataset contains emotional utterances produced
by 10 German actors (five female/five male) reading one
of 10 pre-selected sentences typical of everyday communi-
cation (“She will hand it in on Wednesday”, “I just will dis-
card this and then go for a drink with Karl”, etc). The
dataset provides examples of the following seven emotions:
anger, boredom, fear, disgust, joy (happy), sadness, neutral
emotion. Utterances corresponding to boredom were
removed from the analysis and we focus on the six basic
emotions that were also present in LDC data.

In comparison to LDC dataset, utterances in Berlin
dataset are notably longer. The underlying sentences were
designed to maximize the number of vowels. In addition,
each of the recorded utterances was rated by 20 human
subjects with respect to perceived naturalness. Subjects
were also asked to classify each utterance as expressing
one of the possible emotions. Utterances for which
intended emotion recognition was low or which had low
perceived naturalness were removed from the dataset.
Due to these differences in corpus preparation, we expected
to achieve higher emotion recognition rates on Berlin data-
set than on LDC dataset (and this indeed was the case).

4. Features

In our work we compared and combined two types of
features: traditional prosodic features and spectral features
for three distinct phoneme classes. Prosodic features used
in this paper are derived from pitch, intensity and first for-
mant frequency profiles as well as voice quality measures.
Our spectral features which are comprised of statistics of
Mel-Frequency Cepstral Coefficients (MFCC).

Given an input utterance, the first step in our feature
extraction algorithm is to obtain its phoneme-level segmen-
tation. For LDC dataset, we used Viterbi forced alignment
(Odell et al., 2002) between an utterance and its transcript
to find the starting and ending time of each phoneme, as
well as to detect presence of lexical stress for each of the
vowels in the utterance. Forced alignment was performed

using generic monophone HMM models of English trained
on non-emotional speech. We used a pronunciation dictio-
nary which contained multiple transcriptions of each word
based on various pronunciation variants and stress posi-
tions. For each utterance, its transcript was expanded into
a multiple-pronunciation recognition network using the
dictionary. We used Viterbi decoding to order to find the
most likely path through the network which yields starting
and ending times of each phoneme in the utterance as well
as the actual lexical stress. It should be noted that the
obtained vowel stress is not fixed to a single dictionary pro-
nunciation but depends on the observed acoustic evidence.
For Berlin dataset, we did not have available German
acoustic models, so we used the manual segmentations pro-
vided as a part of the dataset. Thus, the emotion recogni-
tion results on Berlin dataset presented in the paper
cannot be considered fully automatic.

We grouped phonemes into three phoneme type classes
of interest: stressed vowels, unstressed vowels and conso-
nants. Class-level features were created by computing sta-
tistics of prosodic and spectral measurements from parts
of the utterance corresponding to these classes. Such parti-
tion of phonemes into classes reduces dependence of our
features on specific utterance content and, at the same time,
provides robustness and avoids sparsity given that a single
utterance contains only a small number of phonemes.

In order to analyze the usefulness of class-level spectral
features and compare their performance with existing
approaches, we computed four different sets of features,
varying the type of features (spectral or prosodic) and the
region of the utterance over which they were computed
as shown in Fig. 1. The regions were either the entire utter-
ance or local regions corresponding to phoneme classes. In
the latter setting the features from each of the three pho-
neme classes were concatenated to form the feature vector
descriptive of the entire utterance.

While the primary goal of this paper is to investigate the
performance of the class-level spectral features alone and in

A
Class-level Class-level
> prosodic spectral
=
i
S |
c
g
(C) Utterance-level Utterance-level
prosodic spectral
\ 4

Feature type

Fig. 1. We computed four different types of features by varying the type of
features (prosodic or spectral) and the region of utterances where they are
computed (utterance-level and class-level).
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a combination with prosodic features, we used the addi-
tional feature sets as baseline benchmarks in emotion clas-
sification experiments as well as to gain insights on how
phoneme-level analysis can improve emotion differentia-
tion in speech. Below, we describe each of the feature sets
in detail.

4.1. Utterance-level prosodic features

Previous approaches to emotion analysis in speech have
used various statistics of the fundamental frequency (F0),
formant frequencies and voice intensity profiles. Following
prior work, we used Praat software (Boersma and Ween-
ink, 2001) to estimate FO and F1 contours. For each utter-
ance, we normalized intensity, F0 and F1 contours by
computing speaker-specific z-scores. In addition to the fea-
tures derived from formant frequencies and voice intensity,
we also extracted micro-prosodic measures of voice quality
such as jitter (the short-term period-to-period fluctuation
in fundamental frequency) and shimmer (the random
short-term changes in the glottal pulse amplitude) as well
as the relative duration of voiced segments which charac-
terizes speech rhythm and the relative spectral energy
above 500 Hz (HF500). We computed statistics over the
entire utterance such as mean value, standard deviation,
minimum and maximum of FO and its first derivative, voice
intensity and its derivative as well as of the first formant
frequency (F1). In total, the set of utterance-level prosodic
features contains 24 features:

e mean, std, min, max of FO and FO derivative

e mean, std, min, max of F1

e mean, std, min, max of voice intensity and its derivative
e jitter, shimmer, HF500

e relative duration of voiced segments

4.2. Class-level prosodic features

Instead of utterance-level statistics, class-level prosodic
features use statistics of voice intensity and formants com-
puted over utterance segments which correspond to stressed
and unstressed vowel classes. We did not use the consonant
class since formant frequencies are not defined for voiceless
phonemes. Jitter, shimmer and HF500 were computed over
the voiced part of the utterance. The set of class-level pro-
sodic features consists of 44 individual features:

e mean, std, min, max of FO and FO derivative over
stressed vowel region

e mean, std, min, max of FO and FO derivative over
unstressed vowel region

e mean, std, min, max of F1 over stressed vowel region

e mean, std, min, max of F1 over unstressed vowel region

e mean, std, min, max of voice intensity and its derivative
over stressed vowel region

e mean, std, min, max of voice intensity and its derivative
over unstressed vowel region

e jitter, shimmer, HF500
e relative duration of voiced segments

4.3. Utterance-level spectral features

Utterance-level spectral features are mean values and
standard deviations of MFCC computed over the entire
utterance. For each utterance, we computed 13 MFCC
(including log-energy) using a 25 ms Hamming window at
intervals of 10 ms. For each utterance, we normalized
MFCC trajectory by computing speaker-specific z-scores.
In addition, we computed delta and acceleration coeffi-
cients as the first and second derivatives of MFCC using
finite differences (26 features). The total number of utter-
ance-level spectral features is 78 which includes means
and standard deviations of MFCC as well as the delta
and acceleration coefficients.

4.4. Class-level spectral features

Class-level spectral features model how emotion is
encoded in speech at the phoneme-level. Using the pho-
neme-level segmentation of the utterance, we formed the
spectral feature vector by concatenating class-conditional
means and standard deviations of MFCC for each of
stressed vowel, unstressed vowel and consonant classes.
In addition, we computed the average duration of the
above phoneme classes. In summary, the class-level spec-
tral feature vector is 237 dimensional and consists of the
following feature groups:

mean and std of MFCC over stressed vowel region
mean and std of MFCC over unstressed vowel region
mean and std of MFCC over consonant region

mean duration of stressed vowels

mean duration of unstressed vowels

mean duration of consonants

4.5. Combined features

In order to investigate performance of spectral features
in combination with prosodic features, we created a com-
bined feature set by concatenating the sets of class-level
spectral and utterance-level prosodic features.' In total,
the combined set consists of 261 features.

5. Emotion classification

In our experiments on emotion recognition, we used
SVM classifiers with radial basis kernels constructed using
LIBSVM library (Chang and Lin, 2001). Since the number

! Since utterance-level features are the most common prosodic features,
we do not report any other combinations to avoid clutter in presentation
and interpretation of the results.
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of utterances per emotion class varied widely in both LDC
and Berlin datasets, we used the Balanced ACcuracy
(BAC) as a performance metric for emotion recognition
experiments presented below. BAC is defined as the aver-
age over all emotion classes of recognition accuracy for
each class:

1 & on
BAC:—Z

K £~ N;’
i=1

(1)

where K is the number of emotion classes, N; is the total
number of utterances belonging to class i and »; is the num-
ber of utterances in this class which were classified cor-
rectly. Unlike the standard classification accuracy defined
as the total proportion of correctly classified instances,
BAC is not sensitive to imbalance in distribution between
emotion classes. For example, let us consider a binary clas-
sification of neutral emotion versus happiness in a dataset
containing 90 neutral and 10 happy utterances. Predicting
all utterances as the majority class (neutral) would corre-
spond to the relative accuracy of classification of 90%,
while BAC is equal to 50%.

In order to confirm stability and speaker independence
of the obtained classifiers, testing was performed using
Leave-One-Subject-Out (LOSO) paradigm such that the
test set did not contain utterances from the speakers used
in the training set. Classification experiments were per-
formed in a round-robin manner by consecutively assign-
ing each of the speakers to the test set and using
utterances from the rest of the speakers in the database
as the training set.” The optimal values of the SVM param-
eters for each fold were computed using a cross-validation
procedure over the training set. We computed the overall
BAC recognition accuracy by applying Eq. (1) to the set
of predictions combined from all of the LOSO folds.

In the experiments presented below, we investigated per-
formance of each of the four sets of features introduced in
Section 4, plus that of the combination of utterance-level
prosodic features and class-level spectral features (com-
bined). It should be noted that, while a number of previous
approaches described in Section 2 focused only on speaker-
dependent emotion recognition, our experiments are on
speaker-independent emotion recognition since our recogni-
tion experiments made use of utterances from the speakers
which were unseen during classifier training.

5.1. Multi-class emotion recognition

In our first experiment, we considered the task of multi-
class classification of the six basic emotions. The accuracy
of speaker-independent, multi-class classification on LDC
and Berlin datasets is shown in Table 2 for features of dif-
ferent types (prosodic and spectral) and granularity levels
(utterance-level and class-level). The accuracies for the

2 This in effect corresponds to 7-fold and 10-fold cross-validation for
LDC and Berlin datasets respectively.

Table 2

Speaker-independent, multi-class emotion classification rates for six
emotion task on LDC and Berlin datasets using prosodic and spectral
features with different levels of granularity: utterance-level (UL) and class-
level (CL). Classification rates for the complete set of 15 emotions for
LDC data is given to allow comparison with prior work. Best performance
is shown in bold.

LDC dataset 15
emotions (%)

Berlin dataset
six emotions (%)

LDC dataset six
emotions (%)

UL prosody 23.1 68.1 17.0
CL prosody 27.7 68.6 17.4
UL spectral 335 67.0 24.4
CL spectral 44.5 75.9 30.7
Combined 43.7 78.2 29.7

complete set of 15 emotions for LDC data is given to allow
comparison with prior work.

Our results indicate that class-level spectral features per-
form better than other types of features for both LDC and
Berlin datasets. Class-level spectral features also outper-
form the utterance-level prosodic features by absolute
21.4% in LDC and 7.8% in Berlin datasets. There are also
noticeable improvements over commonly used utterance-
level spectral features. For Berlin dataset, the best results
are obtained when combination of the class-level spectral
and utterance-level prosodic features is used. However,
the combined features perform slightly worse than class-
level spectral features in LDC dataset.

While Table 2 presents speaker-independent emotion rec-
ognition accuracy, the majority of previous work did not
use LOSO paradigm and focused on recognizing emotions
in speaker-dependent settings. For the sake of comparison,
we computed speaker-dependent emotion recognition accu-
racy using prosodic and spectral features with different
granularity levels (utterance- and class-level). Each dataset
was randomly split into the training set which contained
70% of the total number of utterances and the test set
which included remaining 30% of the utterances. The accu-
racy of speaker-dependent emotion recognition for LDC
and Berlin datasets is shown in Table 3. While similarly
to the speaker-independent case, class-level spectral features
outperform other feature types, the overall recognition
performance is significantly higher than for the speaker-
independent case. For example, speaker-dependent perfor-
mance of utterance-level prosodic features in LDC dataset
is almost twice the accuracy of the speaker-independent
recognition.

In order to compare performance of the class-level spec-
tral features to the results of previous work on speaker-
independent emotion classification (Yacoub et al., 2003;
Huang and Ma, 2006), we conducted an experiment on
classification of all 15 emotions in LDC dataset. The accu-
racy of 15-class classification is given in the last column of
Table 2. Classification accuracy of 30.7% obtained using
class-level spectral features is considerably higher than
the prosody-based classification accuracy of 18% reported
in Huang and Ma (2006) and 8.7% reported in Yacoub
et al. (2003) on the same task. Note that the results might
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Table 3

Speaker-dependent multi-class emotion classification rates for six emotion
task on LDC and Berlin datasets using prosodic and spectral features with
different levels of granularity: utterance-level (UL) and class-level (CL).

LDC dataset six
emotions (%)

Berlin dataset six
emotions (%)

UL prosody 46.3 71.9
CL prosody 46.6 72.3
UL spectral 48.5 72.3
CL spectral 63.2 82.3
Combined 62.6 84.8

not be directly comparable because it is unclear how the
earlier studies accounted for imbalance between emotion
classes or how cross-validation folds were formed.

5.2. One-versus-all emotion recognition

In the second experiment, we performed recognition of
each of the six basic emotions versus the other five emo-
tions. For example, one of the tasks was to recognize if
an utterance conveys sadness versus some other emotion
among anger, fear, disgust, happy and neutral. The bal-
anced accuracy of one-versus-all classification on LDC
and Berlin datasets is shown in Tables 4 and 5 for sets of
features with different types (prosodic and spectral) and
granularity levels (utterance-level and class-level). Recogni-
tion accuracy changes with respect to granularity for both
prosodic and spectral features. Our results indicate that the
class-level prosodic features do not provide any consistent
improvement over the utterance-level features. This is not
surprising since prosodic features are suprasegmental.

On the other hand, class-level spectral features provide a
consistent performance improvement over the utterance-
level spectral features in most of the cases with exception

Table 4

of recognition of disgust and happiness in LDC and neutral
in Berlin database. For example, the absolute performance
gain is as high as 13.9% for recognition of disgust in Berlin
dataset.

Class-level spectral features also yield noticeably higher
emotion recognition accuracy compared to utterance-level
prosodic features for most of the emotions. For instance,
the absolute improvements in recognition accuracy of neu-
tral for LDC and disgust for Berlin datasets are 30.3% and
25.6% respectively. The only exceptions are recognition of
fear and happiness in the Berlin dataset, where prosodic
features lead to improvements over spectral features of
3.1% and 5.9% respectively.

Moreover, the combination of the class-level spectral
and the utterance-level prosodic features yields even fur-
ther improvements in some cases. In other cases, the com-
bined set of features yields classification accuracy which is
lower than accuracy of either utterance-level prosodic or
class-level spectral features. We believe that this is due to
high dimensionality of the combined feature set. We test
several feature selection algorithms in Section 7 in order
to improve the performance of both class-level spectral
and combined features.

6. Utterance-length dependence

Multi-class emotion recognition results presented in
Table 2 indicate that the overall accuracy of emotion recog-
nition obtained on Berlin dataset is much higher than the
one on LDC dataset. Besides differences in language and
recording scenarios between the two datasets, better sepa-
ration between emotions can be attributed to the fact that
Berlin dataset contains longer utterances. To the best of
our knowledge, effects of the utterance length on emotion
recognition accuracy have not been explored in the
literature.

Accuracy of one-versus-all classification for LDC dataset using prosodic and spectral features with different levels of granularity: utterance-level (UL) and

class-level (CL). Best performance is shown in bold.

Anger (%) Fear (%) Disgust (%) Happy (%) Sadness (%) Neutral(%)
UL prosody 63.6 55.9 51.6 56.7 53.2 53.5
CL prosody 67.7 51.4 51.2 61.4 53.3 59.0
UL spectral 66.2 50.7 539 58.8 55.8 66.8
CL spectral 71.3 60.9 51.6 57.6 60.4 83.8
Combined 71.9 58.6 484 59.2 59.4 79.8

Table 5

Accuracy of one-versus-all classification for Berlin dataset using prosodic and spectral features with different levels of granularity: utterance-level (UL) and

class-level (CL). Best performance is shown in bold.

Anger (%) Fear (%) Disgust (%) Happy (%) Sadness (%) Neutral(%)
UL prosody 84.9 85.9 65.1 72.1 88.5 87.5
CL prosody 87.8 76.2 65.5 67.2 93.0 85.9
UL spectral 81.8 73.5 76.8 63.2 83.5 88.9
CL spectral 88.2 82.8 90.7 66.2 93.8 88.6
Combined 89.0 82.8 88.2 65.5 92.9 89.4
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In order to investigate how emotion recognition perfor-
mance depends on the utterance length, we constructed
longer speech segments by concatenating utterances from
LDC dataset. We built four additional synthetic datasets
with progressively longer speech segments by containing
together 2, 3, 4 and 5 randomly chosen utterances pro-
duced by the same actor. While utterances in LDC dataset
contain four-syllable phrases, the four synthetic datasets
contained speech segments with 8, 12, 16 and 20 syllables
respectively. For example, in order to build a synthetic
dataset consisting of eight-syllable segments, we randomly
split the set of utterances produced by the same speaker
into pairs and concatenated them. Since each utterance
from the original dataset was used only once, the synthetic
datasets contained fewer utterances than the original LDC
dataset.

We calculated speaker-independent emotion recognition
accuracy of the six basic emotions for each of the synthetic
datasets. Each of the datasets was split into the training
and test sets using the LOSO procedure described in Sec-
tion 5. Fig. 2 shows recognition accuracy as a function of
the number of syllables in the utterances. While the perfor-
mance of utterance-level prosodic features does not notice-
ably change with the utterance length, accuracy of the
class-level spectral features increases as longer utterances
are used. We would like to point out that, since our results
are obtained on synthetic datasets, these predictions will
not necessarily apply to naturally spoken emotional utter-
ances. It would be interesting to further investigate how
emotion recognition performance depends on utterance
length using emotion speech corpora which is rich with
utterances of different durations in order to cross-validate
our findings.

7. Feature selection

The high dimensionality of class-level spectral feature
vectors as well as the presence of highly correlated features
in the combined set of prosodic and spectral features can
negatively affect performance of machine learning algo-
rithms such as, for example, SVM classifiers used in this
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Fig. 2. Dependence of emotion recognition accuracy on utterance length.

paper. Moreover, multi-class emotion classification results
on LDC dataset (Table 2) indicate that the combination of
prosodic and spectral features performs worse than spec-
tral features used alone which might be due to presence
of irrelevant or highly correlated features. Emotion classi-
fication accuracy of class-level spectral feature and the
combined features can be improved by using feature selec-
tion algorithms which aim to find a lower-dimensional sub-
set of features which yields better classification
performance.

In this section, we apply feature selection algorithms in
component-wise and group-wise settings. In the compo-
nent-wise case, our goal is to select an optimal set of indi-
vidual features by performing a greedy search over the set
of all possible feature combinations. On the other hand,
group-wise selection aims to find the best combination of
feature subgroups such as prosodic and spectral features
defined over each phoneme class. While, in principle, com-
ponent-based feature selection should achieve better classi-
fication accuracy, group-wise selection and ranking can
help us to understand how different types of features con-
tribute to emotion differentiation.

7.1. Component-wise feature selection

Component-wise feature selection methods rely on
searching through all possible subsets of features and fall
into either wrapper or filter categories based on the type
of criteria used to evaluate subsets of features. While wrap-
per approaches search for a subset of features by maximiz-
ing accuracy of a classifier on a hold-out subset of the
training data, filter methods perform selection of features
as a pre-processing step independent of any particular clas-
sification approach.

In this paper, we used wrapper methods which maximize
the accuracy of linear SVM classifiers. We also used filter
methods such as subset evaluation (Hall and Smith, 1997)
based on correlation measures and information gain ratio
(Hall and Smith, 1998). Since exhaustive evaluation of all
possible subsets of features is computationally prohibitive,
we employed greedy search algorithms. Greedy stepwise
search starts with the full set of features and iteratively
removes individual features until the objective criterion
can no longer be improved. Rank search uses a ranking
of features based on the gain ratio metric in order to eval-
uate feature subset of increasing size which are constructed
by iterative addition of the best ranked features. In the case
of information gain ratio selection criterion, we did not use
any search algorithm and simply selected features with
positive information gain ratio values.

For each LOSO fold, all utterances from one of the
speakers in the training set were sequentially assigned to
the hold-out set used for evaluation and the rest of utter-
ances were used to train linear SVM classifiers for wrap-
per-based feature selection. This process was repeated for
each speaker in the training set and selected features from
each iteration were combined into a single set of selected
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features. It should be noted that different sets of features
were selected in different LOSO folds. In order to compare
different feature selection algorithms, we calculated their
balanced accuracy over LDC and Berlin datasets by com-
bining classifier predictions from individual LOSO folds.
We applied feature selection algorithms to utterance-level
prosodic, class-level spectral and combined sets of features.
Tables 6 and 7 compare emotion recognition of different
wrapper and filter feature selection algorithms used in this
paper. Wrapper selection utilizing greedy stepwise search
improves the accuracy of utterance-level prosodic and
class-level spectral features in LDC dataset by 1.0% and
2.5% respectively. However, none of the feature selection
algorithms provide any noticeable improvement for the
combination of prosodic and spectral features in LDC
dataset. On the other hand, the best results in Berlin data-
set are achieved by filter selection based on the information
gain ratio yielding modest improvements of 1.8% and 0.3%
for utterance-level prosodic and class-level spectral fea-
tures, and 0.9% improvement for their combination.
Despite the high dimensionality of class-level spectral fea-
tures, none of the feature selection methods tested in this
paper lead to clear performance gains for either Berlin or
LDC datasets.

7.2. Group-wise feature selection and ranking

While component-wise feature selection searches
through all possible combinations of individual features,
the list of selected features is difficult to analyze. Instead,
one may be interested in investigating combinations and
contributions from features defined over different phonetic
groups rather than looking at individual feature compo-
nents such as filterbank responses. In this section, we per-
form group-wise feature selection and ranking by
focusing on subgroups of class-level spectral features. We
split the set of class-level spectral features into consonant,

Table 6

stressed vowel and unstressed vowel subgroups. Then the
combined features consist of four subgroups which include
consonant, stressed vowel and unstressed vowel spectral
subgroups as well as the group of prosodic features.

Our goal is to find a combination of feature subgroups
which maximizes emotion classification accuracy. For the
small number of groups in this case, such a combination
can be found by performing a brute force search among
all possible subgroup combinations. Group-wise selection
follows wrapper feature selection procedure described in
Section 7.1. However, instead of using a greedy search to
find an optimal combination of subgroups, we evaluate
classifier performance on all possible subgroup combina-
tions and choose the one which yields the best classification
accuracy. Tables 8 and 9 show accuracy of recognizing the
six basic emotions using group-wise feature selection for
LDC and Berlin datasets. While group-wise selection
improves classification accuracy of class-level spectral fea-
tures by 1.6% and 1.2% in LDC and Berlin datasets respec-
tively, feature subgroups selected from the combined set of
utterance-level prosodic and class-level spectral features in
Berlin dataset performs worse than the entire combined set.

Table 10 shows how often each subgroup was selected in
all of the LOSO folds in LDC and Berlin datasets. For
example, prosodic subgroup was selected in one out of
seven LOSO folds in LDC and 10 out of 10 folds in Berlin
dataset. On the other hand, spectral features derived from
the stressed vowel regions were always selected in LDC and
only in five out of 10 folds in Berlin datasets. Spectral fea-
tures derived from unstressed vowels were chosen in three
out of seven folds in LDC and nine out of 10 folds in Berlin
dataset. While selection frequency of prosodic and vowel
spectral features varied between both datasets, spectral fea-
tures derived from consonant regions were chosen for all of
LOSO fold in both datasets. We believe that this is due to
the fact that consonant spectral features are always com-
plementary to prosodic and vowel spectral subgroups.

Multi-class emotion classification rates with feature selection for six emotion recognition in LDC datasets.

W/o selection Rank search SVM wrapper
(%0) (Vo) (")

Rank search subset eval.

Greedy stepwise SVM wrapper Info gain ratio
(%0) (o)

UL 23.1 23.8 233 24.1 239
prosody

CL spectral 44.5 44.8 46.2 47.0 46.6

Combined  43.7 41.7 423 39.1 43.8

Table 7

Multi-class emotion classification rates with feature selection for six emotion recognition in Berlin dataset.

W/o selection Rank search SVM wrapper
(70) (o) (70)

Rank search subset eval.

Greedy stepwise SVM wrapper Info gain ratio
(%0) (70)

UL 68.1 67.7 68.6
prosody
CL spectral 75.9 75.4 75.1

Combined 78.2 78.5 81.3

69.4 69.8
76.0 76.2
78.2 79.1
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Table 8 Table 11
Group-wise feature selection for LDC dataset. Classification rates for each of the feature groups.
W/o selection (%) Group-wise selection (%) LDC (%) Berlin (%)

CL spectral 44.5 46.1 Prosodic 23.1 68.1

Combined 43.7 442 Spectral consonants 40.2 72.50
Spectral stressed vowels 40.9 62.6
Spectral unstressed vowels 29.0 64.3

Table 9

Group-wise feature selection for Berlin dataset.

W/o selection (%)

Group-wise selection (%)

CL spectral 75.9 77.1
Combined 78.2 76.7
Table 10

Group occurance frequencies during group-wise feature selection on LDC
and Berlin datasets.

LDC (%) Berlin (%)
Prosodic 14.3 90.0
Spectral consonants 100.0 100.0
Spectral stressed vowels 100.0 50.0
Spectral unstressed vowels 429 90.0

Indeed, consonant features mostly correspond to unvoiced
portions of the utterance, while prosodic and vowel spec-
tral features are derived from the voiced parts.

In order to evaluate contributions of different feature
types to emotion differentiation, we ranked feature sub-
groups based on their emotion classification accuracy when
used alone. Table 11 displays rankings of stressed vowel,
unstressed vowel and consonant spectral features as well
as prosodic features on LDC and Berlin datasets. Relative
rankings of feature subgroups differ between LDC and Ber-
lin datasets. For example, stressed vowel spectral features
yield the highest emotion recognition accuracy in LDC
dataset. However, the best performing subgroup for Berlin
dataset corresponds to consonant spectral features. While
utterance-level prosodic features are the second best sub-
group in Berlin dataset, they yield the worst recognition
accuracy in LDC dataset. Surprisingly, consonant spectral
features are ranked as one of the best performing features
in both datasets. Consonant features outperform the sec-
ond best prosodic features by 4.5% in Berlin dataset and
lag behind the best performing stressed vowel features by
0.7% in LDC dataset.

8. Discussion

In this paper, we introduced a novel set of spectral fea-
tures for emotion recognition which uses class-level statis-
tics of MFCC. We compared performance of the class-
level spectral features with traditional utterance-level pro-
sodic and spectral features in emotion recognition on pub-
licly available LDC and Berlin datasets. While previous
work on spectral features for emotion recognition used
utterance-level statistics, our results indicate that represent-
ing how emotion is encoded in spectral domain at the
phoneme-level improves classification accuracy. We dem-

onstrated that the class-level spectral features outperform
both prosodic and utterance-level spectral features in
multi-class emotion recognition.

While the class-level features introduced in this paper
allow to model emotion at the level of granularity finer
than utterance-level features, this comes at the expense of
the increased feature space dimensionality. Moreover, not
all of the class-level features are necessarily relevant to dis-
criminating between different emotions. The high dimen-
sionality of the feature space, presence of the large
number of irrelevant or highly correlated features is known
to hurt performance of machine learning algorithms such
as SVM classifiers used in this paper. For example, our
results on multi-class emotion recognition (Table 2) show
that the high-dimensional combination of utterance-level
prosodic and class-level spectral features performs worse
than class-level features used alone. In attempt to alleviate
this problem and improve classification accuracy of class-
level spectral and combined features, we tested several fea-
ture selection algorithms to automatically find a smaller
subset of features yielding better emotion recognition per-
formance. Given the large number of class-level spectral
features, we expected feature selection will improve results
even further, but none of the selection methods considered
in this paper lead to clear gains. While feature selection
slightly improved performance of class-level spectral fea-
tures, feature selection applied to the set of combined fea-
tures did not yield any noticeable improvement.

Class-level spectral features consist of three subgroups
corresponding to phoneme classes of interest: stressed vow-
els, unstressed vowels and consonants. We explored rela-
tive contributions from each of these phoneme classes to
emotion differentiation and observed that the consonant
spectral features outperform spectral features derived from
stressed and unstressed vowel regions. Moreover, conso-
nant features alone outperform prosodic features in Berlin
dataset and only lag behind by 0.7% in LDC dataset. Tra-
ditional prosodic features, derived from pitch and intensity
profiles, only use measurements from the voiced segments
of speech which mostly correspond to vowel regions of
the utterance. On the other hand, consonant spectral fea-
tures describe unvoiced regions which are not accounted
for by prosodic features. This can explain why class-level
spectral features outperform the traditional prosodic
measures.

We observed that the overall accuracy of emotion recog-
nition obtained on Berlin dataset is much higher than the
one on LDC dataset. Besides differences in language and
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recording scenarios between the two datasets, better sepa-
ration between emotions can be attributed to the fact that
Berlin dataset contains longer utterances. To the best of
our knowledge, dependence of emotion recognition accu-
racy on the utterance length has not been explored in the
literature. We investigated this dependence by constructing
synthetic speech segment of increasing length using utter-
ances from LDC database. Our experiments demonstrate
that accuracy of class-level spectral features increases with
utterance length reaching the asymptote at utterance length
of 16 syllables. Since these findings are obtained using syn-
thetic data, dependence of emotion recognition accuracy
on utterance length needs to be further cross-validated on
naturally spoken emotional corpora.

There are several aspects of feature extraction for emo-
tion recognition that need to be explored in the future
research. Firstly, the three phoneme type classes of interest
used in this paper represent only one choice for defining the
level of granularity for spectral features. It would be inter-
esting to investigate finer phoneme classes or even use pho-
neme-level features for emotion recognition. However,
there is a trade-off between number of classes of interest
and amount of training data available for classifier train-
ing. Consonant, stressed and unstressed vowel classes used
in this paper provide a good balance by utilizing phoneme-
specific measurements while avoiding data sparseness.
Using finer classes of interest such as, for instance, individ-
ual phonemes, would require more data to be available for
classifier training. In addition, emotion recognition would
have to be treated as a sparse classification problem since
it is possible to obtain measurements from only a few pho-
nemes in a typical utterance. Secondly, normalization of
spectral features in order to accommodate inter-speaker
difference has not been fully addressed in the literature.
While this paper uses a simple method based on speaker-
specific z-scores to normalize MFCC trajectories, we
believe that more sophisticated speaker normalization
and adaptation techniques akin to MLLR adaptation
(Legetter and Woodland, 1996) which has been proven use-
ful in automatic speech recognition can further improve
speaker-independent emotion recognition accuracy.
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