Properties of the lowest $1/2^+$, T = 3/2 states in A = 11 nuclei

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 21 February 2012; revised manuscript received 11 March 2012; published 4 April 2012)

Abstract. Analysis of energies and widths of the lowest $1/2^+ T = 3/2$ states in A = 11 nuclei suggests that the excitation energy in ¹¹C should be about 200 keV below the energy in the literature, and the width should be 4 to 5 times the literature value. Properties of the state in ¹¹B and ¹¹N are in agreement with the present model.

DOI: 10.1103/PhysRevC.85.044304

PACS number(s): 21.10.Sf, 21.10.Tg, 27.20.+n

I. INTRODUCTION

The lowest T = 3/2 states in ¹¹B and ¹¹C [1] have been a puzzle for a long time. In a study of the low-lying levels of the A = 11 isospin quartet [2], we found that the $1/2^-$ and $5/2^+$ states behaved appropriately in the four nuclei, but there was a problem for the $1/2^+$ states. For the ground state (g.s.) of ¹¹N, the various experimental determinations of its energy and width did not agree within the assigned uncertainties. And, for the known (¹¹B) and supposed (¹¹C) $1/2^+$ states the experimental widths were only 1/3 (or less) of the values expected. Barker disagreed [3], arguing that these states could have lost width by mixing with T = 1/2 states—ignoring the fact that if these states lost width by mixing, then some nearby states would have acquired this missing width. No such states are known.

We have previously used a simple potential model [4] to compute energies of 0^+ , T = 2 states using a nuclear plus Coulomb potential to couple states in nuclei A - 1 to single nucleons to produce the T = 2 nuclei A. The model has worked reasonably well. The present situation for A = 11, 12 is similar to that for A = 15, 16 [5]. In the latter, the 0^+ , T = 2 state was not known in ¹⁶F [6], and the $1/2^+$, T = 3/2 state was unknown in ¹⁵O [7]. Also, the energy of the $1/2^+$ g.s. of ¹⁵F was poorly defined because of its large width [8,9]. For A =11, 12 the 0^+ , T = 2 state in ¹²N has not been identified [1], and the $1/2^+$, T = 3/2 state in ¹¹C is questionable. Similar to ¹⁵F, the g.s. of ¹¹N [10,11] is too wide to provide a precise energy for it.

For A = 15, 16, we were able to use the known masses and relationships among the masses in our model to put constraints on the unknown energies and on the percentage of s^2 component in the 0⁺, T = 2 state (assumed equal for all five T = 2, A = 16 nuclei) [12]. That procedure also provided "best" values for the energy of the g.s. of ¹⁵F. Here, we have attempted to apply that technique to A = 11, 12.

II. ¹¹B

The best evidence for the lowest T = 3/2 state in ¹¹B comes from the ¹⁰Be (p,γ) reaction [13]. Those authors found a T = 3/2 state with $J^{\pi} = 1/2^+$ or $(3/2^+)$ at an excitation energy of 12.55(3) MeV and with a width of 230(65) keV. This width persisted in the compilations for more than 30 years [1], until those data were refit [14] and it was found that the data required a broad peak in order to explain the

cross section. And this width could come only from the $1/2^+$, T = 3/2 state. The resulting excitation energy and width were 12.61(5) MeV and 640(33) keV, respectively, rather than the 210(20) keV width listed in the compilations [1]. Alternative fits with various assumptions (e.g., energy-dependent width vs constant width, four states vs three) gave widths of about 730 and 700(100) keV. Barker later refit the (p,γ) data and provided a width "of order 600 keV" [15]. So, the ¹¹B puzzle was solved, but the ¹¹C problem remained.

III. ¹¹C

Here, a state at $E_x = 12.16(4)$ MeV has been assigned T = 3/2 in several reactions [1], but J^{π} has never been assigned. But, of the known states, it is the only candidate to be the required $1/2^+$ state. This state was observed in the reactions ${}^{11}B({}^{3}\text{He},t)$, ${}^{9}Be({}^{3}\text{He},n)$, and in ${}^{10}B(p,p')$ resonance inelastic scattering [16]. In the latter the width is all for decay to the 0^+ , T = 1 state of ${}^{10}B$. The (${}^{3}\text{He},t$) data are especially compelling because they were compared to results of the inelastic reaction ${}^{11}B({}^{3}\text{He},{}^{3}\text{He'})$ leading to the ${}^{11}B$ state discussed above. All these reactions found a small width (as did the inelastic reaction for the ${}^{11}B$ state).

Earlier [4] we found that the value of α^2 (the s^2 component) in ¹²O(g.s.) needed to explain its Coulomb energy was 53(3)%. And, as noted above, our model assumes this component is the same in the five A = 12 nuclei. Here, we present our results for various values of this parameter. We use the symbol of a nucleus to represent the mass excess of that nucleus, and an asterisk to denote the lowest T = 3/2 state in a $T_z = \pm 1/2$ nucleus. We define Δ_B and Δ_C so that ${}^{11}B^* = {}^{11}B^*$ (Ref. [1]) + Δ_B , ${}^{11}C^* = {}^{11}C^*$ (Ref. [1]) + Δ_C . As noted above, refitting the ${}^{10}\text{Be}(p,\gamma)$ data provided $\Delta_B = 50(50)$ keV [14]—a small correction.

The ¹¹B^{*} and ¹¹C^{*} masses are needed as input to compute the energy of the lowest 0⁺, T = 2 state of ¹²C. If we require that the model fits this energy exactly within the uncertainties, we arrive at a constraint connecting Δ_B , Δ_C , and α^2 represented in Fig. 1. We have temporarily suppressed the uncertainties in the figure, but we return to them shortly. First, we note that the small correction Δ_B from the (p,γ) refit [14] (horizontal dashed lines) is consistent with a wide range of values of α^2 . Secondly, the required value of Δ_C is negative; that is, the "best" excitation energy in ¹¹C is below the one in the compilation [1]. For α^2 in the previously mentioned

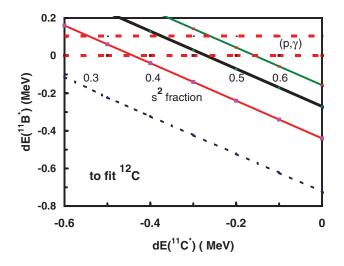


FIG. 1. (Color online) Plot of energy correction in ¹¹B vs the correction in ¹¹C needed to fit the 0⁺, T = 2 energy in ¹²C for various values of α^2 , the s^2 fraction in the 0⁺ state. Horizontal dashed lines represent the 50(50) keV ¹¹B correction from Ref. [14].

range, the value of $\Delta_{\rm C}$ is about -0.23 MeV. The uncertainty in this value can perhaps be seen better in Fig. 2, where we replot this constraint differently. Here we plot $\Delta_{\rm C}$ vs α^2 for various values of $\Delta_{\rm B}$. Recall that the earlier estimate for $\Delta_{\rm B}$ is 0 to 0.1 MeV [14]. The vertical line at $\alpha^2 = 0.53$ is the value required to fit the ¹²O Coulomb energy. The best-fit value for $\Delta_{\rm C}$ from this analysis is $\Delta_{\rm C} = -0.27(10)$ MeV, where the uncertainty contains contributions from uncertainties in the various energies and in the value of α^2 . The result for $\Delta_{\rm C}$ is negative, but with a disappointingly large uncertainty. Smaller uncertainties in the relevant excitation energies would be a great help.

IV. 11N

For ¹¹N(g.s.), the experimental $p + {}^{10}$ C resonance energies [10,11,17–20] cover the range from 1.27 to 1.63 MeV, with widths ranging from 0.24(24) to 1.44(2) MeV. Theoretical resonance energies [4,21–23] span a similar range, but cal-

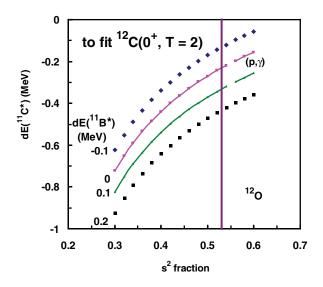


FIG. 2. (Color online) Same information as in Fig. 1, but plot of the ¹¹C correction vs α^2 , for various ¹¹B corrections. Vertical line at $\alpha^2 = 0.53$ is from Ref. [4].

culated widths are all about 0.8 MeV or larger. These are summarized in Table I and Figs. 3 and 4. In Ref. [21], the large uncertainty in the predicted width comes largely from the uncertainty in predicted energy. We also list three "averages" of the experimental results. The most recent A = 11 compilation [20] averaged results of the three experiments with the best resolution to get $E_p = 1.49(6)$ MeV, $\Gamma = 0.83(3)$ MeV. The mass evaluation [24] has an average of $E_p = 1.315(46)$ MeV. If we average all five experimental values, the results are $E_p =$ 1.41(10) MeV, $\Gamma = 0.78(11)$ MeV. Our predictions [4] were 1.35(7) and 0.87(10) MeV, respectively.

So far here, we have not made use of the isobaric multiplet mass equation (IMME). If we use the uncorrected energies for A = 11, we can compute the value of d—the coefficient of a possible cubic term in the IMME. For A = 12, T = 2, the result was d = -8.4(17) keV. Thus, those masses do not require a nonzero value for d. With d = 0 in A = 11, T = 3/2, the masses obey a simple relation: ¹¹N = ¹¹Be -3 ¹¹B* + 3 ¹¹C*. The mass tables [24] list a ¹¹N mass

TABLE I. Resonance energies and widths (both in MeV) of ¹¹N(g.s.).

	Label	Method	E_r	Г	Ref.
Expt.	1	$p + {}^{10}$ C elastic	1.30(4)	$0.99\substack{+0.10\\-0.20}$	[17]
	2	$p + {}^{10}C$ elastic	$1.27\substack{+0.18\\-0.05}$	1.44(2)	[10]
	3	$^{10}B(^{14}N,^{13}B)$	1.63(5)	0.4(1)	[18]
	4	$^{14}N(^{3}He,^{6}He)$	1.31(5)	0.24(24)	[19]
	5	$p + {}^{10}C$ elastic	1.54(2)	0.83(3)	[11]
Ave.	7	Compilation	1.49(6)	0.83(3)	[20]
	8	Mass evaluation	1.315(46)		[24]
	9	Present	1.41(10)	0.78(11)	Present
Calc.	11	Mirror of ¹¹ Be	1.35(7)	0.87(10)	4
	12	Mirror of ¹¹ Be	1.60(22)	$1.58^{+0.75}_{-0.52}$	21
	13	Mirror of ¹¹ Be	1.2	1.1	22
	14	Mirror of ¹¹ Be	1.34	1.47	23

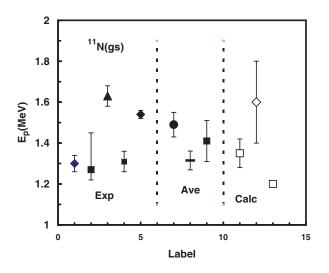


FIG. 3. Resonance energies for ${}^{11}N(g.s.)$ from various sources. Labels are as in Table I.

excess that translates to $E_p = 1.312(50)$ MeV. With a ¹⁰C mass excess [24] of 15.699 MeV, and our definition of $\Delta_{\rm C}$, the IMME provides $E_p[^{11}{\rm N}({\rm g.s.})] = 1.79(19)$ MeV + $3\Delta_{\rm C}$. (Without the ¹¹B correction, this value was 1.94(13) MeV.) Without $\Delta_{\rm C}$ this value is far higher than any previous values for ¹¹N(g.s.), although with a large uncertainty. Still, this is some confirmation of the need for a nonzero, negative, value of $\Delta_{\rm C}$.

Recall from above that the IMME, with d = 0, requires $E_p [{}^{11}N(g.s.)] = 1.79(19) \text{ MeV} + 3\Delta_c$. The three averages in Table I for ${}^{11}N$ would then yield $\Delta_c = -0.10(7)$ to -0.16(7) MeV—smaller (in absolute value) than, but approximately consistent with, the other analysis presented in Sec. III above. These two proposed energy corrections for ${}^{11}C$ are summarized in Table II.

We make no further use of the IMME, but we do note that our model automatically satisfies the IMME with d = 0. The recent correction to the ¹¹Be(g.s.) mass [25] is too small to have a noticeable effect on the energies discussed here.

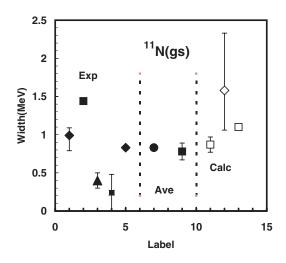


FIG. 4. As Fig. 3, but for the widths.

TABLE II. Proposed energy correction in ¹¹C.

Fit using	$\Delta_{\rm C} ({\rm MeV})$
¹¹ Be, ¹¹ B [*] ; ¹² Be, ¹² C ^{**} , ¹² O	-0.27(10)
IMME: ¹¹ Be, ¹¹ B [*] , ¹¹ N	-0.13(7)
Weighted average	-0.18(6)

V. DISCUSSION

The spectroscopic factors for the four $1/2^+$, T = 3/2 states are listed in Table III. For all but ¹¹Be, these are obtained from the expression $C^2S = \Gamma_{expt}/\Gamma_{sp}$, where $C^2 = 1/3$, 2/3, and 1 for ¹¹B, ¹¹C, and ¹¹N, respectively. Estimates of Γ_{sp} are listed in the table. They were calculated using a Woods-Saxon potential (plus Coulomb), with $r_0 = 1.25$ fm and a = 0.65 fm. The depths were adjusted to reproduce the observed energies.

The difficulty with ¹¹C is apparent. The spectroscopic factor derived from its width is only about 20% of *S* for the other three nuclei—and the *S*'s should all be equal. As pointed out above, if the ¹¹C state loses width (spectroscopic strength) by mixing with T = 1/2 states, then one or more of them should exhibit this strength, and none do. We recall that the $1/2^+$, T = 3/2 state in ¹⁵O has also never been identified. An early candidate turned out to have T = 1/2, as demonstrated by its large width for a decay that would be forbidden for a T = 3/2 state.

The problem in ¹¹C is not with the *sp* widths. Barker [3] used a potential model to compute Γ_{sp} for states at the experimental energies. His values (last column of Table III) are similar to ours. For ¹¹C, his *sp* width is actually 12% larger than ours. We thus expect a $1/2^+$, T = 3/2 state near 12 MeV in ¹¹C, with a width of about 1.2 MeV and $C^2S_p \sim 0.50$.

We have given considerable thought to finding a reaction to make these states in ¹¹C (and ¹⁵O). The (p,t) reaction does not work, because the targets do not contain the $2s_{1/2}$ nucleon that is the main feature of these states. The $({}^{3}\text{He},t)$ reaction populates both T = 1/2 and 3/2 states, as does $(^{3}\text{He},n)$. Finding a state at roughly the expected energy that preferentially decays to the 0^+ , T = 1 state of ${}^{10}B$ in the ${}^{10}\text{B}(p,p')$ reaction was encouraging, but the width reported there is also too small by about a factor of five. In the $({}^{3}\text{He},n)$ reaction the background (both real and from T = 1/2 states) is a serious problem. This reaction does have the advantage that cross-section ratios for different T = 3/2 final states should be approximately the same in $({}^{3}\text{He},n)$ and (t,p) on the same target and under similar kinematic conditions. Thus, for a ⁹Be target, we expect the ratio $\sigma(1/2^+)/\sigma(1/2^-)$ in (³He,n) to be roughly equal to the same ratio in (t,p). In the latter, the ratio at the peak angle and the ratio of angle-integrated cross sections were both about 0.22. The best candidate might be ${}^{10}C(d,p)$ in reverse kinematics. In that reaction, C^2S_n would be about 0.25.

There is one last possibility to consider—could interference between overlapping T = 1/2 and T = 3/2 states cause a broad negative dip? If so, the void between 11.44 and 12.16 MeV in ¹¹C could actually be the negative profile of the $1/2^+$,

Nuclei	E_x (MeV)	Г	Γ_{sp}	S	Γ_{sp} (Ref. [3])
¹¹ Be	0			0.80 ^e	
${}^{11}B$	12.61(5) ^a	$0.640(33)^{a}$	~ 2.4	0.80	2.31
¹¹ C	12.16(4) ^b	$0.27(5)^{b}$	~ 2.4	0.16	2.69
¹¹ N	0 ^c	$0.83(3)^{d}$	~1.3	$\sim \! 0.64$	1.42

TABLE III. Widths (in MeV) and spectroscopic factors for $1/2^+$, T = 3/2 states in A = 11 nuclei.

^aIncludes the correction from Ref. [14].

^bRef. [1].

 $^{c}E_{p} = 1.32$ to 1.49 MeV (averages in Table I).

^dAverage in Table I.

^eAs averaged in Ref. [4].

T = 3/2 state. But, would this interference be about the same in, say, (³He,t) and (p,p^2) ?

VI. CONCLUSION

We have noted here that the global averages of the energy and width of ¹¹N(g.s.) are consistent with the calculations. We conclude that the small correction found earlier [14] for the energy of the $1/2^+$, T = 3/2 state in ¹¹B is consistent with the current analysis, and that the previous problem [2] with the width in ¹¹B has been solved [14]. A larger, negative energy correction [180(60) keV] is needed for ¹¹C. That finding presents a problem, because in ¹¹C there is nothing between

[1] F. Ajzenberg-Selove, Nucl. Phys. A 248, 1 (1975); 336, 1 (1980);
433, 1 (1985); 506, 1 (1990).

- [2] R. Sherr and H. T. Fortune, Phys. Rev. C 64, 064307 (2001).
- [3] F. C. Barker, Phys. Rev. C 69, 024310 (2004).
- [4] R. Sherr and H. T. Fortune, Phys. Rev. C 60, 064323 (1999).
- [5] H. T. Fortune and R. Sherr, Phys. Rev. C 66, 017301 (2002).
- [6] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A 564, 1 (1993).
- [7] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1986).
- [8] W. Peters et al., Phys. Rev. C 68, 034607 (2003).
- [9] V. Z. Goldberg et al., Phys. Rev. C 69, 031302 (2004).
- [10] K. Markenroth et al., Phys. Rev. C 62, 034308 (2000).
- [11] E. Casarejos et al., Phys. Rev. C 73, 014319 (2006).
- [12] H. T. Fortune, Phys. Rev. C 74, 034328 (2006).
- [13] D. R. Goosman, E. G. Adelberger, and K. A. Snover, Phys. Rev. C 1, 123 (1970).

11.44 and 12.16 MeV. The width in ¹¹C should be 4 to 5 times the currently accepted value. From inspection of the relevant spectra, it is difficult to see how the $1/2^+$ width could be several times the estimate in the compilation [1], especially if the energy is shifted lower. Of course, inspection of the spectra also provided a small width for ¹¹B^{*}, which we now know was a factor of three too small. It would be very useful to find a way to settle this width question in ¹¹C.

ACKNOWLEDGMENT

I acknowledge many interesting discussions with Rubby Sherr.

- [14] H. T. Fortune, Phys. Rev. C 74, 054310 (2006).
- [15] F. C. Barker, Phys. Rev. C 76, 027602 (2007).
- [16] B. A. Watson, C. C. Chang, and M. Hasinoff, Nucl. Phys. A 173, 634 (1971).
- [17] L. Axelsson et al., Phys. Rev. C 54, R1511 (1996).
- [18] J. M. Oliveira Jr. et al., Phys. Rev. Lett. 84, 4056 (2000).
- [19] V. Guimaraes et al., Phys. Rev. C 67, 064601 (2003).
- [20] J. H. Kelley, E. Kwan, J. E. Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 880, 88 (2012).
- [21] H. T. Fortune, D. Koltenuk, and C. K. Lau, Phys. Rev. C 51, 3023 (1995).
- [22] S. Grevy, O. Sorlin, and N. Vinh Mau, Phys. Rev. C 56, 2885 (1997).
- [23] J. D. Millener, Nucl. Phys. A 693, 394 (2001).
- [24] G. Audi et al., Nucl. Phys. A 729, 3 (2003).
- [25] R. Ringle et al., Phys. Lett. B 675, 170 (2009).