Approximation Schemes for Preemptive Weighted Flow Time

Chandra Chekuri’k

ABSTRACT

We present the first approximation schemes for minimizing
weighted flow time on a single machine with preemption. Our
first result is an algorithm that computes a (1+¢)-approximate

solution for any instance of weighted flow time in O(n
time; here P is the ratio of maximum job processing time to
minimum job processing time, and W is the ratio of maximum
job weight to minimum job weight. This result directly gives
a quasi-PTAS for weighted flow time when P and W are poly-
bounded, and a PTAS when they are both O(1). We strengthen
the former result to show that in order to get a quasi-PTAS
it suffices to have just one of P and W to be poly-bounded.
Our result provides strong evidence to the hypothesis that the
weighted flow time problem has a PTAS. We note that the
problem is strongly NP-hard even when P and W are O(1).
We next consider two important special cases of weighted flow
time, namely, when P is O(1) and W is arbitrary, and when
the weight of a job is inverse of its processing time referred to
as the stretch metric. For both of the above special cases we
obtain a (1 + €)-approximation for any € > 0 by using a ran-
domized partitioning scheme to reduce an arbitrary instance
to several instances all of which have P and W bounded by a
constant that depends only on e.

1. INTRODUCTION

In this paper we address a fundamental optimization prob-
lem in scheduling: given jobs that arrive over time, find a sched-
ule that minimizes the sum of their weighted flow time. The
flow time of a job is the overall time it spends in the system
including its waiting time and the processing time. Weights
model the varying priorities that jobs might have. Weighted
flow time is a natural and at the same time flexible (because
of the arbitrary choice of weights) measure of performance for

*Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974. E-mail:

chekuri@research.bell-labs.com.

1-Dept. of CIS, University of Pennsylvania, Philadelphia, PA
19104. E-mail: sanjeev@cis.upenn.edu. Supported in part
by an Alfred P. Sloan Research Fellowship and by an NSF
Career Award CCR-0093117.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC' 02, May 19-21, 2002, Montreal, Quebec, Canada.

Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

O(anlnP/ss))

Sanjeev KhannaJr

a system serving jobs. Special cases such as the total flow time
and total stretch [13] have applications in databases, schedul-
ing requests at web servers [8], operating systems [9] etc.

Despite substantial interest in this problem, progress on good
upper bounds has been slow to come by. When no preemptions
are allowed, even for the unweighted case it is provably hard to
obtain a good approximation. Kellerer et al. [10] showed that
single machine scheduling to minimize flow time is NP-hard
to approximate within a factor better than Q(n%_f). How-
ever, the approximability of the preemptive weighted flow time
problem stayed wide open until very recently. Even for the
related and somewhat more tractable problem of scheduling
to minimize sum of weighted completion times, good approx-
imation algorithms were discovered only in last several years.
Scheduling to minimize (weighted) sum of completion times
is equivalent to minimizing (weighted) sum of flow times in
the exact case — the objective functions differ by an additive
term that is independent of the schedule. The former measure
is easier to approximate however and has been well explored
in the last few years leading to a good understanding of the
approximability of many variants. Constant factor approxima-
tions and polynomial time approximation schemes (see [7, 1]
for references) are known. Unfortunately the techniques for
approximating completion time do not seem to carry over to
approximating flow time. For instance, linear programming
relaxations [7] that provide good bounds for completion time
scheduling are also valid relaxations for flow time but are ei-
ther not easily amenable to analysis for flow time or have large
integrality gaps.

Given the intractability of the non-preemtive problems, the
focus has been on algorithms for the preemptive versions. Fur-
ther, in many applications preemption is natural, desirable,
and results in better overall system throughput. It is easy
to show examples where the gap between non-preemptive and
preemptive flow time for a given instance is quite large al-
though this is not the case for completion time scheduling.
In the unweighted case, a folklore result states that the on-
line algorithm that schedules the job with the shortest remain-
ing processing time (SRPT) gives the optimal total flow time
on a single machine. Leonardi and Raz [12] analyzed SRPT
for the multiple identical machine case and showed that it is
O(min{log P, log 7 })-competitive in the online setting; here P
is the ratio of maximum and minimum job processing times,
and n and m denote the number of jobs and machines respec-
tively. This is also the best offline approximation algorithm
known for the problem.

In contrast to the unweighted problem, the problem with
weights is known to be strongly NP-hard on a single machine
[11]. Until recently no non-trivial approximation algorithms

or online algorithms were known for this problem. Chekuri,
Khanna, and Zhu [4], recently obtained several results. In
particular they give a semi-online algorithm for a single ma-
chine that is O(log® P)-competitive. The algorithm is semi-
online only in that it assumes that the parameter P is known
in advance. This also results in an O(log? P)-approximation
algorithm. They also give a quasi-polynomial time (2 + ¢€)-
approximation for the case when the weights and processing
times are polynomially bounded. A special case of the weighted
flow time problem is the problem of minimizing total stretch.
The stretch of a job is ratio of its flow time to its processing
time. Hence minimizing total stretch is the same as minimiz-
ing weighted flow time where the weight of a job is the inverse
of its processing time. Muthukrishnan et al. [13] showed that
SRPT is 2-competitive and hence a 2-approximation algorithm
for stretch on a single machine. They also showed that SRPT is
O(1)-competitive for stretch on multiple machines. Further im-
provements and simplifications for minimizing stretch on mul-
tiple machines have been developed by Becchetti et al. [3] and
Chekuri et al. [4].

Results: In this paper we further extend the understanding
of the approximability of weighted flow time by presenting the
first approximation schemes for the preemptive problem on a
single machine. We present an algorithm that computes a (1+
€)-approximate solution for any instance of weighted flow time

in O(nOMnWin P/ES)) time; here W is the ratio of maximum job
weight to minimum job weight. Asimmediate corollaries of this
result, we get a quasi-PTAS for weighted flow time when P and
W are poly-bounded, and a PTAS when they are both O(1).
Note that we are not assuming that P and W are integers, this
is important because P and W are ratios. We then show that
in fact, if either one of P or W is poly-bounded, then the other
parameter can be effectively reduced to a poly-bounded range
as well. Thus we get a quasi-PTAS whenever one of P or W
is poly-bounded. Our result provides strong evidence that the
weighted flow time problem has a PTAS. We next consider two
natural restrictions of the problem. The first restriction is the
case when P is O(1) but there is no restriction on W, that is,
the weights are arbitrary. The second restriction is the case
when weight of a job is inversely proportional to its processing
time, i.e. the stretch metric. For both cases we obtain a PTAS
by using a partitioning scheme that reduces a given instance
to instances with small P and W.

Approximating weighted flow time is a difficult problem even
for very restricted cases because of the sensitivity of the metric
to small variations in processing time. To put our results in
perspective we note that no constant factor approximation al-
gorithm was known even for the case when P and W are both
O(1). In fact the problem is strongly NP-hard even for this
case. Furthermore, the natural relaxation that has a gap of at
most 4/3 [14] for weighted completion time can be shown to
have a gap of Q(n'/3) for weighted flow time. However, our
results indicate that, with appropriate care even approxima-
tion schemes can be obtained. We hope that these results and
techniques will spur further work on weighted flow time and
related problems leading to a better understanding of their ap-
proximability.

Techniques: The basic paradigm underlying our approxima-
tion schemes is to show existence of near-optimal schedules that
are “well-structured”. We can then use dynamic programming
to search for good schedules in this restricted space. A natural
approach for generating structured schedules is to not distin-
guish between jobs with similar characteristics and thus con-

sider that they can be processed in some canonical order (say,
in the order of arrival). Unfortunately, the flow time metric is
very sensitive to even slight changes in the job sizes. In partic-
ular, it is easy to create instances where a small relative change
in the size of a single job may greatly increase the optimal flow
time value. This is in contrast to the completion time metric
where it is straightforward to show that small perturbations
in job sizes affect the optimal value only slightly. However,
we establish the following relaxation that serves as a building
block for our results. There exist near-optimal schedules such
that jobs with “similar” processing times and weights can be
executed “almost” in the order of arrival. Specifically, we show
there exists a (1 + €)-approximate schedule such that when the
ith job in a set of similar jobs is being executed, only O(1/¢)
jobs among the first ¢ jobs are still alive.

The above result naturally leads to a dynamic programming
based approximation scheme that runs in time O (n° W n 2/ 53)).
Several additional ideas are necessary for obtaining a PTAS
for the two restrictions that we consider, namely fixed P (and
unrestricted weights), and stretch. At a high-level, our approx-
imation schemes for both these cases rely on showing that we
can partition any instance into a collection of instances each of
which having the property that P and W are O(1) such that
the interaction between the jobs in the different instances is
resolved by a simple priority based rule. We assign a distinct
priority to each instance, and at any time execute a job from
the highest priority instance. Our partitioning scheme makes
use of randomization in a crucial way to ensure that in an ex-
pected sense, weight of any job in a higher priority instance
strongly dominates the weight of any job in a lower priority
instance. This dominance effectively allows us to “charge” the
cost of preempting jobs from the lower priority instances to
jobs of higher priority.

In related work Bender, Muthukrishnan, and Rajaraman [2]
have independently obtained a PTAS for the special case of
minimizing stretch on a single machine. We note that their
result does not have any implication for the general weighted
flow time problem. Also, their algorithm for stretch is different
from ours in that they do not rely on an algorithm for weighted
flow time like we do.

Organization: We present our quasi-PTAS in Section 2. In
Section 3 we describe our randomized partitioning scheme. We
build upon these ideas to give a PTAS for the case of fixed P in
Section 4 and for stretch in Section 5. In Section 6, we show a
polynomially large gap for a natural relaxation for preemptive
weighted flow time. Finally, we conclude with some directions
for future work in Section 7.

1.1 Notation

We call a schedule busy if no idle time is introduced while
jobs are waiting. Without any loss of generality, we restrict
our attention to busy schedules. For a job z we use p(z) and
w(z) to denote its processing time and weight respectively. For
a given schedule o the quantity p7(x) denotes the remaining
processing time of x at time ¢ in o. The queue of a schedule
o at time t denoted by Q7 (t) is the set of all the jobs that are
alive in o at time ¢t. If o is clear from the context we drop
it from the superscripts. For simplicity of notation we will
assume for the rest of the paper that 1/e is an integer. We
denote by P the ratio of the maximum processing time to the
minimum processing time and by W the ratio of the maximum
weight to the minimum weight. Without loss of generality we
assume that the minimum processing time is 1 and that the
minimum weight is 1. This allows us assume that p(x) € [1, P]

and that w(z) € [1, W]. Note that we are not assuming that
processing times or weights are integers. When working with
multiple instances of the problem we use P(I) and W (I) to
denote the quantities P and W for instance I. For a schedule
o, let |o| denote the value of the schedule - the sum of weighted
flow times of jobs scheduled according to o.

2. AQPTASFORPREEMPTIVEWEIGHTED
FLOW TIME

In [4] the notion of arrival ordered schedules was used to
obtain a (2+€) quasi-polynomial approximation. In this paper
we develop a substantial refinement to the notion of arrival
ordered schedules to obtain an approximation scheme. For a
subset of jobs G and a schedule o let Sg(t) denote the subset
of G that is completed in o by time ¢. We start with a technical
lemma that is at the heart of our schemes. The lemma allows us
to simplify the space of e-approximate schedules substantially.
We assume w.l.o.g. (by breaking ties arbitrarily) that no two
jobs are released at the the same time.

DEFINITION 2.1. A schedule o is k-arrival ordered with re-
spect to a set of jobs G if at all times t the following condition
is true: if ¢ € G is the job with the largest release date in S&(t)
then the number of jobs in G that have arrived before © and are
still alive at t is at most k.

The advantage of a k-arrival ordered schedule is captured by
the following lemma.

LEMMA 1. Let o be a k-arrival ordered schedule with respect
to G. The set SE(t) can be specified by (k+ 1)O(log |G|) bits.
Hence the number of distinct subsets of G that are alive at any
time in o is O(|G|)F*!.

PROOF. We order jobs in G in increasing order of their ar-
rival (release time). The set Sg&(t) can be specified by giving
the following information: £, the largest index among the com-
pleted jobs, and up to k indices, each less than £, that specify
the jobs that arrived before £ but have not been completed.
The definition of a k-arrival ordered schedule makes it clear
that this information is sufficient. [

Let nZ(t) denote the number of jobs from a set G that are
alive at time ¢ in schedule o. Consider a set of jobs that have
the same weight and similar processing times. Our lemma
below indicates that there exist near optimal schedules that
are k-arrival ordered with respect to such jobs, for a small
value of k.

LEMMA 2. Let G be a subset of the jobs such that maxseG p(r)

mingeg p(2)
(1+¢€). For any schedule o' there exists a corresponding sched-
ule o that is (1 + 2/e€)-arrival ordered with respect to G and
such that ng(t) < (1 4+ 2¢) - ng (t). Further, o and o' agree
completely on the execution of all jobs not in G.

Fix a schedule ¢’. We modify the schedule ¢’ to create a
(14 2/e)-arrival ordered schedule o with the claimed property.
We say that a job z € G is critical if there exists a time ¢ such
that = € Q° (t) and n& (t) < 1/e. A job @ becomes critical at
time ¢ if ¢ is the earliest time when n% (t)<1/eandz € Q' (t).
Note that even though a job x may become critical at some
time much later after its release, we will consider it to be a
critical job from the moment it arrives in the system. Thus G

is partitioned into critical and non-critical jobs. We construct
the schedule o as follows. At all times ¢t where o’ executes a
job not in G, o mimics ¢’. However, within G, o will use a
(possibly) different order for executing jobs. Consider a time ¢
when o' is executing a job from G.

1. If at time ¢, ¢’ is executing a critical job x, then o exe-
cutes the same job. Thus o and ¢’ completely agree in
the execution of critical jobs.

2. Otherwise, o executes the earliest unfinished job from G
that is not critical.

In other words, o completely agrees with o’ on critical jobs,
and executes the non-critical jobs strictly in arrival order.

LEMMA 3. At any time t, o' has at most 2/e critical jobs
from G.

PROOF. Suppose that at some time ¢, the schedule ¢’ has a
set S of more than 2/e critical jobs from G. Partition S into
two sets S1 and S» such that S; contains the jobs that have
already become critical by time ¢ and S> contains jobs that will
become critical at some later time after t. We claim that S;
and S» each must contain at most 1/e jobs each.

Suppose |S1| > 1/e. Consider the job z € S that is the last
job to have become critical, say at some time ¢'. Then every
other job in S must be already present at time t', contradicting
that = became critical at time #'.

Now suppose |S2| > 1/e. Then consider the first job z € S>
to become critical at some time t after time t. Every other
job in S must still be alive in the system, contradicting that
« becomes critical at time ¢ . [J

Thus, in o, at any time, there are at most (1 + 2/¢) par-
tially executed jobs from G. We now argue that n&(t) <
1+ 26)71‘6' (t). Consider a time ¢ such that n% (t) <1/e. Then
each job in Q° (t) is critical. The schedule ¢ at t must com-
pletely agree with ¢’ in the execution of critical jobs and nei-
ther schedule carries any non-critical jobs at time ¢, hence the
number of jobs is identical in both schedules. Otherwise for
any time t such that ng (t) > 1/e, define t; as the latest time
before t when o' had at most 1/e jobs.

Let a(t) and B(t) be the number of non-critical and critical
jobs at time t in o. Similarly let o'(¢) and §'(t) be the num-
ber of non-critical and critical jobs at time t in ¢’. Then we
know that 8(t) = B'(t). Further, at ¢;, 0 had no non-critical
jobs and neither did ¢’ so a(t;) = o'(t;)) = 0. In the inter-
val [t;,t), o spends exactly the same time as ¢’ in non-critical
jobs. Moreover, o never has more than one partially executed
non-critical job. The processing times in G are within a factor
of (1+¢), hence we can claim that a(t) < [(1+¢)a/(t)]. Thus
if o/ (t) + B'(t) > 1/e it follows from above that

ng(t) a(t) + B(t)

[(1+e)a')] +8()
14+ (14 () +6(t)
(L+2e)((t) + 5'(1))
(1 + 2e)n (t).

The penultimate inequality is true since € - (o/(¢) + 8'(t)) >
€-1/e > 1. This completes the proof of Lemma 2. []

IANIAIN I

We use Lemma 2 to show the existence of near-optimal sched-
ules with good structure. Let G; be the set of jobs x such that
w(z) € [(14€) (14€)'*) and p(x) € [(1 +€)?, (1 +€)T).

LEMMA 4. There exists a (1 4+ O(¢))-approzimate schedule
o such that o is (1 + 2/e)-arrival ordered with respect to each

Gij.

PROOF. Let o™ be an optimal schedule for the given in-
stance. Note that the G;;s partition the set of jobs. We apply
Lemma 2 repeatedly to o™ to create a schedule that is (1+2/¢)-
arrival ordered with respect to each G;j. Let o be the resulting
schedule. Let W*(¢) and W (t) denote the weight of the jobs
at time ¢ in the queue’s of o* and o respectively. We have the
following:

W) < S+t g,

i,J
< Y (4o +20mE,
i,J
< (1429(1+9 Y (1+9)'nG,

< (I+2900+ e)V[;*(t).

In the first inequality we are upper bounding the weight of jobs
in Gi; by (1 +¢)"t" and in the third inequality we are lower
bounding the weight by (1+¢€)". The second inequality follows
from Lemma 2. []

The number of distinct sets, G, is bounded by O(In W In P/¢?).

In Subsection 2.1 we show that for any partition of the jobs into
¢ sets there is an algorithm that computes an optimal sched-
ule among schedules that are k-arrival ordered with respect to
each of the ¢ sets, in time n®®*®_ From this and Lemma 4 we
get the following.

THEOREM 1. Given an instance I of the problem of pre-
emptive scheduling to minimize weighted flow time on a single
machine, a (1 + €)-approzimate schedule can be computed in
pOMnWnP/) 4o

2.1 Computing k-arrival ordered schedules

Let G1,G3,...,G be a partition of the job set in to £ sets.
We are interested in finding a schedule that is k-arrival ordered
with respect to each of the sets. We describe a dynamic pro-
gramming based algorithm to find an optimal schedule among
such schedules that runs in time n®*% time.

The dynamic program maintains a table T' of optimal sched-
ule values for subsets of jobs specified by tuples from a set V.
Each tuple ¥ € V is of the form (j, Y1,Y5,...,Y:) with the fol-
lowing interpretation: for 1 < i < ¢, Y; is a subset of G;, and
J = > 1<i<. |Yi| is the total number of jobs in the sets Y;. The
table entry T'[7] stores the value of an optimal k-arrival ordered
schedule for the job set Uf_;Y;. We cannot of course compute
table entries for all possible subsets since that would require
computing values for 2" tuples. Instead we take advantage of
the fact that in a k-arrival ordered schedule the set of jobs that
are completed at any time can be specified compactly. From
Lemma 1, the distinct number of tuples in V is O(n+t1%),

For a tuple o = (j,Y1,Y5,...,Y:) let |5| denote j, the number
of jobs completed. Suppose we have computed T'[7] for all
tuples v € V with |7] < j. Let w = (j + 1, X1, Xo,...,X;) be
a tuple in V. We compute T[i] as follows. Let X = Ui X,
For each job x € X let o, be an optimal k-arrival ordered busy
schedule for X where z is the last job to finish in X. Note that
o, might not be a feasible k-arrival ordered schedule in which
case we set its value to co. It follows that T[@] = min, |og].

To compute o, we find the optimal schedule value for the set
X \ {z} using the table 7. If X \ {z} is not a valid tuple in
V we set |0z = 00. We obtain the completion time of z in o,
by constructing a busy schedule for X in which we give z the
least priority (since z is supposed to finish last among X). If z
does not finish last in the schedule constructed above we make
o, invalid by setting |o;| to co. From the above discussion
we see that T[] can be computed from prior values in T in
O(n’ logn) time.

THEOREM 2. An optimal k-arrival ordered schedule with re-
spect to sets G1,Ga, ..., Gy can be computed in n®*° time.

2.2 Reductions to Poly-bounded Instances

Theorem 1 yields a quasi-polynomial time approximation
scheme when both P and W are poly-bounded. We show here
that if either P or W is poly-bounded then we can reduce the
instance, in an approximation preserving fashion, to a poly-
bounded instance. Thus it is sufficient for one of P and W to
be poly-bounded. We assume without loss of generality that
the schedule starts at time 0 and is busy through out. Also re-
call that we have normalized quantities such that the smallest
processing time and smallest weight are 1: this implies that P
and W are lower bounds on the optimum value.

Our first reduction considers the case when P is poly-bounded.
Let J; be the subset of jobs from J whose weight is less than
W/(n®P), and let J; be the set of remaining jobs. We claim
that the value of optimal schedule for J; is a good approxima-
tion for the value of an optimal schedule for J. Let ¢’ be an
optimal schedule for J;. We create a schedule for J by merging
o' with an arbitrary busy schedule for Js. In the merging we
always give preference to o’. The completion time of any job
in J; is the same in o and o’. The completion time of a job
from Js in o is at most nP, hence the total contribution of
Js to o is bounded by nP|Js|W/(n®P) which is at most W/n.
Since W is a lower bound on the optimal schedule value the
contribution of J; is negligible. By construction, the ratio of
weights in J; is at most n°P, hence if P is poly-bounded the
ratio of weights in J; is poly-bounded as well.

Next we consider the case when W is poly-bounded. Let
Js be the set of jobs from J whose processing times are less
than P/(n*W), and let J; be the remaining jobs. Let o, be an
arbitrary busy schedule for Js. Let o; be an optimal schedule
for J;. We create a busy schedule o for J by merging o, and
o1 where we always give preference to os. The contribution of
05 is at most P/n. A job in J; can be delayed in o because
of jobs in Js by at most nP/(n*W) = P/(n*W). Hence the
contribution of the delay to the value of ¢ is at most P/n.
Since P is a lower bound on the optimal schedule value this is
negligible. In J; the ratio of processing times is O(n*W) which
is poly-bounded if W is poly-bounded.

3. INSTANCE PARTITIONING

We develop here a basic framework that will be used in sub-
sequent sections for obtaining a PTAS for two special cases
of weighted flow time that we mentioned earlier. Informally,
the idea is to partition an instance I with jobs of arbitrary
weights into a collection of instances Iy, I, ..., I} such that
for 1 < i < k, P(I;) and W(I;) are O(1). The interaction
between these instances is limited to a simple priority rule: at
any time ¢t execute a job from I; only if there are no jobs alive
in I; for any j > ¢. We use this rule to identify blocks of time
available for executing jobs in each instance I;, and then use
the following variant of Theorem 1 to compute a near-optimal
schedule for each I; in polynomial time.

THEOREM 3. Given an instance I of preemptive scheduling
to minimize weighted flow time on a single machine, and a se-
quence of O(n) intervals that specify the blocks of time excluded

for exzecuting jobs in I, a (1 + €)-approzimate schedule can be
computed in nCnW1in P/¥) time.

As a final step, we simply merge together the schedules for
Iy, ..., I. For this to work we need to establish the existence

of near-optimal schedules of this form.

3.1 Randomized Grouping

Let G = (G1, Ga, . .., G) be an ordered partition of the given
job set into subsets of jobs Gi,...,Gr. We call Gi,...,Gg
groups. For a job z we use g(z) to denote the index of the
group that contains it, hence g(z) = ¢ iff z € G;. Let g(z)
be a real valued parameter associated with a job z. For our
purposes g(z) will either be w(z) or p(z). The partitions we
are interested in are based on grouping jobs according to ge-
ometrically separated g values. Given a parameter a > 1 we
partition jobs in to (G1, ..., Gx) where G; is the set of all jobs
z with ¢(z) € [a’,a"™"). Tt will be advantageous for our pur-
poses if jobs in two groups G; and Gj4; differed in their g(z)
values by a factor of roughly a. This is clearly infeasible for
arbitrary instance since two values a‘ —e and a* +¢ fall in adja-
cent groups but differ by a small relative factor. To get around
this, we use randomization to achieve an ezpected separation.
For a parameter a our expected relative separation will only
be logarithmic in @ but that will suffice for our purposes.

Given a parameter a we randomize the geometric grouping
procedure as follows. Pick a number r € [1,a) at random
according to the probability distribution with density function
f(t) = 74 A job z with value ¢(z) is in group Gy if q(z) €
[ra®,ra**1). The group of z, g(z), is now a random variable
that takes two values, either |log, g(z)]| or |log, g(z)|+1. The
following claim is elementary.

CLAM 1. The ezpected value of TZEE) is =% and that of
rad@+1 ;g (a—‘ll)g(w)_

We note that the randomized geometric grouping has been
used in several contexts earlier. We will use the notation G} to
denote the partition induced by geometrically increasing values
of a with shift r. The parameter g(x) will be clear from the
context. We make one more observation that will be useful.

PROPOSITION 1. For a fized a the number of distinct parti-
tions induced by choosing r randomly in the interval [1,a) s at
most n.

This allows us to derandomize algorithms based on random-
ized geometric grouping in a simple and obvious way.

3.2 Prioritized Schedules

Given a partition § = (G1,Ga,...,Gi) we call a schedule
o G-prioritized if at any time ¢ the job processed at t by o
is from the highest indexed group among alive jobs at ¢t. If we
restrict our attention to G-prioritized schedules, the problem of
scheduling the given instance can be partitioned into k separate
instances I1, Is,...,Ir where the instance I; is restricted to
jobs in Gj. To get instance I;, we compute an arbitrary busy
schedule ;41 for jobs in UfszGi. This partitions the time
interval [0, 00) in to disjoint time intervals. In each of these
intervals some job from Ui'“:j_,_l G; is alive and is being processed
by oj+1. It is clear that in a G-prioritized schedule, no job

from G; can be processed in the time intervals when o4 is
processing a job. The instance I; consists of scheduling jobs in
G; subject to the constraint that no jobs are scheduled in the
excluded time intervals given by o;1+1. The number of excluded
time intervals for any instance I; is bounded by n + 1.

Thus prioritized schedules allow us to partition the problem
in to smaller and more manageable instances. In addition if the
partition is induced by geometric rounding for some constant
a, we have the advantage that each G; has jobs with ¢ values
that differ by at most a relative factor of a. This allows us to
reduce general instances with arbitrary g values to instances
with fixed ¢ values and excluded time intervals. We can now
invoke Theorem 3 to compute (1 + €)-approximate schedules in
polynomial time.

4. APTAS FOR FIXED P

In this section we give a PTAS for the case when W is ar-
bitrary but P is O(1). A slight modification to the proof of
NP-hardness for the problem where P and W are arbitrary
[11] shows that the problem remains strongly NP-hard for any
fixed P > 1. In fact it is not known whether the case of P =1
(that is all processing times are the same) is polynomial time
solvable or not!

Our PTAS for this case is based on G -prioritized schedules
where the grouping is based on the weights of jobs. To obtain
a (1 + e)-approximation we use a = e°F/9), The intuition
behind our approach is as follows. Suppose the weights of jobs
are “well separated”, say by a factor larger than P (i.e. for
any two distinct weights w > w', we have w/w' > P). Since
the processing times are between 1 and P, for any two jobs
z and y such that w(z) > w(y), we get that w(z)/p(z) >
w(y)/p(y). Thus, by giving preference to larger weight jobs,
we give preference to jobs with larger weight to processing time
ratio. It is known that in the absence of release dates this leads
to an optimal schedule [15], however, when release dates are
present, always giving preference to the best ratio job can lead
to very poor schedules. We show that, when weights are well
separated relative to P, this rule leads to schedules that are not
too far from optimal. The proof is quite involved. Of course an
instance need not have well separated weights. Gy -prioritized
schedules with a = ¢F/) and r chosen randomly, allow us to
assume that the weights in adjacent groups are, in the expected
sense, separated by a factor of Ina = Q(P/e). However, jobs
within the same group have to scheduled between themselves
with care. We now present the technical details.

The main claim is that when r is chosen according to the
distribution in Section 3.1 the expected value of an optimal G-
prioritized schedule is within a (1 + €) factor of the optimum.
This claim is a corollary of the technical lemma below, and the
rest of the section is devoted to its proof.

LEMMA 5. Let a* be an optimal schedule. Then there erists
a Gy -prioritized schedule o such that at any time t

Y @< Y () + L

z€QT () z€EQ*(t)

In the above inequality, the left hand side is the sum of the
weights of the jobs in the queue of o at time ¢. The right hand
side sums over the jobs in the queue of ¢* at time ¢, instead of
simply the weight of each job, we charge an additional quantity
to each job.

4P/e

COROLLARY 1. Fora=e and r chosen according to the

distribution in Section 3.1, the expected value of an optimal
G, -prioritized schedule is at most (1 + €)OPT.

We prove the above corollary assuming Lemma 5.

ProOF. For fixed r and a, let o] be a schedule guaranteed
by Lemma 5. Then it follows that

AP - pad@)+1
loal=> Z w(z) <> D (wx)+ —Q-1
t zeQa(t) t zEQ*(t)

Taking expectation on both sides with respect to the distribu-
tion on r and using Claim 1 we obtain that

Ell] < 3 Y (@) + Lus))

Ina
t zeQ*(t)

< > > wE(d+e)
t zEQ*(t)
< (1+¢€)oprT.

O

The proof of Lemma 5 relies on transforming an optimal
schedule o* to a G,-prioritized schedule o. In this process
jobs from a given group G; can get delayed because of jobs
from U;>;G;. We rely on a charging scheme to account for
this delay. Ideally we would like to charge at most P jobs
from G; to each job in U;»;G;. This appears to be feasible
because the processing times are bounded by P. However, we
are also concerned with jobs that might be in a partial state
of execution whose remaining processing times could be very
small. We establish the following lemma that shows that even
among the partially executed jobs the rate at which an optimal
schedule finishes weight is upper bounded by roughly 2W. Let
Q:(t) denote the set of partially executed jobs in the queue of
o* at time t. Hence, for t' > ¢, Q%(t) \ Qi (t') is the set of jobs
from Q}(t) that have been finished in the interval [t,t'] by o*.

LEMMA 6. Let o be an optimal schedule for an instance
with processing times bounded by P and weights bounded by
W. Then fort >t,

ZmeQz(t)\Q:(t’) w(m) <2W [EmeQz(t)\Qz(tl)pt(Jf)J +2W.
The lemma holds even when the instance has excluded time
intervals.

PROOF. We can assume that Q}(t) \ Q:(t') is non-empty.
Suppose the claim is false for some pair of times ¢ and ¢/, t <
t'. Let |Q:(t)\ Qi(t')| = k and let J1,J2,..., Jr be the jobs
ordered in reverse order of arrival. This is the order in which
they will finish in ¢* since they are in a preemption chain. We
claim that there exist indices 7 and 7, 1 < i < j <k, such that
Pici<; w(Je) > Woand 3o, o, pe(Je) < 1. This will suffice
to contradict the optimality of o*, as follows. Since J; is in
Q3 (t) it must have been preempted by some job x that finishes
before J;. However we know that p(z) > 1 and w(z) < W. We
can modify ¢* by swapping the execution of z with that of the
remaining processing times of J; to J; and it is clear that this
will strictly improve the schedule contradicting the optimality
of 0.

Now we prove the claim. Let y = ZzeQ; (t) Pt(z). For any in-
teger a such that 0 < a < [y] let ia = min{h | 37, ;o) pe(Jf) >
a—1} andlet jo = max{h | 3 ;< ;<, Pt(Js) < a}. From our as-
sumption on the falsity of the lemma it follows that there exists

an a' such that Eia' <e<j,, w(Je) 2 2W. Since the weight of
every job is at most W, Eia:<l§ja: w(Jy) > W. Further, from
the definition of i, and j,/, we get that Eia, <t<i, pe(Jr) < 1,
providing the indices for the contradiction above. [

We now prove Lemma 5. Let (G1,Goa,...,Gg) be the par-
tition of jobs in G7. Given an optimal schedule o* we create
a G, -prioritized schedule o iteratively from i = k£ down to 1.
Let A; = U‘?:iGj denote the set of jobs in G; to G. Suppose
we have already created a schedule o;4; for jobs in A;1. We
create a schedule o; for A; as follows. Since o; needs to be
prioritized, the jobs in G; can be scheduled only in the time
intervals in which no job in A;4; is alive. We order jobs in G;
by their completion time in o* and schedule them preemptively
in the gaps left in ;41 where at any time ¢, the earliest alive
job in the ordering of o™ is executed. Note that in o; jobs from
G; need not finish in same order as in o*. It is easy to see that
o = 01 is G, -prioritized.

CLAIM 2. At any timet in the schedule o;,

9(z)
Z w(z) < Z (w(x) + 4P Z ra’).
2€Q7i () 2€Q* ()N A; j=it1

Lemma 5 follows in a straightforward fashion from the above
claim by setting ¢ = 1. We prove the claim by induction on %
as it goes down from k to 1. From the construction of oy, it is
not difficult to see that Q7*(t) C @*(t). This establishes the
base case. Assuming that the claim is true for ¢ 4+ 1, we prove
it for . Let B](t) = Q*(t) N G; be the set of jobs from G;
that are alive in o™ at t. Let B;(t) = Q7 (t) N G; be the set of
jobs from G; that are alive at ¢t in 0;. From the construction
it follows that Q77 (t) N G; = B;(t) for all j < i. Therefore

Z w(z) = Z w(z) + z w(z).

z€Q7i (t) zeQ7i+1(¢t) z€ B;(t)

We bound }°, i+ w() by the induction hypothesis for
i+ 1. Hence we need to bound }, p) w(z). In particular
we need to bound }° .y w(z) — EmEB;) w(z). We do this
by bounding the quantity }°_c 5. 1)\ 5r) w(2). Recall that we
order the jobs in G; by their completion times in ¢*. Without
loss of generality let Ji,Js,...,J, be the ordering of jobs in
G;. Let £(t) be the number of jobs that are finished by ¢* by ¢
from G; and let f(t) be the index of the first job from G; that
is not completed in o; at time ¢. It follows that

> w@<)

z€B;(t)\ B} (t) F(#)<i<L(R)

w(J;).

We now bound the rhs in the above inequality. Let ¢ be the
last time before ¢t when o; either executes a job that is later in
the order than f(t) or is empty in jobs. If there is no such time
then we set t' to 0. A couple of facts that are true at t'. First,
there are no jobs from A; 41 at t' in the queue of o;, hence also
in g;41. This is true because o; is prioritized. Second, there is
no job from {Ji,...,Jp} that is in the queue of o; at time ¢’
since in o; we give preference to lower indexed jobs from G;.
From this latter fact it also follows that ¢’ is before the arrival
time of Jy(;). Let V' denote the difference in the total time that
o; spent and o* spent in the interval [t',t) on jobs in A;+1. We
claim that V > 0. Suppose not. Then, in the interval [t',t) o;
processed only those jobs from Ji, ..., Js() that have arrived
after t'. Since we process jobs in the order of o* we must have

finished Jy () by t as 0™ did. However, by the definition of f(t),
o0; did not finish J¢) at ¢ — a contradiction. Since job sizes
are bounded by P and at time t’ there are no jobs from A; 1
in 0;, we get the following.

CLAIM 3. There are at least [V /P] jobs from A;y1 alive at
t in o* (that is in Q*(t)).

The main ingredient of our proof is the following. Let W; =
i+l the maximum weight of jobs in G;.

CLAM 4. 3¢y cicoy w(J5) < 2WiV + 2W5.

ra

PROOF. Let Q:(t') denote the set of preempted jobs in o*
at time t'. Let X = {J; | 1 < j < f(t),J; arrived after t'}
be the set of jobs in G; that arrived after ¢ but were fin-
ished by both ¢* and o; by time ¢t. Let X' = {J; |1 <j <
£(t), J; arrived after t'} be those jobs from G; that arrived af-
ter ¢ and were finished by o*. Therefore, X’ \ X is the set of
jobs that arrived after ¢’ but were finished by ¢* and not by o;
by timet. Let V' = >_zex\ x P(z) be the amount of processing

time that o* spent in excess over o; in the interval [t', ¢) in jobs
from G; that arrived after t'. V is the total time that o* spent
in excess over o; in the interval [t';t) in jobs from G;. It follows
that o* spent V' =V — V' + pi(J5)) — p(Jf(t)) time in pro-
cessing jobs from Y = Q:(¥') N {J1,...,Jesy}. Note that ¥ is
the set of preempted jobs from G; that are alive at ¢ in Q*(¢).
Since pi(Jf1)) — p(Jf(t)) < 0 it follows that V" <V — V. Let
w1 = Y exnx W) and wy = 3 oy w(z). We claim that
wi < W; V' since each job in X \ X’ has a processing time of
at least 1 and was fully processed in the interval [¢',t). Invok-
ing Lemma 6 we see that wa < 2W; V" + 2W;. Therefore we
conclude that wi + we < 2W;V 4+ 2W;. O

Now we are ready to finish the induction step. We charge
the excess weight in o; at time ¢ which is at most 2W;V + W;
to the [V/P] jobs in A;1 that are alive at t. We charge each
jobin A;41 with a weight of at most 4PW;. We omit details of
the calculations that formally prove the induction hypothesis.
This finishes the proof of Claim 2 and Lemma 5.

THEOREM 4. A (1+ €)-approzimation for the weighted flow

time can be found in time n® nP/e) " Hence for fized P we
obtain a PTAS.

PrROOF. From Lemma 5 we conclude that if we choose a to
be e**/< and pick r according the distribution in Section 3.1,
then the expected value of a prioritized schedule is at most
(1+ €) times the optimal schedule value. For the chosen r and
a we compute a (1 + €) approximate Gg-prioritized schedule.
This involves finding a (1 + €)-approximate schedule for each
group G in the partition. However jobs in a group have max
to min processing time at most P and max to min weight at
most a. We use Theorem 3 to obtain the running time that we
claim. O

5. APTASFOR STRETCH

The stretch metric is a special case of weighted flow time
where the weight of a job z with processing time p(z) is 1/p(x).
Note that neither the weights nor the processing times are fixed
for a general instance of stretch and hence ideas from Section
4 do not apply directly. However, by taking advantage of the
special structure of the stretch weight function we show that

prioritized schedules with respect to weight based partitions
provide good approximations.

We start with a lemma that establishes the quality of priori-
tized schedules as a function of the grouping parameter a. For
the stretch metric it is more natural to work with the process-
ing times rather than the weights. Let G, = (G1,Go,...,Gk)
be the partition induced by grouping jobs based on their pro-
cessing times. However, we want to give priority to jobs with
larger weights. Since weights are inversely related to process-
ing times, this implies that lower indexed groups in G have
higher priority. For the rest of this section a schedule o is G-
prioritized if at any time t, o processes the job from the lowest
indexed group from G that has alive jobs at ¢.

LEMMA 7. The optimal stretch of a G -prioritized schedule
is at most OPT + 27 > m_f;((%. Choosing r according to

the distribution f(t) = ;== in [1,a) the ezpected value of an
optimal Gg -prioritized schedule is at most OPT + .

For the proof of the above lemma we need the following sim-
ple properties of optimal schedules for stretch.

PROPOSITION 2. Let o* be any optimal schedule for total

stretch on a single machine. For any two jobs x and y the
following hold:

1. if © is completed before y in o™ then y is not processed
during the entire time x is alive in o*, and

2. if p(x) < p(y) and y finishes earlier than x then pi(y) <
p(x) where t is the arrival time of x.

Fix r and a. We prove Lemma 7 by induction on k, the
number of groups in the partition G. We will prove the stronger
hypothesis that there is a G -prioritized schedule of value at
most OPT + Y__p(x) Ef:g(w)H -L.. The claim is trivial for
k = 1. Assuming it is true for all j < k, we prove it for k + 1.
Let I be an instance with k& + 1 groups in the partition and
let o* be an optimal schedule for I. If o™ is prioritized with
respect to (Uf:IGj, Gr+1), by induction, the claim is true for
k + 1. Suppose not. Then there exists an earliest time ¢ and a
job z € G41 being processed at t such that z is not preempted
by a job z’ that arrives at ¢ and g(z') < k.

We first claim that p;(z) < ra**! for otherwise from Propo-
sition 2, would have been preempted at t by . We claim
that z is the first job in Gr4+1 that finishes after ¢ in 0. Sup-
pose not. Let y be a job from G411 that finishes before z in
o”. Then, from Proposition 2, y could not have been alive at t,
hence must have arrived at or after ¢. If x was not preempted
by z’ it follows that x finishes before z’, hence y finishes before
x'. However, this is impossible since y is larger than z’ and
arrives no earlier.

Let t' be the first time when o* executes a job from Gji1
after completing z. If there is no such t' then let t' = T, the
time at the end of the schedule.

From the discussion above, in the time interval [t,t'), o*
executes either z or a job from US_,;G;. Let S be the set of
jobs that are processed by ¢* in [t,#') other than z. We claim
that every job in S is completed by ¢, or in other words there
is no job from S that is partially executed at #'.

Cram 5. Att' there is no preempted job whose group is less
than k + 1.

PROOF. Ift' = T, the time at the end of the schedule, we are
done. Let y the the job from Gry1 scheduled by o* at t'. We

consider two cases based on whether y was partially executed
before ¢t or not. Suppose y was not processed before ¢t. Then
it must be that py(y) = p(y) and hence ¢* would not schedule
y at t' if there was a smaller job available with group k or
less. Suppose y was processed before ¢ and the claim is false.
Let z € Q*(t') be a job with g(z) < k and such that it has
been partially executed before t'. From the choice of ¢ there
were no jobs at ¢t from Gi,..., Gk, therefore z arrived at t or
later. Since y was alive before ¢ it implies that z was processed
while y was alive, and at t', y is processed while z is alive.
By Proposition 2, this is a contradiction to the optimality of

. O

We modify the schedule ¢* in [t,#') as follows. We find the
best prioritized schedule ¢’ for G restricted to S. This step is
feasible since S is completely processed in [t,t'). We schedule
x in the gaps left by o’. Since the maximum group index in
S is k, we can apply the induction hypothesis to upper bound
the value of ¢’. To complete the proof we need to account
for the delay in the processing of z. Whenever z is in the
queue while ¢’ is processing a job from S we charge the weight
of x, which is at most ﬁv to the job in S that is being
executed. After the modification the schedule is prioritized
in the interval [0,t'). The state of the schedule at t' after
the modification is exactly the same as in o*. Further, the
modification charged extra weight only to jobs in S, which are
completed before ¢'. Therefore by continuing the process on
the portion of ¢* in the interval [t', T'] we can change it into a
prioritized schedule while charging only those jobs that finish
after ¢'. Easy calculations verify the induction hypothesis. This
finishes the proof of Lemma 7. [

COROLLARY 2. For a = e'/¢ there is a (1 + €)-approzimate
Gr -prioritized schedule.

PROOF. Follows from Lemma 7 and the fact that opT > n
for total stretch. [

From the above we obtain a PTAS for stretch.

THEOREM 5. A (1+¢)-approzimation for stretch on a single
machine can be found in P/ time.

PrOOF. From Corollary 2 the expected value of prioritized
schedules with a = ¢!/ is within (1 + €) of the optimal. There-
fore, we can partition the problem in to several instances where
each instance has processing times, and hence weights also,
bounded by a. We find a (1 + €)-approximation to such in-

2 3
stances using Theorem 3 in time n®(™ %/€") time. There are
at most n such instances which gives us the desired running
time. [

6. GAP OF ANATURAL RELAXATION

As we remarked earlier, the flow time metric is closely related
to the completion time metric in the exact case. Optimum val-
ues differ by an additive term. Hence integer programming
formulations and their relaxations for the two measures are
essentially the same. Dyer and Wolsey [5] considered several
formulations for the single machine problem in the context of
non-preemptive schedules for completion time. In particular,
they considered two time-indexed formulations, the weaker of
which is a valid relaxation for preemptive schedules. This re-
laxation is based on discretizing time into unit intervals. Some

of the other formulations can be shown to be equivalent to
this formulation, hence we focus on this particular one. For
the purposes of this section we will assume that all processing
times and release dates are integers. For job z, let r(z) denotes
its release date. Let T be an upper bound on the time at which
the schedule ends — this can be computed from the given in-
stance trivially. Let Ag+ be 1 if is processed in the interval
[t,t+1] and 0 otherwise. Let C(x) denote the completion time
of . Then the relaxation is the following:

min » " w(z)C(z) — Y w(w)r(z)

@

subject to:
> Aw = p(a) forall z (1)
r(z)<t<T
<1 0<t<T (2)

Z Aact

p(x) 1 = 1
Clx) > -+ =) ; Awi(t+) forall z(3)

Az € {0,1}. (4)

The first constraint expresses the fact that the total pro-
cessing time allocated to z in the interval [r(z),T] is exactly
p(x). The second constraint says that at most one job is pro-
cessed in each unit time interval. The third constraint lower
bounds C(z) when z is viewed as being continuously finished.
For a clear and detailed explanation of this constraint see [5,
6]. Finally we require that only one job be processed in each
unit time interval. If we remove the term Y w(z)r(z) from
the the objective function we get a relaxation for minimizing
completion time.

Note that the relaxation always yields a preemptive schedule,
however, the value of the schedule according to the relaxation is
not the same as the flow time of the schedule. Although the for-
mulation is not strongly polynomial in the input, it can solved
in O(nlogn) time [5] even with the variables A,; constrained
to be binary. In fact Goemans [6] shows that the following
simple greedy online algorithm yields an optimum solution to
the relaxation. At any time ¢, among the jobs that are alive
execute the job with the largest weight to processing time ra-
tio. For completion time, Schulz and Skutella [14] showed that
the integrality gap of the above relaxation is at most 4/3 and
at least 8/7.

Here we show that the integrality gap of the formulation
is Q(n'/?) for weighted flow time. We consider the following
instance. A large job with & with p(z) = L = n*/® and w(z) =
W = n'/? is released at time 0. Starting at time L— W, n small
jobs each with processing time 1 and weight 1 are released at
unit intervals of time.

It is not hard to verify that the schedule which finishes all
the jobs in arrival order (large job first and then the small
jobs) is an optimal schedule for this instance. The value of this
schedule is easily calculated to be @(n*/3).

However the above schedule is not optimal for the relaxation.
An optimal schedule for the relaxation preempts the large job
on arrival of the small jobs since their weight to processing time
ratios are larger. In this schedule the large job finishes last after
all the small jobs are completed. Again, simple calculations
show that the value of the relaxation on this schedule is O(n).
Hence the gap is a factor of Q(n'/?). Note that the flow time
value of this schedule is ©(n*/?) as well.

7. CONCLUSIONS

Our results are strong evidence that a PTAS exists for the
problem of preemptive scheduling to minimize weighted flow
time on a single machine. Resolving this is the obvious open
problem. An interesting intermediate goal is to obtain a poly-
nomial time constant factor approximation algorithm. Even
though we have a quasi-polynomial time approximation scheme
for the problem, the best known polynomial time approxima-
tion guarantee is only a poly-logarithmic factor [4]. Part of
the difficulty is the lack of relaxations that provide good lower
bounds for flow time scheduling. The multiple machine case
for the weighted problem is wide open, we do not know any
non-trivial algorithms even for the two-machine case.

8. REFERENCES

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon,
S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein,
and M. Sviridenko. Approximation schemes for
minimizing average weighted completion time with release
dates. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, 1999.

[2] M. Bender, S. Muthukrishnan, and R. Rajaraman.
Improved algorithms for stretch scheduling. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2002.

[3] L. Becchetti, S. Leonardi, and S. Muthukrishnan.
Scheduling to minimize average stretch without migration.
In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 548-57, 2000.

[4] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for
weighted flow time. In Proceedings of the 33rd ACM
Symposium on Theory of Computing, 2001.

[5] M. E. Dyer and L. A. Wolsey. Formulating the single
machine sequencing problem with release dates. Discrete
Applied Mathematics, 26:255-70, 1990.

[6] M. X. Goemans. A supermodular relaxation for
scheduling with release dates. In Proceedings of IPCO,
LNCS volume 1084, 288-300, 1996.

[7] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time: Offline
and online algorithms. Math. of Operations Research,
22:513-544, 1997.

[8] M. Harchol-Balter, N. Bansal, and B. Schroeder.
Implementation of SRPT Scheduling in Web Servers.
Technical Report, Carnegie Mellon University,
CMU-CS-00-170, 2000.

[9] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley, New York, 1991.

[10] H. Kellerer, T. Tautenhahn, and G. J. Woeginger.
Approximability and nonapproximability results for
minimizing total flow time on a single machine. In
Proceedings of the 28th Annual ACM Symposium on
Theory of Computing, pages 418-426, May 1996.

[11] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker.
Complexity of machine scheduling problems. Annals of
Discrete Mathematics, 1:343-362, 1977.

[12] S. Leonardi and D. Raz. Approximating total flow time
on parallel machines. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, pages
110-119, 1997.

[13] S. Muthukrishnan, R. Rajaraman, R. Shaheen, and
J. Gehrke. Online scheduling to minimize average stretch.

In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pages 433—43, 1999.
[14] A. Schulz and M. Skutella. The power of a-points in
preemptive single machine scheduling. To appear in
Journal of Scheduling.
[15] W. E. Smith. Various optimizers for single-stage
production. Naval Res. Logist. Quart., 3:59-66, 1956.

