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Assembly via Disassembly: 
A case in Machine Perceptual Development. 

by 

Ruzena Bajcsy 
and 

Constantinos Tsikos 

Abstract. 

This paper presents first results in our effort of learning about representations of objects-The ques- 
tions we are trying to answer are: "What is innate and what must be derived from the environment." 
The problem is casted in the framework of disassembly of an object into two parts. 

1. Introduction. 

This research is a natural progression of our efforts which began with the introduction of the 
new research paradigm in Machine Perception, called Active Perception [Bajcsy,1982,1988]. There 
we have stated that Active Perception is a problem of intelligent control strategies applied to data 
acquisition process which will depend on the current state of the data interpretation, including 
recognition. 

Perceptual activity is exploratory, probing, searching; percepts do not simply fall onto sensors 
as rain falls onto the ground. We do not just see, we look. And in the course of looking, our pupils 
adjust t o  the level of illumination, our eyes bring the world into sharp focus, our eyes converge or 
diverge, we move our heads or change our position to get a better view of something, and sometimes 
we even put on spectacles. 

For robotic systems, this active perception approach has several consequences: 

1. If one allows more than one measurement to be taken, then one must consider how they 
should be combined. This is the rnultisensory integration problem. 

2. If one accepts that perceptual activity is probing and searching, then data evaluation tech- 
niques must be used to measure how well the system is accomplishing its perceptual task and 
to determine whether a feedback mechanism is needed. 

3. If one accepts that perceptual activity is exploratory, then one must determine what must be 
built into the system in order to perform the exploration, i.e., what is a priori and what is 
data driven? 

The next development in our program was the realization that perception is not only sensing 
but involves also manipulation [Bajcsy,Tsikos 19871. Consider the problem for example of a static 
scene segmentation. This has been shown convincingly in our recent work [Tsikos,1987] and in 
paper: Segmentation via Manipulation [Tsikos, Bajcsy 19881 where we argued that a static scene 
that contains more than one objectjpart most of the time cannot be segmented only by vision or 
in general by any noncontact sensing. Exception to this is only the case when the objects/parts 



are physically separated so that the noncontact sensor can measure this separation or one knows 
a great deal of a priori knowledge about the objects (their geometry,material,etc.). We assume no 
such knowledge is available. Instead we assume that the scene is reachable with a manipulator. 
Hence the problem represents a class of problems of segmentation that occur on an assembly line, 
bin picking, organizing a desk top and their like. What are the typical properties of this class of 
problems? 

1. The objects are rigid. Their size and weight is such that they are manipulable with an suitable 
end effector. Their numbers on the scene is such that in a reasonable time each piece can be 
examined and manipulated, ie. the complexity of the scene is bounded. 

2. The scene is accessible to the sensors, ie. the whole scene is visible, although some parts 
maybe excluded, and reachable by the manipulator. 

3. There is a well defined goal which is detectable by the available sensors. Specifically the goal 
maybe: an empty scene, or an organized/ ordered scene. 

The segmentation problem as is specified above is a subclass of a more general problem of 
disassembly task ie. taking things apart which maybe viewed as a process of getting insight into 
how to assembly objects,ie. how to put pieces together. It is not difficult to see that this is how 
children learn about part/whole relationships and in general about assembly process. But the 
question remains what perceptual information should be stored when such disassembly process 
takes place and is it enough for performing the assembly, i.e the reverse task? This problem is what 
we call the Machine Perceptual Development and is at  the heart of this paper. 

One may ask how is Machine Perceptual Development related to machine learning? Relevant 
work on machine learning can be divided grossly into two categories. One involves the application 
of the neural network paradigm, the other is studies of learning in the A1 tradition. The neural 
net paradigm addresses problems at the low-level perception, learning patterns from the signal, 
but this approach does not answer the questions of data reduction from a signal that we are 
proposing. Moreover we are trying to determine a useful division between "innate" structure and 
learned properties, that is t o  say, between a prior+ and data driven information. The traditional A1 
approach to  learning has most frequently relied too much on a priori information and has neglected 
the data driven part. We believe that this approach is wrong and too limiting. 

In order to be systematic we begin with the problem of two part disassembly. (this may suggest 
binary partitioning possibilities). The overall flow diagram of our methodology is as follows [Bajcsy 
et al 19881: Calibration/Exploration = > disassembly => assembly. 

The fundamental issue is: the REPRESENTATION 

The case still has to be made for new representations that develop during an activity and that 
respect both the sensory apparatus and the task. Traditionally, the Computer Vision community 
has experimented with geometric CAD models for analysis, arguing that if CAD models are useful 
for making objects, then they should be equally useful for recognizing them. But such an argument 
is questionable. A designer creates a CAD model by specifying surface representations with detailed 
boundaries and explicit dimensions. To represent the internal dimensions, s/he shows cross sections. 



Finally, s/he specifies both the material and finish processing of the surface. Thus CAD models 
reflect how to synthesize an object during both its design phase and its manufacture. 

The question is whether this same representation is useful for robotic analysis, i.e., object recog- 
nition necessary for disassembly and assembly. We believe the answer is no. First, the limits of 
sensors determine the limits to which a robotic system can differentiate between different materi- 
als, different colors, etc. A robot may not even have the sensors necessary to measure some of the 
properties that the designer has specified. For example, to distinguish metallic and non-metallic 
materials, a sensor is needed to  measure conductivity. Secondly, the spatial resolution of a sensor 
limits how well a robotic system can measure spatial details: there is no point in representing a 
dimension of curvature with stiff tolerances if a sensor cannot discriminate it. Thirdly, the noise 
of the perceptual system determines the minimal discriminability between different categories of 
objects. Finally, the robot may not know the substance/material of the object it is sensing. Hence 
it must have an apparatus to find such things out. What follows in the subsequent sections is: the 
description of the Calibration process which will determine the physical and some geometric char- 
acteristics of the material (hardness, coefficient of friction, surface texture, conductivity , spectral 
properties as reflectivity , weight /density and their like). 

Description of disassembly process and the division of build in procedures versus data driven 
part and finally the test of memory via assembly process. 

2. Calibration/Exploratory Procedures. 

Unlike much of the current robotics effort we do not assume a priori knowledge of the physical 
nor geometric properties of objects that we deal with. In order to find out one must have build in 
capabilities, called Exploratory Procedures (EPs)[Klatzky,Lederman 19871 that seek out different 
physical attributes. For this work we shall consider the following EPs: EP that determines the sur- 
face reflectance, discriminates between lambertian and highly reflective surfaces [Bajcsy,Wohn ,Lee 
19881, Recently we have made progress in this area, using color information [Bajcsy,Wohn,Leonardis, 
19891,that is we can separate the highlights and interreflections from the basic color. EP for de- 
termining the hardness of the material and surface texture [Stansfield, 19871. Notice that these 
EPs are static tests, i.e the object is not manipulated. These EPs will give us the expected range 
of values for hardness, surface reflectance and surface texture. In the future we shall add more 
attributes, such as electric and thermo conductivity, measure of elasticity and deformability,[Sinha 
19891. Furthermore, weight and density of the material as well movable parts like objects on hinges 
must be explored in a dynamic mode. 

3. Disassembly/Assembly System. 

First we shall describe the hardware configuration also shown in Figure 1. For the disassem- 
bly/assembly task, the robot will be equipped by one six degree freedom manipulator and a range 
finder and/or a pair of CCD cameras, called the LOOKER and another six degree freedom ma- 
nipulator and a hand, called FEELER. The LOOKER, depending on the need can also have a 
color camera system or any non-contact electromagnetic wave measuring detector(infrared as one 
possibility). The FEELER has a force/torques sensor in its wrist and a hand. The hand has three 
fingers and a rigid palm. Each finger has one and half degrees of freedom. The sensors on the hand 



are: position encoders and force sensor at  each joint of the finger, Tactile array at each of the finger 
tip and on the palm, Thermo-sensor on the palm, ultrasound sensor on the outer side of the hand. 
In addition the Hand has available various tools that it can pick up under its control. 

Both of the FEELER and LOOKER are under software control of strategies for data acquisition 
and manipulation. 

What are the Logical Components of the System? They are: 

1. The Sensor Models that describe: 
The range of admissible values, the noise which determines the resolution that is discernable, 
the geometry which determines the accessibility of the sensor to the investigated object or of 
its part. 

2. The Task Model: 
As was mentioned in the introduction, we limit ourselves to the task of two part decomposi- 
tion/separation. We like to argue that this is a rather generic problem in many maintenance 
tasks, such as: remove and install, test and repair, and their like, see also [Siegel et a1.,1982]. 

3. Parameters about the Physics/Geometry of the object obtained through calibration EPs. 

4. Manipulatory Procedures: 
Push/Pull, Lift/Press, 
Turn, Twist 
Grasp, Squeeze. 

5. Geometric Procedures: 
Shape Description,especially detection of discontinuities, where is the binding force, Size 
(length, area, volume) determination. 

6. Control Structure: 
(State, Actions), 
Priorities if more than one possible action, (here one can consider some cost/benefit function 
to make the right choice) Priority of sensing: how to start? (here we start with vision!) 
Detection of the Goal state, ie. two separate parts. 

The Block diagram reflecting the logical components for disassembly/assembly is shown in 
Figure 2. This diagram is very similar to  the one used in Tsikos's Ph.D thesis[Tsikos,l987] for 
segmenting a complex scene. We have shown that 

1. Segmentation of an arbitrary scene requires not only a visual sensor, but also some manipu- 
latory actions, such as pushing, pulling, grasping and their like. 

2. The interaction between the sensors and manipulation and the scene can generally be suffi- 
ciently modeled by a finite but non-deterministic Turing Machine. 

3. The critical consideration is the testability of the goal state. (In Tsikos' case it was an empty 
scene.) 



As an test for our system, consider a peg-and -hole problem as shown in Figure 3. It is a test 
bed with the same shapes of the top of the peg but with differing holes ( square, circular and none) 
Figure 3d, 3c, 3a and with varying surface finish of the peg (smooth as shown in Figure 3c and 3d, 
and threaded as shown in Figure 3b). This is so that we can test combinations of manipulative 
actions. 

The general priority schema of control is as follows: START: VISION; REMEMBER: POSI- 
TION and SHAPE. Start with Vision, identify the surface discontinuity of the Peg-head vis-a-vie 
the hole surface, find the position of the peg-head and its shape. GRASP; REMEMBER: POSI- 
TION, GRASPING FORCE After Vision follow up with Grasping in preparation to manipulation. 
The grasping procedure, includes the limitations of the end-effector, that is this procedure uti- 
lizes the parameters obtained through calibration EPs and from the previous step which provides 
information on geometry of the peg-head; MANIPULATE-PULL; REMEMBER: DIRECTION, 
MAGNITUDE of PULLING FORCE while in the hole, POSITION of departing the hole (change 
in the magnitude of the pulling force); This procedure adaptively (using force feedback) pulls the 
peg by finding that direction which minimizes the reactive force; OBSERVE simultaneously using 
vision the manipulatory action. REMEMBER: SHAPE, SIZE and POSITION of the SEPARATED 
TWO PARTS. 

GOAL STATE CHECK. If two parts separated then the Goal state has been reached and stop. 
If not then repeat the whole sequence again. 

Assembly Process: 
Did the System Remember enough? 

Consider reversing the above described process: The FEELER is holding the head of the peg 
and we have stored the position and shape of the hole. Hence unless something has changed the 
FEELER can approach the hole without the LOOKER. The INSERTION process is the reverse of 
MANIPULATE-PULL. The GOAL STATE is determined by The length of The stick of The peg, 
that was Remembered by The LOOKER after separation of The two parts. 

We conclude that at  least in this test case The system Remembered enough to  pass The test. 

4. Conclusion 

We have defined and outlined our long-term thinking and investigations on Machine Perception 
that leads us to The latest research program of understanding machine perceptual development. 
This is an outgrowth of our research on active perception, which views perceptual activity as an 
active process of SEEKING INFORMATION. 

Naturally this is not just blind pickup of any information. The system must protect itself by 
some economy rules[Hager,l988]. Even if The perceptual system receives over abundant amounts 
of information, again for The economy reasons it must be selective in what it stores! Hence The 
fundamental problem remains: The REPRESENTATION issue. What is it that The system must 
have to  seek, measure and select from The perceptual information in order to be able to move and 



manipulate? Somewhat similar ideas appear in The work of Pertin-Trocaz and Puget [1987]. They 
consider a manipulation program automatically generated by a planner according to  spatial and 
geometric criteria and ignoring uncertainties. Such a program is correct only if, at  each step, uncer- 
tainties are smaller than The tolerance imposed by The assembly task. They propose an approach 
which consists in verifying The correctness of The program with respect to  uncertainties in position 
and possibly modifying it by adding operations in order to reduce uncertainties. These two steps 
based on a forward and a backward propagation borrowed from formal program proving techniques 
are described in a general framework suitable for robotic environments. Forward propagation con- 
sists in computing successive states of The robot world from The initial state and in checking for 
The satisfaction of c constraints. If a constraint is not satisfied, backward propagation infers new 
constraints on previous states. These new constraints are used for patching The program. 

However we differ in more than one way from their approach. But The most important difference 
is The ultimate goal, that is we are interested in The perceptual data reduction mechanisms rather 
than in a general plan of a process. We have casted these questions in The framework of disassembly 
of one object into two parts and tested The selected, Remembered representation by reversing The 
process,i.e assembly. Our results are only very modest but we believe that they are encouraging! 
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