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In this paper the optical mechanism and dynamics of electron trapping

material under simultaneous illumination with two wavelengths is investigated.

Our analytical model proves that the equilibrium state luminescence of such a

material can be controlled to produce highly nonlinear behavior with potential

applications in nonlinear optical signal processing and optical realization of

nonlinear dynamical systems. Combining this new approach with state-of-the-

art fast spatial light modulators and CCD cameras that can precisely control

and measure exposure, large arrays of nonlinear processing elements can be

accommodated in a thin film of this material.

c© 2007 Optical Society of America

OCIS codes: 200.0200, 200.3050, 200.4560, 200.4740

1. Introduction

Optical signal processing (OSP) compared to other conventional methods of data

processing, such as digital signal processing (DSP), has some advantages [1]. For

instance, realization of parallelism and massive interconnections can be done far better

in optics than electronics and digital circuits that are good in serial processing of

segmented information. Nevertheless, in many application of OSP we need nonlinear

optical devices whose degree of nonlinearity is more than saturation. For example,

consider the simple optical arrangement in Fig. 1(a). A photodetector measures the
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3intensity of the light emitted from a light source and passed through an optical device.

Usually, the output voltage of the photodetector below saturation is a linear function

of the intensity of illumination. However, in many applications (e.g. optical realization

of one-dimensional maps such as quadratic return map or logistic map in nonlinear

dynamics [2]) we require a nonlinear behavior same as the desired curve depicted in

Fig. 1(b). Here, the intensity of the detected light increases at first and decreases

when we pass a maximum point. To our knowledge an optical component with such

nonlinear response is not available. Recently, it has been shown experimentally that

the equilibrium state luminescence of electron trapping materials (ETMs) can be

controlled to exhibit this type of nonlinearity [3, 4]. In this paper, we analytically

study the same problem and derive sufficient conditions that should be satisfied by

the ETM parameters so that the material would be capable of producing the desired

nonlinear curves in the equilibrium state. Also we describe a systematic way to reduce

the time constant of the process so that the ETM reaches the equilibrium state faster.

2. Physics and dynamics of ETMs

The energy band diagram of ETM and its optical mechanism is shown in Fig. 2. This

system contains an electron-rich valance band, a conduction band and a trap energy

level that is almost empty for an ETM in a dark room with no external stimulus. Now,

suppose that the material is illuminated by two sources of light with wavelengths λ1

and λ3 where λ1 < λ3. Photons with wavelength λ1 have enough energy to interact
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4with electrons of the valance band and excite them to the conduction band. Some of

the excited electrons tunnel to the trap energy level and become trapped electrons.

Other excited electrons return to the valance band to release their extra energy in

the form of spontaneous emission with wavelength λ2 such that λ1 < λ2 < λ3. λ1

photons can also interact with trapped electrons to kick them out of the traps to

the conduction band. These electrons can return to the valance band and produce

luminescence or they can tunnel to the trap levels. If these electrons return to the

trap levels there would be no change in the population of the trapped electrons and

also no luminescence. Illuminating the material with wavelength λ3 detraps some of

the trapped electrons and generates luminescence. The band gap between the trap

energy level and the conduction band should be small enough so that interaction of

trapped electrons and photons of wavelength λ3 can excite the trapped electron to

the conduction band and wide enough so that electron-phonon interactions would not

be able to detrap the trapped electrons [5]. An analogue dynamics in fluid mechanics

is depicted in the system of water tanks displayed in Fig. 3.

A well-known ETM is SrS : Eu2+Sm3+ which is an alkaline-earth sulfides doped

with rare-earth luminescence centers. Rare-earth doped elements add a trap energy

level within the host bandgap. Exposing such ETM to blue light of wavelength

λ1 = 450nm increases the density of trapped electrons and near infrared exposure of

wavelength λ3 = 1310nm detraps trapped electrons. Luminescence of this material

is orange light with peak wavelength around λ2 = 650nm. This infrared stimulable
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5storage phosphor has been widely studied for applications in optical computing [6–8],

optical data storages [9], and biology inspired models [4, 10].

3. Equations

Before formulating the mathematical model let us review the nomenclature that is

used in this paper.
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ξ1
v⇀c Probability of transition from the valance band to the conduction band caused

by interaction of electrons in the valance band and λ1 photons,

ξ1
t⇀c Probability of transition from the trap energy level to the conduction band

(detrapping) caused by interaction of the trapped electrons and λ1 photons,

ξ3
t⇀c Probability of transition from the trap energy level to the conduction band

(detrapping) caused by interaction of the trapped electrons and λ3 photons,

ξT
c⇀t Probability of tunneling from the conduction band to the trap energy level,

ξR
c⇀v Probability of relaxation from the conduction band to the valance band,

ξ1
pass Probability of passing through the material without absorption for a photon

with wavelength λ1,

ξ3
pass Probability of passing through the material without absorption for a photon

with wavelength λ3,

Ii Intensity of light with wavelength λi, i = 1, 2, 3, (W)

P ph
i Number of incident photons with wavelength λi, i = 1, 2, 3, (1/s)

(flow of λi photons),

P e
v Population of electrons in the valance band,

P e
t Population of electrons in the trap level,

P e Total population of electrons in the valance band and trap energy level

P e = P e
t (t) + P e

v (t). In writing this expression we assumed that the lifetime for

an electron in the conduction band is so short that once an electron is excited up

to the conduction band, it almost immediately relaxes to the valance band or

tunnels to the trap energy level. Regarding the millisecond time-scale that we use

in this paper, this assumption is reasonable.

For a non-stimulated ETM P e
t (t) = 0 and P e

v (t) = P e.
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7There are few relations between the probability variables that we defined above.

When we expose the ETM to the light with wavelength λ1, these photons interact with

the electrons or they pass through the ETM thin film without absorbtion which means

that: ξ1
v⇀c + ξ1

t⇀c + ξ1
pass = 1. Similarly, for the photons with wavelength λ3: ξ3

t⇀c +

ξ3
pass = 1. For an incident photon, the probability of electron-photon interaction in the

valance and trap band is proportional to the population of electrons in each energy

level: ξ1
v⇀c ∝ P e

v (t), ξ1
t⇀c ∝ P e

t (t), and ξ3
t⇀c ∝ P e

t (t). These proportionalities can be

changed to equalities by defining the proportionality coefficients 0 ≤ κ1
v, κ

1
t , κ

3
t ≤ 1.0,

so that: ξ1
v⇀c = κ1

vP
e
v (t)/P e, ξ1

t⇀c = κ1
t P

e
t (t)/P e, and ξ3

t⇀c = κ3
t P

e
t (t)/P e. Once an

electron is excited up to the conduction band this electron can relax to valance band

or it can tunnel to the trap energy level which means that: ξT
c⇀t + ξR

c⇀v = 1.

Consider the case where an ETM is under constant and continuous simultaneous

illumination with wavelengths λ1 and λ3. Our goal is to compute the intensity of

luminescence as a function of the intensities of the two illuminations. We start by

writing the equations for the populations of electrons in the valance band and trap

level as a function of time, P e
v (t) and P e

t (t), and same populations a tiny amount of

time before, P e
v (t− δ) and P e

t (t− δ).

P e
v (t) = P e

v (t− δ)− δP ph
1 ξ1

v⇀cξ
T
c⇀t

+δP ph
1 ξ1

t⇀cξ
R
c⇀v + δP ph

3 ξ3
t⇀cξ

R
c⇀v, (1)

P e
t (t) = P e

t (t− δ) + δP ph
1 ξ1

v⇀cξ
T
c⇀t
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1 ξ1

t⇀cξ
R
c⇀v − δP ph

3 ξ3
t⇀cξ

R
c⇀v. (2)

The intensity of light with wavelength λi can be computed from the number of

incident photons per unit of time, P ph
i , using the equation: Ii = P ph

i hνi where h is

the Planck constant and νi is the frequency of radiation. If δ → 0 and we divide both

side of the equations by P e, we get the normalized rate of changes in the electron

populations.

dP e
v (t)

dt
= −κ1

vξ
T
c⇀t

P e
P ph

1 P e
v (t) +

κ1
t ξ

R
c⇀v

P e
P ph

1 P e
t (t) +

κ3
t ξ

R
c⇀v

P e
P ph

3 P e
t (t), (3)

dP e
t (t)

dt
= +

κ1
vξ

T
c⇀t

P e
P ph

1 P e
v (t)− κ1

t ξ
R
c⇀v

P e
P ph

1 P e
t (t)− κ3

t ξ
R
c⇀v

P e
P ph

3 P e
t (t). (4)

and as we expect: dP e
t /dt = −dP e

v /dt. The number of luminescent photons, P ph
2 (t),

is:

P ph
2 (t) =

κ1
vξ

R
c⇀v

P e
P ph

1 P e
v (t) +

κ1
t ξ

R
c⇀v

P e
P ph

1 P e
t (t) +

κ3
t ξ

R
c⇀v

P e
P ph

3 P e
t (t). (5)

Typical charging characteristic curves where I1 > 0 and I3 = 0, and discharging

characteristic curves where I1 = 0 and I3 > 0 for the described electron trapping

material are given in Fig. 4. As we can see in Fig 4(a), charging curves rise up rapidly

and converge to a saturation level that depends on I1. This saturation level exists

because during charging process two opposing processes of trapping and detrapping

are taking place simultaneously and the saturation level is the balance point. On

the other hand, during discharging the only ongoing process is detrapping and all

the curves converge to zero (Fig. 4(b)). Similar to the experimental results previously
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9reported [3], the level of the initial jumps in both charging and discharging curves and

the final saturation level in the charging curves are linear functions of the intensities

of exposure in each case.

A more interesting situation in the optical mechanism of electron trapping materials

occurs when the material remains under constant simultaneous illumination and the

intensity of luminescence converges to its equilibrium state emission. At equilibrium

dP e
t (t)/dt = −dP e

v (t)/dt = 0 so the equilibrium condition as deduced from equations

(3) and (4) will be,

κ1
vξ

T
c⇀tP

ph
1 P̃ e

v = κ1
t ξ

R
c⇀vP

ph
1 P̃ e

t + κ3
t ξ

R
c⇀vP

ph
3 P̃ e

t , (6)

where P̃ e
v , and P̃ e

t are respectively the density of electrons in the valance band and

trap energy level at the equilibrium state. This equation help us to calculate the way

the total population of electrons, P e, is split (in the equilibrium state) between the

valance band and the trap energy level.

P̃ e
v =

(
α +

P ph
3

P ph
1

β

)
P̃ e

t , (7)

P̃ e
v + P̃ e

t = P e. (8)

In equation (7), α =
κ1

t ξR
c⇀v

κ1
vξT

c⇀t
, and β =

κ3
t ξR

c⇀v

κ1
vξT

c⇀t
and α, β > 0. Solving these two

equations for P̃ e
v and P̃ e

t gives,

P̃ e
v =

αP ph
1 + βP ph

3

(1 + α)P ph
1 + βP ph

3

P e, (9)

P̃ e
t =

P ph
1

(1 + α)P ph
1 + βP ph

3

P e. (10)
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10Using equation (5), the intensity of luminescence in the equilibrium state can now

be expressed as follows:

1

κ1
v

P̃ ph
2 = P ph

1

αP ph
1 + βP ph

3

(1 + α)P ph
1 + βP ph

3

= f(P ph
1 , P ph

3 ). (11)

Equation (11) shows how the intensity of luminescence depends on the intensities

of illuminations. In order to investigate this functionality further, let us examine the

gradient and the Hessian of the function f(P ph
1 , P ph

3 ).

∇f(P ph
1 , P ph

3 ) , ∂f

∂P ph
1

P̂ ph
1 +

∂f

∂P ph
3

P̂ ph
3

=
α(1 + α)(P ph

1 )2 + 2αβP ph
1 P ph

3 + β2(P ph
3 )2

[
(1 + α)P ph

1 + βP ph
3

]2 P̂ ph
1 +

β(P ph
1 )2

[
(1 + α)P ph

1 + βP ph
3

]2 P̂ ph
3 , (12)

H(f) ,




∂2f

∂2P ph
1

∂2f

∂P ph
1 ∂P ph

3

∂2f

∂P ph
3 ∂P ph

1

∂2f

∂2P ph
3


 =

2β2

[
(1 + α)P ph

1 + βP ph
3

]3



−(P ph

3 )2 P ph
1 P ph

3

P ph
1 P ph

3 −(P ph
1 )2


 .(13)

In equation (12), P̂ ph
1 and P̂ ph

3 are the unit vectors. Obviously, ∂f/∂P ph
1 , ∂f/∂P ph

3 ≥

0, ∀P ph
1 , P ph

3 , α, β. Also it can be proved that the Hessian matrix is semi-negative

definite. As a result, the f(P ph
1 , P ph

3 ) is a monotonically increasing concave function

(Fig. 5(a)) and the level sets of this function in the P ph
1 − P ph

2 plane are convex

contours similar to the example in Fig. 5(b).

Another important factor is the speed of this system, defined as the speed of the

system to arrive at equilibrium. In order to compute the speed of the system we

compute the time constant for the evolution of the population of the trapped electron,
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11P e
t (t), by using equation (4). We can rewrite equation (4) as follows:

dP e
t (t)

dt
= θ − φP e

t (t),

θ =
1

P e
κ1

vξ
T
c⇀tP

ph
1 ,

φ =
1

P e

(
κ1

vξ
T
c⇀tP

ph
1 + κ1

t ξ
R
c⇀vP

ph
1 + κ3

t ξ
R
c⇀vP

ph
3

)
. (14)

This differential equation can be solved for P e
t (t).

P e
t (t) =

θ

φ
− 1

φ
exp(−φt). (15)

Accordingly, the time constant of the system is τ = 1/φ. In order to improve the

speed of the system we need to minimize τ by maximizing φ. Obviously, φ ∝ 1/P e so

that a system in which the total population of electrons is less reaches the equilibrium

state faster (the intensity of luminescence in the equilibrium state is independent of

P e). For the case where P e is constant, this optimization problem can be expressed

as follows:

Maximize (Maximize P eφ) ,

ξR
c⇀v, ξT

c⇀t, κ
1
v , κ1

t , κ3
t I1,I3

Subject to :

P eφ = κ1
vξ

T
c⇀tP

ph
1 + κ1

t ξ
R
c⇀vP

ph
1 + κ3

t ξ
R
c⇀vP

ph
3 ,

I1 ∈ [IMin
1 , IMax

1 ], I3 ∈ [IMin
3 , IMax

3 ],

P ph
i = Ii/hνi,
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120 < ξR
c⇀v, ξ

T
c⇀t, κ

1
v, κ

1
t , κ

3
t < 1,

ξR
c⇀v + ξT

c⇀t = 1. (16)

Results of this nonlinear optimization can be used for synthesis of luminescent

materials. In this problem we are maximizing the speed of the system over two dif-

ferent sets of variables. The first set, {ξR
c⇀v, ξT

c⇀t, κ1
v, κ1

t , κ3
t}, includes the material

parameters in contrast to the second set, {I1, I3}, which are variables under control

of the user. Maximization over the second set is a linear optimization. Consequently,

the optimal solution should occur on one of the corners of the rectangular interval

I1 ∈ [IMin
1 , IMax

1 ], I3 ∈ [IMin
3 , IMax

3 ] in the I1 − I3 plane. If we take the gradient

of P eφ with respect to I1 and I3 we get: P e∇I1,I3φ = P e ∂φ
∂I1

Î1 + P e ∂φ
∂I3

Î3, where

P e ∂φ
∂I1

= 1
hν1

(
κ1

vξ
T
c⇀t + κ1

t ξ
R
c⇀v

)
> 0 and P e ∂φ

∂I3
= 1

hν3

(
κ3

t ξ
R
c⇀v

)
> 0. Hence, the optimal

solution for the first maximization problem is: I1 = IMax
1 and I3 = IMax

3 . From this

result we can conclude that more intense exposures causes faster convergence to the

equilibrium emission. In the second maximization, increasing each of the variables:

κ1
v, κ1

t , κ3
t monotonically increases the speed of the system. If we calculate the deriva-

tive of the objective with respect to ξR
c⇀v we get: P e ∂φ

∂ξR
c⇀v

= κ1
vP

ph
1 + κ3

t P
ph
3 − κ1

vP
ph
1 .

Therefore, when κ1
vP

ph
1 + κ3

t P
ph
3 > κ1

vP
ph
1 increasing ξR

c⇀v (decreasing ξT
c⇀t) improves

the speed of the system and visa versa.

We may also try to maximize the luminescence intensity in the equilibrium state

over the material parameters and in a specific dynamic range of the exposures. This
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Maximize
(
Maximize P̃ ph

2

)
,

ξR
c⇀v , ξT

c⇀t, κ
1
v , κ1

t , κ3
t I1,I3

Subject to :

P̃ ph
2 = κ1

vP
ph
1

κ1
t P

ph
1 ξR

c⇀v + κ3
t P

ph
3 ξR

c⇀v

(κ1
vξ

T
c⇀t + κ1

t ξ
R
c⇀v) P ph

1 + κ3
t P

ph
3 ξR

c⇀v

,

I1 ∈ [IMin
1 , IMax

1 ], I3 ∈ [IMin
3 , IMax

3 ]

P ph
i = Ii/hνi,

0 < ξR
c⇀v, ξ

T
c⇀t, κ

1
v, κ

1
t , κ

3
t < 1,

ξR
c⇀v + ξT

c⇀t = 1. (17)

Clearly, this is a nonlinear optimization with several variables. We have already

shown (equation (12)) that the objective is monotonically increasing over the dynamic

range of the intensity of exposures. In order to solve the second maximization we

need to look at the partial derivatives of the objective with respect to the material

parameters.

∂P̃ ph
2 /∂ξR

c⇀v = κ1
vP

ph
1

(
κ1

t P
ph
1 + κ3

t P
ph
3

)
/g2 ≥ 0,

∂P̃ ph
2 /∂κ1

v = P ph
1 ξR

c⇀v

(
κ1

t P
ph
1 + κ3

t P
ph
3

)(
κ1

t P
ph
1 ξT

c⇀t + κ3
t P

ph
3 ξR

c⇀v

)
/g2 ≥ 0,

∂P̃ ph
2 /∂κ1

t = κ1
v(P

ph
1 )2ξR

c⇀v

(
κ1

vP
ph
1 ξR

c⇀v + κ3
t P

ph
3 ξR

c⇀v − κ3
t P

ph
3 ξT

c⇀t

)
/g2,

∂P̃ ph
2 /∂κ3

t = κ1
v(P

ph
1 )2ξR

c⇀v

(
κ1

vξ
R
c⇀v + κ1

t ξ
T
c⇀t − κ1

t ξ
R
c⇀v

)
/g2,
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14g = κ1
vP

ph
1 ξR

c⇀v + κ1
t P

ph
1 ξT

c⇀t + κ3
t P

ph
3 ξR

c⇀v. (18)

Accordingly, in the equilibrium state, increasing ξR
c⇀v (decreasing ξT

c⇀t) and κ1
v

monotonically improves the intensity of luminescence. Also when ξR
c⇀v > ξT

c⇀t in-

creasing κ1
t and when κ1

v > κ1
t increasing κ3

t monotonically increases the intensity of

luminescence.

One can also combine these two optimizations to build a multi-objective problem to

find a way for synthesis of luminescent material with faster and more intense response.

Other practical constraints can be added to build up a more realistic problem or for

the reasons that will be further clarified in the next section we may try to increase

the curvature of the contours in the equilibrium state plane. In general, we are not

essentially interested in finding the global optimal solution; however, while we are

synthesizing the phosphor, we want to have some information on the effect of each of

these parameters on the overall response of the ETM.

4. Linear coupling of the light sources

An interesting case in the equilibrium emission occurs if one couples the two light

sources. For example, suppose that the two light sources are linearly coupled so that

one source is master and the other is slave,

I3 = ηI1 + µ. (19)

In this equation η and µ are real constants. Schematic of a typical optical setup,
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15employing such coupling, is displayed in Fig. 6. The linear coupling (LC) of the

two light sources means that in the equilibrium state plane, possible values for the

intensities I1 and I2 are located along a line. For instance, consider the case depicted in

Fig. 7 for which: η ' −1.14 and µ ' 1010. If one sweeps the values of I1 from IMin
1 =

270nW to IMax
1 = 800nW , as it is depicted in Fig. 7(b), the intensity of luminescence

would change nonlinearly. This nonlinear behavior is similar to the desired nonlinear

curve that is shown in Fig. 1(b). A sufficient condition to get such a nonlinear behavior

is having convex contours of constant luminescence in the equilibrium state plane and

negative slope of linear coupling η < 0. As we can see in Fig. 7(a) the terminating

points of the linear coupling line, points T1 and T2, lie on the same contour. As a result,

the intensity of luminescence is equal for the terminating points in spite of different

intensities of illuminations. At point T1, the intensity of the charging illumination is

high which causes a large population of trapped electrons. Large population of trapped

electrons increases the chance of interaction with photons of both wavelengths λ1 and

λ3. At point T2, the intensity of the charging illumination and the population of

trapped electrons is low, however, the intensity of the discharging illumination I3 is

high which increases the chance of interaction with trapped electrons and photons

so that the intensities of luminescence on points T1 and T2 are equal. Because the

contours in the equilibrium state plane can only be convex, in the case of linear

coupled sources, the intensity of illumination can only be convex. Nevertheless, by

changing the parameters of the linear coupling η and µ and the dynamic ranges of
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5. Conclusion

In this paper, we mathematically investigated the dynamics of electron trapping ma-

terials and in particular the equilibrium state luminescence of the material under

constant simultaneous illuminations. The derived analytical model complements the

experimental observations previously reported [3,4]. It is shown in this paper that by

linear coupling of the two illuminations a variety of different convex nonlinear curves

are producible. The nonlinear curves that are developed in this paper can also be pro-

duced by other approaches. As an example, one can generate similar curves by using

liquid crystals and controlling the polarization of illumination. However, the dynam-

ics of ETM has at least two advantages over a liquid crystal system. First of all, the

dynamics that we discussed here is all-electronic in contrast to liquid crystals where

the intensity of output changes as a function of physical orientation of molecules.

Rotation of molecules limits the speed of such a system. Another advantage is that

with available technology one can precisely control and measure exposure. For in-

stance, one can use the Texas instrument digital micro-mirror device (DMD) [11] to

digitally control the exposure with precision as high as 10 bits for more than a mil-

lion independent pixels. Also, high resolution fast CCD and CMOS digital cameras

are commercially available that can precisely measure exposure. In contrast, precise

control of polarization is still a challenging problem in the design of liquid crystal
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The energy band diagram of ETMs that we studied in this paper has three quantum

levels and the nonlinear curves that are developed are only convex. By generalizing

the idea that is presented here and taking advantage of materials with more com-

plicated energy band diagrams (e.g. adding another trap level in the host bandgap),

higher order nonlinear curves would be achievable. Considering the high resolution

capabilities of ETMs ( > 100 lp/mm ) large arrays of nonlinear processing elements

could be accommodated in a thin film of this material and exploited in parallel optical

signal processing.
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20List of Figure Captions

Fig. 1. (a) Optical setup. A light source illuminates the optical device and a detector

measures the intensity of the light that passes through the optical device (b) the

normally available and the desired curve.

Fig. 2. Energy bands and optical mechanism of electron trapping materials. Interac-

tion of photons with wavelength λ1 can excite electrons from valance band to conduc-

tion band. Some of these electrons return to the valance band and release their extra

energy in the form of spontaneous emission at wavelength λ2 while others tunnel to

the trap energy level. Interaction of photons with wavelengths λ1 and λ3 with trapped

electrons can detrap some of the trapped electrons.

Fig. 3. System of water tanks as a similar dynamics in fluid mechanics to the optical

mechanism of ETMs. In this system the depth of water, h1(t), in tank-1 and, h2(t),

tank-2 are dual of the density of the electrons in the trap level and the valance band,

respectively. If the cross-sectional areas of the tanks are equal and F (t) represents

the inflow of water from the faucet, D1(t) and D2(t) are the outflow of water from

drain-1 and drain-2, and P (t) is a function representing the pump action, then the

state equations of this system are: dh1(t)/dt = aF (t)h2(t)−bD1(t)h1(t)−cD2(t)h1(t),

dh2(t)/dt = eD1(t)h1(t) + fD2(t)h1(t) − hP (t)h2(t), and h1(t) + h2(t) = constant.

where the parameters a,b,c,e,f,h are positive real numbers. This set of equations is

similar to the set of equations that defines the dynamics of ETM (equations (3) and
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Fig. 4. (a) Typical charging curves of a completely erased ETM under exposure to

light with wavelength λ1. (b) Typical discharging curves of a precharged ETM under

exposure to light with wavelength λ3, and P e
t (t = 0) = 108. In both graphs ξR

c⇀v = 0.1,

κ1
v = 0.03, κ1

t = 0.3. In the charging curves κ3
t = 0.3 and in the discharging curves

κ3
t = 0.08. Wavelengths are: λ1 = 450nm, λ2 = 650nm, and λ3 = 1300nm.

Fig. 5. (a) Three dimensional plot of the monotonically increasing concave function

f(P ph
1 , P ph

3 ). (b)The equilibrium state plane of ETM where contours of constant lu-

minescence are plotted as function of the intensities of the two illuminations. In both

graphs the material parameters are: κ1
v = 0.03, α = 0.1, and β = 1.0. Wavelengths

are: λ1 = 450nm, λ2 = 650nm, and λ3 = 1300nm.

Fig. 6. (a) Schematic of a typical optical setup. A thin film of ETM is exposed to

two light sources with wavelengths λ1 and λ3. In this setup, the first light source

is the master and the second one is the slave which is linearly coupled to the first

one. Acronyms O.F., LC, and D stand for optical filter, linear coupling system, and

photodetector, respectively.

Fig. 7. Linear coupling of two sources and the corresponding nonlinear curve.
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Fig. 1. (a) Optical setup. A light source illuminates the optical device and a

detector measures the intensity of the light that passes through the optical

device (b) the normally available and the desired curve.
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Fig. 2. Energy bands and optical mechanism of electron trapping materials.

Interaction of photons with wavelength λ1 can excite electrons from valance

band to conduction band. Some of these electrons return to the valance band

and release their extra energy in the form of spontaneous emission at wave-

length λ2 while others tunnel to the trap energy level. Interaction of photons

with wavelengths λ1 and λ3 with trapped electrons can detrap some of the

trapped electrons.
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Fig. 3. System of water tanks as a similar dynamics in fluid mechanics to

the optical mechanism of ETMs. In this system the depth of water, h1(t),

in tank-1 and, h2(t), tank-2 are dual of the density of the electrons in the

trap level and the valance band, respectively. If the cross-sectional areas of

the tanks are equal and F (t) represents the inflow of water from the faucet,

D1(t) and D2(t) are the outflow of water from drain-1 and drain-2, and P (t)

is a function representing the pump action, then the state equations of this

system are: dh1(t)/dt = aF (t)h2(t) − bD1(t)h1(t) − cD2(t)h1(t), dh2(t)/dt =

eD1(t)h1(t) + fD2(t)h1(t) − hP (t)h2(t), and h1(t) + h2(t) = constant. where

the parameters a,b,c,e,f,h are positive real numbers. This set of equations is

similar to the set of equations that defines the dynamics of ETM (equations

(3) and (4)).



OSA
Published by

25

Fig. 4. (a) Typical charging curves of a completely erased ETM under exposure

to light with wavelength λ1. (b) Typical discharging curves of a precharged

ETM under exposure to light with wavelength λ3, and P e
t (t = 0) = 108. In both

graphs ξR
c⇀v = 0.1, κ1

v = 0.03, κ1
t = 0.3. In the charging curves κ3

t = 0.3 and in

the discharging curves κ3
t = 0.08. Wavelengths are: λ1 = 450nm, λ2 = 650nm,

and λ3 = 1300nm.
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Fig. 5. (a) Three dimensional plot of the monotonically increasing concave

function f(P ph
1 , P ph

3 ). (b)The equilibrium state plane of ETM where contours

of constant luminescence are plotted as function of the intensities of the two

illuminations. In both graphs the material parameters are: κ1
v = 0.03, α = 0.1,

and β = 1.0. Wavelengths are: λ1 = 450nm, λ2 = 650nm, and λ3 = 1300nm.
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Fig. 6. (a) Schematic of a typical optical setup. A thin film of ETM is exposed

to two light sources with wavelengths λ1 and λ3. In this setup, the first light

source is the master and the second one is the slave which is linearly coupled to

the first one. Acronyms O.F., LC, and D stand for optical filter, linear coupling

system, and photodetector, respectively.
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Fig. 7. Linear coupling of two sources and the corresponding nonlinear curve.


