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We derive the perturbative four-dimensional effective theory describing heterotic M theory with branes
and antibranes in the bulk space. The backreaction of both the branes and antibranes is explicitly included.
To first order in the heterotic �S expansion, we find that the forces on branes and antibranes vanish and that
the Kachru-Kallosh-Linde-Trivedi (KKLT) procedure of simply adding to the supersymmetric theory the
probe approximation to the energy density of the antibrane reproduces the correct potential. However,
there are additional nonsupersymmetric corrections to the gauge-kinetic functions and matter terms. The
new correction to the gauge-kinetic functions is important in a discussion of moduli stabilization. At
second order in the �S expansion, we find that the forces on the branes and antibranes become
nonvanishing. These forces are not precisely in the naive form that one may have anticipated and, being
second order in the small parameter �S, they are relatively weak. This suggests that moduli stabilization in
heterotic models with antibranes is achievable.
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I. INTRODUCTION

Recent years have seen considerable progress in various
aspects of string phenomenology, including a better under-
standing of moduli stabilization. By combining a series of
different effects, phenomenologically interesting type II
string models with all moduli stabilized have been found.
The KKLT procedure [1] first shows that the four-
dimensional effective theory associated with D-branes ad-
mits a completely stable supersymmetric anti-de Sitter
(AdS) vacuum. Then, an anti-D-brane is added to the
compactification. This both breaks supersymmetry and
raises the AdS vacuum to a dS one with a small cosmo-
logical constant. Many of the details of this procedure are
still being worked out in the literature; see, for example [2–
7]. However, it seems likely that this is a valid way of
obtaining stable de Sitter nonsupersymmetric vacua within
the context of IIB string theory.

Heterotic models, on the other hand, offer a number of
advantages in terms of particle physics model building. For
example, models with an underlying SO(10) grand unified
theory (GUT) symmetry can be constructed where one
right handed neutrino per family occurs naturally in the
16 multiplet and gauge unification is generic due to the
universal gauge-kinetic functions in heterotic theories.
Recent progress in the understanding of nonstandard em-
bedding models [8–11] and the associated mathematics of
vector bundles on Calabi-Yau spaces [12–15] has led to the
construction of effective theories close to the minimal

supersymmetric standard model (MSSM), see [16–21].
This has opened up new avenues for heterotic phenome-
nology. For example, one can proceed to look at more
detailed properties of these models such as � terms [22],
Yukawa couplings [23], the number of moduli [24], and so
forth. Many other groups are also making great strides in
model building in heterotic, see for example [25–28].

The main motivation of this paper is to combine some of
the advantages of both approaches, type II and heterotic, by
realizing key features of type IIB moduli stabilization
within heterotic theories. Related work on moduli stabili-
zation in heterotic can be found in, for example, [29–35].
Specifically, we would like to study heterotic M theory in
the presence of M five-branes and anti-M five-branes. The
starting point of our analysis is the five-dimensional super-
symmetric effective action of heterotic M theory [36–38],
where the M five-branes appear as three-branes. We will
first generalize this five-dimensional theory to include anti-
three-branes. Our main goal is the derivation of the asso-
ciated perturbative four-dimensional effective action, in-
cluding the effects from backreaction of both the branes
and the antibranes. As a first step, we find the five-
dimensional nonsupersymmetric domain wall in the pres-
ence of antibranes, a generalization of the Bogomol’nyi-
Prasad-Sommerfield (BPS) domain wall vacuum of the
supersymmetric theory [36–38]. The four-dimensional ef-
fective theory is then obtained as a dimensional reduction
on this domain wall.

Detailed knowledge of this four-dimensional theory is
crucial in order to address a number of important problems
in heterotic model building. Most notably these are moduli
stabilization and, in particular, the stabilization of anti-
branes, obtaining a small positive cosmological constant
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consistent with observation at the stable minimum and the
nature of supersymmetry breaking due to the antibranes.
There are also important applications to cosmology analo-
gous to those which have been seen in the case of moving
M5 branes, see for example [39–47]. These problems are
the main motivation for our work and they will be explic-
itly addressed in forthcoming publications [48]. In the
present paper, we will concentrate on the more formal
aspect of deriving the relevant four-dimensional effective
theory at the perturbative level. The relative simplicity of
our five-dimensional approach allows us to explicitly in-
clude the effects of the antibrane backreaction, something
that is much more difficult to achieve for the complicated
geometries in IIB models with antibranes. Our results are
relevant for generic string- and M-theory model building
with antibranes.

Let us summarize the main results of this paper. Starting
from five-dimensional heterotic M theory with three-
branes and anti-three-branes, we calculate the associated
bosonic four-dimensional effective theory, including the
effects of the backreaction of the branes and antibranes.
This is done by dimensional reduction on a five-
dimensional nonsupersymmetric domain wall solution
which we explicitly determine. The calculation is per-
formed as a systematic expansion in powers of �2=3

11 , where
�11 is the 11-dimensional Planck constant. To zeroth and
first order we find the effective action is given by the usual
supersymmetric result plus an ‘‘uplifting potential’’ from
the antibranes. This potential is first order in the strong-
coupling parameter �S / �

2=3
11 of heterotic M theory and,

hence, suppressed. Furthermore, it depends on the dilaton
and the Kähler moduli but is, at this order, independent of
the brane position moduli. Hence, to order �S, the pertur-
bative force on branes and antibranes vanishes. This cor-
roborates and justifies the results of [35], where the
possibility of a metastable vacuum with a small positive
cosmological constant was demonstrated within the con-
text of a slope-stable heterotic standard model. We have
also been able to reliably calculate some contributions to
the four-dimensional effective action at order �2

S / �
4=3
11 . In

particular, we have calculated the complete correction to
the brane potential at this order. This second-order poten-
tial describes the expected ‘‘Coulomb-type’’ forces be-
tween the branes and the antibranes, but also contains an
additional unexpected interaction between these objects.
This new term can be attributed to the backreaction of the
antibranes. It is remarkable that these interbrane forces are
all of O��2

S� and are, therefore, strongly suppressed. We
have also calculated the O��S� threshold corrections to the
gauge-kinetic functions in the presence of antibranes and
find that they are nonholomorphic due to the supersymme-
try breaking by the antibranes. Furthermore, they depend
explicitly on the brane and antibrane moduli.

Our results have significant implications for heterotic
compactifications with antibranes, in particular, for the

problem of moduli stabilization in such models. The rela-
tive weakness of the perturbative forces between the branes
means that it is possible that branes and antibranes can be
stabilized by balancing the antibrane potential against non-
perturbative effects. Indeed, given that an antibrane is
typically repelled from the boundaries by membrane in-
stanton effects while being attracted to positively charged
boundaries by Coulomb forces, it seems likely that stabi-
lization can be achieved. In addition, the nonholomorphic
nature of the gauge-kinetic function and its dependence on
all brane moduli means that nonperturbative potentials due
to gaugino condensation will be different from what one
might have naively expected. Nonperturbative potentials
and moduli stabilization in the presence of antibranes will
be explicitly studied in separate publications [48].

The plan of the paper is as follows. In the next section,
we describe our theory in five dimensions and present the
associated five-dimensional action of heterotic M theory,
including antibranes. Section III discusses the various
warping effects in this five-dimensional theory within the
context of a toy model and explicitly presents the five-
dimensional nonsupersymmetric domain wall solution. In
Sec. IV, we calculate the four-dimensional bosonic effec-
tive theory to first order, that is, to order �2=3

11 , and discuss
our results. Some results at order �4=3

11 , specifically the
complete corrections to the antibrane potential and the
gauge-kinetic functions at this order, are presented in
Sec. V. A simple example of our results is provided in
Sec. VI. We conclude in Sec. VII. A number of technical
appendices explain the origin of the five-dimensional the-
ory in terms of the underlying 11-dimensional one. In
addition, they contain detailed technical results for the
five-dimensional gravitational warping which is needed
in the reduction to four dimensions.

II. THE ACTION

The theory we consider is the following. Start with a
five-dimensional description of heterotic M theory [36–
38], where six of the dimensions of the underlying Hořava-
Witten theory [49] have been compactified on any smooth
Calabi-Yau manifold X. We include an arbitrary number of
M five-branes which are parallel to the orbifold fixed
planes and wrap holomorphic curves in the Calabi-Yau
space. In addition, we add a single anti-M five-brane which
is associated with an antiholomorphic curve and is also
taken to be parallel to the orbifold fixed planes. The theory
is easily generalized to an arbitrary number of antibranes,
but we restrict ourselves to one such object for simplicity.
Most of the results which we derive are, in fact, valid for
arbitrary numbers of antibranes, as will be discussed in
more detail in the text. M five-branes are chosen parallel to
the orbifold planes so as to preserve N � 1 supersymme-
try in the effective theory. We have chosen this configura-
tion for the antibrane as well because after all effects, both
perturbative and nonperturbative, have been included in the

JAMES GRAY, ANDRÉ LUKAS, AND BURT OVRUT PHYSICAL REVIEW D 76, 066007 (2007)

066007-2



four-dimensional effective theory, we want the vacua ob-
tained to be maximally symmetric. Choosing the reduction
ansatz to include a slowly varying position modulus for the
antibrane, which describes its displacement from some
locus parallel to the fixed planes, ensures that the regime
of physical interest is within the regime of validity of the
effective theory. We choose the antibrane to wrap a hol-
omorphic curve for two reasons. First, such a two-cycle is
volume minimizing in its homology class and so consti-
tutes a natural choice for a vacuum state. Second, such a
choice leads, upon integrating out the Calabi-Yau space, to
a supersymmetric theory in five dimensions. The existence
of such structure will afford us certain technical advantages
in this and future work [48]. Of course, from the perspec-
tive of five-dimensional heterotic M theory, the (anti) M
five-branes appear as (anti) three-branes and we will refer
to them as such in the following.

The general brane configuration is depicted in Fig. 1.
The space-time of five-dimensional heterotic M theory
consists of S1=Z2 (or, equivalently, an interval) times a
four-dimensional space-time with Minkowski signature.
Five-dimensional coordinates are denoted by �x�� �
�x�; y� where y 2 ����;��� is the coordinate along the
S1 orbicircle. The two four-dimensional orbifold bounda-
ries are then located at y � 0 and y � ���. Between
those boundaries we have a total ofN branes of which N �
1 are three-branes and the remaining one is the anti-three-
brane. We will use indices p; q; . . . � 0; . . . ; N � 1 to label
all these four-dimensional extended objects, where p � 0
and p � N � 1 correspond to the orbifold boundaries, p �
�p corresponds to the anti-three-brane, and all other values
of p refer to three-branes. Also note from Fig. 1 that the
region between brane p and brane p� 1 is denoted by (p),
a notation that will allow us to easily specify a field
configuration in a specific part of the interval. Since the
sources on the branes and boundaries lead to fields which
are generally not smooth along the interval, this notation

for the various segments of the interval will be useful. The
world volume coordinates of the pth brane are denoted by
��
�p� and its embedding into five-dimensional space-time is

given by

 x� � ��; y � y�p���
�
�p��: (1)

That is, the position of the pth brane in the orbifold
direction1 is determined by y�p�, where p � 1; . . . ; N.
Even though the orbifold boundaries are nondynamical, it
is convenient to introduce trivial embedding coordinates
y � y�0� � 0 and y � y�N�1� � �� for them. For ease of
notation, we also denote the embedding coordinate of the
anti-three-brane as �y � y� �p�. We will also frequently use
normalized orbifold coordinates z � y=�� 2 �0; 1� and
z�p� � y�p�=�� 2 �0; 1�, where p � 0; . . . ; N � 1, to sim-
plify our notation.

Finally, we should briefly discuss the charges and ten-
sions of the orbifold boundaries and branes. For this pur-
pose, it is useful to introduce an integral basis Ck, where
k; l; . . . � 1; . . . ; h1;1�X�, of the second homology of the
internal Calabi-Yau space X. Suppose that the pth M
five-brane, where p � 1; . . . ; N, wraps the cycle C�p� given
by

 C�p� � ��p�k Ck: (2)

Then the integer coefficients ���p�k � represent the charge
vector of the brane p. The charges on the orbifold bounda-
ries are determined by the second Chern classes c2�X�,
c2�V�0��, and c2�V�N�1�� of the Calabi-Yau space X and the

FIG. 1 (color online). The brane configuration in five-dimensional heterotic M theory.

1If we work in the ‘‘upstairs’’ picture, that is, with the full
orbicircle, we will have to include ‘‘mirror branes’’ at y � �y�p�,
where p � 1; . . . ; N in order to have a Z2 symmetric
configuration.
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two internal vector bundles V�0� and V�N�1� on the bounda-
ries, respectively. More explicitly, we can define the charge
vectors (��0�k ) and (��N�1�

k ) of the two boundaries by
 

c2�V�0�� �
1
2c2�X� � ��0�k C

k;

c2�V�N�1�� �
1
2c2�X� � ��N�1�

k Ck:
(3)

Heterotic anomaly cancellation dictates that

 

XN�1

p�0

��p�k � 0 (4)

for each k � 1; . . . ; h1;1�X�. For the orbifold boundaries
and the three-branes the tensions 	�p�k are equal to the
charges, so we have 	�p�k � ��p�k for p � �p. For the anti-
three-brane, on the other hand, tensions and charges have
opposite signs, so 	� �p�k � ��

� �p�
k . It should be noted that the

tension of the anti-three-brane is positive. In subsequent
equations it will often be instructive to single out terms
related to the anti-three-brane and, when doing so, we will
simply write the tension and charge of the anti-three-brane
as �	k 	 	� �p�k and ��k 	 �� �p�k . It is also useful to introduce
the step-functions

 �̂ k�y� �
X

p;y�p�<y

��p�k (5)

which represent the sum of the charges to the left of a given
point y in the interval.

The five-dimensional theory

Our starting point is the action of five-dimensional
heterotic M theory [36–38], obtained from 11-dimensional
Hořava-Witten theory [49] by compactifying on a Calabi-
Yau manifold X in the presence of both M5 and anti-M5
branes. In this subsection, we will describe the field content
of this theory and then present the action itself. Many of the
detailed definitions of quantities which appear here can be
found in the appendix.

We start by describing the bulk field content, focusing on
the bosonic degrees of freedom. In addition to the five-
dimensional metric g��, the bulk fields consist of a Kähler
sector, labeled by indices k; l; . . . � 1; . . . ; h1;1�X� and a
complex structure sector, labeled by indices a; b; . . . �
1; . . . ; h2;1�X� or A;B; . . . � 0; . . . ; h2;1�X�. In the Kähler
sector, we have h1;1�X�Abelian vector fields Ak

� with field
strengths F k

�� which descend from the M theory three-
form, a real scalar field V which measures the Calabi-Yau
volume, and h1;1�X� metric Kähler moduli bk which obey
the condition dijkbibjbk � 6 and measure the relative size
of the Calabi-Yau two-cycles. In the complex structure
sector, we have h2;1�X� metric complex structure moduli
za and 2�h2;1 � 1� scalar fields 
A and ~
B which descend
from the M theory three-form. This three-form also gives

rise to a five-dimensional three-form C��� and its field
strength G����. Of these bulk fields, V, za, g�, gyy, bk,
C�y, and Ak

y are even under the Z2 action of the S1=Z2

orbifold, while g�y, 
A, ~
B, Ak
�, C�� are odd. The 11-

dimensional origin of these fields is explained in
Appendix A 1.

The bulk theory is a d � 5, N � 1 supergravity and,
hence, the various fields above should form the bosonic
parts of five-dimensional supermultiplets. The bosonic
field content of the five-dimensional supergravity multiplet
consists of the five-dimensional metric g�� and an Abelian
gauge field, which can be identified as the linear combina-
tion bkAk

�. The remaining h1;1�X� � 1 vectors, together
with the h1;1�X� � 1 Kähler moduli bk, form the bosonic
parts of h1;1�X� � 1 vector multiplets. The remaining sca-
lar fields, that is, the Calabi-Yau volume modulus V, the
dual of the three-form C���, the complex structure moduli
za, and the axions 
A, ~
B account for the bosonic parts of
h2;1 � 1 hypermultiplets, each of which contains four real
scalars.

As usual, we have additional degrees of freedom which
live on the orbifold boundaries and branes. On the four-
dimensional orbifold boundaries, labeled by p � 0,N � 1,
we have N � 1 gauge theories with gauge fields A�p��
transforming in the adjoint of the gauge groups H �p� 
 E8

and gauge matter fields in N � 1 chiral multiplets with
scalar components CIx

�p�. They transform in representations
of H �p� which we shall denote by R�p�I, with I; J; . . .
labeling the different representations and x; y . . . the
states within each representation. More details on the
origin and structure of the matter sector can be found in
Appendix A 2.

The world volume fields associated with the three-
branes which descend from wrapping an M5 brane on a
holomorphic (or antiholomorphic) curve in the Calabi-Yau
space are the following. The embedding coordinate (brane
position) y�p� together with the world volume scalar s�p�
which descends from the two-form on the M five-brane
world volume, pair together to form the bosonic content of
an N � 1 chiral multiplet, �y�p�; s�p��. In addition, we
have N � 1 gauge multiplets with the associated field
strengths denoted by Eu�p�. Here u; v . . . � 1; . . . ; g�p�,

where g�p� is the genus of the curve C�p� wrapped by the
pth M5 brane. In general, there will be additional chiral
multiplets describing the moduli space of the five-brane
curves and non-Abelian generalizations of the gauge field
degrees of freedom when M5 branes are stacked. These are
not vital to our discussion and we will not explicitly take
them into account. A similar selection of four-dimensional
fields appears on the antibrane world volume.

Given this field content, the following is the bosonic part
of the five-dimensional action describing Hořava-Witten
theory [49] compactified on an arbitrary Calabi-Yau mani-
fold [36–38,50,51] in the presence of M5 and anti-M5
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branes:
 

S��
1

2�2
5

Z
d5x

�������
�g
p

�
1

2
R�

1

4
Gkl�b�@b

k@bl�
1

2
Gkl�b�F

k
��F

l���
1

4
V�2�@V�2���dijkb

ibjbk� 6�

�
1

4
Ka �b�z�@za@�z �b�V�1� ~XA�� �MAB�z�X

B
����Im�M�z����1�AC� ~X�

C�MCD�z�X
D���

1

4!
V2G����G����

�m2V�2Gkl�b��̂k�̂l

�
�

1

2�2
5

Z �2

3
dklmAk ^F l^Fm� 2G^ ��
A ~XA� ~
AXA�� 2m�̂kAk�

�

�
Z
d5x��y�

������������
�h�0�

q �
m

�2
5

V�1bk	�0�k �
1

16��GUT
V tr�F2

�0���G�0�IJD�C
Ix
�0�D

� �CJ
�0�x�V

�1GIJ
�0�

@W�0�
@CIx�0�

@ �W�0�
@ �CJ
�0�x

� tr�D2
�0��

�

�
Z
d5x��y����

������������������
�h�N�1�

q �
m

�2
5

V�1bk	�N�1�
k �

1

16��GUT
V tr�F2

�N�1���G�N�1�IJD�C
Ix
�N�1�D

� �CJ
�N�1�x

�V�1GIJ
�N�1�

@W�N�1�

@CIx
�N�1�

@ �W�N�1�

@ �CJ
�N�1�x

� tr�D2
�N�1��

�
�

1

2�2
5

Z
d5x

�XN
p�1

���y� y�p�����y� y�p���
������������
�h�p�

q

�

�
mV�1	�p�k bk�

2m�nk�p�	
�p�
k �

2

V�	�p�l bl�
j�p��j

�
�p� � �Im���p�uwE

u
�p��E

w�
�p�

�
� 4mĈ�p� ^ 	

�p�
k d�nk

�p�s�p��

� 2�Re���p�uwEu�p� ^E
w
�p�

�
: (6)

Let us briefly discuss the various quantities in this action.
In the previous section, we defined the charges ��p�k , the
tensions 	�p�k , and the charge step-functions �̂k. To intro-
duce the remaining objects, we start with the bulk theory,
the first part of the above action. Of course, �5 is the five-
dimensional Planck constant, related to its 11-dimensional
counterpart �11 by �2

5 � �2
11=v where v is the Calabi-Yau

reference volume. The constant m is given by

 m �
2�

v2=3

�
�11

4�

�
2=3

(7)

and represents a reference mass scale of the Calabi-Yau
space. The quantity � is a Lagrange multiplier enforcing
the constraint on the bk moduli. The Kähler and complex
structure moduli metrics Gkl and Ka �b are defined in
Appendix A 1. A definition of the Calabi-Yau intersection
numbers dijk and the special geometry quantity MAB can
also be found in this appendix. The various bulk form-field
strengths are defined in the usual way as G � dC, F k �
dAk and XA � d
A, ~XA � d~
A away from the bounda-
ries, but are subject to boundary source terms specified by
the relations

 �dG�y��� � �4�2
5�J
�0�
4�����y� � J

�N�1�
4�����y� ����;

(8)

 �dF k�y� � �4�2
5�J
�0�k
2���y� � J

�N�1�k
2� ��y� ����; (9)

 

�dXAGA � d ~XBZ
B�y� � �4�2

5�J
�0�
1���y�

� J�N�1�
1� ��y� ����; (10)

where

 J�p�4��� �
1

16��GUT
tr�F�p� ^ F�p�����; (11)

 J�p�k2� � �i
X
I;J

�k
�p�IJ�D�CIx�p�D

�CJ
�p�x �D�

�CI
�p�xDC

Jx
�p��;

(12)

 J�p�1� �
e�K

2V

X
I;J;K

�IJKf
�IJK�
xyz CIx

�p�C
Jy
�p�D�C

Kz
�p� (13)

for p � 0, N � 1. The various matter field objects in these
sources are defined in Appendix A 2. One important ob-
servation from these Bianchi identities is that the three-
branes and anti-three-branes do not contribute any source
terms. This fact will be crucial in our later analysis. The
second and third parts of the above action are the theories
on the two orbifold boundaries, respectively. They are
written in terms of the matter field Kähler metrics
G�p�MN , the matter field superpotentials W�p�, and the D-
terms D�p�. Definitions for these quantities can also be
found in Appendix A 2. The (reference) gauge coupling
constant �GUT is given by �GUT � �4��

2
11�

2=3=v.
We move on to discuss the three-brane world volume

theories, the last part of the above action. The quantities
nk�p� � ��p�k =

PN
l�1 �

�p�2
l are a normalized version of the

three-brane charges and the axionic currents j�p�� are
defined by
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 j�p�� �
��p�k

nl
�p��

�p�
l

�d�nk
�p�s�p�� � Âk

�p���; (14)

where Ĉ�p� and Âk
�p� denote the pull-backs of the bulk

forms C and Ak to the pth brane. The gauge-kinetic
functions ��p�uv of the three-brane gauge fields are defined
in Appendix A 3.

Finally, we need to mention that the induced metrics
h�p�� on the orbifold boundaries and branes are explicitly
given by

 h�p�� � g� � g�y@y�p� � gy@�y�p�

� gyy@�y�p�@y�p�; (15)

where the embedding (1) has been used. Recall that the
boundaries are nondynamical with associated static em-
beddings y�0� � 0 and y�N�1� � ��. Hence, the induced
boundary metrics h�0� and h�N�1� are simply equal to g�,
the four-dimensional part of the bulk space-time metric.
The action described in this section must be supplemented
by the usual Gibbons-Hawking boundary terms. A careful
analysis reveals that form-field boundary terms are not
required in this case.

Having described the five-dimensional theory, our start-
ing point, we proceed in the next section to discuss the
appropriate reduction ansatz in the presence of antibranes.
The dimensional reduction to four dimensions will be
performed in Sec. IV.

III. THE FIVE-DIMENSIONAL DOMAIN WALL
WITH ANTIBRANES

In this section, we illustrate the main features of the five-
dimensional reduction ansatz in the context of a simple
scalar field toy model. We will then explicitly work out the
essential part of this reduction ansatz, the five-dimensional
nonsupersymmetric domain wall. This is a generalization
of the BPS domain wall solution of Refs. [36,37] and
includes the backreaction effects of the anti-three-brane.

The key new point for us will be to discover how the
backreaction on the bulk fields due to the presence of the
branes and, in particular, the antibrane is taken into account
in the reduction ansatz. While this is technically compli-
cated for five-dimensional heterotic M theory, the basic
ideas can be explained in a simple setting. Before dealing
with the full problem, we will, therefore, discuss a scalar
field toy model [52] to illustrate the key features involved.
The structure of space-time and branes for this model is
precisely as described above and illustrated in Fig. 1. The
action is given by
 

S�
Z
d5x

�
@��@��� ��y�S�0��� ��y� ���S�N�1��

�
XN
p�1

���y� y�p�� � ��y� y�p���S�p��
�
; (16)

where S�p� are sources on the boundaries and branes (which
can depend on other fields) and � is a Z2 even scalar field.
What we want to discuss in this model is the warped
background solution which arises due to the presence of
the source terms and the four-dimensional effective theory
associated with it. To this end, it is useful to split the scalar
field as � � ���0, where �0 is a function of the four-
dimensional coordinates only and is the quantity that will
become the modulus associated with this degree of free-
dom in the four-dimensional effective theory. On the other
hand, � represents a function of all five coordinates and
contains the warping of the background due to the presence
of source terms. To uniquely define this splitting of �, we
require that the orbifold average h�i of � vanishes. This
condition implies a specific choice of coordinates on field
space in the resulting four-dimensional effective theory.
This choice is particularly useful in finding a clean form for
the resulting action, as we will see explicitly throughout
this paper.

The field equation for �, valid in each bulk region
indicated in Fig. 1, then reads

 �4�0 ��4��D2
y� � 0: (17)

In addition, � is subject to boundary conditions at the edge
of each region due to the presence of the sources. For the
two orbifold boundaries, these take the form

 Dy�jy�0 � �S�0�; Dy�jy��� � �S�N�1� (18)

while, for the branes, we have

 �Dy�jy�y�p�� �Dy�jy�y�p�� � S�p�; (19)

where p � 1; . . . ; N. The subscript ‘‘y � y�p��’’
(‘‘y � y�p��’’) indicates that the relevant quantity should
be evaluated approaching the pth brane from the right
(left).

We can now take an average of the equation of motion
(17) over the orbifold. Using h�i � 0 and the ‘‘boundary
conditions’’ (18) and (19), we obtain

 �4�0 �
X
p

S�p� � 0: (20)

This relation may then be used to eliminate �0 in (17) to
obtain an equation purely for the warping

 �4��D
2
y� �

X
p

S�p�: (21)

To pursue the analysis further, we need to know something
about the various approximations, and associated expan-
sions, which are made in deriving four-dimensional heter-
otic M theory, some of which have already been implicit in
our analysis. Two expansions, in particular, are of central
importance at this point. The first of these is simply the
usual expansion in four-dimensional derivatives which is
always made in defining such an effective theory; in other
words, the four-dimensional fields are assumed to be
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slowly varying relative to the structure in the internal
dimensions. The second expansion which we need is in
terms of a small parameter �S, which controls the size of
the source terms. We will meet this quantity explicitly
soon, so let us just state this to be true for now. The zero
mode �0 is a quantity independent of the warping and is,
therefore, zeroth order in the �S expansion. By contrast, �
is precisely the quantity which presents the warping and so
is first order �S. Looking at (21) which determines the
warping, we see that the first term is both first order in
�S and second order in four-dimensional derivatives
whereas the remaining terms are simply first order in �S.
We may therefore, in a controlled approximation, ignore
the first term in (21). This results in the following equation
for the warping

 D2
y� �

X
p

S�p�: (22)

Thus, in the end, we need to solve the system of bulk
equations and boundary conditions given by (18), (19),
and (22). Before moving on to the full calculation, we
qualitatively describe such an analysis in various cases
by transferring the insight from the above toy example to
heterotic M theory. We start with heterotic M theory in the
absence of antibranes and proceed to a discussion of the
backreaction of such objects when they are included in the
vacuum.

(a) Zeroth order in sources When all of the sources are
set to zero, the warping equation (22) becomes
simply D2

y� � 0. Since � must be continuous
around the orbifold this, in combination with the
condition h�i � 0, results in � � 0. For five-
dimensional heterotic M theory, this implies that
the zeroth order vacuum is simply five-dimensional
Minkowski space.

(b) The standard heterotic vacuum In the case of a
heterotic vacuum involving only orbifold fixed
planes and three-branes (but no anti-three-branes),
the sources S�p� are represented by the tension terms
of the branes and boundaries and they obey a par-
ticularly useful relation. Since the objects involved
are all BPS, their tensions are equal to their charges.
The charges, on the other hand, have to sum to zero
as a result of the heterotic anomaly cancellation
condition (4). Thus, we have for such compactifica-
tions that

P
pS�p� � 0 and, as in the previous case,

the equation for the warping (22) reduces to D2
y� �

0. The boundary conditions (18) and (19) are no
longer trivial however. Thus, the only solution for�
is a function linear in each region of Fig. 1, with
kinks at the boundary and brane positions. The slope
in each region is chosen such that Eqs. (18) and (19)
are obeyed. The fact that the source terms sum to
zero ensures that we indeed have a globally well-
defined solution. This situation corresponds to the

‘‘Universe as a Domain Wall’’ vacuum of heterotic
M theory [36,37].

(c) Matter fluctuation induced warping in the case with-
out antibranes We have just seen that the vacuum of
heterotic M theory is linearly warped if only tension
sources of BPS objects are considered. However,
even in the absence of antibranes this is not the
full story [51,52]. For example, fluctuations of mat-
ter fields on the orbifold fixed planes lead to addi-
tional source terms. Since fields on the various
orbifold boundaries and branes fluctuate indepen-
dently, these sources do not, in general, obey the
sum rule

P
pS�p� � 0. As a result, we obtain warping

quadratic in the orbifold coordinate y. This is typical
of heterotic M theory: any change to the source
terms away from the case of ‘‘pure tension’’ results
in quadratic contributions to the warping.

(d) The backreaction of antibranes in heterotic M the-
ory We are now in a position to understand how the
presence of an antibrane in the bulk of heterotic M
theory changes the warping. In other words, we can
now see how to calculate the backreaction due to the
presence of the antibrane. The relevant source
terms—the tensions of the orbifold boundaries,
the three-branes, and the anti-three-branes—are
very similar to those for the usual BPS situation
described in (b). While the charges of these objects
still add up to zero, the same can no longer be said
for the tensions since the anti-three-brane tension is
minus its charge. Hence, the bulk equation (22)
contains a nonvanishing source term

P
pS�p� � 0

due to the tension terms. It is clear from the dis-
cussion in (c) that this implies a quadratic term in
the warping. More precisely, using the usual linear
warping we can ensure that all boundary conditions,
except the one at the right boundary y � ��, are
satisfied. Since the sum of the sources no longer
vanishes, the linear warping does not match the final
boundary condition at y � ��. We therefore add a
quadratic piece to the warping. This does not change
the kink structure of the solution across the branes,
but does allow one to satisfy the boundary condition
at y � ��. In addition, when we examine the bulk
equation (22), we find that this additional quadratic
warping is precisely what is required to balance the
source term now present on the right-hand side.

With the insight from this toy model, we now proceed to
analyze full five-dimensional heterotic M theory. In the
remainder of this section, we focus on the warping caused
by the tension terms. This will lead us to a generalization of
the heterotic domain wall vacuum, valid in the presence of
an antibrane. The additional warping due to fluctuations of
localized fields is presented in Appendix A 4.

The only bulk fields involved in the generalized domain
wall solution are the ones which couple to the tension
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terms in the action (6). They are the metric g��, the volume
modulus V, and the Kähler moduli bk. We start with the
usual metric ansatz involving the four-dimensional metric
g4�,

 ds2
5 � a2�y; x��g4�dx�dx � b2�y; x��dy2; (23)

 V � V�y; x��; (24)

 bk � bk�y; x��: (25)

In writing our result, it is useful to introduce the following
function which encodes the standard linear warping of
heterotic M theory and averages to zero over the orbifold:
 

h�p�k�z� �
Xp
q�0

	�q�k �z� z�q�� �
1

2

XN�1

q�0

	�q�k z�q��z�q� � 2� � �k;

(26)

where we have defined the difference of anti-three-brane
tension and charge as

 �k �
1
2� �	k �

��k� � � ��k: (27)

In the following, whenever we want to consider the super-
symmetric limit of our results, we can ‘‘switch off’’ the
effect of the anti-three-brane by formally setting �k ! 0.
Recall that the subscript ‘‘(p)’’ indicates that the domain of
the function h�p�k is z 2 �z�p�; z�p�1��, that is, the region to
the right of the pth brane. Using the Einstein equation and
the equations of motion for V and bk derived from the
action (6), together with the above ansatz, gives the follow-
ing solution for the warping

 

a�p�
a0
� 1� �0

b0

3V0
bk0

�
h�p�k � �k

�
z2 �

1

3

��
; (28)

 

V�p�
V0
� 1� 2�0

b0

V0
bk0

�
h�p�k � �k

�
z2 �

1

3

��
; (29)

 

bk
�p� � bk0 � 2�0

b0

V0

��
hk
�p� �

1

3
h�p�lbk0b

l
0

�

�

�
�k �

1

3
�lb

k
0b

l
0

��
z2 �

1

3

��
: (30)

We remind the reader of the relationship z � y=��. In
these expressions, a0, b0, V0, and bk0 are four-dimensional
moduli fields. Note that due to our convention of zero
average warping, these moduli are precisely the orbifold
average of the corresponding five-dimensional fields. For
example V0 � hVi is the orbifold average of the Calabi-
Yau volume and b0 � hbi is the average orbifold radius.
We observe that the warping in the above solution is indeed
proportional to the strong-coupling expansion parameter
�S, defined by

 �S � �0
b0

V0
; �0 � ��m (31)

as promised. Note using (7) that �S / �
2=3
11 . Our result is

valid as long as �S  1, since we have neglected warping
terms of order �2

S and higher. The structure of the O��S�
warping terms is as qualitatively described earlier. In the
supersymmetric limit, �k ! 0, we recover the linear warp-
ing of the BPS domain wall encoded in the functions h�p�k.
On the other hand, the terms proportional to �k, which are
caused by the presence of the anti-three-brane, represent
quadratic warping. The observant reader will note that we
have not given an expression for the warping of the metric
coefficient b. This is because this y dependence amounts to
a coordinate choice and, as such, is not needed in the
calculation of the four-dimensional effective action.

A specific example of the warping of the Calabi-Yau
volume modulus V is plotted in Fig. 2. This example shows
that the presence of an antibrane can change the warping
substantially. As is clear from the action (6), the volume V
at the boundaries z � 0, 1 determines the value of the
boundary gauge couplings. In particular, the BPS configu-
ration in Fig. 2 (dashed, red curve) corresponds to weak
coupling at z � 0 and strong coupling at z � 1. As is

0.8

z

1.00.6 0.7

0.0

0.20.1 0.3

−0.4

0.4

0.90.5

0.8

−0.8

−1.2

0.40.0

FIG. 2 (color online). Warping of the Calabi-Yau volume
modulus V (bracket on the right-hand side of (29)), assuming
h1;1�X� � 1. The dashed, red curve corresponds to a BPS con-
figuration with one brane at z � 1=4 and charge vector ���p�� �
�1; 2;�3�. The solid, green curve describes a situation with one
brane at z � 1=4, one antibrane at z � 3=4 and charge vector
���p�� � �1; 2;�5; 2�. It can be obtained from the previous BPS
configuration by ‘‘pulling’’ an antibrane with charge �5 off the
boundary at z � 1.
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evident from the figure, this behavior can be reversed in the
presence of the antibrane (solid, green curve).

IV. HETEROTIC M THEORY WITH ANTIBRANES
IN FOUR DIMENSIONS

In this section, we construct the four-dimensional effec-
tive theory describing heterotic M theory when antibranes
are present in the vacuum, focusing on terms that are zeroth
and first order in �2=3

11 . In the next section, we will present
some terms of order �4=3

11 which can be reliably calculated,
concentrating on those which will be important in appli-
cations to moduli stabilization.

A. The reduction ansatz and zero modes

We start by discussing the zero modes and the reduction
ansatz used in the rest of the paper. The essential part of the
ansatz is the nonsupersymmetric domain wall, introduced
in the previous section. Let us focus on this part of the
ansatz for now. We will discuss additional terms due to
fluctuations of localized fields later. For the five-
dimensional metric, recall (23),

 ds2
5 � a2�y�g4�dx

�dx � b2�y�dy2; (32)

where the warping a�y� is given in (28). The domain wall
also involves nontrivial warping for the volume modulus V
and the Kähler moduli bk, as given in (29) and (30). In
addition to the four-dimensional metric, the complete so-
lution contains the moduli V0, a0, b0, and bk0, which are
four-dimensional fields. Recall that V0 is the orbifold
average of the Calabi-Yau volume and b0 is the average
radius of the orbifold and we will frequently write

 b0 � e�; V0 � e�: (33)

The modulus a0 is really the four-dimensional scale factor
and is redundant given that we have already introduced a
full four-dimensional metric into our ansatz. However, it
can be conveniently used to bring the four-dimensional
Einstein-Hilbert term into canonical form, which is
achieved by fixing a2

0 � 1=b0. Further zero modes arise
from the Z2 even components of the other bulk fields.
Specifically, these are the zero modes of the complex
structure moduli za, the axions �k �Ak

y, and the two-
form B� � Cy� with field strength H�� � Gy��,
which we dualize to a scalar �, as usual. Note, in particu-
lar, that the fields 
A and ~
A are Z2 odd and do not give rise
to zero modes. However, the y-components Xy and ~Xy of
their field strengths are Z2 even and having these compo-
nents nonzero corresponds to switching on H-flux from a
10-dimensional heterotic view point. Flux in the context of
heterotic models with antibranes will be considered in
Ref. [48] but, for the purposes of this paper, we simply
set Xy and ~Xy to zero. In the following, we will drop the

‘‘0’’subscript from the four-dimensional fields for ease of
notation, for example, writing bk0 as bk.

Fields localized on the orbifold boundaries and the
branes are, of course, already four-dimensional and are
simply retained in the four-dimensional effective theory.
In particular, for the four-dimensional position moduli of
the branes we will use the normalized fields z�p� 2 �0; 1�
and, in particular, �z for the anti-three-brane. It is useful to
normalize the associated brane axion fields s�p� accord-
ingly by defining �p� � s�p�=��. We also have the pull-
backs of bulk fields appearing on the boundaries and
branes. These have to be computed by applying the embed-
ding (1) to the reduction ansatz for the bulk fields. For
example, for the induced metrics on the branes we have

 

������������
�h�p�

q
� a4 ����������

�g4
p

�
1�

b2

2a2 @�y�p�@
�y�p�

�
: (34)

As discussed earlier, fluctuations of localized fields give
rise to additional warping contributions of the bulk fields.
These must be integrated out to arrive at the correct effec-
tive action [51,52]. It turns out that, to order �2=3

11 , these
effects are only relevant for the bulk antisymmetric tensor
fields whose warping is induced by the Bianchi identities
(8)–(10). The solutions to these Bianchi identities (and the
associated equations of motion) in the presence of fluctu-
ating boundary fields are discussed in Appendix A 4.

We shall present our results, specified order by order in
the �2=3

11 expansion parameter of Hořava-Witten theory.
This parameter determines the computational complexity
involved in obtaining the relevant parts of the action. Thus
the discussion of how to obtain the second-order pieces
below is more involved than that describing the first-order
results. It is useful, therefore, to separate them. However,
when applying these results the reader should keep in mind
that the correct expansion parameter to consider in four
dimensions is �S. Thus all terms up to a given order in this
parameter should be kept. In particular, when working to
first order in �S the threshold corrections to the gauge-
kinetic functions and matter field terms, which are second
order in �2=3

11 , must be included.
There is a simple way in which the order in �S or �2=3

11 of
any term appearing in the following can be ascertained.

(i) The order in �S of any term can be found by counting
the number of powers of �0 which are present.

(ii) The order in �2=3
11 of any term can be determined by

counting the number of powers of �0 which are
present and then adding one power if the term
contains boundary gauge or matter fields. This rule
is a consequence of a rescaling which must be
performed to obtain standard kinetic terms for these
fields.

Having forewarned the reader of this subtlety, we now
present our results.
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B. Zeroth and first-order result for the
four-dimensional effective theory

Collecting various terms, we find the following bosonic
four-dimensional effective action of heterotic M theory in
the presence of an arbitrary number of M five-branes and a
single anti-M five-brane. This result is valid up to first
order in �2=3

11 and second order in four-dimensional deriva-
tives. We find that

 S � S�0;1�
�0 � S

�1�
�1 ; (35)

where the subscript indicates that S�0;1�
�0 and S�1�

�1 contain
terms independent of the parameters �k and linear in �k,
respectively. Similarly, the superscript implies that S�0;1�

�0

has both zeroth and first order terms in �2=3
11 whereas all

terms in S�1�
�1 are of order �2=3

11 . The first action in (35) is
given by

 S�0;1�
�0 � Smoduli

4 � Sgauge
4 � Smatter

4 ; (36)

with

 Smoduli
4 � �

1

2�2
4

Z
d4x

����������
�g4
p

�
1

2
R4 �

3

4
�@��2 �

1

4
�@��2 �

1

4
e�2��@��2 �

1

4
Gkl@bk@bl � e�2�Gkl@�k@�l

�
1

4
Ka �b�z�@za@�z �b � 2�0

XN
p�1

	�p�k z�p�e
�2�@�@�nk

�p��p�� �
�0

2

XN
p�1

bk	�p�k e����@z�p��
2

� 2�0

XN
p�1

	�p�l 	�p�k
	�p�m bm

e������l�k�@z�p��2 � 2�k@�nl
�p��p��@z�p� � @�n

k
�p��p��@�n

l
�p��p��� � ��dijkb

ibjbk � 6�
�
;

(37)

 Sgauge
4 � �

1

16��GUT

Z
d4x

����������
�g4
p

�
e��trF2

�0� � trF2
�N�1�� �

1

2
������F

�
�0�F

��
�0� � F

�
�N�1�F

��
�N�1��

�
XN
p�1

�
�Im���p�uwE

u
�p�E

w
�p� �

1

2
�Re���p�uw����E

u�
�p� E

w��
�p�

��
; (38)

 Smatter
4 � �

Z
d4x

����������
�g4
p X

p�0;N�1

�
1

2

�
e��G�p�MNDC

Mx
�p�D

�CN
�p�x � 2e�2�Gkl!

�p�k
1� @��l � e���2�GMN

�p�

@W�p�
@CMx
�p�

@ �W�p�
@ �CM
�p�x

� e�2� tr�D2
�p��

��
: (39)

Here, �4 is the four-dimensional Planck constant which is
related to its 11-dimensional and five-dimensional counter-
parts by �2

4 � �2
11=��v � �2

5=��, where v is the Calabi-
Yau reference volume and �� is the interval length. We
remind the reader that, in terms of quantities appearing
elsewhere in this paper, z�p� � y�p�=��, �p� � s�p�=��,
� � lnV0, � � lnb0 and � is the dual of H��. The one-
forms !�p�k1� in the matter field part of the above action are
the Chern-Simons forms associated to the currents (12),
that is, d!�p�k1 � J�p�k2 . Finally, the functionsW�p� are given
by (A16) in Appendix A 2. The second action in (35) is
much simpler and found to be

 S�1�
�1 � �

1

2�2
4

Z
d4x

����������
�g4
p

�
2�0

����2
e���2�bk�k

�
: (40)

Recall that the quantities �k, defined in (27), represent the
differences of the tensions and charges of the anti-three-
brane. The complete action (35), in fact, remains valid if

one replaces an arbitrary number of branes with antibranes.
Then �k should be interpreted as the sum of all antibrane
tensions minus the sum of all antibrane charges all divided
by two.

Significant results can be gleaned merely by inspecting
this action.

(i) First notice how close the action is, at this order, to
the N � 1 supersymmetric result. Recall that for-
mally switching off the supersymmetry-breaking ef-
fect of the antibrane is achieved by setting �k ! 0. It
follows that the S�0;1�

�0 portion of the action is identical
to the bosonic part of the usual N � 1 supersym-
metric theory [38,51,53,54]. In particular, the kinetic
term of the antibrane’s position modulus, which
appears in S�0;1�

�0 , is identical to that of a brane of
the same tension. Indeed, if we define the scalar
components of superfields in the standard way [38]
by
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S � e� � �0e
�
XN
p�1

�	�p�k bk�z2
�p�

� i
�
�� 2�0

XN
p�1

	�p�k �kz2
�p�

�
(41)

 � e� � i�� �0

XN
p�1

	�p�k z2
�p�T

k; (42)

 Tk � e�bk � 2i�k; (43)

 Z�p� � 	�p�k bke�z�p� � 2i	�p�k ��n
k
�p��p� � �

kz�p��

(44)

 � z�p�	
�p�
k Tk � 2i	�p�k nk

�p��p�; (45)

then S�0;1�
�0 is reproduced as the bosonic part of the

N � 1 supersymmetric theory with Kähler poten-
tial

 �2
4Kscalar � KD � KT �K� Kmatter; (46)

where

 KD � � ln
�
S� �S� �0

XN
p�1

�Z�p� � �Z�p��
2

	�p�k �T
k � �Tk�

�
; (47)

 KT � � ln
�

1

48
dklm�Tk � �Tk��Tl � �Tl��Tm � �Tm�

�
;

(48)

 

K�z� �� ln
�

2i�G� �G�� i�zp� �zp�
�
@G
@zp
�
@ �G

@�zp

��
;

(49)

 Kmatter � eKT=3
X

p�0;N�1

G�p�MNC
Mx
�p�

�CN
�p�x; (50)

with superpotential for the matter chiral multiplets
given by

 W�p� �
������������������
4��GUT

p X
I;J;K

�IJKf
�IJK�
xyz CIx

�p�C
Jy
�p�C

Kz
�p� (51)

and with gauge-kinetic functions

 f�p� � S; p � 0; N � 1; (52)

 f�p�uv � ��p�uv; p � 1; . . . ; N: (53)

This is exactly the standard result for heterotic M
theory without antibranes [38]. Note that the super-
potential W�p� leads to a nonvanishing potential en-
ergy term for the matter scalars CIx

�p�. However, the
matter independent potential energy of the dilaton
and moduli fields vanishes in the formal limit �k !
0, as it must.

(ii) Since S�1�
�1 in (40) is proportional to �k, we

expect that this part of the action breaks the N �

1 supersymmetry. To this order, �2=3
11 , the

supersymmetry-breaking part of the four-
dimensional bosonic effective action is very simple,
merely adding the single term

 V 1 � ��2
4

�0

����2
e���2�bk�k (54)

to the potential energy. Note that this breaking term
is a direct consequence of the presence of the anti-
brane. Even though V 1 is not supersymmetric, it
can still be expressed in terms if the scalar fields S
and Tk defined in (41) and (43), respectively. We
find that

 V 1 � ��2
4

�0

����2
�Tk � �Tk��ke

KT�KD: (55)

This potential term corresponds to twice the tension
of the antibrane, precisely what one would add as a
‘‘raising term’’ in a naive probe brane analysis.
Hence, our result lends additional weight to the
probe brane approach which, for example, is fre-
quently used within the context of IIB models.
However, we will see in the next section that the
probe brane approach breaks down completely at
order �4=3

11 , where new contributions to the potential
appear. In the case where h1;1�X� � 1, expression
(55) simplifies to

 V 1 � 8��2
4

�0

����2
�

1

�S� �S��T � �T�2
�O��2

0�:

(56)

Note that this is exactly the antibrane induced po-
tential computed in [35] and used to demonstrate the
possibility of a metastable dS vacuum with a small
cosmological constant within the context of an
MSSM heterotic standard model.
To summarize, including the full backreaction of the
antibrane to first order in �2=3

11 , the bosonic effective
theory (37)–(40) is simply the bosonic part of the
supersymmetric theory as specified by (41)–(53)
above plus the single potential contribution (54).
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We should also stress that, while the bosonic part of
the effective action can be interpreted as a super-
symmetric theory plus a raising term, things are not
quite so simple for the fermionic terms. For ex-
ample, the fermionic partner of the antibrane modu-
lus �z has the opposite chirality from the fermions
which originate from the boundaries and branes.
The above supersymmetric theory would, therefore,
not correctly reproduce terms in the effective action
which involve antibrane fermions.

(iii) The ‘‘raising potential’’ (54) is proportional to
e�=3bk�k which, up to a constant, is the volume
of the two-cycle within the Calabi-Yau space
wrapped by the anti-five-brane.2 For a Calabi-Yau
space with sufficiently many Kähler moduli (two
may be sufficient) we can shrink this cycle to zero
size while keeping the overall Calabi-Yau volume
e� (as well as the orbifold size e�) large. In this
limit, the antibrane potential and the supersymme-
try breaking it induces become small. As we will
see, this is no longer true once order �4=3

11 correc-
tions to the antibrane potential are included.

(iv) The next thing to note about the action (37)–(40) is
that it contains no potential terms involving the
anti-three-brane or three-brane position moduli.
This may be surprising as our vacuum is no longer
a BPS state and one would not expect the gravita-
tional and form charge interactions of our extended
objects to cancel each other out. Indeed, we will see
that for terms of order �4=3

11 there is a nonzero force
between these branes. It is easy to see why these
terms do not arise at order �2=3

11 . Physically, we
expect a ‘‘Coulomb-type’’ force between, say, the
anti-three-brane and a three-brane. This force
would be proportional to the charge of both branes,
as usual. Such terms, which are second order in the
brane charges, are always higher order in the �2=3

11
expansion as well and, so, do not appear here.
Another way of saying this is to point out that one
contribution to such a force would be obtained by
substituting the warping in the bulk fields caused by
one brane into the world volume action of the other.
The warping is first order in �2=3

11 as are the brane
world volume theories and, hence, this gives rise to
a second-order result.
This point has important implications for heterotic
moduli stabilization in the presence of anti-five-
branes as will be discussed in the next section.

C. A duality amongst the effective theories

In the action presented in the previous subsection, differ-
ent four-dimensional theories are obtained by making dif-
ferent choices for the set of integers 	�p�k . One particularly
useful duality amongst these theories, from the point of
view of later sections of this paper, is that which is the
lower dimensional manifestation of the symmetry between
the orbifold fixed planes. In other words if, in five dimen-
sions, we were to view Fig. 1 from the other side of the
page then the two orbifold fixed planes and the left to right
ordering of the branes would be swapped. Such a trivial
change of viewpoint can clearly not change the physics of
the situation and so should be represented as symmetries or
dualities swapping around these objects in the various
descriptions of the system in different dimensionalities.

In terms of the component fields in our four-dimensional
action the relevant transformations are as follows:

 z�p� ! 1� z�p�; (57)

 �p� ! ��p�; (58)

 �! �� 2�0

XN
p�1

2	�p�k nk
�p��p�; (59)

 �p� ! �N � 1� p�: (60)

All other quantities are invariant. The transformations (57)
and (60) are transparent in their physical content—they
correspond in a simple manner to inverting the diagram
found in Fig. 1. The transformations of the axions, (58) and
(59), are then the changes that are required in the defini-
tions of the remaining four-dimensional fields in order to
make the duality manifest.

In terms of the ‘‘superfields’’ defined in (41)–(45) the
transformations (57)–(60) become,

 Z�p� ! 	�p�k Tk � Z�p�; (61)

 S! S� �0

XN
p�1

	�p�k Tk � 2�0

XN
p�1

Z�p�; (62)

 �p� ! �N � 1� p�; (63)

with all other quantities being invariant.
The results presented in the previous subsection, and

indeed in the rest of this paper, are invariant under these
transformations. This provides one of the checks which we
apply to our results.

In general, the above transformations constitute a set of
dualities among the possible four-dimensional theories
rather than a symmetry of a given theory. This is due to
the nontrivial action implied by (60) on the parameters 	�p�k .

2To see this, note using (27) and (33) and the relation bk �
V�1=3ak discussed in Appendix A 1 that e�=3bk�k � � ��kak. It
then follows from (2) and (A1) that e�=3bk�k � �

R
C� �p� !,

which is the volume of the two-cycle C� �p� on which the anti-
five-brane is wrapped.
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V. SOME RESULTS AT SECOND ORDER

Calculating terms at second order in the �2=3
11 expansion

in heterotic M theory is, a priori, a difficult thing to do. The
reason for this is that the full 11-dimensional theory is not
known at order �4=3 and so, in general, one cannot calcu-
late such terms in the effective theory.

However, it has been shown [51] that this argument is
too naive and that there are some quantities which can be
reliably calculated at second order. Examples are the
second-order corrections to the matter Lagrangian and
the threshold corrections to the gauge-kinetic functions
[51]. These terms are calculated by showing that none of
the unknown quantities in the 11-dimensional theory can
possibly contribute to the relevant pieces of the four-
dimensional effective theory. In this section, we show
that similar arguments can be employed in our case to
calculate the second-order terms in the antibrane potential
and the gauge-kinetic functions.

A. Second-order potential terms

In subsection IV B, we showed that the contributions to
the potential energy describing the perturbative forces
between the branes and antibranes are at least second order
in �2=3

11 . Furthermore, we argued that these forces are
necessarily nonvanishing at this order. This could be very
problematic since an understanding of these forces is nec-
essary for a full discussion of moduli stabilization.
Fortunately, it turns out that the relevant potential terms
are exactly of the form which can be reliably calculated at
second order, although for somewhat different reasons than
more conventional examples.

Let us describe in detail how the calculation of the
second-order terms in the potential can be accomplished.
The crucial point is that the brane positions z�p� are embed-
ding coordinates. Hence, there are no terms at any order in
the five-dimensional action which explicitly involve z�p�.
Rather, the z�p� dependence in the four-dimensional brane
actions comes from only two sources. These are (1) the z�p�
dependence of the induced metric (15) and, in general, any
pulled back quantity, and (2) the background warping,
which depends on the position of the branes and antibranes.
The first of these, the induced metric and pull-backs, all
involve four-dimensional derivatives. Hence, such z�p� de-
pendence cannot lead to potential energy terms in the four-
dimensional effective theory. Therefore, the only possible
source of potential energy terms involving z�p� are those
obtained by substituting a z�p� dependent piece of the
background into a term in the five-dimensional action
which does not contain four-dimensional derivatives.
Now, z�p� only appears in the warping, that is, it appears

at first order in �2=3
11 in the background solution.

Substituting this into the brane actions, which are already
of order �2=3

11 , leads to second-order terms. Hence, un-

known correction terms to the brane action at order �4=3
11

or higher would lead to terms in the potential energy of
order three or higher, which we do not consider here.
Similar comments can be made about unknown terms in
the bulk action. Thus, we cannot obtain a second-order
contribution to the z�p� dependent potential by substituting
the background warping into the unknown second-order
five-dimensional action terms. In fact, simple dimensional
analysis in the 11-dimensional theory shows that no bo-
sonic order �4=3 terms on the branes and boundaries can be
written down at all, while the relevant bulk terms are
known. Therefore, even the z�p� independent parts of the
second-order potential energy can be reliably computed. In
principle, one expects z�p� dependence in the (unknown)
second-order warping as well. However, an examination of
the five-dimensional bulk action reveals only two types of
terms which do not contain four-dimensional derivatives.
The first of these are terms which do not involve derivatives
at all. However, these are all at least first order and, as such,
would give rise to third and higher order terms if a second-
order background were to be substituted into them. The
second type of term is quadratic in single y derivatives
acting on the background.3 If we act on the second-order
background with one of these y derivatives then, to obtain a
second-order term, we would require that the other y
derivative acted upon the zeroth order background. But
the zeroth order background is y independent and, hence,
such terms also do not contribute to the four-dimensional
effective theory.

Thus, we find that the only possible sources of second-
order potential energy terms in the four-dimensional effec-
tive action are the following:

(i) The first-order background substituted twice into the
zeroth order bulk action.

(ii) The first-order background substituted into the first-
order world volume action of extended sources.

(iii) The �̂2=V2 term in the five-dimensional bulk
action.

The crucial point is that we know all of the relevant
quantities required to calculate these contributions. We
may proceed, then, to calculate the O��4=3

11 � contribution
to the potential energy. The calculation does not involve
any further subtleties than those already mentioned.
Therefore, we simply state the result. Terms of this order
contribute S�2�

�1;2 to the total action. The subscript and super-
script indicate that this contains terms of both first and
second power in �k and second order in �2=3

11 , respectively.
Part of the Lagrangian density of S�2�

�1;2 is a potential energy
V 2, which we find to be

3Although the gravitational action naively involves double y
derivatives, these are removed upon integration by parts and a
careful consideration of the Gibbons-Hawking boundary terms.
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V 2 � ��2
4

�2
0

����2
e���2�Gkl�l

�X�p�1

p�0

	�p�k �z�
XN�1

p� �p�1

	�p�k �z�
X�p�1

p�0

	�p�k z�p� �
XN�1

p� �p�1

	�p�k z�p� �
XN�1

p�0

	�p�k �1� z�p��z�p� �
2

3
�k

�
:

(64)

Recall that p � �p labels the anti-three-brane and �z is the normalized antibrane position modulus. Equivalently, in terms of
the fields defined in (41)–(45), this second-order term can be written as follows:

 V 2 � ��2
4

�2
0

����2
eKT�2KDK �kl

T �l

�X�p�1

p�0

	�p�k
Z� �p� � �Z� �p�

�	m�Tm � �Tm�
�

XN�1

p� �p�1

	�p�k
Z� �p� � �Z� �p�

�	m�Tm � �Tm�
�
X�p�1

p�0

	�p�k
Z�p� � �Z�p�

	�p�m �Tm � �Tm�

�
XN�1

p� �p�1

	�p�k
Z�p� � �Z�p�

	�p�m �Tm � �Tm�
�

XN�1

p�0

	�p�k

�
1�

Z�p� � �Z�p�

	�p�m �Tm � �Tm�

� Z�p� � �Z�p�

	�p�n �Tn � �Tn�
�

2

3
�k

�
: (65)

In the above expression, K �kl
T is the inverse of KT �kl �

@ �Tk@TlKT . The total potential of the theory, V , is then
given by

 V � V 1 �V 2; (66)

where V 1 and V 2 are first and second order in �2=3
11 ,

respectively. The first order result, V 1, has been presented
in (54) or, equivalently, in (55). Similarly, the second-order
result, V 2, is given in component fields and superfields by
(64) and (65), respectively.

As before, one can extract interesting physics simply by
inspecting these expressions.

(i) The physical interpretation of the first four terms in
(64) is clear. These two terms represent a force on the
antibrane. This force is proportional to the anti-
brane’s charge and receives two contributions; first,
a contribution proportional to the sum of the charges
to the left of the antibrane and second, a force in the
opposite direction proportional to the sum of the
charges to the right of the antibrane. This simply
represents the Coulomb attraction of the antibrane to
the branelike charges, a force which is no longer zero
in this non-BPS configuration. Similarly, the third
and fourth terms are the forces the branes experience
pulling them towards the antibrane. Each of these
terms is proportional to the charge of the brane of
interest multiplied by the charge of the antibrane.
Note that in the first four terms in V 2 the three-
branes do not attract one another, that is, there are no
terms quadratic in the brane (as opposed to anti-
brane) charges.

(ii) The last two terms are more surprising since they
are not of Coulomb type but have the same magni-
tude as the preceding ones. As far as the authors are
aware, the existence of such effects has not been
previously discussed in the literature. These terms
are a result of performing a full calculation involv-
ing backreaction and would be difficult to guess
from a probe calculation. They arise from the back-
ground warping. This appears in both the tensions of
the branes and bulk terms, changing their energies.

In particular, recall that we have defined our zero
mode quantities so that the orbifold average of the
warping is zero. Since the warping depends upon the
brane positions, this means we have to add to it a
function of the z�p� such that the overall average is
zero for any value of the brane coordinates. This
‘‘normalization’’ of the warping appears in the ten-
sions terms equally for each extended object.
Normally this does not result in a potential energy,
since the tensions of the extended objects sum to
zero. However, in the case where antibranes are
present the tension terms do not sum to zero. The
brane positions will then try to adjust so as to
minimize the warping normalization contribution
to the potential energy. This is the source of the
new potential term presented above. We emphasize
at this point that this is not ambiguous in any way.
Nor is it an artifact of our choices of normalization
for the warpings. If we wished to change the nor-
malization to remove this term, we would at the
same time change terms in the first-order action
presented in the previous subsection, including the
kinetic terms. This would, in fact, simply corre-
spond to a field redefinition of the four-dimensional
theory presented here. A field redefinition cannot
change the physical properties of a system. Our
intuition as to the physics of these compactifications
is built around our standard choices of bases in field
space. We will maintain these choices in examining
our results. Clearly, including this potential energy
term is vital when considering the stabilization of
moduli in heterotic M theory.

(iii) Another interesting point to make about the above
potential is that it does not necessarily vanish as the
size of the cycle on which the antibrane is wrapped
is taken to zero. Indeed, (64) is not proportional to
the volume bk�k wrapped by the anti-three-brane.
It is easy to understand from the structure of the
Kähler moduli indices why V 1 had to be propor-
tional to the antibrane cycle, and why this is not
necessarily the case for V 2. Clearly, the full po-
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tential V must be proportional to the antibrane
charge �k. The first-order potential must be linear
in the brane charges and, hence, linear in �k.
However, the Kähler index k on �k must be con-
tracted and the only objects available for this are
the Kähler moduli bk.4 The second-order potential,
on the other hand, is bilinear in charges which
allows for more complicated expressions. For ex-
ample, bilinears can be contracted with the Kähler
metric. How can shrinking the cycle which the
antibrane wraps to a very small size not make the
force between it and the branes small? After all, the
total charge of the object is controlled by the size of
its world volume. The answer comes from an
understanding of how the Kähler moduli bk are
defined. They have been scaled so that, as we
vary them, the overall volume of the manifold
remains constant (this volume being controlled by
e�). In particular, this means that as we shrink a
cycle down to a small size another must expand so
as to keep the volume constant. If an M five-brane
is wrapped on that cycle, then its total charge will
increase. Since the force between the two objects is
equal to the product of the charges, it is not entirely
clear which effect will win in general. The above
potential has to be analyzed for each case in order
to answer this question. The fact that the brane
moduli dependent part of the potential is second
order in �S means that, in any regime of moduli
space where four-dimensional heterotic M theory is
a good description of the physical situation, this
contribution to the potential is suppressed. As men-
tioned earlier, this is a good thing from the point of
view of moduli stabilization. It means that it should
be easier to balance this force on the brane and
antibrane positions against nonperturbative effects.

(iv) Note that the double derivative of this potential with
respect to any of the brane position moduli is
negative. That is to say that, depending on the
configuration of charges under consideration, there
may be a stationary point of the potential in the
direction of the brane moduli. However, this sta-
tionary point is at best a saddle point. This property
is illustrated in Fig. 3 for the case of a single
antibrane with no branes present. Given the anom-
aly condition (4), plus the fact that the antibrane
charge is negative, we have two qualitatively differ-
ent situations: both boundary charges are positive,
or one boundary charge is positive and the other
negative. The potentials for both situations are
plotted in Fig. 3.

We should stress that this perturbative instability by
no means implies that heterotic models with anti-
branes are necessarily unstable. Given the relative
weakness of the perturbative force, nonperturbative
effects must be taken into account in a stability
analysis. Since membrane instanton effects typi-
cally repel a brane from the boundaries [48], it is,
in fact, likely that the antibrane can be stabilized by
a combination of perturbative and nonperturbative
effects. This perturbative runaway to undesirable
field values is no different from that of the dilaton in
heterotic theory or the Kähler moduli in type IIB
strings, and should be treated in the same manner.

(v) Given the unexpected extra terms in the above re-
sult, it is important to do some nontrivial checks of
the calculation. Indeed, many robust checks of this
result are possible and have been performed. First of
all, the standard results of heterotic M theory should
be reproduced if we set �k to zero. This is indeed the
case (the potential vanishes). There are many sym-
metries which the potential must respect. For ex-
ample the transformations (57)–(60) should leave
the result invariant. This simply corresponds to the
fact that what we call the left and right-hand orbifold
fixed points is a matter of convention. The above
potential indeed exhibits this property. Furthermore,
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FIG. 3 (color online). Antibrane potential in the absence of
other branes (from the bracket on the right-hand side of (64)),
assuming h1;1�X� � 1. The solid, green curve corresponds to
charges ���p�� � �3;�2;�1�. In this case the antibrane is at-
tracted to the positively charged boundary at z � 0. The red,
dashed curve corresponds to charges ���p�� � �2;�3; 1�. The
antibrane is attracted to either one of the boundaries, depending
on its position z.

4Naively one could also use the combination nk
�p�s�p� and the

�k from the axionic sector. However, these axionic fields all
enjoy a shift symmetry and so cannot appear in such potential
terms.
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the result can also be explicitly recalculated in dif-
ferent ways. For example, one can switch to a dual
description of this system [38] where the �̂ terms in
the bulk five-dimensional action are exchanged for a
bulk five-form field strength. We have performed the
calculation in this dual description and again repro-
duce the above potential. In short, there are robust
checks one can perform, despite the fact that the
system is not supersymmetric. The above result for
V passes all of these tests.

B. Threshold corrections to the gauge-kinetic functions

Another set of quantities relevant for moduli stabiliza-
tion which arise at second order in �2=3

11 are the threshold
corrections to the gauge-kinetic functions. Again, we are
fortunate. Standard arguments [51] tell us that these are
among the few terms which can be reliably calculated at
this order. The arguments are slightly altered in the current
situation, but are essentially unchanged.

Consider the possible sources of second-order contribu-
tions to the gauge-kinetic functions. One possible source is
higher order terms involving the gauge field strengths in
the higher dimensional action. Clearly, such terms can only
occur on the boundaries where the gauge fields are located.
Dimensional analysis shows that such contributions are
either all higher order or, possibly, come with a noninteger
power of �2=3

11 . This latter possibility is probably forbidden
by the supersymmetry of the five-dimensional theory and,
in any case, cannot mix with the terms we wish to calcu-
late. Therefore, we will assume that such terms do not
occur.

Another possible source of second-order terms in the
gauge-kinetic functions are �4=3

11 terms in the warping.
Clearly, substituting such a piece of the background into
the boundary actions will give contributions that are higher
order than we are interested in. Substituted into the bulk
theory, such second-order contributions to the warping will
not contribute to the four-dimensional effective action if
there is a zero mode associated with them. This is because
the zero mode is defined to be the orbifold average and,

hence, the linear perturbation of order �4=3
11 drops out upon

performing the integration over the orbifold direction. This
is not quite true for some of the background pieces inG and
A. These could, in principle, contribute to the kind of
terms we are interested in. However, in the supersymmetric
case the results obtained were consistent with these con-
tributions being zero. In other words, the complex structure
determined from the moduli kinetic terms, and the require-
ment that the gauge-kinetic functions be holomorphic, are
consistent with there being no additional terms of this type.
This is a highly nontrivial statement and is unlikely to have
occurred by chance. We will assume that these terms are
also absent in the nonsupersymmetric case. This assump-
tion leads us to a result which is consistent with all of the
symmetries present in this situation, including being in-
variant under the transformations (57)–(60). This consti-
tutes a highly nontrivial check of its veracity.

The crucial point, once one has concluded that the above
contributions do not occur, is that all other ways of gen-
erating second-order terms in the gauge-kinetic functions
are explicitly calculable using pieces of the action and the
background solution that we know. One obvious contribu-
tion arises by inserting the domain wall solution into the
boundary Yang-Mills actions. Other, more subtle, contri-
butions arise from the additional warping of bulk fields
caused by fluctuations on the boundary. For example, the
four-dimensional metric receives a warping that is bilinear
in the boundary gauge field strengths. This warping will
lead to order a �4=3

11 correction to the gauge-kinetic function
via cross terms with the domain wall warping. The full
expressions for the warpings of the bulk fields that are
needed in the calculation are given in Appendix A 4.
However, we find that all contributions due to warping
induced by field fluctuations drop out, just as they did in
the supersymmetric case [51]. This means that, in the end,
the threshold corrections to the gauge-kinetic functions are
simply determined by the warping of the domain wall
solution. Explicitly, to order �4=3

11 , we find that the Yang-
Mills part of the four-dimensional effective theory is given
by
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JAMES GRAY, ANDRÉ LUKAS, AND BURT OVRUT PHYSICAL REVIEW D 76, 066007 (2007)

066007-16



Despite the fact that our theory is not supersymmetric, we can express this result in terms of two ‘‘gauge-kinetic
functions.’’ One simply defines the real and imaginary parts of these objects to be given by the coefficients of the trF2 and
�FF terms as usual. We find that
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�XN�1
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; (68)

 f�N�1� �
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e� � �0e

�bk
�XN�1

p�0

	�p�k z2
�p� �

2

3
�k

��
� i

�
�� 2�0

�XN
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��p�k �kz2
�p� � �

�N�1�
k �k

��
: (69)

The explicit supersymmetry breaking in our theory means
that these functions will no longer be holomorphic when
expressed in terms of the superfields defined in (41)–(45).
We will see this explicitly below.

Some comments about this result are in order.
(i) As was the case for the first-order results, this ex-

pression is valid when we change an arbitrary num-
ber of our branes into antibranes. In this case, the
quantities �k should be taken to be the sum of the
antibrane tensions.

(ii) The above result agrees with that of standard heter-
otic M theory upon taking �k ! 0. Despite the fact
that these terms are second order in our expansion,
they only contain a single power of the brane
charges. This is necessarily the case, given that the
gauge fields themselves only appear at order �2=3

11 .
This means that all of the threshold corrections to
the gauge-kinetic functions can be made small by
tuning the bk, �k, and �p� moduli appropriately. In
fact, an inspection of (67) reveals that it suffices to
set the volume �kbk of the antibrane cycle and the
associated linear combination �k�k of the �k axions
to zero.

(iii) We can write the result as a supersymmetric piece
plus explicit supersymmetry-breaking terms, using
the definition of superfields in (41)–(45). This leads
to a gauge-kinetic function which is no longer
holomorphic at second order in our expansions.
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�� Z� �p� � �Z� �p�
�	k�Tk � �Tk�

�
2
� 2

Z� �p� � �Z� �p�
�	k�Tk � �Tk�

��
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(70)

 f�N�1� � S� �0

�
	�N�1�
k Tk �

1

3
�k�T

k � �Tk�

� �k�T
k � �Tk�

� Z� �p� � �Z� �p�
�	k�Tk � �Tk�

�
2
�
: (71)

The above result looks complicated, despite the
fact that the component forms of the gauge-kinetic
functions, given in (68) and (69), are quite close to
the usual result for heterotic M theory. This is
because, in many of the terms in the imaginary
parts of these functions, it is the charge, and not
the tension, of the extended objects which appears.
The complex structure derived in subsection IV B
contained the tensions rather than the charges.
Therefore, we have to add contributions propor-
tional to �k to the standard holomorphic quantity
in order to correct this difference.

(iv) At first glance there appears to be a strange asym-
metry in the results (70) and (71) between the (0)
and (N � 1) fixed planes. For example, there is a
linear term in Z�p� in (70) but not in (71). This
asymmetry is an artifact of the fact that we measure
the position of the branes as a distance from the (0)
plane and the complicated way in which the com-
ponent scalar fields are combined in the N � 1
structure (41)–(45). In fact if we apply the trans-
formations (61)–(63), corresponding to inverting
the y direction in Fig. 1, we find that the above
gauge-kinetic functions turn into one another as
they should. This is a highly nontrivial test of our
results.
One could of course simply relabel the branes,
swapping (0) and (N � 1) if one so desired. Such
a change of notation is useful in relating these
results to some of the previous literature. We note
in addition that either of the fixed planes can be the
hidden sector. Which plays this role is determined
by such factors as the choices of the tensions 	�p�k .
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(v) Note that these corrections to the gauge-kinetic
functions arise at order �S, while the brane forces
appear at order �2

S. Hence, if we wish to include the
effects of gaugino condensation, this modification
of the gauge-kinetic functions is likely to be relevant
in regions of moduli space where the exponential
suppression is not too strong. This appears to have
been missed in the literature so far. This is not
surprising, given the need for a full calculation of
the backreaction of the antibrane before such cor-
rections become evident.
The importance of these terms has already been
demonstrated in Fig. 2, where we have plotted the
warping of the Calabi-Yau volume across the orbi-
fold. The values of this warping at the boundaries,
z � 0, 1, correspond precisely to the real parts of the
two gauge-kinetic functions above. What we have
seen is that the introduction of an antibrane can turn
the weakly coupled boundary into the strongly
coupled one and vice versa.

VI. A SIMPLE EXAMPLE

The reader interested in analyzing the physics of anti-
branes in four-dimensional heterotic M theory may not
wish to wade through the details of the dimensional reduc-
tion presented in the proceeding sections. With this in
mind, we now provide a simple example extracted from
our general analysis.

Let us consider the case where there is only a single
Kähler modulus for the Calabi-Yau manifold, a single
antibrane, and no branes in the bulk. Then action (35)
and the second-order action S�2�

�1;2 with potential (64) be-
come

 S � S�0;1�
�0 � S

�1�
�1 � S

�2�
�1;2 ; (72)

where
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; (74)

and
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1
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: (75)

Here we have only included the potential terms in S�2�
�1;2 , as

described earlier in the paper. This action is valid when
�0e

��� < 1, where �0 � ����
4=32�v�1=3��4

4��
2=3 for the

conventions chosen here. The system consists of four-
dimensional gravity and six scalar fields, �, �, and �z as
well as �, �, and �. The volume of the Calabi-Yau space in
fundamental units is given by ve�, the separation of the
orbifold fixed planes in five dimensions by ��e� and,
finally, �z is the position modulus of the antibrane. In these
expressions v and �� are reference constants, which can
be chosen arbitrarily. They define the physical meaning of
the moduli � and �. The remaining three scalars are the
axions corresponding to these fields. The fields � and �
descend from bulk form fields in higher dimensions and �
from a field living on the world volume of the antibrane. A
collision of the antibrane with one of the two fixed planes
occurs when the antibrane modulus takes the value �z � 0
or �z � 1. The only quantities appearing in the action which
remain to be explained are then �	, 	0, and 	2. These are
integers which determine the tensions of the antibrane and
the orbifold fixed planes which the antibrane collides with
at �z � 0 and �z � 1, respectively. There are two restrictions
on the choices which can be made for these parameters.
First, �	 must be positive. Second, the three tensions must
obey the condition 	0 � �	� 	2 � 0.

Action (72) can also be expressed in terms of the ‘‘super-
fields’’ defined in (41)–(45). For this simple example, these
become

 S � e� � �0 �	e� �z2 � i��� 2�0 �	��z2�; (76)

 T � e� � 2i�; (77)

 Z � �	e� �z� 2i� �� � �	 �z�: (78)

First consider S�0;1�
�0 in (73). This part of the action is

independent of the parameter �. Hence, it is supersymmet-
ric and can be expressed in terms of a Kähler potential and
a superpotential. Since this simplified theory only contains
the dilaton and moduli, the superpotential vanishes. We
find the Kähler potential to be
 

�2
4K � �3 log�T � �T� � log

�
S� �S� �0

�Z� �Z�2

�	�T � �T�

�

� log8: (79)

In calculating the kinetic terms, the results obtained from
this expression are valid to first order in �0e

���.
Now consider S�1�

�1 and S�2�
�1;2 . These terms are propor-

tional to at least one power of �. Hence, they are explicitly
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associated with the nonsupersymmetric part of the theory
and we do not write them in terms of a Kähler potential and
a superpotential. Be that as it may, they can be expressed in
terms of the scalar fields in (76)–(78). Recognizing that
(74) and (75) contribute potential energy terms V 1 and
V 2, respectively, we find that the total potential induced by
the anti-five-brane is

 V � V 1 �V 2; (80)

where

 V 1 � ��2
4

�0

����2
��T � �T�e�

2
4K; (81)
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�
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�
Z� �Z
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�
2
� 	�2� �

2

3
�
�
: (82)

This simple example includes the essentials of the features
of the potential outlined in the main text. In particular,
while the first term of (75) represents the Coulomb forces
acting on the antibrane, the second, third, and fourth terms
are the new contributions to the potential that we have
discussed.

The gauge-kinetic functions in this simple example are
the following:
 

f�0� � e� � �0e�� �	��z2 � 2�z� � 4
3��

� i��� 2�0�� �	���z2 � 2�z� � 	�2��� 2 ���; (83)

 

f�2� � e� � �0e
�� �	�z2 � 2
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� i��� 2�0�� �	��z2 � 	�2����: (84)

These expressions correspond to the orbifold fixed planes
at �z � 0 and �z � 1, respectively. The real parts of these
functions reproduce the inverse square of the gauge cou-
plings of the gauge fields living upon the fixed planes,
while the imaginary parts reproduce the theta terms.
Again, one can rewrite these results in terms of the field
definitions (76)–(78). The result is
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; (85)

 

f�2� � S� �0
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��T � �T�

� ��T � �T�
�
Z� �Z
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2
�
: (86)

Note that the gauge-kinetic functions are holomorphic in
these complex fields in the formal limit that �! 0. This is
as it should be, since this corresponds to turning off the

supersymmetry breaking induced by the antibranes. The
terms proportional to � break supersymmetry and, accord-
ingly, are not holomorphic in the fields (76)–(78). The fact
that no single choice of complex fields is possible which
simultaneously allows the kinetic terms in (73) to be
reproduced from a Kähler potential and makes the func-
tions (85) and (86) holomorphic demonstrates that the
presence of the antibrane breaks supersymmetry explicitly.
The modifications to the gauge-kinetic functions due to the
presence of the antibrane are crucial in any discussion of
gaugino condensation. These corrections can even ex-
change the weakly and strongly coupled fixed planes,
interchanging what would be naively thought of as the
visible and hidden sectors. Note that, for suitable choices
of the parameters described above, either fixed plane can
be the hidden sector.

Despite the fact that we have considered the situation
where we have a single antibrane and no branes in this
section, we note that the theory we have presented is still
completely nonsupersymmetric. This is in contrast to the
situation where the single antibrane is replaced by a single
brane. This difference is due to the fact that the boundary
conditions enforced at the orbifold fixed planes distinguish
antibranes from branes. The orbifold fixed planes, in our
situation, have a definite relation between their charge and
tension, as described in Sec. II. Branes have the same
relation between their charge and tension whereas anti-
branes do not. It can be seen from Sec. III that it is this
fact which gives rise to the difference in the dimensional
reduction between the two cases, resulting in a nonsuper-
symmetric theory in the antibrane case and a supersym-
metric one in the case involving a brane.

Action (72), together with the gauge-kinetic functions
(85) and (86), can be used as the starting point for analyz-
ing the physics of antibranes in perturbative heterotic M
theory.

VII. CONCLUSIONS

In this paper, we derived the bosonic four-dimensional
effective theory for heterotic M theory in the presence of M
five-branes and anti-M five-branes. The starting point of
our analysis is the five-dimensional action of heterotic M
theory, where the M five-branes appear as three-branes. We
have explicitly computed the case with an arbitrary number
of three-branes but only one anti-three-brane. However, it
is straightforward to generalize our results to an arbitrary
number of anti-three-branes.

We first found a suitable background solution to five-
dimensional heterotic M theory on which to reduce to four
dimensions. This solution is a nonsupersymmetric domain
wall, presented in Sec. III, which is a generalization of the
BPS domain wall background in the supersymmetric case,
that is, in the absence of antibranes. We found that this
domain wall solution can be computed as an expansion in
the strong-coupling parameter �S, and we presented the
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result up to first order in this parameter. A new feature
induced by the antibrane is warping quadratic in the orbi-
fold coordinate. This occurs in addition to the linear warp-
ing which is characteristic of the BPS domain wall in the
supersymmetric theory.

We then computed the four-dimensional bosonic effec-
tive action on this domain wall background as an expansion
in �2=3

11 . We stress that this calculation includes the back-
reaction effects of the branes as well as the antibranes. In
particular, there is no assumption of a small antibrane
charge underlying our calculation. To zeroth and first order
in this expansion, we found that the bosonic theory is given
by the supersymmetric result plus the addition of a single
potential term. This ‘‘uplifting potential’’ is generated by
the antibrane and has a number of interesting properties.
First of all, at this order, it is independent of the brane
position moduli and only depends on the dilaton and the
Calabi-Yau Kähler moduli. More precisely, it is propor-
tional to the volume of the cycle wrapped by the antibrane,
as well as to the strong-coupling parameter �S. Since,
necessarily, �S  1 (for four-dimensional heterotic M the-
ory to be a good description of the system) the uplifting
potential is suppressed.

We have also calculated a number of terms in the four-
dimensional effective action at second order, that is, at
order �4=3

11 . We have specifically focused on terms where
new qualitative features, not seen at lower order, occur. In
particular, we explicitly calculated the second-order con-
tributions to the antibrane potential. This gives interactions
between branes and antibranes. This potential is of order �2

S
and, hence, even further suppressed relative to the leading
uplifting potential. The �S suppression of the perturbative
potential has important implications for moduli stabiliza-
tion, since the stabilization mechanism involves an inter-
play between perturbative and nonperturbative effects. For
stabilization to occur, both types of effects should be
roughly comparable in size. This is greatly facilitated by
the suppression of the perturbative potential. While the
second-order brane potential includes the expected
‘‘Coulomb-like’’ forces between the branes and the anti-
brane, we find, in addition, an unexpected force between
these objects which also arises from their backreaction.

The other terms we have computed at second order are
the corrections to the Yang-Mills gauge couplings and
theta angles. We find that these threshold corrections de-
pend on the brane as well as the antibrane moduli and
lead to a nonholomorphic ‘‘gauge-kinetic function.’’ This
dependence on the antibrane modulus and the nonholo-
morphicity has important consequences for gaugino con-
densation. This will be the subject of a forthcoming paper
[48].

We believe that some of the features found in this paper,
for example, the non-Coulomb-type brane-brane forces
due to antibrane backreaction and the nonholomorphic
corrections to the gauge-kinetic function, may arise in

other models with antibranes, for example, in the context
of IIB string theory. To our knowledge, this has not yet
been studied. Our results have important applications to
moduli stabilization in heterotic models with antibranes,
supersymmetry breaking due to antibranes and the cosmol-
ogy of such models. In particular, given that the antibrane
can be attracted to the boundary by the perturbative forces
while it is repelled due to membrane instanton effects, we
have argued that stabilization of the antibrane due to a
combination of perturbative and nonperturbative effects
can be achieved. These issues are currently under inves-
tigation [48].
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APPENDIX: ORIGINS OF QUANTITIES IN THE
FIVE-DIMENSIONAL THEORY

In this appendix we explain the origin of the fields and
quantities which appear in the action (6) of five-
dimensional heterotic M theory in terms of the underlying
11-dimensional theory [49], compactified on a Calabi-Yau
manifold X. All of these results are standard and can be
found in the literature [36,37,55], but are here included for
completeness. The last part of the appendix presents a
number of technical results for the five-dimensional warp-
ing which are needed for the calculation in the main part of
the paper.

1. Origin of the five-dimensional bulk theory

The bulk fields in the five-dimensional action (6) origi-
nate from zero modes of the 11-dimensional metric and
three-form on the Calabi-Yau manifold X. Let us start by
discussing the metric moduli.

In addition to the five-dimensional metric, the 11-
dimensional metric gives rise to a number of scalar fields
which parametrize the Calabi-Yau moduli space. As is well
known, this space is (locally) a direct product of the Kähler
moduli space, parametrized by the periods of the Kähler
form !, and the complex structure moduli space, parame-
trized by periods of the holomorphic three-form �. Let us
first discuss the Kähler moduli space. We introduce an
integral basis Ck, where k; l; . . . � 1; . . . ; h1;1�X�, of the
second homology of the Calabi-Yau manifold and a dual
basis v�1=3!k of harmonic (1, 1) forms satisfying
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1

v1=3

Z
Ck
!l � �kl : (A1)

The h1;1�X� Kähler moduli ak can then be defined by
expanding ! � ak!k. The Kähler moduli space metric
Gkl�a� is then given by

 Gkl�a� 	
1

vV

Z
X
!k ^ ?!l �

@

@ak
@

@al
K�a�; (A2)

where the Kähler potential K�a� is given by K�a� �
� ln�dklmakalam� with the triple intersection numbers

 dklm �
1

v

Z
X
!k ^!l ^!m: (A3)

It is easy to show that the total Calabi-Yau volume V can be
written as

 V �
1

v

Z
X

���
g
p
�

1

6
dijka

iajak: (A4)

In the context of the five-dimensional theory it is more
appropriate to work with the rescaled Kähler moduli
bk � V�1=3ak which satisfy the constraint e�K�b� �
dklmb

kblbm � 6. They constitute h1;1�X� � 1 independent
fields which will be used in the five-dimensional action
alongside V as the remaining independent degree of free-
dom. Accordingly, the five-dimensional theory is formu-
lated in terms of the metric Gkl�b� � V2=3Gkl�a� which we
frequently denote by simply Gkl in the text. It is useful to
define lowered index fields bk � Gkl�b�b

l. It follows di-
rectly from the explicit form of the metric that bkbk � 3,
which, upon treating the bk as five-dimensional fields,
leads to the identities

 bk@�b
k � 0; (A5)

 bk�r�r
�bk � �klm�b�@�b

l@�bm� � 0: (A6)

Here, �klm�b� is the connection associated to the moduli
space metric Gkl�b� and r� is the five-dimensional cova-
riant derivative. These relations are useful in deriving the
result for the domain wall warping of bk, (30).

We now move on to the complex structure moduli space
of the Calabi-Yau. To this end, we introduce a symplectic
basis �aA; bB�, where A;B; . . . � 0; . . . ; h2;1�X� of the third
homology and a dual basis ��A;�B� of harmonic three-
forms satisfying the standard relations

 

Z
X
�B ^ �

A �
Z
aA
�B � �AB;

Z
X
�A ^ �B �

Z
bB
�A � ��AB

(A7)

with all other integrals zero. The complex structure moduli
space can be parametrized by the periods �ZA;GB� defined
by

 Z A �
Z
aA

�; GB �
Z
bB

�: (A8)

It turns out, that the periods GB are, in fact, functions of the
ZA and can be obtained as derivatives GB �

@
ZB G of a

holomorphic prepotential G. The complex structure mod-
uli Kähler potential is then given by

 K �Z� � � ln
�
i
Z
X

� ^ ��
�
� � ln�GB

�ZB � �GBZ
B�:

(A9)

The ZA are homogeneous coordinates and the physical
degrees of freedom are identified with the affine coordi-
nates za � Za=Z0, where a; b; . . . � 1; . . . ; h2;1�X�. In
terms of these physical fields the Kähler potential can be
written as

 K �z� � � ln
�

2i�G � �G� � i�za � �za�
�
@G
@za
�
@ �G

@�za

��
;

(A10)

and the associated metric is obtained in the usual way as
Kp �q�z� �

@
@p

@
@ �qK�z�. The final quantity we need to know

about is the matrix M which appears in some of the five-
dimensional kinetic terms. It is defined as follows:

 MAB �
�GAB � TAB; TAB � 2i

ImGACZ
C ImGBDZ

D

ZE ImGEFZ
F ;

(A11)

where GAB is the second derivative of the prepotential G.
Finally, we need to discuss the five-dimensional bulk

fields which originate from the 11-dimensional three-form.
The purely external part of this three-form gives rise to a
three-form C��� in the five-dimensional theory (which can
be dualized to a scalar). The internal part, on the other
hand, can be expanded in terms of our symplectic basis
�aA; bB� and, hence, gives rise to 2�h2;1�X� � 1� real scalar
fields 
B and ~
A. This completes our discussion of the 11-
dimensional origin of the bulk theory in five dimensions. It
is explained in Sec. how these fields are arranged into five-
dimensional supermultiplets.

2. Origin of the five-dimensional boundary theories

The matter field structure seen in the five-dimensional
theory comes from an appropriate dimensional reduction
of the ten-dimensional E8 super-Yang-Mills theories resid-
ing on each of the two orbifold fixed planes. Given that we
will introduce an arbitrary number, N, of M five-branes in
our compactifications, we will label the two boundaries by
p � 0, N � 1. On both orbifold planes we have stable
holomorphic gauge bundles Vp with structure groups
G�p� residing on the Calabi-Yau manifold X. The commu-
tants H�p� of G�p� within E8 are the low-energy gauge
groups which appear on the four-dimensional boundaries
of five-dimensional heterotic M theory. In order to discuss
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matter fields we need to decompose the adjoint represen-
tation of E8, 248E8

, under G�p� �H�p�. We write

 248 E8
�
X
�S�p�; R�p��; (A12)

where S�p� and R�p� denote representations of G�p� and
H�p�, respectively. On the four-dimensional boundaries
we have, in addition to gauge fields with gauge group
H�p�, matter fields transforming in the representations
R�p� which appear in the decomposition (A12). Their num-
ber is given by h1�X; VR�p� �, where VR�p� is the associated
bundle in the representation R�p�. We will denote these
matter fields by CIx

�p� where indices I; J; . . . run over all
irreducible R�p� representations and indices x; y; . . . label
states within each representation. Further, we denote by uxI
a basis of one-forms for the cohomology groups
H1�X; VR�p� �. The matter field Kähler metric on the four-
dimensional boundaries can then be formally defined as

 G�p�IJ �
1

vV2=3

Z
X
uxI ^ ? �uJx: (A13)

The connection �k�p�IJ which appears in the five-
dimensional Bianchi identities can then be written as

 �k�p�IJ � Gkl�b�
@

@bl
G�p�IJ: (A14)

For the Yukawa couplings we can write

 �IJK �
1

k�k2

Z
X

� ^ uxI ^ u
y
J ^ u

z
Kf
�IJK�
xyz ; (A15)

where f�IJK�xyz projects onto the singlet of the internal gauge
group G�p�. The superpotentials W�p� are then given by

 W�p� �
������������������
4��GUT

p X
I;J;K

�IJKf
�IJK�
xyz CIx

�p�C
Jy
�p�C

Kz
�p�: (A16)

3. Origin of three-brane world volume theories

As explained in the main part of the paper, we are
interested in vacua with N M five-branes, of which N �
1 are ordinary five-branes and the remaining one is an anti-
five-brane. We label these branes by indices p; q; . . . �
1; . . . ; N with p � �p corresponding to the anti-five-brane,
as indicated in Fig. 1. The five-branes, p � �p, are wrapped
on holomorphic curves with effective homology classes
C�p� � ��p�k Ck within the Calabi-Yau manifold X, where
(Ck) is the integral basis of the second homology of X
introduced earlier. The anti-five-brane can be viewed as a
five-brane wrapping a holomorphic curve with the
‘‘wrong’’ orientation and, hence, its class C� �p� � �� �p�k Ck

corresponds to an antieffective class (that is, �C� �p� is
effective).

In five-dimensional heterotic M theory these five-branes
appear as three-branes and we should discuss the fields on

their world volumes. From the 11-dimensional embedding
coordinates of the five-branes we first have the position
moduli y�p� in the orbifold direction and, possibly, addi-
tional scalar fields which describe the moduli space of the
curves C�p� � X. In this paper, we will not consider the
latter fields explicitly. The purely internal part of the two-
form on the five-brane world volume (both indices in the
direction of the curves) give rise to axions s�p� on the three-
branes.5 Further let us introduce a standard basis
�a�p�u; b�p�w� of A and B cycles, where u; w; . . . �
1; . . . ; g�p� and g�p� is the genus of the pth curve. In
addition, we introduce a basis of holomorphic one-forms
(��p�u) on each curve, satisfying

 

Z
a�p�u

��p�w � �uw: (A17)

We can then expand the five-brane two-form in this basis of
one-forms which gives rise to 2g�p� Abelian vector fields on
the three-brane world volumes. However, due to the self-
duality of the five-brane two-form only half of these vector
fields are independent and we will denote their field
strengths by Eu

�p��. The period matrices

 ��p�uw 	
Z
b�p�u

��p�w (A18)

then determine the gauge-kinetic functions of these vector
fields.

4. Solution of the Bianchi identities

In this appendix we collect the results for the warping of
the five-dimensional bulk fields due to field fluctuations on
the boundaries. These equations, which correspond to the
11-dimensional warping results obtained in Ref. [51], are
needed for the reduction from five to four dimensions in the
main part of the paper.

We start by solving the Bianchi identities (8)–(10). The
Bianchi identity for the F k’s, (9), can be solved yielding
the following result:

 F k
� � ��2�2

5�J
�0�k
2� � 2�2

5z�J
�0�k
2� � J

�N�1�k
2� �; (A19)

 F k
�y �

�2�2
5

��
�!�0�k1 �!

�N�1�k
1 � � ~F k

�y: (A20)

The tilded quantity, ~F , is an unspecified piece with trivial
Bianchi identity, d ~F � 0, which can be fixed upon an
examination of the equations of motion. We have also
introduced the Chern-Simons one-forms !�p�k which are
defined by the relation d!�p�k1 � J�p�k2 , where J�p�k2 was

5Because of the self-duality of the five-brane two-form its
purely external part does not contribute any new degrees of
freedom.
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defined in (12). Part of ~F is that due to the zero mode �k �
Ak

y. We also note that A�, being odd under the Z2

orbifold action, does not lead to zero modes. It turns out
that the rest of the warping of F is not necessary for our
present purposes. It drops out from the calculation of the
four-dimensional effective action.

The next set of terms from the five-dimensional action
that we need to dimensionally reduce are those involving
the four-form field strength G. The solution to its Bianchi
identity (8) is given by

 G��� � �2�2
5J
�0�
4��� � 2�2

5z�J
�0�
4��� � J

�N�1�
4����

� ~G���; (A21)

 G��y �
�2�2

5

��
1

16��GUT
�!�0�3�� �!

�N�2�
3�� � �

~G��y:

(A22)

Here ~G is an unspecified contribution to the four-form field
strength which must be fixed upon an examination of the
equations of motion. It obeys the trivial Bianchi Identity:
d ~G � 0. The quantities !�p�3 in (A21) are Chern-Simons
three-forms defined by the relations d!�p�3 � F�p� ^ F�p�.
As a check of the integrability of this result we can find the
associated three-form potential contributions,

 C�� �
�2�2

5

16��GUT
�!�0�3�� � z�!

�0�
3�� �!

�N�1�
3�� ��: (A23)

The zero mode B� � Cy� with field strength H�� is

contained in the ~G part of the above solution, along with
other contributions to the warping which are irrelevant for
our calculation.

Finally, we need to consider the Bianchi identity (10) for
XA and ~XB. In the absence of flux the solution to these
Bianchi identities only give rise to higher order terms in the
four-dimensional effective theory and are not explicitly
needed.

For our calculation of the gauge-kinetic functions to
second order in subsection V B we need explicit expres-
sions for the warping of the metric and the Calabi-Yau
volume modulus V caused by field fluctuations on the
boundaries. These warpings from fluctuations have to be
added to the domain wall solution in Sec. III to obtain the
full expressions needed in the calculation,

 

�g� �
��2

5

2�GUT

b0V0

a2
0

��
1

2
z2 � z�

1

3

�
tr�F�0���F�0�

��

�
1

2

�
z2 �

1

3

�
tr�F�N�1���F�N�1�

��

�
; (A24)

 

�a � �
��2

5

16�GUT

b0V0

a3
0

��
1

2
z2 � z�

1

3

�
tr�F2

�0��

�
1

2

�
z2 �

1

3

�
tr�F2

�N�1��

�
; (A25)

 �V �
2V0

a0
�a: (A26)
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