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Abstract The Semantic Web envisions a World Wide Web in which data is described with rich semantics and appli-
cations can pose complex queries. To this point, researchers have defined new languages for specifying meanings for
concepts and developed techniques for reasoning about them, using RDF as the data model. To flourish, the Semantic
Web needs to provide interoperability — both between sites with different terminologies and with existing data and
the applications operating on them. To achieve this, we are faced with two problems. First, most of the world’s data is
available not in RDF but in XML; XML and the applications consuming it rely not only on the domain structure of the
data, but also on its document structure. Hence, to provide interoperability between such sources, we must map be-
tween both their domain structures and their document structures. Second, data management practitioners often prefer
to exchange data through local point-to-point data translations, rather than mapping to common mediated schemas or
ontologies.

This paper describes the Piazza system, which addresses these challenges. Piazza offers a language for mediating
between data sources on the Semantic Web, and it maps both the domain structure and document structure. Piazza also
enables interoperation of XML data with RDF data that is accompanied by rich OWL ontologies. Mappings in Piazza
are provided at a local scale between small sets of nodes, and our query answering algorithm is able to chain sets
mappings together to obtain relevant data from across the Piazza network. We also describe an implemented scenario
in Piazza and the lessons we learned from it.
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1 Introduction

HTML and the World Wide Web have had amazing impact on the process of distributing human-readable data to
even casual computer users. Yet these technologies are actually quite limited in scope: Web data lacks machine-
understandable semantics, so it is generally not possible to automatically extract concepts or relationships from this
data or to relate items from different sources. Research into developing a Semantic Web [9] aims to address this lim-
itation by providing data with embedded semantic information, and it then seeks to develop sophisticated query tools
to interpret and combine this information. The result should be a much more powerful knowledge-sharing environ-
ment than today’s Web: instead of posing queries that match text within documents, a user could ask questions that
can only be answered via inference or aggregation; data could be automatically translated into the same terminology;
information could be easily exchanged between different organizations.

Much of the research focus on the Semantic Web is based on treating the Web as a knowledge base defining mean-
ings and relationships. In particular, researchers have developed knowledge representation languages for representing
meanings — relating them within custom ontologies for different domains — and reasoning about the concepts. The
best-known example is RDF and the languages that build upon it: RDF Schema, DAML+OIL, and OWL [16].

The progress on developing ontologies and representation languages leaves us with two significant problems. The
first problem (also noted by [39]) is that there is a wide disconnect between the RDF world and most of today’s data
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providers and applications. RDF represents everything as a set of classes and properties, creating a graph of rela-
tionships. As such, RDF is focused on identifying the domain structure. In contrast, most existing data sources and
applications export their data into XML, which tends to focus less on domain structure and more around important
objects or entities. Instead of explicitly spelling out entities and relationships, they often nest information about re-
lated entities directly within the descriptions of more important objects, and in doing this they sometimes leave the
relationship type unspecified. For instance, an XML data source might serialize information about books and authors
as a list of book objects, each with an embedded author object. Although book and author are logically two related
objects with a particular association (e.g., in RDF, author writes book), applications using this source may know that
this document structure implicitly represents the logical writes relationship.

The vast majority of data sources (e.g., relational tables, spreadsheets, programming language objects, e-mails, and
web logs) use hierarchical structures and references to encode both objects and domain structure-like relationships.
Moreover, most application development tools and web services rely on these structures. Clearly, it would be desirable
for the Semantic Web to be able to inter-operate with existing data sources and consumers — which are likely to persist
indefinitely since they serve a real need. From the perspective of building Semantic Web applications, we need to be
able to map not only between different domain structures of two sources, but also between their document structures.

The second challenge we face concerns the scale of ontology and schema mediation on the Semantic Web. Cur-
rently, it is widely believed that there will not exist a single ontology for any particular domain, but rather that there
will be a few (possibly overlapping) ones. However, the prevailing culture, at least among users of data management
tools, entails that the number of ontologies/schemas we will need to mediate among is actually substantially higher.
Suppliers of data are not used to mapping their schemas to a select small set of ontologies (or schemas): it is very
hard to build a consensus about what terminologies and structures should be used. In fact, it is for this reason that
many data warehouse projects tend to fail precisely at the phase of schema design [46]. Interoperability is typically
attained in the real world by writing translators (usually with custom code) among small sets of data sources that are
closely related and serve similar needs, and then gradually adding new translators to new sources as time progresses.
Hence, this practice suggests a practical model for how to develop a large-scale system like the Semantic Web: we
need an architecture that enables building a web of data by allowing incremental addition of sources, where each new
source maps to whatever sources it deems most convenient — rather than requiring sources to map to a slow-to-evolve
and hard-to-manage standard schema. Of course, in the case of the Semantic Web, the mappings between the sources
should be specified declaratively. To complement the mappings, we need efficient algorithms that can follow semantic
paths to obtain data from distant but related nodes on the web.

This paper describes the Piazza System, whose goal is to pave the way for a fruitful combination of data manage-
ment and knowledge representation techniques in the construction of the Semantic Web. As such, Piazza provides an
infrastructure for building Semantic Web applications that is based on a bottom-up approach to the Semantic Web. The
bottom-up approach begins with distributed sharing of XML data and building in expressive power from there.

A Piazza application consists of many nodes, each of which can serve either or both of two roles: supplying source
data in its schema, or providing a schema (and later, an ontology) that can be queried. A very simple node might only
supply data (perhaps from a relational database); at the other extreme, a node might simply provide a schema to which
other nodes’ schemas may be mapped. The semantic glue in Piazza is provided by local mappings between small sets
(usually pairs) of nodes. When a query is posed over the schema of a node, the system will utilize data from any node
that is transitively connected by semantic mappings, by chaining mappings. Piazza’s architecture can accommodate
both local point-to-point mappings between data sources, as well as collaboration through select mediated schemas.
Since the architecture is reminiscent of peer-to-peer architectures, we refer to Piazza as a peer data management system
(PDMS).

We make the following specific contributions.

– We propose a language for mediating between nodes that allows mapping simple forms of domain structure and
rich document structure. The language is based on XQuery [11], the emerging standard for querying XML. We
also show that this language can map between nodes containing RDF data and nodes containing XML data.

– We describe an algorithm for answering queries in Piazza that chains semantic mappings specified in our language.
The challenge in developing the algorithm is that the mappings are directional, and hence may sometimes need
to be traversed in reverse. In fact, the algorithm can also go in reverse through mappings from XML to RDF that
flatten out the document structure. Previous work [23] has presented an analogous algorithm for the simple case
where all data sources are relational. Here we extend the algorithms considerably to the XML setting.
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– Finally, we describe an implemented scenario using Piazza and several observations from this experience. The
scenario includes 15 nodes (based on the structures and data of real web sites) that provide information about
different aspects of the database research community.

We emaphasize that the techniques offered in Piazza are not a replacement for rich ontologies and languages for
mapping between ontologies. Our goal is to provide the missing link between data described using rich ontologies and
the wealth of data that is currently managed by a variety of tools. To extend Piazza to handle richer languages, we
need to develop reformulation algorithms for these languages (in the spirit of [7]).1

The paper is organized as follows. Section 2 provides an overview of Piazza, Section 3 identifies requirements
for mapping between Semantic Web data sources, and Section 4 describes our language for mapping between nodes
in Piazza. Section 5 presents the key algorithm underlying query answering in Piazza. In Section 6 we offer our
experiences from implementing the scenario. Section 7 describes related work, and Section 8 concludes.

2 System Overview

We begin with an overview of the concepts underlying Piazza and our approach to building Semantic Web applications.

2.1 Data, Schemas, and Queries

Our ultimate goal with Piazza is to provide query answering and translation across the full range of data, from RDF
and its associated ontologies to XML, which has a substantially less expressive schema language. The main focus of
this paper is on sharing XML data, but we explain how RDF and OWL data instances can also be incorporated.

Today, most commercial and scientific applications have facilities for automatically exporting their data into XML
form. Hence, for the purpose of our discussion, we can consider XML to be the standard representation of a wide
variety of data sources (as do others [39]). In some cases, accessing the actual data may require an additional level of
translation (e.g., with systems like [20,43]). Perhaps of equal importance, many applications, tools, and programming
languages or libraries have facilities for loading, processing, and importing XML data. In the ideal case, one could map
the wealth of existing XML-style data into the Semantic Web and query it using Semantic Web tools; correspondingly,
one could take the results of Semantic Web queries and map them back into XML so they can be fed into conventional
applications.

RDF is neutral with respect to objects’ importance: it represents a graph of interlinked objects, properties, and
values. RDF also assigns uniform semantic meaning to certain reserved objects (e.g., containers) and properties (e.g.,
identifiers, object types, references). Relationships between pairs of objects are explicitly named. (This actually re-
sembles what is done in entity-relationship diagrams, which are used to design relational databases.)

The main distinctions between RDF and unordered XML2 are that XML (unless accompanied by a schema) does
not assign semantic meaning to any particular attributes, and XML uses hierarchy (membership) to implicitly encode
logical relationships. Within an XML hierarchy, the central objects are typically at the top, and related objects are
often embedded as subelements within the document structure; this embedding of objects creates binary relationships.
Of course, XML may also include links and can represent arbitrary graphs, but the predominant theme in XML data is
nesting. Whereas RDF names all binary relationships between pairs of objects, XML typically does not. The semantic
meaning of these relationships is expressed within the schema or simply within the interpretation of the data. Hence,
it is important to note that although XML is often perceived as having only a syntax, it is more accurately viewed as a
semantically grounded encoding for data, in a similar fashion to a relational database. Importantly, as pointed out by
Patel-Schneider and Simeon [39], if XML is extended simply by reserving certain attribute names to serve as element
IDs and IDREFs, one can maintain RDF semantics in the XML representation.

As with data, the XML and RDF worlds use different formalisms for expressing schema. The XML world uses
XML Schema, which is based on object-oriented classes and database schemas: it defines classes and subclasses, and
it specifies or restricts their structure and also assigns special semantic meaning (e.g., keys or references) to certain
fields. In contrast, languages such as RDFS, DAML+OIL [24] and the various levels of OWL [16] come from the
Knowledge Representation (KR) heritage, where ontologies are used to represent sets of objects in the domain and
relationships between sets. OWL uses portions of XML Schema to express the structure of so-called domain values.
In the remainder of this paper, we refer to OWL as the representative of this class of languages.

1 See [26] for a discussion of additional challenges in this area.
2 In this paper we consider only unordered XML; order information can still be encoded within the data.
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Much of the functionality of KR descriptions and concept definitions can be captured in the XML world (and more
generally, in the database world) using views. In the KR world, concept definitions are used to represent a certain set
of objects based on constraints they satisfy, and they are compared via subsumption algorithms. In the XML world,
queries serve a similar purpose, and furthermore, when they are named as views, they can be referenced by other
queries or views. Since a view can express constraints or combine data from multiple structures, it can perform a
role like that of the KR concept definition. Queries can be compared using query containment algorithms. There is a
detailed literature that studies the differences between the expressive power of description logics and query languages
and the complexity of the subsumption and containment problem for them (e.g., [28]). For example, certain forms
of negation and number restrictions, when present in query expressions, make query containment undecidable, while
arbitrary join conditions cannot be expressed and reasoned about in description logics.

2.2 Data Sharing and Mediation

Logically, a Piazza system consists of a network of different sites (also referred to as peers or nodes), each of which
contributes resources to the overall system. The resources contributed by a site include one or more of the following:
(1) ground or extensional data, e.g., XML or RDF data instances, (2) models of data, e.g., XML schemas or OWL
ontologies. In addition, nodes may supply computed data, i.e., cached answers to queries posed over other nodes.

When a new site (with data instance or schema) is added to the system, it is semantically related to some portion
of the existing network, as we describe in the next paragraph. Queries in Piazza are always posed from the perspective
of a given site’s schema, which defines the preferred terminology of the user. When a query is posed, Piazza provides
answers that utilize all semantically related XML data within the system3.

In order to exploit data from other sites, there must be semantic glue between the sites, in the form of semantic
mappings. Mappings in Piazza are specified between small numbers of sites, usually pairs. In this way, we are able
to support the two rather different methods for semantic mediation mentioned earlier: mediated mapping, where data
sources are related through a mediated schema or ontology, and point-to-point mappings, where data is described by
how it can be translated to conform to the schema of another site. Admittedly, from a formal perspective, there is little
difference between these two kinds of mappings, but in practice, content providers may have strong preferences for
one or the other.

2.3 Query Processing

Ulitmately, the goal of a Semantic Web is to answer queries from users. In our system this means answering an XQuery
when given a set of sites and the semantic mappings between them. There are two aspects to the query answering
problem: (1) how to obtain a semantically correct set of operations for answering the query, and (2) how to process
the resulting operations efficiently over the data. In this paper we focus mostly on the first problem, called query
reformulation. Section 5 describes a query answering algorithm for the Piazza mapping language: given a query at a
particular site, we need to expand and translate it into appropriate queries over semantically related sites, as well. Query
answering may require that we follow semantic mappings in both directions. In one direction, composing semantic
mappings is simply query composition for an XQuery-like language. In the other direction, composing mappings
requires using mappings in the reverse direction, which is known as the problem of answering queries using views [22].
These two problems are well understood in the relational database setting (i.e., when data is relational and mappings
are specified as some restricted version of SQL), but they have only recently been treated in limited XML settings.

3 Mapping Requirements for Structured Data

Between any two independently developed ontologies or schemas, there is likely to be a significant variation in the
representations of their data instances — partly because of unique preferences in different data modelers’ approaches,
and partly because of inherent differences in how data will be used. In this section, we briefly discuss some of the re-
quirements for mapping schemas or ontologies on the Semantic Web, and we discuss how these fit into our framework.

We distinguish between modeling variations at the data-instance level from those at the schema/ontology level. At
the data-instance level, values may have different representations (e.g., an address can be a single string or composed
of several sub-fields; names can be represented differently). The common approach for handling such discrepancies are

3 It is also be possible to let the user narrow the set of sites considered in a query; this does not introduce any difficulties.
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Source1.xml DTD:
pubs

book*
title
author*

name
publisher*

name

Source2.xml DTD:
authors

author*
full-name
publication*

title
pub-type

Source3.rdf OWL class definition:
Class id = "book"
DataTypeProperty id = "bookTitle"
domain = "#book"
range = "&xsd;string"

DataTypeProperty id = "bookAuthor"
domain = "#book"
range = "#author"

Class id = "author"
DataTypeProperty id = "authorName"
domain = "#author"
range = "&xsd;string"

Fig. 1 Structures of three different data sources (two XML sources and one RDF source with an OWL ontology). Source1.xml
contains books with nested authors; Source2.xml contains authors with nested publications. Indentation illustrates nesting and a
* suffix indicates “0 or more occurrences of...”, as in a BNF grammar. Source3.rdf is a set of OWL class and property definitions
with a slightly simplified notation.

concordance tables, which use a binary relation of the form (schema1 attrib, schema2 attrib) to describe associa-
tions between values in each of the representations. Note that concordance tables can represent m : n correspondences
as well as 1 : 1 ones. Database query languages, including Piazza’s mapping language, can easily make use of con-
cordance tables by joining them with existing data items. Of course, the key question is how concordance tables are
constructed. There is a significant work from both the artificial intelligence [38,45] and database communities [4,14])
on object matching, and recent work in [5] has looked at the problem of composing concordance table mappings.
Piazza can make direct use of these existing matching algorithms and techniques, as well as any new ones that produce
similar output.

At the schema level, the simplest form of a mapping is a attribute correspondence, where a property or attribute
value in one representation corresponds to a different value in the other representation. This is the type of corre-
spondence captured by OWL’s owl:equivalentProperty construct. It is also possible to have correspondences at a
higher level, that of the class (in ontologies) or view (in databases). These can be very simple equivalences (as in
owl:equivalentClass), or they can be more complex. For instance, a mapping may express containment (one view’s
results are contained in another’s, or one class is subsumed by another), overlap (a subset of class 1 is equivalent to
a subset of class 2), disjointness, and so on. An extra layer of complexity occurs when mapping concepts in an XML
world: two classes may describe concepts that are semantically the same, but the XML representations may be struc-
tured differently. Mapping between such classes requires some form of structural transformation, one that includes
both the ability to coalesce multiple entries and to split a single entry into multiple fragments. This particular type of
structural mapping is the main innovation of Piazza’s mapping language (see Section 4). Note that one class of XML
we support is a serialization of RDF: here, we must convert from an RDF graph structure to an XML tree structure, or
vice-versa. In the next section, we will illustrate mappings between XML sources and between XML and RDF. Our
example XML DTDs and OWL ontology definition appear in Figure 1.

Finally, there may be a need for so-called “higher-order” transformations, e.g., between a class in one ontology and
a relationship in another. OWL has no capability for this, but most XML query languages, including XQuery, include
support for tag variables that represent element or attribute tag names. We exploit this capability in Piazza to achieve
certain kinds of higher-order mappings, e.g., between relationships and values.

4 Schema Mappings in Piazza

In this section, we describe the language we use for mapping between sites in a Piazza network. As described earlier,
we focus on nodes whose data is available in XML (perhaps via a wrapper over some other system). For the purposes
of our discussion, we ignore the XML document order. Each node has a schema, expressed in XML Schema, which
defines the terminology and the structural constraints of the node. We make a clear distinction between the intended
domain of the terms defined by the schema at a node and the actual data that may be stored there. Clearly, the stored
data conforms to the terms and constraints of the schema, but the intended domain of the terms may be much broader
than the particular data stored at the node. For example, the terminology for publications applies to data instances
beyond the particular ones stored at the node.
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Given this setting, mappings play two roles. The first role is as storage descriptions that specify which data is
actually stored at a node. This allows us to separate between the intended domain and the actual data stored at the node.
For example, we may specify that a particular node contains publications whose topic is Computer Science and have
at least one author from the University of Washington. The second role is as schema mappings, which describe how
the terminology and structure of one node correspond to those in a second node. The language for storage mappings
is a subset of the language for schema mappings, hence our discussion focuses on the latter.

The ultimate goal of the Piazza system is to use mappings to answer queries; we answer each query by rewriting
it using the information in the mapping. Of course, we want to capture structural as well as terminological corre-
spondences. As such, it is important that the mapping capture maximal information about the relationship between
schemas, but also about the data instances themselves — since information about content can be exploited to more
precisely answer a query.

The field of data integration has spent many years studying techniques for precisely defining such mappings with
relational data, and we base our techniques on this work. In many ways, the vision of Piazza is a broad generalization
of data integration: in conventional data integration, we have a mediator that presents a mediated schema and a set of
data sources that are mapped to this single mediated schema; in Piazza, we have a web of sites and semantic mappings.

The bulk of the data integration literature uses queries (views) as its mechanism for describing mappings: views
can relate disparate relational structures, and can also impose restrictions on data values. There are two standard ways
of using views for specifying mappings in this context: data sources can be described as views over the mediated
schema (this is referred to as local-as-view or LAV), or the mediated schema can be described as a set of views over
the data sources (global-as-view or GAV). The direction of the mapping matters a great deal: it affects both the kinds
of queries that can be answered and the complexity of using the mapping to answer the query. In the GAV approach,
query answering requires only relatively simple techniques to “unfold” (basically, macro-expand) the views into the
query so it refers to the underlying data sources. The LAV approach requires more sophisticated query reformulation
algorithms (surveyed in [22]), because we need to use the views in the reverse direction. It is important to note that in
general, using a view in the reverse direction is not equivalent to writing an inverse mapping.

As a result of this, LAV offers a level of flexibility that is not possible with GAV. In particular, the important
property of LAV is that it enables to describe data sources that organize their data differently from the mediated
schema. For example, suppose the mediated schema contains a relationship Author, between a paper-id and an author-
id. A data source, on the other hand, has the relationship CoAuthor that relates two author-id’s. Using LAV, we can
express the fact that the data source has the join of Author with itself. This description enables us to answer certain
queries — while it is not possible to use the source to find authors of a particular paper, we can use the source to
find someone’s co-authors, or to find authors who have co-authored with at least one other. With GAV we would lose
the ability to answer these queries, because we lose the association between co-authors. The best we could say is that
the source provides values for the second attribute of Author.4 (Recall that the relational data model is very weak at
modeling incomplete information.)

This discussion has a very important consequence as we consider mappings in Piazza. When we map between
two sites, our mappings, like views, will be directional. One could argue that we can always provide mappings in
both directions, and even though this doubles our mapping efforts, it avoids the need for using mappings in reverse
during query reformulation. However, when two sites organize their schemas differently, some semantic relationships
between them will be captured only by the mapping in one of the directions, and this mapping cannot simply be
inverted. Instead, these semantic relationships will be exploited by algorithms that can reverse through mappings on a
per-query basis, as we illustrated in our example above. Hence, the ability to use mappings in the reverse direction is
a key element of our ability to share data among sites, and therefore the focus of Section 5.

Our goal in Piazza has been to leverage both LAV and GAV algorithms from data integration, but to extend them
in two important directions. First, we must extend the basic techniques from the two-tier data integration architecture
to the peer data management system’s heterogeneous, graph-structured network of interconnected nodes; this was the
focus of our work in [23]. Our second direction, which we discuss in this paper, is to move these techniques into the
realms of XML and its serializations of RDF.

Following the data integration literature, which uses a standard relational query language for both queries and
mappings, we might elect to use XQuery for both our query language and our language for specifying mappings.

4 Note that in principle it is possible to define a CoAuthor view in the mediated schema, and map the data source to the view.
However, the algorithmic problem of query answering would be identical to the LAV scenario.
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<pubs>
<book>
{: $a IN document("Source2.xml")\

/authors/author,
$t IN $a/publication/title,
$typ IN $a/publication/pub-type
WHERE $typ = "book" :}

<title>{ $t }</title>
<author>

<name> {: $a/full-name :} </name>
</author>

</book>
</pubs>

(a) Initial mapping

<pubs>
<book piazza:id={$t}>
{: $a IN document("Source2.xml")\

/authors/author,
$t IN $a/publication/title,
$typ IN $a/publication/pub-type
WHERE $typ = "book" :}

<title piazza:id={$t}>{ $t }</title>
<author piazza:id={$t}>

<name> {: $a/full-name :} </name>
</author>

</book>
</pubs>

(b) Refined mapping that coalesces entries

Fig. 2 Simple examples of mappings from the schema of Source2.xml in Figure 1 to Source1.xml’s schema.

However, we found XQuery inappropriate as a mapping language for the following reasons. First, an XQuery user
thinks in terms of the input documents and the transformations to be performed. The mental connection to a required
schema for the output is tenuous, whereas our setting requires thinking about relationships between the input and output
schemas. Second, the the user must define a mapping in its entirety before it can be used. There is no simple way to
define mappings incrementally for different parts of the schemas, to collaborate with other experts on developing sub-
regions of the mapping, etc. Finally, XQuery is an extremely powerful query language (it is, in fact, Turing-complete),
and as a result some aspects of the language make it difficult or even impossible to reason about.

4.1 Mapping Language and Examples

Our approach is to define a mapping language that borrows elements of XQuery, but is more tractable to reason about
and can be expressed in piecewise form. Mappings in the language are defined as one or more mapping definitions, and
they are directional from a source to a target: we take a fragment of the target schema and annotate it with XML query
expressions that define what source data should be mapped into that fragment. The mapping language is designed to
make it easy for the mapping designer to visualize the target schema while describing where its data originates.

Conceptually, the results of the different mapping definitions are combined to form a complete mapping from the
source document to the target, according to certain rules. For instance, the results of different mapping definitions can
often be concatenated together to form the document, but in some cases different definitions may create content that
should all be combined into a single element; Piazza must “fuse” these results together based on the output element’s
unique identifiers (similar to the use of Skolem functions in languages such as XML-QL [17]). A complete formal
description of the language would be too lengthy for this paper. Hence, we describe the main ideas of the language
and illustrate it via examples.

Each mapping definition begins with an XML template that matches some path or subtree of a legal instance of the
target schema, i.e., a prefix of a legal string in the target DTD’s grammar. Elements in the template may be annotated
with query expressions (in a subset of XQuery) that bind variables to XML nodes in the source; for each combination
of bindings, an instance of the target element will be created. Once a variable is bound, it can be referenced anywhere
within its scope, which is defined to be the enclosing tags of the template. Variable bindings can be output as new
target data, or they can be referenced by other query expressions to correlate data in different areas of the mapping
definition. Figure 2(a) illustrates a simple initial mapping from the schema of Source2.xml of Figure 1 to Source1.xml.

We make variable references within {} braces and delimit query expression annotations by {: :}. This mapping
definition will instantiate a new book element in the target for every occurrence of variables $a, $t, and $typ, which
are bound to the author, title, and publication-type elements in the source, respectively. We construct a title and author
element for each occurrence of the book. The author name contains a new query expression annotation ($a/full-
name), so this element will be created for each match to the XPath expression (for this schema, there should only be
one match).

The example mapping will create a new book element for each author-publication combination. This is probably
not the desired behavior, since a book with multiple authors will appear as multiple book entries, rather than as a single
book with multiple author subelements. To enable the desired behavior in situations like this, Piazza reserves a special
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piazza:id attribute in the target schema for mapping multiple binding instances to the same output: if two elements
created in the target have the same tag name and ID attribute, then they will be coalesced — all of their attributes and
element content will be combined. This coalescing process is repeated recursively over the combined elements.

Example 1 See Figure 2(b) for an improved mapping that does coalescing of book elements. The sole difference from
the previous example is the use of the piazza:id attribute. We have determined that book titles in our collection are
unique, so every occurrence of a title in the data source refers to the same book. Identical books will be given the same
piazza:id and coalesced; likewise for their title and author subelements (but not author names). Hence, in the target we
will see all authors nested under each book entry. This example shows how we can invert hierarchies in going from
source to target schemas.

Sometimes, we may have detailed information about the values of the data being mapped from the source to the
target — perhaps in the above example, we know that the mapping definition only yields book titles starting with the
letter “A.” Perhaps more interestingly, we may know something about the possible values of an attribute present in
the target but absent in the source — such as the publisher. In Piazza, we refer to this sort of meta-information as
properties. This information can be used to help the query answering system determine whether a mapping is relevant
to a particular query, so it is very useful for efficiency purposes.

Example 2 Continuing with the previous schema, consider the partial mapping:

<pubs>
<book piazza:id={$t}>
{: $a IN document("Source2.xml")/authors/author,

$t IN $a/publication/title,
$typ IN $a/publication/pub-type
WHERE $typ = "book"
PROPERTY $t >= ’A’ AND $t < ’B’

:}
<title piazza:id={$t}>{ $t }</title>
<author piazza:id={$t}>

<name> {: $a/full-name :} </name>
</author>
[:
<publisher>

<name> {: PROPERTY $this IN {"PrintersInc", "PubsInc"} :} </name>
</publisher>
:]

</book>
</pubs>

The first PROPERTY definition specifies that we know this mapping includes only titles starting with “A.” The
second defines a “virtual subtree” (delimited by [: :]) in the target. There is insufficient data at the source to insert
a value for the publisher name; but we can define a PROPERTY restriction on the values it might have. The special
variable $this allows us to establish a known invariant about the value at the current location within the virtual
subtree: in this case, it is known that the publisher name must be one of the two values specified. In general, a query
over the target looking for books will make use of this mapping; a query looking for books published by BooksInc
will not. Moreover, a query looking for books published by PubsInc cannot use this mapping, since Piazza cannot tell
whether a book was published by PubsInc or by PrintersInc.

Finally, while we have been focusing mostly on pure XML data to this point, our mappings are also useful in
translating to and from XML serializations of RDF. We now present an example that maps from XML to RDF and
also uses value mappings from a concordance table.

Example 3 Suppose that we are attempting to map from Source2.xml of Figure 1 and the OWL instance Source3.rdf.
Furthermore, let us assume that the title of each book is specified differently in each of the sources (perhaps one
source uses an all-caps format and the other uses mixed-case). Let us further assume that a concordance table, concor-
dance.xml, has been populated and that it has a DTD of the following form:
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table
entry*
source2-name
source3-name

We can use the following mapping to map data from Source2.xml into Source3.rdf:

<book piazza:id={$s3} rdf:id={"http://myorg.org/Source3/" + $s3}>
{: $a IN document("Source2.xml")/authors/author,

$t IN $a/publication/title,
$an IN $a/full-name
$typ IN $a/publication/pub-type,
$e IN document("concordance.xml")/table/entry,
$s2 IN $e/source2-name,
$s3 IN $e/source3-name
WHERE $typ = "book" AND $t = $s2 :}

<bookTitle rdf:resource={ "#" + $an } />
<bookName>{$s3}</bookName>

</bookTitle>
</book>
<author rdf:id={"http://myorg.org/Source3/" + $an}>

{: $a IN document("Source2.xml")/authors/author,
$typ IN $a/publication/pub-type,
$an IN $a/full-name
WHERE $typ = "book" :}

<authorName>{$an}</authorName>
</author>

This example highlights the ability to express a mapping between an XML data source and an RDF data source in
Piazza. When an XML document adheres to a valid RDF serialization, it is accessible to Semantic Web applications.
Piazza mappings can be used to convert arbitrary XML into valid RDF, and hence, and data that is available to Piazza
(either directly or through following paths in Piazza) can be made accessible to Semantic Web applications. These
mappings also capture semantic relationships between XML paths (like document(”Source2.xml”)/authors/author)
and RDFS classes (e.g., author).

A more challenging question is to enable flow of data with richer semantics within Piazza. Specifically, Piazza
mappings suffice for capturing data described in RDF (and RDFS(FA) [36]), but they cannot capture the richness of
description logics and therefore of data sources that employ OWL. In order for two sources in Piazza, both described
using ontologies in OWL, to fully capture the semantics of each other’s data, we need to extend our mapping lan-
guage and query reformulation algorithms. While such extensions are beyond the scope of this paper, techniques for
answering queries using views described in description logics (e.g., [8,13]) can be adapted to our context.

4.2 Semantics of Mappings

We briefly sketch the principles underlying the semantics of our mapping language. At the core, the semantics of
mappings can be defined as follows. Given an XML instance, Is, for the source node S and the mapping to the target
T , the mapping defines a subset of an instance, It, for the target node. The reason that It is a subset of the target
instance is that some elements of the target may not exist in the source (e.g., the publisher element in the examples).
In fact, it may even be the case that required elements of the target are not present in the source. In relational terms,
It is a projection of some complete instance I ′

t
of T on a subset of its elements and attributes. In fact, It defines a set

of complete instances of T whose projection is It. When we answer queries over the target T , we provide only the
answers that are consistent with all such I ′

t
s (known as the certain answers [2], the basis for specifying semantics in

the data integration literature). It is important to note that partial instances of the target are useful for certain queries,
in particular, when a query asks for a subset of the elements. Instances for T may be obtained from multiple mappings
(and instances of the sources, in turn, can originate from multiple mappings), and as we described earlier, may be the
result of coalescing the data obtained from multiple bindings using the piazza:id attribute.

A mapping between two nodes can either be an inclusion or an equality mapping (analogues of rdfs:subClassOf
and owl:equivalentClass, respectively). In the former case, we can only infer instances of the target from instances
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of the source. In the latter case, we can also infer instances of the source from instances of the target. However,
since the mapping is defined from the source to the target, using the mapping in reverse requires special reasoning.
The algorithm for doing such reasoning is the subject of Section 5. Finally, we note that storage descriptions, which
relate the node’s schema to its actual current contents allow for both the open-world assumption or the closed-world
assumption. In the former case, a node is not assumed to store all the data modeled by it schema, while in the latter
case it is. In practice, very few data sources have complete information.

4.3 Discussion

To complete the discussion of our relationship to data integration, we briefly discuss how our mapping language
relates to the LAV and GAV formalisms. In our language, we specify a mapping from the perspective of a particular
target schema — in essence, we define the target schema using a GAV-like definition relative to the source schemas.
However, two important features of our language would require LAV definition in the relational setting. First, we can
map data sources to the target schema even if the data sources are missing attributes or subelements required in the
source schema. Hence, we can support the situation where the source schema is a projection of the target. Second, we
support the notion of data source properties, which essentially describes scenarios in which the source schema is a
selection on the target schema.

Hence, our language combines the important properties of LAV and GAV. It is also interesting to note that although
query answering in the XML context is fundamentally harder than in the relational case, specifying mappings between
XML sources is more intuitive. The XML world is fundamentally semistructured, so it can accommodate mappings
from data sources that lack certain attributes — without requiring null values. In fact, during query answering we
allow mappings to pass along elements from the source that do not exist in the target schema — we would prefer not
to discard these data items during the transitive evaluation of mappings, or query results would always be restricted
by the lowest-common-denominator schemas along a given mapping chain. For this reason, we do not validate the
schema of answers before returning them to the user.

While we have been discussing the relationship between our techniques and those of data integration, we remark
that there are similar parallels in the knowledge representation community. Specifically, asserting that a derived (or
complex) concept or property defined in the target ontology corresponds to a base property or class in a source ontology
is similar in spirit to LAV, whereas asserting that a base property or class in the target ontology corresponds to a derived
(or complex) concept or property in the source ontology corresponds to GAV.

5 Query Answering Algorithm

This section describes Piazza’s query answering algorithm, which performs the following task: given a network of
Piazza nodes with XML data, a set of semantic mappings specified among them, and a query over the schema of a
given node, efficiently produce all the possible certain answers that can be obtained from the system.

From a high level, an algorithm proceeds along the following lines. Given a query Q posed over the schema of
node P , we first use the storage descriptions of data in P (i.e., the mappings that describe which data is actually stored
at P ) to rewrite Q into a query Q′ over the data stored at P . Next, we consider the semantic neighbors of P , i.e.,
all nodes that are related to elements of P ’s schema by semantic mappings. We use these mappings to expand the
reformulation of query Q to a query Q′′ over the neighbors of P . In turn, we expand Q′′ so it only refers to stored data
in P and its neighbors; then we union it with Q′, eliminating any redundancies. We repeat this process recursively,
following all mappings between nodes’ schemas, and the storage mappings for each one, until there are no remaining
useful paths.

Ignoring optimization issues, the key question in designing such an algorithm is how to reformulate a query Q

over its semantic neighbors. Since semantic mappings in Piazza are directional from a source node S to a target node
T , there are two cases of the reformulation problem, depending on whether Q is posed over the schema of S or over
that of T . If the query is posed over T , then query reformulation amounts to query composition: to use data at S, we
compose the query Q with the query (or queries) defining T in terms of S. Our approach to XML query composition
is based on that of [20], and we do not elaborate on it here.

The second case is when query is posed over S and we wish to reformulate it over T . Now both Q and T are
defined as queries over S. In order to reformulate Q, we need to somehow use the mapping in the reverse direction, as
explained in the previous section. This problem is known as the problem of answering queries using views (see [22]
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S1.xml:

people
faculty*

name
advisee*

student*

S2.xml:

people
faculty*
student
name
advisor*

(a) XML DTDs of two data sources

<result> {
for $faculty in

document("S1.xml")/people/faculty,
$name in $faculty/name/text(),
$advisee in $faculty/advisee/text()

where $name = "Ullman"
return
<student> {$advisee} </student>

}
</result>

(b) XQuery posed over source S1.xml

Fig. 3 Two schemas about advisors and students, and a query posed over one of the schemas

people

S1

faculty

name advisee

<student> {$advisee}

$name="Ullman"

<result> <S2>

S1

<people> people

<faculty>

faculty
name

{$name}

student
<student>

<advisor>

faculty

$advisee=$student
{$name}

adviseename

{$student}<name>

Query: Mapping: <S2>

<people> {: $people=document("S1.xml")/people :}

<faculty>
{: $name in $people/faculty/name/text() :}
{ $name }

</faculty>

<student>
{: $student in $people/student/text() :}
<name> { $student } </name>

<advisor>{: $faculty in $people/faculty,
$name in $faculty/name/text(),
$advisee in $faculty/advisee/text()
where $advisee=$student :}

{ $name }
</advisor>

</student>
</people>

</S2>

Fig. 4 Matching a query tree pattern into a tree pattern of a schema mapping. The matching tree patterns are shown in bold. The
schema mapping corresponding to the middle graph is shown on the right.

for a survey), and it is conceptually much more challenging. The problem is well understood for the case of relational
queries and views, and we now describe an algorithm that applies to the XML setting. The key challenge we address
for the context of XML is the nesting structure of the data (and hence of the query) — relational data is flat.

5.1 Query Representation

Our algorithm operates over a graph representation of queries and mappings. Suppose we start with the schemas of
Figure 3(a), which differ in how they represent advisor-advisee information. S1 puts advisee names under the corre-
sponding faculty advisor whereas S2 does the opposite by nesting advisor names data under corresponding students.
Now suppose we are provided with a mapping from S1 to S2, and we are attempting to answer the XQuery of Fig-
ure 3(b).

The query is represented graphically by the leftmost portion of Figure 4. Note that the result element in the
query simply specifies the root element for the resulting document. Each box in the figure corresponds to a query
block, and indentation indicating the nesting structure. With each block we associate the following constructs that are
manipulated by our algorithm:

A set of tree patterns: XQuery uses XPath expressions in the FOR clause to bind variables, e.g., $faculty in
document("S1.xml")/people/faculty binds the variable $faculty to the nodes satisfying the XPath
expression. The bound variable can then be used to define new XPath expressions such as $faculty/name and
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bind new variables. Our algorithm consolidates XPath expressions into logically equivalent tree patterns for use in
reformulation5. For example, the tree pattern for our example query is indicated by the thick forked line in the leftmost
portion of Figure 4.

For simplicity of presentation, we assume here that every node in a tree pattern binds a single variable; the name
of the variable is the same as the tag of the corresponding tree pattern node. Hence, the node advisee of the tree
pattern binds the variable $advisee.

A set of predicates: a predicate in a query specifies a condition on one or two of the bound variables. Predicates are
defined in the XQuery WHERE clause over the variables bound in the tree patterns. The variables referred to in the
predicate can be bound by different tree patterns. In our example, there is a single predicate: name="Ullman". If a
predicate involves a comparison between two variables, then it is called a join predicate, because it essentially enforces
a relational join.

A set of variable equivalence classes: the equality predicates in a query define the equivalence classes (ECs) between
query variables. EC information allows for “substituting” a variable for an equivalent one. Note that the ECs of a query
block contain the ECs of the outer blocks. In other words, if a block has the condition $x = $y, the same condition
applies in all of the inner blocks (but not vice versa).

Output results: output, specified in the XQuery RETURN clause, consists of element or attribute names and their
content. An element tag name is usually specified in the query as a string literal, but it can also be the value of a
variable. This is an important feature, because it enables transformations in which data from one source becomes
schema information in another. In our query graph of Figure 4, an element tag is shown in angle brackets. Hence, the
element tag of the top-level block is result. The element tag of the inner block is student. The contents of the returned
element of a query block may be a sequence of elements, attributes, string literals, or variables. (Note that our algorithm
does not support “mixed content,” in which subelements and data values may be siblings, as this makes reformulation
much harder). We limit our discussion to the case of a single returned item. In the figure, the variable/value returned by
a query block is enclosed in curly braces. Thus, the top level block of our example query has empty returned contents,
whereas the inner block returns the value of the $advisee variable.

5.2 The Rewriting Algorithm

Our algorithm makes the following simplifying assumptions about the queries and the mappings (we note that in the
scenario we implemented, all the mappings satisfied these restrictions). First, we assume the query over the target
schema contains a single non-trivial block, i.e., a block that includes tree patterns and/or predicates. The mapping, on
the other hand, is allowed to contain an arbitrary number of blocks. Second, we assume that all “returned” variables
are bound to atomic values, i.e., text() nodes, rather than XML element trees (this particular limitation can easily
be removed by expanding the query based on the schema). In Figure 4 the variable $people is bound to an element;
variables $name and $student are bound to values. Third, we assume that queries are evaluated under a set semantics.
In other words, we assume that duplicate results are eliminated in the original and rewritten query. Finally, we assume
that a tree pattern uses the child axis of XPath only. It is possible to extend the algorithm to work with queries that use
the descendant axis. For purposes of exposition, we assume that the schema mapping does not contain sibling blocks
with the same element tag. Handling such a case requires the algorithm to consider multiple possible satisfying paths
(and/or predicates) in the tree pattern.

The pseudocode for the algorithm is shown in Figure 5.2. In the rest of this section we describe the algorithm in
more detail. Intuitively, the rewriting algorithm performs the following tasks (see the rewriteQueryBlock function in
the pseudocode). Given a query Q, it begins by comparing the tree patterns of the mapping definition with the tree
pattern of Q — the goal is to find a corresponding node in the mapping definition’s tree pattern for every node in
the Q’s tree pattern. Then the algorithm must restructure Q’s tree pattern to parallel the way the mapping restructures
its input tree patterns (Q must be rewritten to match against the target of the mapping rather than its source). That
is done in the function rewriteTreePattern. Next, the algorithm considers the variable(s) returned by the query and
makes sure that the variables are still available in the rewritten query. The function rewriteVar is used here. Finally, the
algorithm must ensure that the predicates of Q can be satisfied using the values output by the mapping, see function
rewritePredicates. The steps performed by the algorithm are:

5 We focus on the subset of XPath that corresponds to regular path expressions, so tree patterns capture the required semantics.
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Query rewriteQuery(Query q, Mapping m) {
// we assume q contains only one non-trivial block
return new Query(rewriteQueryBlock(q.queryBlock, m));

}

// return a single rewriting; we note when multiple rewritings are possible
QueryBlock rewriteQueryBlock(QueryBlock qb, Mapping m) {

// assume a single tree pattern in the query; the case of multiple tree patterns can be reduced to a single pattern
TreePattern rtp = rewriteTreePattern(qb.treePattern, m);

// may need to extend the rewritten tree pattern (rtp) to rewrite the content variable
// multiple rewritings are possible here due to many equivalent vars and different ways of extending rtp.
Set eqVars = qb.eqClassMap[qb.contentVar];
Var rContentVar = rewriteVar(eqVars, rtp, m);
If failure, return failure — not possible to rewrite the content variable.

For each pred in qb.predicates {
Check if the predicate is already enforced in the mapping (1) // see text
If success, no need to add the predicate to the rewritten query block
Else

// rewrite the predicate; multiple rewritings are possible. (2)
Predicate rPred = rewritePredicate(pred, rtp, m).
If success add rPred to the rewritten query block and consider next predicate.
Else

Try extending rtp so that an equivalent predicate in the mapping applies. (3)
If success, no need to add the predicate to the rewritten query block.
Else

Try “folding” rtp to enforce pred as described in text (4)
If success, no need to add the predicate to the rewritten query block
Else return failure.

}
return new QueryBlock(rtp, rPreds, rContentVar);

}

// this function rewrites a given query tree pattern using a mapping.
TreePattern rewriteTreePattern(TreePattern tp, Mapping m) {

Map m.tp into tp; m.tp may have extra branches (path expressions) in all possible ways
Return a rewritten tp that navigates through the matching block structure of m

}

// rewrite one of the given equivalent vars; extend the given rtp if necessary
Var rewriteVar(Set vars, TreePattern rtp, Mapping m) {

// pick one of the equivalent vars; in general every equiv. var will result in a different rewriting
Find if any of the mapping blocks corresponding to rtp return a variable that is the image of one of the “vars”.
If success, return the original var.

Try extending rtp so that one of the “var” images is returned.
If success, return the original var;
Else return failure — no way to get any of the equiv. variables using the mapping

}

// rewrite a given query predicate; make sure all vars are available
Predicate rewritePredicate(Predicate pred, TreePattern rtp, Mapping m) {

Rewrite each of pred’s variables using rewriteVar(); if success, return rPred.
// can’t rewrite the predicae
return failure;

}

Fig. 5 The algorithm for rewriting a single-block query using a mapping.
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Query:

a

b b

<result>

c d

$c=$d

e f

<x> a

Mapping:

<u>

<v>

b

e

f

d
<z> $c=$d

c

<y>

yy

x

Rewritten tree pattern:

z z vu

Folded tree pattern:

y

u v

x

z
Fig. 6 Folding the rewritten tree pattern for predicate rewriting. The result of rewriting the query tree pattern (on the left) using the
mapping, cannot be used to enforce the predicate of the query. The folded tree pattern on the right can.

Step 1: Pattern matching and rewriting. This step (function rewriteTreePattern) considers the tree patterns in the
query, and finds corresponding patterns in the target schema. Intuitively, given a tree pattern, t in Q, our goal is to find
a tree pattern t′ on the target schema such that the mapping guarantees that an instance of that pattern could only be
created by following t in the source. The algorithm first matches the tree patterns in the query to the expressions in
the mapping and records the corresponding nodes. In Figure 4, the darker lines in the representation of the schema
mapping denote the tree pattern of the query (far left) and its corresponding form in the mapping (second from left).
The algorithm then creates the tree pattern over the target schema as follows: starting with the recorded nodes in the
mapping, it recursively marks all of their ancestor nodes in the output template. It then builds the new tree pattern over
the target schema by traversing the mapping for all marked nodes.

Note that t′ may enforce additional conditions beyond those of t, and furthermore, there may be several patterns
in the target that match a pattern in the query, ultimately yielding several possible queries over the target that provide
answers to Q. If no match is found, then the resulting rewriting will be empty (i.e., the target data does not enable
answering the query at the source).

Step 2: Handling returned variables and predicates. In this step the algorithm ensures that all of the variables
required in the query can be returned, and that all of the predicates in the query have been applied. Here, the nesting
structure of XML data introduces subtleties beyond the relational case.

To illustrate the first potential problem, recall that our example query returns advisee names, but the map-
ping does not actually return the advisee, and hence the output of Step 1 does not return the advisee. We
must extend the tree pattern to reach a block that actually outputs the $advisee element, but the <ad-
visor> block where $advisee is bound does not have any subblocks, so we cannot simply extend the
tree pattern. Fortunately, the <advisor> block includes an equality condition that puts the $advisee and
$student variables in the same equivalence class. Since $student is output by the <name> block we
can rewrite the tree pattern as $student in document("S2.xml")/people/student, $advisor in
$student/advisor, $name in $student/name. Of course, it is not always possible to find such equalities,
and in those cases there will be no rewriting for that pattern.

Query predicates raise another problem. Predicates can be handled in one of the four ways as noted in the pseu-
docode. First, case (1), a query predicate (or one that subsumes it) might already be applied by the relevant portion
of the mapping (or it might be a known property of the data being mapped). In this case, the algorithm can consider
the predicate to be satisfied. Case (2) occurs when the mapping does not impose the predicate, but returns all variables
necessary for testing the predicate. Here, the algorithm simply inserts the predicate into the rewritten query. The third
possibility, case (3), is more XML-specific: the predicate is not applied by the portion of the mapping used in the query
rewriting, nor can the predicate be evaluated over the mapping’s output — but a different sub-block in the mapping
may impose the predicate. If this occurs, the algorithm can add a new path into the rewritten tree pattern, traversing
into the sub-block. Now the rewritten query will only return a value if the sub-block (and hence the predicate) is sat-
isfied. Finally, case (4) applies when the mapping contains the required predicate, but the rewritten tree pattern has to
be “massaged” or folded as described below in order for case (1) to be applicable.

In our example query, the predicate can be reformulated in terms of the variables bound by the replacement tree
pattern as follows: $advisor="Ullman". Hence, case (2) applies and the resulting rewritten query is the following:
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UPenn

MSR

IBM DBLP
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CiteSeer
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VLDB

SIGMOD
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DB−Projects

Berkeley

Fig. 7 The topology of the DB Research Piazza application.

<result> {
for $student in document("S2.xml")/people/student,

$advisor in $student/advisor/text(),
$name in $student/name/text()

where $advisor = "Ullman"
return
<student> { $name } </student>

}
</result>

In order to test if a given predicate in the mapping can be used to enforce a query predicate as in case (1), the
following condition needs to be satisfied. For each variable in the mapping predicate, we find the node in the rewritten
tree pattern that corresponds to that variable. If the resulting set of nodes lie on a single path from the root, the mapping
predicate is applicable; otherwise, it is not. To illustrate this rule, consider the example query in Figure 5.2. The single-
block query in this example contains a predicate $c=$d. The mapping does not return the variables matching $c and
$d, however. Hence, the only way to enforce the predicate is to exploit a predicate in the query. Unfortunately, the
rewritten tree pattern does not allow for that as the two z nodes corresponding to the query variables $c and $d do not
lie on one path from the root. To fix this problem, the tree pattern needs to be “folded”, see case (4) in the pseudocode,
along the $y and $z nodes as shown on the right in this Figure. The resulting tree pattern is more restrictive but it
allows for exploiting the predicate in the mapping. Note that because folding results in a more restrictive tree pattern,
it should only be applied when it is necessary for predicate enforcement. Otherwise, some answers may be lost.

Note that in the above discussion, we always made the assumption that a mapping is useful if and only if it returns
all output values and satisfies all predicates. In many cases, we may be able to loosen this restriction if we know more
information about the relationships within a set of mappings, or about the properties of the mappings. For instance, if
we have two mappings that share a key or a parent element, we may be able to rewrite the query to use both mappings
if we add a join predicate on the key or the parent element ID, respectively. Conversely, we may be able to make use
of properties to determine that a mapping cannot produce any results satisfying the query.

6 A Piazza Application

To validate our approach, we implemented a small but realistic Semantic Web application in Piazza. This section
briefly reports on our experiences. While our prototype is still relatively preliminary, we can already make several
interesting observations that are helping to shape our ideas for future research.

The Piazza system consists of two main components. The query reformulation engine takes a query posed over a
node, and it uses the algorithm described in Section 5 in order to chain through the Semantic Web and output a set of
queries over the relevant nodes. Our query evaluation engine is based on the Tukwila XML Query Engine [25], and it
has the important property that it yields answers as the data is streaming in from the nodes on the network.

We chose our application, DB Research, to be representative of certain types of academic and scientific data
exchange. Our prototype relates 15 nodes concerning different aspects of the database research field (see Figure 7,
where directed arrows indicate the direction of mappings). The nodes of DB Research were chosen so they cover
complimentary but overlapping aspects of database research. All of the nodes of DB Research, with the exception
of DB-Projects, contribute data. DB-Projects is a schema-only node whose goal is to map between other sources.
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Table 1 The test queries and their respective running times.

Query Description Reformulation time # of reformulations
Q1 XML-related projects. 0.5 sec 16
Q2 Co-authors who reviewed each other’s work. 1.3 sec 62
Q3 PC members with a paper at the same conference. 0.2 sec 4
Q4 PC chairs of recent conferences + their projects. 0.6 sec 45
Q5 Conflicts-of-interest of PC members. 0.3 sec 15

DB Research nodes represent university database groups (Berkeley, Stanford, UPenn, and UW), research labs (IBM and
MSR), online publication archives (ACM, DBLP, and CiteSeer), web sites for the major database conferences (SIGMOD,
VLDB, and PODS), and DigReview, which is an open peer-review web site. The Submissions node represents data that
is available only to a PC chair of a conference, and not shared with others. The node schemas were designed to mirror
the actual organization and terminology of the corresponding web sites. When defining mappings, we tried to map
as much information in the source schema into the target schema as possible, but a complete schema mapping is
not always possible since the target schema may not have all of the attributes of the source schema. We report our
experiences on four different aspects.

Reformulation times: the second and third columns of Table 1 show the reformulation time for the test queries and
the number of reformulations obtained (i.e., number of queries that can be posed over the nodes to obtain answers to
the query). We observe that even with relatively unoptimized code, the reformulation times are quite low, even though
some of them required traversing paths of length 8 in the network. Hence, sharing data by query reformulation along
semantic paths appears to be feasible. Although we expect many applications to have much larger networks, we also
expect many of the paths in the network to require only very simple reformulations. Furthermore, by interleaving
reformulation and query evaluation, we can start providing answers to users almost immediately.

Optimization issues: the interesting optimization issue that arises is reducing the number of reformulations. Currently,
our algorithm may produce more reformulations than necessary because it may follow redundant paths in the network,
or because it cannot detect a cyclic path until it traverses the final edge. Minimizing the number of reformulations
has been considered in two-tier data integration systems, but the graph-structured nature of Piazza presents novel
optimization issues.

Management of mapping networks: as we noted, due to differences between schemas of nodes, mappings may lose
information. Just because there are two paths between a pair of nodes does not mean that one of them is redundant: one
path may preserve information lost in the other. In fact, we sometimes may want to boost a set of paths by adding a few
mappings that were not originally there. Analyzing mapping networks for information loss and proposing additional
mappings presents an interesting set of challenges to investigate.

Locality of concept management: even comprehensive attempts to model the world with schemas or ontologies are
ultimately approximations of the real world, and there may always exist some ambiguity in their meanings. Most users
will have the same understanding of the concepts defined by a schema, but some discrepancies are bound to occur.
In this respect, we believe that the point-to-point nature of the Piazza network architecture provides a significant
advantage over the use of global ontologies or mediated schemas. Since nodes are free to choose with whom they
would like to establish semantic connections, a node is likely to map into other nodes with a similar schema, because
that is simply easier. As a result, a large network is likely to have clusters of nodes with a similar view of the world,
and it will be easier to track discrepancies across clusters. In contrast, an architecture that maps all nodes to a single
mediated schema is likely to suffer more severely from discrepancies because it requires global consistency.

Finally, we note that Semantic Web applications will differ on how strict answers need to be. If an application
affects sensitive resources (e.g., bank accounts or even schedules), we should ensure that mappings are carefully
controlled. However, much of the promise of the Semantic Web lies in systems that use the semantic markup to
provide best effort query answering. Piazza provides an infrastructure for supporting both kinds of systems, but it
emphasizes the flexibility and scalability needed for the latter kind.

7 Related Work

One of the key goals of Piazza is to provide semantic mediation between disparate data sources. Federated
databases [44] and data integration systems [37,29] both address this problem, but they generally rely on a two-tier
mediator architecture, in which data sources are mapped to a global mediated schema that encompassed all available
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information. This architecture requires centralized administration and schema design, and it does not scale to large
numbers of small-scale collaborations. (Some works, e.g., [47], have proposed hierarchies of mediators, but these
require that the mediated schemas to fit into a tree or DAG of increasing generality, which is frequently not the case.)

To better facilitate data sharing, Piazza adopts a peer-to-peer-style architecture and eliminates the need for a single
unified schema — essentially, every node’s schema can serve as the mediated schema for a query, and the system
will evaluate schema mappings transitively to find all related data. Our initial work in this direction focused on the
relational model and was presented in [23]; a language for mediating between relational sources has recently been
presented in [10]. Mappings between schemas can be specified in many ways. Cluet et al. suggest a classification
of mapping schemes between XML documents in [15]; following their framework, we could classify our system as
mapping from paths to (partial) DTDs. The important, but complementary issue of providing support for generating
semantic mappings between peers has been a topic of considerable interest in the database community [41,18], and
in the ontology literature [30,19,35]. A model for estimating information loss in approximate mappings has also been
studied [31]. An important problem that we have not yet addressed is that of potential data source inconsistencies; but
this problem has received recent attention in [6,27].

A second goal of this paper is to address not only mediation between XML sources, but to provide an intermediary
between the XML and RDF worlds, since most real-world data is in XML but ontologies may have richer information.
Patel-Schneider and Simeon [39] propose techniques for merging XML and RDF into a common, XML-like represen-
tation. Conversely, the Sesame [12] stores RDF in a variety of underlying storage formats. Amann et al. [3] discuss a
data integration system whereby XML sources are mapped into a simple ontology (supporting inheritance and roles,
but no description logic-style definitions).

The Edutella system [33] represents an interesting design point in the XML-RDF interoperability spectrum. Like
Piazza, it is built on a peer-to-peer architecture and it mediates between different data representations. The focus of
Edutella is to provide query and storage services for RDF, but with the ability to use many different underlying stores.
Thus an important focus of the project is on translating the RDF data and queries to the underlying storage format and
query language. Rather than beginning with data in a particular document structure and attempting to translate between
different structures, Edutella begins with RDF and uses canonical mappings to store it in different subsystems. As a
result of its inherent RDF-mediated architecture, Edutella does not employ point-to-point mappings between nodes.
Edutella uses the JXTA peer-to-peer framework in order to provide replication and clustering services.

The architecture we have proposed for Piazza is a peer-to-peer, Web-like system. Several other projects in the
database community are developing similar architectures, though their focus is on issues other than schema medi-
ation [5,1]. In the KR community, work on the OBSERVER [32] and Kraft [40] systems have explored a number
of issues in distributed ontologies, including mappings from structured sources and approximate mappings between
concepts in ontologies.

The work [34] describes PeerDB, a P2P-based system for distributed data sharing. Similar to Piazza, PeerDB does
not require a global schema. Unlike Piazza, PeerDB does not use schema mappings for query reformulation. Instead,
PeerDB employs an Information Retrieval -based approach for query reformulation. In their approach, a peer relation
(and each of its columns) is associated with a set of keywords. Given a query over a peer schema, PeerDB reformulates
the query into other peer schemas by matching the keywords associated with the two schemas. Unlike Piazza, PeerDB
does not need to chain multiple reformulation steps as the keywords in any pair of schemas can be matched directly.
Also, in PeerDB, some reformulated queries may not be meaningful, and the user has to decide which queries are to
be executed.

Recently, there has been significant interest in developing grid computing architectures (see www.mygrid.org.uk,
www.gridcomputing.com), modeled after the electric power grid system. The goal is to construct a generic parallel,
distributed environment for resource sharing and information exchange, and to allow arbitrary users (especially scien-
tific users) to “plug in” to the grid. As noted in the lively discussion in [42], there will be some interesting relationships
between grid computing and the Semantic Web. We believe that Piazza provides a data management infrastructure to
support data services on the grid.

Finally, we note that Piazza is a component of the larger effort to cross the structure chasm [21], where we address
the entire life-cycle of content creation on the Semantic Web, and consider the problems of facilitating and enticing
non-techincal users to create structured data on the Semantic Web.
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8 Conclusions and Future Work

The vision of the Semantic Web [9] is compelling and will certainly lead to significant changes in how the Web is used,
but we are faced with a number of technical obstacles in realizing this vision. Knowledge representation techniques
and standardized ontologies will undoubtedly play a major role in the ultimate solution. However, we believe that the
Semantic Web cannot succeed if it requires everything to be rebuilt “from the ground up”: it must be able to make
use of structured data from non-Semantic Web-enabled sources, and it must inter-operate with traditional applications.
This requires the ability to deal not only with domain structure, but also with document structures that are used by
applications. Moreover, mediated schemas and ontologies can only be built by consensus, so they are unlikely to scale.

In this paper, we have presented the Piazza peer data management architecture as a means of addressing these
two problems, and we have made the following contributions. First, we described a mapping language for mapping
between sets of XML source nodes with different document structures (including those with XML serializations of
RDF). Second, we have proposed an architecture that uses the transitive closure of mappings to answer queries. Third,
we have described an algorithm for query answering over this transitive closure of mappings, which is able to follow
mappings in both forward and reverse directions, and which can both remove and reconstruct XML document structure.
Finally, we described several key observations about performance and research issues, given our experience with an
implemented Semantic Web application.

Although our prototype application is still somewhat preliminary, it already suggests that our architecture provides
useful and effective mediation for heterogeneous structured data, and that adding new sources is easier than in a tradi-
tional two-tier environment. Furthermore, the overall Piazza system gives us a strong research platform for uncovering
and exploring issues in building a semantic web. We are currently pursuing a number of research directions. A key
aspect of our system is that there may be many alternate “mapping paths” between any two nodes. An important prob-
lem is identifying how to prioritize these paths that preserve the most information, while avoiding paths that are too
“diluted” to be useful. A related problem at the systems level is determining an optimal strategy for evaluating the
rewritten query. We are also interested in studying Piazza’s utility in applications that are much larger in scale, and in
investigating strategies for caching and replicating data and mappings for reliability and performance.
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