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Abstract

Identifying the functionality in objects means to be able to associate a purpose with them in a
specific environment. The purpose depends on the intention of the agent and on the applicability
of the object in a particular task. In our investigation of functionality we focus on functionalities
which involve changes of physical relation and properties between objects in the environment. A
formal model, based on Discrete Event Dynamic System Theory (DEDS), is introduced to define
an interactive task for recovering and describing functionality. To observe and control the recovery
process we introduce the notion of piecewise observability of a task by different sensors. This allows
the description of a dynamic system in which neither all events nor the time of their occurrence
may be predicted in advance. We have developed an experimental system comnsisting of actuators
and both force and position sensors, for carrying out the interactive recovery of functionality.
In particular, we demonstrate how this approach can be used by carrying out some experiments
investigating the functionality of piercing. Furthermore, we discuss the importance of a multisensory
approach for the observation and interpretation of functionality.
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1 Introduction

Functionality of an object can be identified with its purpose and utility in a specific environment. Its
purpose depends on the intention of an agent and the utility denotes its applicability in a particular
task. Although functionality can be defined abstractly, to be identified in a specific object it needs
to be explored in the context of an environment. Furthermore, such an environment must be
dynamic since functionality manifests itself in the interaction between objects. We distinguish
two types of interactions. The first one expresses some degree of constancy of physical relations
and properties of a single object in time. The purpose of containment and support, for instance,
characterize such type of constancy. The second type, addresses the changes of the properties of
objects and physical relations over time as an object interacts with another (a knife piercing) or

with the environment (a sponge absorbing).

In this paper we investigate the representation and recovery of functionality in the context of
a dynamic environment. We believe that functionality recognition increases our comprehension of
the environment we operate in. Furthermore, it provides us with means for attributing a purpose

to an object in a context and hence improves our ability to recognize them.

Object recognition systems involving multisensory modalities are focusing more and more on
being adaptive and capable of learning. Hence it is essential that a system supporting this flexibility
be able to investigate its environment and determine not only the physical properties of an object

but also its applicability in a task.

Functionality is not a characteristic unique to a single object, and a particular object may
have more than one specific functionality. For example, a fork could be used for cutting as well
as for piercing. Many artifacts do, in fact, possess more than one functionality and do so in
different degrees of performance. Furthermore, the functional attribution of an object is context—
and application—dependent. Thus, a knife can be defined as a tool suitable for cutting another
object, but it is the applicability of a particular object for cutting which allows us to identify it as

a knife.

Differently from all other object properties and attributes, such as color, shape, size, material
or kinematic properties functionality addresses the interaction between the agent and the world,
modulo the task and context. Determining the functionality of an object provides for means of
categorizing things based on perceptual information. The seminal work of Rosch, [Rosch, 1973;
Rosch, 1978], points out the distinction between a basic category, a sub-category, and a super-

category. Rosch argued that while basic categories are primarily discriminated by their shape,
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subcategories by details of shape and texture, and the supercategories are characterized by and
large by the function of the object. For instance, a vessel is the supercatergory, glass is the basic

category and goblet is an example of sub-category.

In our investigation of functionality we focus on functionalities which involve changes of physical
relation between an object in the environment by interaction. In particular, we emphasize and
develop an interactive and performatory approach to functionality recovery from sensor data in the
context of robotic manipulatory tasks. This interaction does not only provide means to verify
the hypothesized presence of functionality in objects but also a way to actively and purposively
recognize the object. The representation of functionality allows us to extend the recovery process

to a hierarchy of functionalities, allowing complex ones to be composed from simpler ones.

The formal model introduced here, based on Discrete Event Dynamic System Theory (DEDS),
allows to define an interactive task for recovering and describing functionality. To observe and
control the recovery process we introduce the notion of piecewise observability of a task by different
sensors. As an example, we address the functionality of piercing. We demonstrate the experimental
system being developed, with both force and position sensors, for carrying out the interactive
recovery of functionality. Furthermore, we carry out some experiments to show how the sensors
employed can be used to observe and interpret the interaction. At a later stage we will introduce a
mechanism for addressing issues of classification based on functionality, issues of performance, and

issues of learning.

1.1 Overview

This paper is organized as follows: in section 2 we outline some of the related work in the area.
Section 3 introduces a characterization of functionality. We also investigate the importance and
limitation of the information that is provided by shape in the definition of functionality, especially
when seen in the context of manufactured objects. Section 4 outlines the formalism based on
DEDS to describe a task model that can both represent and interactively recover functionality. In
section 5 we examine how planning could be used to construct tasks based on DEDS primitives.
As an example of the recovery process, we present, in section 6, a detailed analysis of the task of
piercing using the formalism developed in the preceding section. Furthermore, we show how the
instantiation of the task may proceed from defining a plan to the actual detailed description using
DEDS. Section 7 shows how the task described is mapped to the different actuators and sensors. In
section 8 we present three experiments using an implementation of our system. Finally, in section 9,

we conclude by pointing out what we have accomplished so far and outline further developments
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2 Related Work

Through the past three decades functionality has received only limited attention, only recently
researchers have begun to address its definition, representation and recovery. Yet there is little
consensus as to what these should be. In this section we present a brief survey of the research on

this topic with emphasis in the area Computer Vision.

Freeman and Newell [Freeman and Newell, 1971] were amongst the first who addressed function-
ality in objects as means of “devising artifacts for accomplishing goals”. In ACRONYM [Brooks,
1980] one of the first attempts to bring functionality to object recognition is presented. In [Lowry,
1982], the author points out that functionality should be represented as a hierarchy of kinematic
primitives, functional primitives, and causal networks. In [Winston et al., 1984], the authors use
natural language descriptions to provide identification of object physical and show how physical

models can be learned using functional definitions.

Brady et al., [Brady et al., 1985], present a system, “Mechanic Mate”, intended to assist a
handyman in a generic construction and assembly operation. The paper addresses the interplay of
planning and reasoning, and the functional significance of higher order structures in the organization
of the recovered information. Connell and Brady, [Connell and Brady, 1987], describe a system,
based on a modified version of Winston’s Analogy program, [Winston, 1980], which uses semantic

nets to investigate the relation between form and function.

More recent investigations of functionality were carried out by Stark and Bowyer, [Stark and
Bowyer, 1991]. They focused on the classification of CAD models of chairs. The work addresses
the shape of the object and of its components as means of detecting functionality. In a subsequent
development [Stark and Bowyer, 1993], they extend their system to begin acquiring data from a
real environment. Brand [Brand, 1993] introduces a vision system for investigating interactively
how machines work. This work brings together causal and functional knowledge for interpreting
incorrect data from lower level primitives and for directing lower level vision routines to area of
interest. Bogoni and Bajcsy, [Bogoni and Bajcsy, 1993], present a framework, based on discrete
event dynamic systems, to investigate manipulatory functionalities. Rivlin et al., [Rivlin et al.,
1993], present a view of functionality recognition in objects as a goal oriented task in the context
of robotics. The functionality of objects is investigated with respect to its shape, using Pentland’s
Thingworld [Pentland, 1986]. Tsikos and Bajcsy, [Tsikos, 1987], carried out some experiments ad-
dressing movability and removability of objects in a scene. Their work focused on part-assembly and

disassembly. Campos and Bajcsy, [Campos, 1992], investigated material and kinematic properties



of object and in particular considered joints mobility. Salganicoff, [Salganicoff, 1992], investigates
visually guided grasping with focus on learning procedures. These last three works are significant
to our research for they focus on the interaction with the environment for the acquisition of objects

properties.

In the field of Artificial Intelligence functionality has been considered in the context of Causal
Reasoning, Planning, Qualitative Reasoning, etc. The literature addressing these investigations is

considerable and will not be addressed in detail here.

In psychology, Jordan, [Jordan, 1991}, addresses the importance of physical properties in under-
standing object functionality. Smith and Medin, [Smith and Medin, 1981], point out how functional
features should actually be considered part of the core features appearing in concepts description.
By using exploratory procedures (EP), [Klatzky et al., 1987; Lederman and Klatzky, 1987], focus

the investigation of object properties and in particular focus on haptic properties.

In robotics the work of [Cutkosky, 1989; Iberall et al., 1988] addresses the importance of under-
standing functionality when manipulating and interacting with an object. Stein and Paul, [Stein
and Paul, 1993], present a system, in the context of telerobotic, for local force control to allow the

operation of cutting.

Finally, we find some additional sources on the importance of functionality in the studies carried
out by anthropologist Goodall, [Goodall, 1986]. She investigated the functional usage of tools by
Chimpanzees. The importance of functionality and the extraction of the functional properties
of objects is also found in the study of the function of stone tools carried out by anthropologist.
Grace, [Grace, 1989].

Having considered the related work, we note that the investigation in the area is just beginning.
Issues of definition and representation are still debated and the recovery of functionality is, for
the most part, addressed either abstractly or inferred from shape. In most of these cases, the
object properties are assumed and not recovered from the object. This is because the recovery of
properties ushers research in areas in which uncertainty and noise from sensor measurements must
be addressed. Specifically, recovering objects properties involves interactions with the object using
different sensor modalities. At times the data obtained might be partial and an active approach
must taken to acquire other data. Furthermore, even when some of the properties are known a
priori, some testing must be carried out to verify or to establish other conditions. On the overall,
this type of investigation requires a cross-disciplinary approach ranging from Control Theory to
Vision and Robotics, from Psychology to Artificial Intelligence. The problem of properties recovery

suddenly spans too many areas becoming rather complex.
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The approach we present here does not sidestep these issues, rather focuses on defining the
problem clearly and constraining it so that the investigation of functionality may become tractable.
To that aim we have developed a system whose goal is that of interacting with an object recovering
the properties which characterize a specific functionality and at the same time investigates the
object applicability in a context. In the sections to follow we will present a formalism for expressing
a functional task for dealing with the complexity of a multi-sensory interaction in a dynamic
environment. Furthermore, we will carry out some experiments to investigate the functionality of

piercing.



3 Defining and Representing Functionality
We have defined functionality as the association of a purpose with an object in a specific envi-

ronment. Now, we examine what are the components which define an object and how these concur

to the definition of functionality.

3.1 Object Definition

The properties that objects possess can be classified as:

Geometrical properties identify quantifiable parameters defining shape, dimensions, volume,

etc.

¢ Material properties are also quantifiable measures. Their attributes are defined in terms of

density, coefficient of friction on the surface, thermal properties, etc.
e Kinematic properties identify the mobility of parts in an object, such as in a pair of scissors.

e Dynamic properties describe how the object responds to forces applied to it, such as the

behavior of a compressed spring (stiffness).

¢ Functional properties identify the set of physical, (material and geometrical), kinematic and

dynamic properties which characterize the functionality of an object.

Considering the properties listed, it becomes clear that different sensor modalities need to be
employed to recover them. Global and local geometrical properties, such as volume, may be re-
covered from visual observations using stereo, shape from X for monocular vision, or laser-ranging
sensors [Shirai, 1987]. Material properties may be recoverable visually by looking at reflectance and
texture qualities of the surface. By using exploratory procedures (EP), [Klatzky et al., 1987; Led-
erman and Klatzky, 1987], however, compliance and surface texture may be “felt” by using contact
type sensors. Temperature probes may also be employed for actively determining constituent ma-
terials [Campos, 1992]. Kinematic [Campos, 1992] and dynamic properties [Sinha, 1992}, however,

require more complex EPs.

The physical properties of an object are intrinsic and its functional properties are part of the
role it plays in an environment. Hence its functional representation, beside its intrinsic properties,

must take into account:
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OBJECTS TASKS

Task Description

Geometric Properties Goal / Expectations

Material Properties .
P Sensory Observations

Kinematic Properties Mode of Interaction

Dynamic Properties [ Intended User ]

[ Intended Recepient ]

Figure 1: Object properties and functional description of an interactive task. Also shown are many-

to—many mappings between tasks defining a functionality and the object employed to accomplish the
particular functionality.

the purpose that an object is to fulfill as expressed in a task description;

the goal and expectation of the interaction involved in the functional task;

the sensory modalities responsible for observing the interaction;

the mode in which the interaction takes place;

a possible intended agent and recipient of the task.

In Figure 1 we show the relation between an object and a task and emphasize that there is no
unique mapping between an object and function that the object may fulfill. For instance, one may
use a fork for cutting and piercing. Likewise, a knife and a fork may be used for piercing. The
former instance is shown in Figure 1 as the mapping of ¢;x and t; to object O,,, while the latter is

portrayed as the mapping of #; to objects O, and Oy.

3.2 Types of Functionality

Focusing on whether the properties and relations of the object are changing or constant allows
us to distinguish different types of interactions and observations. In particular, the functionality

of support or that of containment focuses on whether some of the spatial relation between objects
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remain unaltered over time. The functionality of cutting, on the other hand, concentrates on

changes which take place as a result of the interaction.

Furthermore functionality can be characterized as intended, imposed, intrinsic, or inherited.

¢ Intended functionality identifies functional properties defined in an artifact at the time of

its design.

e Imposed functionality defines the ability of using an object for a function for which it is not

necessarily intended.

e Intrinsic functionality denotes functional properties which either characterize an intended
functionality, in the case of an artifact, or define a functionality in virtue of physical properties
of the object.

o Inherited functionality denotes a property which is either a specialization from an object or
constitutes a new object in which functional properties are combined from different objects

to fulfill one or more functionalities.

This distinction allows us to better understand the functional roles of artifacts and of natural objects
but does not define an ordering of intended, imposed, intrinsic, and inherited functionalities. This
is because while such ordering might be possible for some classes of objects, it is not definable in

general. In particular, as we have seen above, context must always be be taken into account.

To clarify the distinction between intended and imposed functionality we note that a fork
is constructed with the intended functionality of piercing and carrying, yet one may impose on
it the functional property of cutting. Artifacts in general possess both intended and imposed
functionalities. In artifacts intrinsic properties are defined when the object is designed. Natural

objects, such as rocks, on the other hand, have imposed and intrinsic functionality.

The distinction between intrinsic and other types of functionalities becomes clear when seen in
the context of natural objects. A natural object, such as a stick, has properties and in a perhaps
larger view was “created” to fulfill a function. On the other hand, once we take two sticks we may

use them for chopsticks, hence imposing a functionality on a natural object.

Intended and intrinsic functionalities are characterized by necessary functional properties while
imposed functionalities require the object to possess properties which are sufficient for it to be
applicable in the context. The “rigidity” of a table’s surface is a necessary material property of

the object to afford the function of support. On the other hand, “thinness” in a penny is just a
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sufficient property for applying it as a screwdriver. In the case that the functionality imposed on
an object coincides with the intended object‘s functionality, then the functional properties are both
necessary and sufficient. This last case identifies the application of the proper tool for a specific
task.

The characterization of functionality as inherited is useful for classifying an object in terms
of its functionality with respect to others. This type of specification relates, for instance, the
functionality of containment fulfilled by a tea cup to that of a glass. The process of specialization of
the functionality of an object or that of combining functionalities from different objects constitute
a designation of oune or more functionalities into an artifact. However, the designing of some
functional properties in an artifact is what we had identified as intended functionality. Hence while

this distinction is useful for classification, we will not dwell on it further.

As we can see there are many components playing a role in the definition of functionality of an
object. We now investigate the importance played by components other than shape. In particular,
this consideration becomes quite easy to notice when considering the functionality of an artifact

designed in a manufacturing environment.

3.3 Functionality, Manufacturing and the Role of Shape

We have pointed out that many properties contribute to defining the function of an artifact, see
Section 3.1. When a product is developed there are many interactions which take place Com-
puter Aided Design (CAD), Computer Aided Engineering (CAE), Computer Aided Manufacturing
(CAM), and Service, to name a few. Each of the participants focuses on different issues concurring
in the construction of the product {see Figure 2). The design for a product has several objectives
that may be conflicting. Concurrent Engineering provides a systematic way for handling the in-
teraction between the different goals of the various components participating the the design. This
process is known as Designing for X, [Asfahl, 1992]. Hence shape is often not enough for determin-
ing the functionality. Yet being able to construct a geometric model is only a part of the process.
Some part properties (Figure 3, 4, 5 and reffig:manuf-assembly), are not “functionally significant”
but have the purpose of making manufacturing, assembly, maintaining, etc.. easier. In certain
cases asymmetry inay be introduced for the purpose of making part orientation easily detectable.
In other cases, symmetry may be introduced to make assembly simpler and not require special
efforts to reorient a pin in order to be assembled. In other situations still, the object shape may be

altered as a way to eliminate possible entanglement of the parts.
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CAE CAM

PRODUCT

[ ]

Environment

SERVICE

Figure 2: Components in concurrent engineering.

Difficult to Orient Preferred

Projection

Fiat

Pin

Blo
Bl

Figure 3: Examples in which parts asymmetry facilitates orientation for automatic assembly but in
which no additional functionality is added to the components with the modification.
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Difficult to Orient Preferred

Figure 4: Examples in which part symmetry facilitates orientation.

Figure 5: Pin. A change in area can be attributed to CAE requirements addressing perhaps thermal
dispersion of the pin.

Figure 6: An example of how assembly requirements may influence the design. Left: as designed, the
product consists of several components. Right: redesigned product.
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We can further notice the relevance of other aspects when considering the work done in the
area of reverse engineering. In [Koivunen and Bajcsy, 1993], the authors present techniques for
reconstructing geometric models from range data. The reverse engineering process allows to recover
the description of the object and to express the model data in a procedural language as well as
in a product data exchange format (IGES). Yet other considerations will need to be brought in
to understand the functionality of the object. Hence it is clear that while shape is an important
descriptor for an object, there are many other aspects which need to be represented as well as

recovered if the description is to reflect the functionality of the object.
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4 Formalism for a Functional Task

The description of a task must provide for addressing its observability through different sensor
modalities. It must also handle an environment in which not all interactions and exact time
occurrences might be defined and predictable in advance. To describe an interactive process we
adopt the formalism provided by Discrete Event Dynamic System theory, (DEDS) [Ramadge and
Wonham, 1989]. This formalism allow us to model the behavior of a system in which uncertainty,
external observability, and non-determinism can be addressed. As we shall see, however, this
formalism does need to be extended to be able to incorporate probability measures and realtime
controls. [Sobh, 1991; Kosecka and Bajcsy, 1993] present examples of the application of DEDS as

a means for expressing visually guided behavior of systems.

According to DEDS theory the behavior of a dynamic system can be modeled as a non-
deterministic finite automaton (NDFA). In such a NDFA arcs identify events and states identify
fragments of operational behaviors or logical states of the system. Thus a state can be defined in
terms of state variables. Transitions to other states may occur when these variables reach specified
values. For example in the motion of a robotic arm the set of state variables might include those
needed to specify the position of the end-effector. The transitions to a new state could be repre-
sented by the state variables having obtained a particular value identifying, for instance, contact.
In this example we would have two states, the first one identifying the motion of the end-effector

and the second one identifying the contact state.

Events which allow the transition from a state to another may be disabled or enabled as a
means of guaranteeing controllability of the system. In [Sobh, 1991] transitions between states are
also assigned probability functions. These functions determine the probability that a given event

has been asserted.

Any task can be described as a simple action or as a sequence of actions or subtasks. Then we
can identify some of these actions to represent states of the systemn. While events identify changes

in the variables describing the system, we distinguish the following sets of events:
e A change in the state variables, A, in which the value of one or more variables describing the
event has reached a specified value.
e The assertion of logical expressions, A, possibly denoting groups of events.

e The reaching of a guarded value, G, for one or more state variables to which a particular

meaning has been attributed, such as safety conditions. (where G is actually a subset of A)
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This partitioning is done for convenience of expression. Logical expressions, in particular, are here

intended as means of clustering events and attributing a meaningful interpretation.

4.1 Automata Model for the DEDS

The set of labels of the events is given by ¥ = AUAUG. A string s = 01,0,,...,0% from L%
describes a sequence of events, also known as event trajectories. The admissible subset of strings
from ¥7 defines physically possible sequences of events which constitute a task. A recognizer,
M, can be described as a NDFA consisting of a set of states, ¢, an initial state, ¢g, a transition
function 6 : ¥ x @ — @, and a set of final states, (J,, (marked states). The set X(¢;)
designates the collection of events which are associated with state ¢,. The set ¥(q¢;) is defined as
Y(g) = A(g) U Alg;) U G(g). A recognizer M; will accepts the strings from X+ describing
a sequence of events denoting a task, ¢,. In particular, M;, characterizes the task’s procedural

description.

4.2 Controllability

The set of events which we have identified above may include some which are controllable (that
can be disabled) and some which are uncontrollable. Thus, we can partition ¥ into X, U X,.
Enabling and disabling certain events can be described by the control pattern for the specific state.
Let T' = {0,1}%¢ define the set of binary patterns assignable to the elements from X,. Then the

function v : ¥, — {0,1} defines whether they are enabled or disabled.

The transition function § above can now be defined as ¢, : I' x ¥ x @ — @

é(o,q) if 6(¢, q) defined and y(o) = 1
be(v,0,q) =

undefined otherwise

Then the generator G. = (Q, ' X X,6., ¢y, @) is called the Controlled Discrete Event System.
Such a controller is called a Supervisor. Further details can be found in [Ramadge and Wonham,

1989].

4.3 Observability of the Interaction

A task t; is observable if the sequences of events which define it are observable. Figure 7 portrays

an instance in which some of the events from a string from £*, ¢ = «; a3 a3, are not observable
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Figure 7: Observable events, ¥, mapped to Sensors.

and mapped to the empty set, &. We can define a projection function mapping events from X~ to

the individual sensors S;’s from S (set of sensors).

Let S be the set of available sensors, 5;. Then an event o; from ¥ can be mapped to some
event e;; € 5, if the given event may be observable by the sensor in question and to ® otherwise.

This can be stated as

P(0i,5,) = e, if event o; is observable by sensor S,
v $  otherwise

Observability is contingent on the ability of monitoring the different events. The observability
of the individual events in the task must be guaranteed by the different sensor modalities if the

overall task is to be observable.

We now elaborate on the implications of these definitions. In particular we address the following

issues: full, partial, and piecewise observability.

4.3.1 Full Observability

Full observability can be stated as follows. Let W, defined as above, describe all possible strings
of events accepted by a recognizer M, , which describes the procedural behavior of task ¢,. Then

task t; is fully observable if all of the events in strings from W are observable.

We can express this condition by considering the following. Let V define an indicator function

which will assign a 1 if the projection of some event o, in string w; from W maps to some sensor
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e '@& — =

oy

Figure 8: This example illustrates two instances of the effects of partial observability of two actions.
The dotted lines represent non observable events.

from §:

1 iff Plo,,S;)# @ VS, € §

Vio;) =

0 otherwise
Then we can express full observability of task t; by the following function describing the boolean
product.

o;w) = [ | II vie)
w, €W \o;€ew,

O¢(W) =1 then indicates that all the paths describing the task t, are observable. The subscript
fin O stands for the full observability.

4.3.2 Partial Observability

The projection function, P(o;,S;), allowed the description of observability of an event by some
sensor S,. What happens, however, if some of the events which characterize the task are not
observable, i.e. Vf(o;) = 07 In this case some of the states become indistinguishable and we have
situations as in Figure 8. We call this effect of projecting one event to the null event and collapsing
two states into one aliasing. (In the mapping transformation illustrated later we will mark aliased

states by shading them (see Figure 10).

It is also possible that, as exhibited in figure 9, partial observability may give rise to ambiguity.
In fact, in this case while the original task description exhibits a clear procedural flow from the

the initial state to the final state, the partial observation transformation introduces ambiguity.
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Figure 9: This example illustrates an instance of the adverse effects of partial observability. The dotted
lines represent non observable events.

Considering the possible paths in the left automaton which could be taken during the evolution of
the task, in figure 9, it is not clear how important it is that event a3 should take place. In the

automaton on the right it is not clear that the action may be at all observable.

4.3.3 Piecewise Observability

If a task is partially observable by different sensors then it is piecewise observable as a whole.
Redundancy in observing an event using more than one sensor can be employed to corroborate the
evaluation of the observations. However, the application of more than one sensor modality goes
beyond the issue of corroboration it provides for means of guaranteeing that task is observable. In

general, non-trivial tasks will require observations from different sensors.

Sensors are not always faithful and reliable informers and uncertainty has to be introduced in
the system. In particular, it is important to be able to identify the uncertainty originating from
sensor noise, from the environment, and from the detection of an event denoting a transition to
a different state in the system. Thus, as described in [Sobh, 1991], we introduce a probability

measure associated with the occurrence of the events.

In Figure 10 we illustrate a DEDS description of a task involving an action leading to contact. In
the supervisor description of the task we have distinguished controllable and uncontrollable events.
In the observers we have associated with certain events some measure of probability P(.). In the
case of the force sensor, some of the states are indistinguishable since the events between them are
unobservable. Tt is, in fact, only upon reaching contact that the force sensor will be able to assert
that an event has occurred. As we can see in Figure 10, the overall task is piecewise observable by a
vision sensor and a force/tactile sensor. It is, in fact, the combination of the two sensor modalities

which make the whole task observable.
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Figure 10: DEDS description of a task involving an action leading to contact. Left: the supervisor
description of the task. Right: the task as observed by the different sensors. The nodes in the shaded
area identify those that can not be distinguished by the sensor.

4.3.4 Guaranteeing Observability

It is clear from the above examples(Figures 8 9) that not all partial observable mapping are de-
sirable. Thus our notion of observability must include some strong conditions on the observability
of certain events. This is equivalently expressed by considering the distinguishibility of the states
that these events transfer to. This can be accomplished by requiring that the critical paths include

those states.

Therefore, we define a set of distinguished states to describe those states which, if they appear
along a critical path, must not be aliased with some other distinguishable state. The distinguished
states described here define a concept similar to what in DEDS terminology is known as marked

states.

This definition does not require that all the distinguishable states be visited, only that they be
unambiguously marked. This distinguishable states do not include the initial and final state, nor

the set of the dead states.
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Procedurally the observability of events can be verified by checking that after the mapping the
events in the supervisor are covered, allowing for those which may be only logical transitions and
do not necessarily reflect physical changes of state variables. One such transition could be defined

as a transition between one subtask and another. We will discuss some examples in Section 6.2.

4.4 Sensor Selection for Observability

The selection of the sensors which should be involved clearly depends on the task and the environ-
ment in which they are going to be applied. Furthermore, they determine the type of observations

which can be carried out aud the type of models which can be recovered.

We distinguish two levels at which this selection is to take place, a task and an implementation

level.

The task level description identifies the type of interaction and hence the type of sensors which
are required to render the overall task observable. When a group of events is observable by more
than one sensor it might be preferable to focus more on one of the sensors rather than others. Thus,
any event mapped to more than one sensor should have a measure of importance associated with
it. [Sakaguchi and Nakano, 1992] present a framework, based on information theory, for selectively

choosing the sensors yielding the most informative type of observation, intentional observation.

The implementation level is responsible for associating the adequate routines and models with
the sensors available, selecting those which best suit the constraints of both task and environment.

We find examples of this association between task and sensors in the area of computer vision.

[Tkeuchi and Hebert, 1990] present a task-oriented approach for selecting visual routines which
fit the task requirements. The authors given two examples: a bin picking and a rock sampling
system in which representation models, feature detection, and sensor selections were task driven.
The systematic analysis of the tasks exernplified in the article provides the motivation for the choice
of sensors, models, and feature segmentations routines. However, a mechanism to provide for the
selection is not specified. One would like, eventually, to be able to device a system for automatically

performing this implementation level, but this is a wide and open area of research.

Having outlined the issue of sensor selection we return to investigate the composition of func-

tionalities.
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4.5 Primitive and Complex Functional Tasks

The interaction domain A can be constructed from an initial set of actions denoting functional
tasks, Ker(A), which we define to be the primitive set. Complex tasks can be composed from a set
of primitive tasks which have been fully explored. Since the individual components are piecewise
observable the resulting new action will be observable. We can define an algebra of tasks with the

operations:

o Composition as the sequencing of a list of actions, written as C'(aq,...,az).

e Repetition as the composition of a given action a, € A with itself.

Sawing, for instance, could be easily seen as an operation in which composition and repetition
occur. In Figure 11, in the following section, we show a case in which two simpler functionalities
have been composed into the task for piercing. Further discussion on the composition of primitives
are given in more detail in [Bogoni and Bajcsy, 1993]. We will now focus on a particular task

identifying a functionality.
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5 Constructing a Task

In section 4.5 we outlined how complex tasks can be composed from simpler ones, yet the generation
of a task must be driven by some top—down structure rather than simply generated bottom—up. A
planner may provide such top—down structure to the selection of simple actions, described in the

DEDS formalism, which are woven in a structure, possibly a linear path, defining a task.

The AT literature in planning is quite substantial and the criteria nnderlying their operation
are quite varied. [Tate et al, 1990] give a classification of different planners by considering their

behavior within the following criteria.

e How is the planning search carried out?

e What kind of abstraction levels and hierarchy is considered?

e How are the goals ordering and interaction detection and Corrections carried out?
o Does planning allow for conditional and iterators?

e How is the domain represented?

e How time and resources are handled?

e What is the style of planning and execution;

o Are learning and memory of the interactions considered?

By considering the different criteria, we observe that a planner, in order to handle a dyunaic

environment should have:

e a hierarchical abstraction type structure so that plans are only partially developed and can
account for changes in the environment — ABSTRIPS ([Sacerdoti, 1973]), NOAH ([Sacerdoti,
1977)), NONLIN ([Tate, 1977])

e be able to allow several events to occur at one time as it is in fact in real environment —
SNLP ([McAllewster and Rosenblitt, 1991]), NOAH ([Sacerdoti, 1977]).

e handle alternatives in the form of conditionals and be able to incorporate domain specific
information — IPEM ([Ambros-Ingerson and Steel, 1990]),TWEAK ([Chapman and Agre,
1987]), NOAH [Sacerdoti, 1977].
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e be able to deal with environmental changes (initially addressed in STRIPS [Fikes and Nilsson,
1971]). This is often considered part of reactive planning techniques which are combined with

sensing and actions, [Chapman and Agre, 1987].

¢ addresses uncertainty. Yet most of the planners dealing with this issue assume a probability
model of events, [Kanazawa and Dean, 1989]. However, often such type of model is not

available.

e be able to base the planning on previous experiences (either learned or provided by the
operator) - CHEF ([Hammond, 1986})

At the basis of the planning schemes presented above lies the assumption that the primitive
actions constitute the lowest level of interaction with the environment. When a plan is generated,
real-world issues are only summarily addressed. Ouly rarely are there instantiations of plans into

real domains where all the issues are considered.

[Kaebling, 1990] describes an architecture for a reactive system in which a planner is working
incrementally in conjunction with information obtained from sensor for navigating. While the un-
derlying philosophy of incremental and reactive planning is investigated, issues of communication
with sensors, noise in measurements, and modeling are not really addressed. Because in the experi-
ment outlined, the authors are interested in obstacle avoidance. Interactions require a higher degree
of context detail and monitoring. The type of constraints which are required to be incorporated
are presented in [Rosenschein and Kaebling, 1988]. The designed system, GAPPS, attempts to
bridge the implementation-level with the high-level description and the required context needs of a
robotic control. It does, in fact, act as a compiler providing a translation of constraint expressions

into an executable circuit for the control of a robotic system.

[Ambros-Ingerson and Steel, 1990] present a framework, IPEM, for integrating planning, execu-
tion and monitoring of the operations. It introduces execution and monitoring into [Chapman and
Agre, 1987) TWEAK’s partial plan representation. The control is carried out using a production
system architecture with conflicts resolved by a scheduler. This framework seems to address most

of the concerns stated, yet it is unclear how it would handle uncertainty in the environment.

An example of the type of interactions we consider are presented in the HANDEY system
[Lozano-Perez et al., 1987; Jones and Lozano-Perez, 1990]. The authors describe interactions
carried ont in a robot workcell for pick-and-place type problems. The planning presented, however,

deals with only some of the issues mentioned above.

By applying the formalism for tasks descriptions defined here it would seem possible to reconcile
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and take advantage of planning strategies studied in the area of AI. Namely, one can think of the
primitive actions to be defined in terms of small discrete event dynamic system interactions which
are combined by the planner. A task defined in terms of a DEDS provides the ability of handle
and describe situations which can not be addressed at the high level carried out by planners.
Furthermore, it allows the possibility of maintaining a degree of abstraction between the planned

action and the instantiated interaction.

The interaction between planners and DEDS has another benefit. When DEDS are combined
to compose a new behavior, one has to be concerned about the combination of the events. In
[Ramadge and Wonham, 1989] two DEDS are combined using a shuffle product. The authors
point out that this approach generates an exponential number of states. They propose to limit the
proliferation of states by considering a hierarchical approach in which events relative to a specific
DEDS remain constrained to it. Thus only events which allow transitions in and out of the event
space of that specific DEDS would be combined with others. On the other hand, if the combination
of the events were integrated with a top—down knowledge of the events interaction the set of events
resulting from the interaction, would be greatly curbed. In particular, by employing a planner, the
number of the states to be considered can be reduced by analyzing the possibility of certain events

to take place and remove states which are unfeasible and impossible.
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6 Defining the Task of Piercing

Piercing involves grasping an object (tool) at one end with the intention of bringing it to contact
with a target object. Once the tool has been brought to contact, force must be applied to enable
the tool to break the surface and penetrate the target object. A successful piercing operation can
be defined in terms of some parameter of depth — through defines a penetration of thickness equal
to that of the object. However, many different variations are possible depending on the type of
material, tool, degree of penetration, and the manner in which the tool is applied (position, force,

rate of change of force, etc.).

The type of contacts possible (point, line, surface) vary with the geometry of the tool and that
of the target. The selection of the type of contact desired has to be determined by the constraints
of the objects but also by the subtask which is to follow contact. In the case of polishing, for

instance, a surface contact may be selected over a point contact.

In the DEDS description of the piercing task examined in this paper, we assume that the type
of DEDS routine identifying the subtask of bringing the tool to point contact was selected by a
planner. Hence, we will focus on the issues dealing with events observability, confidence measures

of events, and sensor integration in the context of a complete task identifying piercing.

6.1 DEDS Task Description

As we have seen in section 4, the description of a task is accomplished by defining events and states
as monitored and controlled by a supervisor in terms of observers which can report on the changes
of the system. In this section we will describe both a supervisor and several observers for a dynamic

environment in which the task of piercing is to be carried out.

The role of a supervisor is to control the behavior of a system. In order to do so, the supervisor
must have a complete view of the task and in particular the ability of determining, based on the
previous events, the state of the system. We will give examples when discussing the mapping of

the task to the force sensor.

Figure 11 shows a DEDS description identifying a piercing task as seen by the supervisor. We
notice that some of the events, (Table 1), are clearly observable only by some sensor modalities.
Event «y, for instance, is observable only by vision. «s identifies the event of the object coming
into contact with the surface. Furthermore, it is only upon contact. a3z being asserted, that the

state of the position sensor becomes defined.



26 6 DEFINING THE TASK OF PIERCING
Piercing Task Events Description
Controlluble Uncontrolluble
ay: when tool begins to move aq: when tool misses target object
a3: contact is made with object
as: failing to break the surface
ag: penetration actually taking place ay4, a7, aqg: object or tool failure
ag: failing to penetrate to desired depth
ag: goal accomplished

11, (o logical transition to extraction state

13-
Q15
QG
Q18-
Q9!

a91.

extraction failure

extracted to contact level 14, (17, (g0 Object or tool failure
logical transition to contact state

moved from contact to free space

logical transition to depart state

moved to start state

Table 1: Controllable and uncontrollable events in Figure 11
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Figure 11: Definition of Piercing Task. Distinguished are the the two operations, insertion and extrac-
tion, which compose the piercing task. The dotted arches define controlled event which are asserted by
the supervisor.

The definition of success in the context of piercing can be expressed as a function of position,
force, or both. The behavior of the interaction will greatly vary depending on the type of material

encountered.

In the case, for instance, that the object being pierced is thin and shows elastic properties or
has a different lower internal hardness, success can be determined only of the basis of variation of
force. In particular a raise and fall in the magnitude of the force will occur once the surface is
pierced. [Stein and Paul, 1993] adopt this definition of successful piercing in their investigation of
local control of simple behaviors for telerobotics. In particular they investigate the task of cutting

the tape joining insulation panels on satellites.

If the target object were to be elastic, then the position of the end effector would have to be
observed not only by a force sensor and an position sensor but also by an external vision sensor. It
is only by obtaining observation through additional sensor modalities that we are able to identify
the behavior of the material. In particular, if the tool were to he partially elastic, both position

and force sensor may be asserting events indicating that the tool is penetrating the target object.

Vision can at this point contradict such an assertion by revealing that a deformation of the tool is
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Vision

Task Mapping Sensor Equivalent
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States:
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A : Approach I : Tool in object
D : Departing $ ¢ System Failure

Figure 12: Mapping of piercing task to vision sensor(s).

taking place.

It is important to notice that even if the task was not accomplished, as the operation is carried
out, the overall interaction was successful because information about the properties of the object
have been gained. In particular the analysis of the cause of failure may lead to reconsider the inter-
action and possibly replan it. Unless it is prespecified, it is only by failing that certain properties
about objects are discovered. Furthermore, by comparing success and failures we aim at acquiring
knowledge about those physical properties of objects which render the interaction successful. Once

these are discovered, they can be actively searched in a new object to test.

6.1.1 Mapping of the Task to Sensors

We now discuss the individual mappings to the different sensors.

As we can see in Figures 12-14, some of the nodes from the task description do not map
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Vision Events Description

Controllable Uncontrollable
v1: when tool begins to move vy when tool misses target object
v3: contact is made with object Vg, V7,10 generic system failure

vg: tool is penetrating
11s: loss of contact 117, V9o System failure

vo1: transition to start position (end of motion)

Table 2: Controllable and Uncontrollable events in Figure 12 as mapped to the vision sensor.

to the sensors and others still are aliased since events which differentiate between the nodes are
unobservable by that particular sensor. However, we notice that the overall task is piecewise
observable. In the mapping we have preserved the numbering to exhibit the relationships between
the events in the task and in the sensor. For each of the mappings presented we have provided a

sensor equivalent mapping with state description.

Mapping to Vision Sensor

The mapping of the task to the vision sensor is given in Figure 12. Table 2 identifies the events. We
have expressed the operations carried out by vision as a single sensor; nevertheless, the operation
could be carried out with more that one vision modality. Tracking an object to contact and
modeling the relationship between tool and target may involve more than one sensor and rather

sophisticated algorithins.

Observing the mapping we notice that states {C;, f,, Cc}. {P, f;,, G, E} and {D, f.} are

indistinguishable by the vision sensor.

Mapping to Force Sensor

Table 3 outlines the events which are observable by the force sensor. We note that in the case
depicted in Figure 13, once contact is defined there is no transition to the piercing state or to the
goal state. This is because an increment in force does not necessarily identify a transition to a
piercing state. The object could be too hard and hence unpierceable by the tool being investigated.

The only transition which can be controlled is G5 which identifies a failure due to reaching of a
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Force

Task Mapping Sensor Equivalent
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~~~~~~~ o States:

BT EEPEE NF: No Force fp + Max Force Reached
F . Force Sensed §¢ : System Failure
G : Goal Attained fo : Failure to Extract

Figure 13: Mapping of piercing task to Force sensor.

maximum threshold for the force which the sensor can sustain. This type of event was identified

in section 4 as a guarded value in G.

On the other hand, as mentioned above, if the material were to be nonuniform in hardness then
the force sensor would be able to assert that a transition to the goal state has occurred. Such an
event B9 would be triggered by a sudden drop in force. This type of transition in force characterizes
also the behavior of a target object or tool shattering under pressure, denoted by event ;. Hence
we note the importance of an additional sensor for disambiguating the state after the event was

asserted.

Examining the mapping in Figure 13, we notice that in the sensor equivalent description there
are many events which originate from state F'. While there are several which might occur simul-
taneously, there are some which will occur only when the tool is penetrating and others when the
tool is being extracted. The function of enabling or disabling certain events will be carried out by
the supervisor. There are six events which originate from state F. While some events, #r and §;7,

are uncontrollable and hence always enabled, others are controlled by the supervisor. In particular,
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Force Events Description

Controllable Uncontrollable

[3: contact is made with object [B7: system failure: object shatters

[Bs: maximum force reached, could be a failure fB9: sudden drop in force. object pierced
Bh11: transition to change force
[13: failure to extract B17: system failure
[B1s: no force due to loss of contact

Table 3: Controllable and uncontrollable events in Figure 13 as mapped to the force sensor.

when the system is in state F’ and piercing, events 5 and g are enabled and events ;3 and fis

are disabled. On the other hand, when the tool is being extracted, 813 and 15 are enabled and s
and [y are disabled.

This analysis emphasizes both the role and the need for the supervisor.

Mapping to Position Sensor

Finally, table 4 lists the events which are observable by the position sensor. We notice that the
failure to penetrate to a given depth can only be observed as a consequence of @5 rather than
directly from the position sensor. This is because the position sensor can not tell whether the
operation is only temporarily stalled because we are increasing the force or because something else
is happening. Hence «y is asserted only in the supervisor. This identifies one of the events, defined

in section 4, which falls under the classification of logical assertions in set A.

We notice that no uncontrollable event is observable by the position sensor. Transition py; is

induced as a transition by the supervisor to initiate the removal of the tool from the target object.

It identifies a transition to previous positions in the object.

6.2 Covering of the Events

Up to this point we have discussed the importance of mapping the events of the supervisor to the

different sensors, yet we have not verified that the events, as mapped, cover the supervisor event
space.
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Figure 14: Mapping of piercing task to position sensor.

In table 5 we list the events in the supervisor and the corresponding sensor-mapped events.
In the last column we mark the covering. We notice that all events, except for ay, and ayg, are
mapped and hence ohservable by some sensors. The events which are not accounted for in the table
represent logical events and are asserted by the supervisor. They provide, as mentioned in section 4,
for transitions between components in the task and can easily be compared to what in automata

theory is known as e-transitions. In this case they identify the transition between insertion and

extractior.

In table 6 we have outlined the state mapping. This table allows us to notice the amount of

aliasing between the different states indicated by the shaded areas in Figures 12-14.
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Position Events Description

Controllable Uncontrollable
p2: contact is made: position is defined €: none noticeable by position sensor
Pe: penetration actually takes place
pg: desired position reached
p11: logical transition to extract object
p1s: transition to contact position

p1s: tool no longer in contact (position undefined)

Table 4: Controllable and uncontrollable events in Figure 14 as mapped to the position sensor.
6.3 Introducing Confidence Measures in the Event Set

Up to now we have addressed events as if their occurrence were easily detectable and thus allowing
a sensor to assert them. Yet, while it is possible in some cases, for the majority of events it is not.
Furthermore, more than one sensor could report that some event has occurred within a period of
time. In that case it is important to establish some mechanism to decide the state the system is in

based on the events occurred.

A vision sensor can not quite detect contact at the moment it occurs from a fixed view point
unless some particular conditions are met. When the sensitivity of the force sensor determines
that contact has occurred it is often the case that the two surfaces have already been in physical
contact or that the contact is only partial. Furthermore, if the target object, for instance, is rather
soft, then some degree of compression must take place in the target object before the force sensor

registers contact.

While the above instances may be better handled if there is some a priori information about
the objects interacting, the problem does not vanish; on the contrary, it may be only that the
granularity of the problem is reduced. Often that is sufficient to allow the assertion to take place

with high confidence.

It is, therefore, necessary to define a confidence measure over the set of events and determine
a way to combine or resolve the information that is provided by the different sensors. Hence we

distinguish

o the confidence measure of un event as a measure of the observability of the transition by a
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Event Mapping Table

SUPERVISOR Forck PosiTioN VisIiON COVERED
oy — — 1 Vv
a3 — — vy v
a3 03 3 - v
Qay — — vy N4
Qs Bs - - v
g — Pe Ve v
az Br — vy v
a B — — v
ag B Py — Vv
10 - - V1o v
an P i — v
a2 — — —

Q13 f13 - - v
14 - - V14 v
a5 - P1s V1is Vv
Q16 B1e - — v
a7 b7 — vz v
a8 P18 P18 V18 Vv
a1y — — —

@20 - - V20 v
21 - — b v

Table 5: The table shows the events mapping from the supervisor to the sensors. We notice that all
events are covered except for events: ag, a2, and ajg. These represent logical transitions which only
take place in the supervisor.
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State Mapping Table

SUPERVISOR Forck PosiTioN VISION
S NF NC N
A NF NC A
Ci F C C
sf sf — st
P F I I
G G G I
fc — — D
fp fp C C
fg — I I
E F I I
fe fe — —
Ce F C C
sf sf — sf
D NF NC D

Table 6: Aliasing in the states after the mapping.
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Sensor.

o the likelihood of an event as the probability that a given transition between nodes occurs

based on the combination of evidence from different sensors.

The first measure describes a transition which takes place in the observer while the second one

identifies a transition taking place in the supervisor.

6.4 Verification of the Task

The functional behavior defined so far has not addressed the verification of the success of the
operation. This is because we have assumed that the events provided between states are observable

and that they provide means of disambiguating clearly whether or not the interaction was successful.

Assume, for instance, that the vision sensor did not provide enough resolution to observe pen-
etration of the tool in the target; and that the conclusion deduced from the force sensor and the
position sensor was that the object was pierced. It is still possible that either the target object or

the tool were (partially) elastic.

It is clear that in this instance a verification mechanism is needed. A very simple one, provided
that the operations are repeatable, would be to repeat the functional test. If indeed the object has
been pierced, the tool will encounter a different type of resistance from the surface. If the functional
test for verification produces forces in the same range as in the original test, then one may conclude
that the initial operation was unsuccessful. Further examinations and reasoning should reveal the

reason.

We can conclude that verification is required if the data provided by the different sensors lead to
contradicting or differing conclusions. In order to make our investigation feasible and address the
verifiability of a task, we assume that if the interaction requires verification the verification can be
carried out. Hence verification can be understood as another task meant to resolve the ambiguity

left from the previous functional task.
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Figure 15: Conceptual description of a task and its mapping into an environment.

7 System Description

In the first portion of this section we present the task mapping from abstract task description to
the instantiated task. Furthermore, we highlight the role of the supervisor. In the second part we

give the actual system description employed in the experiments described in section 8.

7.1 From Abstract to Instantiated Task

Thus far we have seen a formalism for describing a manipulatory task (section 4). We have presented
an abstract description of the task of piercing, addressed its composition, and reasoned about its
piecewise observability (section 6.1). In this section we will discuss further the role of the supervisor,

and we will investigate how the abstract description is to be instantiated into a specific context.

A supervisor, in its function of controlling a plant, has the dual role of observation and task
control. In Figure 15 we have shown a task mapped into the supervisor on the observation side of
the control and its mirror image on the task side of the control. The monitoring of a behavior is
reflected in the constant interweaving of observation, from the sensors, and commands, sent to the

actuators.

An abstract task description in the supervisor is mapped to the conceptual sensor description

and to the actuators. These mappings allow to address the observability of the events. The
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Figure 16: Conceptual description of a piercing task and its mapping into an environment.

individual subtasks are mapped to the physical sensors and actuator in the environment (Figure 16).
Since we are dealing with a system needing real-time interaction and control, in some cases a
feedback control loop needs to bypass the communication with the supervisor and to be handled

locally. This would be the case when a guard event is observed and acted upon.

The mapping from the abstract task description at a sensor level and the physical level consti-
tutes a wide area of research. Ideally one would like to be able to define a translator-like interface
able to take into consideration the task constraints and goals as well as the physical constraints of
the context in which the task is mapped to. Efforts addressing this issues are rather limited due
to the complexity of the problems and the wide variety of both sensors and algorithms to obtain

observations and interact with the environment.

7.2 System Implementation

We are currently developing a system for testing manipulatory functionalities which can be de-
scribed and observed in terms of visual tracking and contact forces. The system set up presented
here does not include the tracking portion. The current focus is on the force and position sensors;

the vision sensor will be added subsequently.

The contact sensor, a compliant wrist [Xu, 1989; Lindsay, 1992] with 6 degrees-of-freedom, is

mounted on the end-effector of a Puma 560 arm and holds the tool (Figure 17). The diagram of
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Figure 17: Puma robot 560 with compliant wrist holding a screwdriver and below, on the black back-
ground, a target object to operate on.

the system is schematically described in Figure 16.

The basic classification of force applied to the target object by the tool is currently described
as belonging to three different classes: No Contact, Contact, Too Large. This class distinction
on based on the work by [Stein and Paul, 1993]. This approach allows the classes to be defined

dynamically based on the value obtained at contact tine and on the noise in the sensor.
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In this section we describe four experiments we carried out: the first three are unsuccessful while
the last one is successful. The purpose of these experiments is to illustrate the control behavior

accomplished for the task of piercing.

The experiments performed are as follow:

1. Contact with a hard surface (wood) using a screwdriver, yielding a failed piercing. Maximum

guard force threshold is quickly achieved without any piercing.

2. Contact with a compliant surface (pressed foam) using a mallet, yielding a failed attempt.
In this case, while the surface is elastic, the tool fails to pierce and eventually reaches the

guarded value for force threshold.

3. Contact with a compliant surface (pressed styrofoam) using a screwdriver. In this case, too,

the operation is unsuccessful. This experiment is shown in Figure 23.

4. Contact with a compliant surface (insulation styrofoam for constructions) with a screwdriver,
results in a successful interaction. This operation is presented in detail below and shown in

Figures 19, 20, and 21.

i
force in
z-component
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<7 — 1. | ) Tl
Successful Piercing s

tme umts

Figure 18: 1 Force transition upon breaking surface.

In the experiments carried out, we have identified a successful transition to piercing as the

occurrence of two events measured by different sensors:
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o the force profile in the z-component indicating a breaking of the surface (shown in Figure 18},

e a penetration of a certain depth after breaking the surface.

The reason for requiring both force and displacement was that we wanted to differentiate piercing

from denting and that we wanted to investigate the interaction of both sensors.

In the experiments outlined here we show a list (Figures 19, 20, and 21) the successful sequenc-
ing through the states presented in the task description of section 6.1. These are followed by two
force profiles of interactions highlighting the transition of force occurring when the surface is pene-
trated,(Figure 22). This experiment is followed by a sequence illustrating an interaction leading to
a failure to pierce (Figure 23). Only the insertion phase of the interaction is shown. We then follow

with two force profiles of interactions, (Figure 24), indicating that there is no transition identifying

the piercing event.
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Figure 19: Approach phase in the piercing task.
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Figure 20: Second Piercing, Achieving of the Goal, and Extraction.
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Figure 21: Departure phase in the piercing task.
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Figure 22: On the Left: Force profiles of successful piercing. On the right: Graphs of the insets of the
force profile highlighting the transition in force observed by the sensor upon breaking the surface.
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Approach State

Failure State

v

Figure 23: Failed piercing task. The last image shows a different path taken due to encountering too
much resistance and having reached the force guard value.
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there is no change in force that would indicate a piercing event.
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9 Conclusions

In this paper we have

e given a definition for functionality and presented the importance of addressing functionality

recovery or verification in the context of a dynamic environment,

o formalized a representation for a functional behavior and shown how such behavior can be

expressed using the formalism of Discrete Event Dynamic Systems,
e focused on one such behavior expressing the functionality of piercing,
¢ integrated different sensor modalities to allow the observation of a task,
o showed the importance of piecewise observability by different sensors.

e gone from an abstract description of functionality to an instantiated one in an attempt to

bridge the gap between the description and the actual execution of a task for a functionality,

e shown three experiments illustrating the interaction between tool and target object controlled

by a supervisor module,

o developed a system for conducting experiments on functionality using several sensory modal-

ities and an actuator system.
Future experiments will extend our work to:

¢ incorporate a visual observer for tracking the tool and monitor the interaction,
e investigate properties of both tools and target object by varying

— the material of the target object, thus allowing to investigate the range of feasibility of

the tool,

— the material and properties of the tool, both physical and dynamic, to determine, based
on previous experiments on ranges of materials, the best tool for a particular task in a

given context,
e investigate functional feasibility and performance of a tool,

o apply learning strategies to the approach so that once a set of experiments has been carried

out, the acquired knowledge may be used to guide interactions.
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