Finding Matchings in the Streaming Model

Andrew McGregot

Abstract

This report presents algorithms for finding large matchings in the streaming model. In this model,
applicable when dealing with massive graphs, edges are streamed-in in some arbitrary order rather than
residing in randomly accessible memory. kor- 0, we achieve ﬁ approximation for maximum
cardinality matching and gi approximation to maximum weighted matching. Both algorithms use a
constant number of passes.

1 Introduction

Given a grapiG = (V, E), theMaximum Cardinality MatchingMCM) problem is to find the largest set of
edges such that two adjacent edges are selected. More generally, for an edge-weighted gvkgpdintine
Weighted MatchingMWM) problem is to find the set of edges whose summed weight is maximized while
no two adjacent edges are selected. Both problems are well studied and exact polynomial solutions are
known [1, 4, 5, 6]. The fastest of these algorithms solves MWM has runningditnen + n2 log n) where
n = |V|andm = |E|.

However, for massive graphs in real world applciations, it is sometimes impossible to store the graph
in random access memory. In this case the above algorithms are not applicable. To get round this, in this
paper we instead work in the graph streaming model discussed in [2, 3, 7]. In this model the edges of the

graph stream-in in some arbitrary order. That is, for a gr@pW, E') with vertex sef” = {v1,va,...,v,}
and edge setl = {ej,e9,...,e,}, agraph streams the sequence;,, ¢;,,...,¢€;,,, wheree;; € £ and
i1,12,. ..,y IS an arbitrary permutation dfL, 2, ..., m}.

The main computational restriction of the model is that we have restricted space and therefore we can
not store the entire graph. In this paper our space restrictié?{wsl which was identified as a “sweet-
spot” for graph streaming in [7] and subsequently shown to be necessary for the verification of even the
most primitive of graph properties [3]. We may however have multiple passes of the graph stream but, in
this paper, we’ll assume that we can only h&ug) passes. To motivate this assumption one can consider
external memory systems in which seek times are typically the bottleneck when accessing data.

In this paper we present algorithms that achieve the following approximation ratios:

1. Fore > 0, aﬁe approximation to maximum cardinality matching.

2. Fore > 0, aﬁe approximation to maximum weighted matching.

*Dept. Computer and Information Science, University of Pennsylvania, Email: andrewm@cis.upenn.edu
1Sometimes known as treemi-streamingpace restriction

MCM and MWM have previously been studied under similar assumptions in [2]. The best previously
attained results Were%aapproximation to MWM and foe > 0, ag%e approximation to MCM. Also in the
course of this paper we tweak t%eapproximation to MWM to give m approximation to MWM that
uses only one pass of the graph stream.

2 Unweighted Matchings

In this section we describe a streaming algorithm thate for 0, computes 41 — €) approximation to the
MCM of the streamed graph. The algorithm will use a constant number of passes. We start by giving some
basic definitions common to many matching algorithms.

Definition 1 (Basic Matching Theory Definitions). Given a matching/ in a graphG = (V, E), we call a
vertexfreeif it doesn’t appear as the end point of any edgéin A length2i + 1 augmenting patis a path
uius . . . uzi+2 Whereu; andug; o are free vertices anth;, u;1) € M for evenj and (u;, ;1) € E\ M
for oddj.

Note that if M is a matching andP is an augmenting path the AP is a matching of size strictly
greater than\/. Our algorithm will start by finding a maximal matching and then, by finding short aug-
menting paths, increase the size of the matching by making local changes. Note that finding a maximal
matching is easily achieved in one pass - we select an edge of our graph iff we have not already selected an
adjacent edge. The following lemma simply shows us that when there are no longer many short augmenting
paths, the size of the matching found can be lower bounded in terms of the size of the maximum cardinality
matching OrT.

Lemma 1. Let M be a maximal matching an@pPT, a matching of maximum cardinality. Consider the
connected components @PTA M. Ignoring connected components with the same number of edges from
M as fromOPT, let o; M = number of connected components withdges from\/. Then

OPT

>
=1+ 1/k

192k = 2k2(k + 1)

Proof: In each connected component wittedges from) there is eitheri or i + 1 edges from @®T.
Therefore, ®T < >, ., o L M| 4 B2 (1 — > 1<i<k @i)|M]. By assumption

% k+1
Zaii‘}‘w(l—zai)z L kP2
S i k+1 S E(k+1) k+1
The result follows. O

So, if there arey; M components in @TAM with 41 edges from @ T and: edges from\/, then there
are at leasty; M length2i + 1 augmenting paths fa¥/. Finding an augmenting paths allows us to increase
the size ofM. Hence, ifmax;<;<j o; is small we already have a good approximation @r@hereas, if
maxi<;<k ¢ IS large then there exisis< i < k such that there are many length+ 1 augmenting paths.

Our approach to finding augmenting paths is based on looking for paths in a randomly chosen subgraph
of G with a specific structure that we now define.

Definition 2. Consider a directed graph whosenodes are partitioned into+ 2 layersL;, 1, ... Ly and
whose edgeset is a subsetak j<;1{(u,v) : uw € L;j,v € L;_1}. We call the family of such graph.
We call a path from a node if; to a node inLg, ani-path

2

Algorithm Find-MatchindG, ¢)
(x Finds a matching)

Output: A matching

1. Find a maximal matching/
2. k—[1+1

3 e 32(2{)1?;31112

4. forj=1tor:

5. fori =1tok:
6 do M, < Find-Aug-PathéG, M, i)
7 M « argmax,. | M;|

8. return M

Algorithm Find-Aug-Path§G, M, 7)

(* Finds lengtiRi 4+ 1 augmenting paths for a matchidd in G x)
1. G’ <Create-Layer-Grapfz, M, 1)

2. P =Find-Layer-Path§(’, Li;1, 52,0 + 1)

3. return MAP

Algorithm Create-Layer-Grap(G, M, i)
Input a graphG, a matchingV/ ands
if v is a free vertexheni(v) € {0, + 1}
if e = (u,v) € M thenpick j €g [i] andi(e) < j, l(u) « ja andi(v) < jb or vice versa.
E; —{(u,v) €e E:l(u) =i+ 1,l(v) =ia}, Ey — {(u,v) € E:l(u) = 1b,1(v) = 0}
forj=0toi+1
dOLj — l_l(])
forj=1toi—1
do E; — {(u,v) € E:l(u) = (j +1)b,1(v) = ja}
return G/ = (Li+1 ULZUULo,EZUEzflLJUEo)

ONoGO~WDNE

Algorithm Find-Layer-Path§Z’, S, 6,)

(* Finding manyj-paths fromS C L; x)

1. Find maximal matchind/’ betweenS and untagged vertices i;_,
2. S—{velL;j_y:3u(uv)eM}

3. ifj=1

4. then If’LLGFM/()thent() HFM/(U),t(FM/(u)) <—FM/(U)
5. if ue S\ PM/(_1) thent(u) < “Dead”

6 return

7. repeat

8 Find-Layer-PathéG’, S’, 62, — 1)

9. for v € S" such that(v) #“Dead”

10. do ¢(T'pp (v)) — v

11. Find maximal matching/’ between untagged vertices$hand untagged vertices i, _; .
12. S"—{veLj_q:3u,(uv)e M}

13. until |S/| < 6|Lj_1|

14. for v € S untagged

15. do ¢(b) < “Dead".

16. return

Figure 1: An Algorithm for Finding Large Unweighted Matchings

3

At the core of the algorithm for finding lengthy + 1 augmenting paths is an algorithm for finding a
nearly maximal set of + 1-paths in a graplt:’ € £;. See algorithnfind-Layer-Pathsn Figure 1. The
algorithm finds node disjoint+ 1-paths by doing something akin to a depth first search. Finding a maximal
set of node disjoint 4+ 1-paths can easily be achieved in the RAM model by actually doing a DFS, deleting
nodes of found + 1-paths and deleting edges when backtracking. For the streaming model our algorithm
works by finding maximal matchings, first between the first and second levels and then between the nodes
in the second that were matched in the first matching, and the third level, and then between the nodes in the
third level that were matched in the second matching and the fourth level and so on. When the matching
between some subsgtof a level L; and L;_; falls below some threshold we declare all vertice$'ithat
haven't been used i+ 1-paths, to be dead-ends or just “Dead”. The hope is that when we declare vertices
dead we are only slightly reducing the number of possible node digjaint paths. For each nodethe
algorithm maintains a tag indicating if it is “Dead” or, if we've found & 1 path involvingv, the next node
in the path.

Lemma 2 (Running Time and Correctness ofFind-Layer-Pathy GivenG’ € £;, Find-Layer-Paths al-
gorithm finds at leasts — J)|M| i + 1-paths where3|M | is the size of some maximal setiof 1-paths.
Furthermore the algorithm take3(1) passes.

Proof: Find-Layer-Path§, -,-,1) is called with argumentSQi“*l. During the running ofFind-Layer-
Path’, -, -,1) when we run line 15, we rule out at m@&® "' |L;_;| i + 1-paths. LetE; be the number of
timesFind-Layer-Pathé, -, -, [) is called: E;; = 1 andE; = Ej,; /6% "' hencel; = 6~ Zo<i<iti-112 >
§~2"7'+1, Hence we remove at mo&d2 "' ' |L;| = 6|L;|. Note that when nodes are labeled dead in a
call to Find-Layer-Path§, -, -, 1), they really are dead and declaring them as such rules outtnb-paths.
Hence the total number of paths not found is at nddst, ;[L;| < §|M|. The number of invocations of

the recursive algorithm is ‘
R A
1<I<i+1 1<I<i+1
i.e.O(1) and each invocation requires one pass to find a maximal matching. d
When looking for lengtf2i + 1 augmenting paths for a matchidd in graphG we randomly create a

layered graplty’ € £; 1 usingCreate-Layer-Graplsuch that + 1-paths inG’ correspond to length; + 1
augmenting paths.

Theorem 1. If G hasa; M length2i + 1 augmenting paths, then the number of lenggaths found inG’
is
bi(Bi — 9)

whereb; = andg; has a distribution that dominatd3in(«;| M|

e + 22

Proof: Consider a lengtBi + 1 augmenting pat® = ugu; .. . u2; 11 in G. The probability that? appears
as ani-path inG’ is at least

2P (Z(UO) = O)P(Z(UQZJrl) =1+ 1) H P(l(’u%) =ja andl(u2j,1) =]b) =
J€li]

2(2i)

Given that the probability each augmenting path surviving'tes independent, the number of lengthaths

in G’ is distributed a®Bin(«;| M|, m) The size of a maximal set of node disjoirpaths is at least a

2 5 fraction of the maximum size node-disjoint getaths. Combining this with lemniagives the result.

D

Theorem 2 (Correctness).With probability 1 — f by runningO(log%) copies of the algorithm Find-
Matching in parallel we find & — € approximation to the matching of maximum cardinality.

Proof: We show that the probability that a given runfehd-Matchingfails to find a(1 + ¢) approximation
is bounded above by~ '. The result then follows.

Assume that for each of thephases in the algorithmax o; > o* = m (By Lemma 1, if this is

ever not the case we are done.) Therefore, in each phase we augment our mateisg|By— 5| M || b;)
to increase the size of our matching by a fraction

(1 + max(b;|3; — 6]7)/|M|) > (1 + b| B — 6|7 /| M)

where$ 2 X = Bin(a*|M]|, 2(2k

= B2EN2) ety =],.;c, (1 + bl X; — 6]7/|M]). Therefore
P(Y>2) = P(InY >In2)

= P (> In(L+ bel X — 8]/ |M]) > 1n2)

1<i<r

7). Let(X;)1<i<, be independent identically distributed (&3 rv’s and

v

P (> X > [M|(2In2/b; +r5)>

1<i<r

= P(Z>3|M|In2/by)

whereZ = Bin(a*|M|r Hence, by an application of the Chernoff bound,

) 2(2k 7)-

P(Y >2)>1-P(Z<2|M|In2/b) >1— e (171167 m2M|/by 5 1 _ =1

3 Weighted Matching

We now turn our attention to finding maximum weighted matchings. Here eacheeglde of our graphG
has a weightu(e). For a set of edgeS let w(S) = > .5 w(e). We seek to maximize (S) subject to the
constraint thats contains no two adjacent edges.

Consider the algorithms given in Figure 2. The algorithimd-Weighted-Matchingan be viewed as a
parameterization of the one pass algorithm given in [2] in whietas implicitly equal to 1. The algorithm
Find-Weighted-Matching-Multipasgeneralizes this to a multi-pass algorithm that in effect, runs the one
pass algorithm per pass until the improvement yielded falls below some threshold. We start by recapping
some notation introduced in [2]. While rather macabre, this notation is nevertheless helpful for developing
intuition.

Definition 3. In a given pass of the graph stream, we say that an edgeornif e € M at some point
during the execution of the algorithm. We say that an edgéled if it was born but subsequently removed
from M by a newer heavier edge. This new edgerderedhe killed edge. We say an edge isw@avivor

if it is born and never killed. For each surviver let theTrail of the Deadl'(e) = C; U Cy U ..., where
Cy = {e}, C; = the edges murdered ky, andC; = U.c¢,_, the edges murdered fy

Lemma 3. For a given pass let the set of survivors Be The weight of the matching found at the end of
that pass is therefore(S).

1. w(T(S)) < w(S) /v
2. OPT< (14 7) (w(T(S)) + 2w(S))
Proof:

1. For each murdering edge w(e) is at least(1 + «y) the cost of murdered edges, and an edge has at
most one murderer. Hence, for alw(C;) > (1 + v)w(C;+1) and thereforg1 + vy)w(T'(e)) =
Y1 (L +Yw(Ci) <3250 w(Ci) = w(T'(e)) + w(e). The first point follows.

2. We can charge the costs of edges ir@ the.S U T'(S) such that each edgec T'(.S) is charged at
most(1 + v)w(e) and each edge € S is charged at mo(1 + v)w(e). See [2] for details.

U
Hence in the one pass algorithm we (‘Z]e'[w’:tlﬁ}j—1 approximation ratio since
SF3+2y

OPT < (1 4 7)(w(T(S)) + 2w(S)) < (3 + i + 29)w(S)

The maximum of this function is achieved for = 75 giving approximation ratlom. This repre

sents only a slight improvement over thé ratio attained previously. However, a much more significant
improvement is realized in the multi-pass algoritRind-Weighted-Matching-Multipass

Theorem 3. The number of passes<s log((%i)gf’/é@g)é)m + 1 and we achieve %(llTe) approximation.

Proof: First we prove the number of passes result. Well since we increase the weight of our solution by a
factor1 + « each time we do the second step, we start withi(@ + 21/2) approximation to optimum so if
we do step 2
log(3/2 + v/2)
log((2€)*/(3(3 + 2€)?))

10g1+n(3/2 + ﬂ) =

times we already have an'2 approx.
Let M; be the matching constructed after theass of the data. L&; = M; U M;_1. Now

(I +) (w(Mi—1) —w(B;)) < w(M;) —w(B;)

and so
w(M;) _ w(M;) S (1 +v)w(M;)

w(Mifl) ZU(Ml',l) —w Bl) + w(BZ) B ’LU(MZ) + vw(BZ)

And so if wL&M,)l) < (1+ k), we get thatv(B;) > ’Y’er_’yK/iw(Mi).

Using Lemma 3, for all,

OPT < (1/v+ 3+ 2y)(w(M;) — w(Bi)) + 2(1 + 7)w(B;)

Algorithm Find-Weighted-Matchingx, ~)
(x Finds Large Weighted Matchings in One Paks

1. M0

2. for eachedge € G

3. doif w(e) > (1 +~y)w({€'|¢’ € M, ¢’ ande share an end poihf

4. then M — M U {e} \ {€'|¢’ € M, ¢’ ande share an end poihteturn M

Algorithm Find-Weighted-Matching-Multipaés, ¢)
(* Finds Large Weighted Matching3
1. ~v« %

2
k= (%)
Find a3+;ﬁ weighted matching)/
repeat
S —w(M)
for each edge € G
doif w(e) > (1 4+ y)w({e'|¢’ € M, ¢’ ande share an end poih}
then M — M U {e} \ {¢/|¢/ € M, ¢’ ande share an end poiht
. until 20 <1 4k
10. return M

© N~ W N

Figure 2: Algorithms for Finding Large Weighted Matchings
since edges iB; have empty trails of the dead. Saui{ B;) > ﬁw(Mi) we get
OPT < (1/v+3+42y)(w(M;) —w(B;)) +2(1 + y)w(B;)
Y — R
< (1 3+2v—(1 1 M;
< (43427 = (1/v+)wr%)w()
< (24 37)w(M)

Sincey = % the claimed approximation ratio follows. O

4 Conclusions

New constant pasé}(n) space, constant time-per-edge space streaming algorithms have been presented for
the MCM and MWM problems. The MCM algorithms uses a novel randomized technique that allows us to
find augmenting paths and finds a matching of gize- ¢€)OpPT. The MWM algorithm builds on previous

work to find a matching whose weight is at leést2 — ¢)OPT.

References

[1] J. EdmondsMaximum matching and a polyhedron with 0,1-vertickRRes. Nat. Bur. Standards, 69B:125-130, 1965.

[2] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. ZHandgsraph Problems in a Semi-Streaming Mot@ielappear in
the 31st International Colloquium on Automata, Languages and Programming, 2004

[3] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. ZHaraph Distances in the Streaming Model: The Value of Space
Yale University Technical Report YALEU/DCS/TR-1288, April 2004.

[4] H.N. Gabow,Data Structures for Weighted Matching and Nearest Common Ancestors with LB®iDg 1990, 434443

[5] J.E. Hopcroft and R.M. KarpAnn®/2 algorithm for maximum matchings in bipartite grapi8AM Journal on Computing,
2(4):225-231, (1973).

[6] S. Micali and V.V. Vazirani,An O(V E) Algorithm for Finding Maximum Matching in General GrapRsoc. 21st Annual
IEEE Symposium on Foundations of Computer Science (1980)

[7] S. MuthukrishnarData Streams: Algorithms and Applicatiodwailable at http://athos.rutgers.eduhuthu/stream-1-1.ps
2003

