
Finding Matchings in the Streaming Model

Andrew McGregor∗

Abstract

This report presents algorithms for finding large matchings in the streaming model. In this model,
applicable when dealing with massive graphs, edges are streamed-in in some arbitrary order rather than
residing in randomly accessible memory. Forε > 0, we achieve a 1

1+ε approximation for maximum
cardinality matching and a1

2+ε approximation to maximum weighted matching. Both algorithms use a
constant number of passes.

1 Introduction

Given a graphG = (V,E), theMaximum Cardinality Matching(MCM) problem is to find the largest set of
edges such that two adjacent edges are selected. More generally, for an edge-weighted graph, theMaximum
Weighted Matching(MWM) problem is to find the set of edges whose summed weight is maximized while
no two adjacent edges are selected. Both problems are well studied and exact polynomial solutions are
known [1, 4, 5, 6]. The fastest of these algorithms solves MWM has running timeO(nm + n2 log n) where
n = |V | andm = |E|.

However, for massive graphs in real world applciations, it is sometimes impossible to store the graph
in random access memory. In this case the above algorithms are not applicable. To get round this, in this
paper we instead work in the graph streaming model discussed in [2, 3, 7]. In this model the edges of the
graph stream-in in some arbitrary order. That is, for a graphG(V,E) with vertex setV = {v1, v2, . . . , vn}
and edge setE = {e1, e2, . . . , em}, a graph streamis the sequenceei1 , ei2 , . . . , eim , whereeij ∈ E and
i1, i2, . . . , im is an arbitrary permutation of{1, 2, . . . ,m}.

The main computational restriction of the model is that we have restricted space and therefore we can
not store the entire graph. In this paper our space restriction isÕ(n)1 which was identified as a “sweet-
spot” for graph streaming in [7] and subsequently shown to be necessary for the verification of even the
most primitive of graph properties [3]. We may however have multiple passes of the graph stream but, in
this paper, we’ll assume that we can only haveO(1) passes. To motivate this assumption one can consider
external memory systems in which seek times are typically the bottleneck when accessing data.

In this paper we present algorithms that achieve the following approximation ratios:

1. Forε > 0, a 1
1+ε approximation to maximum cardinality matching.

2. Forε > 0, a 1
2+ε approximation to maximum weighted matching.

∗Dept. Computer and Information Science, University of Pennsylvania, Email: andrewm@cis.upenn.edu
1Sometimes known as thesemi-streamingspace restriction

1

MCM and MWM have previously been studied under similar assumptions in [2]. The best previously
attained results were a16 approximation to MWM and forε > 0, a 2

3+ε approximation to MCM. Also in the
course of this paper we tweak the1

6 approximation to MWM to give a 1
3+2

√
2

approximation to MWM that
uses only one pass of the graph stream.

2 Unweighted Matchings

In this section we describe a streaming algorithm that, forε > 0, computes a(1 − ε) approximation to the
MCM of the streamed graph. The algorithm will use a constant number of passes. We start by giving some
basic definitions common to many matching algorithms.

Definition 1 (Basic Matching Theory Definitions). Given a matchingM in a graphG = (V,E), we call a
vertexfree if it doesn’t appear as the end point of any edge inM . A length2i + 1 augmenting pathis a path
u1u2 . . . u2i+2 whereu1 andu2i+2 are free vertices and(uj , uj+1) ∈M for evenj and(uj , uj+1) ∈ E \M
for oddj.

Note that ifM is a matching andP is an augmenting path thenM4P is a matching of size strictly
greater thanM . Our algorithm will start by finding a maximal matching and then, by finding short aug-
menting paths, increase the size of the matching by making local changes. Note that finding a maximal
matching is easily achieved in one pass - we select an edge of our graph iff we have not already selected an
adjacent edge. The following lemma simply shows us that when there are no longer many short augmenting
paths, the size of the matching found can be lower bounded in terms of the size of the maximum cardinality
matching OPT.

Lemma 1. Let M be a maximal matching andOPT, a matching of maximum cardinality. Consider the
connected components inOPT4M . Ignoring connected components with the same number of edges from
M as fromOPT, let αiM = number of connected components withi edges fromM . Then

max
1≤i≤k

αi ≤
1

2k2(k + 1)
⇒M ≥ OPT

1 + 1/k

Proof: In each connected component withi edges fromM there is eitheri or i + 1 edges from OPT.
Therefore, OPT≤

∑
1≤i≤k αi

i+1
i |M |+

k+2
k+1(1−

∑
1≤i≤k αi)|M |. By assumption∑

1≤i≤k

αi
i + 1

i
+

k + 2
k + 1

(1−
∑

1≤i≤k

αi) ≥
1

k(k + 1)
+

k + 2
k + 1

= (1 + 1/k)

The result follows. �

So, if there areαiM components in OPT4M with i+1 edges from OPT andi edges fromM , then there
are at leastαiM length2i + 1 augmenting paths forM . Finding an augmenting paths allows us to increase
the size ofM . Hence, ifmax1≤i≤k αi is small we already have a good approximation to OPT whereas, if
max1≤i≤k αi is large then there exists1 ≤ i ≤ k such that there are many length2i + 1 augmenting paths.

Our approach to finding augmenting paths is based on looking for paths in a randomly chosen subgraph
of G with a specific structure that we now define.

Definition 2. Consider a directed graph whosen nodes are partitioned intoi + 2 layersLi+1, . . . L0 and
whose edgeset is a subset of∪1≤j≤i+1{(u, v) : u ∈ Lj , v ∈ Lj−1}. We call the family of such graphsLi.
We call a path from a node inLl to a node inL0, an l-path.

2

Algorithm Find-Matching(G, ε)
(∗ Finds a matching∗)
Output: A matching
1. Find a maximal matchingM
2. k ← d 1ε + 1e
3. r ← 32(2k)k2 ln 2

bkα∗

4. for j = 1 to r:
5. for i = 1 to k:
6. do Mi ← Find-Aug-Paths(G, M, i)
7. M ← argmaxMi

|Mi|
8. return M

Algorithm Find-Aug-Paths(G, M, i)
(∗ Finds length2i + 1 augmenting paths for a matchingM in G ∗)
1. G′ ←Create-Layer-Graph(G, M, i)
2. P =Find-Layer-Paths(G′, Li+1,

ln 2
rbk

, i + 1)
3. return M4P

Algorithm Create-Layer-Graph(G, M, i)
Input: a graphG, a matchingM andi
1. if v is a free vertexthen l(v) ∈R {0, i + 1}
2. if e = (u, v) ∈M then pick j ∈R [i] andl(e)← j, l(u)← ja andl(v)← jb or vice versa.
3. Ei ← {(u, v) ∈ E : l(u) = i + 1, l(v) = ia}, E0 ← {(u, v) ∈ E : l(u) = 1b, l(v) = 0}
4. for j = 0 to i + 1
5. do Lj ← l−1(j)
6. for j = 1 to i− 1
7. do Ej ← {(u, v) ∈ E : l(u) = (j + 1)b, l(v) = ja}
8. return G′ = (Li+1 ∪ Li ∪ . . . ∪ L0, Ei ∪ Ei−1 ∪ . . . ∪ E0)

Algorithm Find-Layer-Paths(G′, S, δ, j)
(∗ Finding manyj-paths fromS ⊂ Lj ∗)
1. Find maximal matchingM ′ betweenS and untagged vertices inLj−1

2. S′ ← {v ∈ Lj−1 : ∃u, (u, v) ∈M ′}
3. if j = 1
4. then if u ∈ ΓM ′(Lj−1) then t(u)← ΓM ′(u), t(ΓM ′(u))← ΓM ′(u)
5. if u ∈ S \ ΓM ′(Lj−1) then t(u)← “Dead”
6. return
7. repeat
8. Find-Layer-Paths(G′, S′, δ2, j − 1)
9. for v ∈ S′ such thatt(v) 6=“Dead”
10. do t(ΓM ′(v))← v
11. Find maximal matchingM ′ between untagged vertices inS and untagged vertices inLj−1.
12. S′ ← {v ∈ Lj−1 : ∃u, (u, v) ∈M ′}
13. until |S′| ≤ δ|Lj−1|
14. for v ∈ S untagged
15. do t(b)← “Dead”.
16. return

Figure 1: An Algorithm for Finding Large Unweighted Matchings

3

At the core of the algorithm for finding length2i + 1 augmenting paths is an algorithm for finding a
nearly maximal set ofi + 1-paths in a graphG′ ∈ Li. See algorithmFind-Layer-Pathsin Figure 1. The
algorithm finds node disjointi+1-paths by doing something akin to a depth first search. Finding a maximal
set of node disjointi + 1-paths can easily be achieved in the RAM model by actually doing a DFS, deleting
nodes of foundi + 1-paths and deleting edges when backtracking. For the streaming model our algorithm
works by finding maximal matchings, first between the first and second levels and then between the nodes
in the second that were matched in the first matching, and the third level, and then between the nodes in the
third level that were matched in the second matching and the fourth level and so on. When the matching
between some subsetS of a levelLi andLi−1 falls below some threshold we declare all vertices inS that
haven’t been used ini + 1-paths, to be dead-ends or just “Dead”. The hope is that when we declare vertices
dead we are only slightly reducing the number of possible node disjointi + 1 paths. For each nodev the
algorithm maintains a tag indicating if it is “Dead” or, if we’ve found ai + 1 path involvingv, the next node
in the path.

Lemma 2 (Running Time and Correctness ofFind-Layer-Paths). GivenG′ ∈ Li, Find-Layer-Paths al-
gorithm finds at least(β − δ)|M | i + 1-paths whereβ|M | is the size of some maximal set ofi + 1-paths.
Furthermore the algorithm takesO(1) passes.

Proof: Find-Layer-Paths(·, ·, ·, l) is called with argumentδ2i+1−l
. During the running ofFind-Layer-

Paths(·, ·, ·, l) when we run line 15, we rule out at most2δ2i+1−l |Ll−1| i + 1-paths. LetEl be the number of

timesFind-Layer-Paths(·, ·, ·, l) is called:Ei+1 = 1 andEl = El+1/δ2i+1−l
henceEl = δ−

P
0≤j≤i+1−l−1 2j

≥
δ−2i+1−l+1. Hence we remove at mostElδ

2i+1−l |Ll| = δ|Ll|. Note that when nodes are labeled dead in a
call to Find-Layer-Paths(·, ·, ·, l), they really are dead and declaring them as such rules out noi + 1-paths.
Hence the total number of paths not found is at mostδ

∑
1≤j≤i |Lj | ≤ δ|M |. The number of invocations of

the recursive algorithm is ∑
1≤l≤i+1

El =
∑

1≤l≤i+1

δ−2i+1−+1 ≤ δ−2k−1

i.e.O(1) and each invocation requires one pass to find a maximal matching. �

When looking for length2i + 1 augmenting paths for a matchingM in graphG we randomly create a
layered graphG′ ∈ Li+1 usingCreate-Layer-Graphsuch thati + 1-paths inG′ correspond to length2i + 1
augmenting paths.

Theorem 1. If G hasαiM length2i + 1 augmenting paths, then the number of lengthi-paths found inG′

is
bi(βi − δ)

wherebi = 1
2i+2 andβi has a distribution that dominatesBin(αi|M |, 1

2(2k)k).

Proof: Consider a length2i + 1 augmenting pathP = u0u1 . . . u2i+1 in G. The probability thatP appears
as ani-path inG′ is at least

2P (l(u0) = 0) P (l(u2i+1) = i + 1)
∏
j∈[i]

P (l(u2j) = ja andl(u2j−1) = jb) =
1

2(2i)i

Given that the probability each augmenting path surviving toG′ is independent, the number of lengthi-paths
in G′ is distributed asBin(αi|M |, 1

2(2k)k). The size of a maximal set of node disjointi-paths is at least a
1

2i+2 fraction of the maximum size node-disjoint seti-paths. Combining this with lemma2 gives the result.
�

4

Theorem 2 (Correctness).With probability 1 − f by runningO(log 1
f) copies of the algorithm Find-

Matching in parallel we find a1− ε approximation to the matching of maximum cardinality.

Proof: We show that the probability that a given run ofFind-Matchingfails to find a(1 + ε) approximation
is bounded above bye−1. The result then follows.

Assume that for each of ther phases in the algorithmmax αi ≥ α∗ = 1
2k2(k−1)

. (By Lemma 1, if this is

ever not the case we are done.) Therefore, in each phase we augment our matching bymax(|βi− δ|M ||+bi)
to increase the size of our matching by a fraction

(1 + max(bi|βi − δ|+)/|M |) ≥ (1 + bk|β − δ|+/|M |)

whereβ & X = Bin(α∗|M |, 1
2(2k)k). Let (Xi)1≤i≤r be independent identically distributed (asX) rv’s and

r = 32(2k)k2 ln 2
bkα∗ . Let Y =

∏
1≤i≤r(1 + bk|Xi − δ|+/|M |). Therefore

P (Y ≥ 2) = P (lnY ≥ ln 2)

= P

 ∑
1≤i≤r

ln(1 + bk|Xi − δ|+/|M |) ≥ ln 2

≥ P

 ∑
1≤i≤r

Xi ≥ |M |(2 ln 2/bk + rδ)

= P (Z ≥ 3|M | ln 2/bk)

whereZ = Bin(α∗|M |r, 1
2(2k)k). Hence, by an application of the Chernoff bound,

P (Y ≥ 2) ≥ 1− P (Z < 2|M | ln 2/bk) > 1− e−(1−1/16)2 ln 2|M |/bk ≥ 1− e−1

�

3 Weighted Matching

We now turn our attention to finding maximum weighted matchings. Here each edgee ∈ E of our graphG
has a weightw(e). For a set of edgesS let w(S) =

∑
e∈S w(e). We seek to maximizew(S) subject to the

constraint thatS contains no two adjacent edges.

Consider the algorithms given in Figure 2. The algorithmFind-Weighted-Matchingcan be viewed as a
parameterization of the one pass algorithm given in [2] in whichγ was implicitly equal to 1. The algorithm
Find-Weighted-Matching-Multipassgeneralizes this to a multi-pass algorithm that in effect, runs the one
pass algorithm per pass until the improvement yielded falls below some threshold. We start by recapping
some notation introduced in [2]. While rather macabre, this notation is nevertheless helpful for developing
intuition.

Definition 3. In a given pass of the graph stream, we say that an edgee is born if e ∈ M at some point
during the execution of the algorithm. We say that an edge iskilled if it was born but subsequently removed
from M by a newer heavier edge. This new edgemurderedthe killed edge. We say an edge is asurvivor
if it is born and never killed. For each survivore, let theTrail of the DeadT (e) = C1 ∪ C2 ∪ . . ., where
C0 = {e}, C1 = the edges murdered bye , andCi = ∪e′∈Ci−1

the edges murdered bye′

5

Lemma 3. For a given pass let the set of survivors beS. The weight of the matching found at the end of
that pass is thereforew(S).

1. w(T (S)) ≤ w(S)/γ

2. OPT≤ (1 + γ) (w(T (S)) + 2w(S))

Proof:

1. For each murdering edgee, w(e) is at least(1 + γ) the cost of murdered edges, and an edge has at
most one murderer. Hence, for alli, w(Ci) ≥ (1 + γ)w(Ci+1) and therefore(1 + γ)w(T (e)) =∑

i≥1(1 + γ)w(Ci) ≤
∑

i≥0 w(Ci) = w(T (e)) + w(e). The first point follows.

2. We can charge the costs of edges in OPT to theS ∪ T (S) such that each edgee ∈ T (S) is charged at
most(1 + γ)w(e) and each edgee ∈ S is charged at most2(1 + γ)w(e). See [2] for details.

�

Hence in the one pass algorithm we get an1
1
γ
+3+2γ

approximation ratio since

OPT≤ (1 + γ)(w(T (S)) + 2w(S)) ≤ (3 +
1
γ

+ 2γ)w(S)

The maximum of this function is achieved forγ = 1√
2

giving approximation ratio 1
3+2

√
2
. This repre-

sents only a slight improvement over the1/6 ratio attained previously. However, a much more significant
improvement is realized in the multi-pass algorithmFind-Weighted-Matching-Multipass.

Theorem 3. The number of passes is< (log 3/2+
√

2)
log((2ε)3/(3(3+2ε)2))

+ 1 and we achieve a 1
2(1+ε) approximation.

Proof: First we prove the number of passes result. Well since we increase the weight of our solution by a
factor1 + κ each time we do the second step, we start with a1/(3 + 2

√
2) approximation to optimum so if

we do step 2

log1+κ(3/2 +
√

2) =
log(3/2 +

√
2)

log((2ε)3/(3(3 + 2ε)2))

times we already have an1/2 approx.

Let Mi be the matching constructed after thei pass of the data. LetBi = Mi ∪Mi−1. Now

(1 + γ)(w(Mi−1)− w(Bi)) ≤ w(Mi)− w(Bi)

and so
w(Mi)

w(Mi−1)
=

w(Mi)
w(Mi−1)− w(Bi) + w(Bi)

≥ (1 + γ)w(Mi)
w(Mi) + γw(Bi)

And so if w(Mi)
w(Mi−1) < (1 + κ), we get thatw(Bi) ≥ γ−κ

γ+γκw(Mi).
Using Lemma 3, for alli,

OPT ≤ (1/γ + 3 + 2γ)(w(Mi)− w(Bi)) + 2(1 + γ)w(Bi)

6

Algorithm Find-Weighted-Matching(G, γ)
(∗ Finds Large Weighted Matchings in One Pass∗)
1. M ← ∅
2. for each edgee ∈ G
3. do if w(e) > (1 + γ)w({e′|e′ ∈M , e′ ande share an end point})
4. then M ←M ∪ {e} \ {e′|e′ ∈M , e′ ande share an end point} return M

Algorithm Find-Weighted-Matching-Multipass(G, ε)
(∗ Finds Large Weighted Matchings∗)
1. γ ← 2ε

3

2. κ← γ
(

γ
1+γ

)2

3. Find a 1
3+2

√
2

weighted matching,M
4. repeat
5. S ← w(M)
6. for each edgee ∈ G
7. do if w(e) > (1 + γ)w({e′|e′ ∈M , e′ ande share an end point})
8. then M ←M ∪ {e} \ {e′|e′ ∈M , e′ ande share an end point}
9. until w(M)

S ≤ 1 + κ
10. return M

Figure 2: Algorithms for Finding Large Weighted Matchings

since edges inBi have empty trails of the dead. So ifw(Bi) ≥ γ−κ
γ+γκw(Mi) we get

OPT ≤ (1/γ + 3 + 2γ)(w(Mi)− w(Bi)) + 2(1 + γ)w(Bi)

≤ (1/γ + 3 + 2γ − (1/γ + 1)
γ − κ

γ + γκ
)w(Mi)

≤ (2 + 3γ)w(Mi)

Sinceγ = 2ε
3 the claimed approximation ratio follows. �

4 Conclusions

New constant pass,̃O(n) space, constant time-per-edge space streaming algorithms have been presented for
the MCM and MWM problems. The MCM algorithms uses a novel randomized technique that allows us to
find augmenting paths and finds a matching of size(1 − ε)OPT. The MWM algorithm builds on previous
work to find a matching whose weight is at least(1/2− ε)OPT.

References

[1] J. Edmonds.Maximum matching and a polyhedron with 0,1-vertices.J. Res. Nat. Bur. Standards, 69B:125-130, 1965.

7

[2] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. Zhang.On Graph Problems in a Semi-Streaming ModelTo appear in
the 31st International Colloquium on Automata, Languages and Programming, 2004

[3] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. Zhang.Graph Distances in the Streaming Model: The Value of Space
Yale University Technical Report YALEU/DCS/TR-1288, April 2004.

[4] H.N. Gabow,Data Structures for Weighted Matching and Nearest Common Ancestors with LinkingSODA 1990, 434443

[5] J.E. Hopcroft and R.M. Karp.An n5/2 algorithm for maximum matchings in bipartite graphs.SIAM Journal on Computing,
2(4):225-231, (1973).

[6] S. Micali and V.V. Vazirani,An O(V E) Algorithm for Finding Maximum Matching in General Graphs, Proc. 21st Annual
IEEE Symposium on Foundations of Computer Science (1980)

[7] S. MuthukrishnanData Streams: Algorithms and ApplicationsAvailable at http://athos.rutgers.edu/∼muthu/stream-1-1.ps
2003

8

