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abstract

 

The kinetics of the dark-adapted salamander rod photocurrent response to flashes producing from

 

10 to 10

 

5

 

 photoisomerizations (

 

F

 

) were investigated in normal Ringer’s solution, and in a choline solution that
clamps calcium near its resting level. For saturating intensities ranging from 

 

z

 

10

 

2

 

 to 10

 

4 

 

F

 

,

 

 

 

the recovery phases of
the responses in choline were nearly invariant in form. Responses in Ringer’s were similarly invariant for saturat-
ing intensities from 

 

z

 

10

 

3

 

 to 10

 

4 

 

F

 

. In both solutions, recoveries to flashes in these intensity ranges translated on
the time axis a constant amount (

 

t

 

c

 

) per e-fold increment in flash intensity, and exhibited exponentially decaying
“tail phases” with time constant 

 

t

 

c

 

. The difference in recovery half-times for responses in choline and Ringer’s to
the same saturating flash was 5–7 s. Above 

 

z

 

10

 

4 

 

F

 

,

 

 

 

recoveries in both solutions were systematically slower, and
translation invariance broke down. Theoretical analysis of the translation-invariant responses established that 

 

t

 

c

 

must represent the time constant of inactivation of the disc-associated cascade intermediate (R*, G*, or PDE*)
having the longest lifetime, and that the cGMP hydrolysis and cGMP-channel activation reactions are such as to
conserve this time constant. Theoretical analysis also demonstrated that the 5–7-s shift in recovery half-times be-
tween responses in Ringer’s and in choline is largely (4–6 s) accounted for by the calcium-dependent activation of
guanylyl cyclase, with the residual (1–2 s) likely caused by an effect of calcium on an intermediate with a nondom-
inant time constant. Analytical expressions for the dim-flash response in calcium clamp and Ringer’s are derived,
and it is shown that the difference in the responses under the two conditions can be accounted for quantitatively
by cyclase activation. Application of these expressions yields an estimate of the calcium buffering capacity of the
rod at rest of 

 

z

 

20, much lower than previous estimates.
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i n t r o d u c t i o n

 

Many G-protein receptor-coupled signal transduction
systems comprise a reaction chain linking two or more
enzymes; the G-protein cascade of the vertebrate rod is
one of the most thoroughly investigated mechanisms of
this class. Physiologically realistic models of the rod
phototransduction G-protein cascade have been shown
to provide quantitative accounts of the activation phases
of the photoresponses of rods to flashes over many de-
cades of intensity (Lamb and Pugh, 1992; Pugh and
Lamb, 1993; Kraft et al., 1993; Breton et al., 1994;
Hood and Birch, 1994; Cideciyan and Jacobson, 1996;
Lyubarsky and Pugh, 1996; Smith and Lamb, 1997).

Accounts of the recovery phases of photoresponses
have not yet progressed to the same degree as those of
activation, despite a wealth of information available
about biochemical mechanisms that inactivate or down-
regulate the different steps of the transduction cascade.

Among the reasons for the slower progress in the devel-
opment of a full account of photoresponse recoveries
are the co-occurrence in situ of the various biochemical
inactivation mechanisms, the high concentrations of
reactants in situ (which cannot be achieved in vitro),
and the complexity of the dynamic changes in Ca

 

2

 

1

 

i

 

that accompany light responses and modulate the inac-
tivation biochemistry.

Photoresponse recoveries of intact salamander rods
to saturating flashes exhibit a striking kinetic feature
that we believe provides a key for unlocking the door to
understanding inactivation in situ: over an intensity
range that can exceed 100 fold, rod response recover-
ies to saturating flashes translate on the time axis with a
characteristic linear increment (

 

t

 

c

 

) per e-fold increase
in flash intensities. Such translatory behavior of photo-
responses suggests that recovery is “dominated” by a
single biochemical mechanism that inactivates expo-
nentially with the time constant 

 

t

 

c

 

 (Baylor et al., 1974;
Adelson, 1982

 

a

 

, 1982

 

b

 

; Pepperberg et al., 1992). 
In a previous investigation (Lyubarsky et al., 1996),

we made an unexpected observation: salamander rod
photoresponses to saturating flashes measured under
conditions that maintain Ca

 

2

 

1

 

i

 

 near its resting level
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were delayed in their recovery by a constant amount of
time (typically 5–7 s, depending on the individual rod)
relative to those measured in Ringer’s, over a substan-
tial range of intensity. Thus, the “dominant time con-
stant” (

 

t

 

c

 

) was statistically the same, whether Ca

 

2

 

1

 

i

 

 was
clamped to rest, or free to decline to a low level during
the period of response saturation. The focus of that
previous investigation was on characterizing the method
of clamping Ca

 

2

 

1

 

i

 

, and on measuring 

 

t

 

c

 

 under Ca

 

2

 

1

 

i

 

clamp and with Ca

 

2

 

1

 

i

 

 varying freely. 
The theoretical goal of this investigation was to pro-

vide a rigorous foundation for the concept of a domi-
nant time constant of inactivation, and for interpreting
its apparent lack of calcium dependence in the pres-
ence of the large effect of declining Ca

 

2

 

1

 

i

 

 on overall re-
covery time. The empirical goals were to examine re-
sponse recoveries for obedience to the law that we show
to define a dominant time constant, and to analyze the
contributions of different mechanisms underlying the
speed-up of recoveries in Ringer’s relative to those in
calcium clamp. To achieve these goals, we have done
the following. First, we have examined the complete
form of the response recoveries in clamped Ca

 

2

 

1

 

i

 

 and
in Ringer’s, determining the extent to which the recov-
eries to saturating flashes are invariant in shape. Previ-
ous experimental protocols have precluded an exami-
nation of the complete form of the recoveries in
clamped Ca

 

2

 

1

 

i

 

 over an adequately wide range of times
and intensities. Second, based on the observation that
the recoveries are invariant in form for saturating
flashes producing up to 

 

z

 

10,000 photoisomerizations,
we derive and illustrate several general theoretical re-
sults not previously formalized; these mathematical the-
orems provide a rigorous basis for interpreting results
presented here and elsewhere by others. Third, we
quantify the contributions of two non–mutually exclu-
sive explanations of the 5–7-s time shift between recov-
eries to single saturating flashes in clamped Ca

 

2

 

1

 

i

 

 and
Ringer’s (see Fig. 1): (

 

a

 

) calcium-dependent guanylyl
cyclase activation, as characterized by Hodgkin and
Nunn (1988); (

 

b

 

) calcium-dependent gain-control, as
described by Lagnado and Baylor (1994), Murnick and
Lamb (1996), Gray-Keller and Detwiler (1996), and
Matthews (1996, 1997). 

 

m e t h o d s

 

General Experimental

 

The experimental methods employed for preparing isolated sala-
mander rods, and for recording and analyzing their electrical re-
sponses have been reported (Cobbs and Pugh, 1987; Lyubarsky
et al., 1996). For all the experiments whose data are reported
here, the circulating currents of rods were recorded by means of
suction electrodes into which the rod inner segment was drawn;
the outer segment was continually superfused, either with a stan-
dard Ringer’s solution or by rapid exchange with a test solution. 

 

Calcium Clamping

 

We made use of recent work showing that Ca

 

2

 

1

 

i

 

 in the outer seg-
ments of salamander rods can be maintained near its resting
(dark) level by exposing the outer segment to an isotonic choline
solution containing very low Ca

 

2

 

1

 

 (Matthews, 1995; Lyubarsky et
al., 1996). In most of our previous experiments, we employed a
“0-Ca

 

2

 

1

 

 choline” solution, which, while keeping Ca

 

2

 

1

 

i

 

 near its
resting level, allows Ca

 

2

 

1

 

i

 

 to decline slowly in the dark (Lyubarsky
et al., 1996; see Figs. 4 and 6); we will report some results and
analyses of four rods whose responses were recorded in 0-Ca

 

2

 

1

 

choline. In the present investigation, which reports new data
from 19 rods, for calcium clamping we employed exclusively a
choline solution containing an estimated 2.3 nM Ca

 

2

 

1

 

. This latter
concentration of Ca

 

2

 

1

 

o

 

 is in equilibrium with the measured rest-
ing concentration in salamander rods, Ca

 

2

 

1

 

i

 

 

 

5 

 

400 nM (Lagnado
et al., 1992), and the membrane potential, 

 

2

 

67 mV, estimated
for the condition in which the outer segment is exposed to a non-
permeant solution while the inner segment is maintained in nor-
mal Ringer’s (Lyubarsky et al., 1996).

 

 

 

While a jump in the dark
from Ringer’s into choline solution containing 2.3 nM Ca

 

2

 

1

 

o

 

yields a circulating current whose initial magnitude (

 

z

 

10 pA) is
diminished 

 

z

 

50% relative to that (

 

z

 

20 pA) in 0-Ca

 

2

 

1

 

 choline,
2.3 nM Ca

 

2

 

1

 

o

 

 serves to maintain a stable circulating current in
the dark, allowing the recovery kinetics under calcium clamp to
be examined over time intervals up to 40 s or more, as required
for examination of the response recovery phase to bright flashes.

 Because of intrinsic variability between rods, one would not
expect 2.3 nM Ca

 

2

 

1

 

o

 

 (or any particular value) to be in equilib-
rium for all rods whose outer segments are exposed to choline.
In fact, we observe increases or decreases in the circulating cur-
rent of some rods of up to 20% between 10 s after the jump into
choline (when we deliver our first flash) and 45 s (the greatest
time at which we deliver a second saturating flash and terminate
the exposure to the choline). A 20% increase in circulating cur-
rent corresponds to a change of 

 

,

 

10% in [cGMP], assuming a
Hill coefficient of at least 2 for activation of the cGMP channels,
and to a change of 

 

,

 

5% in Ca

 

2

 

1

 

i

 

, assuming the cooperativity co-
efficient for calcium dependence of cyclase activity is also 

 

z

 

2
(Koutalos et al., 1995

 

a

 

). A 20% increase in circulating current is
also only 0.09 of the average 3.2-fold (220%) increase in circulat-
ing current that occurs when the cGMP concentration is strongly
elevated before the jump into choline (Lyubarsky et al., 1996).

 

Stimuli

 

Stimuli were monochromatic (500 nm, 8 nm full width at half-
maximum), circularly polarized light flashes, generated via one
of two optical channels: (

 

a

 

) a tungsten/halogen source illuminat-
ing a grating monochromator, followed by a shutter; (

 

b

 

) a xenon
flashlamp (flash duration, 20 

 

m

 

s) filtered with an interference fil-
ter. Intensities are reported in photoisomerizations (symbolized by

 

F

 

), obtained by multiplying the physically measured energy den-
sity (photons 

 

m

 

m

 

2

 

2

 

) of the flash at the image plane by an esti-
mated outer segment collecting area of 18 

 

m

 

m

 

2

 

. For all new re-
sponse family data reported here, one of two flash series was
used: 

 

F 5 

 

47, 150, 470, 1,500, 4,700, 1.5 

 

3 

 

10

 

4

 

, 4.7 

 

3 

 

10

 

4

 

 (10-ms
flashes); 

 

F 5 

 

23, 94, 300, 940, 3,000, 9,400, 3 

 

3 

 

10

 

4

 

, 9.4 

 

3 

 

10

 

4

 

(20-ms flashes); the 

 

F 5 

 

23 flash was not used in all experiments.
In general, we avoided flashes of intensity lower than 

 

F 5 

 

47 be-
cause of the low amplitude (

 

,

 

2 pA) they evoke in choline (ne-
cessitating extra superfusion cycles for reliable data), and be-
cause of the focus in this investigation on responses to saturating
flashes. Flashes of higher intensities than listed above were gener-
ated with the flashlamp channel as needed (for example, to pro-
duce strongly saturated responses in choline immediately before
the return to Ringer’s solution). 
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Theorems and Model Calculations

 

The principal theoretical results of this paper are analytical in na-
ture and are cast as “theorems.” Our concept of a theorem is that
of a relatively short proposition about well defined variables and
quantities, a proposition that can be established by formal rea-
soning. The theorems are important for providing the context
for the presentation of our findings, and thus are given together
with the empirical results. However, grasp of the proofs of the
theorems is not necessary to understand our conclusions, and so
the proofs have been placed in 

 

appendix i

 

, where they are avail-
able for interested readers. Several of the theorems involve
straightforward applications of linear systems theory (e.g., Jaeger,
1966); they have been included, nonetheless, so that readers not
familiar with this branch of mathematics may have a self-con-
tained framework for understanding all the theoretical results.

To illustrate certain theoretical results and estimate critical pa-
rameters of the rod phototransduction cascade, we employ a
computational model developed to characterize responses in
clamped-Ca

 

2

 

1

 

i

 

 condition, and written in the MatLab™ program-
ming language (Lyubarsky et

 

 

 

al., 1996). The model is generalized
here to apply to responses of dark-adapted rods in Ringer’s solu-
tion, in which Ca

 

2

 

1

 

i

 

 is free to vary. Details of the model calcula-
tions will be given as needed in the text, or in 

 

appendix ii

 

.

 

r e s u l t s

 

The general framework and notation adopted for the
variables and parameters describing the reactions of
the rod G-protein cascade have been presented previ-
ously (Lamb and Pugh, 1992; Pugh and Lamb, 1993;
Lyubarsky et al., 1996), and thus are summarized in an
abbreviated manner in Table I and in Fig. 1. 

 

Recovery Translation Invariance

 

Fig. 2 illustrates the experimental protocol used to ob-
tain response families of rods with Ca

 

2

 

1

 

i

 

 clamped near

its resting value. The figure shows three repeated su-
perfusion cycles in which the rod was stimulated first in
Ringer’s, and then in choline with a test flash produc-
ing 3,000 photoisomerizations. To insure that the rod

Figure 1. A schematic repre-
sentation of the rod transduction
cascade. Table I identifies the
variables and parameters. The
notation is that used in previous
papers (see for example Pugh
and Lamb, 1993; Lyubarsky et al.,
1996). The arrows at right point
to sites in the cascade at which
calcium is known or has been
hypothesized to affect photore-
sponse recoveries, based on re-
sults of biochemical and physio-
logical experiments. These sites
are (1) R* inactivation kinetics,
via the calcium-binding protein
recoverin; (2) R* catalytic gain;
(3) guanylyl cyclase activity.

t a b l e  i

Variables and Parameters of Phototransduction

Symbol Unit Interpretation

F #‡ Number of photoisomerizations per rod per flash

R *(t) # Number of activated rhodopsins per rod at time t

G *(t) # Number of free, activated G-proteins per rod at time t

E*(t) # Number of activated PDE catalytic subunits per 
rod at time t

cG(t) mM Concentration of free cGMP in the outer segment

F(t) # Normalized circulating current at time t

nRP s21 Rate of production of E*s per R*

tR s Time constant for first-order inactivation of R* 
catalytic activity

tE s Time constant for first-order inactivation of G*–E* 
complex

a(t) mM s21 Rate of synthesis of cGMP by guanylyl cyclase

adark mM s21 Dark rate of cGMP synthesis

bsub s21 Rate constant of cGMP hydrolysis by single PDE 
catalytic subunit

b(t) s21 Rate “constant” of PDE activity in outer segment

bdark s21 Rate constant of cGMP hydrolysis in the dark

cGdark mM Resting cytoplasmic concentration of cGMP

nH # Hill coefficient of the cGMP-activated channels in situ

A s22 Amplification constant; equal to vRPbsubnH

Numerical range of variables and values for parameters are as given in
Lyubarsky et al. (1996; Table I), unless otherwise specified in the text.
Note that E* has been used to represent PDE*. ‡Dimensionless variable or
parameter.
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10 Salamander Rod Cascade Recovery Kinetics

was always in an identical state upon each exposure to
choline, a “conditioning flash” of 9,400 photoisomer-
izations was delivered in Ringer’s 40 s before the jump
into choline. Unlike the protocol followed in previous
calcium-clamping experiments in which a second, satu-
rating flash was delivered at a fixed time after the jump
into choline (Fain et al., 1989; Lyubarsky et al., 1996),
in the experiments reported here, the timing of the
second flash in choline was varied with the intensity of
the first flash in such a way as to allow the full recovery
to be followed in choline.

Fig. 3 illustrates response families of the rod of Fig. 2
for saturating flashes, obtained in choline (Fig. 3 A)
and in Ringer’s (Fig. 3 B), and for a second rod (Fig. 3,
C and D). The responses are plotted in a nonconven-
tional manner: only the response to the most intense
flash is plotted correctly with respect to the time axis;
all other responses were translated to coincide at the
point of 50% recovery. Here it can be seen that the re-
covery phases of the responses in Ca21

i clamp (Fig. 3, A
and C) are nearly identical in shape. The responses in
Ringer’s (Fig. 3, B and D) are also quite similar to one
another, though clearly less so than those obtained in
choline.

Another way to examine the shape invariance of the
recoveries is illustrated in the lower half of each of the
four panels (Fig. 3). Here we have taken the average of
the traces in each case most closely similar in form (see
legend), and then, with smoothing created an empirical
template recovery shape; the template was subtracted
from each of the individual traces and the residuals were
plotted. For the responses in choline, shape invariance is
again seen to hold well for flashes that produce up to
15,000–20,000 photoisomerizations. Above 20,000 pho-
toisomerizations, systematic changes in recovery form are
observed, most notably for the responses in Ringer’s. 

Fig. 3 also serves to illustrate another feature of the
recoveries: geometric increases in flash intensity give
rise to linear increments in recovery time. This feature
is revealed by the approximately constant spacing of
the rising phases of the translated responses. 

The experiment illustrated in Fig. 3 was completed
on eight rods, with similar results. (Summary data from
all the rods will be reported in Table II, and also in
Figs. 6 and 9, below.) We return to consideration of the
deviations from shape invariance later. Our immediate
goal is explicating the theoretical implications of the
shape-invariant recovery behavior.

Figure 2. Protocol used for
measuring photoresponses in
Ringer’s and calcium-clamping
choline solution. As illustrated in
the inset at right, the inner seg-
ment of the rod is held in a suc-
tion pipette containing normal
Ringer’s, while the outer seg-
ment is fully exposed to a test so-
lution, which is either Ringer’s or
isotonic choline containing 2.3
nM Ca21. At the beginning of
each cycle, the rod was exposed
to the test flash, in this case pro-
ducing F 5 3,000 photoisomer-
izations; the rod was then ex-
posed to a standard flash, F 5
9,400, and 40 s later the outer
segment was jumped into cho-
line. At 10 s after the jump into
choline, the test flash was again
delivered and, after an appropri-
ate period (which depended on
the test flash intensity), given a
standard saturating flash and re-
turned to Ringer’s. The junction
current produced by the jump to

choline has been subtracted from the raw records (see Lyubarsky et al., 1996, Fig. 1). The entire cycle was completed three times for flashes
spanning the intensity range from F 5 94 to 94,000. Over the 2.5-h time period required for the recording, the circulating current de-
clined z10–15%; the photocurrent traces were normalized before averaging for additional analysis. In addition, the circulating current re-
covery after the initial test flash in choline increased z10% over the time course of recording from its magnitude at the time of the first
flash, as indicated by the dashed line. Before averaging the photocurrents, a correction for this effect was applied by dividing the overall
circulating current (at each time point) by the current course represented by the dashed line. (The line drawing of the rod was made from
a videotape record of the experiment, obtained with infrared viewing equipment.)
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11 Nikonov et al.

Theoretical Analysis

We can formulate the observations illustrated in Fig. 3
in terms of the following functional equation:

(1a)

where F[F,t] is the circulating current present at time t
after a flash producing F photoisomerizations at t 5 0.
The interval (F0, Fmax) is the intensity range over
which Eq. 1a holds, t0 is time at which F begins to show
recovery from saturation by the flash F0, s is a positive
number and h(s) is an unknown function. F is assumed
to obey two boundary conditions:

, (1b)
. (1c)

In words, Eq. 1a states that when the intensity of a sat-
urating flash producing F $ F0 photoisomerizations is

F s[ Φ t ] F Φ[ t h s( ) ]

with Φ0 Φ sΦ, Φmax t ,  t 0 s, 0,>≥≤ ≤

,–,=,

F Φ t ∞→,( ) 1=
F Φ ∞ t,→( ) 0=

scaled by a factor s $ 1, the response recovery at times
greater than the fixed time t0 is translated on the time
axis without change of shape to the right by the
amount h(s). Eq. 1b states that for any flash whose in-
tensity lies within the specified range of F, at suffi-
ciently long times recovery is complete; Eq. 1c states
that even the most intense flash can only drive F to
zero. A family {F [F,t]} of photoresponse recoveries sat-
isfying Eq. 1 is said to obey Recovery Translation Invari-
ance (RTI).1

In appendix i (Lemma 1), we show that Recovery
Translation Invariance is sufficient to completely deter-
mine the nature of the translation function h(s); specif-
ically, if a family of recovery traces obeys RTI, then the
only possible form that h(s) can take is

(2)h s( ) τcln s( ) ,=

Figure 3. Experimental results examining Re-
covery Translation Invariance for two rods. A and
B show photoresponses collected from the rod of
Fig. 2 (rod a); C and D show photoresponses col-
lected from a second (rod b). In the upper part of
each panel, the responses are shown translated on
the time axis to coincide with the point of 50% re-
covery, which is indicated by a dotted vertical line;
in the lower part of each panel a template recov-
ery shape has been subtracted from each trace;
the template was made by averaging the three re-
sponses in the midrange of intensities (940–
9,400) that have the most closely identical shapes.
For rod a, the template curve was essentially iden-
tical to the responses to the flash F 5 9,400; for
rod b, the template curve was most closely similar
to the responses to the flash F 5 4,700. The re-
sponses of rod a are the averages of three individ-
ual responses to each intensity; those of the rod b
to two flashes. The flashes delivered to rod a were
20 ms in duration; those to rod b were 10 ms. Full
obedience to RTI (Eq. 1) requires not only that
the recovery shapes be identical, but also that the
spacing between the activation phases in the up-
per part of each panel be uniform.

1Abbreviations used in this paper: PDE, phosphodiesterase; RTI, Recov-
ery Translation Invariance.
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12 Salamander Rod Cascade Recovery Kinetics

where tc is a constant having the units of time. Once it
has been established that RTI implies Eq. 2, then it is
straightforward to prove the following result:

Theorem 1: Recovery Translation Invariance 

A family of circulating current recovery traces {F [F,t]}
obeys RTI if and only if

, (3)

where H(x) is a saturation function obeying H(x → `) 5
0, H(0) 5 1, and tc is a constant having the units of
time. 

Put into words, theorem 1 states that obedience of a
family of saturating responses to Recovery Translation
Invariance is equivalent to the requirement that there
exists a transduction intermediate that is produced in
an amount proportional to the flash intensity F (over
the restricted intensity range), and which at appropri-
ately long times decays with the time constant tc. Theo-
rem 1 by no means states that the circulating current it-
self recovers with the time constant tc; quite the con-
trary, a saturating nonlinearity H can (and does) exist
between the decaying transduction intermediate and
the measured circulating current recovery. (Later, how-
ever, we establish conditions under which tc can be ex-
pected to be directly recoverable as the time constant
of the “tail phase” of the recovering circulating cur-
rent.)

We now note several consequences of theorem 1.
First, theorem 1 reveals RTI to be both necessary and
sufficient for Eq. 3 to hold. In other words, under the
boundary restrictions placed on F, Eq. 3 and RTI are
equivalent properties: one cannot exist without the
other. This equivalence helps to resolve some confu-
sion in the literature on the conditions under which
one can infer the existence of a unique dominant time
constant, a point to which we return in the discussion.
Second, while theorem 1 appears to place only minimal
constraints on the saturation function H, it nonetheless
leads to the question of which late steps in the trans-
duction cascade can be demonstrated analytically to
preserve a dominant time constant established at an
earlier step (Fig. 1) and thus serve jointly as an “H func-
tion.” We will address this question directly, and answer
it in the section below entitled “The cGMP synthesis
and hydrolysis reactions.” Third, the time scale tc of the
logarithmic function h(F/F0) 5 tc ln (F/F0) is uniquely
determined from the translation of the recovery curves
per e-fold change in intensity, as noted by Pepperberg
et al. (1992); see also Baylor et al. (1974, Eq. 51 and
Fig. 19). In keeping with the terminology used by Pep-
perberg et al. (1992), we call this scale constant the
“dominant time constant of recovery,” and have adopted

F Φ t[ , ] H Φe2t τ⁄ c[ ] Φ 0 Φ Φmax t t0≥,≤ ≤,=

for it the symbol tc, where “c” stands for “critical.” We
next examine more fully the conditions under which
one might expect the rod phototransduction cascade
recovery to be governed by a dominant mechanism. In
so doing, we find another characterization of a domi-
nant time constant. 

Phosphodiesterase activity modeled as a linear system. The fact
that rod photoresponse recoveries to saturating flashes
obey RTI (Fig. 3) lends support to the hypothesis that
during such recoveries the underlying process is being
“dominated” by the first-order inactivation of a single
molecular species. Based on general considerations
about the established reactions of the transduction cas-
cade (and specific considerations taken up below in
presentation of the cGMP synthesis/hydrolysis reac-
tions), it is reasonable to look to the reactions that oc-
cur at the disc surface for the identity of this molecular
species. For mathematical purposes, we thus represent
the disc-associated reactions of the transduction cas-
cade as a linear system. Further support for this repre-
sentation will be mentioned in the discussion.

We assume then that E*(t), the number of phospho-
diesterase catalytic subunits active in the outer segment
at time t in response to a flash given at t 5 0 is a linear
function of F: the scaled variable e*(t) 5 E*(t)/F is the
impulse-response function of the system of disc-associ-
ated reactions. We emphasize that E*(t) does not repre-
sent the time course of activity of an impulse of instanta-
neously activated phosphodiesterase (PDE) molecules;
rather, E*(t) represents the time course of activation
and inactivation of E*s after an impulsive flash, a time
course that necessarily includes the convolved kinetic
effects of the lifetimes of R*, G*, and E* (see Fig. 1).
Supposing that e*(t) can be represented as a cascade of
n reactions, each of which exhibits first order decay,
one can then prove that at sufficiently long times the
reaction with the longest time constant always domi-
nates, in the following specific sense.

Theorem 2: Dominant Time Constant of a Linear Cascade 

Suppose that the impulse-activated activity of an enzy-
matic effector E*(t) can be represented as a cascade of
n reactions, each exhibiting first-order decay, having
time constants t1 , t2 , . . . , tn. Then, at sufficiently
long times, the reaction with the longest time constant,
tn, always dominates: that is, given any small number d,
it is always possible to find a time Td such that to within
error of a term of order d

, (4)

where e* 5 E*/F, F is input strength (flash intensity)
and C9 is a constant. 

Theorem 2 follows straightforwardly from linear sys-
tems theory. Our goal in stating it is to show how to

e* t( ) C ′ exp 2t τn⁄( ) t Tδ>,≈
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13 Nikonov et al.

compute Td, the time at which “dominance” is estab-
lished. Based on current knowledge of the reactions of
the rod phototransduction cascade, n is not expected
to be large; recent models of E*(t) have used n 5 3
(Tamura et al., 1991) and n 5 2 (Lyubarsky et al.,
1996). The model of e*(t) implemented here is that
generated by the cascading of two first-order exponen-
tials, one representing R* decay (time constant, tR) and
one for concurrent G*–E* decay (time constant, tE)
(Fig. 1):

(5)

where nRP is the rate of generation of E* per fully active
R*, and CRE 5 [tE tR/(tE 2 tR)] is a constant that ren-
ders E*(t) at early times consistent with the activation
scheme of Lamb and Pugh (1992). Thus, in this partic-
ular case in Eq. 4, C9 5 nRP CRE. Use of Eq. 5 as a de-
scription of the disc-associated reactions is not without
problems, particularly inasmuch as it assumes R* activ-
ity to decay with first-order kinetics. In discussion, we
address some issues concerning this obvious oversimpli-
fication of the biochemical reality of R* inactivation.
Nonetheless, in the context of Eq. 5, the value Td can
be thought of as setting the value of t0 in theorem 1.
Thus, for the two-stage model of E*(t) kinetics embod-
ied in Eq. 5 and the specific values of the time con-
stants tR and tE estimated below, we find Td 5 0.01 5 2.2 s;
that is, 2.2 s after a flash is given, the intermediate R* or
E* with the longer lifetime is expected to be strongly
dominant, for flashes up to the intensity at which RTI
fails. 

In the context of theorem 1, and the empirical obedi-
ence of rod recoveries to RTI (Fig. 3), the overall signif-
icance of Eq. 4 is this: we can tentatively identify the
scale constant tc of Eq. 3, estimated from recovery half-
time data, with the component of the impulse response
e*(t) having the longest time constant, tn. This identifi-
cation will provide a satisfactory completion of the
meaning of the term “dominant time constant.” How-
ever, such identification is premature unless it can be
shown that the reactions of the phototransduction cas-
cade subsequent to E* cannot contribute a dominant
time constant, and yet are such as to preserve a domi-
nant time constant established at an earlier stage in the
cascade.

The cGMP synthesis and hydrolysis reactions. Our primary
goal in this section is to inquire whether the reactions
governing cGMP hydrolysis and synthesis are such as to
allow a dominant time constant present in e*(t) to be
conserved. Our analysis answers this inquiry affirma-
tively, and also shows that while the hydrolysis/synthesis
step of the cascade cannot be the source of the domi-
nant time constant manifest in recoveries from saturat-
ing flashes, it nonetheless makes an important contribu-
tion to the time to peak of subsaturating responses.

E* t( ) ΦνRPCRE e2t τ⁄ E e2t τR⁄
–[ ] ,=

The reactions governing the hydrolysis and synthesis
of cGMP in a rod outer segment after an isotropic flash
can be written 

, (6)

where cG is the concentration of free cGMP, a the rate
of cGMP synthesis by guanylyl cyclase, and b the rate
constant of hydrolysis. Many investigations have estab-
lished the applicability and generality of Eq. 6 (re-
viewed in Pugh and Lamb, 1993). 

For a rod in normal Ringer’s solution, a is time de-
pendent, due to the decline in Ca21

i that occurs dur-
ing the light response and the dependence of guanylyl
cyclase activity on Ca21

i. For the specific condition in
which Ca21

i is held at its resting level (as in Fig. 3, A
and C), a ; adark and we can simplify Eq. 6 to the fol-
lowing:

. (7)

By further restricting attention to the recovery phase
of the response when e*(t) is governed by its dominant
mechanism, and by application of theorem 2, we can
rewrite Eq. 7 as 

. (8)

By analysis of Eq. 8, we can establish the following re-
sult.

Theorem 3: Conservation of the Dominant Time Constant 
of Recovery 

When a 5 adark, a constant, the family of recovery
curves {cG(F,t)} generated by solving Eq. 8 for different
saturating values of F obeys RTI. Thus, there exists a
time t0 such that for t . t0 solutions to Eq. 6 for a 5
adark are isomorphic, and translate on the time axis tc

units for each e-fold increase in F, where tc is the larg-
est time constant of the reactions governing the rod
transduction cascade up to and including E*.

Before closing this section on the cGMP hydrolysis
and synthesis reactions, we emphasize a feature of Eq.
7 important for full appreciation of RTI. While neither
Eq. 6 nor 7 is the equation of a linear filter, at suffi-
ciently low response amplitudes, Eq. 7 is in fact linear
in F. Thus, the behavior of solutions of Eq. 7 is impor-
tant for understanding the kinetics of photoresponses
at low intensities and for understanding the tail phase
of recovery from saturating flashes. The behavior is
also important for excluding a role of cGMP hydrolysis
and synthesis reaction in determining the dominant
time constant. Thus, we formalize this behavior as fol-
lows.

dcG
dt

---------- α t( ) β t( ) cG–=

dcG
dt

---------- αdark Φe * t( ) βsub βdark+[ ] cG–=

dcG
dt

---------- αdark ΦC ′ e2t τc⁄ βsub βdark+[ ] cG–=
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14 Salamander Rod Cascade Recovery Kinetics

Theorem 4: Dim-Flash Responses and Tail Phase of Responses 
in Calcium Clamp: The Filtering Effect of bdark 

At appropriately low response amplitudes (such as
those of responses to low intensity flashes), under cal-
cium clamp the cGMP hydrolysis and synthesis reac-
tion (Eq. 7) acts as a low pass filter with time constant
tdark < 1/bdark; at high intensities the reaction does not
contribute a significant time constant to the cascade.

The effect of the Hill equation governing the cGMP-acti-
vated current. The Hill equation governing the relation-
ship between free cGMP, cG(t), and F, the fraction of
circulating current present in normal Ringer’s at time
t, is given by

, (9)

where nH is the Hill coefficient. Eq. 9 is valid for time
scales exceeding a few milliseconds because of the
rapid equilibration of cGMP-gated channel currents
with the ligand concentration. Inspection of Eq. 9 re-

F t( ) cG t( )
cGdark
---------------

nH

=

veals that its application to a family of theoretical
curves {cG(F,t)} generated as the solution to Eq. 8 will
not alter the relative lateral positions of the members
of the family on the time axis; rather, application of Eq.
9 with nH . 1 serves only to steepen each of the recov-
ery curves in a manner that preserves their relative posi-
tions. The same conclusion applies to the modified ver-
sion of Eq. 9 that governs responses in choline (Lyubar-
sky et al., 1996; see Eq. 10).

The overall consequence of theorems 2 and 3 is this:
the dominant time constant of the reactions governing
the time course of activation and inactivation of E* will
be conserved through the subsequent reactions of the
cascade, and be manifest in the spacing on the time
axis of circulating current recovery traces. Illustrating
this conclusion, Fig. 4 shows theoretical curves gener-
ated with the model, fitted to the photoresponses of
the two rods of Fig. 3, and to those of an additional rod
whose distinctive pattern of responses provides a basis
for useful discussion later. In Fig. 4, we have fitted the
response families of rods a–c twice: once (left) with nH 5
2, and again (right) with nH 5 3. As can be seen, other

Figure 4. Averaged photore-
sponses of three rods (noisy
traces) obtained under calcium
clamp, fitted with a model (dotted
traces) in which the disc-associ-
ated reactions are characterized
as a linear cascade having two in-
activation time constants (Eq.
5). The larger of the two time
constants, tc, was estimated ini-
tially from analysis of the recov-
ery half-times as in Fig. 5 A (i.e.,
by application of theorem 1),
with small variations (z5%) al-
lowed to optimize the fittings.
The lesser time constant tnd was
estimated from the fitting; its
value was strongly constrained by
the time to peak of the subsatu-
rating responses, though also af-
fected somewhat by the value of
bdark, as expected from theorem
5. The value of bdark was varied
between 0.8 and 1.2 to optimize
the fittings: the final values were
1.1, 0.8, and 0.8 s21. The fittings
were done with the Hill coeffi-
cient nH 5 2 (left), and also with
nH 5 3 (right). Holding the value
of nH at either 2 or 3 had negligi-
ble effect on the estimates of tnd

(as expected from theorems 2–3),
or on the amplification constant, A (Table II). Such invariance of A is expected from previous work (Lamb and Pugh, 1992). Rods a and b
are typical in their parameter values. In contrast, rod c was unusual in being about three times more light-sensitive (without having an un-
usually large value of A); however, the estimate of tnd for this rod was about three times greater than the average. The “undershoot” of cur-
rent after the responses of rod c was modeled by continual activation of cyclase at rate 0.017/nH s21 (Lyubarsky et al., 1996, Eq. 12). The un-
usual features of the rod suggest that it may have had a higher Ca21

i in Ringer’s than the other rods.
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15 Nikonov et al.

factors constant, the recoveries are somewhat better
characterized by theory traces employing the higher
value of the Hill coefficient. It is noteworthy that the
values of the other parameters (A, tc, tnd), estimated by
fitting the model to response families, were practically
independent of whether the Hill coefficient is set to 2
or to 3; thus, for the families shown in Fig. 4, the esti-
mates of the dominant and nondominant time con-
stants giving the best-fitting curves differed in each case
by ,10%. (The notation adopted in Fig. 4 and Table I
for the two time constants tR and tE of Eq. 5 is noncom-
mittal as to their molecular identity since the constants
are formally interchangeable. Thus, tc refers to the longer
or dominant time constant and tnd to the shorter, non-
dominant time constant. The molecular identity of the
mechanisms underlying the time constants will be taken
up in discussion.)

The application of the model to the data of Figs. 3
and 4 underscores an important feature: for flashes ex-
ceeding z20,000 photoisomerizations, the linear E*(t)
model (Eq. 5) fails systematically, predicting recoveries
that are more rapid than those observed. This failure of
RTI is illustrated further in Fig. 5, where we plot recov-
ery half-time data for rods a and b, and the deviations of
the recovery half-times from the constancy predicted by
RTI for eight rods. 

Fig. 6 (top) serves to illustrate the degree to which the
two-stage inactivation model accounts for the template
recovery shape of each of the rods. The model was first
fitted to the response family of each rod (as illustrated
in Fig. 4); this generated the theory templates. The fit-
ting also yielded estimates of the nondominant time

constant (tnd) of each rod; these values are reported in
Table II. Fig. 6 also provides evidence for testing a pre-
diction resulting from theorems 2 and 4: providing the
dominant time constant tc exceeds 1/bdark, the tail
phase of the response recovery from any flash is pre-
dicted to decay exponentially with time constant tc; this
prediction is not dependent on the value of the Hill co-
efficient, providing that the fitting is begun at a suffi-
ciently low response amplitude. 

Responses in Ringer’s: Ca21
i free to vary. An important

goal of characterizing response recoveries in normal
Ringer’s solution is the determination of the way in
which the decline in Ca21

i that accompanies the light
response affects the various cascade steps. At least two
distinct sites of action of the decline of Ca21

i have been
described in previous physiological experiments (see
Fig. 1): an increase of a, the rate of cGMP synthesis
(Hodgkin and Nunn, 1988; Kawamura and Murakami,
1989; Koutalos et al., 1995a); an apparent change in
gain or amplification of an early transduction stage
(Lagnado and Baylor, 1994; Pepperberg et al., 1994;
Jones, 1995; Koutalos et al., 1995b; Matthews, 1996;
Murnick and Lamb, 1996; Gray-Keller and Detwiler,
1996). Our goal in this section is to provide evidence
and analysis that will help dissect the relative contribu-
tions of these two actions of Ca21

i to the speeding up of
the recoveries to saturating flashes in Ringer’s, relative
to the same flashes in calcium clamp. 

Theorem 3 applies for the situation in which a, the
rate of cGMP synthesis, is a constant. Nonetheless, as
seen in Fig. 2 and shown previously by other investiga-
tors, even in normal Ringer’s solution in which Ca21

i

Figure 5. (A) Half-times of re-
covery for responses of rod a (cir-
cles) and rod b (squares) collected
in choline (filled symbols) and in
Ringer’s (open symbols). Regres-
sion lines have been fitted to the
choline data for flashes up to and
including F 5 10,000, and ex-
trapolated (dotted lines); regres-
sion lines were fitted to the en-
tire set of response half-times ob-
tained in Ringer’s. For rod a, the
regression slopes (in unit of s per
e-fold increase in intensity) are
2.2 and 2.3 for the Ringer’s and
choline data (s and d, respec-
tively); for rod b, the slopes are
2.1 and 2.3 (h and j, respec-
tively). The shift DT0.5 between
the choline and Ringer’s recov-
ery data is 7.7 s for the circles,

and 7.0 s for the squares. (B) Choline recovery half-time data from eight rods for flashes up to F 5 100,000. Linear regression lines as in
the left panel were fitted to responses up to and including F 5 10,000, and then extrapolated; the plotted points represent the residual de-
viations from the regression lines. All eight rods exhibit reliable deviations in the intensity range above F 5 30,000. The downward trian-
gles represent data of rod c.
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16 Salamander Rod Cascade Recovery Kinetics

declines during a saturating response (thereby increas-
ing a), response recoveries obey RTI to a first approxi-
mation. Moreover, as is shown in Figs. 3 and 5 A and
documented previously (Lyubarsky et al., 1996), tc, the
dominant time constant, is not significantly affected by
the decline in Ca21

i. What constraints do these empiri-
cal results impose on the theory of recovery? 

For responses measured in Ringer’s that obey RTI,
theorem 1 is in force and we can conclude that the re-
coveries obey Eq. 3. Moreover, since the value of tc esti-
mated in Ringer’s and in Ca21

i -clamping solution is sta-
tistically the same, on grounds of parsimony it can be
concluded that one and the same biochemical mecha-
nism, a mechanism whose time constant is not sensitive
to the changes in Ca21

i that normally occur, is responsi-
ble for tc. These considerations combine to yield the
following.

Theorem 5: Recovery Translation Invariance in Ringer’s

If a family {F[F,t]} of photoresponse recoveries ob-
tained under conditions that allow a to vary freely
obeys RTI, then a(t) itself must obey RTI and recover
after a saturating flash in such a manner as to track the
recovery of the incremental cGMP hydrolysis rate con-
stant, at long times given by Db(t) < FnRPCREe2t/tc bsub.

Figs. 7 and 8 illustrate an application of theorem 5 to
our results. Fig. 7 (top) reproduces from the investiga-
tion of Hodgkin and Nunn (1988) the response of a
rod to a flash they estimated to yield F 5 40,800, along
with the response in Ringer’s of the rod of Fig. 2 to the
flash producing F 5 30,000; Fig. 7 (bottom) shows
Hodgkin and Nunn’s estimates of a9 5 a/cGdark and b,
along with estimates of the same two variables obtained
in a complementary manner from our data, as we now
explain. We first introduce an expression for a9 5
a/cGdark that can be derived by combining Eqs. 6 and 9:

. (10)

In their experiments, Hodgkin and Nunn estimated a9
by measuring the rate of change of the circulating cur-
rent after rapid exposure of the outer segment to the
phosphodiesterase inhibitor IBMX (3-isobutyl-1-meth-
ylxanthine); they then estimated b with the steady state
approximation of Eq. 10, which neglects the second
term; i.e., they used the relation b(t) 5 a9(t)/F(t)(1/n H).
In contrast to Hodgkin and Nunn’s approach, we first
estimated b by fitting the model to the responses of
the rod obtained under Ca21

i clamp (Fig. 4 A), and
then derived a9(t). Thus, from the fitting we obtained

α′ t( ) β t( ) F
1 nH⁄ 1

nH
------ dF

1 nH⁄

dt
----------------+=

Figure 6. Recovery templates
and tail phase data obtained in
choline of eight different rods;
letter labels correspond to those
used in Table II to identify the
rods. (top) The noisy traces are
the recovery templates of the
rods obtained by averaging the
responses in choline to saturat-
ing flashes up to F 5 10,000, as
illustrated in Fig. 2. The thicker
gray curves lying behind the tem-
plate traces are the theoretical
recovery template forms gener-
ated with the model, as in Fig. 4;
the parameter values characteriz-
ing these theoretical templates
are reported in Table II (the
value of nH used was 3). The dot-
ted trace is a first-order exponen-
tial, fitted to the tail phase of the
template data trace, beginning at
the point (z0.2) marked with a
filled circle; the exponentials
were fitted with the simplex fit-
ting algorithm in the MatLab
software package. The values of
the time constants ttail for the ex-

ponentials are reported in Table II. (bottom) The data traces and fitted exponentials are replotted in semilog coordinates; the traces are
truncated at a normalized amplitude of z0.03–0.04, corresponding to an absolute magnitude of 0.3–0.4 pA (the amplitude of saturated re-
sponses under these conditions in choline is z10–11 pA; see Fig. 2). 
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17 Nikonov et al.

b(t) 5 Fe*(t)bsub 1 bdark (see Eq. 7), and we then com-
puted a9(t) 5 b(t)F(t)(1/n H), which is plotted along with
b(t) in Fig. 7 (bottom). 

In Fig. 8, we apply the analysis of Fig. 7 to the com-
plete set of saturating responses obtained in Ringer’s of
the same rod: unbroken lines are the estimates of b(t)
obtained from the fitting of the cascade model to the
responses obtained in calcium clamp (Fig. 4 A); gray
thickened lines are the estimates of a9(t) obtained with
the steady state approximation of Eq. 10, while the dot-
ted trace gives the result of applying the complete equa-
tion, including the derivative term. As is seen in Fig. 8,
we found generally that the derivative term of Eq. 10
contributed ,5% to the estimate of a9(t) at any time af-
ter the point of 10% circulating current recovery. 

The value of a9(t) at the time of 10% recovery is in-
formative, since the concentration of Ca21

i should have
changed relatively little from the minimal value achieved
during the saturated phase of the response; thus a9F 5 0.1

provides an estimate of a9max. For the rod of Fig. 8, the
average value of a9F 5 0.1 estimated from the responses
to the four highest intensities was 10.2 s21. In Table II
(rightmost column), we report the values of a9F 5 0.1 ob-
tained in this way for each rod. The average value a9F 5 0.1

for these rods was 10.4 s21; this value was the same if the
two outlier values (Table II, rods f and g) were elimi-
nated before averaging.

The focal issue of this section is the analysis of the
mechanisms that underlie the accelerated recovery ki-
netics of saturated responses in Ringer’s, relative to
those measured in calcium clamp. The analysis of Figs.
7 and 8 provides an explanation of this acceleration, in-
asmuch as it shows that an z10-fold increase in cyclase
activity during the saturated phase of the responses,
along with Eq. 10, suffices to explain the acceleration.
However, this analysis provides relatively little insight into
the mechanistic details underlying the accelerated re-
coveries and, moreover, by assuming that none of the early
steps in the cascade is affected by the decline in Ca21

i,
begs the question of whether another calcium-depen-
dent process might be involved in the faster recoveries.

To gain deeper insight into the effect of cyclase acti-
vation on response recoveries in Ringer’s, we adopted
and applied three equations that have been used by sev-
eral investigators to characterize fluxes of Ca21 across
the salamander rod outer segment membrane, free
Ca21 in the outer segment, and the Ca21-dependent ac-
tivity of guanylyl cyclase (Lagnado et al., 1992; Miller

t a b l e  i i

Parameters of Activation and Inactivation

Rod Figures A

Calcium clamp

DT0.5

Ringer’s

tc ttail Number tnd tc ttail Number a9 F 5 0.1

s22 s s s s s s s21

a 2–12 0.10 2.1 2.4 14 0.39 7.7 2.3 2.6 28 10.2 6 1.8

b 4–6, 9–12 0.09 2.2 2.2 21 0.35 7.0 2.3 2.8 37 7.8 6 0.9

c 4–6, 9–12 0.10 1.9 1.7 6 1.2 6.7 2.6 2.6 9 9.7 6 2.4

d 5, 6, 9–12 0.12 2.2 2.3 6 0.40 7.8 2.1 2.2 11 11.2 6 1.9

e 5, 6, 9–12 0.12 1.9 1.8 4 0.38 6.3 2.0 2.2 24 9.8 6 1.4

f 5, 6, 9–12 0.23 (0.10)* 1.6 1.6 24 0.35 5.7 1.6 1.6 7 15.7 6 3.0

g 5, 6, 9–12 0.08 1.7 1.4 7 0.20 4.0 1.5 1.4 9 4.6 6 0.6

h 5, 6, 9–12 0.08 1.7 1.4 10 0.45 5.5 1.6 2.0 34 12.8 6 4.6

i 10–13 0.06 (0.11)* 2.5 — — 0.47 7.8 2.6 2.6 4 10.4 6 1.9

j 10–13 0.12 (0.16)* 1.9 — — 0.60 5.5 1.8 1.9 3 12.0 6 3.6

Mean 6 SD 1.9 6 0.5 0.48 6 0.27 6.4 6 1.2 2.0 6 0.4 2.2 6 0.5 10.4 6 3.0

Column 1 identifies the rod; the same letter is used throughout the paper in the figures and text to identify data of the rod. Column 2 lists figures in
which data from the rod appears. Columns 3–7 give specific parameters of activation and inactivation of responses in choline, obtained as follows: column
3 is the “amplification constant” determined by the rising phase of the response family (Lamb and Pugh, 1992; Pugh and Lamb, 1993); column 4 is the
dominant time constant of inactivation, obtained from a linear regression applied to the recovery half-time data of saturating (or near-saturating re-
sponses), as in Fig. 5 A (typical 95% confidence interval for tc is 60.2); column 5 is the time constant of the tail phase of inactivation, estimated as in Fig.
6; column 6 gives the number of responses that were averaged for the tail phase analysis; and column 7 gives the estimate of the nondominant time con-
stant obtained from fitting the model to the choline response family as illustrated in Fig. 4 for rods a–b. Column 8 gives DT0.5, the shift in time to 50% re-
covery for responses in choline and Ringer’s, as in Fig. 5 A. Columns 9–11 give estimates of parameters derived from responses in Ringer’s. Column 9
gives the dominant time constant of inactivation, obtained from a linear regression applied to the recovery half-time data of saturating (or near-saturating
responses, as in Fig. 5 A; column 10 gives the time constant of the tail phase of the template saturating response in Ringer’s (Fig. 9); column 11 gives the
number of responses averaged to get the recovery template response in Ringer’s. Column 12 is the estimate of a9max obtained at the point of 10% recov-
ery, as in Fig. 8, computed with Eq. 10. In general, the estimates of A were the same for response families in choline and Ringer’s; however, for the three
entries marked by an asterisk the two estimates differed; the bracketed value is that obtained for responses in Ringer’s. The data of rods i and j were col-
lected in Lyubarsky et al. 1996; the calcium-clamping solution for those particular experiments was 0-Ca choline, and a saturating flash was given a fixed
time after the jump into choline, precluding the tail-phase analysis.
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18 Salamander Rod Cascade Recovery Kinetics

and Korenbrot, 1994; Koutalos et al., 1995a, 1995b; see
also Tamura et al., 1991; reviewed in Pugh et al., 1997):

, (11)

(12)

(13)

In these three equations, Ca represents the concen-
tration of outer segment free calcium (i.e., Ca21

i); the
parameters of the equations are listed in Table III (F is
the Faraday). Eq. 11 describes the dependence of the
Na/Ca-K exchange current on Ca21

i, while Eq. 12 de-
scribes the rate of change of Ca21

i in terms of the bal-
ance between inward current through the cGMP-gated
channels (2fCa F Jdark) and outward pumping by the ex-
changer (Jex). (Note that Jdark is an inward current, and
therefore a negative quantity, and that while Jex is also a
net-inward charge flow, it corresponds to a decrease in
Ca21

i.) Eq. 13 describes the dependence of the cyclase

Jex Jex sat,
Ca

Ca Kex+
---------------------=

dCa
dt

----------
2fCaF t( ) Jdark 2Jex+

2FVcytoBCafse
-------------------------------------------------,=

α t( )
αmax
------------

1

1
Ca
KCa
-------- 

 
nCa

+

-------------------------------.=

rate a on Ca21
i. If these equations provide an adequate

characterization of the mechanisms governing Ca21
i,

then, when combined with Eqs. 5, 6, and 9, they should
in general yield a quantitative account of the responses
in Ringer’s and, more specifically, provide an account
of the shift in recovery times between responses in cal-
cium clamp and in Ringer’s.

We took two approaches to the application of Eqs.
11–13. First, we combined them with Eqs. 5, 6, and 9
and solved the ensemble of six equations numerically;
further details, including a description of the initial con-
ditions, are provided in appendix ii. We will return to
the numerical analysis below. Second, we expanded each
of the six equations into perturbation approximations
about the initial (i.e., dark/resting) values of the variables
cG and Ca, thereby obtaining an analytic formula for
the small signal response, and for the tail-phase response
in Ringer’s. This analysis yielded the following result.

Theorem 6: Tail Phase of Saturating Responses in Ringer’s: 
Apparent Gain-control Effect of Cyclase Activation 

The tail phase of the photoresponse in Ringer’s will de-
cay as a first-order exponential with the time constant

Figure 7. (top) This shows two
photoresponses: the trace with
open symbols attached is copied
without alteration from Fig. 15 of
Hodgkin and Nunn (1988); they
obtained it as the response of a
salamander rod to a flash esti-
mated to yield F 5 40,800. The
second trace, with the filled sym-
bol attached is from rod a (Table
II) of this paper to a flash esti-
mated to yield F 5 30,000. The
filled symbol indicates the point
of 10% circulating current recov-
ery. (bottom) Estimates of b and
a9 5 a/cGdark. The unbroken
curves through the open symbols
reproduce the estimates of the
time course of these variables ob-
tained by Hodgkin and Nunn
(1988), based on the application
of the IBMX jump method dur-
ing the response of the rod of
the top panel to the F 5 40,800
flash at the points marked with
the open circles. The unbroken
trace labeled “b” gives an esti-
mate of b(t) for the response of
rod a to the F 5 30,000 flash in
the top panel; this estimate was
obtained from the curve fitting

analysis of Fig. 4. The dotted trace is the time course of a9(t) predicted from the relation a9(t) 5 b(t)F(t)(1/n H), as described in the text. The
purpose of reproducing the Hodgkin and Nunn (1988) data is to show how similar the estimates of b and a9 obtained here are to theirs.
Note that we have reproduced the original figure scales of the Hodgkin and Nunn (1988) figure to the right of both panels.
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19 Nikonov et al.

tc of the dominant mechanism of the disc membrane–
associated reactions, providing the inequality

(14)

is satisfied, where

(15)

and g . 0 and 1 . h . 0. Moreover, if Eq. 14 is satis-
fied, the effect of cyclase activation alone on the posi-
tion on the time axis of the late phase of recovery from
a saturating photoresponse in Ringer’s relative to that
in calcium clamp can be expressed as

(16)

where DTcyclase is the predicted shift, m is given in Eq.
15, and

. (17)

Eqs. 14–17 in theorem 6 yield quantitative constraints
for the theory of recovery, which we now explore. The
constraint embodied in Eq. 14 appears generally satis-
fied, since the terms g and h, and, therefore, m are pos-

µ 1 τc⁄>

µ βdark γη+( ) 2 with

γ
2fCa Jdark

2FVcytoBCa fseCadark
------------------------------------------------ and

η
Kex

Kex Cadark+
-----------------------------=

=

,⁄

,

=

T∆ cyclase τcloge

γη 1 τc⁄( )–[ ] β dark 1 τc⁄( )–[ ]

µ 1 τc⁄( )–[ ] 2 ν2
+

-------------------------------------------------------------------------------- ,=

ν2 nHnCaβdark 1 βdark( α′ max⁄–( ) γ[ ] µ 2
–=

itive, and the values of the parameters involved yield an
estimate for m of 2.7 s21 (Table III); thus, m is more
than fourfold larger than (1/tc), which is z0.5 s21 (Ta-
ble I). But does the prediction of theorem 6 hold that
the tail phase of the responses in Ringer’s should decay
as a first-order exponential with time constant tc? And
how does the prediction of Eq. 16 compare with the ob-
served shift in recoveries between saturating responses
in calcium clamp and Ringer’s?

Figs. 9 and 10 address the first question. In Fig. 9, we
show an averaged response of each rod in Ringer’s,
along with a decaying exponential fitted to the tail
phase to estimate ttail. This analysis was similar to that
used to analyze the calcium-clamp response tail phases
(Fig. 6), except that we did not average responses ob-
tained at different flash intensities. For most cells, we
analyzed only the response to the conditioning flash,
which was repeated many times over the course of an
experiment (Table II, column 11). We adopted this
procedure because of concern that systematic variation
in ttail over intensity might be obscured by averaging, as
we now explain. 

Since for some rods of this and of our previous inves-
tigation we had five or more responses to flashes of dif-
ferent intensities in Ringer’s (obtained over the time
course of a 2–3-h experiment), we were able to estimate
ttail reliably from responses to these different flash in-
tensities; these estimates are illustrated in Fig. 10 A
(open symbols). Fig. 10 A (shaded circles) represents data
from a rod of our previous investigation. Also plotted
along with our data in Fig. 10 A as symbols with embed-
ded crosses are estimates of the time constant of de-

Figure 8. (top) Family of saturating responses
obtained in Ringer’s for rod a (see Table II); the
point of 10% circulating current recovery on each
trace is marked with a filled symbol. (bottom) Ap-
plication of the analysis of Fig. 7 to the responses
in the top panel: the unbroken traces give the esti-
mates of b(t) obtained from the model analysis
applied to the responses of the rod to the same
flash series in choline (Fig. 3). The dotted curves
are the predicted time courses of a9(t). The
curves are only calculated for t such that F(t) $
0.1, with the filled symbol marking the value of a9
associated with 10% circulating current recovery.
The dotted line labeled bmax is an estimate of the
highest possible rate constant of cGMP hydrolysis,
computed as bmax 5 PDEtot bsub, where PDEtot is
the total number of catalytic subunits in the outer
segment (Dumke et al., 1994) and bsub is the hy-
drolytic rate constant of a single fully activated cat-
alytic subunit in a well-stirred volume equal to that
of the outer segment (Lamb and Pugh, 1992). 
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20 Salamander Rod Cascade Recovery Kinetics

cline of Db(t) 5 b(t) 2 bdark obtained by Hodgkin and
Nunn (1988; see Fig. 16) with their IBMX- and lithium-
jump methods (see Fig. 8, above). Our estimates of ttail

and theirs of the time constant of decline of Db(t) are
in good agreement, as theorems 5 and 6 leads us to ex-
pect. Visual inspection of Fig. 10 A reveals that, in the
middle range of intensities (F > 100–10,000, depend-
ing on the cell), ttail is approximately constant, as ex-
pected from analysis of the recovery half-times (Fig. 5,
open symbols; Lyubarsky et al., 1996). However, three sys-
tematic deviations from the simple ideal of an intensity-
independent value of ttail deserve attention. 

The first and most salient deviation from the simple
ideal occurs at F > 10,000, where for most rods ttail be-
comes systematically much longer, increasing by as

much as twofold over the next 1-log unit range of inten-
sities. This systematic lengthening of ttail occurs at ap-
proximately the same intensities at which RTI fails for
calcium-clamp responses (Fig. 5). The second deviation
from the simple ideal occurs at intensities F , 100,
where for a number of rods ttail becomes systematically
shorter. We will consider these latter deviations in
more detail below. The third deviation from ideality oc-
curs exactly in the middle range of intensities, and is
characterized by a gradual increase of ttail. To put the
deviations of the first and third kind into relative per-
spective, in Fig. 5 B we have fitted straight lines to
points in the middle and upper range, picking (somewhat
arbitrarily) a “break point” near F 5 10,000. The average
slopes of the lines fitted were 0.15 6 0.12 s/log10(F) in
the middle intensity range and 1.2 6 0.2 s/log10(F) in
the upper intensity range. In an effort to obviate the ar-
bitrariness of first choosing a breakpoint to determine
the slopes, we also derived local slopes from the data in
Fig. 5 A, numerically estimating the derivative at each
point; these running slopes are plotted in Fig. 5 C. The
analyses in Fig. 5, B and C support the conclusion that a
highly reliable increase in slope in the ttail vs. logF
curves occurs at zF > 10,000 for all rods, and that in
the middle range the slope is relatively shallow or negli-
gible. Also interesting is that the rods having the larger
absolute values of ttail also have greater slopes. 

 Theorems 5 and 6 together lead to the conclusion
that tc estimated from recovery half-time data and ttail

should be the same for each rod. Fig. 10 D compares
the t’s estimated from the tail phase analyses with the
estimates of the dominant time constant tc for all the
rods of this study, as determined in Ringer’s (open sym-
bols) and in calcium clamp (closed symbols). The values
of ttail in this figure were obtained from the responses
to the conditioning flashes (F 5 4,700 or 9,400), which
were repeated many times (Table II, column 4). Based
on the relatively shallow slopes in Fig. 10 B, these esti-
mates should be appropriate for examining the predic-
tion that tc and ttail should be the same for each rod. To
the data from the eight principal rods of this study, we
have added to the figure points (gray symbols) obtained
from responses in Ringer’s of 15 additional rods in-
volved in related experiments. The symbols in Fig. 10 D
fall near the line of slope 1 through the origin, suggest-
ing that the mechanism(s) underlying variation across
rods (and, implicitly, over animals) affects tc and the
response tail phases in the same manner. Interestingly,
the rods exhibiting the smallest values of tc were ob-
tained from animals obtained in the early Spring.

We return now to the second question posed above:
can cyclase activation alone account for the shift be-
tween the response recoveries in calcium clamp and
those in Ringer’s? One issue that needs to be addressed
first concerns the amplitude of the response recovery at

t a b l e  i i i

Parameters Involving Calcium and Affecting Recovery

Symbol Value/Unit Interpretation/comment

Vcyto 1.0 pl Volume of the outer segment cytoplasm

Jdark/fse 70 pA Dark/circulating current measured by 
suction electrode (s.e.) divided by s.e. 
collecting efficiency *‡§

fCa 0.1 Fraction of inward circulating current 
carried by Ca21‡

Cadark 385 nM Dark/resting concentration of Ca21
i 

in outer segment; see appendix ii
‡

Jex,sat 12.5 pA Saturated magnitude of Na1/Ca21-K1 
exchange current‡

Kex 1600 nM Ca21
i giving rise to half-maximal 

exchange current‡

KCa 100 nM Ca21
i at which cyclase activity is half-maximal§

nCa 2.0 Cooperativity coefficient for Ca21 
dependence of cyclase activity§i

bdark 0.8–1.2 s21 Rate constant of cGMP hydrolysis in darki¶

a9max 10–15 s21 Maximum rate of cGMP synthesis 
divided by cGdark

¶

g 5.6 s21 Factor for converting Ca21 currents into 
concentration changes; Eq. 15

h 0.8 Fraction of unused exchange current 
capacity at rest; Eq. 15

m 2.7 s21 Real component of the oscillatory term 
governing cyclase feedback near Cadark; 
Eqs. 15, 20, and A6.8

n 4.5 s21 Imaginary component of the oscillatory 
feedback term; Eqs. 20 and A6.8

u 3.8 radians Phase term of the calcium feedback; 
Eqs. 20 and A6.8

Parameters in rows 1–8 were fixed at the values listed, based on the refer-
ences. bdark was varied within the range given to optimize fitting; the most
commonly used value was 1.0 s21; in the perturbation analysis a9max is not
free, but takes a value consequent to initial conditions based on equations
6, 11, and 13 (see Appendix II). The last five parameters in the table arise
in the perturbation analysis of the dim-flash response in Ringer’s (Theo-
rem 6); the values listed are typical ones. *Lyubarsky et al., 1996;
‡Lagnado et al., 1992; §Koutalos et al., 1995; iPugh et al., 1997; ¶Hodgkin
and Nunn, 1988.
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21 Nikonov et al.

which the shift should be measured: in Table II, we re-
ported the shift at the point of 50% recovery (DT0.5),
but the theoretical prediction of Eq. 16 is valid only for
response tail phases. To address this issue, we remeasured
the shifts between the responses to saturating flashes in
choline and in Ringer’s at the points of 80% recovery;
these values are reported as DT0.8 in Table IV. The aver-
aged absolute fractional difference, |DT0.5 2 T0.8 |/DT0.5

was 4%, with the maximum fractional difference being
10%. A second issue that must be addressed in order to
apply Eq. 16 is the specific values of the various param-
eters in Eqs. 14–17. For the most part, the needed pa-
rameters have already been estimated for each rod or
were estimated in previous investigations by others;
these are given in Table III. Two particular parameters,
however, stand out as requiring special attention: nH,
the Hill coefficient of the cGMP-activated current, and
BCa,rest, the calcium-buffering capacity of the rod near
rest. Based on the quality of the fittings of the theoreti-
cal curves in Fig. 4, and on estimates of the Hill coeffi-
cient of cGMP-activated currents of excised patches of
outer segment membrane, we might prefer the value
nH 5 3. Nonetheless, recent experiments on truncated
salamander rods have yielded the estimate nH 5 2
(Koutalos et al., 1995a), and the value nH 5 3 must be
called into question. According to Lagnado et al.
(1992, see Eq. 8), BCa in the salamander rod can be
generally expressed as

(18)BCa

CbuffKbuff

Ca Kbuff+( ) 2
--------------------------------- B 1+( ) ,+=

where Cbuff is the concentration of high affinity buffer,
Kbuff is the dissociation constant of the high affinity
buffer, Ca the calcium concentration, and B the buffer
capacity of the rod “at high Ca21

i.” Lagnado et al.
(1992) provide the estimates Cbuff 5 240 mM, Kbuff 5 0.7
mM, Ca 5 Cadark 5 0.4 mM, B 5 16; these values predict
that in the salamander rod BCa,rest should be 156. Calcu-
lations with the analytical model of the dim flash re-
sponse resulting from theorem 6 (see discussion, Eq.
20) led us to suspect that the value BCa,rest 5 156 was
problematically high.

Fig. 11 serves to illustrate for rods a and b the prob-
lem with BCa,rest arising from the application of Eq. 18,
and shows how we obtained estimates of nH and BCa,rest.
In brief, we numerically solved Eqs. 5, 6, 9, and 11–13
describing the transduction cascade in Ringer’s, fitting
the solution curve to the response of each rod to the
least intense flash used to stimulate the rod, and using
the optimized fittings to estimate the parameters. The
theory predictions (Fig. 11, dashed lines) are seen to fail
seriously if Eq. 18 is applied with Cbuff 5 100 mM, a
value ,1/2 the estimate Cbuff 5 240 mM reported by Lag-
nado et al. (1992). In contrast, the theoretical calcula-
tions with all other parameters unchanged appear to
give an excellent account of the responses on the as-
sumption that BCa,rest 5 15 and 18, with nH 5 2. Also
shown in Fig. 11 are the best fitting theoretical curves
that could be obtained with nH 5 3; clearly these curves
fit the data less well than those computed with nH 5 2.

Fig. 12 shows the application of the theoretical analy-
sis to the lowest intensity flash responses obtained in

Figure 9. (top) Recovery tem-
plates (unbroken traces) for re-
sponses in Ringer’s. Here the
template represents the averaged
response to a flash producing ei-
ther F 5 4,700 or 9,400 (the
number of responses averaged
varied between 9 and 28 for dif-
ferent rods, depending on how
many times it was possible to re-
peat the entire response family
series). The tail phase of the tem-
plate was fitted with an exponen-
tial, as in Fig. 6, from the point
marked with the filled symbol.
a–h correspond to labels used in
Fig. 6 and in Table II. (bottom)
The data and fitted exponentials
of the top panel are shown in
semilog format.
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22 Salamander Rod Cascade Recovery Kinetics

Ringer’s from all the remaining rods of this investiga-
tion (Fig. 12, c–h), and from two rods from the previous
investigation (Fig. 12, i and j). In Table IV, the result-
ing parameter estimates are given. The average esti-
mated value of BCa,rest is 17.5 6 7.2. To fit the responses
well, the value of the “dominant” or larger time con-
stant of Eq. 5 for every rod had to be set to a value sys-
tematically lower than the estimate tc obtained from
the translation and tail-phase analysis of saturating re-
sponses. A similar observation was reported by Hodgkin
and Nunn (1988) as lower estimates of the time con-
stant of decay of Db(t) at low flash intensities (see Fig.
10 A). In Table IV, we identify this value as t9c.

Finally, with BCa,rest (and all other relevant parame-
ters) now estimated, we can examine the prediction of

theorem 6, Eq. 16. Thus, in Table IV we report the pre-
dicted shift between the recoveries of saturating re-
sponses in calcium clamp and in Ringer’s, predicted on
the hypothesis that cyclase activation alone underlies
the shifts. The average residual difference between the
observed shift (DT0.8) and that predicted by cyclase acti-
vation alone (DTcyclase) is 1.5 6 0.9 s; the residuals range
from 20.5 to 2.8 s.

As noted at the beginning of this section, recent evi-
dence has supported the existence of a calcium-sensi-
tive mechanism that affects the gain of an early activa-
tion step. Because it appears that such an effect can
provide a reasonable account of the residual shift not
accounted for by cyclase activation, it is useful to con-
clude by formalizing the manner in which calcium, act-

Figure 10. (A) Estimates of ttail obtained from responses in Ringer’s are plotted as a function of flash intensity, F; the responses fitted
were the averages of three to five responses obtained over the time course of an experiment. Data of different rods are represented by dif-
ferent symbols. The symbols with embedded crosses replot estimates of the first-order time constant of decay of Db obtained by Hodgkin
and Nunn (1988). (B) Data in A are shown again, but with straight lines fitted to points lying between F < 100 and 10,000, and to the
points above F < 10,000, as described in the text. (C) Local slopes of the empirical functions in A, computed by fitting a parabola by least-
squares successively to each triplet of data points, and taking the derivative of the parabola at the center point of the triplet as the estimate
of the slope. The slopes above F < 10,000 lie reliably above those below this intensity. (D) ttail for each rod plotted against tc (obtained as
in Fig. 5 A). Open symbols refer to estimates obtained for responses in Ringer’s, filled symbols for responses obtained in choline; different
symbols refer to different rods. Ringer’s data (gray symbols) from a number of additional rods are included. 
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23 Nikonov et al.

ing on a nondominant mechanism, will affect the re-
coveries to saturating responses in Ringer’s.

Theorem 7: Gain Control Via a Nondominant Mechanism 

If calcium feedback acts to diminish the gain or shorten
the lifetime of a nondominant component of the cas-
cade up to and including E*, then such an effect will be
manifested in the recoveries of saturating photore-
sponses in Ringer’s only as a shifting of the family of re-
coveries to shorter times, with no change in the spacing
on the time axis of the members of the family.

d i s c u s s i o n

Linearity of the Phosphodiesterase Response Revealed by 
Recovery Translation Invariance

An earlier investigation concluded that during the ris-
ing phase of the salamander rod photoresponse the
number of active phosphodiesterase catalytic subunits,
E*(t), is linear in intensity up to F > 10,000–20,000
photoisomerizations per rod, equivalent to 1 photo-

isomerization for each 7–16 mm2 of disc membrane
(Lamb and Pugh, 1992). The phenomenon of Recovery
Translation Invariance (Figs. 3 and 4) now leads via the-
orem 1 to the conclusion that for responses obtained in
clamped Ca21

i, linearity holds for the entire time course
of E*(t), both activation and inactivation, for flashes up
to approximately the same intensity. The likely expla-
nation of this linearity is that the reactions governing
the activation and inactivation of R*, G*, and E* (Fig. 1)
for such intensities occur in completely nonoverlapping
domains on the disc membranes, and involve no signifi-
cant competition for cascade reactants.

 Two essential nonlinearities intervene between E*(t)
and the suppression of circulating current in clamped
Ca21

i, the reactions governing cGMP hydrolysis/synthe-
sis (Eq. 6) and the Hill relation (Eq. 9). Theorem 3 es-
tablishes that these nonlinearities are such as to con-
serve a dominant time constant in the disc-associated
inactivation reactions; i.e., that these nonlinearities can
serve as an appropriate “H” saturation function in theo-
rem 3. It bears emphasis in this context that the nonlin-
earity represented by Eqs. 6 and 7 cannot be consid-
ered an “instantaneous saturating nonlinearity” of the
sort often used in modeling photoresponses; quite the
contrary, these latter equations act as filters in which
1/b(t) is a time- and intensity-dependent “time constant”
(theorem 4).

Saturating responses in Ringer’s over the intensity
range from F > 1,000–10,000 also obey Recovery
Translation Invariance approximately, and thus we
conclude that for such saturating responses the entire
time course of E*(t) of rods in Ringer’s is also to a good
approximation a linear function of flash intensity, de-
spite the changes in Ca21

i that necessarily occur. Theo-
rems 5 and 7 show that it is reasonable to expect such
linear behavior, provided declining Ca21

i acts on the
lifetime or gain of a nondominant disc-associated inter-
mediate, as previously proposed by Murnick and Lamb
(1996) and Matthews (1996, 1997). 

Generality of tc and Its Independence of Ca21
i

We have shown that a single time constant, tc, governs
two major features of the photoresponse recovery to
saturating flashes, the spacing of traces obeying Recov-
ery Translation Invariance (Figs. 3–5) and the tail
phase kinetics (Figs. 6 and 9). Moreover, to a very good
approximation, tc is the same whether the responses
are measured under calcium clamp or in Ringer’s, in
which Ca21

i is free to vary (Figs. 5 A and 10 D). These
observations further strengthen the conclusion that the
biochemical mechanism underlying tc is not sensitive
to calcium (Lyubarsky et al., 1996). Because the recov-
ery half-time to a saturating flash given in Ringer’s is
typically 5–7 s shorter than the recovery half-time to the

t a b l e  i v

Parameters of Dim Flash Responses in Ringer’s and Prediction of Recovery 
Shift Due to Cyclase Activation

Rod tc9 t9nd BCa,rest DT0.8 DTcyclase DTresidual

s s s s s

a 1.4 0.43 15 6.6 5.5 1.1

b 1.8 0.37 18 6.0 5.5 1.5

c 1.3 0.73 28 7.7 5.7 2.0

d 1.7 0.31 10 7.6 4.8 2.8

e 1.4 0.33 13 6.5 4.4 2.1

f 1.4 0.32 14 5.7 4.3 1.4

g 1.2 0.27 7 4.0 4.5 20.5

h 1.2 0.35 18 5.7 4.5 1.2

i 1.7 0.41 25 7.8* 5.7 2.1

j 1.7 0.35 27 5.5* 4.6 0.9

1.5 6 0.2 0.39 6 0.12 17.5 6 7.2 6.2 6 1.2 5.0 6 0.6 1.5 6 0.9

Column 1 identifies the rod. Columns 2–4 give the parameters of the
model used to fit the low intensity responses in Ringer’s, as illustrated in
Figs. 11–13; the value of the amplification constant used is given in Ta-
ble II, and in all cases the Hill coefficient was set to nH 5 2. tc9 is the
value of the larger time constant of the disc-associated reactions, and
t9nd the shorter time constant (Eq. 5). Column 4 gives the value of a9max 5
amax/cGdark, the maximal rate of guanylyl cyclase activity divided by the
concentration of cGMP in the dark (see appendix ii). Column 5 gives the
observed shift at the point of 80% recovery (20% response amplitude) be-
tween saturating responses obtained in choline and in Ringer’s. Column 6
gives the shift predicted on the assumption that cyclase activation alone is
responsible, calculated with Eq. 16. Column 7 gives the residual shift; i.e.,
the observed minus the predicted shift. *Rods i and j were recorded from
in 0-Ca21 choline, and for the reasons given in the notes to Table II, we
were unable to measure DT0.8 and have instead substituted DT0.5.
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24 Salamander Rod Cascade Recovery Kinetics

same flash given in calcium clamping choline, it may
seem surprising that the time constants of the tail
phases of the recoveries in both solutions are equal.
Theorem 6 defines a quantitative condition (Eq. 14)
under which such equality will occur, and this condi-
tion is met by the parameters of the salamander rod
(Table III). 

Partitioning the Overall Recovery Speed-Up Produced by 
Changing Ca21

i 

As just noted, recoveries to saturating flashes in Ringer’s
are typically sped up 5–7 s relative to those to the same
flash obtained with Ca21

i maintained near its resting
value (Fig. 5 A). Our results and analysis lead to the likely
conclusion that z4–6 s of the total shift is due solely to
the activation of cyclase by the decline in Ca21

i (Table
IV). The residual shift not accounted for by cyclase acti-
vation is 1.5 s 6 0.9 s. This latter value is greater,
though not significantly different from that (0.8 6 0.2 s)
obtained by Matthews (1997). Matthews (1997) rapidly
jumped salamander rod outer segments into calcium-
clamping solution before a saturating flash (F <
11,000), and then restored them to Ringer’s 1.7 s after
the flash, while the photoresponse was still in satura-
tion. Matthews (1997) measured the shift of the recov-

ery of rods exposed to calcium-clamping (choline) so-
lution, relative to the recovery of the control response
the same flash delivered in Ringer’s alone. Since the
saturated phase of the response in choline continued
after the return jump into Ringer’s for an additional
5–6 s before circulating current recovery commenced,
cyclase activity should have been equalized and maxi-
mal for the rod at the time recovery from saturation
commenced, in both the control (Ringer’s) and exper-
imental (choline) conditions (see Figs. 7 and 8). Thus,
the shift in recovery time courses was unlikely due to
differential cyclase activation, and a calcium-sensitive
step of transduction was uncovered. Matthews (1997)
then went on to show that this calcium sensitivity de-
cayed with a time constant of 0.5 s. The closeness of the
time constant obtained, 0.5 s, to the value of the non-
dominant time constant, 0.48 6 0.27 s, estimated from
the analysis of responses in calcium clamp (Fig. 4; Ta-
ble II) and in Ringer’s (Fig. 12; Table IV), supports the
hypothesis that the calcium sensitivity of one and the
same nondominant mechanism underlies the residual
shift between responses in Ringer’s and choline not ac-
counted for by cyclase activation. 

It seems highly likely that the calcium-sensitive mech-
anism described by Matthews (1997) is the same as that
characterized by Murnick and Lamb (1996). Calcula-

Figure 11. Responses in
Ringer’s (noisy gray traces) of rods
a (F 5 94) and b (F 5 47), along
with theoretical curves. The
thicker black theoretical traces
were generated by numerically
solving the ensemble of Eqs. 5, 6,
9, and 11–13, with the parameter
values reported in Tables III and
IV; the estimates of the resting
calcium buffering capacity were
fixed at BCa 5 BCa,rest 5 15 and 18,
for rods a and b, respectively.
The dashed theoretical traces
were generated by solving the
same set of equations, but Eq. 18
was also added, with Cbuff 5 100
mM and Kbuff 5 0.7 mM; this cor-
responds to BCa,rest < 75. The dot-
ted theoretical traces were com-
puted with the analytical model
of the change in cGMP (Eq.
A6.10), produced by linearizing
Eqs. 9, and 11–13, as explained
in appendix i in association with
the proof of theorem 6. The
cGMP-channel activation reac-
tion, Eq. 5 was not linearized. For
all theory traces in the left-hand
panels, nH, the Hill coefficient of
the cGMP channels was 2, for the
right-hand panels, 3. 
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25 Nikonov et al.

tions based on a simple model of the Murnick/Lamb
effect (along the lines they discuss) show that if the
gain of R* (with tR 5 tnd > 0.5 s) is regulated by the de-
cline in calcium, and if the lifetime of E* is tE 5 tc 5 2 s,
then one would expect this gain effect alone to pro-
duce a shift of 0.8 s in our experiments. In contrast, if
E* were nondominant and its gain/lifetime were the
target of the Murnick/Lamb effect, then the shift pre-
dicted is 2.7 s, nearly twice as large as the mean shift
in our experiments not accounted for by cyclase acti-
vation. In other words, based on the time course and
magnitude of the effect of Murnick and Lamb (1996),
the decline in Ca21

i that accompanies a single saturat-
ing response of a dark-adapted salamander rod in
Ringer’s can be predicted to feed back on the activity
of R* in such a way as to produce a leftward shift of
z1 s of the recovery, relative to what the recovery
would be were this effect not present. It seems then,
that the combination of the 4–6-s shift effect due to cy-
clase activation (Table IV) and an z1-s shift due to

the gain–control effect characterized by Murnick and
Lamb (1996) and Matthews (1997) can provide a full
account of the total 6.4 6 1.2-s shift between recov-
eries of saturating responses in calcium-clamp and
Ringer’s.

Breakdown in E* Linearity and Its Significance for 
Identifying the Mechanism of the Dominant Time Constant

Pepperberg et al. (1992) argued that the mechanism
responsible for the dominant time constant was R* in-
activation; i.e., that tc 5 tR. The principal evidence they
cited in favor of this identification was that the 10%
point of the recovery phase of the salamander rod re-
sponse in Ringer’s translated on the time axis by ap-
proximately the same magnitude per geometric incre-
ment in flash intensities up to F 5 106 or more; in con-
trast to R*, the disc-associated cascade intermediates
G* and E* would be expected to saturate at lower in-
tensities. Their argument needs to be reevaluated in

Figure 12. Theoretical traces generated by fit-
ting numerical solutions of Eqs. 5, 6, 9, and 11–13,
to the responses in Ringer’s of rods c–h to the
dimmest flash used to stimulate each rod, and to
four responses of each of two other rods (i and j)
stimulated with a series of low intensity flashes.
The ordinate is the normalized response ampli-
tude, as in Fig. 11. The traces were filtered at 25
Hz. The noisiness of the traces corresponds
roughly with the numbers of individual responses
averaged, which were as follows: c (n 5 1); d (n 5
2); e (n 5 3); f (n 5 2); g (n 5 2); h (n 5 5); i (n 5
5, 4, 4, 4, respectively, from least to most intense);
j (n 5 2, 2, 3, 2, respectively). The plots give the
flash intensities used in the model calculations;
for rod i, the intensity values 8 and 100 were sub-
stituted for the nominal values 11 and 94, respec-
tively, in the calculations. The parameters of the
fitted traces are given in Tables III and IV; for all
theoretical traces in this figure nH 5 2.
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26 Salamander Rod Cascade Recovery Kinetics

the light of our results and analysis, and other recent
results. In Figs. 3–6, we have presented evidence that
Recovery Translation Invariance fails for responses in
calcium clamp for F $ 20,000. Our theoretical analysis
shows that in the absence of RTI no unequivocal con-
clusion can be drawn about the existence of a unique
dominant time constant. Thus, the principal argument
in favor of the identification of tc with tR does not apply
to photoresponses measured with Ca21

i clamped near
its resting level. 

If we reject the argument for the identification of tc

as the lifetime of R* as being valid for responses ob-
tained in choline, there remains little reason to accept
the argument as valid for responses in Ringer’s, partic-
ularly since, in the intensity regime F 5 1,000–10,000
where RTI holds reasonably well in both Ringer’s and
choline (Fig. 3), tc has the same value (Fig. 10, A and B;
Lyubarsky et al., 1996; see Fig. 9). Further reason to re-
ject the argument of Pepperberg et al. (1992) is also
provided in Fig. 10, where it is shown that the time con-
stant of the tail phases of responses in Ringer’s, as well
as the time constant of decay of Db as measured by
Hodgkin and Nunn (1988), also gets systematically
longer for F . 10,000. Mindful that the principal argu-
ment in favor of identification of tc with the lifetime of
R* activity is now in doubt, we now evaluate other evi-
dence pertinent to the identification of the mecha-
nisms underlying the dominant and nondominant time
constants.

Biochemical Identities of the Intermediates Underlying the 
Dominant and Nondominant Constants

Support for identifying the simultaneous decay of the
G*/E* complex (Fig. 1) as the mechanism underlying
tc includes (a) that the decay of G*/E* activity mea-
sured under appropriate in vitro conditions has a life-
time approximately equal to the value of tc (Arshavsky
and Bownds, 1992; Arshavksy et al., 1994; He et al.,
1997), and (b) that the decay of G*/E* activity has
been shown not to be calcium sensitive (Arshavsky et
al., 1991). Another argument in favor of this identifica-
tion can be made based on our data, and the finding
that GTPase-activating factors or proteins, available in
the rod outer segment in limited supply, are required
for rapid hydrolysis of the terminal phosphate of G* 5
Gt -GTP. One such factor implicated in GTPase acceler-
ation is the g-subunit of the PDE (Arshavsky and
Bownds, 1992; Arshavsky et al., 1994). Evidence for a
second factor was presented by Angleson and Wensel
(1994). He et al. (1997) have now identified this latter
factor as a novel protein, RGS9, a member of the RGS
family of GTPase-activating proteins (GAPs), have es-
tablished its localization in rod outer segments, and
have demonstrated that it can accelerate the G* GTPase

rate constant to 1 s21 at room temperature. Calcula-
tions based on the estimated rate of activation of G*
per R* in situ (Lamb and Pugh, 1992) suggest that ex-
haustion of either or both of these GAP factors should
occur by F 5 20,000 photoisomerizations/rod; a rela-
tive slow down of recovery kinetics should occur at
greater intensities (Figs. 5 and 10). The identification
of G*/E* decay as the mechanism of tc also finds sup-
port in the recent work of Sagoo and Lagnado (1997)
on truncated, dialyzed salamander rod outer segments,
who make the case that the slowest step in circulating
current recovery in their preparation is Gta-GTP termi-
nal phosphate hydrolysis.

Several additional lines of argumentation suggest
that the mechanism underlying the nondominant time
constant is the decay of R* enzymatic activity. First, in
vitro experiments have shown that R* activity is sensi-
tive to calcium via an effect of the calcium-binding pro-
tein recoverin on rhodopsin kinase (Kawamura, 1993;
Klenchin et al., 1995; Chen et al., 1995), though it re-
mains moot whether the relatively high calcium sensi-
tivity of this mechanism, K1/2 5 1.5–3 mM, would pro-
duce much effect when Ca21

i declines from its resting
level near 400 nM (Erickson et al., 1996). Second, inde-
pendently of whether or not the calcium sensitivity of
activation gain involves recoverin, there is substantial
physiological evidence of an early activation intermedi-
ate that is calcium sensitive (Lagnado and Baylor, 1994;
Pepperberg et al., 1994; Jones, 1995; Koutalos et al.,
1995a; Matthews, 1996; Murnick and Lamb, 1996; Gray-
Keller and Detwiler, 1996; Matthews, 1997; Sagoo and
Lagnado, 1997). The simplest reconciliation of this
body of evidence with the insensitivity of tc to calcium
is, as argued by Murnick and Lamb (1996) and Mat-
thews (1997), that the lifetime and/or gain of the
mechanism underlying the nondominant time con-
stant is calcium sensitive. Theorem 7 embodies this
conclusion. 

In sum, it is natural to identify the primary decay of
R* activity as the mechanism underlying the nondomi-
nant time constant, and the R* lifetime and/or cata-
lytic gain as calcium sensitive, and G*/E* decay as the
mechanism of tc. Nonetheless, we caution that these
identifications remain tentative until a definitive exper-
iment is performed in which the dominant time con-
stant is shortened in situ by a biochemical manipula-
tion highly specific for R* or G*/E* decay.

In the context of discussion of the biochemical iden-
tities of the mechanisms underlying the dominant and
nondominant time constants, the question naturally
arises, Why should the decay of R* activity be describ-
able in terms of a single time constant, as assumed in
Eq. 5? The simplest answer is this: while a first-order
R* decay model certainly oversimplifies the well estab-
lished biochemistry of R* inactivation by phosphoryla-
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tion and arrestin binding, the conditions of the pre-
sent investigation are not such as would be expected to
reveal evidence for such “biochemical fine structure.”
Specifically, the responses reported here were to
flashes that produced at least 10 photoisomerizations,
and typically a number of such responses were aver-
aged. Only at the single-photon response level might
the detailed (and possibly stochastic) character of R*
decay manifest its structure, as it clearly has in the re-
sponses of rods of mice with mutations affecting R* in-
activation biochemistry (Chen et al., 1995; Xu et al.,
1997). On the other hand, a “slowdown” in R* decay
kinetics could be responsible for the systematic failure
of the two-time constant linear model of E*(t) above F 5
20,000 (Figs. 4 and 5). For example, there could be an
accumulation at such intensities of a relatively long
lived but intrinsically low activity decay product of R*. 

Parameters Governing Photoresponse Recoveries in Calcium 
Clamp and Ringer’s

To gain perspective on the factors that govern the time
course of recovery of the photoresponse, it is useful to
compare analytical expressions for the dim-flash re-
sponses in calcium clamp and Ringer’s. For calcium-
clamp responses, theorem 4 (see Eq. A4.3) yields

(19)

while for dim-flash responses in Ringer’s, theorem 6
gives

(20)
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Figure 13. Responses of rods i
and j to the lowest intensity
flashes used to stimulate each
rod in Ringer’s and in choline,
compared with theoretical traces.
The noisy darker gray traces are
the responses in Ringer’s; the
lighter gray traces are the re-
sponses in choline. The choline
traces were scaled to correspond
to the Ringer’s traces during the
activation phase; the responses
so plotted are governed by the
same amplification constant, A.
(The choline traces are noisier in
part because of the scaling, in
part because the unscaled ampli-
tudes were smaller, and in part
because they represent averages
of fewer traces.) The “calcium-
clamp” responses of both rods
were obtained in 0-Ca21 choline
(see Table II), and had slowly in-
creasing baselines, as illustrated

in Fig. 4, rod c. Correction for the baseline was made by computing F(t) 5 J(t)/Jdark(t), where Jdark(t) is the baseline current in the dark re-
corded after a jump into choline over a period equal to that of the response, and J(t) is the current trace recorded when the flash is deliv-
ered. For the two panels at left, the theory traces were computed as in Fig. 12 for fittings to the Ringer’s responses, and by numerically solv-
ing Eqs. 5, 6, and 9 for fitting the responses in choline; the solutions to the latter equations were generated with the same method used to
fit calcium-clamp responses by Lyubarsky et al. (1996). For the two panels at right, the analytical solutions for DcG(t) 5 cG(t) 2 cGdark were
used (appendix i, theorems 4 and 6). At the peak of the DcG(t) response, the values were not sufficiently small for the perturbation expan-
sion of the Hill relation (Eq. A4.3) to be accurate. Thus, rather than use Eqs. 19 and 20 to generate the curves in this figure, the appropriate
Hill relation was applied to cG(t)/cGdark. The Hill coefficient was nH 5 2 for all theory traces; other parameter values are given in Table IV.
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28 Salamander Rod Cascade Recovery Kinetics

The parameters of Eqs. 19 and 20 have been identi-
fied in Tables I and III, respectively; g(s) is a second-
order polynomial that arises in obtaining the perturba-
tion solution of theorem 6 (see Eq. A6.8). Fig. 13 shows
application of expressions closely relating Eqs. 19 and
20 to dim-flash responses of rods i and j.

Each of the expressions (Eqs. 19 and 20) has three
terms; a fourth first-order term due to the filtering of
the membrane time constant (tmem < 20 ms) has been
left out for simplicity. For the dim-flash responses to
which Eqs. 19 and 20 apply, the effect of the membrane
time constant can be incorporated along with an abso-
lute transduction delay (teff < 15 ms) by using the re-
duced time t9 5 t 2 t9eff, where t9eff 5 teff 1 tmem > 35
ms (Lamb and Pugh, 1992; Pugh and Lamb, 1993).
While the terms corresponding to R* and E* decay are
similar in Eqs. 19 and 20, the first-order decay term due
to bdark, the dark rate of cyclic GMP hydrolysis in cal-
cium clamp in Eq. 19 is supplanted for responses in
Ringer’s by a second-order oscillating term, as previ-
ously noted by Hodgkin (1988). This oscillating term
arises because of the negative feedback coupling between
cGMP and Ca21

i through guanylyl cyclase. This latter
term embodies the calcium-dependent cyclase activation
and appears solely responsible for the threefold change
in sensitivity and time-to-peak of the dim-flash response
in calcium clamp and Ringer’s, and likewise responsi-
ble for most of the 5–7-s shift in the recoveries of satu-
rated responses (theorem 6). 

In closing, we now consider briefly specific parame-
ters governing the time course of inactivation whose
values deserve note. In what follows, it should be kept
in mind that tc and tnd are aliases for tR and tE, though
the identifications remain uncertain, as discussed
above.

tc and t9c. To fit the response of each of the rods to
the dimmest flash used to stimulate it, the longer of
the two time constants tR or tE had to be on average
25% shorter than tc; that is, the average ratio t9c /tc

was 0.75 6 0.06 (n 5 10). The tail phase analysis and
the data of Hodgkin and Nunn (1988) presented in
Fig. 10 A are also consistent with the notion that the
longer of the two time constants of the disc-associ-
ated reactions is smaller at subsaturating intensities
than in the middle range of intensities, where RTI is
obeyed. Speculation about the apparent shortening
of the longer time constant at low intensities seems
premature before the definitive identification of the
biochemical mechanism underlying tc. Nonetheless,
a hypothesis that bears consideration is that longitu-
dinal inhomogeneities in cG, outer segment cGMP,
and Ca21

i might play some role. Longitudinal varia-
tion in cG is likely present during the responses to
subsaturating flashes such as reported in Figs. 12 and
13, and such variation should produce systematic

longitudinal variation in Ca21
i and guanylate cyclase

activity. At present, however, we are uncertain that
such variations would act to produce an apparent
shortening of the longer time constant.

tnd. The values of the shorter time constant attrib-
uted to the inactivation of the disc-associated reactions
were generally consistent across conditions. Thus, com-
paring the estimates obtained from the analysis of re-
sponses measured in Ringer’s and in calcium clamp
(Tables II and IV), we find t9nd /tnd 5 0.9 6 0.2 (mean
6 SD, n 5 9), very close to unity. This ratio omits the
data of rod c, whose nondominant time constant was
unusually long. The very large nondominant time of
rod c (see Fig. 4 C) may have been caused by elevated
Cadark. Such an effect would be consistent with many
observations in the literature (e.g., Torre et al., 1986;
Baylor and Lagnado, 1994; Sagoo and Lagnado, 1997),
suggesting that the effective lifetime of R* may increase
with elevated Ca21

i, as mentioned above in the discus-
sion of the biochemical identity of the mechanisms un-
derlying tnd and tc.

nH. During the activation phase, the Hill coefficient
is absorbed into the amplification constant, A (Lamb
and Pugh, 1992; Pugh and Lamb, 1993). Since A must
be fixed to fit the rising phase data of any response
family, the value of nH used in the model has no effect
on the quality of the fitting of theory traces to the acti-
vation data. The value of nH, however, does affect the
fitting of the recovery phases, both in Ringer’s and in
choline. We have generally found that the responses in
choline are well fitted with a value of nH of 2.5–3 (Fig.
4; see also Lyubarsky et al., 1996). However, the re-
sponses to low intensity flashes in Ringer’s are clearly
better fitted with nH 5 2 than 3 (Fig. 11). Given the esti-
mate nH 5 2 obtained by Koutalos et al. (1995a) in ex-
periments on truncated salamander rods, the best esti-
mate for nH in Ringer’s responses now has to be taken
as 2. 

amax, maximum guanylyl cyclase rate. Estimates of a9max

(Table II, a9F 5 0.1) derived from the combined analysis
of responses in choline and Ringer’s (Figs. 8 and 9; Ta-
ble II) were almost independent of whether nH was
chosen as 2 or 3. This follows from Eq. 10 because,
while b(t) is diminished by the ratio 2/3 (for any value
of F) to fit a particular response when nH is changed
from 3 to 2, the value of (0.1)(1/n H) almost perfectly
compensates. If the dark level of cGMP, cGdark, is taken
to be 2–3 mM, then amax 5 a9max cGdark is predicted to
be 20–30 mM s21, which corresponds to the range of
values obtained by Koutalos et al. (1995a) in their
study of truncated salamander rods. Another way
to look at amax is to consider the ratio amax/adark 5
a9max/bdark. Previously published biochemical results
reviewed by Pugh et al. (1997) and new biochemical
data recently presented by Calvert et al. (1997) show
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that amax/adark in amphibian rods is z10, when adark is
taken to be the cyclase activity at z400 nM Ca21. Since
bdark is z1 s21, we again arrive at the expectation a9max

< 10 s21. Three potential caveats need to be men-
tioned about our estimates of a9max, however. The first,
which also applies to the method of Hodgkin and
Nunn (1988), arises because it is likely that at the point
of 10% recovery in Ringer’s, Ca21

i may reach 20–30
nM, which should partially inhibit cyclase; correcting
for this effect would lead to a higher estimate of a9max.
The second arises because of the gain effect character-
ized by Murnick and Lamb (1996), and by Matthews
(1997), which will act to diminish the magnitude of b
in Ringer’s relative to that estimated in choline by the
fitting analysis. Correcting for this effect would lead to
a diminution of our estimate of a9max (Table IV); we es-
timate that this correction would not exceed 30%. A
third caveat arises because of a possible decrease in the
K1/2 of the cGMP channels for cGMP during the satu-
rated phase of the light response when Ca21

i is very
low. This shift in the K1/2 of the channels, effected by
calmodulin binding (Hsu and Molday, 1993; Koutalos
and Yau, 1996), if present at the point of 10% circulat-
ing current recovery, would also cause a9max to be over-
estimated.

BCa,rest. Perhaps the greatest surprise of the modeling
of the responses to low intensity flashes in Ringer’s is
the estimate of the calcium buffering capacity at or
near rest, BCa,rest 5 17.5 6 7.2 (Table IV). The analysis
of Fig. 11 shows that BCa,rest must be far lower than that
predicted by the investigation of Lagnado et al. (1992),
though in fact our estimate corresponds to that, 17,
which they obtained as the low affinity buffer capacity
“at high calcium.” Theoretical curves such as those in
Figs. 11–13 are very sensitive to BCa,rest, which by retard-
ing the change in Ca21

i increases the peak amplitude of
subsaturating responses, and also causes the “noselike”
behavior of the response immediately after the peak.
While BCa,rest is thus likely to be ,20, both modeling ef-
forts and previous work with calcium dyes indicates that
BCa is surely much higher when Ca21

i declines below its
resting level. Estimates of BCa at all levels of Ca21

i will be
crucial for the development of a complete account of
response families in Ringer’s.

In conclusion, the activation of guanylyl cyclase by
the decline in Ca21

i that accompanies the response in
Ringer’s is apparently the principal factor responsible
for the shift in recoveries of saturating responses of
dark-adapted rods in Ringer’s and calcium clamp, and
is likewise responsible for the difference in kinetics and
peak sensitivity of the dim-flash responses of dark-
adapted rods in Ringer’s and calcium clamp. Indeed,
the activation of cyclase clearly exerts a powerful effect
on the response recovery kinetics even at the very dim-
mest light response levels (Fig. 13). 

a p p e n d i x  i  

Proofs of Theorems

We begin with a result that makes it straightforward to
prove theorem 1.

Lemma. If a family of recovery functions {F[F, t]}
obeys RTI (i.e., Eq. 1), then h(s) 5 t ln(s), where ln()
is the natural logarithm and t is a time unit.

Proof. Suppose that RTI (Eq. 1) holds. Then, for any
F $ F0, F 5 sF0 for some s $ 1, and so we can write

. (A1.1)

Thus, writing any F $ F0 as F 5 s1, s2 F0, with s1, s2 . 0,
we have

. (A1.2)

But we also have from Eq. A1.1

(A1.3)

It thus follows that h obeys one of Cauchy’s functional
equations (Aczel, 1966, p. 37ff): 

(A1.4)

The only solution to the functional Eq. A1.4 for s in the
domain of positive real numbers is 

(A1.5)

(Aczel, 1966); dimensional analysis of Eq. A1.1 shows
that t has the units of time. This establishes that obedi-
ence of a family of recovery traces to RTI is sufficient to
completely determine the form of h. We can now
readily prove theorem 1.

Theorem 1: Recovery Translation Invariance. A family of
photoresponse recovery traces {F [F, t]} obeys RTI if
and only if F [F,t] 5 H[Fe2t/t], F0 # F # Fmax, t $ t0

where H(x) is a saturation function obeying H(x→ ∞) 5 0,
H(0) 5 1, and t a constant having the units of time. 

Proof. Sufficiency of RTI. Suppose RTI (Eq. 1) holds.
Then, we have 

(A1.6)

where g1(x) 5 F[F0, x 1 tln(F0)], g2(x) 5 g1(2tx),
g3(x) 5 g2(ln(x)).

Necessity of RTI. Suppose that F[F,t] 5 H[Fe2t/t]
for F0 # F # Fmax, where H() is an appropriate satura-
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30 Salamander Rod Cascade Recovery Kinetics

tion function. Then writing sF0 5 F, we can reexpress
F as follows:

(A1.7)

Thus, RTI is obeyed, with h(s) 5 tln(s). This completes
the proof.

E*(t) Modeled as a Cascade of First-Order Exponentials

E*(t), the number of active catalytic subunits of phos-
phodiesterase in the outer segment at time t generated
by a brief flash at t 5 0 has been modeled as a cascade
of reactions having first-order exponential inactiva-
tions. To present theorem 2 in a generalized form, we
now consider a system formed of a cascade of n reac-
tions having first-order exponential decays; in linear
systems terminology (Jaeger, 1966), we consider a sys-
tem that cascades n low pass filters. Each stage of such a
system has impulse response

, (A2.1)

where subscript i refers to the ith filter (or ith stage), ti

is the time constant of the ith filter, and Ci is the peak
value of response of this stage to a Dirac delta function
impulse input. We now assume that the n time constants
are all different (i.e., nonrepeating), and without loss
of generality that they satisfy the following inequalities:

. (A2.2)

Taking ai ; ti
21, the impulse response can be ex-

pressed (Jaeger, 1966) as

(A2.3)

where, C ;C1C2C3 . . . Cn, and * indicates the convolu-
tion operator. For this system, which we may call an n-d-LP
system (where “d” stands for “different”), the following
theorem holds:

Theorem 2: dominant time constant of a linear cascade.
Suppose that the impulse response e *(t) 5 E *(t)/F of
an enzymatic effector E* can be represented as an n-d-LP
linear cascade. Then at sufficiently long times the stage
with the longest time constant, tn always dominates.
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∏
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i 1=
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Specifically, given any small number d where 0 , d ,, 1,
it is always possible to find time Td such that for t . Td,
the impulse response of the system is given approxi-
mately as

(A2.4)

 for t . Td, where

and O(d) means “a term having magnitude of order d.”
Proof. Since t1 , t2 , t3 , . . ., tn, it is clear that

a1 . a2 . a3 .. . . . an. In Eq. A2.3, there are n expo-
nential functions with different time constants. If we
consider any two consecutive terms having time con-
stants ti and ti 1 1, we can find the time beyond which
the magnitude of the term with exp(2ait) is always less
than any given fraction di 1 1 of the magnitude of the term
with exp(–ai 1 1t). If this time is denoted by Ti 1 1, then
for t . Ti 1 1, we have

, (A2.5)

The time Ti 1 1 is given explicitly as

.

(A2.6)
Let us denote the largest value among Ti 1 1 as, Td

max;
i.e., 

(A2.7)

where d is a small positive number chosen to be
the same for all di 1 1. Considering the inequality
a1 . a2 . a3 .. . . . an, and denoting Td

max as Td, we
note that “to order d,” the impulse response of the n-d-
LP system is dominated by the term involving
exp(2ant); i.e., it can be approximately written as 

(A2.8)
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For the situation in which the time constants of the
cascade are not all different, a generalized version of
theorem 1 can be proved. However, care must be taken
in expressing e *(t) for such a system.

Our calcium-clamp data are consistent with a two-
stage model of E* given by Eq. 5 (Fig. 4; see also Lyu-
barsky et al., 1996). For the two-stage E* model with
time constants t1 5 0.4 s and t2 5 2.0 s, Eq. A2.7 yields
Td 5 1.4 s for d 5 0.05 and Td 5 2.2 s for d 5 0.01; for
calcium-clamp responses, recoveries from saturation
by flashes of F $ 1,500 commence near Td 5 0.01 (Fig.
4). Results in Figs. 7 and 8 also serve to illustrate the-
orem 2: not long after reaching its maximum, the plot
of log[b(t)] 5 log[Fe*(t)bsub 1 bdark] becomes a
straight line with slope 22.2 s; this is the time period
when the inactivation phase of e*(t) is governed by the
dominant time constant; later the straight line bends
toward the asymptotic value bdark as e*(t) declines to-
ward zero.

Theorem 3: conservation of the dominant time constant of
recovery. When a 5 adark, a constant, the family of re-
covery curves {cG(F,t)} generated by solving Eq. 8 for
different saturating values of F obeys RTI. That is,
there exists a time t0 such that for t . t0 solutions of Eq.
7 conserve the dominant time constant tc of a set of lin-
ear reactions governing the rod transduction cascade
up to and including E *.

Proof. An intuitive proof comes from consideration
of the differential Eq. 8: the time-dependent coefficient
of cG in the right-hand side includes the term Fe2t/tc,
which obeys RTI; i.e., solving Eq. 8 for a flash of inten-
sity sF (s . 1) and initial time t0 is equivalent to solving
Eq. 8 for a flash of intensity F, after shifting the initial
condition to the right by the amount tc ln(s). Unfortu-
nately, with this approach no single initial condition
applies to the whole family of response recoveries. A
more satisfactory proof requires care in dealing with
the initial condition. 

The general solution of Eq. 6 subject to the initial
condition cG(F, 0) 5 cGdark 5 adark /bdark can be writ-
ten as

(A3.1)

Eq. A3.1 can be normalized with respect to cGdark; thus,
we get

cG Φ t( , ) e

2 Φe∗ t( ) βsub βdark+[ ]

0

t

∫ dt ′

 ×

αdarke

Φe∗ t″( ) βsub βdark+[ ] dt″

0

t ′

∫
0

t

∫ dt ′ cGdark+

 
 
 
 
 
 
 

.

=

 

(A3.2)

For large F, the value of c  is saturated (i.e., vanish-
ingly small); given any small number e, 0 , e ,, 1,
there is an intensity eF0 such that c  will be less than e
in a time interval et0l , t , et0u. Put formally, 

. (A3.3)

In Eq. A3.3, et0l and et0u are the first (lower) and the
second (upper) times at which c (F,t) 5 e, respec-
tively. The first time occurs during the “activation phase,”
and the latter at the beginning of the “recovery phase ”
from a saturating flash, when the circulating current is
just coming out of saturation. We note that the greater
eF0 is, the wider the time interval Det 5 et0u 2 et0l. 

In theorem 2, it was shown that for t . Td, the func-
tion e*(t) can be approximated by a single decaying ex-
ponential function with time constant equal to that of
the dominant time constant tc; i.e., e*(t) < C9e2t/tc. If
the small number e and eF0 are chosen such that et0u . Td,
then one can effectively write the solution to Eq. 6 for
t . et0u with a new initial condition of c (F,t) 5 e at t 5 et0u,
because our interest is in the recovery phase of cG to
flashes of intensity F $ eF0. Denoting eF0 as F0, et0u as t0

and F as sF0, then we have

(A3.4)

for F . F0 and t . t0. After t 5 t0, the contribution of
the term involving e declines very rapidly with time,
since the integrand [sF0C9e2t9/tcbsub 1 bdark] of the ex-

cĜ Φ t( , )
cG Φ t( , )
cGdark

------------------≡

e

2 Φe∗ t( ) βsub βdark+[ ] dt ′

0

t

∫
 ×

βdark e

Φe∗ t″( ) βsub βdark+[ ]

o

t ′

∫ dt″

0

t

∫ dt ′ 1+

 
 
 
 
 
 
 

.

=

Ĝ 

Ĝ  

for F Fε 0,  = cĜ Φ t( , ) ε when tε 0l t tε 0u< <<

Ĝ 

Ĝ

cĜ sΦ0 t( , ) e

2 sΦ0C ′ e
2t ′ τ c⁄

βsub βdark+ dt ′

t0

t

∫
 ×

βdark e

sΦ0C ′ e
2t″ τ c⁄

βsub βdark+ dt″

t0

t ′

∫

t0

t

∫ dt ′ ε+
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ponential term outside the curly brackets is always posi-
tive, and its magnitude at the time when the response is
emerging from saturation is expected to be 3- to 10-fold
greater than bdark. Thus, the term in Eq. A3.4 involving
e can be neglected in the solution. By expanding Eq.
A3.4 after dropping the term involving e and integrat-
ing, we arrive at this expression:

(A3.5)

The lower limit of the integration in Eq. A3.5 was ex-
tended to 2∞ for convenience in what follows; integra-
tion of the integrand of Eq. A3.5 between 2∞ and t0 in-
troduces an error whose magnitude can be shown not
to exceed e[2sF0C9tcbsub(e2t 0/tc2e2t/tc) 2 bdark(t 2 t 0)]. The maxi-
mum value of this latter term is unity, and occurs at t 5 t0;
the term decays initially as e2[sF0C9bsub 1 bdark](t 2 t 0) and even
more rapidly thereafter. The term is thus negligibly
small because the hydrolytic rate constant sF0C9bsub is
by itself sufficient to drive c  to a very low value in a
fraction of a second.

To complete the proof, we expand Eq. A3.5 to

(A3.6)

and by introducing the change of variable, u 5 t9 2 tc

ln(s) obtain

(A3.7)

where the second line of Eq. A3.7 comes from compar-
ing the first with Eq. A3.5. This completes the proof.

Theorem 4: Dim-flash responses and tail phase of responses in
calcium clamp: the filtering effect of bdark. At appropriately
low response amplitudes (such as those of responses to
dim flashes), under calcium clamp the cGMP hydroly-
sis and synthesis reaction, Eq. 7, acts as a low pass filter
with time constant tdark < 1/bdark; at high intensities,
the reaction does not contribute a significant time con-
stant to the cascade.

cĜ sΦ0,t( ) βdark  ×

e
sΦ0C ′τ cβsub e

2t τc⁄
e
2t ′ τ c⁄

– 
 

βdark t t ′–( )–

2∞

t

∫ dt ′ .

≅

Ĝ

cĜ sΦ0 t( , ) βdark 3 

e
Φ0C ′τ cβsub e

2 t τc1n s( )–( ) τc⁄
e
2 t ′ τ c1n s( )–( ) τc⁄

– 
 

βdark t t ′–( )–

2∞

t

∫ dt ′

≅

cĜ sΦ0 t( , ) βdark 3 

e
Φ0C ′τ cβsub e

2 t τcln s( )–( ) τc⁄
e
2u τc⁄

– 
 

βdark t τc1n s( ) u––( )–

du

2∞

t τc– ln s( )

∫

≅

                5  cĜ Φ0 t τcln s( )–( , )

Proof. Into Eq. 7, 

(7)

make the substitution cG 5 cGdark 1 DcG, so that the
perturbation variable DcG obeys 

(A4.1)

since adark 5 bdarkcGdark, and since, by the perturbation as-
sumption, Fe*(t)bsub ,, bdark. The solution to Eq. A4.1 is

(A4.2)

which represents the convolution of e*(t) with a first-
order filter having time constant 1/bdark. Assuming the
two-stage model of E*(t) given by Eq. 5 is correct, Eq.
A4.2 can be rewritten in the general form for a linear
cascade given by Eq. A2.3. An alternative useful expres-
sion is given as Eq. 19 of the main text.

For responses to intense flashes, such as those that
saturate the response (driving cG to a level much less
than cGdark), the effective time constant of the filter rep-
resented by Eq. 6 is much shorter than 1/bdark and the
filtering effect of 1/b is minimal; nonetheless, as the
circulating current recovers toward cGdark, the “b filter”
gradually kicks in. In closing, we note that Eq. A4.2
makes no specific assumption about the number of
steps of the linear cascade governing e*(t). At suffi-
ciently long times when e*(t) can be assumed to obey
theorem 2, however, Eq. A4.2 dictates that DcG(t) will
decay as a first-order exponential. Thus, during the tail
phase of the response DcG(t) should decay exponen-
tially, with a time constant equal to the longest time
constant of the E* cascade, or equal to 1/bdark, which-
ever is longer. This concludes theorem 4.

It is useful to add here an expression for the normal-
ized perturbation photocurrent response. Thus, 

(A4.3)

which is normally positive, since DcG is normally nega-
tive. This expression illustrates the point made previ-
ously by Lamb and Pugh (1992) that the Hill coeffi-
cient nH serves purely as an amplification factor be-

dcG
dt

---------- αdark Φe∗ t( ) βsub βdark+[ ] cG–=

d∆cG
dt

-------------- αdark Φe* t( ) βsub βdark+[ ] c[ Gdark ∆cG ]
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–=
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0

t

∫ t ′( ) βsubcGdarke
βdark– t t ′–( )

dt ′ ,=

R t( ) 1 F t( )–≡

1
cG t( )
cGdark
---------------

nH
–

1 1 cG∆ t( )
cGdark

-------------------+
nH–
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-------------------,≈
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tween the change in cGMP concentration and the
response for perturbations. It follows from Eq. A4.3
then that the tail phase of the calcium-clamp response
is predicted to decay exponentially with time constant
equal to the longest time constant of the E* cascade or
equal to 1/bdark, whichever is longer. 

Theorem 5: Recovery Translation Invariance in Ringer’s.
If a family {F[F, t]} of photoresponse recovery curves
obtained under conditions that allow a to vary freely
obeys RTI, then a(t) itself must obey RTI and recover
from a flash in such a manner as to track the recovery
of the cGMP hydrolysis rate constant b(t).

Proof. If the response family {F[F,t]} obeys RTI, then
because Eq. 9 is such as to preserve RTI, the corre-
sponding family of recovery curves {cG(F, t)} of cGMP
also obeys RTI. Thus, we focus attention on the general
solution to Eq. 9 over the intensity range and time pe-
riod t . t0 when RTI is obeyed. Letting F 5 sF0, we be-
gin with the analogue of Eq. A3.4:

(A5.1)

where a9 5 a/cGdark. Eq. A5.1 expresses a as a function
of the flash intensity. It is clear within the present
framework of knowledge about the phototransduction
cascade that this dependence is indirect, operating
mechanistically through the changes in Ca21

i that ac-
company the light response, and not through any di-
rect signaling mechanism involving R*, G*, or E*. It is
this indirect dependence that we wish to characterize. 

Based on the lack of dependence of the empirically
measured dominant time constant of recovery on
Ca21

i, we have also assumed in Eq. A5.1 that we can
write e*(t) 5 C9e2t/tc; the constant C9 need not be the
same as that in Eq. A3.4, reflecting a different effective
gain and/or lifetime of the nondominant mechanism
(see theorem 7). By the same argument that led to Eq.
A3.5, we drop the term involving e, and extend the
lower limits of the integrals formally to 2∞. Integra-
tion over the range 2∞ to t0 can be shown to intro-
duce an error at time t whose magnitude does not ex-
ceed a9max e[2sF0C9tcbsub(e2t0/tc2e2t/tc) 2 bdark(t 2 t0)]; assuming
a9max < 10 (Table II), this means for example that by t 2
t0 5 1 s, the error in Dc  cannot exceed 0.15. And so we
arrive at the following sequence of identities:

cĜ sΦ0 t( , ) e

sΦ0C ′ e
t ′ τ c⁄–

βsub βdark+

0
t

t

∫– dt ′

 3

α′

0
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t

∫ sΦ0 t ′( , )e
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t″– τc⁄

βsub βdark+ dt″

0
t

t ′

∫
dt ′ ε+

 
 
 
 
 
 
 

,

=

Ĝ

(A5.2)

where, in going from the third to fourth lines of Eq.
A5.2, we have made the substitutions u 5 t9 1 tc ln(s),
w 5 t99  1 tc ln(s). Thus, from comparison of the first
and final lines of Eq. A5.2, a(t) itself must obey RTI, as
claimed. Because a(t) obeys RTI during recovery from
saturating responses, it also satisfies the conditions of
theorem 1, and must therefore satisfy Eq. 3. In other
words, during recovery in Ringer’s for saturating responses
that obey RTI, a(t) 5 H[Fe2t/tc] 5 H[F0e2(t2tc ln(s))/tc],
where H is an appropriate saturation function, F0 is the
lowest saturating intensity that gives rise to an invariant
recovery, and s 5 F/F0 $ 1. Boundary conditions
dictate that H(x → ∞) 5 amax and H(x → 0) 5 adark;
tc ln(s) gives the displacement time, relative to some
minimum time, at which a reaches a constant value
during the recovery to flashes of intensity greater than F0. 

Theorem 5 confirms the intuition that after different
saturating flashes that all drive Ca21

i sufficiently low,
the return of cyclase activity to its dark level should fol-
low a common time course, and that this time course is
set by the recovery time course of the dominant mecha-
nism of the disc-associated reactions, as hypothesized
by Pepperberg et al. (1992).
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Theorem 6: dim-flash responses and tail phase of saturating
responses in Ringer’s: apparent gain control effect of cyclase ac-
tivation. The tail phase of the photoresponse in Ringer’s
will decay as a first-order exponential with the time con-
stant tc of the dominant mechanism of the disc mem-
brane–associated reactions, providing the inequality
m . 1/tc is satisfied, where m is given by Eq. 15. More-
over, the effect of cyclase activation per se on the recov-
ery in Ringer’s from a saturating flash at long times, rel-
ative to its position in calcium clamp, is to shift the
curve to shorter time, by a time factor given by Eq. 16.

Proof. The framework of the theorem is provided by
Eqs. 11–13, along with Eqs. 6 and 9; moreover, E*(t) is
assumed to be a linear cascade, so that theorem 2 is in
force. The first step in proving the theorem is the ex-
pansion of Eqs. 11–13 into perturbation approximations.
To do this, we introduce the four perturbation variables

 

Using these variables, we next reexpress Eqs. 9, 11, and
13 as first-order expansions:

(A6.1)

(A6.2)

(A6.3)

In Eq. A6.3, we substituted a9dark 5 adark/cGdark,
a9max 5 amax/cGdark, and yd 5 Cadark/KCa. The second
line of Eq. A6.3 is an alternative expression, which
comes from applying the initial condition a9dark 5 bdark,
and a straightforward substitution into Eq. 13; it is useful
because it obviates the need to use the ratio Cadark/KCa.
The third line of Eq. A6.3 serves to define the parame-
ter, z . 0, while underscoring the fact that increases in
Ca21

i relative to its dark level cause cyclase activity to
decrease, and vice-versa. 

By using the Eqs. A6.1–A6.3 and dropping second-
order terms, we obtain a pair of coupled first-order dif-
ferential equations, which are perturbation expansions
of Eqs. 6 and 12, respectively:

(A6.4)

(A6.5)

 β∆ β βdark;          α̂∆
α α dark–

cGdark
---------------------;    

cĜ∆
cG cGdark–

cGdark
---------------------------;    Ĉa∆

Ca Cadark–

Cadark
----------------------------.

=

= =

–=

F t( ) 1 nH cĜ∆ t( )+=

Jex t( )
fCaJdark

2
---------------- 1

Kex Ĉa∆ t( )
Cadark Kex+
-----------------------------+=

α̂∆ t( ) α′ dark– nCa

yd
nCa

1 yd
nCa+

------------------ Ĉ a∆ t( )

βdark– nCa 1
βdark

α′ max
-------------– Ĉa t( )∆

ζ– Ĉa∆ t( ) .

=

=

=

d cĜ∆( )
dt

-------------------- β t( )∆ βdark cĜ∆ t( ) ς Ĉa∆ t( )–––=

d Ĉa∆( )
dt

---------------------                 nHγ∆cĜ t( ) γη∆Ĉa t( ) ,–=

in which we have introduced the positive parameters
(compare Eq. 15)

We next take the Laplace transforms of Eqs. A6.4 and
A6.5, and arrive at the systems-response equations for
the perturbation response in Ringer’s, which we ex-
press in a matrix format:

(A6.6)

Here we have used the “~” over the symbols to indi-
cate the transformed variables. It is straightforward to
invert the matrix in Eq. A6.6 and thus solve for Dc (s)
and D a(s). We need to consider explicitly only the ex-
pression for the former, which is given by

.

(A6.7)

The denominator of Eq. A6.7 is the second-order
“calcium-cGMP feedback” system function, which we
will call g(s). For realistic values of the parameters in-
volved (see Table III), g(s) has complex conjugate
roots. Thus, we can write

(A6.8)

where m 5 (bdark 1 gh)/2 (Eq. 15) and n2 5 nHgz 2 m2.
To complete the theorem, we need to consider now

two special cases of Eq. A6.7. The first case is that which
governs the responses at long times after saturating
flashes. In this case, Eq. A6.7 should be well approxi-
mated by

. (A6.9)

This follows, because even if the differential equation
system is “reinitialized” at some time long after the
flash (say, well into the recovery from a saturating
flash), the contributions of the new initial conditions,
embodied in Dc (0) and D a(0), will become negligi-
ble within a few time units of length either 1/m or tc,
whichever is longer. Moreover, during the tail phase of
recovery from a saturating flash the conditions of theo-
rem 2 clearly apply, so that Db(t) 5 Fe*(t)bsub <
FC9bsube2t/tc. In this case, then, by Laplace inversion of
Eq. A6.9 we obtain

γ
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-------------------------------------------------  and  η
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-----------------------------==
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C̃ a s( )∆
.=

G̃
C̃
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------------------------------------------------------------------------------------------------------=
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(A6.10)

where kc 5 1/tc, and

Thus, providing kc , m (i.e., Eq. 14 of the theorem’s
premise is met) at sufficiently long times only the first
term in Eq. A6.10 survives, as was claimed.

Next we consider the case of the dim-flash response,
a perturbation from the dark steady state. We assume
the two-stage cascade for E* (Eq. 5). In this case,
Dc (0) and D a(0)are both zero, and the Laplace in-
version of Eq. A6.7 yields Dc (t), which by application
of Eq. A4.3 gives Eq. 20 of the text, with

Finally, to complete the theorem, we need to estab-
lish Eq. 16. We can readily do this by taking the ratio of
the terms in Eqs. 19 and 20 of the text that represent
the dominant mechanism. Thus, for example, if, as we
suspect, E* decay is dominant, the predicted shift DTcyclase

will satisfy

. (A6.11)

Solving for DTcyclase, we find

, (A6.12)

which is equivalent to Eq. 16 of the text, with tc 5 tE 5
1/kE. This completes the proof.

Theorem 7: gain control via a nondominant mechanism.
If calcium feedback acts to diminish the gain or
shorten the lifetime of a nondominant component of
the cascade up to and including E*, then such an effect
will be manifest in the recoveries of saturating photore-
sponses in Ringer’s only as a shifting of the family of re-
coveries, with no change in the spacing on the time axis
of the members of the family.

Proof. Theorem 2 shows that in the absence of cal-
cium feedback at adequately long times and for suffi-
ciently intense flashes, e*(t) satisfies Eq. A2.4. The fac-
tors C i represent the “gains” of each of the steps in-
volved, while ti 5 1/ai are the time constants of the
stages. Even with calcium feedback operative in Ringer’s,
the dominant time constant remains unchanged, so
that during the time period and for the intensities for
which RTI is obeyed, e*(t) 5 C9e2t/tc. Here the exact ex-

cĜ∆ t( )–
ΦC ′β sub
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kc γη+–( ) e k– ct

kc– βdark+( ) g kc–( )
---------------------------------------------------

1
ν
--- γη µ–( ) 2 ν2+
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1 2⁄( )
e µt– sin νt θ+( )+

=

θ tan 1– ν
γη µ–
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  tan 1– ν
kc µ–
-------------- 

 –=

Ĝ Ĉ
Ĝ

θ tan 1– ν
γη µ–
--------------- 

  tan 1– ν
kR µ–
-------------- 

  tan 1– ν
kE µ–
-------------- 

 ––=

e
kE– t T∆ cyclase+( )

kR kE–( ) βdark kE–( )
-----------------------------------------------------

γη kE–( ) e k–
Et

kR kE–( ) g kE–( )
------------------------------------------=

Tcyclase∆ τEloge

γη kE–( ) βdark kE–( )
g kE–( )

------------------------------------------------------=

pression Eq. A2.4 becomes important, because the con-
stant

expresses both the amplification contributed by each
stage, and the “gain” or integrating effect of the non-
dominant time constants, tj 5 1/aj, j ? n.

Suppose then that the effect of the feedback is to di-
minish dynamically the lifetime tj of a nondominant in-
termediate; this will be equivalent to an increase in aj,
so that the denominator term (aj 2 an) is now larger
than it would be without feedback, reducing the magni-
tude of the constant C9. Likewise, if feedback operates
to diminish one of the gain factors Cj, the result, in ef-
fect, is to reduce the constant C9. But changes in C9 are
equivalent to changes in flash intensity F, since during
this period of recovery b(t) 5 FC9e2t/tcbsub 1 bdark. A
hidden assumption involved here is that the calcium feed-
back mechanism operates identically upon the non-
dominant intermediates independent of the flash in-
tensities involved. This assumption seems reasonable for
saturating flashes in the intensity range of interest (Figs.
3, B and D, and 5 A), but surely breaks down for subsat-
urating flashes (as does RTI itself), because Ca21

i de-
clines to different levels, depending on flash strength.
The assumption may also break down seriously at higher
intensities if the calcium-binding proteins that carry the
feedback signal to a nondominant intermediate can be
exhausted.

In the two-stage model of E* (Eq. 5), the constant C9
takes the specific form

, (A6.13)

assuming E* is dominant over R*. From Eq. A6.13, it is
clear that diminution of the gain nRP of a nondominant
R* or decrease of the time constant tR both serve to di-
minish C9. Indeed, if tE .. tR, then changes in gain
and time scale are equivalent, since then C9 < nRPtR.
Murnick and Lamb’s (1996) analysis takes specific ad-
vantage of this relation. 

a p p e n d i x  i i  

Considerations for Numerical Solutions 

To solve the differential equations governing the cascade
under calcium clamp and in Ringer’s, in addition to se-
lection of the parameters, assumptions must be made
about initial conditions. In calcium clamp, the only ini-
tial condition (from Eq. 6) is that adark 5 bdarkcGdark; this
condition must also be met for the solutions governing
the responses in Ringer’s. 

C ′ Cj

j 1=

n

∏ aj an–( )
j 1=

n 1–

∏⁄=

C ′ ν RP kR kE–( )⁄ νRPτRτE τE τR–( )⁄= =
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For responses in Ringer’s, initial conditions dictated by
Eqs. 11–13 must also be met and these conditions must be
mutually consistent. We took the following approach.
(a) We fixed cGdark 5 2 mM; (b) Since bdark was varied
(between 0.8 and 1.2 s21) to optimize the fittings, we set
adark 5 bdark cGdark 5 2 bdark (mM s21); (c) The dark ex-
change current was calculated from Jex,dark 5 fCa Jdark (Eq.
12, dCa/dt 5 0), and then the initial calcium concen-
tration was computed from Eq. 11 as Cadark 5 yKex/(1 2 y),
where y 5 Jex,dark/Jex,sat. With the parameters listed in
Table III, this yielded Cadark 5 385 nM, very near the es-
timates in the literature (reviewed in Pugh et al., 1997).
(d) Finally, the maximum cyclase activity was calculated
from Eq. 13 as

.αmax αdark 1
Cadark

KCa
--------------- 

  nCa
+=

While the value of amax is not required as an initial con-
dition, it implicitly enters into the perturbation analysis
of the dim-flash response in Ringer’s (Eq. A6.3). 

The same initialization procedure was used for com-
puting both numerical and analytical solutions (Eqs. 19
and 20). Numerical solutions to the coupled differential
Eqs. 6 and 12, combined with Eqs. 11 and 13 were com-
puted with the fourth- and fifth-order Runge-Kutta routine
ode45 of the MatLab™ software package. Once the so-
lution cG(t) was obtained, Eq. 9 was used to compute the
fraction of cGMP current present for responses in
Ringer’s, while Eq. 10 of Lyubarsky et al. (1996) was used
for responses in choline. The normalized current response
was convolved with a first-order filter representing the
membrane time constant, 20–30 ms. For adequately low
intensity flashes (F , 5) and typical parameters, the nu-
merical solutions agreed exactly with the analytical so-
lutions, Eqs. 19 and 20; (compare Fig. 13, left and right).
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