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Abstract

This paper proposes a method for matching two sets of
images given a small number of training examples by ex-
ploiting the underlying structure of the image manifolds. A
nonlinear map from one manifold to another is constructed
by combining linear maps locally defined on the tangent
spaces of the manifolds. This construction imposes strong
constraints on the choice of the maps, and makes possi-
ble good generalization of correspondences between all of
the image sets. This map is flexible enough to approxi-
mate an arbitrary diffeomorphism between manifolds and
can serve many purposes for applications. The underlying
algorithm is a non-iterative efficient procedure whose com-
plexity mainly depends on the number of matched training
examples and the dimensionality of the manifold, and not on
the number of samples nor on the dimensionality of the im-
ages. Several experiments were performed to demonstrate
the potential of our method in image analysis and pose esti-
mation. The first example demonstrates how images from a
rotating camera can be mapped to the underlying pose man-
ifold. Second, computer generated images from articulating
toy figures are matched using the underlying 4 dimensional
manifold to generate image-driven animations. Finally, two
sets of actual lip images during speech are matched by their
appearance manifold. In all these cases, our algorithm is
able to obtain reasonable matches between thousands of
large-dimensional images, with a minimum of computation.

1. Introduction

Objects under continuously varying illumination or pose,

give rise to a geometrical structure in camera images known

as image manifolds [2, 13, 16]. From preliminary analytic

work on the subject [8], the concept of image manifolds has

recently been used for computer vision applications such as

pose estimation problems [9, 19, 22] and facial expressions

analysis [4, 17]. Although these results may not yet out-

perform conventional model-based approaches, they point

to a new direction in understanding images by learning the

structure of images from their appearance alone.

The current interest and potential for rapid progress in

this area can be attributed to several different factors. First,

thousands of images of an object or a scene are easily col-

lected by camera rigs, arrays of cameras, or by an au-

tonomous mobile robot. Second, a series of nonlinear di-

mensionality reduction techniques have been developed re-

cently, including Kernel PCA [15], Isomap [20], LLE [14],

and LLP [10], which reduce the dimensionality of the im-

age data, and output a low-dimensional representation that

preserves certain geometrical properties of the original data.

These algorithms are unsupervised, that is, no prior knowl-

edge is used to guide the process of dimensionality reduc-

tion. Consequently, the resulting representations do not di-

rectly reflect parameters of interest such as pose parameters

or joint angles. To relate these features to the desired param-

eters, a separate learning problem needs to be addressed.

Typically, the dimensionality reduction algorithms are used

as a preprocessing front-end, yielding low-dimensional fea-

tures for subsequent algorithms to build upon.

Another problem with current nonlinear dimensional-

ity reduction algorithms is the difficulty of simultaneously

learning the inverse map from low-dimensional parameters

to the high-dimensional image space. Some of the algo-

rithms mentioned above have adopted generic radial basis

functions or nonlinear regression methods to fit the inverse

map. However, due to the nonlinearity, high dimensionality,

and lack of training samples, the inverse mapping problem

remains an obstacle for image-based approaches.

In this paper we propose a semi-supervised learning of

a direct map between two images manifolds, constrained

by the fact that the map should be smooth on the man-

ifolds. This map is learned from a large number of un-

labelled images and a small fraction of images that are

labelled with known correspondences. The algorithm si-

multaneously learns local low dimensional representations

along with the associated mapping between the manifolds.

We illustrate how this method can be used to efficiently map
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Figure 1. Two image sets of articulating toy figures that have been

generated independently. The top and bottom rows show selected

pairs from each image dataset which are related to each other by

the underlying body pose of the arms and legs. From this training

set, we would like to learn the correspondence between all of the

image datasets. Details are described in Section 4.

between one image dataset to another image dataset, and

between an image data to a pose parameter space.

In the first application, we consider the following exam-

ple as depicted in Figure 1. A set of images of a subject

under varying poses is collected, and another set of images

of a different subject is similarly obtained. Among these

unordered sets, we assume that we are given a few paired

examples which contain images of the two subjects with the

same pose. We would like to generalize the rule exempli-

fied by the training set, so that we can find matches to the

rest of the images. Our manifold mapping method directly

solves this matching problems at once, by considering the

correspondence problem as an explicit map between the un-

derlying image manifolds.

The second application is similar to the first, in that the

pose parameter space, such as free rotations in 3D, is simply

another manifold that needs to be mapped to. Consider the

situation in Figure 2, where images of an object are obtained

by taking pictures from camera positions in a sphere around

the object. If the camera poses of a small subset of these

images are known, we would like to estimate the poses of

the rest of the images. Our method does this by constructing

an explicit map between the image manifold and the pose

parameter manifold.

The remainder of the paper is organized as follows. Sec-

tion 2 provides a background to smooth manifolds, and for-

mally explains the geometric ideas of the proposed learning

method. Section 3 presents algorithms for computing the

map from image data. In Section 4, results of experiments

on applications to matching articulated figure images, es-

timating rotating camera poses, and on lip images are de-

scribed. Finally, we conclude with a discussion in Section 5.

2. Learning a manifold-constrained map

In this section we introduce a semi-supervised method

of approximating a smooth map between manifolds. The

difficulty of learning such a map is mostly due to the high

Figure 2. Multiple images of an object are obtained by a rotating

camera. The underlying manifold structure of the camera pose

space can be used to estimate the poses of the camera images.

dimensionality of the embedding space. However, by work-

ing in the low-dimensional tangent spaces of the manifolds,

we can constrain the class of possible maps allowing for ef-

fective generalization. We begin by introducing necessary

concepts in smooth manifold theory, and then show how to

explicitly construct such a map from data.

2.1. Notation

Let X ⊂ R
dx and Y ⊂ R

dy be the two sets of

images. For each data set we have nx and ny samples

{x1, x2, · · · , xnx} and {y1, y2, · · · , yny}. Additionally, n
pairs of matched data are given: {(ui, vi)}, k = 1, · · · , n
where n� nx, n� ny . We assume the data X and Y
are samples of Euclidean submanifolds M ⊂ R

dx and

N ⊂ R
dy of dimension d with d � dx, d � dy , and

also that M and N are diffeomorphic.

2.2. Mathematical preliminaries

We provide mathematical preliminaries of smooth mani-

folds to make this paper self-contained. The following defi-

nitions can be found in differential geometry textbooks such

as [11, 21].

Smooth manifold Let M and N be two topologi-

cal manifolds of the same dimension d. Sup-

pose {(Ui, φi)|i ∈ I} is an atlas for M and

{(Vj , ψj)|j ∈ J } is an atlas for N , where Ui is an

open subset of M and φi is the coordinate map

φi : Ui → R
d, and similarly Vj is an open subset of

N and ψj is the coordinate map ψj : Vj → R
d. The

topological manifolds M and N are also smooth man-

ifolds, if the atlas of each has a smooth structure, that

is, φi ◦φ−1
k is smooth when Ui∪Uk �= ∅, and similarly

for ψj ◦ ψ−1
l .

Smooth map A map f : M → N is smooth, if for each

p ∈ M, there is a chart (Ui, φi) containing p and

(Vj , ψj) containing f(p), and the composition map

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



g : φi(Ui) → ψj(Vj) defined by g = ψj ◦ f ◦ φ−1
i

is smooth in the ordinary sense.

Tangent space For an embedded submanifold M of Eu-

clidean spaces, a tangent space TpM of M centered

at p, is identifiable with the d-dimensional subspace

R
d, whose origin is at p and is in normal direction at

p. Furthermore, for each point p, there exists a chart

(Ui, φi), such that φi(Ui) is an open subset of TpM,

and φi is the projection φi = π : Ui → TpM. By

the Whitney embedding theorem, an abstract manifold

can be smoothly embedded in a finite Euclidean space,

and the geometric characterization of tangent spaces

applies to abstract manifolds as well.

Smooth partition of unity By paracompactness of man-

ifolds, there exist a smooth partition of unity

{αi : M → R} subordinate to the given atlas:

1. αi(p) ≥ 0, ∀p ∈ M, i ∈ I
2. supp αi ⊂ Ui, ∀i ∈ I
3.

∑
i αi(p) = 1, ∀p ∈ M.

In the last sum, there are only finitely many αi’s that

are nonzero at each point p.

2.3. Locally linear maps on tangent spaces

Given training data X , Y , and the n matched pairs, the

goal of the algorithm is to learn the manifold structure and

to learn the mapping between the manifolds from data.

2.3.1 Manifold learning

The manifold M modeling the data X is fully character-

ized by the atlas {(Ui, φi)|i ∈ I}. In general, the index set

I need not be finite or countable. However, we will only

consider charts centered at the training samples {ui}, and

assume they are regularly sampled on M. To define the

chart Ui around ui, we use a partition of unity {αi(x)},

which serves as a membership ‘weight’ assigned to a point

x with respect to ui. We say x belongs to the chart Ui if

αi(x) > 0. The choice for the function αi will be detailed

in Section 3.

From the discussion of tangent spaces in the previous

section, we regard each tangent space Tui
M as an affine

space centered at ui. For each of the spaces, we can define

an orthonormal frame from the Riemannian metric induced

from the Euclidean space. For a small enough Ui, the pro-

jection from Ui to Tui
is a diffeomorphism by the inverse

function theorem, and therefore we can define the coordi-

nate function φi as the projection itself. Notice that we need

not have an explicit form of φi and can still compute the

projection:

φi(x) = Si(x− ui), (1)

x̂2

x̂1

L2

L1

ẑ1

v1

f : M → N

u1

u2

M N
x

ẑ2

v2

Figure 3. x̂i := Si(x − ui) is the projection of x into i-th tan-

gent space. On the tangent space, the smooth map f : M → N
is approximated by a linear map Li := f∗ : TuiM → TviN ,

where {(ui, vi = f(ui))} are the given training points. ẑi is the

image of x̂i under the local map: ẑi = T T
i Lix̂i + vi. These lo-

cal maps are glued together by the partition of unity αi as follows

: f(x) ≈ P
i αi(x)

`
T T

i Lix̂i + vi

´
. The objective of the opti-

mization is to choose {Li} which minimizes the disagreement of

images {ẑi} of the same point x, for all x ∈ X .

where Si is the matrix whose columns form an orthonormal

basis of the tangent space TuiM. A related discussion for

finding the orthonormal frame is in [7].

The manifold N modeling the second data Y , is charac-

terized in an analogous way. If {(Vj , ψj)} is the atlas for N ,

then Vj is defined around the training point vj by another

partition of unity {βj(y)}. The map ψ is approximated by

ψj(y) = Tj(y − vj), (2)

where Tj is an orthonormal basis of the tangent space

Tvj
N .

Numerically, the tangent spaces are computed from the

local PCA around ui’s and vj’s. By pooling enough number

of points and using their weights, we can find the principal

subspaces reliably in the presence of moderate noise. More

will be explained in Section 3.

2.3.2 Nonlinear function learning

Next, we describe how the smooth map f between the man-

ifolds can be learned. Note the problem is extremely diffi-

cult, since all we know is f(ui) = vi for a small number of

training data, which does not constrain much the possible

choices of f . However, we incorporate the knowledge that

X and Y have manifold structure as follows.

First consider the Euclidean counterpart

g : φ(Ui) → ψ(Vj) of a smooth function f between

manifolds, for some i and j. To simplify the situation, we

only consider the map from φ(Ui) to ψ(Vi). Given the map

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



gi : φ(Ui) → ψ(Vi), the corresponding map fi : Ui → Vi

is

fi(x) = ψ−1
i ◦ gi ◦ φi(x). (3)

A global map f on M is defined by pasting the locally de-

fined maps fi together.

The simplest approximation of the map gi is a linear

transform Li, represented as a matrix with respect to the

orthonormal bases Si and Ti.

Composed with the linearization of φi in the previous

section, we have the global map between two manifolds

f(x) =
∑

i

αi(x)fi(x) (4)

≈
∑

i

αi(x)
(
TT

i Liφi(x) + vi

)
≈

∑
i

αi(x)
(
TT

i LiSi(x− ui) + vi

)
.

In short, f is the weighted sum of i-th local maps, each of

which sends x to the estimated image ẑi

ẑi = TT
i Lix̂i + vi. (5)

The local maps {fi(x)} are simply linear, which is

preferable to complex models from a generalization point

of view. However, when they are combined with nonlinear

weights α(x) that conform to the underlying nonlinear man-

ifold structure, they are capable of approximating a smooth

nonlinear map. A geometric picture of this description is

shown in Figure 3.

2.3.3 Optimization

How do we find the linear maps {Li} which are most con-

sistent with the given data? Under the proposed scheme,

each projection x̂i of x maps to different ẑi’s. If it were not

for linear approximations of φi andfi, the images {fi(x)}
of a fixed x should agree exactly regardless of which charts

are used to present the map. Otherwise, f is not a well-

defined map. Therefore the natural choice of {Li} is that

which makes the different estimates {ẑi} agree most. We

define the penalty Cx(L1, L2, · · · , Ln) for x as the matrix

norm of weighted covariance of the images ẑi via different

linear maps {Li}:

Cx = tr

⎛
⎝∑

i

αiẑiẑ
T
i −

∑
i

αiẑi

∑
j

αj ẑ
T
j

⎞
⎠ (6)

= tr

(∑
i

αi{TT
i Lix̂i + vi}{TT

i Lix̂i + vi}T

)

− tr

⎛
⎝∑

i

αi{TT
i Lix̂i + vi}

∑
j

αj{TT
j Lj x̂j + vj}T

⎞
⎠ .

The total cost is the sum of (6) for all x ∈ X:

C(L1, · · · , Ln) :=
∑
x∈X

Cx(L1, · · · , Ln). (7)

It is readily shown that the cost is a convex function of the

matrices L1, · · · , Ln, and the minimizer is found by setting

∂C
∂Li

= 0, for i = 1, 2, · · · , n, (8)

which results in n linear matrix equations for k = 1, · · · , n:

TkT
T
k LkSkAkS

T
k + TkBkS

T
k

−
∑

j

TkT
T
j LjSjCjkS

T
k − TkDkS

T
k = 0, (9)

where Ak, Bk, Cjk and Dk are matrices computed from the

data. The solution to (9) is given uniquely by the matrices.

3. Algorithm
3.1. Computing weights

We assign weights for a smooth partition using the fol-

lowing function:

αi(x) ∝ e−d(x,ui)
2/2s2

, (10)

where ui is the i-th training data, and d(·, ·) is the usual

distance in R
dx . Roughly speaking, x has a large value of

αi(x) if x is close to ui, and a vanishing value if x is far

from ui. However, because of the curse of dimensionality,

the standard distance is not be a very sensitive measure

for far points. We occasionally have had better exper-

imental results using geodesic distances, approximated

by shortest-paths on a nearest-neighbor graph as in the

Isomap algorithm [20]. For each x we choose the constant

s adaptively as s = mini d(x, ui). To make αi have

compact support, we can either 1) truncate small values

of the weights, or 2) keep only the l-largest weights for x.

The second scheme guarantees fast sparse computation in

subsequent procedures. Finally we normalize the weights

so that
∑

i αi(x) = 1 holds for all x. The above definition

of α may not technically be a smooth partition of unity, but

makes no difference in numerical computations. Below is a

summary of the procedure:

For each ui and xj , i = 1, · · · , nx, j = 1, · · · , n,

1. Compute Wij ∝ e−d(xj ,ui)
2/2s2

2. Make W sparse.

3. Normalize Wij ←Wij/
∑

j Wij

The weights for the second data Y is computed simi-

larly by the exponential decay rule βj(y) ∝ e−d(y,vj)
2/2s2

.
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3.2. Local basis computation

The local tangent space at a point x can be determined

by the sample covariance of points in the neighborhood

of x. Choosing the wrong size of the neighborhood

can affect the resulting computations. Here, we use the

weights computed from the previous section to discount the

contribution of a point to the covariance around x. Atkeson

et al. discusses the advantages of using locally weighted

estimates in [1]. The local tangent space is computed as

follows:

For each point ui, i = 1, · · · , n,

1. Form a matrix x̄ = [xi1xi2 · · ·xim
] whose column vec-

tors are m points in the neighborhood of ui.

2. Form the diagonal matrix Ajj = Wij ,i.

3. Normalize Ajj ← Ajj/
∑

j Ajj

4. Find the local basis Si by Singular-Value Decomposi-
tion:

SiΣDT = [x̄− ui]A (11)

The local bases {Tj} for Y is similarly computed.

3.3. Computing {Li}
The matrices Ak, Bk, Cjk and Dk in (9) are defined as

Ak =
∑

i

Wik(xi − uk)(xi − uk)T (12)

Bk =
∑

i

Wikvk(xi − uk)T (13)

Dk =
∑

i

(
∑

j

Wijvj)Wik(xi − uk)T (14)

Cjk =
∑

i

WijWik(Wi − uj)(xi − uk)T . (15)

Equation (9) is linear in {Li}, hence we can solve this by

writing the equation as a tensor product of matrices.

Using the tensor operator ⊗ and vectorization operator

vec(·), we compute the new matrices

Ak = SkA
T
k S

T
k ⊗ TkT

T
k (16)

Bk = vec(TkBkS
T
k ) (17)

Dk = vec(TkDkS
T
k ) (18)

Cjk = SkC
T
jkS

T
j ⊗ TkT

T
j (19)

mk = vec(Lk). (20)

These turn (9) into the vector equation

Akmk+Bk−
∑

j

Cjkmj−Dk = 0, k = 1, · · · , n. (21)

To solve for {Lk} simultaneously, we construct larger ma-

trices as follows: A is the block-diagonal matrix of size

(nd2 × nd2):

A =

⎡
⎢⎣
A1 0 0

0
. . . 0

0 0 An

⎤
⎥⎦ . (22)

B and D are the vectors of size (nd2 × 1) and (nd2 × 1),
obtained by stacking Bk’s and Dk’s along the columns:

B
T

=
[
B

T

1 · · ·BT

n

]
, (23)

D
T

=
[
D

T

1 · · ·DT

n

]
. (24)

C is a full matrix of size (nd2 × nd2):

C =

⎡
⎢⎣
C11 · · · Cn1

...
. . .

...

C1n · · · Cnn

⎤
⎥⎦ . (25)

Let L be a (nd2 × 1) vector of the following form :

L
T

= [mT
1 m

T
2 · · ·mT

n ]. (26)

The final solution of (9) is given as follows:

1. For each j = 1, · · · , n, , k = 1, · · · , n,

(a) Compute Ak, Bk, Dk and Cjk from (12)-(15)

(b) Compute Ak, Bk, Dk, and Cjk from (16)-(19)

2. Compute A,B,D, and C from (22)-(25)

3. Compute L from matrix inversion

L = (A− C)−1(D −B). (27)

4. Get each Li by rearranging the elements of L.

3.4. Remarks

The desired {Li} which minimize (6) is computed from

inversion of a matrix of size nd2, which is the main cost

of computation. Since the number of training sets is much

smaller than the total number of data, (n � nx, n � ny)
and the dimensionality of the manifold is also much smaller

than the dimensionality of data (d � dx, d � dy), the

computation is very efficient. Moreover, other computa-

tions that scale linearly or quadratically with respect to nx,

are reduced to a small fraction by virtue of sparse weights.

In practice, the computation time for each example in Sec-

tion 4 was at most five minutes with a Pentium 4 desk-

top running Matlab scripts. Compared to other nonlinear
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mapping methods such as the Generative Topographic Map-

ping [3], this optimization is global and no iterations are

required.

The algorithm allows us to directly map a new test point

not in the given set X . In this case, we only had to re-

evaluate the weights αi(x) and compute its projections x̂i

for the test point x. It is not necessary to compute Si, Ti, or

Li again.

4. Applications
In this section we describe how to use the manifold-

constrained map to analyze example image data, and to find

matches between the image datasets.

Once we have computed {Li}, we define the best match-

ing y ∈ Y given x, as the one whose approximation ŷ of

itself on N is closest to the estimated image ẑ:

ymatch = argmaxy∈Y ‖ŷ − ẑ(x)‖
= argmaxy∈Y ‖ŷ −

∑
i

αi(x)ẑi(x)‖, (28)

where ŷ and ẑ is computed from

ŷ =
∑

j

βj(y)
(
TT

j Tj(y − vj) + vj

)
(29)

ẑ =
∑

i

αi(x)ẑi(x). (30)

Note the best match (28) is defined for each x. To get

matches for multiples points, we simply repeat (28) point-

wise. The search for this closest point is accelerated by the

following trick: for a given x, limit the candidates of ỹ to

those points who belong to the same charts U1, U2, · · · as

the charts x belongs to. This makes the set of candidates

significantly smaller than the whole set Y .

We learn manifold-constrained maps from three different

types of data: 1) images from a rotating camera, 2) articu-

lating toy figure images, and 3) lip images during speech,

and examine the performance of matching.

For these experiments, each image is simply represented

as a single vector of gray-level intensity in R
dx where dx

equals the number of image pixels.

4.1. Estimating camera pose

Scenes of geometric objects in 3D were realistically ren-

dered for a rotating camera. The camera was allowed to

orbit around the object with azimuthal angle (0− 360◦) and

nonnegative elevation angle (0 − 90◦), as depicted in Fig-

ure 2. The angles were generated to have approximately 3◦

sampling resolution for both azimuth and elevation. The to-

tal number of samples were 2368, and 5 percent (= 118)

of randomly chosen samples were used as training sam-

ples with known poses. Each image in the set consisted

Figure 4. Images projected on a local tangent space of dimension

2. To see how images vary on the tangent space, we sampled the

images along two arbitrary curves and displayed on the vertical

and horizontal sequences. The vertical images vary mainly in the

elevation angle of view (true elevation angles are given on the left

for reference), and the horizontal images vary mainly in the az-

imuthal angle (true azimuthal angles are shown on the bottom).

of 40 × 40 pixels. The scenes showed occasional self-

occlusions and occlusions from limited field of view.

Figure 4 shows tangent space projections x̂i of images

which are in the neighborhood of a particular training point

ui. One sees that the projection axes of PCA is highly cor-

related with the underlying camera viewpoint angles. This

provides strong evidence for manifold structure in the im-

ages even if we didn’t know how the images were collected.

In this case, we have assumed the dimensionality d of man-

ifolds is fixed beforehand. In case d is not known, one can

analyze the dropoff of eigenvalues of the singular value de-

composition (11) to estimate d.

To learn the direct map from images to pose space, we

assume the pose space of a hemisphere of dimension 2, em-

bedded in R
3. Tangent spaces on the pose space can be de-

rived analytically or computed from uniform points on the

sphere. Using the matched training set, we learn the map

{Li} and the estimates ẑ. The estimated poses are shown in

Figure 5. Although the result is not comparable to the state-

of-the-art results, we present the naive result as a proof of

concept. Note that the poses were determined using only

the raw pixel values of the images, without any knowledge

of object geometry nor camera properties.

4.2. Generating a matched animation

We also matched images of two articulating LEGOTM

figurines available from a public database. Each figurine
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Figure 5. The two dimensional pose space of camera is considered

as a hemisphere embedded in 3D as shown in the left figure. On

the right is the estimated pose ẑ of images, using the randomly

chosen training points {vi} indicated by big red dots.

has 8 independent joints among which we used four: left /

right arms and left / right legs (hip joints). Combinations of

joint angles are generated by moving the arms −40 to160◦

with 20◦ separation, and the legs from −30 to 30◦ with 10◦

separation. Zero angles correspond to the neutral stand up

position. A total of 5929 = 112 × 72 images are gener-

ated for each figure. Images were rendered with pixel sizes

of 54 × 30 for figurine 1 and 48 × 30 for figurine 2. A

small fraction (5 percent = 296) of the images were cho-

sen with matched labelling, examples of which are shown

in Figure 1.

We learned the manifolds of each image and the direct

map between the two. For visualization, we defined two in-

teresting curves on the manifold of figurine 1, which mimic

a ‘walking’ and a ‘hurray’ motions to get corresponding

animations of figurine 2, shown in Figure 7. This demon-

strate the capability of our algorithm to synthesize a novel

sequence in a data-driven way.

In this example, we have used pointwise matches to gen-

erate the animation. However, we can interpolate the tem-

poral sequence to get a smoother animation. When the man-

ifold is known exactly, interpolation is done analytically

[6, 18]. Although not shown here, we also have prelimi-

nary results of smoothing out a sequence on each tangent

space of the data manifold. This could be improved further

by considering a dynamic model on manifolds [12].

4.3. Matching lip images

In this experiment, we demonstrate “lip sync” of real im-

ages through matching (refer to [5] for references therein.)

We have acquired a sequence of lip images during continu-

ous utterance of vowels. For the training set, a subject pro-

nounced eight vowels ‘ah’, ‘aa’,‘ae’,‘er’,‘ih’,‘o’,‘uh’,‘wu’,

and ‘silence’, and repeated the vowels five times to get a

total of 45 images (Figure 6). For the test set, the subject

freely made arbitrary vowel sound to get 900 images for

each dataset. The second dataset was collected from the

same procedure, from the same subject but under different

Figure 6. Training data for lip images. The subject pronounced

eight vowels ‘ah’, ‘aa’,‘ae’,‘er’,‘ih’,‘o’,‘uh’,‘wu’, and ‘silence’,

and repeated the vowels five times. The images in the top row

and the bottom row are obtained under different conditions and

times.

camera poses and at different times. To roughly register

the images of each data respectively, we have tracked three

markers on the forehead of the subject, and cropped lip

regions after linear transformations. The resulting images

were of size 50 × 53 and 45 × 45 pixels. The CCD cam-

era showed a temporal change of the color tone, which was

corrected by histogram equalization and Gaussian blurring.

The dimensionality of the image manifold was empirically

chosen to be d = 2.

The result of mapping is shown in Figure 8. The first

row is a portion of test set of the first data, given as a query.

The second row shows the corresponding weighted aver-

age z̃ =
∑

i αi(x)ẑi(x) from the learned map. The best

matches (28) to the second row is given in the bottom row.

Since the test sets are lip images of arbitrary vowel sounds,

we do not have annotations to evaluate the matching. How-

ever from the visual inspection, the images of bottom row

displays a satisfactory lip sync to the images in the top row.

5. Conclusion
Image-based approaches complement model-based ap-

proaches by their ability to automatically extract informa-

tion from a large collection of images. In this paper, we pro-

posed a new algorithm that differs from other dimensional-

ity reduction techniques currently used in image-based ap-

proaches: our method constructs a direct map between two

high-dimensional image sets, and the map generalizes well

with a relatively small number of training samples. From

examples of synthetic and real images, we demonstrated

the potential of our method in image analysis and pose es-

timation using only appearance. We anticipate continued

development of this algorithm will demonstrate additional

applications of the methods on other types of data.
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