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Abstract. Inductive logic programming (ILP) techniques are useful for
analyzing data in multi-table relational databases. Learned rules can po-
tentially discover relationships that are not obvious in “flattened” data.
Statistical learners, on the other hand, are generally not constructed to
search relational data; they expect to be presented with a single table
containing a set of feature candidates. However, statistical learners of-
ten yield more accurate models than the logical forms of ILP, and can
better handle certain types of data, such as counts. We propose a new ap-
proach which integrates structure navigation from ILP with regression
modeling. Our approach propositionalizes the first-order rules at each
step of ILP’s relational structure search, generating features for poten-
tial inclusion in a regression model. Ideally, feature generation by ILP
and feature selection by stepwise regression should be integrated into a
single loop. Preliminary results for scientific literature classification are
presented using a relational form of the data extracted by ResearchIn-
dex (formerly CiteSeer). We use FOIL and logistic regression as our ILP
and statistical components (decoupled at this stage). Word counts and
citation-based features learned with FOIL are modeled together by logis-
tic regression. The combination often significantly improves performance
when high precision classification is desired.

1 Introduction

The structure of the data being modeled often dictates what model form is most
appropriate. For example, when word counts are used for document classification,
statistical modeling tools, such as logistic regression, maximum entropy inference
or Naive Bayes, are more appropriate. These tools are capable of flexible evi-
dence aggregation. In other situations, for example when using citation structure
in document classification, statistical models are commonly either overwhelmed
by sparsity or lack the functionality to navigate the underlying relational struc-
ture. In such situations, inductive logic programming (ILP) techniques provide
functionality to navigate relational structure and generate potentially new form-
s of evidence, not readily available in a “flattened” one-table representation.
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Unfortunately, the use of logic as a representational language makes them too
inaccurate in many domains.

We propose an approach where first-order rules being constructed inside
ILP’s relational structure search loop are propositionalized 3 at each step to
generate features which are immediately considered for possible inclusion into a
regression model. The regression model may include propositionalized features in
binary form (rule satisfied at least once) or as counts (the number of independent
ways a training example can satisfy the first-order rule).

In this paper, we start to address the issues of combining ILP and regres-
sion by exploring some of the advantages and disadvantages of ILP using FOIL*
[12,13] and of logistic regression [9], separately, and in combination, by look-
ing at the task of classifying scientific literature. We use the data from Re-
searchIndex,® an online digital library of computer science papers [1,11]. It con-
tains a rich set of relational data, including the text of titles, abstracts and
documents, citation information, author names and affiliations, conference or
journal names, and paper downloads. This data can be naturally represent-
ed as multi-relational domain knowledge, e.g. author _of (author,document),
contains word(document, word), title_contains word(document, word),
cites(documentl, document2) etc. We are also expanding this basic structure
with derived clusters such as topics (clusters of words) and communities (clus-
ters of people). For many tasks, it is useful to know, for example, what papers
written by frequently cited authors cite a given paper.

Training and testing are performed on twelve document classification tasks
using the data from ResearchIndex. We show that relational representation of
citation structure results in higher performance than only using the “flat” cita-
tion information immediately available in a document. FOIL often achieves high
precision levels while heavily compromising recall. Modeling words with logistic
regression performs better when high recall is desired. Both can be improved by
feature combination within logistic regression when high precision is preferred.
Logistic regression modeling provides an additional flexibility through a natural
choice of a decision threshold when adjusting the desired level of precision-recall.

2 Task and Data

We define twelve separate binary classification tasks on the ResearchIndex data
formulated in relational form.® For each task, we:

— Select documents containing a specific query phrase (Table 1). These are
included as positive labeled examples.

— Randomly select from the remaining collection three times as many negative
examples.

3 Represented as propositional features.

* We use FOIL6.4.

® http://researchindex.org/

% Only documents cited at least once are considered.
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— Augment the collection by including all other documents that have incoming
or outgoing citations from the positive or negative core documents. The
new documents included at this stage participate in learning as unlabeled
examples.

— Extract from the documents words and citation information (words used in
a query phrase are excluded to avoid selection bias).

— Randomly split positive and negative examples into training and test sets,
2/3 and 1/3 of the total respectively.

Table 1 lists topics and collection sizes.

Table 1. Summary of twelve binary classification tasks

Query phrase # of ® docs # of all docs
“association rules” 354 2399
“bayesian networks” 491 3418
“data mining” 1057 8273
“decision trees” 1156 9559
“digital libraries” 669 5149
“graphical models” 368 2561
“inductive logic programming” 280 1850
“information extraction” 713 5410
“knowledge discovery” 547 4061
“machine translation” 498 3543
“maximum entropy” 234 1396
“natural language processing” 1098 9269

The tasks are defined for the initial experimentation. One can include a richer
background knowledge by considering documents that are more than one citation
away from the positive or negative core documents in the citation graph. The
positive and negative classes can have other priors and other validation schemes
can be used, e.g. K-fold cross validation.

3 Methodology and Results

Our eventual goal is to use ILP-style search to generate rules, which can then
be incorporated into a regression model. Since we want the best features for a
regression (rather than a logic) model, this should ideally involve replacing the
rule selection criteria used inside of an ILP structure search with feature selection
criteria commonly used in regression analysis. We propose using the FOIL-like
structure navigation loop, i.e. the search of refinement graphs, and consider
the rules at each node of this search graph for inclusion in logistic regression
model in a forward stepwise selection manner. As we will see below, a simpler
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approach of generating a set of rules using FOIL, creating features from them
(i-e., “propositionalizing” them), and feeding those features to a regression is
suboptimal in the sense that the greedy search used to select the rules, including
the logic-oriented practice of removing the covered positive tuples, often fails to
generate the features desired for the regression. Feature generation and selection
should be more tightly coupled.

For example, FOIL supplied with both word and citation information tends
to learn very few rules involving citations, as words overwhelm the search. How-
ever, our experiments presented in later subsections show that citation informa-
tion can be extremely useful when high precision classification is required. We
have not yet implemented a fully integrated system; for now we present pre-
liminary results exploring the circumstances under which pure logic or hybrid
logic-regression methods give superior performance. We do this by looking sepa-
rately at ILP and regression models predicting document class based on words,
based on citations, and based on both words and citations.

3.1 Modeling Words and Citations Separately

Words and citations provide two extremely different examples of how logic-based
and regression-based models can give different performance. Words tend to in-
dicate the class of a document, but the best word-based models combine infor-
mation from many words. Almost all documents have some relevant words, so
recall is high, even if precision is not perfect. Citations, in contrast, give high-
ly precise classification when they are present. Unfortunately, many documents
do not have any citations useful for classification, so recall is often poor. These
differences are reflected in the performances of FOIL and logistic regression.

The “classical” approach to document classification assumes a “flat” attribute-
value representation of word counts. We have experimented with both FOIL and
logistic regression for word-based classification.” FOIL uses background relations
of type has_wordWORD (X), where WORD is a concrete word in the vocabulary. As
expected, the logistic regression resulted in a more powerful predictive model,
improving precision by 6.0%. The recall level remained the same, due to the
restricted word feature set considered by logistic regression. Table 2 includes the
details of the comparisons.

We also used FOIL to learn classification rules based purely on the cita-
tion structure of documents.® The following relations are considered in FOIL
programs learning:

— Target relation:
e inclass(X)

— Background relations:
e cites(X,Y),
e cites_docID (X),

7 Here using only the words selected by FOIL.
8 FOIL is used with its default settings.
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e citedby._docID(X),

where ID is an identification number of a concrete document, X and Y are
variables of type Document. This representation would have been equivalent
to using just one relation cites(X,Y), and declaring all documents as theory
constants, except in the situations where FOIL learned simple classification rules
of the form inclass(ID). This tended to overfit and produced higher out-of-
sample classification errors.

To convince ourselves of the benefits of relational representation compared
to using “flat” features alone, i.e. only immediately incoming and outgoing cita-
tions, we compared FOIL’s performance with and without structural exploration.
Predictive accuracy for all twelve tasks improves when structural relations are
allowed. In this case FOIL also tended to learn shorter programs (average 162
vs. 124 clauses). Table 2 includes this comparison.

The precision is quite high in both cases (87.1% and 87.2%), more likely
statistically the same. The average recall improved 4.6% from 52.7% to 57.3%.
This recall level may still be unacceptably low in many applications.

The following is a typical example of learned rules for classification of docu-
ments into the class “inductive logic programming”:°
ilp(A) :- cites(A,B), cites_doc222642(B).
ilp(A) :- cites(A,B), citedby_doc102608(B).
ilp(A) :- cites(B,A), cites_doc368053(B).
ilp(A) :- cites(A,B), cites_doc221578(B).
ilp(A) :- cites_doc18992(4).
ilp(A) :- cites(A,B), citedby_doc97299(B).
ilp(A) :- citedby_doc192387(A).
ilp(A) :- cites(A,B), citedby_docl179764(B).
ilp(A) :- cites(A,B), cites_doc180353(B).
ilp(A) :- cites(B,A), cites_doc94985(B).

For example, the first rule classifies document A as positive if there exists a
document B such that A cites B and B cites document 222642, where document
222642 is a paper by S. Muggleton Inductive Logic Programming (1992), in the
MIT Encyclopedia of the Cognitive Sciences, which is a very authoritative paper
in the field (314 citations as counted by ResearchIndex).!? The transitive nature
of this rule makes it stronger than the “flat” alternative where a document is an
ILP document if it directly cites this document,

ilp(A) :- cites_doc222642(A).

 Rules with more than two literals in the body were present in programs learned for
other classes. They were relatively rare. Considering a larger citation graph neigh-
borhood is likely to increase the number of more complex rules.

10 Document ID’s in this example correspond to internal ID’s of ResearchIn-
dex. The reader can check the details of other papers by entering their ID
after the home URL of ResearchIndex, e.g. for document 222642, request
citeseer.nj.nec.com/222642.html.
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Modeling citations with logistic regression was less successful than FOIL due
to the extreme sparsity of citation structure. Using propositionalized citation-
based features generated by FOIL in logistic regression gives results virtually
identical to those in FOIL, as the presence of at least one “strong” FOIL feature
was enough numerically for positive classification in this domain.

Bibliometric Interpretation of Citation-Based Rules Some of the cita-
tion based rules learned by FOIL have a natural bibliometric interpretation.
Bibliometrics studies the development of scientific disciplines by analyzing their
citation structure [6, 15].

For example, the following rule discovers an instance of the concept of bibli-
ographic coupling: !!

ilp(A) :- cites(A,B), citedby_doc102608(B).

Document 102608 cites several highly authoritative papers in ILP, thus in-
creasing the chance of document A belonging to the ILP class if A and document
102608 are bibliographically coupled, i.e. there exists a document B cited by them
both.

The following rule discovers an instance of the concept of co-citation:
ilp(A) :- cites(B,A), cites_doc368053(B).

Document A is an ILP document if it is co-cited together with document
368053. The latter is a highly cited document in ILP.

3.2 Combination of Word and Citation Features

We model propositionalized citation-based FOIL features and word-counts with
logistic regression. The combined model is compared to words-only logistic re-
gression. The improvement at the default 0.5 decision threshold 2 is not uniform.
The accuracy was improved by an average of 0.60%. The improvement in preci-
sion is more obvious (2.37%), while recall remained almost the same on average.
The average classification error reduction is 5.1%. Formal statistical significance
testing confirms that the improvement in average precision level is significant
at the 0.05 level (the 95% confidence interval of the precision improvement is
2.37% + 1.68%). The tests failed to show significant differences in average re-
call and accuracy levels between the two models. Table 2 includes the average
performance of the combined model at the default decision threshold.

A more complete comparison requires precision-recall curve analysis. More
refined precision-recall compromises may be needed in many applications. Logis-
tic regression modeling provides an added benefit by allowing a natural choice
of a tuning mechanism. We present precision-recall curve analysis in the next
section.

11 Bibliographic coupling is the degree of similarity between two documents based on
documents cited in common.
12 predicted probability of the positive class.
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Table 2. Average performance of FOIL and logistic regression on twelve tasks with
word and citation features

| FOIL | LR

| flat cites struct. cites words | words comb.
Accuracy, % 86.2 87.3 86.4 88.2 88.8
Precision, % 87.1 87.2 73.8 79.8 82.2
Recall, % 52.7 57.3 70.7 70.8 70.7

4 Precision-Recall Analysis

Often, within a fixed learned model a decision threshold can be varied to achieve
a desirable precision level at the expense of recall or vice versa. Logistic regres-
sion’s predicted probability of a class is a natural choice of a decision threshold.
In the previous section the examples are classified as positive if the decision
threshold was higher than 0.5 and negative otherwise. Here we vary the decision
threshold of both logistic regression models with words only and words-citations
features to generate their precision-recall curves.

Unfortunately, FOIL does not offer a natural way to vary the decision thresh-
old to generate the curves. Although search parameters can be tuned, that would
correspond to merely learning a different FOIL program and is analogous to se-
lecting a different set of features in logistic regression. Another way was suggested
by Craven et al. [4] where an estimated accuracy of the first rule that matches
an example is used as its confidence measure. This allows a precision-recall curve
generation for recall levels lower than the base level of the full FOIL program,
but has no way to tune for achieving higher recall levels. That would require
learning a different set of clauses with other learning parameters.

We plot one point for precision-recall of FOIL programs with citation-based
features together with the curves for logistic regression models and note that
the recall levels of FOIL programs cannot be improved without re-learning with
different parameters. Figures 1 and 2 present precision-recall results for our
twelve tasks. The results are very dataset-dependent.

Interestingly, the relative position of the citation-based FOIL precision-recall
point to the words-only logistic regression curve determines the relative position
of the precision-recall curve of words-citations logistic regression. When words
already do a better job in that region adding citations hurts. When, on the other
hand, the words are weak predictors in the region compared to citations alone,
adding citation features to the words based logistic regression results in improve-
ments. In particular, citation features tend to provide significant improvements
in high precision areas. In the high recall area, where the words are “stronger”
features, adding citations almost always hurts.

We speculate that the degree of connectivity of the communities correspond-
ing to each of the twelve datasets determines whether adding citation-based
features helps. As the precision-recall analysis shows, the improvement in perfor-
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mance greatly depends on how “strong” the citation-based features are relative
to words. The twelve datasets represent communities with different organization.
Some are very well defined, e.g. “inductive logic programming”, whereas others
are rather a collection of several weaker connected communities, e.g. “knowledge
discovery”. Citation-based features are more useful in well-connected datasets,
especially when words alone fail to do a good job. We expect our fully integrated
approach to be able to make better choices regarding the inclusion and relative
merits of words and citations in different tasks.
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5 Related Work

Representing induced first-order rules as features to be used in propositional
learning is known as “propositionalization”. Kramer et al. [10] provide a re-
view of the methodology and its applications. The right-hand sides of relational
rules can be used as binary features in any modeling tool appropriate for this
representation. Propositionalization for linear regression modeling was used by
Srinivasan and King [16] to build predictive models in a chemical domain. De-
coupling the process assumes the inductive bias of a technique used to construct
features. Pure propositionalization is not always applicable when the data is not
well suitable for logic-based learning, as in the case of word counts in document
classification. Simply flattening relational data before constructing a model also
presents problems, Getoor et al. [7] acknowledge this and propose one solution
in the context of learning Bayesian networks.

ILP algorithms have been applied to document classification by Cohen [3]
to exploit word-order relations in text. Craven et al. [4, 14] propose a technique
called “statistical predicate invention” to combine statistical and relational learn-
ing in the hypertext domain. In “statistical predicate invention”, word-based
classifications produced by Naive Bayes are included in FOIL search as new
predicates. Our approach differs in the “direction” the combination takes place.
It has a statistical technique as a modeling component for which the features
are supplied by an ILP-based relational structure search. “Statistical predicate
invention”, on the other hand, preserves the ILP component as the central mod-
eling component and calls statistical modeling from within the inner structure
navigation loop to supply new predicates.

Various other techniques have been applied to learning hypertext classifiers.
These vary in methodology and information exploited. For example, Chakrabarti
et al. [2] use predicted labels of neighboring documents to reinforce classification
decisions for a given document. Glover et al. [8] provide an analysis of the utility
of text in citing documents for classification. Yang et al. [17] include a more
complete discussion of hypertext classification methods as well as a systematic
comparison.

6 Discussion and Future Work

We believe that ILP and statistical modeling should be integrated so that struc-
ture navigation and regression modeling are a single, integrated process. This
should bring the strengths of both methods to bear on the feature generation
and selection problem. In the results presented above, we used logistic regression
with FOIL-supplied features in a relatively loosely coupled manner. For scien-
tific literature classification, word-based and citation-based features give quite
different performances with the different techniques; combining them appropri-
ately gives further improvement, but only in some regimes. We found that using
propositionalized citation-based structural features learned by FOIL along with
word counts in logistic regression often significantly improves performance when
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high precision is required. This, even though FOIL trained on both words and
citations fails to learn the same features, and hence fails to get the higher accu-
racy. Blindly generating features with FOIL and putting them into a regression
does not work as well as, for example, generating more features than FOIL would
normally generate, and then selecting them in the regression.

We expect that many other tasks can benefit from the approach present-
ed above. For example, the language used in patent descriptions may not be
as specific as that in scientific publications, providing room for greater benefit
from incorporating citation-based features into classification models. Predicting
whether a document will cite another document is another potential application
where richer relational structure should help, if implemented in conjunction with
regression. Documents are cited based on many criteria, including topic (word-
s), conference or journal, and who the authors of the papers are. All attributes
contribute, some in fairly complex ways.

Using clustering or latent class modeling in the Structural Logistic Regression
setting should also prove highly beneficial, since one of the problems that is en-
demic to the use of structural information in document modeling is sparsity. Clus-
ters can generate rich relational structure [5]. For example, a word is a member of
one or more word-clusters (topics). Each of these word clusters, in turn, has au-
tomatically generated properties such as “most frequently occurring word in clus-
ter”. Thus a relation such as most-frequent-word (main-topic(most-frequent
-word (document-231))) could be learned, as could relations involving sets of
frequent words. Interleaving the generation of logic-based rules, the creation of
clusters, and the selection of features based on logic and clusters has the potential
to produce extremely rich and powerful models.
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