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Abstract 

 

SENSORIMOTOR INTEGRATION IN A SMALL MOTOR CIRCUIT 

Nicholas D. DeLong 

Advisor: Michael P. Nusbaum, Ph. D. 

 

 Rhythmic motor patterns, which underlie behaviors such as mastication, 

respiration and locomotion, are generated by specialized neural circuits called 

central pattern generators (CPGs).  Although CPGs can generate their rhythmic 

motor output in the absence of rhythmic input, these motor patterns are modified 

by rhythmic sensory feedback in vivo.  Furthermore, although the importance of 

sensory feedback in shaping CPG output is well known, most systems lack the 

experimental access needed to elucidate the mechanisms underlying 

sensorimotor integration at the cellular and synaptic level.  I am therefore 

examining this issue using the gastric mill CPG, a circuit which generates the 

rhythmic retraction and protraction motor activity that drives chewing by the teeth 

in the gastric mill compartment of the crustacean stomach.  The gastric mill CPG 

is well defined and very accessible at the cellular level.  Specifically, I am 

examining the mechanism by which the gastropyloric receptor (GPR), a 

phasically active proprioceptor, selectively prolongs one phase (retraction) of the 

gastric mill rhythm in the isolated nervous system when it is activated in a pattern 

that mimics its in vivo activity.  I first demonstrate that GPR regulation of the 
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gastric mill rhythm relies on its presynaptic inhibition of modulatory commissural 

neuron 1 (MCN1), a projection neuron that activates and drives this rhythm.  I 

also demonstrate that the GPR inhibition of MCN1 regulates the gastric mill 

rhythm by selectively regulating peptidergic cotransmission by MCN1.  Lastly, I 

demonstrate that a peptide hormone (crustacean cardioactive peptide) that only 

modestly modifies the gastric mill rhythm, strongly gates the GPR regulation of 

this rhythm.  Mechanistically, it acts not by influencing GPR or MCN1, but by 

activating the same excitatory current in the CPG neuron LG (lateral gastric) that 

is activated by MCN1-released peptide.  This novel gating mechanism reduces 

GPR control over the amplitude of this excitatory current in LG.  Thus, I have 

identified specific cellular mechanisms by which (a) phase-specific regulation of 

an ongoing motor pattern by a sensory input is accomplished, and (b) hormonal 

modulation gates that sensory input.  These events are likely to reflect 

comparable ones occurring in the larger and less accessible vertebrate CNS. 
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Chapter 1 

Introduction 

The overall goal of my thesis is to elucidate the cellular mechanisms by 

which rhythmically active motor circuits are regulated by sensory feedback.  

Sensory feedback plays a key role in the expression of motor patterns, including 

its initiation, termination and the regulation of its ongoing timing and pattern (Di 

Prisco et al., 2000; Perrins et al., 2002; Beenhakker et al., 2004; Blitz et al., 

2004; Yakovenko et al., 2005; Rossignol et al., 2006; Buschges et al., 2008; 

Pearson, 2008).  Some insight has been gained regarding the functional impact 

of sensory feedback onto vertebrate motor circuits, such as those underlying 

locomotion (Yakovenko et al., 2005; Rossignol et al., 2006; Pearson, 2008), but 

in such systems the limited access to a cellular-level analysis has precluded a 

detailed understanding of the cellular mechanisms underlying sensorimotor 

integration. 

 I am therefore investigating the cellular basis of sensorimotor integration in 

a small motor system, the stomatogastric nervous system (STNS) of decapod 

crustaceans, where analysis at the cellular level is feasible.  The STNS is an 

extension of the crustacean central nervous system (CNS) which generates a set 

of feeding-related motor patterns (Marder and Bucher, 2007). It includes four 

ganglia plus their connecting and peripheral nerves (Fig. 1).  The ganglia are the 

paired commissural ganglia (CoGs), oesophageal ganglion (OG) and 

stomatogastric ganglion (STG). 
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 My thesis focuses on the gastric mill rhythm in the Jonah crab, Cancer 

borealis.  The gastric mill rhythm is a rhythmically active motor pattern which 

underlies the rhythmic movement of the paired lateral teeth and unpaired medial 

tooth during chewing.  The teeth are located in the gastric mill stomach 

compartment.  Chewing in the gastric mill is a biphasic, rhythmic repeating 

movement consisting of alternating protraction and retraction of the lateral and 

medial teeth (Turrigiano and Heinzel, 1992; Heinzel et al., 1993). 

 The gastric mill circuit is located in the STG.  This circuit is a central 

pattern generator (CPG), meaning that the basic rhythmic motor pattern that it 

generates can be elicited in isolated, reduced preparations that include only the 

regions of the CNS that contain the relevant circuit elements (see below) (Marder 

and Bucher, 2001; Marder et al., 2005).  In the case of the gastric mill rhythm, the 

basic motor pattern can be readily elicited in the completely isolated STNS, and 

in the even more reduced preparation in which the CoGs are removed (Coleman 

and Nusbaum, 1994; Coleman et al., 1995).  The core CPG circuit that generates 

this rhythm is well-documented (Coleman and Nusbaum, 1994; Coleman et al., 

1995; Beenhakker et al., 2004; Saideman et al., 2007b).  Additionally, several 

identified sensory systems innervate the gastric mill circuit (Simmers and 

Moulins, 1988; Katz et al., 1989; Beenhakker et al., 2004).  I have therefore 

taken advantage of the unique toolset available in this system to (1) elucidate 

features of the gastric mill circuit which influence its ability to be regulated by 

sensory feedback, and (2) characterize the cellular mechanisms by which a  
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Figure 1. Schematic of the isolated STNS and the MCN1-elicited gastric mill 

rhythm. (A) In each CoG, there is a single copy of the projection neuron MCN1.  

MCN1 projects to the STG via the ion and stn nerves.  Each GPR arborizes in 

the STG and each CoG.  The paired diagonal bars through the sons and ions 

represent the transection of these nerves at the start of each experiment. Grey 

rectangles represent protractor muscles in which GPR dendrites arborize.  

Abbreviations: Ganglia: CoG, commissural ganglion; OG, oesophageal ganglion; 

STG, stomatogastric ganglion; Neurons: GPR, gastropyloric receptor; MCN1, 

modulatory commissural neuron 1; Nerves: dvn, dorsal ventricular nerve; gpn, 

gastropyloric n.; ion, inferior oesophageal n.; lvn, lateral ventricular n.; son, 

superior oesophageal n.; stn, stomatogastric n.  (B) Gastric mill neurons and 
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their synaptic connections. Gray circles represent follower motor neurons, while 

blue circles represent neurons in the CPG. For synapses, filled circles represent 

synaptic inhibition, while T-bars represent synaptic excitation. Jagged lines 

connecting two neurons represent electrical coupling, and the directional line 

connecting Int1 and VD represents a rectifying (uni-directional) gap junction. (C) 

Core gastric mill CPG schematic during each phase (protraction, retraction) of 

the gastric mill rhythm.  Paired diagonal bars through MCN1 axon represent 

additional distance between CoG and STG.  All synapses shown are located in 

the STG neuropil.  Gray somata and synapses represent silent 

neurons/synapses.  Synapses drawn on somata or axons actually occur on small 

branches in the STG neuropil.  Neurotransmitters listed in brackets next to MCN1 

are the identified MCN1 cotransmitters.  Note that MCN1 uses only CabTRP Ia to 

excite LG and only GABA to excite Int1. Symbols: Filled circles, synaptic 

inhibition; T-bars, synaptic excitation.  Abbreviations: Neurons: Int1, interneuron 

1; LG, lateral gastric.  (D) The gastric mill rhythm elicited by tonic MCN1 

stimulation.  Before MCN1 activation, there is no gastric mill rhythm but there is a 

pyloric rhythm.  At this time, Int1 is spontaneously active and exhibits a pyloric 

rhythm-timed pattern, while LG is silent.  During MCN1 stimulation, LG 

(protraction: PRO) and Int1 (retraction: RET) burst in alternation.  At the start of 

MCN1 stimulation, the retractor phase was initiated with a fast increase in Int1 

activity while LG slowly depolarized. When LG reached burst threshold, it 

inhibited Int1 (and MCN1) and protraction commenced. 
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particular proprioceptor (the gastro-pyloric receptor, GPR) regulates gastric mill 

circuit output. 

 It is important to note that, in contrast to the work in several larger motor 

systems, the behavioral correlates of the gastric mill rhythm are not as carefully 

studied (Fleischer, 1981; Heinzel, 1988; Turrigiano and Heinzel, 1992; Heinzel et 

al., 1993). Historically, as well as in my thesis work, the STNS has not been used 

to study the particular behaviors it generates.  Instead, similar to the way in which 

computational models are often used, this work seeks to understand the low-

level mechanisms by which neurons can interact to generate network output in a 

real biological circuit.  The ultimate goal is not to understand the gastric mill 

rhythm per se.  Instead, the goal is to obtain a generalizable understanding of the 

network dynamics that can underlie sensorimotor integration, in much the same 

way as this system has historically been used to generate insights about other 

aspects of motor network operation (Nusbaum and Beenhakker, 2002; Marder 

and Bucher, 2007).   

 

Central pattern generators 

Central pattern generators (CPGs) are neural circuits that generate the 

neuronal activity patterns underlying most or all rhythmic movements, such as 

respiration, locomotion and mastication.  The most essential feature common to 

all CPGs is that they generate rhythmic motor output in the absence of any 

rhythmic input (Marder and Calabrese, 1996; Marder and Bucher, 2001).  
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Therefore, all CPGs share the attribute that they can continue to generate their 

rhythmic output even when separated from the surrounding nervous system 

(Nusbaum and Beenhakker, 2002).  For this reason, CPGs provide a convenient 

experimental subject for understanding neuronal network dynamics at the cellular 

and synaptic level.  This convenience includes, in part, the fact that these circuits 

can be studied in an isolated preparation, dissected from the animal and pinned 

down in a Petri dish (Feldman and Gray, 2000; Marder and Bucher, 2001; 

Wenning et al., 2004; Kristan et al., 2005; Masino and Fetcho, 2005).  Beyond 

convenience, CPGs represent an interesting and compelling model for neuronal 

networks in general, since many of them are based at least partly on the same 

set of basic principles and organizational schemes (Marder and Bucher, 2001; 

Nusbaum and Beenhakker, 2002). 

The most basic requirement of any CPG is that it must produce a rhythmic 

output pattern consisting of multiple repeating network states, or phases.  There 

are two basic mechanisms by which such rhythmicity can arise within a CPG.  

First, rhythmicity can be inherent in a single neuron or neuronal population within 

the circuit.  Such neurons are called intrinsic or endogenous oscillators (Marder 

and Bucher, 2001).  In the simplest version of this organizational scheme, only 

one neuron (or homogeneous population) is responsible for the actual generation 

of rhythmicity, and the control over the timing of each phase originates from the 

presence of membrane properties in the intrinsic oscillator and its synaptic 

outputs to the other circuit neurons (Harris-Warrick, 2002; Ramirez et al., 2004; 
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Doi and Ramirez, 2008).  Alternatively, rhythmic CPG output can be produced by 

a so-called network oscillator, in which rhythmicity originates as an emergent 

property of synaptic interactions and intrinsic properties of the component 

neurons in the circuit, none of which are endogenous oscillators, rather than from 

the properties of any one neuron or class of neurons (Marder and Calabrese, 

1996; Marder and Bucher, 2001; Kristan et al., 2005; Kiehn, 2006; Pirtle and 

Satterlie, 2006; Marder and Bucher, 2007) .  

The gastric mill CPG, on which my thesis focuses, is an example of a 

network oscillator.  None of the gastric mill CPG neurons are intrinsically 

rhythmic.  Instead, the rhythmic, repeating alternation between the two gastric 

mill phases (protraction, retraction) originates from the synaptic interactions 

between CPG neurons.  In the crab C. borealis, the core CPG for the gastric mill 

rhythm is composed of three different neurons (Coleman et al., 1995; Bartos et 

al., 1999) (see below).  

Another basic feature of CPGs is their flexibility in response to modulation. 

Hormones, neurally released peptides and amines, as well as other substances 

can activate or modulate the synaptic and intrinsic membrane properties in CPG 

neurons, thereby modifying CPG output (Marder and Calabrese, 1996; 

Dickinson, 2006).  Such modulation can allow the generation of distinct versions 

of a motor pattern by the same CPG.  For example, in the mammalian respiratory 

system, substance P modulates the frequency and magnitude of rhythmic output 

by pacemaker neurons (Pena and Ramirez, 2004).  In the same system, varying 
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oxygen levels can lead to the generation of two distinct motor patters – normal 

breathing and gasping – by the same motor circuit, apparently by modulating a 

persistent sodium current (Feldman and Gray, 2000; Paton et al., 2006).  

Similarly, in Aplysia, application of dopamine to the isolated ganglia containing 

the feeding CPG produced synchrony in a pair of bilaterally symmetrical, 

normally asynchronous motor neurons (Serrano and Miller, 2006), demonstrating 

a potential role for modulation in facilitating the coordination of CPG output.  

Similarly, there are numerous examples of neuromodulation in the STNS 

(Marder and Calabrese, 1996; Nusbaum and Beenhakker, 2002; Dickinson, 

2006; Marder and Bucher, 2007).  In addition to several cases in which 

modulation allows a single CPG to produce multiple distinct outputs, the gastric 

mill CPG provides an example of the alternative role for neuromodulation of 

enabling similar motor patterns to be produced by distinct circuit mechanisms 

(Prinz et al., 2004; Saideman et al., 2007b).  Until recently, each of the identified 

methods for eliciting the gastric mill rhythm in the crab included activating 

modulatory commissural neuron 1 (MCN1), a projection neuron that innervates 

the gastric mill CPG (Coleman et al., 1995; Beenhakker et al., 2004; Blitz et al., 

2004; Blitz et al., 2008).  However, there is also a version of the gastric mill 

rhythm that is elicited by bath applying the neuropeptide Cancer borealis 

pyrokinin peptide (CabPK) (Saideman et al., 2007a; Saideman et al., 2007b).  

MCN1 does not contain CabPK, nor is its activity necessary for the CabPK-

activated gastric mill rhythm.  The CabPK-elicited gastric mill rhythm is very 
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similar to the MCN1-elicited rhythm, but it is generated by a distinct circuit 

(Saideman et al., 2007b).  Although the utility of generating the same rhythm via 

distinct mechanisms is unknown, one possibility is that the modified circuit 

dynamics which underlie the generation of this version of the gastric mill rhythm 

might allow it to be differently regulated by modulatory or sensory inputs.  This 

possibility, in fact, is addressed in a related context in Chapter 6 of this Thesis. 

 

Sensorimotor integration in CPGs 

As the ability to produce rhythmic motor output in isolation is an essential 

feature of CPGs, rhythmic motor circuits are commonly studied in isolated 

preparations to achieve an understanding of the cellular and synaptic 

mechanisms underlying rhythm generation (Feldman and Gray, 2000; Nusbaum 

and Beenhakker, 2002; Wenning et al., 2004; Kristan et al., 2005; Marder et al., 

2005; Masino and Fetcho, 2005; Grillner, 2006; Marder and Bucher, 2007; Doi 

and Ramirez, 2008).  Indeed, in the STNS and other systems, this approach has 

yielded an abundance of cellular-level insights in the basic operation of CPGs, as 

well as the mechanisms by which their activity is modulated (see above).  One 

drawback of this approach, however, is that studying CPGs in isolation explicitly 

removes sensory feedback.  As a result, although sensory feedback is essential 

for shaping and coordinating CPG output (Buschges and El Manira, 1998; 

Pearson, 2004; Buschges, 2005; Rossignol et al., 2006), information regarding 

the cellular and synaptic mechanisms by which sensory feedback regulates CPG 
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output has lagged relative to our understanding the mechanisms underlying the 

basic generation of rhythmic motor activity.   

Although a cellular-level understanding of how sensory systems influence 

CPGs is often unavailable, some insight has been gained into the functional roles 

of sensory input from studying CPGs in vivo or in semi-intact preparations.  One 

such role is the initiation of motor pattern generation.  In this scenario, a sensory 

input provides a mechanism for activating a CPG and thereby eliciting an 

appropriate behavior in response to some environmental stimulus.  One well-

known example of this role of sensory input is the escape swimming system in 

fish and leech, where auditory or mechanosensory neurons can elicit the escape 

swimming motor pattern (Korn and Faber, 2005; Kristan et al., 2005; Douglass et 

al., 2008).  Similarly, in the gastric mill system, activation of a class of 

mechanoreceptors in the stomach wall, presumably in response to pressure 

exerted by food in the stomach, triggers the gastric mill rhythm to generate 

chewing behavior in the gastric mill stomach compartment (Beenhakker et al., 

2004).  

A key role for sensory feedback is to regulate the speed, timing and 

transition between phases of a motor pattern in response to feedback from the 

periphery.  In this scenario, sensory systems such as proprioceptors enable 

modification of rhythmic motor output by a CPG in response to the position of 

muscles and/or limbs.  For example, the locomotor CPG for the hindlimbs of 

spinal-transected or decerebrate cats can still adapt the speed of walking in 
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response to changing treadmill speed.  This regulation of the locomotor CPG 

appears to rely on proprioceptors which sense hip flexion, as well as tendon 

organs which report ankle position (Pearson, 2004).  

Sensory feedback can also facilitate the coordination between multiple 

CPG components, such as those controlling multiple body segments, or multiple 

segments of a jointed limb.  For example, in the stick insect, which has a multi-

jointed leg, individual CPGs control the rhythmic movement of each leg joint and 

can be active independently. Coordinated movement of the joints to produce 

walking is accomplished by sensory feedback to each individual CPG from 

muscle stretch organs as well as load sensors in the cuticle (Buschges, 2005).  

Similarly, in the leech, coordinated rhythmic movements of multiple body 

segments during swimming are facilitated by proprioceptor feedback (Yu et al., 

1999; Kristan et al., 2005).  

 Sensory feedback thus has diverse roles in regulating CPG output.   

Although several of these roles are well understood at the level of functional 

output and behavior, a number of technical and experimental limitations have 

prevented the elucidation of the low-level mechanisms underlying the integration 

of sensory input in many systems.  I have therefore used the gastric mill CPG, a 

small motor system with a number of distinct experimental advantages (see 

below) to examine this issue at the cellular level.  

 

The gastric mill CPG 
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 The gastric mill rhythm is a two-phase motor pattern which underlies the 

protraction and retraction of the teeth in the gastric mill stomach compartment.  

My thesis work has focused on studying this rhythm in an isolated preparation in 

which the STNS is dissected from the animal, including the muscles it innervates 

and the rest of the CNS, and pinned down in a Petri dish superfused with 

physiological saline (Marder and Bucher, 2007).  All the neurons in the gastric 

mill circuit of C. borealis are physiologically identified, including those in the CPG 

and all follower motor neurons.  This includes identification of the transmitters 

used by each neuron, their synaptic interactions and many of their intrinsic 

membrane properties.  There are also several identified projection neurons and 

sensory systems which influence the gastric mill circuit. 

The gastric mill system has several experimental advantages as a model 

system for understanding comparable events in the larger and less accessible 

vertebrate CPGs.  For example, unlike most vertebrate CPGs which are 

composed of interneurons that drive motor neurons, all but one of the neurons in 

the gastric mill circuit are also motor neurons (Nusbaum and Beenhakker, 2002), 

simplifying the understanding of the circuit.  In addition, all the gastric mill CPG 

neurons, as well as most follower motor neurons, occur as single copies.  Thus, 

manipulating the activity of any specific circuit element is sufficient for 

understanding its role in motor pattern generation.  Even those that exist as 

multiple copies occur as small populations (2-4).  The entire gastric mill circuit 

consists of only ~15 neurons in total.   
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Another experimental advantage of this system is the fact that all CPG 

neurons are located within a single ganglion, which contains only 26 neurons in 

total (Kilman and Marder, 1996).  In contrast, the vertebrate locomotor CPG 

consists of neurons which occur in large copy numbers, are distributed 

throughout the spinal cord and brainstem, and are interspersed with a large 

number of neurons that are not involved in locomotion (Kiehn, 2006).  As a result, 

simultaneous intracellular recording and manipulation of multiple CPG neurons in 

the gastric mill CPG is routine, whereas it is often technically challenging or not 

feasible in other systems. 

As a result of the above experimental advantages, considerable 

information is available regarding the neurons, synapses and intrinsic membrane 

properties underlying gastric mill rhythm generation (Fig. 1B) (Coleman et al., 

1995; Marder et al., 1998; Nadim et al., 1998; Bartos et al., 1999; Beenhakker et 

al., 2005; DeLong et al., 2009). Multiple pathways and mechanisms for eliciting 

different versions of the gastric mill rhythm in this isolated preparation have been 

identified (Coleman et al., 1995; Beenhakker et al., 2004; Blitz et al., 2004; 

Saideman et al., 2007b; Blitz et al., 2008), but in my work the rhythm was always 

elicited by the tonic activation of modulatory commissural neuron 1 (MCN1) in 

preparations that excluded the CoGs.  

The CPG for the MCN1-elicited version of the gastric mill rhythm consists 

of the reciprocally inhibitory lateral gastric (LG) protractor neuron and interneuron 

1 (Int1), which is active during retraction, plus the STG axon terminals of MCN1 
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(MCN1STG) (Coleman et al., 1995) (Fig. 1C).  In the absence of MCN1 activity, 

Int1 is active and LG is silent (Fig. 1D).  During the gastric mill rhythm, MCN1 is 

tonically active and excites Int1 via a fast, ionotropic GABAergic synapse and 

excites LG via a slow, peptidergic (CabTRP Ia) synapse (Coleman et al., 1995; 

Wood and Nusbaum, 2002; Stein et al., 2007).  During the gastric mill retractor 

phase (LG silent, Int1 active), MCN1 releases its cotransmitters to excite LG and 

Int1.  Its slow excitation of LG enables LG to slowly overcome Int1 inhibition and 

fire a burst (Coleman et al., 1995; Beenhakker et al., 2005; Stein et al., 2007).  

During the protractor phase (LG active, Int1 silent), LG directly inhibits Int1 and 

its presynaptic inhibition of MCN1STG weakens CabTRP Ia release from MCN1, 

causing the excitation of LG to decay until the LG burst terminates and the next 

retractor phase commences (Coleman et al., 1995; Beenhakker et al., 2005; 

DeLong et al., 2009). 

The STNS also contains several identified sensory systems which 

influence the gastric mill neurons (Simmers and Moulins, 1988; Katz et al., 1989; 

Beenhakker et al., 2004).  Among these is the anterior gastric receptor (AGR), a 

muscle tendon receptor which influences gastric mill output via its actions in the 

CoGs, a pair of ganglia in the STNS which contain projection neurons that 

innervate the STG and drive gastric mill output.  As mentioned above, a 

population of mechanoreceptors known as the ventral cardiac neurons (VCNs) 

are also identified.  VCN activation triggers the gastric mill rhythm by activating 

two projection neurons (MCN1, CPN2) in the CoGs, presumably in response to 



  15 

the presence of food in the stomach.  

My thesis focuses largely on the gastropyloric receptor (GPR) neuron, a 

muscle stretch receptor that innervates a gastric mill protractor muscle which is 

stretched during the gastric mill retractor phase (Katz et al., 1989) (Fig. 2).  GPR 

therefore is likely to be rhythmically active during the gastric mill rhythm in vivo, 

providing proprioceptor feedback to the gastric mill CPG.  Much of my thesis 

work focuses on the consequences of this feedback, as well as the mechanisms 

by which it is integrated into gastric mill output. 

 As a result of the extensive knowledge available regarding the cellular and 

synaptic mechanisms underlying generation of the MCN1-elicited gastric mill 

rhythm, this system offers a unique experimental toolset not available in most 

other systems. For example, previous experimental insights were used to 

construct computational models which simulate various aspects of CPG 

dynamics (Marder et al., 1998; Manor et al., 1999; Beenhakker et al., 2005; 

Kintos et al., 2008).  These models provided new insights into how this system 

operations, making predictions that were subsequently confirmed in the biological 

systems (Bartos et al., 1999; Beenhakker et al., 2005).   

 Building on these models, I have created models which include sensory 

input to the gastric mill circuit.  Furthermore, I have tested the predictions of 

these models using the dynamic clamp, a technique originally developed in the 

STNS (Sharp et al., 1993).  Using this technique, simulated versions of synaptic 

or intrinsic conductances that have produced a particular result in a model can be 
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injected into real biological neurons. Using this powerful combination of modeling 

and the dynamic clamp has yielded invaluable insight into the operation of the 

gastric mill system (Nadim et al., 1998; Bartos et al., 1999; Beenhakker et al., 

2005). 

 

Sensorimotor integration in a small motor circuit 

 Given the importance of sensory feedback in CPG systems, as well as the 

generally limited knowledge regarding the specific cellular and synaptic 

mechanisms which mediate sensorimotor integration in such systems, the 

primary goal of my thesis work has been to take advantage of the toolset 

available in the gastric mill CPG to expand on what is already known about 

sensorimotor integration into rhythmic motor output.  The majority of my thesis 

work has focused on the mechanism by which GPR regulates the gastric mill 

rhythm.  However, two of my thesis chapters do not directly relate to GPR, but 

instead elucidate features of the gastric mill circuit which influence its ability to be 

regulated by GPR, as well as other sensory inputs.  For example, Chapter 2 

examines the nature of the cotransmitter mechanisms used by MCN1 to activate 

and maintain the gastric mill rhythm.  The divergent nature of this cotransmission 

turns out to be pivotal to the mechanism by which GPR regulates gastric mill 

output (Chapter 4). Similarly, Chapter 5 illustrates a novel mechanism by which a 

peptide hormone modulates the gastric mill rhythm, while Chapter 6 investigates 

how this same hormone-mediated mechanism modulates GPR input to the  
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Figure 2: The gastropyloric receptor (GPR) is a muscle stretch receptor neuron 

which regulates the gastric mill rhythm.  (A) GPR is activated during the gastric 

mill retractor phase by stretch of the protractor muscle in which its dendrites are 

embedded.  The protractor muscle  does not contract during the retractor phase.  

Instead, this muscle is stretched during retraction due to the contraction of the 

retractor muscle which shares an attachment point (ossicle) with the protractor 

muscle.  This muscle stretch activates GPR spiking (Katz et al., 1989).  (B) As 

shown in this thesis, GPR regulates the MCN1-elicited gastric mill rhythm by 

selectively inhibiting peptidergic transmission from MCN1 in the STG, via 
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serotonergic presynaptic inhibition.  The GPR synapses onto on LG and Int1 are 

shown in gray because their actions are gated out during this gastric mill rhythm, 

as also shown in this thesis.  Transmitters in brackets next to the GPR soma are 

the identified GPR cotransmitters.  Symbols: Filled circles, synaptic inhibition; T-

bars, synaptic excitation.  (C) GPR activation during retraction (to mimic its in 

vivo activity) selectively prolongs the gastric mill retractor phase.  Note that the 

duration of the retractor (LG silent, Int1 active) phase during GPR stimulation is 

longer than the same phase in the cycles immediately before or after GPR 

stimulation. 
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gastric mill CPG. 

Cotransmission is a common feature of many neural circuits (Nusbaum et 

al., 2001; Seal and Edwards, 2006).  Cotransmitter mechanisms may be 

convergent, with co-released transmitters converging onto the same neuron, or 

divergent, with different cotransmitters acting on different target neurons, often 

under different circumstances (Jan and Jan, 1982; Blitz and Nusbaum, 1999; 

Christie et al., 2004; Dugue et al., 2005; Nishimaru et al., 2005; Lu et al., 2008; 

Maher and Westbrook, 2008).  In Chapter 2, we demonstrate that MCN1 uses 

divergent cotransmission for its actions on the gastric mill CPG.  MCN1 contains 

three cotransmitters, including GABA, and the peptide transmitters proctolin and 

CabTRP Ia (Blitz et al., 1999).  However, as indicated above, MCN1 uses only 

GABA and CabTRP Ia to activate the gastric mill CPG.  All of the non-CPG 

neurons in the gastric mill circuit are also excited by MCN1, and in each case this 

excitation is mediated by proctolin and/or CabTRP Ia (Chapter 2: Stein et al., 

2007).  Therefore, MCN1 uses divergent cotransmitter actions to activate the 

gastric mill CPG, a fact which turns out to be pivotal for the GPR regulation of 

this gastric mill rhythm (see Chapter 4).  

GPR is a muscle stretch receptor which is active during the gastric mill 

retractor phase (Katz et al., 1989) (Fig. 2A).  In Chapter 3, we demonstrate that 

activation of GPR during the retractor phase selectively prolongs this phase, and 

that this GPR action appears to be mediated by GPR presynaptic inhibition of 

MCN1STG.  Although GPR also influences both LG and Int1, these actions are not 



  20 

effective during the MCN1-gastric mill rhythm (Chapters 3 and 4).  Thus, we 

concluded in Chapter 3 that the likely mechanism by which GPR selectively 

prolongs the gastric mill retractor phase is via its presynaptic inhibition of 

MCN1STG and the resulting reduction of MCN1 excitation of its synaptic targets in 

the gastric mill CPG.  

In Chapter 4, we continue to investigate the mechanism of the GPR action 

on the gastric mill CPG by extending previous studies of GPR cotransmission.  

Specifically, although GPR contains three cotransmitters (5-HT, ACh, allatostatin 

– AST), we show that GPR exclusively uses 5-HT to regulate the gastric mill 

CPG.  Furthermore, in support of the modeling results in Chapter 3, we 

document that the site of this 5-HT action is exclusively on MCN1STG.  We also 

demonstrate that the GPR inhibition of MCN1STG selectively reduces the 

peptidergic actions of MCN1, sparing its GABAergic excitation of Int1.  Finally, 

we use our computational model and the dynamic clamp to demonstrate that this 

selective reduction in peptide transmission is pivotal to the actions of GPR on the 

gastric mill rhythm.  Thus, the use of divergent cotransmission by MCN1 

(Chapter 2) to activate the gastric mill rhythm provides a critical access point by 

which the gastric mill CPG is regulated by sensory input. 

 

Hormonal modulation of sensorimotor integration 

As described above, neuromodulation provides a key mechanism by 

which CPG output is adjusted by external stimuli (Nusbaum and Beenhakker, 
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2002; Dickinson, 2006).  In Chapter 5, we examine a specific and novel 

mechanism by which the peptide hormone crustacean cardioactive peptide 

(CCAP) modulates the gastric mill rhythm.  It was previously shown that CCAP 

selectively and only modestly (~20%) prolongs the protractor phase of the 

MCN1-elicited gastric mill rhythm (Kirby and Nusbaum, 2007).  As a prelude for 

studying the impact of the presence of CCAP on GPR regulation of the gastric 

mill rhythm, in this Chapter we examined the mechanism underlying that CCAP 

action.  

MCN1 activates the gastric mill rhythm primarily via CabTRP Ia-mediated 

excitation of LG, which enables LG to overcome inhibition from Int1 and fire a 

burst (Fig. 1).  During each LG burst, LG presynaptic inhibition of MCN1 causes 

this CabTRP Ia-activated conductance to decay until the burst terminates 

(Coleman et al., 1995; Beenhakker et al., 2005).  In Chapter 5 we demonstrate 

that CCAP activates the same modulator-activated inward conductance (GMI) as 

MCN1-released CabTRP Ia.  Using our computational model, we show that 

although the activated conductances are the same, the CCAP-activated 

component (GMI-CCAP) is not subject to presynaptic inhibition-mediated decay 

during the protractor (LG-burst) phase, because it is independent of MCN1.  The 

non-decaying nature of the GMI-CCAP during the LG burst is what prolongs LG 

activity and thus mediates the observed albeit modest prolonging of the 

protractor phase. 

Finally, in Chapter 6 we show that, using a similar mechanism as the one 
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described above, CCAP gates the actions of GPR on the gastric mill rhythm.  As 

shown in Chapters 3 and 4, GPR regulates the gastric mill retractor phase by its 

inhibition of MCN1STG, weakening MCN1 excitation of LG.  As described above, 

CCAP provides a parallel mechanism for activating the CabTRP Ia-activated GMI-

MCN1, namely GMI-CCAP, in LG.  As a result, a portion of the activated GMI is not 

under the control MCN1, and thus cannot be reduced by GPR presynaptic 

inhibition.  Thus, GPR is less effective at prolonging the retractor phase in the 

presence of CCAP.   

Thus, in Chapter 6 we illustrate a novel mechanism for the gating of a 

sensory input.  Specifically, although CCAP reduces the effectiveness of GPR, it 

does so without direct actions on GPR or on the synaptic target (MCN1) by which 

GPR regulates this rhythm.  Furthermore, the actions of CCAP on the gastric mill 

rhythm itself are modest.  Therefore, even when a neurmodulator has only a 

modest influence on CPG output, it can reconfigure network dynamics in such a 

way as to alter its response to external inputs. 

 Due to the depth of understanding of the mechanism by which the gastric 

mill CPG operates, I have had access to a unique toolset for studying both the 

gastric mill circuit and the mechanisms by which it is regulated by sensory and 

hormonal input.  The wealth of information regarding the identity of the neurons 

and synapses which comprise the CPG has allowed me to construct informative 

computational models of the circuit.  These models in turn have suggested 

experiments in the biological preparation, often using the dynamic clamp 
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technique.  As a result, I have been able to gain insights at the level of individual 

neurons, synapses and membrane properties about how a sensory input can 

regulate motor output.  

Past studies of the gastric mill CPG, along with other small system CPGs, 

have uncovered general principles that have proved common to many or all 

CPGs including those in vertebrates (Marder and Calabrese, 1996; Marder and 

Bucher, 2001; Nusbaum and Beenhakker, 2002).  Similarly, I believe that my 

insights into mechanisms of sensorimotor integration may have a larger, more 

general application to CPGs in many systems.  The gastric mill circuit is 

organized as a pair of reciprocally-inhibitory neurons (half-center oscillator) 

driven by external excitation from a projection neuron.  This organizational 

scheme is common to many CPGs (Marder and Calabrese, 1996; Marder and 

Bucher, 2001; Kristan et al., 2005; Kiehn, 2006; Pirtle and Satterlie, 2006).  It 

therefore stands to reason that insights gained about the general dynamics 

underlying the operation of such a circuit, as well as its regulation by external 

influences such as sensory inputs, are likely to be generally applicable to many 

different systems which share a similar organization.  

One of the main advantages of the gastric mill CPG as model system is its 

accessibility to experimentation, owing largely to the small number of neurons of 

which it is composed.  However, although every neuron and synapse in the 

circuit has been identified and characterized, a full understanding of the 

dynamics by which the circuit operates has not been achieved, particularly in the 
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presence of external inputs such as sensory feedback.  This illustrates the point 

that even in a seemingly simple system composed of a small number of neurons, 

surprising complexity arises from the dynamic interaction between circuit 

neurons, their intrinsic and synaptic conductances, and external influences such 

as sensory inputs.  This realization is humbling, particularly with regard to the 

pursuit of an understanding of the even more complex, vertebrate systems.  

However, it is likely this very dynamic complexity that endows even small neural 

circuits with the ability to generate critical and flexible behaviors will contribute to 

the comparable events in the larger, less accessible vertebrate systems.  
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ABSTRACT 

Cotransmission is a common means of neuronal communication, but its 

consequences for neuronal signaling within a defined neuronal circuit remain 

unknown in most systems. We are addressing this issue in the crab 

stomatogastric nervous system by characterizing how the identified modulatory 

projection neuron MCN1 uses its cotransmitters to activate the gastric mill 

(chewing) rhythm in the stomatogastric ganglion (STG). MCN1 contains GABA 

plus the peptides proctolin and CabTRP Ia, which it coreleases during the 

retractor phase of the gastric mill rhythm to influence both retractor and protractor 

neurons. By focally applying each MCN1 cotransmitter, and pharmacologically 

manipulating each cotransmitter action during MCN1 stimulation, we found that 

MCN1 has divergent cotransmitter actions on the gastric mill central pattern 

generator (CPG), which includes the neurons LG and Int1 plus the STG terminals 

of MCN1 (MCN1STG). MCN1 used only CabTRP Ia to influence LG, while it used 

only GABA to influence Int1 and the contralateral MCN1STG. These MCN1 actions 

caused a slow excitation of LG, a fast excitation of Int1 and a fast inhibition of 

MCN1STG. MCN1-released proctolin had no direct influence on the gastric mill 

CPG, although it likely indirectly regulates this CPG via its influence on the 

pyloric rhythm. MCN1 appeared to have no ionotropic actions on the gastric mill 

follower motor neurons, but it did use proctolin and/or CabTRP Ia to excite them. 

Thus, a modulatory projection neuron can elicit rhythmic motor activity by using 

distinct cotransmitters, with different time courses of action, to simultaneously 

influence different CPG neurons.  
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INTRODUCTION 

 Cotransmission is prevalent throughout all nervous systems (Nusbaum et 

al., 2001; Burnstock, 2004; Seal & Edwards, 2006). Convergence of ionotropic 

and/or metabotropic cotransmitter actions onto single target neurons has been 

documented in several systems (Jan & Jan, 1982; Jonas et al., 1998; Vilim et al., 

2000; Koh et al., 2003; Li et al., 2004; Dugue et al., 2005; Koh & Weiss, 2005; 

Nishimaru et al., 2005). A few divergent cotransmitter actions are also 

established, where different cotransmitters influence separate target neurons 

(Blitz & Nusbaum, 1999; Thirumalai & Marder, 2002; Sun et al., 2003). There 

remains, however, limited information available regarding the consequences of 

cotransmission in the regulation of neuronal circuit activity. 

 We are studying cotransmitter function within the stomatogastric nervous 

system (STNS) of Cancer crabs (Nusbaum & Beenhakker, 2002; Marder & 

Bucher, 2007). The STNS is an extension of the crab central nervous system that 

contains four interconnected ganglia, including the paired commissural ganglia 

(CoGs) and the unpaired oesophageal and stomatogastric (STG) ganglia. The 

STG contains the gastric mill (chewing) and pyloric (filtering of chewed food) 

central pattern generating (CPG) circuits. These circuits are modulated by 

projection neurons located primarily in the CoGs (Nusbaum et al., 2001). Several 

of these projection neurons, including modulatory commissural neuron 1 (MCN1), 

are identified (Beenhakker & Nusbaum, 2004). 

 MCN1 contains three cotransmitters, including GABA and the 
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neuropeptides proctolin and CabTRP Ia (Blitz et al., 1999). Selective activation of 

MCN1 elicits the gastric mill rhythm (GMR) and modulates the pyloric rhythm 

(Coleman & Nusbaum, 1994; Bartos & Nusbaum, 1997). The CabTRP Ia actions 

are necessary for MCN1 activation of the gastric mill rhythm, while both CabTRP 

Ia and proctolin contribute to MCN1 modulation of the pyloric rhythm (Wood et 

al., 2000; Wood & Nusbaum, 2002). 

 Here we determined how the set of cotransmitters used by MCN1 

influences each gastric mill circuit neuron. We found that both divergence and 

convergence of MCN1 cotransmission contribute to its actions on this circuit. 

Divergence is key to MCN1 activation of the gastric mill CPG, while its actions on 

most gastric mill follower neurons result from convergent cotransmitter actions. 

The gastric mill CPG includes the reciprocally inhibitory lateral gastric (LG) 

neuron and interneuron 1 (Int1), plus the STG terminals of MCN1 (MCN1STG) 

(Coleman et al., 1995). We showed previously that MCN1 elicits a slow excitation 

of LG, exclusively via CabTRP Ia (Wood et al., 2000). Here we show that MCN1 

uses only GABA to influence Int1 and the contralateral MCN1STG. Its GABAergic 

actions are fast excitation of Int1, but inhibition of the contralateral MCN1STG. 

MCN1 appears to have only an indirect proctolinergic influence on the gastric mill 

CPG, by using proctolin (and CabTRP Ia) to excite the pyloric rhythm (Wood & 

Nusbaum, 2002). The pyloric rhythm regulates the speed of the gastric mill 

rhythm (Bartos et al., 1999). Several of the gastric mill follower motor neurons 

are excited by both MCN1-released peptides. 

 Some of this work has been published in abstract form (Stein et al., 2001). 
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MATERIALS & METHODS 

Animals/preparation. Male crabs, Cancer borealis (Jonah crabs), were obtained 

from Commercial Lobster & Seafood Co. (Boston, MA, USA) and the Marine 

Biological Laboratory (Woods Hole, MA, USA). Brown crabs (Cancer pagurus) 

were purchased from Feinfisch GmbH (Neu-Ulm, Germany). The connectivity 

and the properties of the neurons in the STNS of C. pagurus and are similar to 

those in C. borealis (Heinzel et al., 1993, Stein et al., 2005). Crabs were housed 

in commercial tanks containing chilled, filtered and recirculated artificial seawater 

(10°C). Before dissection, each crab was anesthetized by packing in ice for at 

least 30 minutes. The foregut was removed and then transferred to a dissection 

dish containing saline (10-12°C) to enable dissection of the STNS from the 

foregut. The isolated STNS (Fig. 1A) was then transferred and pinned down in a 

silicone elastomer (Sylgard 184, KR Anderson, Santa Clara, CA, USA)-lined Petri 

dish filled with saline (10-12°C). All experiments were performed on preparations 

in which the CoGs were first removed, via transection of the superior- and inferior 

(ions) oesophageal nerves (Fig. 1A).  

 

Solutions. During dissection and experimentation, the STNS was supplied with C. 

borealis saline (mM): 440 NaCl, 26 MgCl2, 13 CaCl2, 11 KCl, 10 Trizma base and 

5 maleic acid (pH 7.4-7.6). In some experiments, transmitter release was 

suppressed by superfusing the preparation with saline containing 10-fold reduced 
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Ca2+ levels, substituted on an equimolar basis with Mn2+ (“low Ca2+ saline”) (Blitz 

& Nusbaum, 1999). This saline contained (in mM): 440 NaCl, 26 MgCl2, 1.3 

CaCl2, 11.7 MnCl2, 11 KCl, 10 Trizma base and 5 maleic acid (pH 7.4-7.6). 

During the experiment, the STNS was continuously superfused with chilled (10-

11o C) saline (7-12 ml/min). 

 The tachykinin receptor antagonist spantide I was synthesized at the 

Cancer Research Center, University of Pennsylvania School of Medicine 

(Philadelphia, PA, USA) or obtained from Peninsula Laboratories (Belmont, CA) 

and Sigma Chemical Company (St. Louis, MO, USA). Spantide solutions were 

made by dissolving spantide I into C. borealis physiological saline. The peptidase 

inhibitors actinonin and phosphoramidon as well as the GABA/glutamate 

antagonist picrotoxin (PTX) were obtained from Sigma. Solutions of any one of 

these peptidase inhibitors were made by diluting frozen aliquots of stock solution 

into C. borealis saline. PTX saline was made fresh for each experiment. PTX 

applications were continued for at least 30 min before the first MCN1 stimulation. 

The effects of PTX (10-5 M) on the STG, when superfused for more than 15-20 

minutes, persist for several hours after the start of washout with normal saline. 

Therefore, in most experiments we did not obtain post-PTX recordings.  Each 

application of actinonin or phosphoramidon was continued for at least 10-15 min 

before MCN1 stimulation was begun. Preparations were washed by superfusing 

normal saline for at least 40-60 min before post-application control experiments 

were performed. 
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Transmitter applications. Transmitter applications were done either via focal 

pressure application onto the desheathed STG neuropil, using a Picospritzer II 

(General Valve Co., Fairfield, NJ, USA), or via superfusion. For focal 

applications, a blunt-tipped micropipette (tip resistance ~1MΩ) filled with CabTRP 

Ia (10-4 M), proctolin (10-3 M, 10-4 M) or GABA (10-2 M) was positioned over the 

STG neuropil only for the duration of an application. These pipettes were 

otherwise maintained at a distance from the STG, on the superfusion outflow 

side of the ganglion, to prevent the influence of any leak from the pipette.  

 

Electrophysiology. STNS neurons were identified by their activity patterns, 

synaptic interactions with other identified neurons and extracellularly recorded 

axonal branching patterns, using intracellular and extracellular recording and 

stimulating methods that are standard for this system (Beenhakker & Nusbaum, 

2004). Briefly, extracellular recordings from connecting and peripheral nerves 

were obtained by electrically isolating individual sections of these nerves from the 

bath with a petroleum jelly (Vaseline: Lab Safety Supply, Janesville, WI, USA)-

based cylindrical compartment. To record action potentials propagating through a 

nerve, one of a pair of stainless steel electrode wires was placed within the 

isolated nerve compartment, with the second wire of the pair being placed in the 

bath as a reference electrode. The differential signal was recorded, filtered and 
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amplified, first through an amplifier from AM Systems (Model 1700, Carlsborg, 

WA, USA) and then through an amplifier from Brownlee Precision (Model 410, 

Santa Clara, CA, USA). Extracellular nerve stimulation was achieved by placing 

the two extracellular wires into a stimulus isolation unit (Astromed/Grass 

Instruments, Model SIU5, West Warwick, RI, USA) controlled by a stimulator 

(Astromed/Grass Instruments, Model S88).  

 Intracellular recordings of STNS somata were obtained with sharp glass 

microelectrodes (15-30 MΩ) filled with either 4 M potassium acetate plus 20 mM 

potassium chloride (KCl) or 0.6 M K2SO4 plus 20 mM KCl. To preserve 

neurotransmitter release from the STG terminals of projection neurons during 

intra-axonal recordings, we used an intracellular electrode solution of 1 M KCl 

(Coleman et al., 1995). All intracellular signals were amplified and filtered with 

Axoclamp 2B amplifiers (Molecular Devices, Sunnyvale, CA, USA), then further 

amplified with Brownlee Model 410 amplifiers. Intracellular current injections 

were performed in discontinuous current clamp  mode with sampling rates of 2-3 

KHz.  

 Selective stimulation of the projection neuron MCN1 was performed by 

extracellular stimulation of one or both of the transected ion nerves. This 

selective stimulation was possible because there are only two CoG projection 

neurons that innervate the STG via the ion, including MCN1 and modulatory 

commissural neuron 5 (MCN5), and MCN1 has the lower stimulus threshold 

(Coleman et al., 1992; Coleman & Nusbaum, 1994; Norris et al., 1996; Bartos & 
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Nusbaum, 1997). 

 

Data Acquisition and Analysis. Data were acquired in parallel onto a chart 

recorder (MT-95000 or Everest Model, Astromed Corp., West Warwick, RI, USA), 

and by digitizing (~5 KHz) and storing the data on computer with data acquisition 

hardware/software (Spike2, Cambridge Electronic Design, Cambridge, England). 

Digitized data were analyzed with a homemade Spike2 program (‘The Crab 

Analyzer’, freely available at http://cuniculina.biologie.uni-

ulm.de/wstein/spike2/The_Crab_Analyzer.s2s). Briefly, the burst duration of a 

neuron was defined as the elapsed time (sec) between the first and last action 

potential in an impulse burst. From each experiment we determined the average 

burst duration of ten consecutive bursts of action potentials. We also determined 

the mean intraburst firing frequency of individual gastric mill neurons to 

characterize their responses to applied transmitters. The intraburst firing 

frequency was calculated by dividing the number of action potentials minus one 

by the burst duration. In the presented plots of firing frequency, each successive 

data point (time increments were determined by sampling at 5 kHz) represents 

the mean firing frequency for the preceding time bin (bin width: 0.5s or 1s). 

Gastric mill cycle period was defined by the duration (sec) between the onsets of 

2 successive impulse bursts in the LG neuron.  

 In some experiments, we depolarized each gastric mill neuron with 
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rhythmic current injections to ensure that they were sufficiently depolarized to 

exhibit a response, because peptidergic actions in the STG are voltage-

dependent (Swensen & Marder, 2000). To determine the influence of a peptidase 

inhibitor (i.e., phosphoramidon or actinonin) on the actions of MCN1, we 

compared the response of the recorded neuron at a fixed duration (90 sec) after 

the termination of MCN1 stimulation during normal saline or peptidase inhibitor 

superfusion.  Phosphoramidon and actinonin prolong the actions of CabTRP Ia 

and proctolin, respectively (Coleman et al., 1994; Wood et al., 2000). 

The data are presented as mean ± SD. Statistical analyses (Student’s 

unpaired t-test, paired-samples t-test) were performed with SigmaStat 3.0 

(SPSS, Chicago, IL, USA), Excel (Microsoft, Seattle, WA, USA) or Plotit 

(Scientific Programming Enterprises, Haslet, MI, USA). Figures were made from 

Spike2 files incorporated in the Adobe Photoshop (Adobe, San Jose, CA, USA) 

and CorelDraw (Corel Corporation, Ottawa, Canada) graphics programs. 
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RESULTS 

The MCN1-Elicited Gastric Mill Rhythm 

 Previous work identified the reciprocally inhibitory LG neuron and Int1, 

plus the STG terminals of MCN1 (MCN1STG), as pivotal CPG neurons for the 

MCN1-elicited gastric mill rhythm (Fig. 1B) (Coleman et al., 1995; Bartos et al., 

1999). Despite the fact that MCN1 is stimulated tonically to elicit the gastric mill 

rhythm, its STG terminals (MCN1STG) release their cotransmitters rhythmically 

during the gastric mill rhythm, due to the inhibitory input to MCN1STG from the LG 

neuron (Fig. 1B) (Coleman & Nusbaum, 1994, Coleman et al., 1995). This MCN1 

cotransmitter release pattern and its necessity for gastric mill rhythm generation 

supports the inclusion of MCN1 as a gastric mill CPG neuron, in addition to its 

role as an integrator of sensory inputs and activator of this rhythm (Coleman & 

Nusbaum, 1994; Beenhakker & Nusbaum, 2004; Blitz et al., 2004).  

 Three of the four protractor phase neurons and three of the four retractor 

phase neurons participate reliably in the MCN1-elicited gastric mill rhythm. This 

includes the protractor neurons LG, medial gastric (MG) and inferior cardiac (IC) 

and the retractor neurons Int1, dorsal gastric (DG) and ventricular dilator (VD) 

(Fig. 1C). In contrast, the gastric mill (GM) protractor neurons (n>50) and the 

anterior median (AM) retractor neuron (n>25) are at best weakly and 

intermittently active in this version of the gastric mill rhythm (see below). These 

two neurons do, however, participate reliably in other versions of this rhythm  
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Figure 1.  Selective stimulation of the projection neuron MCN1 elicits the gastric 

mill rhythm (GMR) in the isolated stomatogastric nervous system. (A) Schematic 

illustration of the stomatogastric nervous system including its ganglia and 

connecting and peripheral nerves. Note that there is a single MCN1 in each of 

the paired commissural ganglia (CoGs). MCN1 projects through the inferior 

oesophageal (ion; illustrated for the left ion) and stomatogastric nerves (stn) to 

innervate the stomatogastric ganglion (STG). In these experiments, both CoGs 

were cut away (illustrated for the right CoG) and MCN1 was stimulated via ion 

stimulation (see Methods). In the STG, focal pressure applications were made 

onto the desheathed STG neuropil. The STG somata form a single cell layer 

around the perimeter of the neuropil. The acronyms of identified STG neurons 

listed in parentheses next to each nerve acronym indicate the neurons whose 
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axons project through each of these nerves and therefore can be recorded 

extracellularly from them. (B) Summary schematic of the MCN1 actions on the 

gastric mill central pattern generator (CPG). The MCN1 cotransmitter 

identification is from Blitz et al. (1999). The MCN1 synaptic actions, including the 

presence of monosynaptic fast, unitary EPSPs in Int1 and a slow depolarization 

in LG, are from Coleman et al. (1995) and Bartos & Nusbaum (1997). Synapse 

symbols: t-bar, transmitter-mediated excitation; filled circle, transmitter-mediated 

inhibition; resistor, electrical coupling. Note that all of these synapses occur 

within the STG neuropil, and that there are no synapses onto the somata of the 

STG neurons. (C) Selective stimulation of MCN1 (see Methods) elicits the gastric 

mill rhythm. Action potential bursts in the protractor phase neurons LG, MG and 

IC alternate with bursts in the retractor phase neurons Int1, DG and VD. Note 

that MCN1 stimulation also increased the pyloric (PD) cycle frequency (Bartos 

and Nusbaum, 1997). Before MCN1 stimulation, there was an ongoing pyloric 

rhythm (PD, IC) and no gastric mill rhythm. 
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(Beenhakker & Nusbaum, 2004; Blitz et al., 2004). All but one of the gastric mill 

circuit neurons occurs as a single copy in each STG. The GM protractor neuron 

occurs instead as 4 apparently equivalent copies. 

 Commonly, in the isolated STG, the only gastric mill neurons that are 

spontaneously active in the absence of MCN1 activity are Int1 and IC (Fig. 1C). 

As is evident in Figure 1C from the timing of Int1 and IC activity relative to that of 

the pyloric dilator (PD) neuron, their rhythmic activity, as well as that of the MG 

and VD neurons, is time-locked with the pyloric rhythm as well as the gastric mill 

rhythm (see also Blitz & Nusbaum, 1997). 

 

MCN1 Excites All Gastric Mill Follower Motor Neurons 

 MCN1 activates the gastric mill CPG via its fast excitation of Int1 and slow 

excitation of LG (Coleman et al., 1995) (Fig. 1B). We also showed previously that 

MCN1 excites the gastro/pyloric neurons IC and VD (Bartos & Nusbaum, 1997). 

Herein we document that there are associated excitatory actions of MCN1 on all 

other gastric mill motor neurons.  

 Protractor Neurons: During the MCN1-elicited gastric mill rhythm, MG 

neuron activity was either initiated or enhanced (pre-MCN1: 1.8 ± 2.6 Hz; during 

MCN1: 12.7 ± 4.4 Hz, n=7, p<0.01). At these times the MG activity pattern was 

pyloric-timed during the protractor (LG active) phase and either weaker or 

suppressed during the retractor (Int1 active) phase (n=6) (Fig. 1C). The 
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increased MG neuron activity during this rhythm appeared to be at least partly a 

consequence of direct MCN1 excitation because it persisted after the LG neuron 

(to which it is electrically coupled) was hyperpolarized (n=6) (not shown).  

 The activity of the protractor neuron GM was consistently, albeit weakly 

enhanced during the MCN1-elicited gastric mill rhythm (n=15/18). GM firing 

frequency increased, from 1.1 ± 1.0 Hz before MCN1 stimulation to 3.2 ± 1.9 Hz 

during stimulation (n=15, p<0.01). In 3 of these 18 recordings, only a 

subthreshold depolarization was evident. In 2 of these latter 3 recordings, 

depolarizing GM via a constant amplitude current injection to a level that was 

near or just above spike threshold (~-55 mV) enabled it to be activated during the 

subsequent MCN1-GMR. As is the case for the MG neuron, the GM neurons are 

electrically coupled to LG. Nevertheless, the MCN1 excitation of GM persisted 

when LG was hyperpolarized to hold it below spike threshold during MCN1 

stimulation (n=6) (Fig. 2A).  

 Retractor Neurons: MCN1 stimulation either activated the AM neuron or 

enhanced its activity (n=9/11) (Fig. 2B). AM neuron firing frequency increased 

modestly but consistently, from 1.3 ± 1.4 Hz (pre-MCN1) to 4.6 ± 3.3 Hz: (during 

MCN1) (n=9, p<0.05). The AM neuron was also activated effectively when the 

LG neuron was hyperpolarized, preventing activation of the gastric mill rhythm 

(n=3) (Fig. 2B). Surprisingly, during the MCN1-elicited gastric mill rhythm the AM 

neuron activity was strongest during the protractor phase (Fig. 2B). In contrast, 

during other versions of the gastric mill rhythm the AM neuron is exclusively a  
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Figure 2.  MCN1 stimulation excites the gastric mill neurons GM, AM and DG. 

(A) (Left) When the GM neuron is suprathreshold before MCN1 stimulation, its 

activity increases and exhibits protractor phase bursts (LG activity) that alternate 

with retractor phase bursts (DG neuron) during the ensuing gastric mill rhythm. 

(Right) When the LG neuron is held hyperpolarized by current injection (not 

shown), MCN1 stimulation does not elicit the gastric mill rhythm but it still excites 

the GM and DG neurons. The tonically active unit in the dgn is the anterior 

gastric receptor (AGR), a muscle tendon organ receptor that has no synaptic 

actions in the STG (Combes et al., 1995). Most hyperpolarized Vm: (Left) GM, -62 

mV; (Right) GM, -56 mV.  (B) (Left) MCN1 stimulation activates the AM neuron, 

which fires protractor phase bursts as well as pyloric-timed action potentials 

during the retractor phase. (Right) With LG neuron activity (and the gastric mill 

rhythm) suppressed by hyperpolarizing current, MCN1 stimulation still excited the 
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AM neuron. Panels A and B are from separate preparations. Most hyperpolarized 

Vm: (Left) AM, -63 mV; LG, -73 mV; (Right) AM, -60 mV; LG, -79 mV.
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retractor phase neuron (Beenhakker & Nusbaum, 2004).  

 The DG neuron is also effectively activated by MCN1 stimulation, whether 

or not a gastric mill rhythm is generated (Coleman & Nusbaum, 1994). When the 

LG neuron was hyperpolarized to prevent activation of the gastric mill rhythm, 

MCN1 stimulation elicited either tonic firing from DG (Fig. 2A, right panel, at the 

start of MCN1 stimulation) or rhythmic bursting that was independent of all other 

STG neurons (Fig. 2A, right panel, towards the end of MCN1 stimulation; see 

also Coleman & Nusbaum, 1994). 

 

MCN1 Cotransmitter Actions on Gastric Mill CPG Neurons 

Effects on the LG neuron. MCN1 is the only source of CabTRP Ia in the STG 

(Christie et al., 1997; Blitz et al., 1999). It directly excites the LG neuron via a 

slow, CabTRP Ia-mediated excitation plus electrical EPSPs (eEPSPs) (Coleman 

et al., 1995; Wood et al., 2000). MCN1-released proctolin does not appear to 

contribute to the LG response (Wood et al., 2000).  

 It remained possible that LG was proctolin-sensitive but in a voltage-

dependent manner. We therefore tested whether focally applied proctolin (pipette 

concentration: 10-3 M or 10-4 M) influenced the LG neuron when it was maintained 

at a depolarized level that was just above spike threshold. At these holding 

potentials, however, the LG neuron firing rate remained unaffected by proctolin 

application (pre-proct.: 1.9 ± 1.9 Hz; during proct.: 2.0 ± 1.9 Hz; n=7, p>0.2). In 
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contrast, as reported previously (Wood et al., 2000), LG activity consistently 

increased in response to CabTRP Ia applications (pre-CabTRP Ia: 0.5 ± 0.9 Hz; 

during CabTRP Ia: 4.0 ± 4.3 Hz; n=21, p<0.01).  

 Neuropeptide release sometimes requires a baseline firing frequency, 

while small molecule transmitters are effectively released even by single action 

potentials (Cazalis et al., 1985; Whim & Lloyd, 1989; Vilim et al., 2000). Because 

CabTRP Ia was the only MCN1-released cotransmitter that influenced the LG 

neuron, we assayed whether there was a CabTRP Ia-mediated depolarization of 

LG at MCN1 firing frequencies that were below the MCN1 threshold for activating 

the gastric mill rhythm. This threshold is generally higher than 5 Hz, and often 

closer to 10 Hz. Stimulating MCN1 at firing rates as low as 2 Hz consistently 

elicited a slow, subthreshold depolarization of the LG neuron that slowly decayed 

after MCN1 stimulation was terminated (n=6).  

 Although MCN1 affected the LG neuron only via CabTRP Ia, LG also 

exhibited a relatively fast onset and short-lasting hyperpolarizing response to 

GABA application (Fig. 3A) (Swensen et al., 2000). This response persisted in 

low Ca2+-saline (n=6), indicating that GABA is likely to directly inhibit this gastric 

mill CPG neuron (Fig. 3B). Consistent with our spantide results, we found no 

evidence that GABA released from MCN1 affected LG. For example, we never 

recorded unitary, transmitter-mediated PSPs in LG that corresponded to MCN1 

spike activity (n>50 animals). Additionally, in experiments where we 

hyperpolarized Int1 and stimulated MCN1, the LG neuron response was  
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Figure 3.  Focally applied GABA hyperpolarizes the LG neuron. (A) During 

normal saline superfusion, focal pressure application of GABA onto the 

desheathed STG neuropil reversibly hyperpolarized the LG neuron. Note that 

GABA also altered the activity of the extracellularly recorded pyloric neurons LP, 

PY and PD (Swensen et al., 2000). (B) GABA application directly hyperpolarizes 

the LG neuron. Focally applied GABA hyperpolarized the LG neuron when 

transmitter release was suppressed by low Ca2+ saline superfusion. Note that the 

GABA solution was also made with low Ca2+ saline. Most hyperpolarized Vm: (A) 

LG, -68 mV; (B) LG, -72 mV. 
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consistently depolarizing and excitatory (n=25). We also tested whether the 

latency to activation of the LG neuron by MCN1 stimulation would be reduced in 

the presence of picrotoxin (PTX: 10-5 M), which suppresses some GABA actions 

in this system (Blitz & Nusbaum, 1999; Swensen et al., 2000). An altered latency 

would support the presence of an underlying GABAergic action of MCN1 on the 

LG neuron. However, the delay between the start of the MCN1 stimulation and 

the first LG spike was not significantly different in saline and PTX (saline: 5.03 ± 

1.8 s; PTX: 5.45 ± 1.0 s, n=8, p>0.2). 

 We also used the eEPSP as a measure of the LG neuron input resistance 

within its neuropilar branches to assess whether there might be a slowly 

developing GABAergic inhibitory action of MCN1. In these experiments, we again 

suppressed the actions of CabTRP Ia with spantide I (5 X 10-5 M) and compared 

the amplitude of the first MCN1-elicited ePSP with those occurring 1 s and 2 s 

after the start of tonic MCN1 stimulation. We anticipated that the presence of a 

GABA conductance would likely shunt these EPSPs, decreasing their amplitude. 

Such a shunt in the eEPSP did occur when we focally-applied GABA (pre-

application: 4.3 ± 2.3mV; GABA: 2.6 ± 1.7mV; n=7; P<0.05), but not in its 

absence (1st EPSP: 8.0 ± 3.0 mV; EPSP after 1s: 7.8 ± 2.9 mV; EPSP after 2s: 

8.1 ± 3.1 mV; n=12, p>0.2). These experiments were performed in low Ca2+ 

saline, to selectively assess the direct actions of GABA on LG. Thus, the LG 

neuron GABA receptors are likely relevant only to GABAergic synapses from one 

or more other GABA-containing neurons.  
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Effects on Int1.  MCN1 excitation of Int1 appeared to be at least partly ionotropic, 

because individual MCN1 action potentials elicit constant latency, short-lasting 

EPSPs in Int1 that are reversibly eliminated when transmitter release is 

suppressed (Coleman et al., 1995). During MCN1 stimulation, Int1 firing 

frequency consistently increased (pre-MCN1: 3.3 ± 3.5 Hz; during-MCN1: 13.6 ± 

5.1 Hz; n=24, p<0.01) (Fig. 4A). In contrast, the Int1 firing frequency was 

unchanged by proctolin application (pre-proct.: 5.2 ± 2.6 Hz; during proct.: 5.2 ± 

2.5 Hz; n=18, p>0.2), despite the ability of these proctolin applications to excite 

other STG neurons, such as the lateral pyloric (LP) neuron (Fig. 4B).  

 We observed variable Int1 responses to CabTRP Ia application. In 13 

preparations we observed a small but consistent increase of Int1 firing frequency 

(saline: 5.8 ± 2.7 Hz; CabTRP Ia: 7.5 ± 2.6; n=13, p<0.01). In 19 other 

preparations, despite having the same control level of activity, there was no Int1 

response to CabTRP Ia application (saline: 5.2 ± 3.0 Hz; CabTRP Ia: 5.1 ± 3.0 

Hz; n=19, p>0.2) (Fig. 4C). In these latter experiments, CabTRP Ia still effectively 

excited other STG neurons, such as LP (Fig. 4C). 

 We confirmed that, as shown qualitatively in previous work (Swensen et 

al., 2000), Int1 was strongly excited by focally-applied GABA (n=14/14) (Fig. 4D). 

This response included a considerable increase in Int1 firing frequency (saline: 

5.2 ± 3.8 Hz; GABA: 23.6 ± 8.2 Hz; n=18, p<0.01). This GABA-mediated  
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Figure 4.  GABA is the only MCN1 cotransmitter to influence Int1. (A) Relatively 

brief MCN1 stimulation increases Int1 activity. Note that MCN1 stimulation also 

strengthened the ongoing pyloric rhythm (lvn). Most hyperpolarized Vm: Int1, -46 
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mV. (B) Focally applied proctolin did not alter Int1 activity, despite its strong 

excitatory action on the pyloric rhythm (lvn). Int1 was rhythmically depolarized 

and hyperpolarized by constant amplitude current injections (top trace: +1 nA, -

0.5 nA) while its firing frequency (f.f.) was tracked continuously (third trace). Most 

hyperpolarized Vm: Int1, -68 mV. (C) Focally applied CabTRP Ia did not alter Int1 

activity, despite its strong excitatory action on the pyloric rhythm (lvn). Most 

hyperpolarized Vm: Int1, -69 mV. (D) Focally applied GABA reversibly excited Int1 

and increased its firing frequency, after which Int1 exhibited a long-term 

reduction in activity. In panels B-D, dotted lines indicate the maximum firing 

frequency before transmitter application. Most hyperpolarized Vm: Int1, -56 mV.  
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Figure 5.  MCN1 elicits a direct, PTX-sensitive GABAergic excitation of Int 1. (A) 

Focally applied GABA reversibly excites Int1 in both normal saline and with 

transmitter release suppressed by low Ca2+ saline. Most hyperpolarized Vm: 

Saline, -47 mV; Low Ca2+ Saline, -56 mV. (B) GABA excitation of Int1 is PTX-

sensitive. GABA excitation of Int1 during normal saline superfusion is eliminated 

during PTX superfusion, unmasking an underlying hyperpolarization. Most 

hyperpolarized Vm: Saline, -49 mV; PTX, -50 mV. (C) MCN1 stimulation during 

PTX superfusion did not increase Int1 activity. Note that the pyloric rhythm (pdn) 

was still excited by MCN1 stimulation in PTX. Most hyperpolarized Vm: -53 mV.
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excitation of Int1 was apparently direct because it persisted when transmitter 

release was suppressed by low-Ca2+ saline (n=4) (Fig. 5A). Although Int1 was 

not spontaneously active in low-Ca2+ saline, GABA application in this condition 

again evoked a relatively high Int1 firing rate (20.0 ± 8.2 Hz; n=4). 

 PTX (10-5 M) application suppressed the GABA excitation of Int1 and 

unmasked an underlying hyperpolarizing response in Int1 (n=6) (Fig. 5B). 

Consistent with the presence of a direct GABAergic excitation of Int1 by MCN1, 

PTX either suppressed (n=3/8) or reduced (n=5/8) MCN1 excitation of Int1 

(saline: pre-MCN1, 3.3 ± 3.4 Hz; during MCN1, 13.5 ± 5.1 Hz, n=24, p<0.01; 

PTX: pre-MCN1, 2.4 ± 1.5 Hz; during MCN1, 4.5 ± 2.8 Hz; n=8, p<0.05) (Fig. 

5C).  

 To determine whether Int1 was also affected by MCN1-released CabTRP 

Ia, we additionally recorded the Int1 response to MCN1 stimulation in the 

presence of spantide I (5 X 10-5 M). Under this condition, the Int1 response to 

MCN1 stimulation was unchanged relative to saline controls (saline: 14.9 ± 5.5 

Hz; spantide: 14.2 ± 4.1 Hz, n=5, p>0.2). It therefore seems likely that the 

modest increase in Int1 activity during some CabTRP Ia applications was an 

indirect consequence of the peptide actions on other STG neurons. 

 

Effects on MCN1STG. The STG terminals of MCN1 (MCN1STG) are considered 

part of the gastric mill central pattern generator, due to the fact that it must 
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release its cotransmitters in a gastric mill-timed pattern for this rhythm to be 

generated (Coleman et al., 1995). We therefore assessed the influence of the 

MCN1 cotransmitters on its own axon terminals in the STG, by recording intra-

axonally from the contralateral MCN1STG near the entrance to the STG neuropil 

(Coleman & Nusbaum, 1994; Beenhakker et al., 2005). Neither proctolin (n=7) 

nor CabTRP Ia (n=7) application influenced MCN1STG, despite their ability to 

excite other STG neurons during those applications. This lack of influence on 

MCN1STG also occurred when depolarizing current was injected into MCN1STG to 

activate its STG spike initiation zone (Fig. 6A,B) (Coleman & Nusbaum, 1994; 

Beenhakker et al., 2005). Neither peptide altered the MCN1STG firing rate in 

response to depolarizing current injection (saline: 4.6 ± 0.5 Hz; CabTRP Ia: 4.6 ± 

0.5 Hz; n=3, p>0.2; saline: 5.0 ± 0.8; proct.: 4.3 ± 1.0; n=3, p>0.2). In contrast, 

GABA application consistently hyperpolarized MCN1STG (n=7, Fig. 6C1).  

 It was possible that the MCN1 response to GABA application was an 

indirect consequence of GABA inhibition of LG, because MCN1STG is electrically 

coupled to LG (Coleman et al., 1995). However, GABA application still 

hyperpolarized MCN1STG at times when LG was sufficiently hyperpolarized by 

current injection that it exhibited a reversed, depolarizing response to GABA 

application (n=5) (Fig. 6C2). Similarly, MCN1 stimulation consistently 

hyperpolarized the contralateral MCN1STG (n=5) (Fig. 7A). As was the case for 

direct GABA applications (Fig. 6C2), the hyperpolarizing response of the 

contralateral MCN1STG persisted when the LG neuron was maintained at a  
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Figure 6.  GABA is the only MCN1 cotransmitter to influence to STG terminals of 

MCN1 (MCN1STG). Intra-axonal recording of MCN1 (MCN1stn) near the entrance 

to the STG revealed no influence of either (A) proctolin or (B) CabTRP Ia on 
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MCN1STG, despite their ability to influence the pyloric rhythm (lvn). Most 

hyperpolarized Vm: proctolin application, -53 mV; CabTRP Ia application, -53 mV. 

(C) Focal GABA application reversibly hyperpolarized MCN1STG and suppressed 

its rhythmic activation, independent of GABA inhibition of LG. Most 

hyperpolarized Vm: MCN1, -68 mV; LG, -84 mV. (C1) MCN1 and LG both 

hyperpolarized in response to GABA application. (C2) When the LG neuron was 

held, by constant amplitude current injection, at a membrane potential that was 

more hyperpolarized than the reversal potential for its GABA response, GABA 

application depolarized LG but still hyperpolarized MCN1. Most hyperpolarized 

Vm: MCN1, -67 mV; LG, -99 mV. In all panels, MCN1 was rhythmically activated 

by constant amplitude depolarizing current (top trace, +1 nA).  
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Figure 7.  MCN1 stimulation hyperpolarizes the contralateral MCN1STG. (A) At 

the start of MCN1Right stimulation, there was a hyperpolarization of both 

MCN1STG-Left and LG. The hyperpolarization in LG resulted from inhibitory input 

from Int1. Most hyperpolarized Vm: MCN1, -64 mV; LG, -77 mV. (B) With LG held 

close to the reversal potential for the Int1-mediated inhibition by constant 

amplitude hyperpolarizing current (-5 nA), MCN1Right stimulation did not 

hyperpolarize LG but MCN1STG-Left still hyperpolarized. Most hyperpolarized Vm: 

MCN1, -65 mV. 
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hyperpolarized membrane potential such that it did not hyperpolarize in response 

to MCN1 stimulation (n=3) (Fig. 7B). 

 

Applied MCN1 Cotransmitter Actions on Gastric Mill Follower Neurons 

 Previous studies showed that proctolin and CabTRP Ia activate the same 

voltage-dependent current in all of their pyloric neuron targets, and that these two 

peptides have convergent actions on many of these targets (Swensen & Marder, 

2000, 2001). However, the response of most gastric mill neurons to application of 

these peptides has not been determined. We therefore examined the response of 

all gastric mill follower motor neurons to focal application of proctolin and 

CabTRP Ia (see below). This included the MG and GM protractor motor neurons 

and the DG and AM retractor motor neurons. No gastric mill neurons responded 

to focal peptide applications onto their somata whereas, as reported below, 

neuropil applications consistently elicited responses to these peptides. Although 

there are no previous studies focused on the influence of proctolin and CabTRP 

Ia on these gastric mill neurons, the response of all gastric mill neurons to GABA 

application has been documented (Swensen et al., 2000). All of the gastric mill 

neurons except for Int1 respond to GABA application with a net hyperpolarizing 

response. As indicated above, Int1 is excited by GABA application.  

 As was the case during MCN1 stimulation (Fig. 2A), the protractor neuron 

GM was consistently excited by pressure application of proctolin, as long as it 
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was close to or above spike threshold (saline: 1.3 ± 1.2 Hz; proct.: 3.7 ± 1.9 Hz, 

n=23, p<0.01). GM also exhibited a consistent excitatory response to CabTRP Ia 

application (saline: 1.0 ± 1.0 Hz; CabTRP Ia: 2.9 ±1.6 Hz, n=25, p<0.01). In 

contrast, as shown previously (Swensen et al., 2000), GABA application 

hyperpolarized GM in 8/9 preparations. Each of these cotransmitter actions on 

GM persisted in low Ca2+ saline (proctolin, n=5; CabTRP Ia, n=6; GABA, n=8). 

 Unlike the GM neuron, the protractor neuron MG was responsive to 

CabTRP Ia and GABA but not to proctolin application (n=11) (Fig. 8). We tested 

the MG response to proctolin at both its resting potential (~-60 mV) and at 

membrane potentials well above spike threshold, either with constant amplitude 

or rhythmic depolarizing current injections. The latter approach was used to 

ensure that MG was sufficiently depolarized to exhibit a response, in case its 

responsiveness was only present at depolarized potentials (Swensen & Marder, 

2000). In these latter experiments, proctolin application did not alter the MG firing 

frequency (saline: 2.9 ± 2.5 Hz; proct.: 2.9 ± 2.4 Hz; n=6, p>0.2). As is evident in 

Figure 8A, these proctolin applications effectively influenced the pyloric rhythm. 

The MG response to CabTRP Ia was considerably stronger than that of the GM 

neuron, and it also responded vigorously even when it was subthreshold before 

CabTRP Ia application (saline: 1.2 ± 2.5 Hz; CabTRP: 14.3 ± 6.2 Hz; n=12, 

p<0.01) (Fig. 8B). We also reaffirmed that MG exhibited a hyperpolarizing 

response to GABA (n=6) (Fig. 8C) (Swensen et al., 2000). The MG response to 

GABA persisted in low Ca2+ saline (n=3).  
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Figure 8.  Focally applied CabTRP Ia and GABA, but not proctolin, influence the 

MG neuron. (A) Proctolin application did not alter MG neuron activity, despite its 

ability to influence the pyloric rhythm (lvn). MG was rhythmically depolarized and 

hyperpolarized by constant amplitude current (top trace: +1 nA; -1 nA) and its 

firing frequency was monitored continuously (second trace). Dotted line indicates 

the maximum firing frequency before proctolin application. Most hyperpolarized 

Vm: -80 mV. (B) CabTRP Ia application reversibly excited the MG neuron, 

eliciting a prolonged action potential burst. Most hyperpolarized Vm: -70 mV. (C) 

GABA application reversibly hyperpolarized MG. Most hyperpolarized Vm: -70 

mV. Panels B and C are from the same preparation. 
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 Because MG and LG are electrically coupled, it was possible that there 

was only a direct excitatory action of CabTRP Ia on one of these two neurons, 

which in turn activated the other neuron. To test this possibility, we maintained 

one or the other of these neurons at a hyperpolarized membrane potential (via 

intracellular current injection) while applying CabTRP Ia. At these times, the 

hyperpolarized neuron either exhibited a small amplitude, subthreshold 

depolarization or no response while the other neuron exhibited its usual strong 

bursting response (n=10). An example of this result during hyperpolarization of 

the MG neuron is shown in Figure 9. 

 As occurred during MCN1 stimulation (Fig. 2B), focal application of either 

proctolin or CabTRP Ia excited the retractor neuron AM (n=4 each) (Fig. 10A,B). 

During proctolin application, the AM firing frequency nearly doubled (saline: 3.3 ± 

3.2 Hz; proct.: 6.1 ± 3.5 Hz; n=4, p<0.05). Similarly, it increased during CabTRP 

Ia application (saline: 2.2 ± 3.1 Hz; CabTRP Ia: 4.3 ± 3.3 Hz; n=5, p<0.05). Both 

of these responses persisted in low Ca2+ saline (proctolin, n=2; CabTRP Ia, n=3). 

As shown previously (Swensen et al., 2000), GABA application consistently 

hyperpolarized this neuron (n=3) (Fig. 10C). 

  The retractor neuron DG was modestly but consistently excited by 

proctolin application (saline: 3.5 ± 3.2 Hz; proct.: 4.3 ± 2.7 Hz; n=14, p<0.01). DG 

was also excited by CabTRP Ia application, albeit only when it was close to or 

above spike threshold (saline: 4.2 ± 4.3 Hz; CabTRP: 6.0 ± 4.1 Hz; n=12, 

p<0.05). As was the case with the other gastric mill follower neurons, GABA  
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Figure 9.  Focally applied CabTRP Ia activates the LG neuron independent of 

MG neuron activity. (A) CabTRP Ia application elicited action potential bursts in 

the LG and MG neurons, as well as exciting the pyloric rhythm (lvn). Most 

hyperpolarized Vm: LG, -55 mV; MG, -72 mV. (B) CabTRP Ia continued to excite 

the LG neuron, and the pyloric rhythm, when MG activity was suppressed by 

constant amplitude hyperpolarizing current. Most hyperpolarized Vm: LG, -55 mV; 

MG, -98 mV. Note that MG was sufficiently hyperpolarized that the normal 

pyloric-timed hyperpolarizations in this neuron became rhythmic depolarizations.  
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Figure 10.  Focal application of each MCN1 cotransmitter influenced the AM 

neuron.  Both (A) proctolin and (B) CabTRP Ia application increased AM neuron 

activity in response to constant amplitude depolarizing current pulses. Note the 

increase in firing frequency after each application (second trace). Dotted lines 

indicate the maximum firing frequency before transmitter application. (C) GABA 

application reversibly reduced AM activity. In all panels, AM was rhythmically 

activated by constant amplitude depolarizing current (top trace: +2nA). Most 

hyperpolarized Vm: (A) -67 mV; (B) -67 mV; (C) -68 mV. 
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application hyperpolarized DG (n=7) (Swensen et al., 2000). 

 

MCN1-Released Cotransmitter Actions on Gastric Mill Follower Neurons  

 To determine the set of MCN1-released cotransmitters that influenced the 

gastric mill follower motor neurons, we stimulated MCN1 in the presence of 

agents that either suppressed or enhanced the actions of one of its 

cotransmitters. Specifically, we used the tachykinin receptor blocker spantide I (5 

X 10-5 M) to suppress the actions of CabTRP Ia (Wood et al., 2000; Wood & 

Nusbaum, 2002), the endopeptidase inhibitor phosphoramidon (10-5 M) to 

prolong the actions of CabTRP Ia (Wood et al., 2000), the aminopeptidase 

inhibitor actinonin (10-4 M) to prolong proctolin actions (Coleman et al., 1994; 

Wood & Nusbaum, 2002) and PTX to suppress a subset of GABA actions (Blitz & 

Nusbaum, 1999; Swensen et al., 2000). Previous work showed that 

phosphoramidon does not influence proctolin actions (Wood et al., 2000). 

Actinonin also appears to not affect CabTRP Ia actions (see below). No receptor 

antagonist for proctolin has been identified.  

 The only MCN1 action on the gastric mill neurons that was altered by the 

presence of PTX was the aforementioned MCN1 excitation of Int1 (Fig. 5). 

Additionally, none of the gastric mill follower motor neurons exhibited transmitter-

mediated PSPs in response to MCN1 stimulation (n>6 for each neuron), reducing 

the likelihood that MCN1 actions on these neurons was mediated by an 
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ionotropic GABAergic action. 

 We showed previously that, in the presence of spantide I, the retractor 

neuron DG response to MCN1 stimulation switched from rhythmic bursting to 

tonic firing (Wood et al., 2000). In our current experiments, we determined that 

the presence of spantide I also reduced the DG neuron firing frequency in 

response to MCN1 stimulation (saline, 13.3 ± 3.7 Hz; spantide I, 6.0 ± 2.0 Hz; 

n=7, p<0.01). In all 7 of these experiments, the DG neuron was not active before 

MCN1 was stimulated. We also assessed whether the remaining DG neuron 

response to MCN1 that persisted in the presence of spantide I was due to the 

action of proctolin. To this end, we determined whether this DG response was 

prolonged by the proctolin peptidase inhibitor actinonin. We found, however, that 

this was not the case (saline: 15.8 ± 13.5 sec; actinonin: 10.7 ± 6.2 sec; n=4, 

p>0.05). This lack of actinonin action on the DG response occurred despite the 

fact that actinonin consistently prolonged the MCN1 excitation of other gastric 

mill neurons (see below).  

 There was no evident GABAergic ionotropic or inhibitory metabotropic 

component to the DG response to MCN1 stimulation. First, as stated above, no 

unitary PSPs were recorded in DG during MCN1 stimulation (n>30). Second, DG 

never exhibited an initial hyperpolarizing response to these stimulations (n>30). 

Any such inhibitory action would be most evident during the first 5-10 sec of 

MCN1 stimulation because of the initially slow buildup of its peptidergic actions 

(Coleman et al., 1995; Wood et al., 2000). Third, there was not a depolarizing, 
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inhibitory GABAergic action on DG. We tested this possibility by stimulating 

MCN1 while holding DG at a depolarized membrane potential that was just 

suprathreshold (~-50 mV) and therefore was above the reversal potential for any 

possible inhibitory action. During this manipulation, there was no initial 

hyperpolarization (n=6). Fourth, there was no evident change in the DG response 

to MCN1 stimulation during PTX superfusion (saline: 13.9 ± 3.3 Hz; PTX: 12.0 ± 

4.0; n=14, p>0.05). Fifth, no PTX-sensitive DG response to MCN1 stimulation 

was revealed by coapplying spantide I and PTX (spantide I: 6.0 ± 2.0 Hz; 

spantide I/PTX: 5.7 ± 1.5; n=7, p>0.05).  

 MCN1 excitation of the retractor AM neuron appeared to result from both 

CabTRP Ia and proctolin release. We assessed the influence of each MCN1-

released peptide by determining whether MCN1 excitation of the AM neuron was 

prolonged when either CabTRP Ia or proctolin degradation was suppressed by 

the peptidase inhibitor phosphopramidon (Fig. 11) or actinonin (Fig. 12), 

respectively. During phosphoramidon superfusion, MCN1 excitation of AM was 

consistently prolonged after termination of MCN1 stimulation relative to saline 

superfusion (pre-phospho.: 25.2 ± 14.2 sec; phospho.: 227.4 ± 80.5 sec; post-

phospho.: 38.9 ± 33.8 sec; n=6; p<0.001, pre-phospho. vs. phospho.). The 

MCN1 excitation of AM also persisted for longer than control values in the 

presence of actinonin (pre-actinonin: 26.2 ± 11.9 sec; actinonin: 203.8 ± 77.7 

sec; post-actinonin: 52.5 ± 18.4 sec; n=5; p<0.005, pre-actinonin vs. actinonin).  

 Experiments with phosphoramidon and actinonin indicated that the  
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Figure 11.  The endopeptidase inhibitor phosphoramidon enhanced and 

prolonged the AM neuron response to MCN1 stimulation. Before MCN1 

stimulation under each condition, the AM neuron was subthreshold but exhibited 

pyloric-timed hyperpolarizations. During saline superfusion, MCN1 stimulation 

consistently activated the AM neuron. AM neuron activity subsided soon after the 

end of MCN1 stimulation.  Phosphoramidon (10-5 M) superfusion, which 

enhances the actions of CabTRP Ia but not those of either proctolin or GABA, 

reversibly strengthened and prolonged the AM response to MCN1 stimulation. 

Most hyperpolarized Vm: Saline, -60 mV; Phosphoramidon, -57 mV; Saline 

Wash, -60 mV. 
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Figure 12.  The aminopeptidase inhibitor actinonin prolonged the AM neuron 

response to MCN1 stimulation. Actinonin (10-4 M), which enhances proctolin 

actions but not those of CabTRP Ia or GABA, reversibly prolonged the AM 

neuron response to MCN1 stimulation. Most hyperpolarized Vm: Saline, -64 mV; 

Actinonin, -64 mV; Saline Wash, -57 mV.
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protractor neuron GM was also sensitive to both MCN1-released peptides. 

However, unlike the MCN1 influence on the AM neuron, the ability of these 

peptidase inhibitors to prolong the MCN1 excitation of GM was only evident at 

higher MCN1 stimulation frequencies. Specifically, when we used the same 

modest MCN1 stimulation protocol (5-10 Hz tonic stimulation) that we used for 

the AM experiments, the duration of the post-stimulus MCN1 excitation of GM 

was unaffected by either actinonin (pre-actinonin: 23.9 ± 24.4 sec; actinonin: 29.4 

± 27.0 sec; post-actinonin: 22.4 ± 20.4 sec; n=4; p>0.3, pre-actinonin vs. 

actinonin) or phosphoramidon (pre-phospho.: 17.2 ± 13.4 sec; phopho.: 38.0 ± 

37.1 sec; post-phospho.: 34.0 ± 30.2 sec; n=4; p>0.1, pre-phospho. vs. 

phospho.). This inability of these peptidase inhibitors to prolong MCN1 excitation 

of GM was not a consequence of there being a variable effectiveness of 

peptidase inhibitor action. For example, when we recorded simultaneously from 

GM and AM, there was the usual approximately 10-fold increase in duration of 

the AM response to MCN1 stimulation. In contrast, when we increased the MCN1 

stimulation frequency (30 Hz tonic stimulation), the duration of the post-stimulus 

MCN1 excitation of GM was prolonged by actinonin (pre-actinonin: 16.3 ± 16.6 

sec; actinonin: 74.2 ± 51.3 sec; post-actinonin: 14.3 ± 5.0 sec; n=5; p<0.05, pre-

actinonin vs. actinonin). At the increased MCN1 stimulation frequency, 

phosphoramidon also prolonged the duration of the GM response to MCN1 (pre-

phospho.: 14.8 ± 4.5 sec; phospho.: 32.7 ± 11.3 sec; post-phospho.: 8.0 ± 1.6 

sec; n=3; p<0.05, pre-phospho. vs. phospho.). We did not manipulate the 

influence of MCN1-released CabTRP Ia and proctolin on the protractor MG 
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neuron because our direct peptide application experiments indicated that MG 

only responded directly to CabTRP Ia application (Fig. 8). 
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Figure 13.  Most gastric mill neurons respond to application of more of the MCN1 

cotransmitters than to their release from MCN1. (A) All six of the studied gastric 

mill neurons respond to focal application of the MCN1 cotransmitters CabTRP Ia 

and GABA, while only three of these six neurons respond to proctolin application.  

MCN1STG only responds to GABA application. (B) Four of the six gastric mill 

neurons, plus MCN1STG, are each influenced by only one of the three MCN1-

released cotransmitters.  MCN1 uses only CabTRP Ia to excite the LG, MG and 

DG neurons, while it uses only GABA to excite Int1 and inhibit the contralateral 

MCN1STG.  The follower motor neurons AM and GM are each excited by both 

MCN1-released peptides. Labels: white sections, no response to the indicated 

transmitter; black, positive response to the indicated transmitter; gray, positive 

response when the neuron is supra-threshold. 
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DISCUSSION 

Divergent cotransmitter actions on gastric mill CPG neurons 

 Cotransmission is well-established in many species, but there is only 

limited information available regarding its consequences for neuronal circuit 

activity (Blitz & Nusbaum, 1999; Nusbaum et al., 2001; Thirumalai & Marder, 

2002; Sun et al., 2003). In this paper we have extended previous studies by 

determining the set of cotransmitters used by an identified projection neuron to 

drive rhythmic neuronal activity from a defined motor circuit (Fig. 13). Specifically, 

we have shown that the MCN1 projection neuron directly excites the reciprocally 

inhibitory CPG neurons LG and Int1 via distinct cotransmitters. MCN1 excitation 

of Int1 is exclusively GABAergic. The only transmitter-mediated action of MCN1 

on LG is a slow, CabTRP Ia-mediated excitation (Wood et al., 2000). MCN1 also 

selectively influenced the contralateral MCN1STG via GABAergic inhibition. In 

contrast, MCN1 used both of its peptide transmitters to excite several gastric mill 

follower motor neurons (Fig. 13B).  

 There was generally a good correspondence between the gastric mill 

neurons excited by focally applied CabTRP Ia and/or proctolin and those which 

responded to the MCN1 release of these peptides (Fig. 13). Among these 

neurons, only the DG neuron exhibited a response to applied peptide (proctolin) 

without a corresponding response to MCN1 stimulation. This unmatched DG 

response to proctolin may be caused by a spatial segregation of its proctolin 
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receptors, whose function may be to mediate the DG response to MCN7, a 

second proctolin-containing projection neuron that excites DG (Blitz et al., 1999). 

Whether the residual DG response to MCN1 stimulation during spantide I 

application resulted from the lack of a complete suppression of this CabTRP Ia 

action by spantide or from a PTX-insensitive, GABAergic excitation remains to be 

determined. It also remains possible that the aminopeptidase inhibitor actinonin 

enhances MCN1 excitation of the AM and GM neurons because it enables 

MCN1-released proctolin to extend its diffusion distance and bind with receptors 

that are normally inaccessible. These receptors might normally act to bind 

proctolin released from one or both of the other two proctolinergic neurons (MPN, 

MCN7) that innervate the STG (Blitz et al., 1999). However, neither MPN nor 

MCN7 appear to influence the GM neuron (Blitz and Nusbaum, 1997; Blitz et al., 

1999). It remains to be determined whether the AM neuron responds to either 

MPN or MCN7. The possibility of a similar scenario underlying the ability of the 

endopeptidase inhibitor phosphoramidon to enhance the excitation of AM and 

GM by MCN1-released CabTRP Ia is less likely, because MCN1 is the only 

source of neuronally released CabTRP Ia in the STG (Blitz et al., 1999). Further 

supporting the likelihood that these peptidase inhibitors were not in general 

extending the range of these peptides is that the action of neuronally released 

peptides is not limited to a synaptic cleft region (Karhunen et al., 2001).  Instead, 

they commonly diffuse considerable distances to reach their postsynaptic 

receptors (Jan & Jan, 1982; Burnstock, 2004).  
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 There was less of a correspondence between the gastric mill neuron 

responses to applied GABA and MCN1-released GABA (Fig. 13). For example, 

the LG neuron responded consistently to focal GABA application but there was 

no evidence for a GABAergic component to the MCN1 influence on this neuron 

(Wood et al., 2000; this paper). Similarly, GABA both excited and inhibited Int1, 

but MCN1 had only excitatory GABAergic actions on Int1. All of the gastric mill 

follower motor neurons were hyperpolarized by GABA application but none 

showed an inhibitory component in their response to MCN1 stimulation. 

Presumably, the GABA receptors on these neurons that were not relevant to the 

MCN1 actions mediate their responses to other GABAergic neurons (Swensen et 

al., 2000).  

 The third MCN1 cotransmitter, proctolin, had no direct influence on the 

gastric mill CPG. However, it is likely that MCN1 uses proctolin to indirectly 

influence the gastric mill rhythm because MCN1-released proctolin excites the 

pyloric rhythm and the pyloric rhythm regulates the speed of the gastric mill 

rhythm (Bartos et al., 1999; Wood & Nusbaum, 2002). 

 

Functional consequences of divergent cotransmitter actions 

 The fast GABAergic and slow peptidergic actions of MCN1 on LG and Int1 

are pivotal to enabling MCN1 to activate the gastric mill rhythm (Coleman et al., 

1995). Having distinct time courses to these two actions is important because 
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MCN1 cotransmitter release is largely restricted to the retractor phase of the 

gastric mill rhythm, when Int1 is active and LG is hyperpolarized (Coleman & 

Nusbaum, 1994; Coleman et al., 1995). The fast excitation of Int1 has an 

immediate impact on its firing rate. The slow excitation of the LG neuron during 

the retractor phase plays two roles (Coleman et al., 1995; Bartos et al., 1999; 

Beenhakker et al., 2005). First, it enables an extended retractor phase duration 

while eventually enabling LG to escape from Int1-mediated inhibition and initiate 

a burst of action potentials. Second, its slow decay enables the LG burst to 

persist for several seconds.  

 The function of the MCN1 inhibition of the contralateral MCN1STG remains 

to be determined. However, both MCN1s are activated by the same sensory 

inputs, suggesting that their mutual inhibition would occur under physiological 

conditions (Beenhakker et al., 2004; Blitz et al., 2004). At these times, however, 

these projection neurons effectively drive the gastric mill rhythm, so their mutual 

presynaptic inhibition may regulate but does not suppress their transmitter 

release. There is a comparable situation in the Aplysia feeding system involving 

a pair of histaminergic neurons that are reciprocally inhibitory but coactive during 

the feeding motor pattern (Evans et al., 1999).  

 It is not clear why MCN1 uses only CabTRP Ia to influence the LG neuron, 

given that it uses both peptide cotransmitters to excite many gastric mill follower 

neurons. This same convergence occurs on most pyloric circuit neurons 

(Swensen & Marder, 2000; Wood et al., 2000; Wood & Nusbaum, 2002). 
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Moreover, CabTRP Ia and proctolin converge to activate the same voltage-

dependent current in all of their pyloric targets (Swensen & Marder, 2000, 2001).  

 The use of only CabTRP Ia by MCN1 to excite the LG neuron may relate 

to other constraints on this system. For example, the modulatory proctolin neuron 

(MPN) and MCN1 share the cotransmitters GABA and proctolin (Nusbaum & 

Marder, 1989a; Blitz et al., 1999). These two projection neurons also both excite 

the pyloric rhythm, albeit evoking distinct versions of this rhythm (Blitz et al., 

1999; Wood & Nusbaum, 2002). In contrast, whereas MCN1 stimulation elicits 

the gastric mill rhythm, MPN stimulation suppresses it (Blitz & Nusbaum, 1997). 

This MPN suppression results largely from its GABAergic inhibition of projection 

neurons, including MCN1, in the CoGs (Blitz & Nusbaum, 1999). If the LG neuron 

were excited by proctolin release from MCN1, then MPN would likely have a 

comparable influence on LG and therefore would activate the gastric mill rhythm 

instead of suppressing it. This likelihood results from the facts that neuronally-

released peptides often diffuse relatively long distances (Jan & Jan, 1982; 

Burnstock, 2004; Seal & Edwards, 2006) and these two projection neurons share 

proctolinergic actions on many STG neurons (Nusbaum & Marder, 1989b; Blitz et 

al., 1999; Wood et al., 2000; Wood & Nusbaum, 2002).  

 Convergence of cotransmitter actions onto the same postsynaptic target is 

established in several systems (Jan & Jan, 1982; Jonas et al., 1998; Vilim et al., 

2000; Koh et al., 2003; Li et al., 2004; Burnstock, 2004; Koh & Weiss, 2005; 

Nishimaru et al. 2005). Divergence of cotransmission onto separate targets has 
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also been reported (Jan & Jan, 1982; Sun et al., 2003; Dugue et al., 2005; 

Samano et al. 2006). When convergence results from corelease that pairs an 

ionotropic and metabotropic action, the metabotropic action often causes an 

initial non-linear alteration of the ionotropic action, after which it persists as a 

prolonged change in the intrinsic properties of the target neuron (Fox & Lloyd, 

2001; Vilim et al., 2000; Koh et al., 2003; Koh & Weiss, 2005). At some synapses 

with convergent cotransmitter actions, there can also be a functional, firing 

frequency-dependent divergence when neuropeptide release requires a higher 

firing frequency than the coreleased small molecule transmitter (Whim & Lloyd, 

1989; Peng & Horn, 1991; Vilim et al., 2000). With respect to MCN1 actions on 

the gastric mill circuit, a firing frequency-dependent divergence of cotransmitter 

actions is not likely to occur because MCN1 excitation of LG persisted at firing 

frequencies (2 Hz) below those at which MCN1 initiates the gastric mill rhythm 

(>5 Hz). This is also the case for the cotransmitter motor neuron B16 in Aplysia 

(Vilim et al., 2000). 

 The stomatogastric system has been the focus of several previous 

cotransmission studies. One example of intraganglionic cotransmission involves 

modulation of the pyloric rhythm by the gastropyloric receptor (GPR) sensory 

neuron, which uses serotonin and acetylcholine to have convergent and 

divergent actions on different STG neurons (Katz & Harris-Warrick, 1989, 1990, 

1991; Kiehn & Harris-Warrick, 1992). The pyloric rhythm is also modulated by 

application of peptide cotransmitters, localized to the same projection neuron, 
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that excite separate pyloric motor neurons (Thirumalai & Marder, 2002).  

 There are also two examples of inter-ganglionic cotransmitter divergence 

in the stomatogastric system. First, the paired inferior ventricular nerve (IVN) 

projection neurons appear to use only histamine in the STG to influence the 

pyloric and gastric mill rhythms, despite the presence of a peptide cotransmitter 

(Christie et al., 2004). The peptide cotransmitter is suggested to mediate the IVN 

neuron activation of CoG projection neurons, including MCN1 (Christie et al., 

2004). Second, MPN elicits a proctolin-mediated pyloric rhythm in the STG while 

having only GABAergic actions on CoG projection neurons (Nusbaum & Marder, 

1989a,b; Blitz & Nusbaum, 1999; Wood & Nusbaum, 2002). It is worth noting 

that, thus far, there is no evidence that the IVN or MPN cotransmitters are 

segregated to separate ganglia.  

 The present work extends these previous studies by establishing that 

cotransmission can be used to enable coreleased transmitters to affect separate 

CPG targets and to do so via distinct time courses, thereby enabling the 

activation of a complete motor circuit. It will be interesting to next determine 

whether these distinct cotransmitter actions on the gastric mill CPG can be 

regulated separately. This may well be the case insofar as the GPR sensory 

neuron appears to selectively weaken MCN1 excitation of the LG neuron 

(Beenhakker et al., 2005). Such situations could thereby enable a single 

cotransmitter neuron to have altered actions on its target circuit under different 

conditions.  
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ABBREVIATIONS  

AM, anterior median; CabTRP Ia, Cancer borealis tachykinin related peptide Ia; 

CoGs, commissural ganglia; CPG, central pattern generator; DG, dorsal gastric; 

GM, gastric mill; GPR, gastropyloric receptor; IC, inferior cardiac; Int1, 

interneuron 1; ion, inferior oesophageal nerve; IV, inferior ventricular; LG, lateral 

gastric; LP, lateral pyloric; MCN1, modulatory commissural neuron 1; MG, medial 

gastric; MPN, modulatory proctolin neuron; PD, pyloric dilator; PTX, picrotoxin; 

STG, stomatogastric ganglion; STNS, stomatogastric nervous system; VD, 

ventricular dilator. 
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ABSTRACT 

Phasically active sensory systems commonly influence rhythmic motor 

activity via synaptic actions on the relevant circuit and/or motor neurons.  Using 

the crab stomatogastric nervous system (STNS), we have identified a distinct 

synaptic action by which an identified proprioceptor, the gastro/pyloric muscle 

stretch receptor (GPR) neuron, regulates the gastric mill (chewing) motor rhythm.  

Previous work showed that rhythmically stimulating GPR in a gastric mill-like 

pattern, in the isolated STNS, elicits the gastric mill rhythm via its activation of 

two identified projection neurons, MCN1 and CPN2, in the commissural ganglia.  

Here, we determine how activation of GPR with a behaviorally appropriate 

pattern (active during each gastric mill retractor phase) influences an ongoing 

gastric mill rhythm via actions in the stomatogastric ganglion, where the gastric 

mill circuit is located.  Stimulating GPR during each retractor phase selectively 

prolongs that phase and thereby slows the ongoing rhythm.  This selective action 

on the retractor phase results from two distinct GPR actions.  First, GPR 

presynaptically inhibits the axon terminals of MCN1, reducing MCN1 excitation of 

all gastric mill neurons. Second, GPR directly excites the retractor phase 

neurons.  Because MCN1 transmitter release occurs during each retractor 

phase, these parallel GPR actions selectively reduce the buildup of excitatory 

drive to the protractor phase neurons, delaying each protractor burst.  Thus, 

rhythmic proprioceptor feedback to a motor circuit can result from a global 

reduction in excitatory drive to that circuit, via presynaptic inhibition, coupled with 

a phase-specific excitatory input that prolongs the excited phase by delaying 

onset of the subsequent phase.  
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INTRODUCTION 

 Sensory influences on the central pattern generator (CPG) circuits that 

underlie rhythmic motor behaviors extend from phasic actions that fine-tune 

motor output to the activation or termination of entire motor programs (Stein et 

al., 1997; McCrea, 1998; DiPrisco et al., 2000; Perrins et al., 2002; Frost et al., 

2003; Pearson, 2004; Shetreat-Klein and Cropper, 2004; Buschges, 2005).  The 

phasic, cycle-specific regulatory actions commonly result from direct synaptic 

actions on CPG neurons and associated motor neurons.  In contrast, sensory 

activation or termination of CPG activity often results from its influences on 

upstream projection neurons.   

 Here, we use the stomatogastric nervous system (STNS) of the crab 

Cancer borealis to document that the same proprioceptor neuron can activate 

and regulate rhythmic motor activity, via distinct synaptic actions on different 

regions of the same projection neuron.  The STNS includes four ganglia that 

contain a set of distinct but interacting CPGs controlling various aspects of the 

ingestion and processing of food by the foregut (Nusbaum and Beenhakker, 

2002).  The CPGs that generate the chewing (gastric mill circuit) and filtering 

(pyloric circuit) motor patterns occur in the stomatogastric ganglion (STG), while 

the projection neurons that regulate their activity are located primarily in the 

paired commissural (CoGs) ganglia.  The gastric mill rhythm can be activated in 

the isolated STNS without sensory input (Coleman and Nusbaum, 1994), but 

sensory input does regulate this rhythm (Combes et al., 1999; Beenhakker et al., 

2004; Blitz et al., 2004).   
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One well-defined sensory input to the gastric mill circuit is the 

gastro/pyloric receptors (GPRs), two pairs of bilaterally symmetric proprioceptor 

neurons that are activated by stretch of gastric mill protractor muscles (Katz et 

al., 1989; Katz and Harris-Warrick, 1989).  The GPRs modulate the pyloric 

rhythm and activate the gastric mill rhythm (Katz and Harris-Warrick, 1990; 1991; 

Blitz et al., 2004).  They elicit the gastric mill rhythm by activating modulatory 

commissural neuron 1 (MCN1) and commissural projection neuron 2 (CPN2), 

which occur as single copies in each CoG (Blitz et al., 2004).   

Blitz et al. (2004) studied the GPR ability to activate the gastric mill rhythm 

in an ‘open-loop’ paradigm in the isolated STNS wherein GPR was stimulated in 

a gastric mill-like pattern.  Here we created a closed loop-like situation in the 

isolated STNS to understand how GPR influences an ongoing gastric mill rhythm 

activated by either a distinct sensory pathway or direct stimulation of MCN1 

(Coleman and Nusbaum, 1994; Beenhakker et al., 2004).  During these gastric 

mill rhythms, GPR was stimulated with its behaviorally-appropriate pattern, 

during the retractor phase, to close the GPR loop.  With this approach, we 

demonstrate that GPR slows the gastric mill rhythm by selectively prolonging the 

retractor phase.  This results from GPR-mediated presynaptic inhibition of the 

STG terminals of MCN1 and a parallel excitation of retractor phase neurons.  The 

latter effect appears to enable GPR to replace a subset of the excitatory actions 

that it removes by its inhibition of MCN1. 

Some of these results were published in abstract form (Beenhakker and 

Nusbaum, 2003). 
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METHODS 

Animals/preparation.  Male crabs, Cancer borealis (Jonah crabs), were obtained 

from Commercial Lobster & Seafood Co. (Boston, MA) and the Marine Biological 

Laboratory (Woods Hole, MA).  Crabs were housed in commercial tanks 

containing chilled, filtered and recirculated artificial seawater (10°C).  Before 

dissection, each crab was anesthetized by packing in ice for at least 30 minutes.  

The foregut was removed and then transferred to a dissection dish containing 

saline (10-12°C) to enable dissection of the STNS from the foregut.  The isolated 

STNS (Fig. 1A) was then transferred and pinned down in a silicone elastomer 

(Sylgard 184, KR Anderson, Santa Clara, CA)-lined Petri dish filled with saline 

(10-12°C).   

Solutions.  During dissection and experimentation, the STNS was supplied with 

C. borealis saline (mM):  440 NaCl, 26 MgCl2, 11 KCl, 13 CaCl2, 10 Trizma base 

and 5 maleic acid (pH 7.4-7.6).  In some experiments, neuronal interactions were 

limited to those presumed to be monosynaptic by superfusing the preparation 

with saline containing 5 times the normal concentration of the divalent salts (high 

divalent cation saline) (Blitz and Nusbaum, 1999).  This saline contained (in mM): 

439 NaCl, 130 MgCl2, 11 KCl, 64.5 CaCl2, 10 Trizma base and 5 maleic acid (pH 

7.4-7.6).  During each experiment the STNS was continuously superfused with 

saline (7-12 ml/min), via a switching manifold to enable fast solution changes, 

cooled (10-11°C) with a Peltier device.   
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Electrophysiology.  STNS neurons were identified by their patterns of activity, 

synaptic interactions with other identified neurons and axonal branching patterns 

in connecting and peripheral nerves (Beenhakker et al., 2004; Beenhakker and 

Nusbaum, 2004).  Standard intracellular and extracellular recording techniques 

were used in this study (Beenhakker et al., 2004).  Briefly, extracellular 

recordings of neuronal activity were obtained by electrically isolating individual 

sections of STNS nerves from the bath by building a petroleum jelly-based 

cylindrical compartment around a section of nerve.  One of two stainless steel 

electrode wires was placed within this compartment, to record action potentials 

propagating through the nerve, while the second wire was placed in the bath as a 

reference electrode.  The differential signal was recorded, filtered and amplified, 

first through an amplifier from AM Systems (Model 1700, Carlsborg, WA) and 

then through an amplifier from Brownlee Precision (Model 410, Santa Clara, CA).  

Extracellular stimulation of a nerve was achieved by placing the two extracellular 

wires into a stimulus isolation unit (Astromed/Grass Instruments, Model SIU5, 

West Warwick, RI) controlled by a stimulator (Astromed/Grass Instruments, 

Model S88).  Intracellular recordings of STNS somata were obtained with sharp 

glass microelectrodes (15-30 MΩ) filled with either 4 M potassium acetate (KAc) 

plus 20 mM potassium chloride (KCl) or 0.6 M K2SO4 plus 20 mM KCl.  

Neurotransmitter release from the STG terminals of projection neurons is 

suppressed by intra-axonal recordings with KAc-filled electrodes positioned near 

the entrance to the STG (Coleman et al., 1995).  Therefore, to preserve 
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transmitter release during these intra-axonal recordings, we used an intracellular 

electrode solution of 1 M KCl (Bartos and Nusbaum, 1997).  All intracellular 

signals were amplified and filtered with Axoclamp 2B amplifiers (Axon 

Instruments, Foster City, CA), then further amplified with Brownlee Model 410 

amplifiers.  Intracellular current injections were performed in discontinuous 

current clamp (DCC) mode with sampling rates of 2-3 KHz.  

 In these experiments, we primarily worked with the GPR2 stretch receptor, 

by stimulating the gpn nerve through which its axon projects.  However, we found 

that the STNS response to GPR1 stimulation was the same as GPR2 stimulation.  

As GPR is activated during the retractor phase of the gastric mill rhythm (Katz 

and Harris-Warrick, 1989), we stimulated the gpn during this phase.  This 

stimulation was performed manually by turning the stimulator on at the beginning 

of the retractor phase.  We tested the effect of stimulating GPR for both a fixed 

duration and by terminating the stimulation at the burst onset time of the lateral 

gastric (LG) neuron.  In the latter case, each stimulation was terminated either by 

anticipating the onset of the protractor phase (LG neuron burst onset), based on 

the trajectory of the LG neuron membrane potential, or else waiting until the LG 

burst began. 

 Data Acquisition.  Data were acquired in parallel onto a chart recorder (MT-

95000 or Everest Model, Astromed Corp., West Warwick, RI), and by digitizing 

(~5 KHz) and storing the data on computer with data acquisition 

hardware/software (SPIKE2, Cambridge Electronic Design, Cambridge, 
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England).  Digitized data were analyzed with a homemade SPIKE2 program 

(‘The Crab Analyzer’, freely available at http://www.neurobiologie.de/).  Briefly, 

the burst duration of a neuron was defined as the elapsed time (sec) between the 

first and last action potential in an impulse burst.  The firing frequency was 

calculated by dividing the number of action potentials minus one by the burst 

duration.  Gastric mill cycle period was defined by the duration (sec) between the 

onsets of 2 successive impulse bursts in the LG neuron.   

Data are presented as mean ± SD.  Statistical analyses were performed 

with SigmaStat 3.0 (SPSS, Chicago, IL).  Figures were made from Spike2 files 

incorporated in the Adobe Photoshop (Adobe, San Jose, CA) and Powerpoint 

graphics programs (Microsoft, Seattle, WA). 

Dynamic Clamp.  We used the dynamic clamp technique (Sharp et al., 1993; 

Prinz et al., 2004) to inject an artificial ionic or synaptic current into the LG 

neuron.  The dynamic clamp software uses intracellularly recorded membrane 

potentials (Vm) of biological neurons to calculate an artificial current (Idyn) using a 

conductance (gdyn(t)) that is numerically computed as well as a predetermined 

reversal potential (Erev).  The artificial current is computed in real time, updated in 

each time step (0.2 ms) according to the new values of recorded membrane 

potential and injected back into the biological neuron. The intrinsic currents are 

computed according to the equations below: 
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where V1 and V2 both represent the membrane potential Vm. The synaptic 

currents are computed according to the same equations where V1 represents 

VPost and V2 represents VPre. The values of parameters used by dynamic clamp in 

the above equations are given in Table 1.  

In the dynamic clamp experiments involving the injection of the 

interneuron 1 (Int1) inhibitory synaptic current into the LG neuron, we used a 

model cell to represent Int1.  This model cell included a passive leak current and 

Hodgkin-Huxley-like voltage-dependent inward and outward currents that 

underlie action potential generation.  Consistent with the biological gastric mill 

circuit (Coleman et al., 1995; Bartos et al., 1999), the model Int1 was inhibited by 

the pyloric dilator (PD) and LG neurons, ongoing recordings of which were 

maintained in the biological preparation.  The activity of the model Int1 was used 

to inject a simulated inhibitory current into the LG neuron to mimic the effect of 

increasing the inhibitory action of the biological Int1 (see Bartos et al., 1999). 

In experiments in which the modulatory action of the MCN1 projection 

neuron on the LG neuron was mimicked with the dynamic clamp software, we 
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used previously published parameters for the peptide-elicited, voltage-dependent 

current as characterized in other STG neurons (Golowasch and Marder, 1992; 

Swensen and Marder, 2000, 2001).  In the biological network, the modulatory 

input from MCN1 to LG decays during each LG burst (Coleman and Nusbaum, 

1994; Coleman et al., 1995).  To mimic this decay we added an inactivation 

component to the modeled current (see Table 1 and Results). 

These experiments were performed using the version of the dynamic 

clamp software developed in the Nadim laboratory (available at 

http://stg.rutgers.edu/software) on a PC running Windows XP and a NI PCI-6070-

E data acquisition board (National Instruments, Austin, TX).  All intracellular 

recordings were performed in single-electrode discontinuous current clamp 

mode.    

Gastric Mill Model.  We constructed a computational model modified from an 

existing conductance-based model of the gastric mill circuit (Nadim et al., 1998).  

The previously published version modeled the LG, Int1, and MCN1 neurons as 

having multiple compartments separated by an axial resistance, with each 

compartment possessing intrinsic and/or synaptic conductances.  We modified 

this model only by adding an additional single compartment cell, representing the 

GPR neuron, and several additional synaptic conductances (Table 2).  All other 

parameters were unmodified from those previously published.  

 To model the GPR neuron, we added a single compartment cell with a 

passive leak current plus Hodgkin-Huxley-like voltage-dependent inward and 
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outward currents to effect action potential generation.  Consistent with 

physiological measurements (see Results), this model neuron made an inhibitory 

synaptic connection onto a distal compartment of the MCN1 axon terminals (t0 

compartment: see Nadim et al., 1998), as well as an excitatory connection onto 

the Int1 neurite compartment.  To mimic the cumulative actions of repeated GPR 

stimulations, the GPR synapse onto MCN1 was modeled as a slow activating, 

slow deactivating current.  The conductances and other parameters of these 

currents were chosen to mimic the behavior of the gastric mill circuit in the 

presence of GPR stimulation (Table 2).  In these models we only incorporated 

each of these two synapses separately, because our aim was to assess their 

individual contributions to the observed GPR action on the gastric mill rhythm.   

Finally, to more accurately mimic known mechanisms of gastric mill rhythm 

generation, we also added an excitatory synaptic connection between MCN1 and 

Int1 (Coleman et al., 1995).  

 Simulations were performed on a PC with Windows XP.  We used the 

Network simulation software developed in the Nadim laboratory, which was run 

using the freely available CYGWIN Linux emulation software package.  We used 

a 4th order Runge-Kutta numerical integration method with time steps of 0.05 

and 0.01 ms.  Results were visualized by plotting outputted data points using the 

freely available GNUPLOT software package.     
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Table 1 – Dynamic Clamp Parameters
Synapses

Current Vm 
(mV) 

Km 
(mV) 

TmLo 
(ms) 

TmHi 
(ms) 

P Vh 
(mV) 

Kh 
(mV) 

ThLo 
(ms) 

ThHi 
(ms) 

Q Gmax 
(nS) 

Erev 
(mV) 

LG-Int1 -45 -0.1 5 1500 1 n/a n/a n/a n/a 0 30 -120 
Int1-LG -40 -1 5 200 1 n/a n/a n/a n/a 0 100 -80 
PD-Int1 -20 -1 5 1000 1 n/a n/a n/a n/a 0 10 -120 
 

Int1 Model Cell Currents
 Vm Km TmLo TmHi P Vh Kh ThLo ThHi Q Gmax Erev 
Leak -40 -5 50 100 0 n/a n/a n/a n/a 0 1 -60 
Na -40 -10 5 5 1 -40 3.0 50 50 1 30 45 
K -40 -10 100 500 1 n/a n/a n/a n/a 0 50 -80 
 

Simulated CabTRP Current in LG
 Vm Km TmLo TmHi P Vh Kh ThLo ThHi Q Gmax Erev 
CabTRP -40 -10 200 50 1 -40 0.5 12000 8000 1 250 0 
 

Table 1: Parameters used in dynamic clamp experiments.  
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Table 2 – Model Parameters
Synapses

Synapse Gmax 
(nS) 

Erev 
(mV) Minf Mtau 

MCN1-Int1 6 0 
e V )70(451

1
+−+

 1 

GPR-Int1 20 0 
e V )60(1

1
+−+

 50 

GPR-MCN1 40 -80 
e V )60(1

1
+−+

 

eV 601
40002000 ++

+  

 
GPR Intrinsic Currents

Current Gmax Erev p q Minf Mtau Hinf Htau 
Leak 3 -68 n/a n/a n/a n/a n/a n/a 

Na 120 50 3 1 
e V )62(51

1
+−+

Inst e V )64(51
1

++
 

e V )64(24.01
51

+−+
+

K 36 -77.5 4 n/a e V )54(51
1

+−+
 

e V )54(24.01
208

++
+ n/a n/a 

 

Table 2: Parameters used to incorporate GPR synapses into an existing model 

of the gastric mill rhythm (Nadim et al., 1998).  GPR was modeled as a single 

compartment cell with active and passive properties, and three synaptic currents 

were added to existing model cells. “Inst” denotes an instantaneous time 

constant.  
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RESULTS 

GPR prolongs the retractor phase of the VCN-elicited gastric mill rhythm 

 The gastric mill rhythm is a two-phase motor pattern in which there is a 

rhythmic repeating alternation in impulse bursts between teeth protraction- and 

retraction-related neurons (Heinzel et al., 1993).  There are eight different gastric 

mill neurons in C. borealis, half of which are active during protraction and half are 

active during retraction (Beenhakker and Nusbaum, 2004).  In this paper, we use 

LG neuron activity to represent the protractor phase while the retractor phase is 

represented by the activity of the dorsal gastric (DG) neuron and/or Int1 (Fig. 1B).  

The reciprocally inhibitory neurons LG and Int1 comprise the core of the gastric 

mill CPG (Coleman et al., 1995; Bartos et al., 1999). 

In situ, the GPRs are rhythmically activated during each retraction phase 

of the gastric mill rhythm.  For GPR2, this activity pattern results from its 

dendrites being embedded in a protractor (gm9a) muscle that is stretched during 

each DG retractor neuron burst (Katz and Harris-Warrick, 1989) (Fig. 1B).  The 

gastric mill rhythm is generally not spontaneously active in vitro, but it can be 

readily triggered by stimulation of known sensory pathways, including transient 

stimulation of the VCN mechanosensory neurons (Beenhakker et al., 2004).  To 

determine what, if any, changes occurred in an ongoing gastric mill rhythm as a 

result of activating GPR at the behaviorally appropriate time, we stimulated GPR 

during successive DG neuron bursts in an ongoing VCN-elicited gastric mill 

rhythm (eg, Fig. 2).   
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Figure 1. Schematic of the isolated stomatogastric nervous system (STNS) and 

the pathways by which two identified sensory systems influence the gastric mill 

circuit.  A. The STNS consists of the unpaired stomatogastric (STG) and 

oesophageal (OG) ganglia, the paired commissural (CoG) ganglia, plus the 

connecting and peripheral nerves.  In each CoG there is a single a copy of each 

identified CoG projection neuron, including MCN1, MCN5, MCN7 and CPN2.  

The STNS receives sensory information from the proprioceptor neurons GPR1 

and 2, and the mechanoreceptor VCNs.  B. The GPRs and VCNs each elicit the 

gastric mill rhythm by activating MCN1 and CPN2, which in turn activate the 

gastric mill circuit.  The CPG neurons LG and Int1 have reciprocal inhibitory 

connections and are influenced by the pyloric pacemaker neuron AB.  The dorsal 

gastric (DG) neuron is a gastric mill retractor motor neuron that innervates the 

gm4 muscle.  Contraction of gm4 stretches the GPR-innervated muscles, thereby 

activating the GPRs (Katz and Harris-Warrick, 1989).  Synapse symbols: t-bars, 

excitation; filled circles, inhibition; resistor, electrical coupling.  Abbreviations.  
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Nerves: dgn, dorsal gastric nerve; dpon, dorsal posterior oesophageal nerve; 

ion, inferior oesophageal nerve; lgn, lateral gastric nerve; lvn, lateral ventricular 

nerve; mgn, medial gastric nerve; mvn, medial ventricular nerve; son, superior 

oesophageal nerve; stn, stomatogastric nerve; vcn, ventral cardiac nerve.  

Neurons:  AB, anterior burster; CPN2, commissural projection neuron 2; GPR, 

gastropyloric receptor; MCN1,5,7, modulatory projection neuron 1,5,7; VCN, 

ventral cardiac neuron. 
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Figure 2. GPR stimulation prolongs the retractor phase of the VCN-elicited 

gastric mill rhythm.  A, Stimulating GPR in its behaviorally-relevant pattern during 

the VCN-elicited gastric mill rhythm in the isolated STNS slows the rhythm by 

selectively prolonging the retractor phase.  B,  Relative to pre-GPR stimulation 

levels, during each cycle when GPR was stimulated (arrowheads) there was a 

significant increase in the duration of the gastric mill retractor phase and the 

overall speed of the rhythm (cycle period), but there was no change in the 

protractor phase duration (*p<0.05; n=8; One Way Repeated Measures ANOVA, 

Student-Newman Keuls Test).  Each bar represents a single gastric mill cycle, 

with one cycle shown pre-, 5 cycles during- and 4 cycles post-GPR stimulation.  

Note the rapid return to control levels after GPR stimulation was terminated. 
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There were three attractive features of using the VCN mechanosensory 

system to activate the gastric mill circuit.  First, a relatively brief (1-2 min) 

stimulation of the VCNs triggers a long-lasting (tens of minutes) gastric mill 

rhythm (Beenhakker et al., 2004).  Second, both the VCNs and the GPRs elicit 

the gastric mill rhythm via the same two CoG projection neurons, MCN1 and 

CPN2 (Beenhakker & Nusbaum, 2004; Blitz et al., 2004), thereby confining the 

scope of the pertinent circuitry to a limited number of neurons.  The VCN- and 

GPR-elicited gastric mill rhythms are qualitatively similar but quantitatively 

distinct (Blitz et al., 2004).  Third, the ability of the GPRs to influence MCN1 and 

CPN2 in the CoGs is suppressed during the VCN-elicited gastric mill rhythm, 

thereby limiting the likely locus of any persisting GPR actions to the STG 

(Beenhakker, 2004). 

Stimulating GPR during each DG neuron burst slowed the gastric mill 

rhythm (Cycle Period: pre-GPR, 7.6 ± 1.8 sec; during GPR stim., 10.7 ± 3.4 sec; 

post-GPR, 8.2 ± 1.1 sec; Repeated Measures ANOVA: p<0.001, n=8) (Fig. 2).  

This slowing of the rhythm resulted from a selective increase in retractor phase 

duration that occurred during every cycle in which GPR was stimulated (Fig. 2B).  

For example, there was a consistent increase in the DG retractor neuron burst 

duration when GPR was stimulated (pre-GPR: 3.3 ± 1.8 sec; during GPR stim.: 

6.6 ± 2.9 sec; post-GPR: 3.2 ± 0.5 sec; Repeated Measures ANOVA: p<0.05, 

n=4) (Fig 2B).  In contrast, GPR stimulation did not alter the duration of the LG 

protractor neuron (pre-GPR: 3.8 ± 1.1 sec; during GPR stim.: 4.2 ± 1.4 sec; post-
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GPR: 3.6 ± 1.0 sec; Repeated Measures ANOVA: p>0.05; n=8) (Fig. 2B).  These 

GPR actions did not extend far past the final GPR stimulation.  For example, DG 

neuron burst duration was prolonged for one additional cycle while gastric mill 

cycle period returned to pre-GPR levels as soon as GPR stimulation was 

terminated (Fig. 2B). 

 The selective increased duration of the gastric mill retractor phase by GPR 

stimulation also changed the relative fraction of each cycle (duty cycle) devoted 

to protraction and retraction.  Specifically, GPR stimulation reduced the LG 

neuron duty cycle by causing a phase advance of its burst termination (pre-GPR: 

49.6 ± 9%, during GPR stim.: 39.5 ± 9%, post-GPR: 43.3 ± 8%; pre-GPR vs. 

during GPR: p<0.05, n=8), and it increased the DG neuron duty cycle by phase 

advancing its burst onset (pre-GPR: 63.1 ± 9%, during GPR stim.: 49.7 ± 8%, 

post-GPR: 64.1 ± 8%; pre-GPR vs. during GPR: p<0.05, n=4).  Thus, when GPR 

was active the gastric mill rhythm changed from having a balanced participation 

of the protractor and retractor neurons in each cycle to one in which there was 

relatively more retractor phase activity.   

 

GPR prolongs the retractor phase by its synaptic actions in the STG  

The GPR and VCN neurons both activate the gastric mill rhythm by 

eliciting a long-lasting activation of the projection neurons MCN1 and CPN2 (see 

Fig. 1) (Beenhakker and Nusbaum, 2004; Blitz et al., 2004).  These two 

projection neurons appear to play distinct roles, with MCN1 providing the main 
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excitatory drive to the gastric mill circuit while CPN2 sculpts the activity patterns 

of the gastric mill neurons (Norris et al., 1994; Bartos et al., 1999; Beenhakker 

and Nusbaum, 2004).  Surprisingly, during the VCN-elicited gastric mill rhythm, 

GPR stimulation no longer influences MCN1 or CPN2 in the CoGs as these GPR 

actions are effectively and reversibly masked by the VCN influence on these 

projection neurons (Beenhakker, 2004).  It therefore appeared likely that the 

GPR ability to selectively prolong the retractor phase of the VCN-elicited gastric 

mill rhythm resulted from direct GPR actions within the STG. 

We tested this hypothesis by transecting the superior- (sons) and inferior 

oesophageal nerves (ions) to eliminate the CoGs and assessing the influence of 

GPR stimulation on gastric mill rhythms elicited by selective extracellular nerve 

(ion) stimulation of MCN1 (Fig 3A).  Under these conditions, tonic MCN1 

stimulation routinely elicits the gastric mill rhythm (Bartos et al., 1999).  Although 

two STG-projecting neurons, MCN1 and MCN5, project to the STG through the 

ion (Coleman and Nusbaum, 1994; Norris et al., 1996), low stimulus voltages 

selectively activate MCN1 (Bartos and Nusbaum, 1997; Bartos et al., 1999).   

During MCN1-elicited gastric mill rhythms, GPR stimulation during the 

retractor phase again slowed the rhythm by selectively prolonging the retractor 

phase (Figs. 3B, 4).  In fact, all of the GPR actions on the VCN-elicited gastric 

mill rhythm also occurred when GPR was rhythmically stimulated during the 

MCN1-elicited gastric mill rhythm with the CoGs removed.  For example, these 

rhythmic GPR stimulations prolonged the gastric mill cycle period (pre-GPR: 5.6  
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Figure 3.  Influence of GPR on the MCN1-elicited gastric mill rhythm.  A. 

Preparation used to study the MCN1-elicited gastric mill rhythm.  The CoGs were 

eliminated by transection of the ions and sons, and selective MCN1 stimulation 

was accomplished by extracellular stimulation of the ion to elicit the gastric mill 

rhythm (Bartos et al., 1999).  B. Stimulating GPR during the retractor phase of 

the MCN1-elicited gastric mill rhythm selectively prolonged that retractor phase.  

MCN1 stimulation (black bar: 30 Hz tonic) began before the presented recording 

segment and persisted for the duration of the recording shown.  
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Figure 4.  Quantification of the GPR actions on the MCN1-elicited gastric mill 

rhythm. The pre- (white bars), during- (black bars) and post-GPR stimulation 

(gray bars) conditions each represent the mean of 5 consecutive gastric mill 

cycles.  A, GPR stimulation during the MCN1-elicited gastric mill rhythm 

reversibly prolonged the gastric mill cycle period by ~60% (p<0.05, n=6).  B/C, 

Stmulating GPR during the MCN1-elicited gastric mill rhythm (B) did not alter the 

LG neuron burst duration (p>0.05, n=6) but (C) reduced the fraction of a gastric 

mill cycle during which LG was active (LG duty cycle) by nearly 20% (p<0.01, 

n=6).
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± 1 sec; during GPR: 9.0 ± 3 sec; post-GPR: 6.4 ± 1 sec; p<0.05, Repeated 

Measures ANOVA, n=6) (Fig. 4A) without changing the LG neuron burst duration 

(pre-GPR: 2.4 ± 0.9 sec; during GPR: 1.9 ± 0.3 sec; post-GPR: 2.4 ± 0.8 sec; 

p>0.05, Repeated Measures ANOVA, n=6) (Fig. 4B).  Moreover, as indicated for 

the VCN-elicited rhythm, by maintaining the same LG neuron burst duration while 

prolonging the gastric mill cycle period these GPR stimulations reduced LG 

neuron duty cycle (before GPR: 41.0 ± 11%; during GPR: 22.9 ± 9%; after GPR: 

37.5 ± 11%; p<0.01, Repeated Measures ANOVA, n=6) (Fig. 4C). 

 

GPR does not slow the gastric mill rhythm via its synapses on STG 

neurons 

 GPR has numerous synaptic actions within the STG on both gastric mill 

and pyloric neurons (Katz and Harris-Warrick, 1989, 1990, 1991; see below).  

Among the GPR targets are several pathways by which GPR could slow the 

gastric mill rhythm.  The first of these pathways consists of the electrically-

coupled pyloric pacemaker neurons (AB, PD neurons), whose rhythmic bursting 

activity is modulated by GPR (Katz and Harris-Warrick, 1990).  The pyloric 

pacemaker neurons regulate the gastric mill cycle period via their rhythmic 

inhibition of Int1, which in turn provides pyloric-timed removal of Int1 inhibition 

(disinhibition) to the LG neuron (Nadim et al., 1998; Bartos et al., 1999).  These 

disinhibitions, which are evident during each LG interburst (e.g., Fig. 3B), shorten 

the time to LG neuron burst onset after the preceding LG burst, thereby 
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increasing the speed of the gastric mill rhythm (Bartos et al., 1999; Wood et al., 

2004).  Consequently, changing the frequency of these pyloric-timed 

disinhibitions causes a concomitant change in the speed of the gastric mill 

rhythm (Bartos et al., 1999).  We tested and eliminated this pathway as the 

means by which GPR regulates the gastric mill cycle period by suppressing the 

pyloric pacemaker activity with hyperpolarizing current injection during an 

ongoing MCN1-elicited gastric mill rhythm.  Despite the absence of both the 

pyloric rhythm and the disinhibitions in the LG neuron, there was no change in 

the GPR ability to slow the ongoing gastric mill rhythm (n=4).   

Another means by which GPR could influence the speed of the gastric mill 

rhythm is by its excitatory action on the DG neuron (Katz and Harris-Warrick, 

1989; Kiehn and Harris-Warrick, 1992), because at high firing frequencies the 

DG neuron can inhibit the LG neuron.  However, as was the case when the 

pyloric pacemaker neurons were silenced, suppression of DG neuron activity by 

hyperpolarizing current injection did not alter the GPR influence on the gastric 

mill rhythm (n=3). 

A third potential target of GPR that could mediate the slowing of the 

gastric mill rhythm is the LG neuron.  The level of LG neuron activity and its 

ability to escape from Int1-mediated inhibition is instrumental to gastric mill 

rhythm generation (Coleman et al., 1995; Bartos et al., 1999).  Moreover, 

previous work showed that GPR stimulation produces an initial, apparently 

polysynaptic inhibitory response in the LG neuron, followed by an extended 
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period of enhanced pyloric-timed subthreshold membrane potential oscillations 

(Katz and Harris-Warrick, 1991).  We also noticed the latter response (see Fig. 

5A).  However, we observed no change in the LG neuron membrane potential 

when GPR was stimulated during either the VCN- or MCN1-elicited gastric mill 

rhythms.  We nonetheless sought to identify the neuron(s) responsible for this 

previously documented inhibitory action of GPR on the LG neuron because such 

a neuron could mediate the ability of GPR to prolong the retractor phase (by 

delaying the protractor phase) and thereby increase the cycle period of ongoing 

gastric mill rhythms.   

 We tested the hypothesis that Int1 was responsible for the observed GPR 

influence on the LG neuron.  As mentioned above, the LG neuron and Int1 

constitute the pair of reciprocally-inhibitory neurons at the core of the gastric mill 

CPG, and Int1 is responsible for the subthreshold, pyloric-timed membrane 

potential oscillations that occur in the LG neuron (Coleman et al., 1994; Bartos et 

al., 1999).  We found that GPR did indeed consistently excite Int1, during which 

there was an increased hyperpolarization in the LG neuron (n=5) (Fig. 5A1).  This 

GPR action appeared to be monosynaptic, because GPR action potentials 

elicited constant-latency excitatory postsynaptic potentials (EPSPs) in Int1 that 

persisted in the presence of high divalent cation saline (Fig. 5A2).   

It was possible that GPR excitation of Int1 also explained the GPR-

mediated prolongation of the retractor phase of the gastric mill rhythm.  

Specifically, if GPR enhanced Int1 activity during the gastric mill rhythm then this  
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Figure 5.  GPR excites Int1 but does not alter Int1 activity during the gastric mill 

rhythm.  A1. In the isolated STG with no ongoing gastric mill rhythm, GPR 

stimulation (5 Hz) excited Int1 and produced a concomitant increase in the 

amplitude of the subthreshold, pyloric-timed oscillations in the LG neuron.  A2, 

Single GPR stimuli evoked constant latency EPSPs in Int1 in high divalent cation 

saline.  EPSP represents the average of 8 Int1 responses to GPR stimulation.  

The relatively long latency to EPSP onset results from the ~2 cm distance 

traveled by the GPR-elicited action potentials to reach the STG.  B1, GPR 

stimulation (5 Hz) during an ongoing MCN1-elicited gastric mill rhythm prolonged 

the retractor phase without an evident change in Int1 activity.  B2, GPR failed to 

enhance Int1 activity during ongoing gastric mill rhythms at times when it did 
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prolong the gastric mill cycle period.  Shown are the mean (±SD) gastric mill 

cycle period (white symbols) and corresponding Int1 firing frequency (gray 

symbols) before and during GPR stimulation for 8 preparations, organized by 

symbol shape.  The dotted line represents no change between the pre- and 

during-GPR conditions.  B3. Int1 firing frequency (black bars) and gastric mill 

cycle period (white bars) data are normalized to pre-control conditions.  In the 

same preparations, GPR stimulation increased the gastric mill cycle period (40.8 

± 28.9%; p<0.001, n=8) but failed to alter Int1 firing frequency (4.5 ± 5.4%; 

p>0.05; n=8). 
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would likely strengthen Int1 inhibition of the LG neuron, thereby slowing the LG 

neuron escape from Int1 inhibition and prolonging the retractor phase.  It was not 

possible to directly test this hypothesis by suppressing Int1 activity because its 

activity is necessary for gastric mill rhythm generation (Bartos et al., 1999).  

Therefore, as a first step, we determined whether GPR stimulation did indeed 

increase Int1 activity during the gastric mill rhythm.  Surprisingly, GPR stimulation 

did not increase the Int1 firing frequency during either the VCN- or MCN1-elicited 

gastric mill rhythms (VCN rhythms: pre-GPR: 19.3 ± 1.4 Hz; during GPR: 19.6 ± 

0.9 Hz; p>0.05, n=6) (MCN1 rhythms: pre-GPR: 17.6 ± 0.9 Hz; during-GPR: 19.1 

± 1.3 Hz; p>0.05, n=2) (Fig. 5B).  Despite the lack of change in Int1 firing 

frequency during these GPR stimulations, the gastric mill rhythm was slowed as 

usual (n=8) (Fig. 5B). 

There remained two possible mechanisms by which GPR excitation of Int1 

could increase Int1 inhibition of the LG neuron.  First, GPR might selectively 

enhance the graded component of Int1 transmitter release.  STG circuit neurons 

exhibit both spike-mediated and graded release (Hartline and Graubard, 1992).  

The second possibility was that GPR could increase the amount of transmitter 

release per Int1 action potential.   

We assessed the possibility that a GPR-mediated strengthening of the 

Int1 inhibition of the LG neuron was responsible for the GPR actions on the 

gastric mill rhythm in two ways.  First, we implemented a modified version of our 

previously developed computational model of the MCN1-elicited gastric mill 
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rhythm (Nadim et al., 1998; see Methods).  Using this model, we found that when 

the Int1 inhibitory input to the LG neuron was strengthened by GPR excitation of 

Int1, the gastric mill rhythm was measurably slowed (cycle period: control, ~9s; 

with GPR stimulation, ~13s) (Fig. 6).  However, in contrast to the biological 

condition, both the retractor and protractor phases of these cycles were 

prolonged (protractor phase duration: control, ~6s; with GPR stimulation, ~8s; 

retractor phase duration: control, ~3s; with GPR stimulation, ~6s).   

To understand the consequences of increasing the strength of Int1 

inhibition of the LG neuron, it is helpful to know the previously documented 

interactions between MCN1, Int1 and LG.  Specifically, each LG neuron burst 

initiates after a period during which it steadily depolarizes to escape from Int1-

mediated inhibition, due to the buildup of excitatory drive that LG receives from 

MCN1 during this phase of the rhythm (Coleman et al., 1995; Bartos et al., 1999) 

(Fig. 6).  Thus, when Int1 inhibition of LG was strengthened, the LG neuron 

required more time to build up more excitatory drive from MCN1 to enable it to 

escape from Int1 inhibition.  When the LG burst finally was initiated, it inhibited 

the STG terminals of MCN1 (as well as Int1) (Coleman and Nusbaum, 1994; 

Coleman et al., 1995), causing the excitatory drive it had received from MCN1 to 

decay.     

The strengthened Int1 inhibition of LG thus caused an increased LG 

neuron burst duration for the following two reasons.  First, the excitatory drive 

from MCN1 not only mediates LG escape from Int1 inhibition but is also  
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Figure 6.  Increasing the strength of Int1 inhibition of the LG neuron during GPR 

stimulation prolongs both phases of the MCN1-elicited gastric mill rhythm in a 

computational model.  GPR was stimulated during a retractor phase, as occurs in 

the biological system.  In this version of the model, the strength of Int1 inhibition 

of LG was explicitly enhanced by GPR stimulation.  The result was an increase in 

the duration of that retractor phase (Int1 active) as well as an increase in the 

subsequent protractor phase (LG active).  Note that the rhythm returned to 

control levels in the next cycle.  The modulatory current trace represents the 

cycle-by-cycle buildup and decay of MCN1 excitation of the LG neuron.  When 

GPR is silent, the LG neuron burst initiates when the level of modulatory current 

attains the level designated as “normal burst threshold”. 
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responsible for the LG burst.  Consequently, increasing the duration of a constant 

level of MCN1 input will result in a longer duration LG neuron burst.  Second, 

because the rate of decay from MCN1 excitation was unchanged by 

strengthening Int1 input, and the level of excitatory drive at the time of burst 

onset was higher than in the control rhythm, the time needed for this modulatory 

drive to decay to the LG burst termination point was prolonged (Fig. 6).   

To test the predictions of this model, we returned to the biological system 

and used the dynamic clamp technique to inject an additional Int1-like inhibitory 

conductance into LG during each Int1 period of activity (ie, during the time when 

GPR would be active) (see Methods for details; see also Bartos et al., 1999).  As 

a result of this increased inhibitory conductance, there was an increased 

hyperpolarization in the LG neuron (by –7.8 ± 1.2 mV; n=6).  LG nonetheless 

remained able to escape the combined biological and dynamic clamp-mediated 

inhibition, and the gastric mill rhythm was maintained (Fig. 7).  Under these 

conditions, the retractor phase was reversibly prolonged (pre-DClamp: 5.6 ± 1.8 

sec; DClamp: 12.1 ± 4.7 sec; post-DClamp: 6.9 ± 1.5 sec; Two-way ANOVA 

p<0.01; Tukey pairwise comparison: DClamp vs. Pre. p<0.01, DClamp vs. Post, 

p<0.05, Post vs. Pre, p>0.05; n=6) as was the gastric mill cycle period (pre-

DClamp: 9.7 ± 2.5 sec; DClamp: 18.3 ± 6.0 sec; post-DClamp: 11.2 ± 2.0 sec; 

Two-way ANOVA p<0.005; Tukey pairwise comparison: DClamp vs. Pre, 

p<0.005, DClamp vs. Post, p<0.05, Post vs. Pre, p>0.05; n=6) (Fig. 7A,B).  

Additionally, as predicted by the modeling results, the LG (protractor phase)  
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Figure 7.  Increasing the strength of Int1 inhibition of the LG neuron with the 

dynamic clamp, in the biological preparation, slows the gastric mill rhythm by 

prolonging both phases of the rhythm.  A, During an ongoing MCN1-elicited 

gastric mill rhythm, the dynamic clamp was used to increase the strength of Int1 

inhibition of the LG neuron.  This increased inhibition led to a prolonged retractor 

phase as well as a longer duration of each subsequent protractor phase.  The 

vertical lines occurring periodically during the LG burst (rising above and below 

the action potentials) and interburst represent artifacts that occur when recording 

in discontinuous current clamp-mode while performing nerve (ion) stimulation.  B, 

Quantitative analysis supporting the result represented in Panel A.  Under these 

conditions, GPR stimulation reversibly prolonged the LG burst duration, LG 

interburst duration and gastric mill cycle period (p<0.01, n=6). 
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Figure 8.  GPR stimulation hyperpolarizes the STG terminals of MCN1.  A, 

Schematic of the isolated STNS (left), with an expanded view of the STG (right) 

to indicate the location of the intra-axonal recording site for MCN1stn.  B. 

Intracellular recording of MCN1stn revealed a hyperpolarizing response to GPR 

stimulation (5 Hz).  Note the subthreshold pyloric-timed oscillations in MCN1stn.  

The thickened MCN1stn trace during GPR stimulation represents the stimulus 

artifact. 
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neuron burst duration was also reversibly prolonged (pre-DClamp: 4.1 ± 1.2 sec; 

DClamp: 6.2 ± 2.6 sec; post-DClamp: 4.3 ± 1.5 sec; Two-way ANOVA p<0.005; 

Tukey pairwise comparison: DClamp vs. Pre, p<0.005, DClamp vs. Post, p<0.01, 

Post vs. Pre, p>0.05; n=6) (Fig. 7A,B).  These results, combined with the fact that 

GPR stimulation did not change the Int1 firing frequency during the gastric mill 

rhythm, led us to conclude that the GPR-mediated selective prolongation of the 

gastric mill retractor phase and associated slowing of the rhythm was not likely to 

result, at least exclusively, from its excitation of Int1. 

 

GPR stimulation inhibits the STG terminals of MCN1 

 We next examined the possibility that the GPR ability to selectively 

prolong the gastric mill retractor phase resulted from GPR inhibition of the STG 

terminals of MCN1.  Depending on its strength, such a synaptic action would 

slow or prevent the LG neuron escape from Int1 inhibition.  MCN1 drive to the 

gastric mill circuit, including its slow excitation of the LG neuron, occurs primarily 

during each retractor phase because its transmitter release is reduced by 

presynaptic inhibition from the LG neuron during each protractor phase (Coleman 

and Nusbaum, 1994; Coleman et al., 1995).  We therefore tested the hypothesis 

that the GPR-mediated prolongation of the retractor phase and the associated 

slowing of the gastric mill rhythm resulted from GPR inhibition of the STG 

terminals of MCN1.  To this end, we recorded intra-axonally from MCN1 in the 

stomatogastric nerve (stn: MCN1stn), near the entrance to the STG (see Fig. 8A).  



126 
 

This recording site is electrotonically close to the MCN1 terminals in the STG 

(MCN1STG), and electrotonically distant from its arborization and spike initiation 

zone in the CoG (MCN1CoG) (Coleman and Nusbaum, 1994).   

GPR stimulation consistently evoked a hyperpolarizing response in 

MCN1stn (n=5) (Fig. 8B).  This hyperpolarization was graded in amplitude, 

correlated with the frequency of GPR stimulation (data not shown).  Unlike the 

LG-mediated presynaptic inhibition of MCN1 (Coleman and Nusbaum, 1994), 

however, we did not record any unitary IPSPs in MCN1stn in response to GPR 

stimulation.  Instead the GPR-mediated inhibition exhibited a relatively slow rise 

and decay, taking several seconds to repolarize after GPR stimulation was 

terminated (Fig. 8B).  This inhibitory action was likely to occur within the STG 

neuropil, from where it spread passively to the MCN1stn recording site, as is the 

case for the LG inhibition of MCN1STG (Coleman and Nusbaum, 1994).  This 

expectation was based on the fact that the GPR-mediated hyperpolarization 

neither suppressed nor reduced in amplitude or duration the ion-elicited action 

potentials recorded at MCN1stn.  Instead, as also occurs during LG inhibition of 

MCN1STG (Coleman and Nusbaum, 1994), these action potentials were either 

unchanged or increased slightly in amplitude.  A comparable increase in the 

amplitude of ion-elicited action potentials occurred at MCN1stn when the MCN1 

axon was comparably hyperpolarized by current injection (data not shown).   

We could not assess the functional consequences of the GPR-mediated 

presynaptic inhibition of MCN1 by using an STG target of MCN1 as a reporter 
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neuron, as we did in characterizing the LG presynaptic inhibition of MCN1 

(Coleman and Nusbaum, 1994).  This was because every STG target of MCN1 

was also a direct and/or indirect target of GPR (Katz and Harris-Warrick, 1990, 

1991; this paper).  Therefore, we instead used several alternative means to 

assess the impact of the GPR inhibition on MCN1 transmitter release within the 

STG.  First, to more directly determine whether this GPR-mediated inhibition 

could effectively influence MCN1STG activity, we took advantage of the fact that 

injecting depolarizing current into MCN1stn evokes action potentials that are 

initiated within the STG neuropil (Coleman and Nusbaum, 1994).  Consequently, 

we assessed how GPR stimulation affected MCN1 spike initiation within the 

STG.  To this end, we either injected tonic depolarizing current to elicit tonic 

MCN1 activity, or else repeatedly (1 Hz) injected 100 msec duration depolarizing 

current pulses into MCN1stn such that each control pulse elicited several MCN1 

action potentials.  During tonic MCN1STG stimulation, GPR stimulation reversibly 

suppressed MCN1 activity (n=3).  During rhythmic MCN1STG depolarizations, 

GPR stimulation consistently and reversibly reduced the number of MCN1 action 

potentials produced during each depolarizing pulse (pre-GPR: 3.9 ± 0.1 spikes; 

during GPR: 1.6 ± 1.1 spikes; post-GPR: 3.5 ± 0.1 spikes, p<0.05; n=2) (Fig. 9).   

Although GPR stimulation effectively inhibited the spike-initiating ability of 

MCN1STG, the GPR influence on incoming MCN1 action potentials was more 

complex.  Specifically, when MCN1 action potentials propagated through the stn 

into the STG during the GPR-mediated hyperpolarization, the electrical EPSPs  
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Figure 9.  GPR stimulation inhibits MCN1 action potential initiation within the 

STG neuropil.  A, Injecting depolarizing current into MCN1stn initiates action 

potentials within the STG neuropil (Coleman and Nusbaum, 1994).  Constant 

duration (100 msec) and amplitude (+2nA) depolarizing pulses injected into 

MCN1stn produced a regular number (3-4) of action potentials/pulse.  This 

number was reversibly reduced during GPR stimulation (5 Hz).  Note the delay of 

several seconds after GPR stimulation before the number of MCN1 action 

potentials/pulse returns to control levels.  B, Expanded traces from panel A of 

single pulses (1) before, (2) during and (3) after GPR stimulation.
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Figure 10.   The GPR action on the MCN1-elicited gastric mill rhythm is best 

mimicked by GPR inhibition of MCN1STG in a computational model of the MCN1-

elicited gastric mill rhythm.  In this version of the model, GPR stimulation 

presynaptically inhibited MCN1STG, thereby reducing MCN1 actions onto the LG 

neuron.  As a result, the amplitude of the modulatory current induced in LG by 

MCN1 is reduced during GPR stimulation.  This effect persists after GPR 

stimulation due to the slow time constant of the GPR action.  The GPR inhibition 

of MCN1STG slowed the LG escape from Int1 inhibition, prolonging the retractor 

phase.  Note that, in contrast, the protractor phase duration was not altered. 
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from MCN1 to LG persisted (not shown).  This result left unresolved the issue of 

whether the GPR inhibition of MCN1STG was ineffective at regulating the 

influence of MCN1 or, as in the case of the LG inhibition of MCN1STG (Coleman 

and Nusbaum, 1994; Coleman et al., 1995), this GPR-mediated inhibition 

affected MCN1 transmitter release without suppressing the electrical synapses 

made by MCN1. 

To address this issue, we returned to our computational model of the 

gastric mill system and assessed therein the consequences of GPR inhibition of 

MCN1STG (see Table 2).  As shown in Figure 10, this model predicted that within 

a given range of inhibitory conductances the GPR inhibition of MCN1STG could 

mimic the actions of GPR on the biological gastric mill rhythm.  Specifically, 

within this conductance range, GPR inhibition of MCN1STG selectively prolonged 

the gastric mill retractor phase and thereby slowed the rhythm.  However, when 

inhibitory conductances larger than this range were used, LG could not escape 

from Int1 inhibition and the gastric mill rhythm was terminated.  

The results from the model supported the hypothesis that the GPR ability 

to selectively prolong the gastric mill retractor phase involved its reduction but not 

elimination of MCN1 transmitter release.  This is evident in Figure 10 from the 

reduced but persisting MCN1 modulation in the LG neuron during GPR 

stimulation.  In this version of the model, we maintained the same level of Int1 

inhibition of LG during the rhythm with and without GPR stimulation, to reflect the 

unchanged Int1 activity level during GPR stimulation in the physiological situation 
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(Fig. 5B).  If MCN1 transmitter release was eliminated, the LG neuron would not 

have been able to escape from Int1 inhibition as long as GPR activity continued.  

However, when the GPR inhibition of MCN1STG only reduced MCN1 excitation of 

LG (peak synaptic conductance during GPR ~50% of control peak), then the 

retractor phase of the model rhythm was prolonged.  This extended retractor 

phase occurred because it took more time to build up the same level of excitatory 

drive in LG that normally occurs in the absence of GPR activity, which is the 

amount needed by LG to escape a constant level of Int1 inhibition and generate 

a burst (Fig. 10).  Once that level was attained, the LG neuron fired its burst, 

inhibiting MCN1 and thereby starting the down-regulation of its own activity.  

Unlike the situation in which Int1 inhibition of LG was strengthened (Figs. 6, 7), 

here the same amount of excitatory drive from MCN1 was attained by LG at the 

time of its burst onset.  Thus, the modulatory effect decayed with the same time 

course as occurred before GPR stimulation, leaving the LG burst duration 

unchanged. 

We then assessed whether the outcomes of the model were likely to 

reflect the related biological events by using two approaches.  First, we tested 

the model prediction that the rate at which the MCN1 excitation of the LG neuron 

developed during the retractor phase selectively regulates the retractor phase 

duration.  We did this by tonically stimulating MCN1 at different frequencies and 

assessing the resulting duration of the retractor and protractor phases.  As 

shown qualitatively by Bartos et al. (1999), the MCN1 firing frequency determines 



132 
 

the speed of the gastric mill rhythm primarily by its control of the retractor phase 

duration.  Our quantitative analysis showed that this is indeed the case.  

Specifically, the gastric mill cycle period consistently decreased as MCN1 firing 

frequency increased (Cycle period: MCN1 (6-7 Hz), 14.5 ± 5.3 sec; MCN1 (10 

Hz), 10.7 ± 3.5 sec; MCN1 (15 Hz), 9.4 ± 2.7 sec; MCN1 (20 Hz), 7.7 ± 1.9 sec; 

Two-way ANOVA p<0.005; n=7).  This change in cycle period was due largely to 

the parallel change in retractor phase duration (Retractor Phase Duration: MCN1 

(6-7 Hz), 9.7 ± 4.8 sec; MCN1 (10 Hz), 5.7 ± 2.4 sec; MCN1 (15 Hz), 3.6 ± 1.2 

sec; MCN1 (20 Hz), 3.0 ± 1.0 sec; Two-way ANOVA p<0.005; n=7).  Under these 

conditions, the protractor phase duration was unchanged (Protractor Phase 

Duration: MCN1 (6-7 Hz), 4.8 ± 1.9 sec; MCN1 (10 Hz), 5.0 ± 2.0 sec; MCN1 (15 

Hz), 5.8 ± 2.2 sec; MCN1 (20 Hz), 4.7 ± 1.5 sec; Two-way ANOVA, p>0.05; n=7).  

Second, we used the dynamic clamp to generate a gastric mill-like rhythm 

by selectively introducing, and manipulating, the likely MCN1-mediated 

conductance into the LG neuron.  For this purpose, we used the peptide-

activated current that was first characterized in the C. borealis STG to mediate 

the actions of the peptide proctolin on the pyloric circuit (Golowasch and Marder, 

1992) (see Methods).  This current, termed the “proctolin current”, was 

subsequently shown to also mediate the actions of other neuroactive peptides on 

the pyloric circuit in C. borealis (Swensen and Marder, 2000, 2001).  One of 

these peptides is CabTRP Ia, which is the peptide transmitter used by MCN1 to 

excite the LG neuron (Wood et al., 2000).   
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For these experiments we used preparations in which the STG remained 

in communication with the CoGs, to ensure a relatively high rate of spontaneous 

activity in Int1.  As commonly occurs in the isolated STNS, in these preparations 

Int1 exhibited spontaneous, pyloric-timed activity while the LG neuron was silent 

(Bartos et al., 1999).  Injection of a sufficient level of the proctolin conductance 

into the LG neuron (see Table 1) enabled LG to escape from Int1 inhibition and 

fire action potentials.  To terminate each LG burst and thereby mimic the gastric 

mill rhythm-related burst pattern of LG, we added a slow inactivation variable to 

the proctolin current to mimic the LG presynaptic inhibition of MCN1 that normally 

regulates that current (Coleman and Nusbaum, 1994; see Methods) (Fig. 11).  

Consequently, the proctolin current was effectively increasing in amplitude during 

each LG interburst and decaying during each LG burst. 

We then implemented different rates of increase for this modulatory 

current in order to determine whether this rate could selectively regulate the 

duration of the retractor phase.  To this end, we compared gastric mill-like 

rhythms with relatively slow (tau=160-320s) and fast (tau=8-16s) rates of rise for 

this excitatory drive.  Consistent with the model predictions, the relatively slowly 

developing dynamic clamp excitation of LG caused a slower rhythm (cycle 

period: fast rise, 10.97 ± 4.4s; slow rise, 18.49 ± 5.2s; t-test, p<0.005, n=5) with a 

selectively prolonged retractor phase relative to the faster developing excitation 

(retractor phase duration: fast rise, 6.62 ± 2.7s; slow rise,  14.19 ± 4.3s; t-test, 

p<0.005, n=5; protractor phase duration: fast rise, 4.36 ± 2.1s; slow rise, 4.30 ± 
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1.0s; t-test, p>0.05, n=5) (Fig. 11).  These results thus support the hypothesis 

that the selective prolongation of the retractor phase by GPR stimulation can 

result from its presynaptic inhibition of MCN1STG slowing the buildup of 

modulatory excitation from MCN1 to LG during the retractor phase. 
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Figure 11. The rate of rise of MCN1-like modulation of the LG neuron selectively 

regulates the retractor phase duration.  A, In this experiment, in place of MCN1 

stimulation, the biological LG neuron was injected with a dynamic clamp version 

of the modulatory current that likely represents the current provided by MCN1 

(Swensen and Marder, 2000; see Methods).  The only parameter that differed 

during the dynamic clamp current injection in the two traces shown was the rate 

of rise of the current amplitude during each LG interburst.  Note that the slower 

rate of rise (bottom trace) caused a slower rhythm, which resulted largely from a 
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selectively prolonged LG interburst (retractor-like phase).  Both LG traces are 

from the same preparation.  B, Injecting the dynamic clamp version of the 

modulatory current into LG with a relatively long time constant for its rise in 

amplitude consistently elicited gastric mill-like activity in LG that was slower, due 

to a selective increase in LG interburst duration, than that resulting from injection 

of the same current with a briefer time constant (p<0.005, n=5). 
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Figure 12.  Working model of the GPR actions on the gastric mill system.  

Gastric mill-like rhythmic GPR stimulation can elicit the gastric mill rhythm (Blitz 

et al., 2004) by exciting the projection neuron MCN1 (and CPN2) in the 

commissural ganglia.  During the gastric mill rhythm elicited by MCN1 (either 

directly or via activation of the VCN mechanosensory neurons), stimulating GPR 

in a behaviorally-appropriate manner (during each retractor DG neuron burst) 

slows the gastric mill rhythm by selectively prolonging the retractor phase.  This 

latter GPR action results from GPR inhibition of the axon terminals of MCN1 in 

the stomatogastric ganglion, in concert with its excitation of the retractor neurons 

Int1 and DG.  Synapse symbols:  t-bars, excitation; filled circles, inhibition. 
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DISCUSSION 

 Sensory inputs shape rhythmic motor activity via direct and indirect 

actions on the underlying pattern-generating circuits (Pearson, 2004; Buschges, 

2005).  Although the significance of these inputs to rhythmic motor activity is well 

documented, the mechanisms through which sensory actions reshape motor 

output have not been elucidated in most systems.  In this paper we show that the 

phasically-activated muscle stretch receptor neuron GPR regulates the gastric 

mill rhythm at least partly by presynaptically inhibiting the modulatory projection 

neuron MCN1 (Fig. 12).  In parallel, GPR postsynaptically excites the retractor 

phase neurons Int1 and DG (Katz and Harris-Warrick, 1989; Kiehn and Harris-

Warrick, 1992; this paper) (Fig, 12).  The presynaptic inhibition reduces the 

excitatory drive from MCN1 to all gastric mill neurons, while the postsynaptic 

excitation appears to function as a replacement for the reduced drive from MCN1 

specifically to the retractor neurons.  The consequence for the gastric mill rhythm 

is a selectively prolonged retractor phase and slower cycle period.   

 GPR regulation of the gastric mill system via presynaptic inhibition of a 

modulatory projection neuron represents a novel mechanism for phasic sensory 

regulation of ongoing motor activity.  Most previous studies of phasic sensory 

regulation have instead highlighted CPG and motor neurons as the sensory 

neuron targets (Hooper and Moulins, 1990; Katz and Harris-Warrick, 1990, 1991; 

Buschges and el Manira, 1998; Rosen et al., 2000; Shetreat-Klein and Cropper, 

2004; Pearson, 2004; Buschges, 2005).  However, Combes et al. (1999) have 
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shown that rhythmic stimulation of the anterior gastric receptor (AGR), a muscle 

tendon receptor in the lobster STNS, reconfigures an ongoing gastric mill rhythm 

via synaptic actions on modulatory projection neurons within the CoG.  

 

Sensory regulation of neural circuit activity 

 To optimize the understanding of how sensory systems influence their 

targets by manipulating them in the isolated CNS, it is important to implement the 

biologically appropriate activity pattern for that sensory system.  This 

experimental approach has led to an improved understanding, albeit not yet at 

the level of identified circuit neurons, of the phasic sensory influence on both 

intra- and inter-limb coordination during locomotion (Pearson, 2004; Buschges, 

2005).  We therefore recapitulated a behaviorally-relevant scenario for the GPR 

neurons by taking advantage of previous studies documenting their response to 

stretch of the muscles in which their dendrites are embedded (Katz et al., 1989; 

Katz and Harris-Warrick, 1989; Birmingham et al., 1999, 2003).  Our 

experimental approach is likely to approximate events occurring in the feeding 

animal because the VCN neurons are thought to be activated during stomach 

distention (Beenhakker et al., 2004), and the VCN-triggered chewing motor 

pattern would involve rhythmic stretch of the GPR-innervated muscles.   

 Acute activation of the GPR neurons at times when there is no gastric mill 

rhythm evokes a reflex response that includes a relatively long-lasting activation 

of gastric mill retractor neurons and a modulation of the pyloric rhythm (Katz and 
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Harris-Warrick, 1989, 1990, 1991).  The gastric mill response is a reinforcing 

reflex because activation of the retractor neuron DG results in stretch of the 

muscle in which the GPR dendrites are embedded, and GPR in turn evokes a 

burst of activity in DG (Katz and Harris-Warrick, 1989; Kiehn and Harris-Warrick, 

1992).  During the gastric mill rhythm, the prolonged reflex response is eventually 

terminated because the LG neuron escapes from Int1 inhibition and terminates 

retractor neuron activity (Coleman et al., 1995; this paper).   

 The GPR effect of prolonging the retractor phase of the gastric mill rhythm 

is not achieved by directly or indirectly increasing the level of synaptic inhibition 

in the protractor CPG neuron LG.  As elucidated by our computer model and 

supported by our dynamic clamp experiments, prolonging the retractor phase via 

any synaptic influence on the LG neuron would increase the duration of the 

subsequent LG neuron burst, contrary to the GPR actions on the gastric mill 

rhythm.  Thus, to selectively prolong the retractor phase, GPR instead reduces 

the MCN1 influence on the entire gastric mill circuit to delay the onset of the next 

protractor phase and, in parallel, helps maintain the retractor phase by 

substituting its own excitatory drive to the retractor neurons. 

 It may seem surprising that GPR stimulation did not increase the level of 

Int1 activity during the gastric mill rhythm, given its ability to directly excite Int1.  

However, although we did not directly test the effectiveness of this synaptic 

action during the gastric mill rhythm, GPR is likely to use this synapse to 

compensate for the reduced MCN1 excitation of Int1 that results from GPR 
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inhibition of MCN1STG.  Drawing the conclusion that GPR excitation of Int1 was 

responsible for the ability of GPR to delay the onset of the protractor phase 

would have been reasonable given the key role played by the Int1 inhibition of 

LG in gastric mill rhythm generation (Coleman et al., 1995; Bartos et al., 1999).  

The fact that this synapse turned out not to be pivotal for the GPR-mediated 

selective prolongation of the retractor phase provides a valuable lesson in 

understanding circuit operation.  If we had not examined the GPR effect on Int1 

activity during the gastric mill rhythm and had not considered the consequences 

of changing Int1 activity in terms of the buildup of MCN1 excitation of the LG 

neuron, we might not have searched for GPR influences on MCN1STG.   

 

Regulation of circuit activity at multiple sites on the same projection neuron 

 There are not many systems where it has been possible to document the 

presence and function of spatially separate synaptic actions by a single neuron 

onto the same target neuron.  Our work with GPR illustrates such an example in 

that GPR causes a long-lasting excitation of MCN1CoG and a shorter-lasting 

inhibition of MCN1STG (Blitz et al., 2004; this paper) (Fig. 12).  GPR also excites 

CPN2 in the CoGs, and its co-activation of these two projection neurons initiates 

the gastric mill rhythm (Blitz et al., 2004).  When GPR stimulation elicits the 

gastric mill rhythm, it also appears to be effectively inhibiting MCN1STG as 

evidenced by the fact that this version of the gastric mill rhythm is slower than 

that elicited by the VCN mechanosensory neurons, due to a prolonged retractor 
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phase (Blitz et al., 2004).  It will be instructive to determine whether the opposing 

GPR actions on MCN1CoG and MCN1STG are mediated by the same or different 

GPR cotransmitters, which include acetylcholine, serotonin and the peptide 

allatostatin (Katz and Harris-Warrick, 1989; Skiebe and Schneider, 1994). 

 The excitatory actions of GPR on MCN1 and CPN2 in the CoG are state-

dependent, in that they are absent when these projection neurons have been 

recently activated by the VCNs (Beenhakker, 2004).  This state-dependent 

excitation of MCN1CoG and CPN2CoG by GPR facilitates the ability of GPR to slow 

this rhythm via its actions in the STG.  Specifically, if GPR continued to excite 

MCN1CoG during the VCN-elicited gastric mill rhythm, then the increased MCN1 

firing frequency would likely result in a reduced effectiveness of the GPR 

inhibition of MCN1STG.  

 

Presynaptic inhibition enables sensory signals to dynamically regulate neural 

circuit activity 

 The role of presynaptic inhibition in the context of sensorimotor integration 

is commonly discussed with regard to the gating in or, more commonly, gating 

out of sensory information (Nusbaum et al., 1997; Buschges and el Manira, 1998; 

Evans et al., 2003; Katz, 2004).  One frequently documented example of this 

gating mechanism is the primary afferent depolarization that occurs on sensory 

axon terminals to reduce sensory input to CPG networks.  This has been 

particularly well-studied for presynaptic inhibition of sensory input to the 
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locomotor network of both vertebrates and invertebrates (Buschges and el 

Manira, 1998; Rudomin and Schmidt, 1999; Cattaert et al., 2001; Frost et al., 

2003).  This presynaptic inhibition can be regulated in a spinal segment-specific 

manner (Lomeli et al., 1998; Rudomin et al., 2004).  Presynaptic inhibition of 

projection neuron terminals has also been documented at reticulospinal axon 

terminals relevant to lamprey swimming, but its role in motor pattern generation 

remains to be elucidated (Svensson et al., 2003).  The findings described herein 

extend these studies by showing that proprioceptor-mediated presynaptic 

inhibition of a modulatory projection neuron can contribute to phase-specific 

regulation of rhythmic activity. 

 The parallel presynaptic and postsynaptic actions of the GPR 

proprioceptor neuron enable it to simultaneously mediate its reflex function of 

prolonging teeth retraction without terminating ongoing CPG activity.  If GPR 

instead terminated CPG activity to mediate its reflex function, then once GPR 

activity ceased it would take several gastric mill cycles until the rhythm was back 

to its steady-state level (Bartos et al., 1999).  Instead, as shown here, the gastric 

mill rhythm returns to its pre-GPR activity level as soon as GPR activity 

terminates.   

 Another level of control in this system is suggested by the fact that the 

sensitivity of GPR to muscle stretch is itself modulated (Birmingham et al., 1999, 

2003; Birmingham, 2001).  We therefore anticipate that our appreciation for how 

sensory signals regulate neural circuit activity will be extended further as we 
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assess the consequences resulting from modulation of GPR sensitivity for its 

influence on the gastric mill motor circuit. 
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ABSTRACT 

Little is known regarding whether presynaptic regulation of multi-transmitter 

neurons influences all transmission from these neurons.  Using the crab 

stomatogastric ganglion, we determined that the GPR proprioceptor neuron uses 

presynaptic inhibition to selectively regulate peptidergic cotransmission from the 

axon terminals of MCN1, a projection neuron that drives the biphasic gastric mill 

(chewing) rhythm.  MCN1 drives this rhythm via fast GABAergic excitation of the 

retractor neuron Int1 and slow peptidergic excitation of the protractor neuron LG.  

We demonstrate that GPR inhibition of the MCN1 axon terminals is serotonergic, 

and this serotonergic inhibition selectively weakens the MCN1 peptidergic 

excitation of LG.  At the circuit level, we show that this selective regulation of 

MCN1 peptidergic cotransmission is necessary for the normal GPR regulation of 

the gastric mill rhythm.  Thus, presynaptic inhibition can change the balance of 

cotransmitter actions and thereby enable a multi-transmitter neuron to have 

distinct, state-dependent actions on its target network.  
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INTRODUCTION  

Cotransmission provides the potential for additional flexibility in neuronal 

signaling1.  In general, cotransmission enables the convergence or divergence of 

co-released transmitters onto the same or separate target cells, respectively2-8.  

At the level of network activity, however, the impact of cotransmission remains 

largely unexplored9-11.  Even less well understood is whether presynaptic 

regulation of synaptic transmission can selectively regulate only a subset of co-

released transmitters, thereby providing the opportunity for another level of 

network flexibility.  

 Here we examine the synaptic regulation of cotransmission and its impact 

on rhythmically active motor circuits (central pattern generators: CPG) in the 

isolated stomatogastric nervous system (STNS) of the crab Cancer borealis12.  

The STNS includes the paired commissural ganglia (CoGs), oesophageal 

ganglion (OG) and stomatogastric ganglion (STG).  The STG contains the CPGs 

for the gastric mill (chewing) and pyloric (filtering of chewed food) rhythms, while 

most projection neurons that regulate these rhythms originate in the CoGs12-13.  

The gastric mill rhythm driven by the CoG projection neuron called modulatory 

commissural neuron 1 (MCN1) is well-characterized, as is its regulation by the 

muscle stretch-sensitive, gastro-pyloric receptor (GPR) sensory neuron14-16.  In 

brief, during the MCN1-elicited gastric mill rhythm, GPR stimulation selectively 

prolongs the gastric mill retractor phase by presynaptically inhibiting the STG 

terminals of MCN1 (MCN1STG)16.  This GPR action results at least partly from 
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weakening MCN1 peptidergic excitation of LG16. 

 Here we determine the relative influence of GPR on the co-released 

MCN1 transmitters GABA and Cancer borealis tachykinin-related peptide Ia 

(CabTRP Ia) during the MCN1-elicited gastric mill rhythm.  We first show that 

GPR uses only one of its three cotransmitters (serotonin) to presynaptically 

inhibit MCN1STG and, thus, to selectively prolong the gastric mill retractor phase.  

These GPR actions are suppressed by the serotonin receptor antagonist 

methiothepin.  We then take advantage of this methiothepin-sensitive 

serotonergic action to show that the GPR inhibition of MCN1STG selectively 

weakens the peptidergic action of MCN1 on the gastric mill CPG, leaving its 

GABAergic action unchanged.  At the circuit level, this selective inhibition of 

peptide cotransmission is necessary for the GPR selective prolongation of the 

gastric mill retractor phase.
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RESULTS 

GPR regulates the MCN1-gastric mill rhythm via serotonin  

 The MCN1-elicited gastric mill rhythm is a two phase motor pattern that 

includes alternating action potential bursts in protraction- and retraction phase 

STG neurons (Fig. 1)17.  This rhythmic motor activity drives the protraction and 

retraction chewing movements of the teeth in the gastric mill stomach 

compartment18.  In C. borealis, the CPG for this rhythm includes the reciprocally 

inhibitory retractor phase neuron Int1 and protractor neuron LG, plus MCN1STG 

(Fig. 1)14-15.   

 MCN1 drives the gastric mill rhythm via its slow peptidergic (CabTRP Ia) 

excitation of LG and fast GABAergic excitation of Int1 (Fig. 1b)6,14,19.  These 

MCN1 actions occur during the retraction phase, because LG inhibits MCN1STG 

during protraction (Fig. 1b)14,20.  There are also several additional gastric mill 

motor neurons that are active during the MCN1-gastric mill rhythm, but their 

activity is not necessary for rhythm generation15,17. 

 The GPR neurons are two, bilaterally symmetric pairs of neurons that 

function as proprioceptors21.  Each GPR arborizes its dendrites in muscles that 

are stretched during the retractor phase of the gastric mill rhythm21-22.  In the 

isolated STNS, selective extracellular stimulation of either GPR (gpn or mgn 

nerves) during the retractor phase of the MCN1-gastric mill rhythm selectively 

prolongs that phase, due to its presynaptic inhibition of MCN1STG (Fig. 1b,c)16.   
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Figure 1. Schematic of the isolated STNS and MCN1-gastric mill rhythm 

regulation by the proprioceptor neuron GPR.  (a) In each CoG, there is a single 

copy of the projection neuron MCN1.  MCN1 projects to the STG via the ion and 

stn nerves.  Each GPR arborizes in the STG and each CoG.  The paired 

diagonal bars through the sons and ions represent the transection of these 

nerves at the start of each experiment. Grey rectangles represent protractor 

muscles in which GPR dendrites arborize.  (b) Core gastric mill CPG schematic 

during each phase (protraction, retraction) of the gastric mill rhythm, including its 

regulation during retraction by GPR.  Paired diagonal bars through MCN1 axon 
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represent additional distance between CoG and STG.  All synapses shown are 

located in the STG neuropil.  Gray somata and synapses represent silent 

neurons/synapses.  Synapses drawn on somata or axons actually occur on small 

branches in the STG neuropil.  Note that MCN1 uses only CabTRP Ia to excite 

LG and only GABA to excite Int1.  Symbols: Filled circles, synaptic inhibition; T-

bars, synaptic excitation.  MCN1 and GPR cotransmitters are listed alongside 

their somata.  (c) As shown previously16, GPR stimulation selectively prolongs 

the retractor phase of the MCN1-elicited gastric mill rhythm.  Most hyperpolarized 

Vm: Int1, -54 mV; LG, -75 mV.  Abbreviations: PRO, protraction; RET, retraction.  

(d) Brief (2 s) 5-HT pressure application (arrow: pipette concentration: 10-4 M) 

onto the desheathed STG neuropil selectively prolonged the gastric mill retractor 

phase. Most hyperpolarized Vm: LG, -76 mV. 
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 GPR contains the cotransmitters serotonin (5-hyroxytryptamine, 5-HT), 

acetylcholine (ACh) and allatostatin (AST), and it is the only source of 5-HT 

within the STG21,23.  To further elucidate the mechanisms by which GPR 

regulates the MCN1-gastric mill rhythm, we aimed to determine the role of each 

GPR cotransmitter in its inhibition of MCN1STG. 

 Relatively brief (1 s), focal application of serotonin (10-4 M) onto the 

desheathed STG neuropil mimicked the GPR action on the gastric mill rhythm 

(Fig. 1d).  Specifically, serotonin application reversibly increased the duration of 

only the immediately subsequent retractor phase (pre-5-HT: 5.9 ± 1.0 s; 5-HT: 

21.8 ± 5.8 s; post-5-HT: 7.6 ± 2.4 s; n=7, p=0.009) (Fig. 1d).  There was no 

concomitant alteration in the protractor phase duration (pre-5-HT: 5.5 ± 1.4 s; 5-

HT: 4.7 ± 1.3 s; post-5-HT: 5.6 ± 1.4 s; n=7, p=0.87).  Similar to our previous 

results16, GPR stimulation in these same preparations also prolonged the 

retractor phase (pre-GPR: 4.8 ± 0.4 s; during GPR: 17.1 ± 4.8 s; post-GPR: 4.9 ± 

0.2 s; n=4, p=0.022) without altering protraction duration (pre-GPR: 4.2 ± 0.7 s; 

during GPR: 3.6 ± 0.6 s; post-GPR: 4.0 ± 0.8 s; n=4, p=0.84).  

 In contrast to these serotonin actions, neither focally applied AST (10-5 M: 

n=3, p=0.94) nor the muscarinic agonist oxotremorine (OXO: 10-4 M: n=3, 

p=0.94) mimicked the GPR actions on the MCN1-gastric mill rhythm 

(Supplementary Fig. 1).  Similarly, co-applying AST (10-5 M: n=3, p=0.58) or 

OXO (10-4 M: n=3, p=0.14) with serotonin (10-4 M) was equivalent to applying 

serotonin alone in the same preparations (Supplementary Fig. 1). 
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   To determine whether serotonin was necessary for mediating the GPR 

actions on the gastric mill rhythm, we tested the ability of the serotonin receptor 

antagonist methiothepin (10-5 M) to suppress these GPR effects.  Methiothepin, 

which suppresses some serotonergic actions in decapod crustaceans24, 

suppressed the GPR influence on the gastric mill rhythm (Fig. 2a).  During 

methiothepin application, GPR stimulation did not change the retractor phase 

duration (pre-GPR: 5.1 ± 1.0 s; GPR: 7.8 ± 1.2 s; post-GPR: 6.6 ± 1.4 s; n=5, 

p=0.32) or the gastric mill cycle period (pre-GPR: 12.8 ± 2.7 s; GPR: 15.4 ± 3.4 s; 

post-GPR: 14.0 ± 3.1 s; n=5, p=0.86) (Fig. 2a).    

 In the aforementioned experiments GPR was stimulated only during the 

behaviorally-relevant retractor phase.  Insofar as the retractor phase duration 

was briefer when GPR was stimulated during methiothepin application, due to 

the ability of LG to begin its burst sooner, it remained possible that the lack of a 

GPR-mediated effect during methiothepin application resulted from the relatively 

brief activation of the GPR pathway and not serotonin receptor blockade.  To test 

this possibility, we took advantage of the fact that GPR has no effect on the 

gastric mill rhythm when it is stimulated only during the protraction phase 

(Supplementary Fig. 2), and so determined the influence of methiothepin during 

prolonged, tonic GPR stimulation.  During saline superfusion, tonic GPR 

stimulation still prolonged retraction (Pre-GPR: 4.1 ± 0.4 s; During GPR: 9.3 ± 1.5 

s, n=5, p=0.011) without altering protraction duration (Pre-GPR: 5.1 ± 0.9 s; 

During GPR: 3.6 ± 0.5 s, n=5, p=0.11), whereas during methiothepin application  
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Figure 2.  Regulation of the MCN1-elicited gastric mill rhythm by GPR 

stimulation and 5-HT application is suppressed by the serotonin receptor 

antagonist methiothepin. (a) Bath application of methiothepin suppressed the 

GPR action on the gastric mill rhythm.  Top: GPR stimulation (bars) selectively 

prolonged the retractor phase during normal saline superfusion.  Bottom: During 

methiothepin application, GPR stimulation (bars) did not change the retractor 

phase duration.  After a 1.5 hour saline wash, GPR stimulation again prolonged 

the retractor phase (not shown).  Most hyperpolarized Vm: LG, -62 mV (in both 

panels).  (b) Bath application of methiothepin suppressed the effect of pressure 

ejected 5-HT on the gastric mill rhythm.  Top: During saline superfusion, brief (1 

s) pressure ejection of 5-HT (arrow) onto the desheathed STG neuropil 
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selectively prolonged the gastric mill retractor phase.  Bottom: During 

methiothepin superfusion, pressure ejected 5-HT (arrow) did not alter the gastric 

mill rhythm.  After a 1 hr saline wash, 5-HT application again prolonged the 

retractor phase (not shown).  Most hyperpolarized Vm: LG, -63 mV (in both 

panels).  Panels a and b are from separate preparations. 
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GPR did not alter retraction (Pre-GPR: 5.4 ±  0.7 s; During GPR: 7.2 ± 1.3 s, n=5, 

p=0.13) or protraction (Pre-GPR: 8.3 ± 1.8 s; During GPR: 7.3 ± 1.7 s, n=5, 

p=0.34). 

 To determine whether this methiothepin action resulted from its influence 

on a serotonin receptor, we tested its ability to influence the action of pressure-

applied serotonin on the gastric mill rhythm.  Methiothepin did suppress the 

serotonin influence on the gastric mill retractor phase (pre-5-HT: 8.8 ± 2.1 s; 5-

HT: 14.5 ± 6.0 s; post-5-HT: 6.1 ± 1.6 s; n=4, p=0.32) (Fig. 2b).  These results 

support the hypothesis that serotonin is pivotal to the GPR regulation of the 

gastric mill rhythm, with the other GPR cotransmitters playing no apparent role.  

 

GPR regulates the gastric mill rhythm via serotonergic inhibition of 

MCN1STG  

 We hypothesized that methiothepin eliminated the effects of GPR 

stimulation on the gastric mill rhythm by blocking GPR-mediated inhibition of 

MCN1STG
16.  To test this hypothesis, we took advantage of the fact that GPR 

stimulation causes a slow hyperpolarization in MCN1STG that interferes with the 

ability of MCN1STG to initiate action potentials in response to depolarizing current 

injection16.  We used this assay to determine whether GPR inhibited MCN1STG 

via a methiothepin-sensitive serotonergic synapse.  

 Pressure applied 5-HT (10-4 M) mimicked the GPR effects on MCN1STG, 

causing MCN1STG to hyperpolarize and reducing the number of MCN1 action 
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potentials elicited by each current pulse (Pre-5-HT: 5.6 ± 1.9 spikes; During 5-

HT: 0.6 ± 0.2 spikes; Post-5-HT: 5.3 ± 1.8 spikes; RM-ANOVA p=0.02, n=5) (Fig. 

3a).  In these same preparations, GPR stimulation had the same effect (Pre-

GPR: 6.1 ± 2.1 spikes; During GPR: 1.3 ± 0.9 spikes; Post-GPR: 4.3 ± 2.2 

spikes; RM-ANOVA p=0.011, n=4) (Fig. 3b).   

 Bath applied methiothepin (10-5 M) prevented the GPR inhibition of 

MCN1STG spiking during depolarizing current injections (Pre-GPR: 11.8 ± 1.7 

spikes; During GPR: 8.8 ± 1.5 spikes; Post-GPR: 11.3 ± 1.4 spikes; RM-ANOVA 

p=0.06, n=4) (Fig. 3b).  It also prevented the inhibition of MCN1STG spiking by 5-

HT application (Pre-5-HT: 8.8 ± 0.7 spikes; During 5-HT: 7.4 ± 1.8 spikes; Post-5-

HT: 7.8 ± 0.8 spikes; RM-ANOVA p=0.10, n=5) (Fig. 3a).  These results thus 

support the hypothesis that GPR inhibits MCN1STG by a methiothepin-sensitive 

serotonergic action.   

 GPR also excites Int1 and inhibits LG, but neither of these actions are 

methiothepin-sensitive, nor do they appear to contribute to the GPR influence on 

the MCN1-gastric mill rhythm (Supplementary Data Note 1, Supplementary 

Figs. 1-5).  To further test the hypothesis that GPR regulated the gastric mill 

rhythm exclusively via its inhibition of MCN1STG, we assessed the GPR influence 

on a gastric mill-like rhythm elicited by dynamic clamp current injection.  

Specifically, in the absence of MCN1 stimulation, we injected into LG a simulated 

version of the modulator (MCN1-released CabTRP Ia)-activated conductance 

(GMI-MCN1) that is normally elicited by MCN1 stimulation and is responsible for 
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driving the gastric mill rhythm.  This manipulation elicits a gastric mill-like rhythm 

in LG (Fig. 4), by activating LG in a manner that enables rhythmic reciprocal 

inhibitory interactions with Int1, which is spontaneously active16.   

 When GPR was rhythmically stimulated during the retractor phase (LG 

interburst) of the dynamic clamp-simulated gastric mill rhythm, it did not influence 

either the LG interburst (retraction) duration (Pre-GPR: 5.7 ± 0.8 s; During GPR: 

7.6 ± 0.7 s; Post-GPR: 7.2 ± 0.8 s; p=0.25, n=5) or burst (protraction) duration 

(Pre-GPR: 2.6 ± 0.6 s; During GPR: 2.6 ± 0.6 s; Post-GPR: 2.9 ± 0.6 s; p=0.96, 

n=5) (Fig. 4).  These data further support the hypothesis that GPR regulates this 

rhythm exclusively via its serotonergic inhibition of MCN1STG.  

 

GPR selectively inhibits the MCN1 peptidergic action on the gastric mill 

CPG  

 When GPR is stimulated during an MCN1-elicited gastric mill rhythm, the 

MCN1 excitation of LG is weakened and its GABAergic excitation of Int1 appears 

to be unchanged16.  This suggested that GPR inhibition of MCN1STG reduces 

CabTRP Ia release but not GABA release, insofar as MCN1 influences LG only 

via CabTRP Ia and Int1 only via GABA (Fig. 1b)6,19.  However, it remained 

possible that the MCN1 firing rate used to elicit the gastric mill rhythm enabled 

MCN1 to release sufficient GABA to saturate the GABA receptors on Int1.  If so, 

then GPR or 5-HT inhibition of MCN1STG may have been insufficient to reduce 

GABA levels below those that saturate GABA receptors on Int1.  Because 5-HT  
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Figure 3.  GPR and 5-HT inhibit MCN1STG via a methiothepin-sensitive action.  

(a) Top: The number of MCN1STG spikes elicited by rhythmic depolarizing current 

injections was reduced by 5-HT application (1 s, arrow) onto the desheathed 

STG neuropil during saline superfusion (Pre-5-HT: 13.2 ± 0.4 spikes; Steady-

state Post-5-HT: 1.0 spike; n=5 cycles).  Bottom: 5-HT application (1 s, arrow) 

with methiothepin present had a weaker effect on the MCN1STG response to 

depolarizing current injections than during saline superfusion (Pre-5-HT: 14.4 ± 

1.8 spikes; Steady-state Post-5-HT: 9.4 ± 1.2 spikes; n=5 cycles). . Double 

hashmarks in each panel represent a time break (10-30 s).  Most hyperpolarized 

Vm: MCN1STG (Top) -62 mV; (Bottom) -63 mV.  (b)  Top: During rhythmic 

depolarizing current injections as above, the number of elicited MCN1STG spikes 

was reduced or eliminated during and for a brief time after GPR stimulation (Pre-
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GPR: 6.2 ± 0.6 spikes; During-GPR: 1.3 ± 0.2 spikes/dep.; n=5 cycles).  Bottom: 

GPR stimulation did not alter the MCN1STG response to these current injections 

during methiothepin superfusion (Pre-GPR: 5.2 ± 1.0 spikes; During-GPR: 6.0 ± 

0.4 spikes; n=5 cycles).  Most hyperpolarized Vm: MCN1STG (Top) -54 mV; 

(Bottom) -54 mV. 
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Figure 4.  GPR does not influence the dynamic clamp-elicited gastric mill-like 

rhythm.  (Left) Prior to activating the dynamic clamp injections, the LG neuron 

was silent.  Vm: -71 mV.  (Right) Activation of a MCN1-like gastric mill rhythm by 

dynamic clamp injection of the modulator (MCN1)-activated voltage-dependent 

inward current (IMI-MCN1) into LG, in the absence of MCN1 stimulation16.  During 

this rhythm, GPR stimulation (bars) during a succession of retractor phases did 

not alter either phase of the MCN1-like gastric mill rhythm.  Note that the IMI-MCN1 

injections were regulated both by the voltage-dependent characteristics of the 

current and by LG burst-timed deactivation to mimic the natural LG presynaptic 

inhibition of MCN1STG
16.  The LG-mediated deactivation of IMI-MCN1 is evident by 

the steadily decreasing IMI-MCN1 amplitude during each LG burst.  The fast 

transient events during the LG interbursts represent gpn nerve stimulation 

artifacts.  Most hyperpolarized Vm: -75 mV. 
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Figure 5.  5-HT application does not alter MCN1 excitation of Int1.  (a) (Top) To 

determine if GPR stimulation reduced the amount of MCN1STG-released GABA, 

but the effect was masked by stimulating MCN1 at frequencies (15-20 Hz) that 

saturated the GABA receptors on Int1, 5-HT was pressure-ejected onto the STG 

neuropil when MCN1 was stimulated at a lower frequency that did not maximally 

excite Int1.  During a gastric mill rhythm elicited by modest MCN1 stimulation (10 

Hz), 5-HT application (1 s, bar) did not alter Int1 firing frequency (Pre-5-HT: 18.3 

± 1.4 Hz; Post-5-HT: 17.8 ± 0.2 Hz), despite still selectively prolonging the gastric 
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mill retractor phase.  In this same experiment, increased MCN1 stimulation (20 

Hz) elicited a faster Int1 firing rate (21.9 ± 0.3 Hz; p=1.6 X 10-6).  (Bottom) 

Expanded time scale of a section from Panel a (dotted lines) showing the 

unchanged Int1 firing frequency after 5-HT application (bar).  The fast transient 

events in Int1 represent ion nerve stimulation artifacts.   Most hyperpolarized Vm: 

Int1, -58 mV; LG, -58 mV.  (b) 5-HT application does not alter the MCN1-elicited 

EPSP amplitude in Int1.  During low frequency MCN1 stimulation (2 Hz), with no 

gastric mill rhythm elicited and the pyloric rhythm suppressed, MCN1-elicited 

EPSPs in Int1 were comparable (left) without- and (right) with pressure-ejected 

5-HT.  Dotted line indicates peak of control EPSP.  Vrest (left, right): -70 mV.  

Each EPSP is the average of 10 individual EPSPs.
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mimicked the GPR effect on MCN1STG while, unlike GPR, it had no direct effect 

on Int1 (Supplementary Fig. 3a), we tested the saturation hypothesis by 

determining whether 5-HT application could weaken Int1 activity during gastric 

mill rhythms elicited by a lower MCN1 stimulation frequency that caused a 

submaximal Int1 firing frequency. 

 As expected16, the standard MCN1 stimulation (15-20 Hz) used to drive 

the gastric mill rhythm increased the Int1 firing rate (Pre-MCN1: 9.9 ± 2.4 Hz; 

During MCN1: 19.9 ± 1.4 Hz, n=4, p=0.003).  Stimulating MCN1 at a lower rate 

(10 Hz) in these same preparations still elicited the gastric mill rhythm and also 

increased Int1 activity (Pre-MCN1: 9.9 ± 2.4 Hz; During 10 Hz MCN1 Stim.: 15.9 

± 1.8 Hz; n=4, p=0.007).  However, the increase in the Int1 firing rate was smaller 

than during the faster (15-20 Hz) MCN1 stimulation frequency (n=4, p=0.012).  

Nonetheless, during weaker MCN1 stimulation (7.5-10 Hz), 5-HT application did 

not reduce the Int1 firing frequency (Pre-5-HT: 15.4 ± 1.8 Hz, 5-HT: 14.8 ± 1.5 

Hz; p=0.39, n=4), despite still selectively prolonging the retractor phase (Fig. 5a). 

Thus, it was unlikely that excess GABA release by MCN1 was masking a 

reduction of its release during the serotonergic inhibition of MCN1STG by GPR.   

 The sensitivity of our assay for GABA release was limited by the relatively 

high activity level in MCN1 and Int1 during the gastric mill- and pyloric rhythms.  

Therefore, we also assayed the ability of 5-HT to regulate MCN1-mediated 

GABAergic excitation of Int1 with these rhythms silenced, and with Int1 

maintained at a hyperpolarized membrane potential (-70 mV) to suppress its 
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spontaneous firing.  Under these conditions, MCN1 stimulation (2 Hz) did not 

elicit the gastric mill rhythm but did elicit unitary EPSPs in Int1 (Fig. 5b)14.  

Focally applying 5-HT did not alter the amplitude of these EPSPs (Pre-5-HT: 0.74 

± 0.19 mV; During 5-HT: 0.80 ± 0.16 mV, p=0.82, n=4) (Fig. 5b).  As a positive 

control for the effectiveness of the 5-HT applications in these preparations, 5-HT 

was also applied during the MCN1 (15-20 Hz)-elicited gastric mill rhythm, where 

it prolonged the retractor phase (p=0.026, n=4) without altering the Int1 firing rate 

(p=0.15, n=4). 

 

Selective inhibition of MCN1STG peptidergic cotransmission is pivotal to 

GPR regulation of the gastric mill rhythm 

 We tested whether the inability of GPR to alter Int1 activity was necessary 

for the GPR influence on the gastric mill rhythm.  We first evaluated this 

hypothesis by employing a previously-described computational model of the 

GPR-regulated gastric mill rhythm16.  Specifically, we simulated the gastric mill 

rhythm generated by a model gastric mill circuit in which MCN1-mediated 

peptidergic excitation of LG was selectively reduced by GPR (i.e. MCN1-

mediated GABAergic excitation of Int1 was not altered by GPR).  We then 

compared the output of this model to the modified version in which GPR 

concomitantly reduced MCN1 excitation of both LG and Int1 (Fig. 6).  

 Consistent with previous work16, GPR stimulation prolonged the retractor 

phase when MCN1-mediated excitation of Int1 persisted (pre-GPR: 7.1 s; GPR: 
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47.4 s; post-GPR: 9.4 s) without altering the protractor phase duration (pre-GPR: 

10.6 s; GPR: 9.8 s; post-GPR: 10.4 s) (Fig 6a).  The prolonged retractor phase 

results from GPR inhibition of MCN1STG, which reduces the rate of build-up of 

MCN1 excitation of LG16.  Due to this reduction, there is an increased duration 

needed for the CabTRP Ia-activated conductance (GMI-MCN1) to rise to the level 

needed to overcome Int1 inhibition and enable an LG burst.   

We compared the aforementioned model to one in which MCN1 excitation 

of Int1 was suppressed by GPR inhibition of MCN1STG (Int1 spikes/burst: Pre-

gastric mill rhythm, 5 spikes; During gastric mill control cycles, 7 spikes; Gastric 

mill cycles with GPR stimulation, 5 spikes) (Fig. 6b).  In this latter model, GPR 

stimulation produced a 60% increase in retraction duration (Pre-GPR: 5.8 s; 

GPR: 9.8 s; Post-GPR: 6.3 s).  This change is modest when compared to the 

approximately 5-fold increase observed in the original model and the nearly 4-

fold increase observed experimentally.  

The weakened GPR effect on retraction duration in the modified model 

occurred because the reduced rate of build-up of GMI-MCN1 in LG was paralleled 

by a weaker Int1 inhibition of LG.  Because GPR stimulation reduced Int1-to-LG 

inhibition in this model, the strength of MCN1-to-LG excitation required for LG to 

reach burst threshold was decreased (Fig. 6).  Similarly, because the modulator-

activated conductance was smaller in magnitude than in control cycles at LG 

burst onset, less time was needed for this conductance to decay to the level at 

which the LG burst terminated, thereby reducing the LG burst duration (Fig. 6).   
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 We next used the biological preparation to assess the model prediction 

that selective inhibition of MCN1 peptidergic cotransmission is necessary for the 

GPR influence on the gastric mill rhythm.  To mimic a hypothetical circuit in which 

GPR reduced MCN1 excitation of Int1 as well as LG, during the period of GPR 

stimulations Int1 was injected with sufficient constant amplitude hyperpolarizing 

current (0.3 – 0.8 nA) to modestly reduce its firing frequency (During MCN1: 17.3 

± 0.8 Hz; During MCN1 w/GPR and Int1 hype.: 14.0 ± 1.2 Hz; n=4, paired t-test 

p=0.012) (Fig. 7).   

Consistent with the model prediction, reducing Int1 activity while 

stimulating GPR altered the GPR influence on the gastric mill rhythm.  Instead of 

selectively prolonging retraction, the retractor phase duration was unchanged 

relative to control cycles (Control: 5.2 ± 2.0 s; GPR Stim. plus Int1 hype.: 6.3 ± 

3.1 s; n=4, p=0.38) (Fig. 7a).  In these same preparations, when Int1 was not 

hyperpolarized by current injection, retraction was prolonged by GPR stimulation 

(Control: 5.2 ± 2.0 s; GPR Stim.: 21.7 ± 5.5 s; n=4, p=0.01) (Fig. 7b).  Combining 

GPR stimulation with reduced Int1 activity also did not alter the protractor phase 

duration (Control: 3.5 ± 1.1 s; GPR Stim. plus Int1 hype.: 2.1 ± 0.3 s; n=4, 

p=0.12), as was also the case, as usual, when GPR was stimulated without 

manipulating Int1 activity (Control: 3.5 ± 1.1 s; GPR Stim.: 3.5 ± 1.2 s; n=4, 

p=0.48).   
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Figure 6.  Selective inhibition of MCN1 peptidergic cotransmission by GPR is 

necessary for the normal GPR regulation of the MCN1-gastric mill rhythm in a 

computational model.  In this model, MCN1 activates GMI-MCN1 in the LG neuron16.  

During retraction, GMI-MCN1 steadily builds up until it reaches a level sufficient for 

LG to escape from Int1 inhibition and burst.  During protraction, LG inhibition of 

MCN1STG causes the GMI-MCN1 amplitude to decay until the LG burst terminates.  

(a) (Left) In the biologically-realistic model, where GPR inhibition of MCN1STG did 

not alter MCN1 excitation of Int1, GPR stimulation (bar) selectively prolonged the 

retractor phase.  Because GPR did not alter the Int1 firing frequency, the Int1 

inhibition of LG was unaffected by GPR.  Thus, the GMI-MCN1 amplitude needed to 

overcome this Int1 inhibition was unchanged.  The only difference was that 

during GPR stimulation more time was needed for GMI-MCN1 to reach LG burst 

threshold (dotted line).  (Right) Circuit schematic implemented in this model, with 

the GPR synapse onto MCN1STG being restricted to influencing the MCN1 
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synapse onto LG.  Symbols: t-bars, synaptic excitation; filled circles, synaptic 

inhibition.  (b) (Left) In an altered model where GPR inhibition of MCN1 did 

suppress MCN1 excitation of Int1, GPR stimulation (bars) had a reduced effect 

on retraction, as well as reducing protraction duration.  Note the reduced GMI-MCN1 

amplitude that enabled LG burst onset during GPR stimulation (dotted line).  

(Right) Circuit schematic implemented in this model, showing that the GPR 

synapse onto MCN1STG influenced the MCN1 synapses onto LG and Int1. 
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Figure 7.  An unchanging Int1 firing frequency is necessary for the normal GPR 

regulation of the MCN1-gastric mill rhythm in the biological preparation.  (a) 

During the gastric mill rhythm, coordinately stimulating GPR (bars) and injecting 

hyperpolarizing current into Int1 to reduce its firing frequency (Pre-GPR/Int1 

hype.: 18.1 ± 0.1 Hz; During GPR/Int1 hype.: 15.8 ± 0.2 Hz, n=5 cycles, p=0.002) 

did not prolong the retractor phase (Pre-GPR/Int1 hype.: 3.9 ± 0.1 s; During 

GPR/Int1 hype.: 3.5 ± 0.4 s, n=5 cycles, p=0.19) and reduced the protractor 

phase duration (Pre-GPR/Int1 hype.: 2.9 ± 0.1 s; During GPR/Int1 hype.: 1.8 ± 

0.1 s, n=5 cycles, p=8.5 X 10-5).  (b) In the same preparation, GPR stimulation 

(bar) in the absence of current injection into Int1 selectively prolonged the 
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retractor phase without altering Int1 firing frequency (Pre-GPR: 17.3 ± 0.7 Hz; 

During GPR: 17.7 ± 0.3 Hz, n=5 cycles, p=0.11).  Most hyperpolarized Vm: LG, -

65 mV; Int1, -54 mV. 
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Figure 8.  Summary circuit schematics representing the pathway by which an 

identified stretch-sensitive proprioceptor neuron (GPR) selectively inhibits 

peptidergic cotransmission from a modulatory projection neuron (MCN1) that 

drives a rhythmically active motor circuit.  (a) Circuit schematic representing the 

MCN1 influence on the gastric mill CPG neurons LG and Int1 in the absence of 

GPR input.  (b) Circuit schematic indicating the selectively weakened peptidergic 

MCN1 synapse onto the LG neuron when GPR is active, as represented by the 

thinned lines and shortened t-bar for the peptidergic synapse.  Additionally, this 

GPR action is mediated by only one GPR cotransmitter (5-HT).  Note that the 

other two GPR synapses (gray) onto the gastric mill CPG do not influence this 

circuit during the MCN1-elicited gastric mill rhythm.  Separate transmitter release 

sites for GABA and CabTRP Ia in MCN1STG are shown for diagrammatic 

purposes only, to represent their separate actions onto Int1 and LG, respectively.  

There is no available information regarding their sites of release from the 

MCN1STG terminals.  The third MCN1 cotransmitter (proctolin), does not influence 

on the gastric mill CPG. 
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DISCUSSION 

 We have established that presynaptic inhibition can regulate peptidergic 

(CabTRP Ia) cotransmission without altering cotransmission mediated by a small 

molecule transmitter (GABA).  Additionally, because the cotransmitting neuron 

uses CabTRP Ia and GABA to excite separate postsynaptic neurons, this 

presynaptic inhibition changes the balance of excitation to the separate 

postsynaptic targets (Fig. 8).  At the circuit level, this regulation of peptidergic 

cotransmission from the projection neuron MCN1 is necessary for the 

proprioceptor GPR to selectively prolong the gastric mill retractor phase.  

Previous pharmacological studies analyzing bulk release from stimulated 

sympathetic nerves also support the hypothesis that presynaptic receptors can 

separately regulate co-released transmitters25. 

 We established that GPR did not weaken MCN1 GABAergic excitation of 

Int1 by showing that application of the GPR cotransmitter 5-HT mimicked the 

ability of GPR stimulation to selectively prolong retraction without altering the Int1 

firing frequency.  This conclusion was strengthened by our findings that 5-HT 

application neither directly influenced Int1 nor did it alter the MCN1-elicited EPSP 

amplitude in Int1.  We used this approach because GPR is the only source of 5-

HT in the STG21, and we determined that the GPR action on MCN1 was 

serotonergic.  We found no evidence that the GPR actions on LG and Int1 

contribute to its regulation of the MCN1-gastric mill rhythm (Fig. 8).  These GPR 

synapses, however, may contribute to its regulation of other versions of this 
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rhythm, particularly those in which MCN1 does not participate (e.g. Saideman et 

al., 2007). 

 

Selective regulation of peptidergic cotransmission 

 The intracellular mechanism by which GPR selectively regulates 

peptidergic cotransmission by MCN1 remains to be determined, but our results 

suggest that GPR reduces neuropeptide release from MCN1 while sparing GABA 

release.  However, we did not determine how GPR influences the actions of the 

other MCN1 peptide cotransmitter, proctolin26, so it remains possible that the 

serotonergic inhibition of MCN1STG specifically inhibits CabTRP Ia transmission.   

 Selective inhibition of neuropeptide release might result from any of 

several mechanisms.  For example, the release sites of GABA and CabTRP Ia 

may be spatially separated such that the GPR synapse onto MCN1STG affects 

only peptide release.  There is, however, no evidence for spatial segregation of 

the MCN1STG cotransmitters26-27.  Alternatively, there may be distinct biochemical 

regulation of neuropeptide and GABA release in MCN1STG.  Although the 

molecular-level details underlying neuropeptide release and its regulation lags 

relative to available information for small molecule transmitter release, it is clear 

that there are both shared and distinct aspects to their regulation28-31.  

Neuropeptide and small molecule transmitter release also have different intra-

terminal Ca2+ requirements, and appear to be regulated in at least some 

terminals by different types of Ca2+ channels32-34.  
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 Consistent with the possibility of a biochemical regulation is the likelihood 

that the GPR inhibition of MCN1STG is metabotropic.  For example, no unitary 

IPSPs are recorded in MCN1STG in response to GPR stimulation, and the 

resulting hyperpolarization outlasts the GPR stimulation16 (this study).  

Additionally, GPR has metabotropic 5-HT actions on other STG targets35, and a 

G-protein-coupled, methiothepin-sensitive 5-HT receptor has been cloned and 

characterized in the decapod crustacean nervous system24.  

 The ability of axo-axonic synapses to regulate transmitter release is well-

documented36-38, but the effectiveness of these synapses for co-regulating the 

release of multiple transmitters has yet to be explored in other systems.  It may 

well be the case that at a particular set of axon terminals, some presynaptic 

inputs co-regulate the release of all cotransmitters while other inputs target the 

release of only one or a subset of them.  For example, MCN1STG receives 

additional presynaptic inputs, such as from the LG neuron20.  Hence, it will be 

informative to learn whether the selective regulation of peptide cotransmitter 

release is a necessary consequence of the organization of the MCN1STG axon 

terminals or if distinct presynaptic inputs to MCN1STG regulate peptide and GABA 

release in a manner distinct from GPR.  

 A changing balance of cotransmitter actions can also result from changes 

in the firing frequency of a neuron with peptide and small molecule 

cotransmitters.  Specifically, some cotransmitter neurons have primarily or 

exclusively small molecule transmitter-mediated ionotropic synaptic actions when 
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firing at low frequencies, with their metabotropic, peptidergic actions becoming 

prominent at faster firing frequencies3,32.  While this may also be the case for 

MCN1, it does have peptidergic actions at firing frequencies that are below the 

frequency threshold for activating the gastric mill rhythm39.  This distinction 

between the firing frequency threshold for peptide release and the threshold for 

the behaviorally-relevant firing frequency of a neuron also occurs for at least 

some other multi-transmitter neurons3. 

 

Regulation of network activity by cotransmission   

 The functional consequences of cotransmitter actions are most 

extensively studied on individual target cells1-2,7-8,40.  However, cotransmission 

studies have focused on neuronal circuits in Aplysia11,41, rodent thalamus10,42, 

and the STNS6,9,13,19,26,43-44.  It remains to be determined if presynaptic input 

selectively regulates peptidergic cotransmission in each of these systems.  

Where it does occur, its impact is likely to further extend the flexibility already 

established for neuronal circuits resulting from their modulatory inputs. 

 Although most cotransmission studies have focused on the convergent 

actions of co-released transmitters on a target cell1,7-8,11,40-41, divergent 

cotransmission has also been documented4-6,9-10,19,43.  The ability of GPR to use 

only one cotransmitter (serotonin) to regulate the MCN1-activated gastric mill 

CPG extends the influence of divergent cotransmission to sensorimotor 

integration.   
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 In conclusion, the proprioceptor GPR regulates the MCN1-elicited gastric 

mill rhythm via a single cotransmitter (serotonin) that selectively regulates 

peptidergic cotransmission by MCN1STG.  The distinct regulation of co-released 

transmitters by a presynaptic input provides the opportunity for functional 

compartmentalization, such that arborizations of the cotransmitting neuron in 

other regions of the CNS would be unaffected by this local regulation.  

Additionally, as shown here, the altered balance of cotransmitter actions resulting 

from presynaptic inhibition can change network output without evident changes in 

either the firing rate or pattern of the cotransmitting neuron or parallel changes in 

the modulatory state of the network.   
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METHODS  

Animals/preparation.  Male crabs [C. borealis (Jonah crabs)] were obtained from 

Yankee Lobster Co. (Boston, MA) and the Marine Biological Laboratory (Woods 

Hole, MA), and housed in commercial tanks containing chilled (10° C), filtered, 

and recirculated artificial seawater.  Before dissection, each crab was 

anesthetized by packing it in ice for at least 30 min.  Briefly, the foregut was 

removed from the animal, bisected along the ventral midline and pinned ventral 

side down in a silicone elastomer (Sylgard 170: K.R. Anderson, Morgan Hill, CA; 

World Precision Inc., Sarasota, FL)-coated glass bowl in chilled C. borealis 

saline.  The isolated STNS (see Fig. 1a) was then dissected from the foregut, 

transferred and pinned down in a Sylgard 184-coated (K.R. Anderson) Petri dish 

filled with saline (10–12° C).  During each experiment, the STNS was 

continuously superfused with saline (7–12 ml/min) via a switching manifold, to 

enable fast solution changes, and cooled (10–11° C) with a Peltier device.  In all 

experiments, both CoGs were disconnected from the rest of the STNS by 

bisecting the inferior oesophageal nerves (ions) and superior oesophageal 

nerves (sons) (Fig. 1a). 

 

Solutions. C. borealis saline included (in mM): 440 NaCl, 26 MgCl2, 13 CaCl2, 11 

KCl, 10 Trizma base and 5 maleic acid, pH 7.4–7.6.  Solutions of all 

pharmacological agents were dissolved in saline during the experiment for which 
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they were used, including methiothepin (Sigma-Aldrich, St. Louis, MO), serotonin 

(5-hydroxytryptamine, 5-HT: Sigma-Aldrich), oxotremorine sesquifumerate (OXO: 

Sigma-Aldrich), and allatostatin III (AST: American Peptide Company, 

Sunnyvale, CA).  Methiothepin (10-5 M) was applied by superfusion.  5-HT, OXO 

and AST were applied by pressure-ejection (1-2 s, 4-8 psi) from a microelectrode 

(1-2 MΩ) place immediately above the desheathed STG neuropil, using a 

Picospritzer II Microinjector (General Valve Corp., Fairfield, NJ). 

  

Electrophysiology.  Standard intracellular and extracellular recording techniques 

were used in this study16.  Briefly, extracellular recordings in identified nerves 

were obtained by electrically isolating sections of nerves from the bath with a 

petroleum jelly-based cylindrical compartment (Vaseline: Medical Accessories 

and Supply Headquarters, Alabaster, AL).  One of two stainless-steel electrode 

wires was placed within this compartment to record action potentials propagating 

through the nerve, and the second wire was placed in the bath as a reference 

electrode.  The differential signal was recorded, filtered and amplified with AM 

Systems (Carlsborg, WA; model 1700) and Brownlee Precision (Santa Clara, CA; 

model 410) amplifiers.  Extracellular stimulation of a nerve was achieved by 

placing the two extracellular recording wires into a stimulus isolation unit (model 

SIU5; Astromed/Grass Instruments, West Warwick, RI) controlled by a stimulator 

(model S88; Astromed/Grass Instruments).  

 Intracellular recordings of STNS somata and axons were obtained with 
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sharp glass microelectrodes (15–30 MΩ) filled with 0.6 M K2SO4 plus 20 mM KCl.  

All intracellular signals were amplified and filtered with Axoclamp 2B amplifiers 

(Molecular Devices, Sunnyvale, CA), and then further amplified with Brownlee 

model 410 amplifiers.  Intracellular current injections were performed in 

discontinuous current-clamp (DCC) mode with sampling rates of 2–3 kHz.  To 

facilitate intracellular recordings, the STG was desheathed and viewed with light 

transmitted through a darkfield condenser (Nikon, Tokyo, Japan).  

 All STNS neurons were identified by their patterns of activity, synaptic 

interactions with other identified neurons, and axonal branching patterns in 

connecting and peripheral nerves16-17.  The gastric mill rhythm was elicited by 

tonic, extracellular stimulation of the ion on the STG side of the bisected nerve14.  

This nerve contains only two projection neurons that innervate the STG (MCN1, 

MCN5), and low intensity ion stimulation can selectively activate MCN114.   

 GPR stimulation was accomplished by extracellular stimulation of the 

gastropyloric nerve (gpn), through which the GPR2 axon projects21.  GPR is 

present as a pair of bilaterally symmetric neurons (GPR1 and GPR2) that project 

through different peripheral nerve branches, but their actions on the gastric mill 

rhythm are equivalent16.  In most experiments, we stimulated the gpn during the 

retractor phase of the gastric mill rhythm to mimic its likely in vivo activity 

pattern16.  This stimulation was performed manually by turning the stimulator on 

at the beginning of the retractor phase and terminating the stimulation 

immediately after the burst onset time of the LG neuron.  LG burst onset marks 
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the end of the retractor phase and the start of the protractor phase.   

 

Data acquisition and analysis.  Data were acquired in parallel onto a chart 

recorder (Everest model; Astromed) and by digitizing (~5 kHz) and storing the 

data on computer with data acquisition hardware/software (Spike2; Cambridge 

Electronic Design, Cambridge, UK).  Digitized data were analyzed with a 

homemade Spike2 program ("The Crab Analyzer," freely available at 

http://www.uni-ulm.de/~wstein/spike2/index.html).  In brief, the burst duration of a 

neuron was defined as the elapsed time (in seconds) between the first and last 

action potential in an impulse burst.  The intraburst firing frequency was 

calculated by determining the number of action potentials in a burst minus 1, and 

then dividing it by the burst duration.  The gastric mill cycle period was defined by 

the duration (in seconds) between the onset of two successive impulse bursts in 

the LG neuron.  All analyses involved determining the mean ± SE for the 

parameter of interest from at least 5 consecutive gastric mill cycles in each 

experiment.  

 Statistical analyses were performed with SigmaStat 3.0 (SPSS, Chicago, 

IL) or Microsoft Excel (Microsoft Corp., Seattle, WA).  Statistical tests employed 

included the paired Student’s t-test and repeated measures ANOVA (RM-

ANOVA).  In any case where only two groups were compared, a paired t-test was 

used and the p-value is reported.  Except where noted, all t-tests performed were 

one-tailed.  In all other cases, and where noted in the text, an ANOVA was used 
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to compare the pre-control, manipulation (GPR stimulation or neurotransmitter 

application) and post-control groups.  For each case, the SigmaStat software 

was first used to verify a normal distribution (Kolmogorov-Smirnov test).  In any 

case where the ANOVA reported a statistical difference between the compared 

groups, the Student-Newman-Keuls post-hoc test was used, and the reported p-

value represents the post-hoc comparison of the pre-control and manipulation 

groups.  In all such experiments, the effect of the manipulation was reversible, 

and there was no significant difference between the pre-control and post-control 

groups.  Figures were made from Spike2 files incorporated into Adobe Illustrator 

and Photoshop (Adobe, San Jose, CA). 

 

Dynamic clamp.  We used the dynamic clamp technique45 to inject a simulated 

version of a biological conductance into the LG neuron.  Specifically, as in 

previously published work16, we elicited a gastric mill-like rhythm by injecting into 

LG a simulated version of the CabTRP Ia-activated conductance.  The resulting, 

voltage-dependent current in LG enables the generation of rhythmic alternating 

bursts between LG and Int1 that is comparable to those occurring during the 

MCN1-elicited gastric mill rhythm.  These experiments were performed using the 

version of the dynamic clamp software developed in the Nadim laboratory 

(Rutgers Univ. and New Jersey Institute of Technology; available at 

http://stg.rutgers.edu/software/) on a personal computer (PC) running Windows 

XP and a NI PCI-6070-E data acquisition board (National Instruments, Austin, 
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TX).  All dynamic clamp-implemented current injections were performed with 

intracellular recordings in single-electrode DCC mode. 

 

Gastric Mill Model.  We implemented a computational model modified as 

indicated below from an existing conductance-based model of the gastric mill 

circuit16,46.  We retained all aspects of the model implemented by Beenhakker et 

al.16, including modeled versions of the LG, Int1, MCN1 and GPR neurons.  The 

only parameter that was altered from the model version presented in Beenhakker 

et al.16 was the presynaptic voltage dependence of the MCN1 synapse onto Int1.  

This synapse was modified to increase its sensitivity to GPR inhibition of MCN1, 

and the results were compared to the original version as published in 

Beenhakker et al.16.  In the modified version, the activation parameter (m) for this 

synapse was modeled as follows: )50(1
1

+−+
= Ve

m  

In the above equation, m is the activation parameter and V is the membrane 

potential of the MCN1 axon terminal compartment. 
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Supplementary Data 

 

Supplementary Note 1. The GPR actions on Int1 and LG are methiothepin-

insensitive       

 Int1: Even though Int1 was not 5-HT-responsive, it was possible that 

methiothepin altered the Int1 response to GPR stimulation by a non-specific 

action.  This possibility, however, was not supported by the fact that the 

previously documented GPR excitation of Int1 that occurs in the absence of 

MCN1 stimulation2 remained effective in the presence of methiothepin (Pre-GPR: 

1.4 ± 1.0 Hz; During GPR: 9.5 ± 1.2 Hz; n=5, p=4.1 X 10-4) (Supplementary Fig. 

4a).   

 LG: The LG neuron is generally inactive when there is no gastric mill 

rhythm.  At these times its resting potential was not altered by either GPR 

stimulation (Pre-GPR: -63.4 ± 6.1 mV; During GPR: -63.7 ± 6.5 mV; two-tailed t-

test, p=0.28, n=5) or 5-HT application (Pre-5-HT: -59.7 ± 8.5 mV; 5-HT: -60.9 ± 

9.3 mV; two-tailed t-test, p=0.10, n=3).  However, in the absence of MCN1 

stimulation, the number of LG spikes per depolarizing current pulse was 

reversibly reduced by both GPR stimulation and 5-HT application 

(Supplementary Fig. 3c,d).  This GPR action on LG must be mediated by a 

distinct 5-HT receptor, however, because it persisted in the presence of 

methiothepin (n=3, p=0.036) (Supplementary Fig. 4b).  Additionally, as shown 

above, this GPR action on LG was ineffective during the gastric mill rhythm 
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(Supplementary Fig. 2). 

 A previous study also documented both a GPR-elicited EPSP in LG and a 

post-GPR stimulation increase in the pyloric-timed LG oscillations3.  However, we 

observed these EPSPs in only 2 of more than 50 preparations, and did not 

observe the increased pyloric-timed oscillations (n>50).  Presumably, the 

distinction between the earlier and current experiments was the conditions under 

which the recordings were made.  In the earlier work there was minimal 

background activity in LG, and the LG input resistance was presumably relatively 

high due to reduced synaptic input, because input from the CoGs and OG was 

blocked and no projection neurons were stimulated or modulators applied.  

Under these conditions, the LG membrane potential was generally flat or 

exhibited small amplitude pyloric-timed oscillations, because there was no gastric 

mill rhythm and the pyloric rhythm was silent or cycling slowly3.  In contrast, 

during our recordings LG received considerable input from synapses and/or 

current injection, and exhibited relatively large amplitude pyloric- and gastric mill-

timed oscillations which presumably reduced its input resistance and could have 

shunted the relatively small amplitude EPSPs and obscured the modest pyloric-

timed oscillations.  Whether these events were present and not observed or not 

present in our experiments, they did not have an impact on the results of our 

GPR stimulations insofar as eliminating the GPR influence on MCN1STG was 

sufficient to account for the GPR influence on the gastric mill rhythm.   
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SUPPLEMENTARY FIGURES. 

 

 

Supplementary Figure 1.  Serotonin is the only GPR cotransmitter to mimic the 

ability of GPR stimulation to prolong the retractor phase of the MCN1-elicited 

gastric mill rhythm.  (a) (Left) Pressure application of the muscarinic agonist 

oxotremorine (OXO: pipette concentration, 10-4 M) to the desheathed STG 

neuropil did not alter the gastric mill retractor phase duration relative to the 

retraction phase duration pre- and post-application (n=3, RM-ANOVA: p=0.94).  

(Right) Co-applying 5-HT and OXO prolonged the retractor phase (n=3, RM-

ANOVA: p=0.01) to the same extent as applying 5-HT alone in the same 
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preparations (n=3, p=0.15). Symbols: n.s., not significant; *p<0.05; **p<0.01. 

Analysis: one way ANOVA across all groups compared, Student-Newman-Keuls 

post-hoc test for all pairwise comparisons.  (b) (Left) Pressure application of the 

neuropeptide allatostatin (AST: pipette concentration, 10-5 M) did not alter the 

gastric mill retractor phase duration relative to the retraction phase duration pre- 

and post-application (n=3, RM-ANOVA: p=0.94).  Application of a higher AST 

concentration (10-4 M) terminated the gastric mill rhythm for ~1 minute (n=2, data 

not shown), during which many gastric mill neurons hyperpolarized, as shown 

previously for the pyloric rhythm response to AST2.  (Right) Co-applying 5-HT 

and AST also prolonged the retractor phase (n=3, RM-ANOVA: p=0.021) to the 

same extent as 5-HT alone in the same preparations (n=3, RM-ANOVA: p=0.58). 
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Supplementary Figure 2.  GPR stimulation during the gastric mill protractor 

phase did not alter LG activity.  GPR stimulation during the gastric mill retractor 

phase does not alter the protractor phase activity of the CPG neuron LG during 

the MCN1-gastric mill rhythm3.  Here, we tested the possible influence of GPR on 

LG activity by rhythmically stimulating GPR during the protractor (LG burst) 

phase. Most hyperpolarized Vm: -61 mV.  (a) Rhythmic GPR stimulation (bars) 

during protraction did not alter either phase of the MCN1-elicited gastric mill 

rhythm.  (b) Across preparations, rhythmic GPR stimulation during protraction did 

not alter either the number of LG spikes/burst (n=4, p=0.99) or its burst duration 

(n=4, p=0.49).   
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Supplementary Figure 3.  Focal 5-HT application does not alter Int1 activity but 

it does inhibit LG activity.  (a) In the absence of a gastric mill rhythm, pressure 

ejected 5-HT (1 s, bar) onto the desheathed STG neuropil did not alter the pyloric 

rhythm-timed intraburst firing frequency of Int1 (Pre-5-HT: 4.3 ± 0.1 Hz, n=5 

cycles; 5-HT: 3.9 Hz, n=1 cycle; Post-5-HT: 5.1 ± 0.2 Hz, n=5 cycles).  The 5-HT 

application was effective in that it prolonged the pyloric cycle period (note 

increased duration of the first lateral pyloric (LP) neuron burst after the 5-HT 

application).  The pyloric rhythm is recorded in the lvn [large unit: LP neuron; 

small unit: pyloric dilator (PD) neuron].   Most hyperpolarized Vm: -58 mV.  (b) 5-

HT application did not alter spontaneous Int1 activity across preparations (n=4, 
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p=0.42).  (c) Both GPR stimulation and 5-HT application inhibited LG activity 

driven by rhythmic depolarizing current pulses in LG.  (Top) Spikes in LG from 

each current injection were inhibited by GPR stimulation (Pre-GPR: 5.3 ± 0.3 

spikes; During GPR: 1.4 ± 0.2 spikes).  (Bottom) Depolarization-elicited LG 

spikes were inhibited by focally applied 5-HT (Pre-5-HT: 4.4 ± 0.3 spikes; Post-5-

HT: 0 spikes).  Most hyperpolarized Vm: (Both panels) -60 mV.  (d) LG activity 

was inhibited across preparations by both GPR stimulation (RM-ANOVA: 

p=0.035, n=3) and 5-HT application (RM-ANOVA: p=0.002, n=3).  
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Supplementary Figure 4.  Methiothepin does not alter the GPR actions on Int1 

or LG.  (a) (Top) In the absence of a gastric mill rhythm, GPR stimulation 

increased the pyloric rhythm-timed activity of Int1 during saline superfusion.  

(Bottom) Methiothepin superfusion did not interfere with the ability of GPR 

stimulation to excite Int1.  Most hyperpolarized Vm (both panels): -54 mV.  (b) 

(Top) Injection of periodic depolarizing current into LG during saline superfusion 
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elicited bursts of action potentials that were inhibited during GPR stimulation.  

(Bottom)  Methiothepin superfusion did not interfere with the ability of GPR 

stimulation to inhibit the depolarizing current-elicited action potentials in LG.  

Most hyperpolarized Vm (both panels): -56 mV.    
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Supplementary Figure 5.  A ceiling effect limits Int1 responsiveness to GPR 

stimulation during the gastric mill rhythm.  (a) GPR consistently increased the 

intra-burst firing rate of the spontaneously active Int1 (n=4, p=0.002). (b)  In 

these same preparations, the same level of GPR stimulation did not alter the Int1 

firing rate when Int1 activity was first elevated by depolarizing current to mimic its 

response to MCN1 stimulation (n=4, p=0.11).   
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ABSTRACT 

The cellular mechanisms underlying co-modulation of neuronal networks are not 

elucidated in most systems.  We are addressing this issue by determining the 

mechanism by which a peptide hormone, crustacean cardioactive peptide 

(CCAP), modulates the biphasic (protraction/retraction) gastric mill (chewing) 

rhythm driven by the projection neuron MCN1 in the crab stomatogastric 

ganglion.  MCN1 activates this rhythm by slow peptidergic (CabTRP Ia) and fast 

GABAergic excitation of the reciprocally inhibitory central pattern generator 

neurons LG (protraction) and Int1 (retraction), respectively.  MCN1 synaptic 

transmission is limited to the retraction phase, because LG inhibits MCN1 during 

protraction.  Bath-applied CCAP also excites both LG and Int1, but selectively 

prolongs protraction.  Here, we use computational modeling and dynamic clamp 

manipulations to establish that CCAP prolongs the gastric mill protractor (LG) 

phase and maintains the retractor (Int1) phase duration by activating the same 

modulator-activated inward current (IMI) in LG as MCN1-released CabTRP Ia.  

However, the CCAP-activated current (IMI-CCAP) and MCN1-activated current (IMI-

MCN1) exhibit distinct time courses in LG during protraction.  This distinction 

results from IMI-CCAP being regulated only by postsynaptic voltage, whereas IMI-

MCN1 is also regulated by LG presynaptic inhibition of MCN1.  Hence, without 

CCAP, retraction and protraction duration are determined by the time course of 

IMI-MCN1 build-up and feedback inhibition-mediated decay, respectively, in LG.  

With IMI-CCAP continually present, the impact of the feedback inhibition is reduced, 

prolonging protraction and maintaining retraction duration.  Thus, co-modulation 

of rhythmic motor activity can result from convergent activation, via distinct 

dynamics, of a single voltage-dependent current. 
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INTRODUCTION 

 The parallel influence of distinct modulatory inputs is likely a common 

occurrence in the CNS, yet its impact on neuronal network output is described in 

only a few systems (Dickinson et al., 1997; Svensson et al., 2001; McLean and 

Sillar, 2004; Crisp and Mesce, 2006; Kirby and Nusbaum, 2007).  Such parallel 

inputs might target the same, overlapping or distinct sets of network neurons, 

and they could act via convergent or distinct mechanisms.  This level of 

mechanistic detail regarding co-modulation, however, is unavailable for most 

networks, though it is partly established for the motor network output onto motor 

neurons in some spinal locomotor systems (Svensson et al., 2001; McLean and 

Sillar, 2004).    

 We are studying the mechanisms underlying co-modulation of motor 

pattern generation using the stomatogastric nervous system (STNS) of the crab 

Cancer borealis (Nusbaum and Beenhakker, 2002; Marder and Bucher, 2007).  

Within the STNS, the stomatogastric ganglion (STG) contains the central pattern 

generator (CPG) circuits for the gastric mill (chewing) and pyloric (filtering of 

chewed food) rhythms.  Modulatory projection neurons that regulate these CPGs 

are located primarily in the commissural ganglia (CoGs) (Coleman et al., 1992; 

Nusbaum et al., 2001).   

The peptide hormone crustacean cardioactive peptide (CCAP) modulates 

the biphasic gastric mill rhythm driven by the projection neuron modulatory 

commissural neuron 1 (MCN1), by selectively prolonging the gastric mill 

protractor phase (Kirby and Nusbaum, 2007).  MCN1 activates the gastric mill 

CPG via slow, peptidergic (CabTRP Ia) excitation of the protractor CPG neuron 
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lateral gastric (LG) and fast, ionotropic (GABA) excitation of the retractor CPG 

neuron interneuron 1 (Int1) (Wood et al., 2000; Stein et al., 2007).  MCN1 

cotransmitter release occurs primarily during retraction, due to feedback 

inhibition from LG during protraction (Coleman et al., 1995).  CCAP also excites 

LG and Int1 (Kirby and Nusbaum, 2007).  Additionally, CCAP and CabTRP Ia 

activate the same modulator-activated, voltage-dependent inward current (IMI) in 

pyloric neurons (Swensen and Marder, 2000, 2001), suggesting a comparable 

convergence in gastric mill neurons. 

Here we test and confirm the hypothesis that CCAP co-modulates the 

MCN1-gastric mill rhythm by convergent activation of an ionic current (IMI) in the 

LG neuron.  Also pivotal is that, unlike MCN1-activated IMI (IMI-MCN1), the CCAP-

activated IMI (IMI-CCAP) is independent of LG synaptic control.  The latter distinction 

results in the two IMI components exhibiting different dynamics during protraction, 

including a sustained IMI-CCAP amplitude and a declining IMI-MCN1 amplitude.  By 

manipulating IMI-CCAP in LG during the MCN1-gastric mill rhythm, we show that IMI-

CCAP is necessary and sufficient for enabling CCAP to prolong protraction and 

maintain retraction duration.  Specifically, protraction is prolonged by IMI-CCAP 

summing with IMI-MCN1 to maintain LG suprathreshold for a longer duration.  With 

protraction prolonged, however, IMI-MCN1 decays further.  Without compensation, 

this result would prolong retraction, because it would take longer for IMI-MCN1 to 

build-up sufficiently for LG to burst. However, IMI-CCAP sums with IMI-MCN1 during 

retraction to prevent a change in retraction duration.  Thus, co-modulation of 

CPG activity can result from convergent ionic current activation, acting in part via 

distinct time courses. 
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METHODS 

Animals.  Male Jonah crabs (Cancer borealis) were obtained from commercial 

suppliers (Yankee Lobster Co., Boston, MA; Marine Biological Laboratory, 

Woods Hole, MA).  Crabs were housed in commercial tanks containing 

recirculating, aerated, artificial seawater (10-12º C).  Before dissection, the crabs 

were cold-anesthetized by packing them in ice for at least 30 minutes.  The 

foregut was then removed and maintained in chilled physiological saline while the 

STNS was dissected from it and pinned down in a saline-filled silicone elastomer-

lined Petri dish (Sylgard 184, KR Anderson, Santa Clara, CA). 

 

Solutions.  The isolated STNS was maintained in C. borealis saline containing (in 

mM): 439 NaCl, 26 MgCl2, 13 CaCl2, 11 KCl, 10 Trizma base and 5 maleic acid 

(pH 7.4-7.6).  During experimentation, the preparation was continuously 

superfused with this solution (7-12 ml/min, 10-12º C).  For voltage clamp 

experiments, TTX (10-7 M, Sigma Chemical Co., St. Louis, MO), picrotoxin (10-5 

M, Sigma), TEACl (10-2 M, Sigma) and CdCl2 (2 X 10-4 M, Fluka Chemical Corp., 

Milwaukee, WI) were added to C. borealis saline.  These pharmacological agents 

were used to suppress sodium currents (TTX), glutamatergic inhibitory synaptic 

transmission (picrotoxin), a subset of potassium currents (TEACl) and a subset of 

calcium currents (CdCl2) (Marder and Eisen, 1984; Golowasch and Marder, 

1992a).  CCAP (Bachem Americas Inc., Torrance, CA) and CabTRP Ia 

(Biotechnology Center, University of Wisconsin, Madison, WI) were diluted from 

stock solutions into normal C. borealis saline or the voltage clamp saline 
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immediately prior to use. 

 

Electrophysiology.  All experiments were conducted using the isolated STNS, 

from which the CoGs were removed by transecting the superior- (sons) and 

inferior oesophageal nerves (ions) (Fig. 1A).  Intracellular and extracellular 

recordings of gastric mill neurons were made using routine methods for the 

STNS (Beenhakker and Nusbaum, 2004).  Sharp glass microelectrodes (Current 

clamp:15-30 MΩ; Voltage clamp: 15-20 MΩ), filled with 4 M K-acetate plus 20 

mM KCl or 0.6 M K2SO4 plus 10 mM KCl, were used for intracellular recordings.  

Intracellular recordings were made with Axoclamp 2  and 900A amplifiers 

(Molecular Devices, Sunnyvale, CA), and intracellular current clamp injections 

were performed in single electrode discontinuous current clamp (DCC) mode 

with sample rates of 2-5 kHz.  Discontinuous single electrode voltage clamp 

(dSEVC) recordings were performed with sampling rates of 5-15 kHz.  To 

facilitate intracellular recordings, the STG was desheathed and visualized with 

light transmitted through a dark-field condenser (Nikon, Tokyo, Japan).    

 For dSEVC recordings made from the LG primary neurite within the STG 

neuropil, LG was first filled with Alexa 568 (Invitrogen, Carlsbad, CA) using an 

intra-somatic recording.  The LG neuropil arborization was then visualized with a 

TXR filter set on a MZ16F epifluorescence microscope (Leica, Bannockburn, IL) 

to enable impalement of the primary LG neurite with a second microelectrode, 

which was then used to perform dSEVC recordings of total cell currents.  The 

somatic impalement was maintained to verify that the correct neurite was being 
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recorded once action potentials were eliminated with TTX.  Voltage ramps (-90 to 

0 mV at a rate of 75 mV/s) and steps (-90 to 0 mV in 5 or 10 mV increments, 500 

ms duration) were applied and currents were recorded using PClamp (V. 9.2; 

Molecular Devices) and Digidata 1322A (Molecular Devices).  In some 

experiments, as noted, CabTRP Ia was applied via pressure ejection (10 psi, 5 s 

duration) from a microelectrode positioned slightly above the STG neuropil using 

a Picospritzer II (Parker Hannifin Corp, Cleveland, OH). 

 Each extracellular nerve recording was made using a pair of stainless 

steel wire electrodes (reference and recording), the ends of which were pressed 

into the Sylgard-coated dish.  A differential AC amplifier (Model 1700: AM 

Systems, Carlsborg, WA) amplified the voltage difference between the reference 

wire, placed in the bath, and the recording wire, placed near an individual nerve 

and isolated from the bath by petroleum jelly (Vaseline, Lab Safety Supply Inc., 

Janesville, WI).  This signal was then further amplified and filtered (Model 410 

Amplifier: Brownlee Precision, Santa Clara, CA).  Extracellular nerve stimulation 

was accomplished by placing the pair of wires used to record nerve activity into a 

stimulus isolation unit (SIU 5: Astromed/Grass Instruments, West Warwick, RI) 

that was connected to a stimulator (Model S88: Astromed/Grass Instruments).    

 To elicit the gastric mill rhythm in the isolated STG, we selectively 

activated MCN1 by tonic extracellular stimulation of one or both of the transected 

ions, on the STG side of the transection (Fig. 1) (Bartos and Nusbaum, 1997; 

Bartos et al., 1999).  Individual STNS neurons were identified by their axonal 

pathways, activity patterns and interactions with other neurons (Weimann et al., 
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1991; Blitz et al., 1999; Beenhakker and Nusbaum, 2004).  During the MCN1-

gastric mill rhythm, the LG burst defines the protractor phase while its interburst 

duration, which is equivalent to the duration of Int1 activity, defines the retractor 

phase (Coleman et al., 1995; Bartos et al., 1999; Kirby and Nusbaum, 2007). 

 

Dynamic Clamp.  We used the dynamic clamp to inject an artificial version of an 

ionic current (IMI) into the LG neuron (Sharp et al, 1993; Bartos et al., 1999; Prinz 

et al, 2004; Beenhakker et al., 2005; Goaillard and Marder, 2006).  The dynamic 

clamp software uses the intracellularly recorded membrane potential of a 

biological neuron to calculate an artificial current (Idyn) using a conductance 

[gdyn(t)] that is numerically computed, as well as a predetermined reversal 

potential (Erev).  The injected current is based upon real time computations, 

updated in each time step (0.2 ms) according to the new values of recorded 

membrane potential, and injected back into the biological neuron.  The intrinsic 

currents are computed according to the following equations: 
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where V1 and V2 both represent the membrane potential, and X stands for either 
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m or h for calculations involving activation or inactivation, respectively.  

 In our dynamic clamp experiments we modeled IMI using parameters both 

previously determined (Golowasch and Marder 1992; Swensen and Marder, 

2000, 2001) and determined during the voltage clamp experiments in the LG 

neuron (see Results).  Specifically, we set the half-maximum voltage of the 

activation curve (Vm) at -45 mV, with the peak current occurring at -37 mV.  We 

set the reversal potential (Erev) to 0 mV, consistent with our findings and previous 

voltage clamp results for IMI (Golowasch and Marder, 1992).  IMI shows a voltage-

dependence to its activation (Golowasch and Marder, 1992a; Swensen and 

Marder 2000, 2001).  Therefore, the integer power of the activation variable m 

(abbreviated ‘p’ above) was set to a value of 1.  The slope of the activation 

sigmoid at half-maximum (Km) was -5.0 mV, the time constant of activation at 

membrane potentials below Vm (τm,Lo) was 50.0 ms and the activation time 

constant at membrane voltages above Vm (τm,Hi) was 100.0 ms.  IMI does not 

inactivate, so the integer power of the inactivation variable h (abbreviated ‘q’ 

above) was set to 0.  Therefore, no values were needed for Kh, τh,Lo, and τh,Hi, all 

of which are used to calculate the inactivation of the current.  The conductance 

value at maximum activation (Gmax) varied between 5 and 30 nS, depending on 

the experiment.  In all of our dynamic clamp experiments, the maximum current 

injected into the LG neuron never exceeded 1 nA (see Results).   

We used a version of the dynamic clamp developed in the Nadim 

laboratory (Rutgers University, Newark, NJ; available at 
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http://stg.rutgers.edu/software/) to run on a personal computer (PC) running 

Windows XP and a NI PCI-6070-E data acquisition board (National Instruments, 

Austin, TX).  As above, all dynamic clamp current injections were performed 

while recording in single-electrode, DCC mode (sample rates 2-5 kHz). 

 

Data Analysis.  Data analysis was facilitated by a custom-written program (The 

Crab Analyzer) for Spike2 (Cambridge Electronic Design, Cambridge, England) 

that determines the activity levels and burst relationships of individual neurons 

(freely available at http://www.uni-ulm.de/~wstein/spike2/index.html).  Unless 

otherwise stated, each datum in a data set was derived by determining the 

average of ten consecutive gastric mill-timed impulse bursts in the biological 

preparation, or the average of three consecutive cycles for the computational 

modeling studies.  In all experiments, the burst duration was defined as the 

duration (s) between the onset of the first and last action potential in an impulse 

burst.  The average firing rate was determined by the number of action potentials 

minus one divided by the burst duration.  Protractor phase duration was 

equivalent to LG burst duration, and retractor phase duration was equivalent to 

the LG interburst duration (time between the last action potential in one LG burst 

and the first action potential in the next LG burst).  The cycle period of the gastric 

mill rhythm was determined by calculating the duration from the onset of 

successive LG neuron bursts.   

 Voltage-clamp data analysis was performed using PClamp software.  

Total cell currents were determined either by averaging 2-3 sets of 10 ramps or 
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5-10 sets of steps in each condition and subtracting the control from the 

experimental condition.  The voltage-dependent inward current originally 

described by Golowasch and Marder (1992) was identified as a proctolin-

activated current and thus designated Iproct.  However, it is now known that many 

modulators activate this current (Swensen and Marder 2000, 2001).  

Consequently, this current is now designated as the modulator-activated inward 

current (IMI) (Grashow et al., 2009).   

 Data were collected onto a chart recorder (Models MT 95000 and Everest: 

Astromed Corp., West Warwick, RI) and simultaneously onto a PC computer 

using data acquisition/analysis tools (Spike2; digitized at ~5 kHz).  Figures were 

made from Spike2 or PClamp files incorporated into Adobe Illustrator (Adobe, 

San Jose, CA) or Igor Pro (Wavemetrics, Lake Oswego, OR) and CorelDraw 

(Corel Corporation, Ottawa, Ontario, Canada).  Statistical analyses were 

performed with SigmaStat 3.0 and SigmaPlot 8.0 (SPSS Inc., Chicago, IL).  All 

comparisons were made using the paired Student’s t-test, except where noted.  

Data are expressed as the mean ± standard error (SE).   

 

Gastric Mill Model.  We constructed a computational model modified from an 

existing conductance-based model of the gastric mill circuit (Nadim et al., 1998; 

Beenhakker et al., 2005).  The previously published version modeled the LG, 

Int1, and MCN1 neurons as having multiple compartments separated by an axial 

resistance, with each compartment possessing intrinsic and/or synaptic 

conductances.  To more realistically mimic the biological system, in this version 
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of the model we modified the MCN1-activated synaptic conductance (GMI-MCN1) in 

the dendrite compartment of the LG neuron to include a postsynaptic voltage 

dependence (Table 1).  The parameters of this model current were based on 

both a previously published voltage-clamp analysis of this current in the pyloric 

LP neuron and on the LG neuron voltage clamp results obtained in this paper 

(Golowasch and Marder, 1992a; Swensen and Marder, 2000, 2001; see 

Results).  To mimic the effects of CCAP bath application to the biological system, 

we also added to the LG neuron dendrite compartment an intrinsic (non-

synaptically activated) current (IMI-CCAP) with the same voltage dependence as IMI-

MCN1 (Table 1).  This approach was based on the fact that CCAP and MCN1-

released CabTRP Ia both excite LG (Wood et al., 2000; Kirby and Nusbaum, 

2007; Stein et al., 2007), and activate IMI in STG pyloric neurons (Swensen and 

Marder, 2000, 2001), as well as LG (this paper).   

 Simulations were performed on a PC with Windows XP.  We used the 

Network simulation software developed in the Nadim laboratory 

(http://stg.rutgers.edu/software/network.htm), which was run using the freely 

available CYGWIN Linux emulation software package.  We used a fourth-order 

Runge–Kutta numerical integration method with time steps of 0.05 and 0.01 ms.  

Results were visualized by plotting outputted data points using the freely 

available Gnuplot software package (www.gnuplot.info).  In most figures showing 

the model output, we present GMI-MCN1 and/or GMI-CCAP instead of their associated 

IMI to more clearly display their trajectory during the gastric mill retractor and 

protractor phases.  GMI parallels IMI except for the fast IMI transient that occurs 
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during each LG action potential (see Fig. 3).  The fast transients result from the 

voltage-sensitivity of IMI, which is not shared by GMI.  It is also noteworthy that the 

presentation of IMI in the model and dynamic clamp figures represents different 

conventions.  Specifically, the model output directly reports actual current flow in 

the model neuron and so uses the standard voltage clamp convention, whereas 

the dynamic clamp output represents the current injected into the neuron and 

hence uses the standard current clamp convention.  Consequently, IMI is 

represented as an inward (downward trajectory) current in the model output 

figures but is represented as a depolarizing (upward trajectory) current in the 

dynamic clamp output figures. 
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Table 1: Gastric Mill Rhythm Model Parameters for IMI-MCN1 and IMI-CCAP 

Current Gmax Erev minf mtau mpostinf mposttau mpower 

IMI-MCN1 10 0 )68(2 11
1

+−+ MCNVe
 

)68(2 11
90008000 +−+

+
MCNVe

 

)50(1.01
1

+−+ LGVe
 

50 n/a 

IMI-CCAP 0.2 0 )50(1.01
1

+−+ LGVe
 

50 n/a n/a 1 

 

Table 1.  The values used for IMI-MCN1 and IMI-CCAP in the computational model of 

the MCN1-elicited gastric mill rhythm.  The other model parameters were 

unchanged from previous studies (Nadim et al., 1998; Beenhakker et al., 2005).  

Abbreviations: Gmax, conductance value at maximum activation; Erev, reversal 

potential; minf, steady-state activation curve; mtau, activation time constant; mpostinf, 

steady-state activation curve for the post-synaptic voltage dependence; mposttau, 

activation time contstant for the post-synaptic voltage dependence; mpower, 

integer power of the activation variable m; n/a, not relevant to computation.  

Parameter names are derived from the nomenclature used in the Network 

modeling software, which was used to perform all simulations 

(http://stg.rutgers.edu/software/network.htm). 
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RESULTS 

The gastric mill system in C. borealis 

 The gastric mill rhythm (cycle period 5-20 s) controls the rhythmic 

protraction and retraction chewing movements of the teeth in the gastric mill 

stomach compartment (Heinzel et al., 1993).  This rhythm is thus composed of 

alternating impulse bursts in protractor and retractor motor neurons, plus a single 

retractor phase interneuron (Int1) (Fig. 1B) (Kirby and Nusbaum, 2007).  Several 

gastric mill neurons coincidentally exhibit faster rhythmic impulse bursts that are 

time-locked to the pyloric rhythm (cycle period 0.5-2 s) (Weimann et al. 1991; 

Kirby and Nusbaum, 2007).  The pyloric rhythm controls the filtering of chewed 

food in the pylorus, which is the stomach compartment immediately posterior to 

the gastric mill.  Int1 is one of the neurons exhibiting this dual rhythmic firing 

pattern during the MCN1-elicited gastric mill rhythm (Fig. 1B) (Bartos et al., 

1999).  Both LG and Int1 are present as single neurons in the C. borealis STG.  

 The core CPG underlying the MCN1-gastric mill rhythm includes the 

reciprocally inhibitory protractor phase neuron LG and retractor phase neuron 

Int1, plus the STG terminals of MCN1 (MCN1STG) (Fig. 1C) (Coleman et al. 1995; 

Bartos et al. 1999).  The gastric mill cycle period is also regulated by the pyloric 

pacemaker neurons, via an inhibitory synapse from the anterior burster (AB) 

neuron onto Int1 (Bartos et al., 1999).  During retraction, the slow MCN1 

excitation of LG builds up until LG escapes from Int1-mediated inhibition and 

initiates an action potential burst that starts the protractor phase.  During 

protraction, the LG burst inhibits Int1 and also inhibits MCN1STG transmitter 
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release, thereby reducing or removing further MCN1 excitation of LG (Fig. 1C).  

Hence, the LG burst persists only until the slowly decaying effects of the 

peptidergic excitation from MCN1 no longer maintain LG at a sufficiently 

depolarized membrane potential, at which point the protractor phase terminates 

and retraction resumes. 

 Superfusing CCAP (≥10-10 M) to the isolated STG slows the MCN1-gastric 

mill rhythm by selectively prolonging the protractor phase (Fig. 1D) (Kirby and 

Nusbaum, 2007).  This response occurs despite the fact that CCAP directly 

excites both LG and Int1, while having no effect on MCN1STG (Kirby and 

Nusbaum, 2007).  Hence, during the CCAP-modulated gastric mill rhythm, LG 

exhibits prolonged bursts with an increased firing frequency, but Int1 activity is 

unchanged (Kirby and Nusbaum, 2007).  Additionally, despite its lack of effect on 

MCN1STG, CCAP lowers the threshold MCN1 firing frequency necessary to elicit 

the gastric mill rhythm (Kirby and Nusbaum, 2007).  Here, our goal was to 

determine the mechanism(s) by which CCAP selectively prolongs the protractor 

phase of the MCN1-gastric mill rhythm and facilitates the ability of MCN1 to 

activate this rhythm. 

 

CCAP and CabTRP Ia both activate IMI in the LG neuron 

 To determine the mechanism whereby CCAP modulates the MCN1-

gastric mill rhythm, we first identified the ionic currents in LG that were influenced 

by MCN1 and CCAP using dSEVC recordings from the LG primary neurite (see 

Methods).  To obtain voltage clamp of sufficient quality, we conducted these 
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experiments with action potentials suppressed, which prevented us from 

identifying the MCN1-activated current(s) via MCN1 stimulation.  However, 

because CabTRP Ia is the sole cotransmitter by which MCN1 influences LG 

(Wood et al., 2000; Stein et al., 2007), we bath applied CabTRP Ia and CCAP to 

identify the ionic current(s) affected by these two pathways.    

 Bath applied CCAP (10-7 M) and CabTRP Ia (10-6 M) each caused an 

inward shift in the holding current at a holding potential of -60 mV (Saline: -1.8 ± 

1.0 nA, CCAP: -2.6 ± 1.2 nA, n=4, p=0.05; Saline: -1.6 ± 0.7 nA, CabTRP Ia: -2.0 

± 0.7 nA; n=4, p=0.003).  Subtraction of the control total current from the total 

current during CCAP or CabTRP Ia application revealed a voltage-dependent 

inward difference current (Fig. 2A,B).  The peak current amplitude (CCAP: -2.6 ± 

0.4 nA, n=4; CabTRP Ia: -0.8 ± 0.2 nA, n=4) occurred at -36.3 ± 2.4 mV in CCAP 

(10-7 M: n=4) and -36.7 ± 6.2 mV in CabTRP Ia (10-6 M: n=4).  The half-maximal 

current occurred at -51.1 ± 6.3 mV in CCAP (n=4) and at -60.9 ± 4.2 mV in 

CabTRP Ia (n=4).  

 The voltage dependence of these peptide-elicited currents was 

comparable to one another and to that previously reported for IMI in pyloric 

neurons (Golowasch and Marder, 1992a; Swensen and Marder, 2000).  To 

further test whether CCAP and CabTRP Ia converged to activate the same 

current (IMI) in the LG neuron, we performed occlusion experiments.  Specifically, 

CabTRP Ia (10-4 M) was pressure applied to the desheathed STG neuropil in 

control conditions, then CCAP (10-6 M) was bath-applied during which the 

influence of CabTRP Ia (10-4 M) was again assayed.  Pressure-ejected CabTRP  
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Figure 1.  Schematics of the isolated stomatogastric nervous system and the 

core CPG circuit for the MCN1-elicited gastric mill rhythm, plus examples of the 

MCN1-elicited gastric mill rhythm and the influence of the peptide hormone 

CCAP on this rhythm.  A, The STNS consists of the unpaired STG and OG plus 

the paired CoGs.  There is a single MCN1 in each CoG.  The paired lines 

crossing the ions and sons indicate that these nerves were transected at the start 

of each experiment, isolating the STG from the CoGs.  Abbreviations:  Nerves- 

dvn, dorsal ventricular nerve; ion, inferior oesophogeal nerve; lvn, lateral 

ventricular nerve; son, superior oesophageal nerve; stn, stomatogastric nerve.  

B, MCN1 stimulation activates the gastric mill rhythm.  Before MCN1 stimulation, 

LG was silent and Int1 exhibited pyloric rhythm-timed activity.  At the start of 
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MCN1 stimulation, the retractor phase was initiated with a fast increase in Int1 

activity while LG slowly depolarized.  The pyloric-timed depolarizations in LG 

resulted from the rhythmic inhibitory input to Int1 from the pyloric pacemaker 

neuron AB (Bartos et al., 1999).  When LG reached burst threshold, it inhibited 

Int1 (and MCN1STG) and protraction commenced.  C, Schematic of the core CPG 

for the MCN1-elicited gastric mill rhythm during each phase of this rhythm.  

Despite the schematic representation of synapses onto somata, all synapses are 

located on small neuronal branches in the STG neuropil.  Active neurons have 

red-filled somata, while inactive neurons have gray-filled somata.  Symbols: small 

filled circles represent synaptic inhibition, while t-bars represent synaptic 

excitation; m, metabotropic; i, ionotropic.  Based on Coleman et al. (1995) and 

Bartos et al. (1999).  D, As shown by Kirby and Nusbaum (2007), bath-applied 

CCAP selectively prolongs the protractor phase of the MCN1-elicited gastric mill 

rhythm.  Note that CCAP did not activate the gastric mill rhythm prior to MCN1 

stimulation.  Retraction is represented by the dorsal gastric (DG) retractor motor 

neuron.  Bar on top of second LG burst in each panel represents the LG burst 

duration in saline, to show that the LG burst is prolonged by CCAP.  
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Figure 2.  The peptides CCAP and CabTRP Ia activate the same voltage-

dependent inward current in the LG neuron.  A,B, Subtracting the total average 

current elicited by voltage ramps (-90 to 0 mV, 75 mV/s) in control conditions 

from the total current elicited in 10-7 M CCAP (A) or 10-6 M CabTRP Ia (B) 

revealed a voltage-dependent inward current.  The currents plotted are the 

difference currents resulting from subtracting the average of 20 (A) or 30 (B) 

ramp trials in each condition.  C, Voltage steps (-90 to 0 mV, 10 mV increments, 

500 ms duration) were used to measure the currents activated by pressure 

applied CabTRP Ia (10-4 M; 10 psi, 5 s; black line and symbols), CCAP (10-6 M; 

bath application; red line and symbols) and CabTRP Ia in the presence of CCAP 

(blue line and symbols).  In each case, the control current was subtracted from 

the experimental condition and the difference currents are plotted.  In this 

example, the IPeak for CabTRP Ia alone was ~0.4 nA, but with CCAP present the 

IPeak added by CabTRP Ia was ~0.02 nA.  Each plot is the mean steady state 

current (last 200 ms of a step) at each voltage, from the average of 5 sets of 

steps.  The different Erev in panels A/B and C reflects the variability in measured 

Erev for IMI in this and previous work (Golowasch and Marder, 1992a).  This 

variability is likely due to the relatively large leak- and voltage-dependent outward 

currents in STG neurons at depolarized voltages (Golwasch and Marder, 1992b; 
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Khorkova and Golowasch, 2007).  However, within each experiment, Erev for IMI-

CabTRP Ia and IMI-CCAP was similar and in all experiments the measured Erev was 

comparable to those previously reported (Golowasch and Marder 1992).   Panels 

A-C were different preparations. 
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Ia activated the aforementioned voltage-dependent inward current in the control 

condition (Peak current: -0.9 ± 0.2 nA, n=4) (Fig. 2C).  Subsequent bath-applied 

CCAP also activated a voltage-dependent inward current.  However, pressured-

ejected CabTRP Ia in the presence of CCAP elicited little to no additional current 

compared to CCAP alone (CCAP: -1.9 ± 0.2 nA; CCAP + CabTRP Ia: -2.1 ± 0.2 

nA, n=4; CCAP vs CCAP + CabTRP Ia: p=0.16; CabTRP Ia alone vs CCAP + 

CabTRP Ia: p<0.001, One Way RM ANOVA followed by Student-Newman Keuls 

test) (Fig. 2C).  After CCAP washout, CabTRP Ia again elicited a current 

comparable to the pre-CCAP condition (-1.0 ± 0.1 nA, n=3; Wash vs Control: 

p=0.91; One Way RM ANOVA followed by Student-Newman Keuls test).  This 

reversible occlusion result indicated convergence of the two peptides on the 

same voltage-dependent inward current.  Given the similar properties of this 

current to those of the previously identified IMI (Golowash and Marder 1992; 

Swensen and Marder, 2000), and the fact that CCAP and CabTRP Ia activate 

this current in pyloric neurons, we conclude that these peptides also activate IMI 

in LG. 

 

CCAP actions in a computational model mimic its actions on the biological 

gastric mill rhythm 

 We next examined the role of IMI-CCAP in LG for mediating the selective 

prolongation of the gastric mill protractor phase by bath-applied CCAP, using our 

previously developed computational model of the MCN1-gastric mill rhythm 

(Nadim et al., 1998; Beenhakker et al., 2005).  We modeled IMI based on values 
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obtained in our LG voltage clamp experiments (see above) as well as previously 

determined values (Golowasch and Marder, 1992a; Swensen and Marder, 2000) 

(Table I).  Further, we assumed that the CCAP influence was at a steady-state, 

comparable to its continued presence during bath application of the peptide in 

the biological experiments (Kirby and Nusbaum, 2007), and so the IMI-CCAP 

amplitude and its associated GMI-CCAP were sensitive only to changes in the LG 

membrane potential.   

 The trajectory of the model GMI-MCN1 in the LG neuron steadily increased in 

amplitude during retraction due to continual MCN1 release of CabTRP Ia, and 

decayed during protraction due to feedback inhibition from LG onto MCN1STG 

(Figs. 1C, 3A,B) (Coleman and Nusbaum, 1994; Coleman et al., 1995; 

Beenhakker et al., 2005).  As is evident in Figure 3, the GMI-MCN1 peak amplitude 

occurred at LG burst onset, from which point it decayed until it could no longer 

sustain the LG burst.  The trajectory of the GMI-CCAP amplitude in LG during 

retraction was similar to that of GMI-MCN1, but was distinct during protraction where 

it exhibited a sustained maximal amplitude (Fig. 3B).  The model IMI trajectory in 

LG tracked that of GMI for both MCN1 and CCAP, except at LG burst onset where 

IMI amplitude diminished because the LG membrane potential approached Erev 

for IMI.  

 We used this model to test whether we could mimic the CCAP-mediated 

selective increase in protractor phase duration by adding IMI-CCAP to (a) Int1 and 

LG, (b) Int1 alone or (c) LG alone.  We did not document the presence of IMI-CCAP 

in the biological Int1, but for use in the model we assumed it to be the current 
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responsible for the CCAP excitation of Int1.  This assumption was based on the 

fact that it is the relevant current in all CCAP-responsive pyloric circuit neurons 

as well as LG (Swensen and Marder 2000; this study).  

 In the model, adding IMI-CCAP to both Int1 and LG prolonged the protractor 

phase relative to the control gastric mill rhythm (Control: 11.0 ± 0.4 sec; CCAP: 

14.0 ± 0.3 sec; n=3 cycles, p<0.05) without altering the retractor phase duration 

(Control: 7.0 ± 0.2 sec; CCAP: 7.3 ± 0.3 sec; n=3 cycles, p=0.39).  When instead 

IMI-CCAP was added only to Int1, there was no change in the protractor phase 

duration (Control: 11.0 ± 0.4 sec; CCAP: 10.4 ± 0.2 sec; n=3 cycles, p=0.15) or 

retractor phase duration (Control: 7.0 ± 0.2 sec; CCAP: 7.3 ± 0.5 sec; n=3 cycles, 

p=0.21).  Despite the lack of effect on the gastric mill rhythm, the CCAP-activated 

conductance was effective at increasing the Int1 intraburst firing frequency in the 

absence of a gastric mill rhythm (Control: 6.9 ± 0.04 Hz; CCAP: 9.2 ± 0.08 Hz, 

n=3 cycles, p<0.001), similar to what was previously observed with biological 

CCAP superfusion (Kirby and Nusbaum, 2007).  Lastly, providing IMI-CCAP only to 

LG was comparable to adding this current to both Int1 and LG.  Specifically, the 

gastric mill protractor phase was prolonged (Control: 11.0 ± 0.4 sec; CCAP: 13.8 

± 0.3 sec; n=3 cycles, p<0.05), without altering the retractor phase duration 

(control: 7.0 ± 0.2 sec; CCAP: 6.8 ± 0.1 sec; n=3 cycles, p=0.27) (Fig. 3).  

  In both models that exhibited an increased protractor phase duration with 

CCAP present, there was no change in the summed peak IMI amplitude in LG 

despite the parallel activation of this current by MCN1 and CCAP.  For example, 

in the model where IMI-CCAP was added only to LG, the summed peak IMI 
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amplitude was unchanged at both the start (MCN1: -48.3 ± 1.4 pA; MCN1 plus 

CCAP: -47.4 ± 0.7 pA; n=3 cycles, p=0.35) and end MCN1: -15.2 ± 0.5 pA; 

MCN1 plus CCAP: -16.2 ± 0.4 pA; n=3 cycles, p=0.14) of each LG burst (Fig. 4).  

Consequently, the membrane potential at which the LG burst terminated was the 

same whether or not IMI-CCAP was present (MCN1: -31.1 ± 1.28 mV; MCN1 plus 

CCAP: -29.78 ± 1.14 mV, n=4 cycles, p=0.15).  Despite the fact that the total 

peak IMI was unchanged, the component contributed by MCN1 (IMI-MCN1) was 

decreased at LG burst onset (w/o CCAP: -48.3 ± 1.4 pA; w/CCAP: -41.6 ± 0.6 

pA; n=3 cycles, p<0.05) and offset (w/o CCAP: -15.2 ± 0.5 pA; w/CCAP: -9.4 ± 

0.3 pA; n=3 cycles, p<0.05), although the net decrease of IMI-MCN1 was essentially 

unchanged (~32 pA).  The decreased contribution from MCN1 is shown for GMI 

levels in Figure 4.   

 The IMI-CCAP amplitude was roughly constant across the duration of the LG 

burst and so appeared responsible for the prolonged LG burst in CCAP (Fig. 3).  

This IMI-CCAP effect resulted from its replacing a portion of the decaying IMI-MCN1 

during the LG burst with a non-decaying IMI component (Figs. 3, 4).  In the CCAP 

condition, the total IMI amplitude (i.e. IMI-MCN1 plus IMI-CCAP) was equal to the IMI-

MCN1 amplitude without CCAP at both LG burst onset and offset (Fig. 4).  

However, the presence of the non-decaying IMI-CCAP component reduced the 

overall decay rate of IMI, and thus prolonged the LG burst (Fig. 4C). Furthermore, 

because some IMI-MCN1 was replaced by IMI-CCAP, the IMI-MCN1 amplitude at LG burst 

offset in the CCAP condition was reduced compared with the control condition 

(Figs. 3, 4C).   
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Figure 3.  Distinct dynamics of the CCAP- and MCN1-activated IMI in LG underlie 

the selective prolongation of the gastric mill protractor phase by CCAP in a 

computational model.  A, The gastric mill rhythm driven only by MCN1.  Note the 

pyloric-timed build-up of IMI-MCN1 and its underlying conductance (GMI-MCN1) in LG, 

during each retractor phase and decay during protraction.  IMI-MCN1 was regulated 

by its voltage-sensitivity, the proximity of the LG membrane potential to Erev for IMI 

(“driving force”), and the inhibitory feedback synapse from LG to MCN1STG.  GMI 

was unaffected by the driving force.  B, The gastric mill rhythm driven by both 
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MCN1 stimulation and CCAP.  As in the biological preparation, the LG burst 

(protraction) is prolonged while its interburst (retraction) is unchanged in duration.  

Note the distinct dynamics of GMI-CCAP and GMI-MCN1 during protraction.  In this 

model, IMI-CCAP was added only to LG. 
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Figure 4.  MCN1- and CCAP-activated GMI exhibit different dynamics during the 

MCN1-gastric mill rhythm, but the total peak GMI activated during this rhythm is 

the same when MCN1 is stimulated in saline and with CCAP present.  Using the 

computational model, the GMI trajectory and amplitude during a single cycle of 

the gastric mill rhythm are shown when MCN1 is stimulated (A) without CCAP 

and (B) with CCAP present.  ”Sum” represents the summation of GMI-MCN1 and 

GMI-CCAP.  C, Overlay of Panels A and B indicate that the summed peak GMI in 

Panel B is the same as GMI-MCN1 from Panel A.  
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 The unchanged retractor phase duration in the versions of the model with 

CCAP present in either LG and Int1 or LG alone was also consistent with our 

previous results from the biological preparation, in which CCAP selectively 

prolonged the protractor phase (Kirby and Nusbaum, 2007).  In these models, 

the IMI-MCN1 amplitude was smaller at LG burst offset with CCAP present (Figs. 3, 

4).  However, the continued presence of IMI-CCAP throughout the retractor phase 

apparently compensated for the reduced IMI-MCN1 amplitude, resulting in the 

retractor phase remaining unaltered by the presence of CCAP (Figs. 3, 4). 

 

Injecting artificial IMI-CCAP into LG selectively prolongs protractor phase 

activity 

 We used the dynamic clamp to inject artificial IMI-CCAP selectively into the 

biological LG neuron and thereby test the prediction from our computational 

model that the CCAP action on LG is pivotal for its influence on the gastric mill 

rhythm.  During the MCN1-gastric mill rhythm, injecting artificial IMI-CCAP into LG 

over a range of conductance values (10-30 nS) elicited a CCAP-like selective 

prolongation of the protractor phase.  For example, using a 20 nS conductance 

value, this current injection consistently increased the duration of the gastric mill 

cycle period (Control: 9.6 ± 1.0 sec; IMI-CCAP: 12.2 ± 1.4 sec, n=10, p=0.003) (Fig. 

5).  This slowing of the rhythm resulted from a selective increase in the protractor 

phase (LG burst) duration (Control: 4.9 ± 0.5 sec; IMI-CCAP: 6.8 ± 0.8 sec; n=10, 

p=0.001), insofar as there was no change in the retractor phase duration (n=10, 

p=0.09) (Fig. 5). Artificial IMI-CCAP injections also selectively prolonged the 
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protractor phase at lower (10 nS: protraction, p=0.02; retraction, p=0.22, n=5) 

and higher (30 nS: protraction, p=0.01; retraction, p=0.28, n=5) conductance 

values.  When we injected IMI-CCAP into LG at 5 nS, there was no consistent 

change across preparations in either phase of the rhythm (protraction, p=0.07; 

retraction, p=0.14, n=5).  The maximal amplitude of these CCAP-like IMI 

injections (range: 0.3 – 1.0 nA, mean: 0.64 ± 0.05 nA, n=16) was less than the 

maximal IMI-CCAP amplitude determined in voltage clamp experiments in both 

pyloric neurons and the LG neuron (Golowasch and Marder, 1992a; Swensen 

and Marder, 2000; this study).  They were also comparable to previous dynamic 

clamp IMI injections used to study neuropeptide actions on the pyloric circuit 

(Swensen and Marder, 2001) and those injected into LG to drive a MCN1-like 

gastric mill rhythm (Beenhakker et al., 2005). 

 The increased LG neuron burst duration resulting from IMI-CCAP injection 

presumably resulted from the associated increased depolarizing current, which 

was largest at the depolarized membrane potential that occurs during the LG 

burst (Fig. 5B).  The LG burst nonetheless still terminated, despite the presence 

of the additional drive from IMI-CCAP.  As shown above in the computational model, 

LG burst termination presumably resulted from the fact that despite IMI-CCAP 

prolonging the LG burst, it did not prevent the continued decay of IMI-MCN1 during 

each LG burst to the point where LG could no longer sustain its activity (Fig. 4) 

(Coleman et al., 1995; Beenhakker et al., 2005).     

 To test whether IMI-CCAP alone was sufficient to elicit a LG burst, we used 

the dynamic clamp to inject the same simulated CCAP conductance described  
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Figure 5.  Injection of an artificial IMI-CCAP into LG mimics the influence of bath-

applied CCAP on the biological MCN1-gastric mill rhythm.  A, A control gastric 

mill rhythm, represented by an intracellular LG recording, driven by tonic MCN1 

stimulation (15 Hz) with no dynamic clamp-mediated IMI-CCAP injected into LG.  

Most hyperpolarized Vm: LG, -65 mV.  B, In the same LG recording as Panel A, 

injection of an artificial IMI-CCAP into LG with the dynamic clamp selectively 

prolonged the gastric mill protraction phase.  MCN1 stimulation was the same as 

in Panel A.  Note the relatively constant amplitude of the artificial IMI-CCAP during 

each LG burst.  Most hyperpolarized Vm: LG, -66 mV.  C, Dynamic clamp-
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mediated injection of artificial IMI-CCAP into LG consistently prolonged the LG burst 

without altering the retraction duration, and thereby increased the gastric mill 

cycle period.  Data are from 10 preparations.  Symbols: Black bars, MCN1 

stimulation only; Gray bars, MCN1 plus artificial IMI-CCAP; ***p<0.005; n.s., not 

significant. 
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Figure 6.  Dynamic clamp-mediated subtraction of IMI-CCAP in LG during bath 

application of CCAP eliminates the CCAP prolongation of the gastric mill 

protractor phase.  A, The MCN1-gastric mill rhythm without CCAP application.  B, 

Bath applied CCAP selectively prolonged the gastric mill protractor phase.  C, 

Injection of a negative conductance version of IMI-CCAP into LG during CCAP 

application eliminated the prolongation of the protractor phase by CCAP without 

altering the retractor phase duration.  All 3 panels are from the same intracellular 

LG recording.
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above into the LG neuron without MCN1 stimulation.  Under this condition, 

injecting IMI-CCAP did not activate spiking in LG or change its membrane potential 

(Control: -61.9 ± 2.3 mV; IMI: -59.0 ± 3.6 mV; n=3, p=0.09).  The lack of an 

evident LG response to IMI-CCAP injection presumably resulted from the relatively 

small amplitude of this voltage-dependent current near the resting potential 

(Golowasch and Marder, 1992a; Swensen and Marder, 2000; see above).  Thus, 

IMI-CCAP alone was not sufficient to elicit a LG burst. 

 Injecting artificial IMI-CCAP into LG (GMI 20 nS) during the gastric mill rhythm 

also increased the number of action potentials during the LG burst (Control, 33.7 

± 4.5 spikes; IMI: 51.2 ± 8.5 spikes; n=10, p=0.002) as well as its intra-burst firing 

frequency (Control: 6.6 ± 0.5 Hz; IMI: 9.6 ± 1.7 Hz; n=10, p<0.05) (Fig. 5A,B). 

These changes in LG activity were comparable to those observed during CCAP 

bath application (Kirby and Nusbaum, 2007).  

 

Subtracting IMI in LG eliminates CCAP prolongation of the protractor phase 

 We further tested the hypothesis that the CCAP-mediated selective 

prolongation of the gastric mill protractor phase resulted from CCAP activation of 

IMI in the LG neuron by selectively subtracting this current in LG during CCAP 

bath application.  Specifically, during bath applied CCAP (10-7 M), we reversed 

the sign of the artificial IMI-CCAP conductance (i.e., from +20 nS to -20 nS) injected 

into LG while leaving all other dynamic clamp parameters unchanged. 

 Injecting the negative conductance version of IMI-CCAP into LG during CCAP 

application eliminated the CCAP prolongation of the gastric mill protractor phase 
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(Control: 3.8 ± 0.6 sec; CCAP: 5.2 ± 0.3 sec; CCAP plus Neg. IMI: 4.3 ± 0.3 sec, 

n=4; one-way ANOVA, p<0.05; Holm-Sidak post-hoc test: CCAP vs. Control, 

p<0.05; All other pairwise comparisons, p>0.05) (Fig. 6).  These injections had 

no unexpected effects on the motor pattern.  For example, there was no 

concomitant change in the retractor phase duration (Control: 5.2 ± 1.0 sec; 

CCAP: 4.7 ± 0.5 sec; CCAP plus Neg. IMI: 6.6 ± 1.3 sec, n=4, p=0.13).  This 

result also confirmed the prediction of our computational model that IMI-CCAP in LG 

alone is sufficient to mimic the influence of bath-applied CCAP on the gastric mill 

rhythm.  If the influence of IMI-CCAP was necessary in both LG and Int1, then 

selectively eliminating IMI-CCAP in LG alone would not have returned the gastric 

mill rhythm to the control condition.   

  

IMI-CCAP in LG maintains a constant retractor phase duration  

 It was initially surprising to learn that bath-applied CCAP did not alter the 

retractor phase duration (Kirby and Nusbaum, 2007).  Our expectation was that, 

despite the fact that the IMI-CCAP amplitude in LG was likely to be relatively small 

during retraction, it would still summate with the MCN1-activated current.  We 

anticipated that this summation would result in the burst threshold onset for LG 

occurring sooner, thereby reducing the duration of this phase.  Both our model 

and dynamic clamp injections did show that IMI-CCAP was indeed activated during 

retraction, but was smaller in amplitude than the parallel build-up of IMI-MCN1.  The 

model, however, also suggested that the retractor phase duration was 

unchanged by CCAP because the IMI-CCAP compensated for the reduced level of 
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IMI-MCN1 during retraction when CCAP was present (Fig. 4).  It thus remained to be 

determined whether the relatively small amplitude of IMI-CCAP during retraction was 

nonetheless sufficient to influence the retractor phase duration.  

We first used our computational model to test the hypothesis that the 

presence of IMI-CCAP only during protraction was sufficient to mimic the ability of 

bath-applied CCAP to selectively prolong protraction.  To this end, we compared 

simulations of the MCN1-gastric mill rhythm with IMI-CCAP in LG being absent or 

continually present vs. being present only during protraction (Fig. 7).  In contrast 

to the ability of continually present IMI-CCAP to selectively prolong protraction (Fig. 

7A,B), simulations where IMI-CCAP was present only during the protractor phase 

still prolonged protraction (Control: 11.0 ± 0.4 sec; CCAP during Protraction: 14.5 

± 0.3 sec; n=3 cycles, p<0.05) but it also increased the retractor phase duration 

(Control: 7.0 ± 0.2 sec; CCAP during Protraction: 8.1 ± 0.1 sec; n=3 cycles, 

p<0.05) (Fig. 7C,D).      

 The retractor phase was prolonged when CCAP was absent during 

retraction because, during the CCAP-prolonged protractor phase, IMI-MCN1 

decayed to a lower level relative to rhythms without any CCAP (Control: -15.2 ± 

0.5 pA; CCAP during Protraction: -9.7 ± 0.5 pA; n=3 cycles, p<0.05) (Fig. 7A,C).  

Thus, when there was no CCAP present during retraction, it took the MCN1-

activated current longer to build up to the point needed to initiate the next LG 

burst (Fig. 7A-C).  When CCAP was present continuously, the additional CCAP 

conductance during the retractor phase offset this effect (see above).  Thus, 

although continuous application of the CCAP conductance to LG in our model 
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selectively changed the protractor phase duration, its presence during retraction 

was also necessary for maintaining the control retractor phase duration (Fig. 7D).  

We next used dynamic clamp injections of IMI-CCAP to test the 

computational model prediction that IMI-CCAP during retraction was also necessary 

to enable CCAP to maintain the retraction duration unchanged from the control 

condition.  Specifically, we injected IMI-CCAP (GMI: 20 nS) either continuously or 

selectively during the protraction phase of the MCN1-gastric mill rhythm (Fig. 8A-

C).  The protraction-specific injections reproducibly prolonged the protractor 

phase (Control: 7.4 ± 1.3 sec; Protraction-only IMI-CCAP: 12.7 ± 2.2 sec; n=5, 

p=0.006) (Fig. 8).  As predicted by the model, injecting IMI-CCAP only during 

protraction also prolonged the retractor phase (Control: 6.3 ± 1.0 sec; 

Protraction-only IMI-CCAP: 8.7 ± 1.3 sec; n=5, p=0.007).  Hence, the gastric mill 

cycle period was increased (Control: 13.7 ± 2.0 sec; Protraction-only IMI-CCAP: 

21.3 ± 3.2 sec; n=5, p=0.002) (Fig. 8).  Concomitant with these manipulations, 

there was a significant increase in the number of LG action potentials per burst 

(Control: 58.1 ± 13.1 spikes; Protraction-only IMI-CCAP: 119.5 ± 24.1 spikes; n=5, 

p=0.003). 

 

Artificial IMI-CCAP injection into LG reduces the MCN1 firing frequency 

threshold for gastric mill rhythm initiation 

 CCAP superfusion also reduces the threshold MCN1 firing frequency 

necessary to elicit the gastric mill rhythm (Kirby and Nusbaum, 2007).  The 

magnitude of this action ranged from ~25% at higher CCAP concentrations (10-7  
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Figure 7.  Limiting the influence of IMI-CCAP in LG to the protractor phase does not 

mimic the action of bath-applied CCAP on the gastric mill rhythm in a 

computational model.  A, Gastric mill rhythm, driven only by MCN1 stimulation.  

Black bar represents the retractor phase duration.  B, Gastric mill rhythm 

resulting from MCN1 stimulation during the continually-present influence of 
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CCAP.  Note the prolongation of the LG burst (protraction) and unchanged 

duration of the LG interburst (retraction) relative to Panel A.  Black bar represents 

the retractor phase duration in Panel A.  C, Selectively providing IMI-CCAP to the 

gastric mill protractor phase changed the CCAP influence on the MCN1-gastric 

mill rhythm by prolonging retraction as well as protraction.  Note that the retractor 

phase is prolonged relative to the black bar that represents the retractor phase 

duration in the control conditions.  Most hyperpolarized Vm (A-C): LG, -73 mV.  D, 

Providing IMI-CCAP during protraction consistently prolongs both gastric mill 

phases, causing an increased gastric mill cycle period relative to the saline and 

continually present IMI-CCAP conditions.  Symbols: black bars, saline condition; 

gray bars, continually present IMI-CCAP; white bars, IMI-CCAP present during 

protraction only; *p<0.05, **p<0.01, ***p<0.005; n.s., not significant. 
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Figure 8.  Limiting the influence of artificial IMI-CCAP in LG to the protractor phase 

does not mimic the action of bath-applied CCAP on the gastric mill rhythm in the 

biological preparation.  A, The MCN1-gastric mill rhythm during saline 

superfusion.  Black bar represents the retractor phase duration.  B, Continual 

injection of artificial IMI-CCAP into LG via the dynamic clamp selectively prolonged 

the protractor phase.  Black bar represents the retraction duration during saline 

superfusion.  C, Protraction-only injection of artificial IMI-CCAP into LG prolonged 

both phases of the gastric mill rhythm.  Note prolonged retractor phase, evident 

by comparison to the black bar, which indicates the control duration of retraction.  

All panels are from the same LG recording.  Most hyperpolarized Vm: LG, -68 

mV.
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M – 10-8 M) to ~20% at lower CCAP concentrations (10-9 M – 10-10 M) (Kirby and 

Nusbaum, 2007).  This effect occurred despite the fact that MCN1STG is not 

CCAP-responsive (Kirby and Nusbaum, 2007).  We were therefore interested to 

learn if the addition of IMI-CCAP in LG was not only pivotal for altering the gastric 

mill motor pattern but also tuned the ability of MCN1 to activate this rhythm.  

Thus, we tested, first in the computational model and then in the biological 

preparation, whether the reduced MCN1 firing rate threshold resulted from IMI-

CCAP in LG. 

 We first used our computational model to test whether the presence of IMI-

CCAP in the LG neuron was sufficient to reduce the threshold of MCN1 stimulation 

needed to elicit the gastric mill rhythm.  Adding IMI-CCAP to LG did reduce the 

MCN1 stimulation threshold by 25% (Fig. 9).  Specifically, when CCAP was 

absent, the minimum effective MCN1 stimulation rate was 8 Hz for eliciting the 

gastric mill rhythm, while under the same conditions 6 Hz stimulation produced 

no gastric mill rhythm.  However, when IMI-CCAP was added to LG, 6 Hz MCN1 

stimulation did elicit the gastric mill rhythm (Fig 9). 

 In the biological preparation, when MCN1 was stimulated in the absence 

of the dynamic clamp injections and at subthreshold frequency levels for 

activating the gastric mill rhythm, it still effectively elicited electrical coupling 

EPSPs (Coleman et al., 1995) and occasional action potentials in LG (Fig. 10A).  

In contrast, stimulating MCN1 either at a faster frequency or at the previously 

subthreshold frequency with IMI-CCAP injected into the LG neuron activated the 

gastric mill rhythm (Fig. 10B,C).  



250 
 

 Injecting the artificial IMI-CCAP (GMI: 20 nS) into LG consistently reduced the 

MCN1 threshold firing frequency for eliciting the gastric mill rhythm.  As shown 

previously (Kirby and Nusbaum, 2007), under control conditions the minimum 

MCN1 firing frequency at which the gastric mill rhythm was elicited was 6.1 ± 1.1 

Hz (n=8).  IMI-CCAP injection into LG reduced this minimum frequency value by 

~20% (5.1 ± 1.1 Hz; n=8, p<0.001).  To control for the possibility of time-

dependent changes in the effectiveness of MCN1 stimulation at near-threshold 

firing levels, we performed a parallel set of experiments in which we determined 

the threshold MCN1 firing frequency for gastric mill rhythm activation at 

successive time points that were equivalent to those used in the dynamic clamp 

experiments.  There was no change in the threshold MCN1 firing frequency value 

in these control experiments (n=9, p=0.20). 
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Figure 9.  The presence of IMI-CCAP in LG lowers the threshold MCN1 firing 

frequency for activating the gastric mill rhythm in a computational model.  A, 

Modest MCN1 stimulation in the absence of CCAP did not activate the gastric 

mill rhythm.  Note the small effect of GMI-MCN1 on the LG membrane potential.  B, 

A slightly faster MCN1 stimulation frequency, without CCAP present, did elicit the 

gastric mill rhythm.  C, The previously sub-threshold MCN1 stimulation frequency 

did drive the gastric mill rhythm when IMI-CCAP was present in LG.  Most 

hyperpolarized Vm (A-C): LG, -73 mV. 
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Figure 10.  Injection of artificial IMI-CCAP into LG lowers the threshold MCN1 firing 

frequency for activating the gastric mill rhythm in the biological preparation.  A, 

Modest MCN1 stimulation in the absence of IMI-CCAP did not activate the gastric 

mill rhythm, but did elicit unitary EPSPs and action potentials in LG.  Most 

hyperpolarized Vm: LG, -60 mV.  B, A slightly faster MCN1 stimulation frequency, 

without IMI-CCAP injection, did elicit the gastric mill rhythm.  Most hyperpolarized 

Vm: LG, -64 mV.  C, The previously sub-threshold MCN1 stimulation frequency 

did drive the gastric mill rhythm when artificial IMI-CCAP was injected into LG.  Most 

hyperpolarized Vm: LG, -64 mV. 
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DISCUSSION 

 We have established that peptide hormone modulation of a neuronally 

modulated motor circuit results from the convergent hormonal and neuronal 

activation of the same ionic current, albeit with distinct dynamics, in a single CPG 

neuron.  These results provide a novel mechanism by which co-modulation 

regulates the activity of both a single neuron and its associated circuit.  At the 

circuit level, the convergent activation of IMI in the LG neuron enabled the peptide 

hormone CCAP to buoy the decaying influence of IMI-MCN1 during the LG burst 

and thereby prolong the protractor phase of the MCN1-elicited gastric mill 

rhythm.  It was surprising to discover that the continual presence of IMI-CCAP was 

also necessary and sufficient for preventing a change in the retractor phase 

duration, and that the same mechanism, addition of IMI-CCAP to the LG neuron, 

played the distinct role of reducing the threshold firing rate at which MCN1 

activates the gastric mill rhythm. 

Based on our computational model, the presence of IMI-CCAP during 

retraction was necessary due to the reduced IMI-MCN1 amplitude at the start of 

retraction (i.e., LG burst offset) in the presence of CCAP, relative to the control 

condition (Fig. 4).  Without compensation from CCAP, a reduced amount of IMI-

MCN1 at the start of retraction would prolong that phase.  This is because more 

time would be needed to build-up sufficient IMI-MCN1 to enable LG to escape from 

Int1 inhibition and initiate its burst, as we verified by providing dynamic clamp-

injected IMI-CCAP only during protraction.   

 It was anticipated from previous studies that IMI-CCAP would be regulated 
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only by voltage whereas IMI-MCN1 would also be regulated by rhythmic feedback 

inhibition (Golowasch and Marder, 1992a; Swensen and Marder 2000, 2001; 

Beenhakker et al., 2005).  However, circuit dynamics are often non-intuitive, and 

it was our computational modeling results that led us to appreciate the potential 

role of these distinct dynamics specifically in the LG neuron for regulating the 

gastric mill rhythm, and for developing the testable predictions that we 

subsequently verified with our dynamic clamp manipulations.   

 The necessity and sufficiency of the CCAP action in LG for regulating the 

gastric mill rhythm was not a foregone conclusion, because CCAP also excites 

other gastric mill neurons, including Int1 (Kirby and Nusbaum, 2007).  CCAP 

actions appear to be tuned for selectively prolonging the gastric mill protractor 

phase, insofar as this action occurs across at least four orders of magnitude for 

bath-applied CCAP (10-10 – 10-6 M: Kirby and Nusbaum, 2007) and across at 

least a 3-fold range of dynamic clamp injected CCAP-like GMI (10 – 30 nS: this 

paper).   

 Thus far, the motor circuit response to the simultaneous action of different 

neuromodulators is documented in only a few systems (Dickinson et al., 1997; 

Katz and Edwards, 1999; Svensson et al., 2001; McLean and Sillar, 2004; Crisp 

and Mesce, 2006; Koh and Weiss, 2007).  However, many and perhaps all 

neural systems receive multiple modulatory inputs, suggesting that co-

modulation is a prevalent mode of network regulation (Proekt et al., 2005; 

Grillner, 2006; Huguenard and McCormick, 2007; Jing et al., 2007; Marder and 

Bucher, 2007; Doi and Ramirez, 2008; Jordan et al., 2008).   
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 At the single neuron level, Swensen and Marder (2000) showed that co-

applying two peptide modulators with convergent actions on the same ionic 

current has an additive effect on that current, similar to the convergent MCN1 

and CCAP action in the LG neuron.  Unlike the latter case, though, both 

modulators were bath-applied and hence their individual actions on the shared 

target current were co-regulated solely by the membrane potential of the target 

neurons (Swensen and Marder, 2000).  The convergent postsynaptic action of 

two inputs onto an intrinsic current via distinct dynamics also suggests a 

mechanistic explanation for the observation that the same modulatory substance 

is often present as both a circulating hormone and locally released modulator 

(Kristan et al., 2005; Marder and Bucher, 2007; Israel et al., 2008).  Specifically, 

in addition to these two modes of delivery likely resulting in overlapping but 

distinct access to their shared receptors and their acting via different 

concentrations, these two delivery modes could enable a single modulator to 

evoke the same type of differential dynamics that we found for the convergent 

actions of hormonal CCAP and neuronally-released CabTRP Ia.  

 Non-targets of a neuromodulator can play key roles in the neuronal circuit 

response to that modulator, while strongly affected targets sometimes play 

minimal roles (Hooper and Marder, 1987; Ayali and Harris-Warrick, 1999; 

Thirumalai et al., 2006).  Similarly, two CCAP actions appeared to have little 

impact on the gastric mill rhythm.  First, the excitation of the retractor CPG 

neuron Int1 by CCAP did not alter either Int1 activity during this rhythm or the 

retractor phase duration in either the biological preparation (Kirby and Nusbaum, 
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2007) or our computational model (this paper).  This result was supported by the 

ability of our dynamic clamp subtraction of IMI-CCAP in LG during bath-applied 

CCAP to return the gastric mill rhythm to the control condition.  Presumably the 

CCAP excitation of Int1 becomes effective under other conditions, such as other 

versions of the gastric mill rhythm (Beenhakker et al., 2004; Blitz et al., 2004; 

Saideman et al., 2007; Blitz et al., 2008).   

 Second, as discussed above, CCAP appeared to have no effect on the 

retraction phase, but in fact it was necessary to prevent a change in the duration 

of this phase (Fig. 4).  Without our computational model and dynamic clamp 

manipulations, we would have concluded that CCAP did not influence this phase 

of the rhythm.  The influence of IMI-CCAP on the retractor phase duration may well 

have an explicit consequence in the presence of parallel inputs to the gastric mill 

CPG.  For example, the GPR proprioceptor neuron selectively prolongs the 

gastric mill retractor phase during saline superfusion (Beenhakker et al., 2005).  

It may be that the presence of CCAP will alter the influence of this sensory 

feedback system.   

 It was surprising that adding IMI-CCAP in LG was also sufficient to mimic the 

ability of bath-applied CCAP to lower the threshold MCN1 firing frequency for 

activating the gastric mill rhythm.  In general, the ability of neuromodulation to 

influence a synaptic action could result from a presynaptic and/or postsynaptic 

site of action (LeBeau et al., 2005; Brill et al., 2007; Marder and Bucher, 2007; 

McDonald et al., 2008; Doi and Ramirez, 2008).  For example, presynaptically, 

modulation can alter neuronal firing rate, action potential duration and/or the 
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amount of transmitter released per action potential.  Postsynaptically, modulation 

can alter the response to a synaptic action by changing intrinsic conductances 

and/or the responsiveness or availability of neurotransmitter receptors.  Our 

results indicate that modulation can also alter neuronal responsiveness, and 

consequently circuit responsiveness, via a postsynaptic convergent activation of 

an ionic current.  This result also further supports the hypothesis that IMI 

activation exclusively in LG is pivotal for MCN1 activation of the gastric mill 

rhythm.   

 The ability of hormonal CCAP levels to lower the MCN1 firing threshold for 

gastric mill rhythm activation also has a potential behavioral correlate.  First, 

even in the absence of a recent feeding episode, the steady-state level of CCAP 

in the hemolymph is likely to be at or above-threshold for the CCAP modulation 

of the gastric mill rhythm (Phlippen et al., 2000; Kirby and Nusbaum, 2007).  

Additionally, recent work by Chen et al. (2009) suggests that several identified 

peptides, including CCAP, are present in the C. borealis hemolymph at higher 

levels in hungry than recently fed crabs.  This observation supports the 

hypothesis that, in hungry crabs, what would normally be too low a MCN1 firing 

rate would be sufficient to initiate chewing.  One source of long-term activation of 

MCN1 is the ventral cardiac neurons (VCNs), which are mechanosensory 

neurons embedded in the internal epithelium of the cardiac sac stomach 

compartment (Beenhakker et al., 2004).  The cardiac sac is a food storage 

compartment just anterior to the gastric mill.  This leads to the possibility that, in 

hungry crabs, modest activation of the VCNs by residual food in the cardiac sac 
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could trigger sufficient MCN1 activity to initiate an episode of chewing.  Thus, co-

modulation via convergence onto a single ionic conductance, as we demonstrate 

here, could serve as a cellular mechanism for altering a behavioral threshold. 

 In conclusion, the peptide hormone CCAP influences the MCN1-elicited 

gastric mill rhythm by its convergent activation, with MCN1-released CabTRP Ia, 

of a voltage-dependent inward current (IMI) in a single CPG neuron (LG neuron).  

The distinct dynamics of IMI activation and decay by these parallel inputs is pivotal 

to the resulting motor pattern.  Paradoxically, in the presence of CCAP, the 

amplitude of the MCN1-activated IMI in LG is reduced relative to saline controls 

(Fig. 4), yet the CCAP contribution enables the same MCN1 activity to elicit 

prolonged LG bursts.  Lastly, although the gastric mill protractor phase is 

selectively altered by CCAP, in reality CCAP-activated IMI is also necessary for 

the fact that the retractor duration is not altered.  Future experiments will 

determine whether the presence of this peptide hormone alters the sensitivity of 

the gastric mill CPG to inputs that influence the apparently unchanged retractor 

phase.   
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ABSTRACT 

The parallel influence of hormonal modulation and sensory feedback on 

motor circuit activity, although likely a common occurrence, is yet to be 

elucidated in most systems.  To this end, we are examining how the hormone 

crustacean cardioactive peptide (CCAP) modulates the influence of the 

gastropyloric receptor (GPR) proprioceptor neuron on the gastric mill (chewing) 

rhythm in the crab stomatogastric ganglion.  GPR stimulation selectively prolongs 

the gastric mill retractor phase, via presynaptic inhibition of modulatory 

commissural neuron 1 (MCN1), a projection neuron that drives the gastric mill 

rhythm.  Bath-applied CCAP selectively albeit modestly prolongs the gastric mill 

protractor phase, by activating the same modulator-activated conductance (GMI) 

in the gastric mill circuit neuron lateral gastric (LG) that is activated by MCN1.  

Here we show, using computational modeling and dynamic clamp manipulations, 

that CCAP weakens the GPR regulation of the gastric mill rhythm. This CCAP 

action results from the ability of CCAP-activated GMI to substitute for the MCN1-

activated GMI in LG.  Because GPR prolongs retraction duration by weakening 

MCN1 activation of GMI in LG, the parallel activation of GMI by CCAP reduces the 

ability of GPR to regulate GMI activation and hence to regulate the gastric mill 

rhythm.  CCAP thereby regulates the GPR-mediated feedback without directly 

influencing GPR or its synaptic target MCN1.  Thus, despite CCAP having only a 

modest influence on the isolated gastric mill rhythm, its underlying mechanism of 

action on this rhythm enables it to effectively weaken sensory feedback to that 

circuit.  
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INTRODUCTION  

Rhythmically active motor circuits generate multiple distinct motor 

patterns, due to the inputs they receive from descending, ascending and 

hormonal sources (Marder et al., 2005; Dickinson, 2006; Rossignol et al., 2006; 

Buschges et al., 2008; Doi and Ramirez, 2008).  In most cases, however, these 

inputs have been studied individually, despite the fact that multiple parallel inputs 

to a circuit are likely commonly co-active in the intact system (Dickinson, 2006; 

Marder and Bucher, 2007; Doi and Ramirez, 2008; Pearson, 2008).  Co-

activating parallel inputs will not necessarily result in a simple summation of their 

individual actions, due to circuit interactions and because there can be 

interactions between these inputs (McLean and Sillar, 2004; Beenhakker et al., 

2007; Blitz and Nusbaum, 2007; Buschges et al., 2008).   

 We are studying the hormonal modulation of sensory feedback to a central 

pattern generator (CPG) circuit, using the isolated stomatogastric nervous 

system (STNS) of the crab Cancer borealis (Nusbaum and Beenhakker, 2002; 

Marder and Bucher, 2007).  The STNS contains several distinct but interacting 

CPGs whose outputs are regulated by identified projection neurons, sensory 

neurons and hormones (Marder and Bucher, 2007).  The gastric mill (chewing) 

CPG, located in the stomatogastric ganglion (STG), is driven by the projection 

neuron modulatory commissural neuron 1 (MCN1) (Nusbaum et al., 2001).  This 

CPG includes the reciprocally inhibitory protractor phase neuron LG (lateral 

gastric) and retractor phase neuron Int1 (interneuron 1), plus the STG axon 

terminals of MCN1 (MCN1STG) (Coleman et al., 1995; Bartos et al., 1999).  MCN1 
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drives this rhythm via slow, peptidergic excitation of LG and fast, GABAergic 

excitation of Int1 (Wood et al., 2000; Stein et al., 2007).  Both actions occur 

during retraction, due to LG inhibition of MCN1STG during protraction (Coleman et 

al., 1995).  MCN1 excites LG via a modulator-activated inward current (IMI) 

(DeLong et al., 2009b). 

 The MCN1-gastric mill rhythm is altered by the peptide hormone 

crustacean cardioactive peptide (CCAP) and the gastropyloric receptor (GPR) 

neuron (Beenhakker et al., 2005; Kirby and Nusbaum, 2007; DeLong et al., 

2009a,b).  GPR selectively prolongs the retractor phase, by presynaptically 

inhibiting MCN1STG and thereby reducing activation of the MCN1-elicited IMI (IMI-

MCN1) in LG (Beenhakker et al., 2005; DeLong et al., 2009a).  Bath-applied CCAP 

selectively prolongs the protractor phase, by providing a parallel activation of IMI 

(IMI-CCAP) in LG (DeLong et al., 2009b).  

 Here, we investigate how CCAP modulates GPR regulation of this gastric 

mill rhythm.  Our computational model predicted that adding IMI-CCAP to LG is 

sufficient to weaken GPR regulation of this rhythm, by reducing GPR control IMI in 

LG.  Support for this prediction came from finding that bath-applied CCAP to the 

biological STG weakened GPR regulation of the gastric mill rhythm.  

Furthermore, as directly predicted by our model, dynamic clamp injected IMI-CCAP 

into LG mimicked this CCAP action, indicating that LG is the site for CCAP gating 

of the GPR action.  These results provide a novel mechanism for modulation of 

sensorimotor integration, which does not involve a direct modulation of either the 

sensory neuron or its synaptic target.  
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METHODS 

Animals.  Male Jonah crabs (Cancer borealis) were obtained from commercial 

suppliers (Yankee Lobster Co., Boston, MA; Marine Biological Laboratory, 

Woods Hole, MA).  Crabs were housed in commercial tanks containing 

recirculating, aerated, artificial seawater (10-12° C).  Before dissection, the crabs 

were cold-anesthetized by packing them in ice for at least 30 minutes.  The 

foregut was then removed and maintained in chilled physiological saline while the 

STNS was dissected from it and pinned down in a saline-filled silicone elastomer-

lined Petri dish (Sylgard 184, KR Anderson, Santa Clara, CA). 

 

Solutions.  The isolated STNS was maintained in C. borealis saline containing (in 

mM): 439 NaCl, 26 MgCl2, 13 CaCl2, 11 KCl, 10 Trizma base and 5 maleic acid 

(pH 7.4-7.6).  During experimentation, the preparation was continuously 

superfused (7-12 ml/min, 10-12° C) with C. borealis saline via a switching 

manifold, to enable fast solution changes.  CCAP  was diluted from stock 

solutions into saline immediately prior to use. 

 

Electrophysiology.  All experiments were conducted using the isolated STNS, 

from which the CoGs were removed by transecting the superior- (sons) and 

inferior oesophageal nerves (ions) (Fig. 1).  Intracellular and extracellular 

recordings of gastric mill neurons were made using routine methods for the 

STNS (Beenhakker and Nusbaum, 2004).  Sharp glass microelectrodes (15-30 

MΩ), filled with 0.6 M K2SO4 plus 10 mM KCl, were used for intracellular 
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recordings.  Intracellular recordings were made with Axoclamp 2 amplifiers 

(Molecular Devices, Sunnyvale, CA), and intracellular current clamp injections 

were performed in single electrode discontinuous current clamp (DCC) mode 

with sample rates of 2-5 kHz.  To facilitate intracellular recordings, the STG was 

desheathed and visualized with light transmitted through a dark-field condenser 

(Nikon, Tokyo, Japan).    

 Each extracellular nerve recording was made using a pair of stainless 

steel wire electrodes (reference and recording), the ends of which were pressed 

into the Sylgard-coated dish.  A differential AC amplifier (Model 1700: AM 

Systems, Carlsborg, WA) amplified the voltage difference between the reference 

wire, placed in the bath, and the recording wire, placed near an individual nerve 

and isolated from the bath by petroleum jelly (Vaseline, Lab Safety Supply Inc., 

Janesville, WI).  This signal was then further amplified and filtered (Model 410 

Amplifier: Brownlee Precision, Santa Clara, CA).  Extracellular nerve stimulation 

was accomplished by placing the pair of wires used to record nerve activity into a 

stimulus isolation unit (SIU 5: Astromed/Grass Instruments, West Warwick, RI) 

that was connected to a stimulator (Model S88: Astromed/Grass Instruments).    

 To elicit the gastric mill rhythm in the isolated STG, MCN1 was selectively 

activated by tonic extracellular stimulation of one or both of the transected ions 

(10-15 Hz), on the STG side of the transection (Fig. 1) (Coleman et al., 1995; 

Bartos and Nusbaum, 1997).  Individual STNS neurons were identified by their 

axonal pathways, activity patterns and interactions with other neurons (Weimann 

et al., 1991; Blitz et al., 1999; Beenhakker and Nusbaum, 2004).   



272 

 

Dynamic Clamp.  We used the dynamic clamp to inject an artificial version of an 

ionic current (IMI) into the LG neuron (Sharp et al., 1993; Bartos et al., 1999; Prinz 

et al., 2004; Beenhakker et al., 2005; DeLong et al., 2009b).  The dynamic clamp 

software uses the intracellularly recorded membrane potential of a biological 

neuron to calculate an artificial current (Idyn) using a conductance [gdyn(t)] that is 

numerically computed, as well as a predetermined reversal potential (Erev).  The 

artificial current is computed in real time, updated in each time step (0.2 ms) 

according to the new values of recorded membrane potential, and injected back 

into the biological neuron. 

 For these experiments, we used a version of the dynamic clamp 

developed in the Nadim laboratory (Rutgers University, Newark, NJ; available at 

http://stg.rutgers.edu/software/) to run on a personal computer (PC) running 

Windows XP and a NI PCI-6070-E data acquisition board (National Instruments, 

Austin, TX).  As above, all dynamic clamp current injections were performed 

while recording in single-electrode, DCC mode (sample rates 2-5 kHz). 

 

Data Analysis.  Data analysis was facilitated by a custom-written program (The 

Crab Analyzer) for Spike2 (Cambridge Electronic Design, Cambridge, England) 

that determines the activity levels and burst relationships of individual neurons 

(freely available at http://www.uni-ulm.de/~wstein/spike2/index.html).  Unless 

otherwise stated, each datum in a data set was derived by determining the 

average of 7-10 consecutive gastric mill-timed LG bursts, except during GPR 

stimulations when the average was taken for the duration of the GPR stimulation 
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(1-5 cycles).  In all experiments, the burst duration was defined as the duration 

(seconds, s) between the onset of the first and last action potential in an impulse 

burst.  The firing rate was determined by the number of action potentials minus 

one divided by the burst duration.  The cycle period of the gastric mill rhythm was 

determined by calculating the duration from the onset of two successive LG 

neuron bursts.   

 Data were collected onto a chart recorder (Models MT 95000 and Everest: 

Astromed Corp., West Warwick, RI) and simultaneously onto a PC computer 

using data acquisition/analysis tools (Spike2; digitized at ~5kHz).  Figures were 

made from Spike2 files incorporated into Adobe Illustrator (Adobe, San Jose, 

CA).  Statistical analyses were performed with Microsoft Excel (Microsoft, 

Redmond, WA) and SigmaStat 3.0 (SPSS Inc., Chicago, IL).  All comparisons 

were made using the paired Student’s t-test. Data are expressed as the mean ± 

standard error (SE).   

 

Gastric Mill Model.  We constructed a computational model modified from an 

existing conductance-based model of the gastric mill circuit (Nadim et al., 1998; 

Beenhakker et al., 2005; DeLong et al., 2009b).  The previously published 

version modeled the LG, Int1, and MCN1 neurons as having multiple 

compartments separated by an axial resistance, with each compartment 

possessing intrinsic and/or synaptic conductances.  We combined our previously 

published models including GPR (Beenhakker et al., 2005) and CCAP (DeLong 

et al., 2009b), but we did not add or modify any synaptic or intrinsic 
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conductances beyond those already published.   

 Simulations were performed on a PC with Windows XP.  We used the 

Network simulation software developed in the Nadim laboratory 

(http://stg.rutgers.edu/software/network.htm), which was run using the freely 

available CYGWIN Linux emulation software package.  We used a fourth-order 

Runge–Kutta numerical integration method with time steps of 0.05 and 0.01 ms.  

Results were visualized by plotting outputted data points using the freely 

available Gnuplot software package (www.gnuplot.info).
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RESULTS 

CCAP gates the GPR regulation of the gastric mill rhythm in a 

computational model 

 When manipulated separately, both CCAP and GPR influence the MCN1-

elicited gastric mill rhythm.  CCAP gains access to the STG as a circulating 

hormone  (Christie et al., 1995; Li et al., 2003; Chen et al., 2009).  It selectively 

prolongs the gastric mill protractor phase (Fig. 1B) (Kirby and Nusbaum, 2007), 

by activating IMI in LG (DeLong et al., 2009b).  MCN1 also excites LG by 

activating IMI (DeLong et al., 2009b).  IMI-CCAP sums with IMI-MCN1 in LG, but only 

IMI-MCN1 is synaptically regulated by LG.  Hence, during protraction, IMI-CCAP 

maintains a relatively constant amplitude while IMI-MCN1 decays due to the 

inhibitory synapse from LG to MCN1STG.  The maintained IMI-CCAP amplitude sums 

with the decaying IMI-MCN1 to keep LG suprathreshold for a longer duration, 

prolonging its burst (Fig. 1B).  By summing with IMI-MCN1, IMI-CCAP also acts to 

prevent a change in the gastric mill retractor phase duration (DeLong et al., 

2009b). 

 GPR selectively prolongs the gastric mill retractor phase by its presynaptic 

inhibition of MCN1STG (Fig. 1C,D) (Beenhakker et al., 2005; DeLong et al., 

2009a).  Mechanistically, this GPR action reduces the rate of CabTRP Ia (Cancer 

borealis tachykinin-related peptide Ia) release from MCN1 and hence its 

activation of IMI-MCN1 in LG (Beenhakker et al., 2005).  This action slows the ability 

of LG to escape from Int1 inhibition and reach burst threshold (Fig. 1D).   

 Insofar as GPR regulates the gastric mill rhythm by influencing the ability  
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Figure 1:  Schematic of the isolated STNS and the MCN1-gastric mill rhythm, as 

well as its regulation by CCAP and GPR.  A, In each CoG, there is a single copy 

of the projection neuron MCN1.  MCN1 projects to the STG via the ion and stn 

nerves.  Each GPR arborizes in the STG and each CoG.  The paired diagonal 

bars through the sons and ions represent the transection of these nerves at the 

start of each experiment.  Grey rectangles represent protractor muscles in which 

GPR dendrites arborize.  Abbreviations: Ganglia- CoG, commissural ganglion; 

OG, oesophageal ganglion; STG, stomatogastric ganglion.  Neurons- MCN1, 

modulatory commissural neuron 1; GPR, gastropyloric receptor.  Nerves- dvn, 

dorsal ventricular nerve; gpn, gastropyloric n.; ion, inferior oesophageal n.; lvn, 

lateral ventricular n.; son, superior oesophageal n.; stn, stomatogastric n.  B, As 

shown by Kirby and Nusbaum (2007), bath-applied CCAP selectively prolongs 
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the protractor phase of the MCN1-elicited gastric mill rhythm.  Note that CCAP 

did not activate the gastric mill rhythm prior to MCN1 stimulation.  Retraction 

(RET) phase is represented by the dorsal gastric (DG) retractor motor neuron.  

Protraction (PRO) phase is represented by the lateral gastric (LG) protractor 

CPG/motor neuron.  Bar on top of second LG burst in each panel represents the 

LG burst duration in saline, to show that the LG burst is prolonged by CCAP.  C, 

Core gastric mill CPG schematic during each phase (protraction, retraction) of 

the gastric mill rhythm.  Paired diagonal bars through MCN1 axon represent 

additional distance between CoG and STG.  All synapses shown are located in 

the STG neuropil.  Gray somata and synapses represent silent 

neurons/synapses.  Synapses drawn on somata or axons actually occur on small 

branches in the STG neuropil.  Transmitters in brackets next to MCN1 and GPR 

somata are their identified cotransmitters.  Note that MCN1 uses only CabTRP Ia 

to excite LG and only GABA to excite Int1.  Symbols: Filled circles, synaptic 

inhibition; T-bars, synaptic excitation.  D, GPR stimulation during retraction, to 

mimic its in vivo activity, selectively prolongs the gastric mill retractor phase.  

Note that the duration of the retractor (LG silent, Int1 active) phase during GPR 

stimulation is longer than the same phase in the cycles immediately before and 

after GPR stimulation.
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of MCN1 to activate IMI in LG, and CCAP directly activates IMI in LG, we 

investigated whether the presence of CCAP influenced the ability of GPR to 

regulate the gastric mill rhythm.  To this end, we combined two previously 

published versions of our computational model of the MCN1-gastric mill circuit.  

Specifically, we modified our existing model of the gastric mill CPG plus GPR 

(Beenhakker et al., 2005; DeLong et al., 2009a) by adding GMI-CCAP to LG, using 

previously published parameters (DeLong et al., 2009b).  As shown previously, in 

the version of the model in which IMI-CCAP was absent from LG, GPR stimulation 

prolonged the retractor phase (Pre-GPR: 7.5 s; During GPR: 34.4 s) without 

altering the protractor phase (Pre-GPR: 7.7 s; During GPR: 7.4 s) (Fig. 2A) 

(Beenhakker et al., 2005). 

 Adding GMI-CCAP to LG in our model, in the absence of GPR activation, 

modestly prolonged the protractor phase (Control: 7.7 s; CCAP: 10.7 s) without 

altering the retractor phase duration (Control: 7.5 s; CCAP: 7.1 s) (Fig. 2B) (Kirby 

and Nusbaum, 2007).  When GPR was stimulated while IMI-CCAP was present in 

LG, the GPR prolongation of retraction was reduced from >400% to ~40% of the 

control value (Pre-GPR: 7.1 s; During GPR: 10.0 s), while the protractor phase 

duration remained unchanged (Pre-GPR: 10.7 s; During GPR: 10.6 s) (Fig. 2B).  

 The apparent reason for the weakened GPR effect in the model that 

included GMI-CCAP in LG was that the addition of this conductance provided an 

alternative source of GMI that was not subject to GPR regulation (Fig. 3A,B).  As 

stated above, GPR regulates GMI-MCN1 in LG by inhibiting MCN1STG (Beenhakker 

et al., 2005; DeLong et al., 2009a).  In illustration of this point, in control cycles  
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Figure 2:  GPR regulation of the gastric mill retractor phase is weakened by the 

presence of CCAP in a computational model.  A, GPR regulation of the MCN1-

elicited gastric mill rhythm in the absence of CCAP (Control).  Under control 

conditions, the MCN1-elicited current (IMI-MCN1) and conductance (GMI-MCN1) grow 

in amplitude during each retractor (LG silent) phase, and decay during each 

protractor (LG active) phase due to the LG presynaptic inhibition of MCN1STG 

(see Fig. 1C).  As in the biological preparation, GPR stimulation during the 

retractor phase selectively prolonged the retractor phase duration (Beenhakker et 

al., 2005).  B, Adding the CCAP-activated conductance (GMI-CCAP) to LG reduces 

the ability of GPR to prolong retraction.  As in panel A, GPR stimulation was 

limited to the duration of a single retractor phase, and ceased when the 

protractor phase (LG burst) was initiated.  Due to the presence of GMI-CCAP, this 

stimulation was less effective in prolonging the retractor phase relative to the 
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control condition.  Note also that, as reported previously (Kirby and Nusbaum, 

2007; DeLong et al., 2009b), the presence of IMI-CCAP in LG selectively prolonged 

the protractor phase (LG burst). 
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(i.e., no GPR stimulation) at the point immediately preceding LG burst onset, the 

peak IMI amplitude was similar when CCAP was either absent or present (CCAP 

absent: -21.2 pA; CCAP present -20.2 pA).  Thus, IMI-MCN1 and IMI-CCAP summed to 

the same level as IMI-MCN1 in the absence of CCAP (DeLong et al., 2009b).   

 During GPR stimulation in the presence of CCAP, LG burst onset was 

only slightly delayed relative to the preceding and subsequent cycles (10 

seconds in duration) (Fig. 2B), and again the peak IMI amplitude immediately 

before LG burst onset (-19.5 pA) was similar to control cycles.  As above, this 

peak IMI was the summed result of its activation by both MCN1 and CCAP (IMI-

MCN1: -16.5 pA; IMI-CCAP: -3.0 pA).  In contrast, when the peak IMI was measured 

during GPR stimulation in the absence of CCAP at the the same time point (10 

seconds into retraction), it was -17.2 pA (Fig. 3C).  This was only slightly larger 

than the IMI-MCN1 component in the presence of CCAP, and smaller than the peak 

IMI needed for LG to reach burst threshold.  Under these conditions, LG burst 

onset did not occur for another ~25 seconds.  Thus, the presence of the 

additional, GPR-independent IMI-CCAP reduced the time needed for IMI to bring LG 

to burst threshold, and thereby reduced the effectiveness of GPR relative to 

when CCAP was absent.  This result predicted, therefore, that CCAP would 

reduce the ability of GPR to prolong the gastric mill retractor phase.  

 

CCAP modulates the GPR influence on the biological gastric mill rhythm  

 To begin testing the prediction of the above modeling study, we assayed 

whether CCAP superfusion in the biological preparation comparably modulated  
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Figure 3: The altered dynamics of GMI when CCAP is present reduces the GPR 

effectiveness in prolonging the gastric mill retractor phase in a computational 

model.  A, During the control gastric mill rhythm, GMI was entirely due to LG input 

from MCN1 (GMI-MCN1).  Under these conditions, GPR stimulation prolonged the 

retractor phase (see Fig. 2A) by reducing the rate of build-up of GMI-MCN1 due to 

the GPR presynaptic inhibition of MCN1 (Beenhakker et al., 2005; DeLong et al., 

2009a).  B, When CCAP is present, GMI consists of the summed components 

contributed by MCN1 (GMI-MCN1) and CCAP (GMI-CCAP).  Under these conditions, 
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GPR stimulation is less effective in prolonging retraction.  C, Overlay of the GMI 

traces from panels A and B, for durations that were equivalent to the retractor 

phase duration during GPR stimulation in panel B.  The traces were all taken 

from the first ~10 seconds of the retractor phase during which GPR was 

stimulated in both panels.  With CCAP both present and absent, the amplitude of 

GMI-MCN1 grew steadily during retraction (green and black traces).    However, the 

presence of CCAP produced a summed peak GMI (orange trace) that grew at a 

faster rate, because it was partially composed of the GPR independent GMI-CCAP, 

and hence reached LG burst threshold sooner. 
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the GPR actions on the MCN1-gastric mill rhythm.  Specifically, we compared the 

gastric mill rhythm response to GPR stimulation in control (saline) conditions and 

in the presence of superfused CCAP. 

 CCAP superfusion (10-7 M) consistently eliminated the GPR prolongation 

of the gastric mill retractor phase (Fig. 4A,B).  In normal saline, GPR stimulation 

(5 Hz) during each retractor phase prolonged retraction (Pre-GPR: 5.3 ± 0.7 s; 

During GPR: 19.0 ± 5.0 s; n=5, p<0.05) without altering the protractor phase 

duration (Pre-GPR: 4.8 ± 1.8 s; During GPR: 5.8 ± 1.5 s; n=5, p=0.30) (Fig. 

4A,B).  In contrast, during CCAP superfusion, the same GPR stimulation protocol 

did not alter retraction duration (Pre-GPR: 6.2 ± 1.8 s; During GPR: 9.4 ± 2.5 s; 

n=5, p=0.17) or protraction duration (Pre-GPR: 6.9 ± 0.9 s; During GPR: 6.8 ± 

1.2 s; n=5, p=0.50) (Fig. 4A,B).  These results were consistent with our model 

prediction that CCAP gates out the GPR effect on the MCN1-elicited gastric mill 

rhythm. 

 To further assess the effectiveness of this CCAP action, we determined 

whether a stronger GPR stimulation would rescue its influence on the rhythm.  

Under control conditions, a stronger (10-15 Hz) and more prolonged (30 s) GPR 

stimulation consistently maintained the retractor phase until after the stimulation 

was terminated (n=3/3).  In contrast, in the presence of CCAP (10-7 M), LG 

consistently escaped during the ongoing GPR stimulation and fired a burst before 

30 seconds of GPR stimulation was completed (n=3/3) (Fig. 4A,B).  However, 

despite the LG ability to initiate its next burst during GPR stimulation in the latter 

condition, this higher frequency GPR stimulation did prolong the retractor phase  
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Figure 4:  CCAP superfusion reduces the effectiveness of GPR on the MCN1-

elicited gastric mill rhythm in the biological preparation.  A, (Top) GPR 

stimulation selectively prolonged retraction under control conditions.  Note the 

increased retractor phase (LG silent) duration during the cycle in which GPR was 

stimulated relative to the preceding and subsequent cycles.  (Middle) In the 

presence of CCAP, the same level of GPR stimulation barely prolonged 

retraction.  (Bottom) In the presence of CCAP, a stronger GPR stimulation (15 

Hz) still failed to prolong retraction to the same extent as the weaker GPR 
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stimulation in the absence of CCAP.  B, The GPR regulation of retractor phase 

duration is removed in the presence of CCAP.  Black bars represent control 

gastric mill rhythms, white bars represent GPR stimulation.  Number of 

experiments: Control- 5; CCAP (GPR 5 Hz)- 5; CCAP (GPR 15 Hz)- 3.  Symbol: 

*p<0.05.
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in 2 of 3 preparations, albeit not to the same extent as slower GPR stimulation in 

control conditions (Fig. 4A,B). 

 The above experiments were done by stimulating GPR during each 

retractor phase to mimic the likely GPR in vivo activity pattern (Katz et al., 1989).  

However, because CCAP reduced the ability of GPR to prolong retraction, the 

total time during which GPR was stimulated was less in CCAP than in control 

conditions.  To eliminate this potential confound, we also tested the ability of a 30 

second tonic GPR stimulation (5 Hz) to regulate the gastric mill rhythm under 

both conditions.  This approach did not introduce a confound by extending GPR 

stimulation through the protractor phase, because stimulating GPR during 

protraction does not alter the gastric mill rhythm (DeLong et al., 2009a).  Using 

this stimulation protocol in normal saline, GPR again prolonged the retractor 

phase (Pre-GPR: 5.8 ± 1.3 s; During GPR: 15.7 ± 1.8 s; n=2, p<0.05) without 

altering the protractor phase duration (Pre-GPR: 3.9 ± 1.9 s; During GPR: 3.3 ± 

1.2 s; n=2, p=0.30).  Using the same stimulation in the presence of CCAP (10-7 

M), neither the retractor phase (Pre-GPR: 8.4 ± 4.9 s; During GPR: 11.2 ± 7.4 s; 

n=2, p=0.23) nor the protractor phase (Pre-GPR: 6.5 ± 1.6 s; During GPR: 6.3 ± 

2.5 s; n=2, p = 0.44) were altered by GPR stimulation. These results confirmed 

our model prediction that CCAP gates out the GPR regulation of the gastric mill 

rhythm. 

  

CCAP gates out the GPR regulation of the gastric mill rhythm by activating 

GMI-CCAP in LG 
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 CCAP has actions on several neurons in the STG in addition to LG, 

including the gastric mill CPG neuron Int1 (Kirby and Nusbaum, 2007).  

Therefore, although our model predicted that the induction of GMI-CCAP in LG was 

responsible for the gating of the GPR effect on the gastric mill rhythm, it 

remained possible that one or more other CCAP actions contributed to this effect.  

Consequently, we tested the hypothesis that the CCAP-activated GMI in LG was 

responsible for gating the GPR effect.  To this end, we tested the ability of a 

simulated version of GMI-CCAP, injected into LG using the dynamic clamp, to mimic 

the actions of superfused CCAP.  For these experiments, we used the same 

dynamic clamp conductance used in our previously published work, which was 

based on voltage clamp recordings of IMI-CCAP in LG (DeLong et al., 2009b).  

 We compared the effect of GPR stimulation (5 Hz) under control 

conditions to the same stimulation during dynamic clamp injection of IMI-CCAP in 

LG.  As described above, under control conditions, GPR stimulation prolonged 

retraction (Pre-GPR: 6.3 ± 1.0 s; During GPR: 18.6 ± 4.7 s; n=5, p<0.05) without 

altering protraction (Pre-GPR: 5.8 ± 1.3 s; During GPR: 6.7 ± 1.2 s; n=5, p=0.30) 

(Fig. 5A).  When the same stimulation was performed with dynamic clamp IMI-CCAP 

(20 nS) injected into LG, there was no change in the duration of either retraction 

(Pre-GPR: 7.9 ± 1.5 s; During GPR: 11.0 ± 2.6 s; n=5, p=0.17) or protraction 

(Pre-GPR: 8.6 ± 2.2 s; During GPR: 9.0 ± 2.0 s; n=5, p=0.45) (Fig. 5B).  
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Figure 5: Dynamic clamp injection of the CCAP-activated current (IMI-CCAP) into 

LG is sufficient to mimic the effect of CCAP superfusion on the MCN1-elicited 

gastric mill rhythm.  A, In the absence of the dynamic clamp injection, GPR 

stimulation during the gastric mill retractor phase selectively prolonged that 

phase.  Note that the amplitude of the injected current (IMI-CCAP) was zero 

throughout the recording.  B, Dynamic clamp injection of IMI-CCAP into LG 

mimicked the ability of bath-applied CCAP to weaken GPR regulation of the 

gastric mill rhythm.  While IMI-CCAP was being injected into LG, GPR stimulation 

barely prolonged the retractor phase.  The downward deflections in IMI-CCAP 

during each LG action potential resulted from the reduction in driving force as the 

LG membrane potential approached the reversal potential for IMI (DeLong et al., 

2009b).  Note the increased LG burst duration during IMI-CCAP injection, as also 

occurs during CCAP bath application (Kirby and Nusbaum, 2007). 
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Figure 6: Summary of the mechanism by which CCAP gates out the GPR 

regulation of the gastric mill rhythm.  A, During the normal gastric mill rhythm 

retractor phase, with no CCAP present, MCN1 released CabTRP Ia (filled black 

circles) binds to receptors on LG (blue geometric shapes) to activate IMI.  

Downward pointing arrow depicts activated IMI.   B, During GPR stimulation with 

no CCAP present, CabTRP Ia release from MCN1 is reduced, resulting in a 

reduced activation of IMI (note smaller size of IMI-associated arrow).  C, During the 

gastric mill rhythm in the presence of CCAP (filled green circles), IMI in LG is 

activated by both MCN1-released CabTRP Ia and bath-applied CCAP.  D, During 

GPR stimulation in CCAP, GPR still reduces the release of CabTRP Ia by MCN1. 

However, because IMI-CCAP in LG is not regulated by GPR activity and can 

compensate for the reduced amount of IMI-MCN1, the GPR effect on IMI, and hence 

on the gastric mill retractor phase, is reduced.
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DISCUSSION 

 We have elucidated a mechanism by which a circulating hormone gates 

the effects of sensory feedback to a motor circuit.  Previous work has shown that 

the proprioceptor neuron GPR selectively regulates the gastric mill retractor 

phase by reducing MCN1 release of CabTRP Ia, thereby reducing the activation 

of IMI-MCN1 during retraction (Fig. 6A,B) (Beenhakker et al., 2005; DeLong et al., 

2009a).  By merging our previous computational models that explored the 

separate impact of GPR and CCAP on the MCN1-gastric mill rhythm, the new 

version of this model predicted that CCAP gates out the GPR effect on the 

gastric mill rhythm by providing a parallel pathway for activating IMI which is 

MCN1-independent, and therefore not regulated by GPR.  We verified this 

prediction of the model by demonstrating that either bath-application of CCAP or 

selective, dynamic clamp injection of IMI-CCAP into the biological LG gated out the 

GPR action on the gastric mill rhythm (Fig. 6).   

 

Modulation of sensory input to a motor circuit 

 Sensory pathways that feed back to regulate motor circuits are modulated 

at the level of their transduction apparatus and/or near their CNS transmitter 

release sites (Rossignol et al., 2006; Blitz and Nusbaum, 2007).  In some cases, 

the source of the presynaptic modulation is a retrograde messenger from the 

postsynaptic target (Glanzman, 2008).  The influence of these sensory pathways 

is also altered by modulatory actions in the postsynaptic targets of these sensory 
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neurons that strengthen or weaken the sensory input (Edwards et al., 2002; Le 

Bon-Jego et al., 2006; Glanzman, 2008).  Here we have elucidated a novel 

mechanism by which the influence of a sensory input is modulated.  Specifically, 

we have demonstrated that the peptide hormone CCAP gates out the effect of 

the proprioceptor neuron GPR, not by a direct action on GPR or on the 

postsynaptic target (MCN1) by which GPR alters gastric mill CPG output, but by 

a circuit action downstream of the relevant GPR target.  It remains possible that 

CCAP additionally modulates this sensorimotor pathway by influencing GPR 

sensitivity to muscle stretch or spike initiation, as do several other 

neuromodulators (Birmingham et al., 2003).   

 

Modulating circuit dynamics to alter its sensitivity to sensory feedback 

 Modulation commonly causes considerable change in motor circuit output 

(Marder et al., 2005; Marder and Bucher, 2007; Doi and Ramirez, 2008).  In 

contrast, the effect of CCAP on the gastric mill rhythm is modest, resulting in a 

20-25% increase in protractor phase duration and no change in retractor phase 

duration, even when applied at high concentrations (Kirby and Nusbaum, 2007).  

Despite this modest effect, the same CCAP concentration markedly weakens the 

gastric mill circuit responsiveness to a sensory input (GPR).  This illustrates the 

principle that the modulatory state of a motor circuit can be altered without 

causing a substantial change in the motor pattern generated.  The resulting, 

latent changes in circuit configuration can nonetheless mediate altered 

responsiveness to extrinsic inputs. 



293 

 

 More broadly, this study serves as a cautionary example against inferring 

conserved circuit dynamics on the basis of motor output.  Previous studies have 

demonstrated that different circuit dynamics can produce similar motor outputs 

(Prinz et al., 2004; Saideman et al., 2007b; Grashow et al., 2009) .  This study 

extends this concept to include sensorimotor integration.  Although the versions 

of the gastric mill rhythm in the presence and absence of CCAP are qualitatively 

similar, they are mediated by different circuit dynamics which cause them to 

respond differently to input from GPR.  Thus the similarity of two motor patterns 

can conceal different underlying circuit dynamics that cause them to respond 

differently to extrinsic influences.  
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Chapter 7 

Conclusion 

 

My thesis work has focused on characterizing the mechanisms by which 

sensory input can be integrated into an ongoing rhythmic motor pattern.  

Specifically, I have used the gastric mill CPG for this work because of the many 

experimental advantages available in this system.  I used a combination of 

computational modeling, dynamic clamp and more traditional electrophysiology 

techniques to investigate the mechanism by which a sensory input (GPR) 

regulates gastric mill output.  As a result, I have uncovered several novel cellular-

level mechanisms of sensorimotor integration, as well as furthering the 

understanding of the dynamics which underlie the generation and regulation of 

the gastric mill rhythm in particular and CPGs in general.  

Taken together, the first three chapters of my thesis elucidate the core 

mechanism by which GPR regulates the gastric mill rhythm.  GPR is a muscle 

stretch receptor which is phasically active (retractor phase) during an ongoing 

gastric mill rhythm (Katz et al., 1989).  GPR activation during the retractor phase 

selectively prolongs this phase.  Because the regulation of motor pattern timing 

by muscle-embedded proprioceptors is common in CPG-driven systems (Clarac 

and Cattaert, 1999; Pearson, 2004; Buschges, 2005), but the cellular 

mechanisms underlying the actions of such reflex loops is often not well 

understood, I chose to exploit the accessibility of the gastric mill system to 
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investigate the mechanism by which GPR regulates gastric mill output.  The 

conclusion of these three chapters is ultimately that this regulation is 

accomplished by the GPR presynaptic inhibition of the projection neuron which 

drives the gastric mill rhythm (MCN1), and that this presynaptic inhibition 

selectively regulates peptidergic cotransmission while sparing the actions of the 

small molecule cotransmitter (GABA). 

In Chapter 2 of my thesis, I participated in a collaboration to investigate 

the cotransmitter mechanisms by which MCN1 affects its targets in the gastric 

mill circuit.   MCN1 elicits the gastric mill rhythm by exciting LG and Int1, the 

reciprocally inhibitory pair that comprise the core of the gastric mill CPG 

(Coleman et al., 1995).  For the purposes of understanding the GPR regulation of 

the rhythm, the most important conclusion from this chapter was that, although 

MCN1 contains three cotransmitters (GABA, the peptides proctolin and CabTRP 

Ia) (Blitz et al., 1999), it uses only CabTRP Ia to excite the LG neuron and only 

GABA to excite Int1. 

In Chapter 3 I undertook a series of modeling studies to determine the 

most likely theoretical mechanism by which GPR accomplishes its selective 

regulation of the gastric mill retractor phase.  The models in this study predicted 

that GPR presynaptic inhibition of MCN1 was the most likely mechanism by 

which the retractor phase was selectively prolonged.  I also conducted a series of 

dynamic clamp manipulations that supported these model predictions.  In 

Chapter 4, I continued this work by investigating the cotransmission mechanisms 
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used by GPR to regulate the gastric mill rhythm, demonstrating that GPR uses a 

serotonergic synapse to inhibit MCN1 and regulate the gastric mill rhythm.  By 

showing that blocking this specific serotonergic action with a 5HT receptor 

antagonist abolishes the GPR regulation of the gastric mill rhythm, I more firmly 

verified the theoretical predictions of the model from Chapter 3, which suggested 

that the presynaptic inhibition of MCN1 was the key GPR action for regulating the 

rhythm. 

Given the strong evidence that GPR regulates the gastric mill retractor 

phase by presynaptically inhibiting MCN1, as well as the observation that MCN1 

uses divergent cotransmitter mechanisms to affect its gastric mill targets, I next 

asked whether the GPR action on MCN1 reduced all or only a subset of the 

MCN1 cotransmitter actions.  In the second half of Chapter 4, therefore, I 

investigated this issue and determined that GPR selectively reduces the MCN1 

CabTRP Ia actions on LG, while sparing the MCN1 GABAergic excitation of Int1.  

Furthermore, this selective regulation of cotransmission was critical to the GPR 

regulation of the gastric mill rhythm, since experiments in both our computational 

model and the biological preparation showed that a GPR reduction in MCN1 

excitation of Int1 would prevent the normal GPR effect on the rhythm. 

Once the core mechanism of the GPR action on the gastric mill rhythm 

was determined, I next asked how the actions of GPR could be modulated.  

There are numerous examples in the literature of the modulation of the actions of 

a sensory input to a CPG (Buschges and El Manira, 1998; Clarac and Cattaert, 
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1999), but as above, a cellular-level understanding of the mechanisms involved 

is often absent.  Therefore, in Chapters 5 and 6, I investigated the mechanism by 

which a peptide hormone (CCAP) modulates the gastric mill rhythm, and then 

extended that work to determine the mechanism by which the same hormone 

gates the actions of GPR on the gastric mill rhythm. 

CCAP, which reaches STG as a circulating hormone and is therefore 

present at a constant concentration during the gastric mill rhythm, was shown 

previously to selectively prolong the protractor (LG burst) phase of the gastric mill 

rhythm (Kirby and Nusbaum, 2007).  In Chapter 5, I investigated the mechanism 

of this action.  The findings from this chapter were that CCAP converges to 

activate the same inward current in LG (IMI) that is activated by MCN1-released 

CabTRP Ia.  During the normal gastric mill rhythm, the amplitude of the MCN1-

activated IMI (IMI-MCN1) in LG decays during the protraction (LG burst) phase, due 

to the LG presynaptic inhibition of MCN1 and the subsequent reduction in 

CabTRP Ia released onto LG (Coleman et al., 1995; Beenhakker et al., 2005).  

The CCAP-activated IMI (IMI-CCAP), on the other hand, was not subject to the same 

decay because it was independent of synaptic regulation by LG.  As a result, a 

portion of the total IMI did not decay during the LG burst, effectively reducing the 

efficacy of the LG presynaptic inhibition and increasing the protractor phase 

duration. 

Given the above result, and the fact that the GPR regulation of the gastric 

mill rhythm relies on presynaptic regulation of CabTRP Ia release from MCN1, I 
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wondered whether CCAP might influence the GPR action on the gastric mill 

rhythm.  In Chapter 6, I investigated this possibility and found that GPR was 

much less effective at prolonging the gastric mill retractor phase in the presence 

of CCAP.  Furthermore, I used computational modeling and dynamic clamp 

experiments to show that, as above, this effect resulted from the convergent 

effect of CCAP and MCN1-released CabTRP Ia in activating IMI in LG.  This 

result provides a novel mechanism for the modulation of a sensory input to a 

motor circuit that does not involve any direct effects on either the sensory neuron 

itself or on the synaptic target by which it regulates the CPG. 

These results have uncovered several novel mechanisms by which 

sensory regulation of CPG output can take place.  In the first part of my thesis, I 

demonstrated a role for presynaptic inhibition of a projection neuron (MCN1) 

which drives CPG output in the selective regulation of one phase of a motor 

pattern.  At the functional level, many phasic sensory inputs to CPGs participate 

in the control of phase duration, though the exact mechanism of that effect is 

often not understood (Clarac and Cattaert, 1999; Pearson, 2004; Shetreat-Klein 

and Cropper, 2004; Buschges, 2005).  Given the ubiquity of a reciprocally 

inhibitory pair of neurons (half-center oscillator) driven by an external excitatory 

input as a mechanism for rhythm generation, other systems may well use a 

similar mechanism of presynaptic inhibition to selectively regulate the duration of 

a particular phase.  

Furthermore, the revelation that such a presynaptic sensory input can 
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selectively regulate the release of a subset of cotransmitters by its synaptic target 

suggests additional degrees of freedom that are available to neural circuits 

during the integration of sensory information.  Cotransmission is a common 

feature of neurons (Nusbaum et al., 2001; Seal and Edwards, 2006), and such 

selective regulation of cotransmission might well provide a mechanism by which 

sensory (and other) pathways achieve specificity in other systems as well. 

Finally, the second part of my thesis describes a novel mechanism by 

which both the output of a CPG and the regulation of that CPG by sensory input 

can be modulated. In addition to describing such modulation at the cellular level, 

this example also demonstrates that the effect of a modulator can sometimes be 

partially or completely masked under some circumstances, while having a large 

effect under others.  CCAP only modestly (~20%) prolongs the protractor phase 

of the gastric mill rhythm, and so has only a small effect on the timing of the 

rhythm overall.  GPR stimulation in the presence of CCAP, however, reveals an 

underlying alteration in the circuit dynamics which has a large effect on the 

sensitivity of the rhythm to sensory input.  This result supports previous studies 

which have suggested that varying the underlying circuit dynamics can produce 

similar motor outputs (Prinz et al., 2004; Saideman et al., 2007b), although these 

altered network states may render the system differently responsive to external 

stimuli.  

 

Future Directions 
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To extend the above findings regarding the CCAP modulation of GPR 

input to the gastric mill CPG, it would be interesting to learn how other 

neuromodulators influence sensorimotor integration in this system.  There are 

several other modulators that activate the same current (IMI) as CCAP and 

CabTRP Ia (Swensen and Marder, 2000).  Our results so far would predict that 

these substances, if they act on the LG neuron, would also alter the GPR 

regulation of the gastric mill rhythm.  However, the nature of their effects will 

depend on the timing of their influence and the concentration in which they are 

present during the GPR-regulated rhythm.  For example, if these modulators are 

released rhythmically by projection neurons in contrast to the tonic, hormonal 

presence of CCAP, they might evoke a different response from both the core 

gastric mill rhythm and its regulation by GPR.  It might also be the case that, 

unlike CCAP, one or more of these other modulators strongly influences Int1 as 

well as or instead of LG. 

Along similar lines, it would be worthwhile to explore the GPR regulation of 

different versions of the gastric mill rhythm.  In particular, the application of 

Cancer borealis pyrokinin (CabPK) peptide to the STG elicits a version of the 

gastric mill rhythm that is very similar to the MCN1-elicited version, but via a 

distinct underlying circuit which lacks MCN1 involvement (Saideman et al., 

2007b).  Preliminary unpublished results from our lab show that GPR regulates 

this version of the gastric mill rhythm in a similar fashion to the MCN1-elicited 

version.  Specifically, it selectively prolongs the retractor phase of the CabPK-
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elicited gastric mill rhythm.  It is likely, however, that this regulation relies on a 

distinct mechanism because the CabPK-rhythm does not involve MCN1 

activation, and the GPR regulation of the MCN1-version occurs exclusively via 

inhibition of MCN1.  

Furthermore, unlike CCAP and CabTRP Ia, the CabPK peptide does not 

appear to activate IMI (DM Blitz, MP Nusbaum, unpublished).  Therefore, it is 

currently unknown how modulators such as CCAP modulate the GPR effect on 

the CabPK-elicited gastric mill rhythm.  Because my work so far has suggested 

that the convergence of modulators onto IMI is the crucial factor for gating the 

GPR effect on gastric mill output, it may be that the same gating effect would not 

be present in the CabPK-version of the rhythm.  If this hypothesis is verified, then 

it would present an interesting scenario in which two similar versions of a motor 

pattern, generated by distinct mechanisms, would be similarly regulated by 

sensory feedback, but by distinct circuit mechanisms that were differently 

susceptible to modulation. 
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