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Abstract

In this Letter, we address the issue of Foster’s reactance theorem for the material media

in which one or both of the material parameters ε and µ may possess negative real parts. We

demonstrate that this theorem is indeed satisfied for a one-port termination filled with a lossless

metamaterial with negative real permittivity and permeability, known as a “double-negative

(DNG)” medium, or with a lossless metamaterial with either negative real permittivity or

negative real permeability, which can be named as a “single-negative (SNG)” medium.

However, in the case of DNG media when the reactive input impedance of such a termination is

compared with that of its counterpart filled with a conventional lossless “double-positive (DPS)”

material, it is found that the two reactances have opposite signs. Similar conclusions can be

made for a termination filled with a lossless epsilon-negative (ENG) material when it is

compared with that of its mu-negative (MNG) counterpart. Therefore, if a one-port termination

filled with a lossless DPS or ENG material possesses inductive input reactance, when the same

termination is filled instead with a lossless DNG or MNG material, its input reactance may be

capacitive.

1 A portion of this work was presented and appeared in the CD of the XXVII General Assembly of International
Union of Radio Science (URSI GA’02), Maastricht, The Netherlands, August 17-24, 2002 [13].
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Introduction

Composite materials with negative real permittivity and permeability in a certain band of

frequency, known under various names such as “left-handed (LH)” media (see e.g., [1]-[5]),

“double-negative (DNG)” media [6], and “backward-wave (BW)” media [8], have recently

attained considerable attention and interest (see e.g., [1]-[13]). The idea dates back to 1967

when Veselago theoretically studied time-harmonic monochromatic plane wave propagation in a

material whose permittivity and permeability were assumed to be simultaneously negative [1].

Shelby, Smith, and Schultz recently constructed such a composite medium for the microwave

regime, and experimentally showed the presence of anomalous refraction in this medium [5].

Recently as a potential application of these DNG metamaterials we introduced theoretically an

idea for compact one-dimensional (1-D) cavity resonators, in which a pair of DNG and DPS

slabs was inserted [11]. An interesting issue was raised by Munk about the applicability of

Foster’s reactance theorem for the DNG metamaterials [14]. As is well known, if one has a one-

port reactive lossless termination in a microwave network, the input impedance inZ of such a

one-port termination is purely imaginary, i.e., in inZ jX= , (and of course in inY jB= ), and thus it is

purely reactive. (Here the time dependence of exp( )j tω is assumed.) Foster’s reactance theorem

states that in general for such a one-port reactive termination [15] , we have

0inX

ω
∂

>
∂

and 0inB

ω
∂

>
∂

(1)

As mentioned in [15], this implies that the poles and zeros of a reactance (or a susceptance)

function must alternate along the frequency axis. The important issue is to find out whether the

DNG, epsilon-negative (ENG), or mu-negative (MNG) metamaterials also satisfy Foster’s

Reactance Theorem. Here, by the term “ENG” we mean materials in which the permittivity has

the negative real part, while the real part of permeability is positive, at a given frequency band,

and by the term “MNG” we mean materials in which the real part of permeability is negative but

the permittivity has a positive real part at a certain range of frequency. In a recent symposium,

we presented a portion of our findings in this matter for DNG metamaterials [13]. Here in this

Letter, we describe some details of our results for the DNG, as well as ENG and MNG cases.
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The Case of DNG, ENG, and MNG Materials

Consider an arbitrarily-shaped cavity with a perfectly conducting wall filled with an isotropic

lossless DNG, ENG, or MNG metamaterial, and assume an open port at the wall of this cavity.

The open port is connected to a cylindrical waveguide having a cross section similar to the shape

of the open port. This waveguide has also perfectly conducting walls and is filled with the same

metamaterial as in the cavity. (See Fig. 1) This would form a one-port lossless termination, in

which one of these lossless metamaterials is inserted. If one follows the mathematical steps of

Foster’s reactance theorem described in [15], one obtains

PEC Wall

Lossless DNG, ENG, or MNG
Metamaterial

z axis

Fig. 1. Geometry of the problem. A one-port termination filled with an isotropic lossless double-negative
(DNG) ( 0, 0ε µ< < ), epsilon-negative (ENG) ( 0, 0ε µ< > ), or mu-negative (MNG) ( 0, 0ε µ> < )

metamaterial.
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(as Eq. (4.24a) in Ref. [15]) where the “terminal plane” is any transverse plane in the waveguide

at some oz z= along the z axis (this is the “port” to this one-port termination.), V is the volume

inside the cavity including the part of the waveguide up to the terminal plane, n is a unit inward

normal to the boundary of the volume V, and the superscript (*) indicates complex conjugation.
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The mathematical steps leading to this equation do not depend on the sign of ε and/or µ . If the

lossless material filling this structure is a DNG medium, we assume that the cross sectional size

of the waveguide is chosen such that only the dominant propagating mode can propagate in the

waveguide section. However, if the material is assumed to be an ENG or an MNG medium, then

there will be evanescent modes in this waveguide. In either case, if the terminal plane is far

enough away from the opening at the cavity wall, the dominant mode of the waveguide, either

the propagating or the evanescent mode, is assumed to be the only mode present at the terminal

plane, and this mode forms the standing wave in this waveguide either in the form of

trigonometric sinusoidal function (when a DNG medium fills the region) or hyperbolic

sinusoidal function (when an ENG or an MNG medium fills the region). At the terminal plane,

we define the transverse input impedance inZ as

ˆin trans transZ = ×H z E (3)

with transE and transH being the transverse components of the electric and magnetic fields at the

terminal plane, and ẑ being the unit vector along the waveguide axis, i.e., z axis. Since this

one-port termination is assumed to be lossless, the transverse input impedance is purely

imaginary, i.e., in inZ jX= . When we substitute Eq. (3) into the left hand side of Eq. (2), after

some mathematical manipulations, we can express the left hand side of Eq. (2) as

2

terminal plane terminal plane

in
trans

X
dS j dS

ω ω ω

∗ ∗  ∂∂ ∂
× + × ⋅ = − ∂ ∂ ∂ 

∫ ∫
H E

E H n H . (4)

Considering Eq. (2) and (4), we find, similar to the proof of Foster’s reactance theorem given in

[13], that

( )sign of sign ofin
m e

X
W W

ω
∂

= +
∂

(5)

where mW and eW are the time-averaged total energy stored in the lossless termination volume

V, and are given as

( )1
4m

V

W dV
ωµ
ω

∗ ∂= ⋅
∂∫H H , and

( )1
4e

V

W dV
ωε
ω

∗ ∂= ⋅
∂∫ E E (6)
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It is important to note that DNG, ENG, or MNG materials are inherently quite dispersive. So

although ε and/or µ can be negative at a certain given band of frequency in such media, these

parameters do vary with frequency quite noticeably. In fact, for the time-averaged stored electric

and magnetic energy density to be positive, ( )ωµ
ω

∂
∂ and ( )ωε

ω
∂
∂ should be positive. Therefore, we

find that

0inX

ω
∂

>
∂

(7) 

which implies that Foster’s reactance theorem is indeed satisfied for the lossless DNG, ENG, or

MNG materials, similar to the case of conventional DPS materials with real positive permittivity

and permeability. However, the following important question may be asked: Although 0inX
ω

∂
∂ >

for these lossless materials, what is the sign of inX
z

∂
∂ for a one-port termination filled with either of

DNG, ENG, or MNG material? This is an important distinction one has to consider between a

DPS and a DNG medium, or between an ENG and a MNG material. To answer this question,

without loss of generality we assume that the dominant mode of the waveguide is a TE mode.

(A similar proof can be given for the case of a TM mode.) For this dominant mode, the

transverse component of the magnetic field at the terminal plane can be written as

1 ˆ trans
trans j zωµ−

∂
= ×

∂
E

H z (8)

If we substitute the above relation into Eq. (3) and note that in inZ jX= , we get

ˆ ˆtrans
in transX

z
ωµ∂

× = − ×
∂

E
z z E (9)

For the DNG case, we have a standing wave for the dominant propagating mode in the

waveguide at the terminal plane, i.e., at the “port”, and thus the transverse electric field

components can be written in the general form as

( ) ( ), sintrans x y zβ φ= +E f (10)
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where ( , )x yf is a transverse vector with two components in the x-y plane, as a function of x

and y coordinates, β is the longitudinal wavenumber for the dominant TE mode, and φ is an

arbitrary phase. For the case of ENG or MNG materials, we have evanescent waves in both

directions inside the waveguide, and as a result the transverse electric field components can be

expressed as

( ) ( ), sinhtrans x y zα γ= +E g (11) 

where ( , )x yg , similar to ( , )x yf , is also a transverse vector in the x-y plane, α is the

evanescent decay constant for the dominant TE evanescent mode, and γ is an arbitrary constant.

Substituting Eq. (10) and Eq. (11) into Eq. (9), we get, respectively

( ) ( ) ( ) ( )ˆ ˆ, cos , sininX x y z x y zβ β φ ωµ β φ× + = − × +z f z f for the DPS or DNG case (12)

( ) ( ) ( ) ( )ˆ ˆ, cosh , sinhinX x y z x y zα α γ ωµ α γ× + = − × +z g z g for the ENG or MNG case (13) 

From Eq. (12), we notice that when we compare the case of a conventional DPS medium with

that of a DNG medium, the sign of inX would flip (since the sign of µ changes), regardless of

what sign we choose for β . So if at the terminal plane of the one-port termination filled with a

conventional lossless DPS medium with 1 0µ > and 1 0ε > we have an inductive reactance,

when we exchange the filling medium with a lossless DNG material with 2 1µ µ= − and 2 1ε ε= − ,

the input reactance at the same terminal plane will be capacitive. This implies that whatever the

sign of inX
z

∂
∂ is for the former, inX

z
∂
∂ has an opposite sign for the latter. Therefore, although

Foster’s reactance theorem is satisfied for lossless DNG, ENG, and MNG metamaterials, as is

for the conventional materials, the rate of change of reactance inX with respect to the location of

the terminal plane, i.e., inX
z

∂
∂ , differs for the case of DNG metamaterials. A similar argument can

be said about exchanging an ENG with an MNG material, as a medium filling such a one-port

termination. As can be seen from Eq. (13), when the one-port termination is filled with a lossless

ENG medium with 3 0µ > and 3 0ε < , the sign of inX would be opposite to that of inX of the

case where the termination is filled with a lossless MNG with 4 3 0µ µ= − < and 4 3 0ε ε= − > .

Therefore, it is important to emphasize that although Foster’s reactance theorem is satisfied for
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the lossless DNG, ENG, and MNG media, one should remember that in inX X
z ω

∂ ∂
∂ ∂≠ , which is

consistent with the fact that these materials are dispersive media.
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