
,

University of Pennsylvania
3401 Walnut Street, Suite 400A

Philadelphia, PA 19104-6228

June 1997

Site of the NSF Science and Technology Center for
Research in Cognitive Science

IRCS Report 97--10

Institute for Research in Cognitive Science

Complexity of Lexical
Descriptions and Its Relevance

to Partial Parsing

Srinivas Bangalore

COMPLEXITY OF LEXICAL DESCRIPTIONS AND ITS

RELEVANCE TO PARTIAL PARSING

SRINIVAS BANGALORE

A DISSERTATION

in

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Ful�llment of the

Requirements for the Degree of Doctor of Philosophy�

����

Aravind K� Joshi

Supervisor of Dissertation

Mark Steedman

Graduate Group Chairperson

c� Copyright ����

by

Srinivas Bangalore

Acknowledgments

I owe my thanks to a number of people� each of whom contributed in their own way

towards this research and in the preparation of this document� First of all� I thank Prof�

Aravind Joshi for his continued support during the period of this research� I have bene�ted

signi�cantly from his deep insights and his passion for subtle details which have made

a signi�cant impact on this research� I thank Prof� Mitch Marcus with whom I have

had numerous �corridor conversations� that have helped shape this research� I deeply

appreciate his support in the absence of Prof� Joshi� during Fall ����� My thanks are also

due to Prof� Mark Steedman whose seminar course helped me to extend the applicability

of this research� I thank Steve Abney� Mark Liberman and John Trueswell� who as part of

my committee provided insightful comments and suggestions that has improved the quality

of this research�

Without Yves Schabes and his dissertation� this research would not have been possible

at all� I have bene�ted a great deal from my discussions with him on many occasions� I

have also used his code developed for XTAG� extensively in this research�

There would be no greater injustice if I do not acknowledge the in	uence the XTAG

group has had on this research� besides keeping me on my toes at all times� Beth Ann

Hockey and Christine Doran deserve my special thanks for putting up with my linguistic

ignorance and cheering me along with my often silly ideas� Without their critical remarks�

this research would have taken much longer than it has� I thank Dania and Martin for

providing the many tools used in this research� I also would like to thank the XTAG elves

Heather� Laura� Susan and young Tim who cleaned up the XTAG corpus over the summer

of ���� and �����

My special thanks to R� Chandrasekar
Mickey� for several invigorating discussions

iii

about my work� in particular and the �eld of computer science� in general� I also thank

him for giving me a chance to apply supertagging to his work and for his warm fraternal

a�ection that saw me through the �nal stages of this work� Signi�cant improvement in

supertagging performance came about during the Summer of ����� thanks to the �summer

camp� team
 Breck Baldwin� Christine Doran� Michael Niv and Je� Reynar� I am deeply

indebted to them for providing constructive criticism and setting up high standards of

performance�

My thanks to Martha Palmer� Tilman Becker� James Rogers for providing constructive

comments during practice talks and in student�lounge discussions� I would also like to

acknowledge Rajesh Bhatt� Eric Brill� Ted Briscoe� Mike Collins� Jason Eisner� Seth Kulick�

Dan Melamed� Adwait Ratnaparkhi� Anoop Sarkar� David Yarowsky and the innumerable

IRCS visitors for useful discussions�

I would like to thank the e�orts of the administrative sta� of CIS Department and

IRCS� including Mike Felker� for dealing with my course issues� Gail Shannon� for many

money matters� Trisha Yannuzzi and Chris Sandy for accomodating my wierd requests for

various kinds of letters and certi�cations�

Finally� I owe everything I am to my parents� In particular� I thank them for their

un	agging encouragement to pursue my research career and for their con�dence in me to

succeed� My special thanks to Purnima for standing by me at all times and giving me

a reason to smile during the frustrating times of this research� I also acknowledge the

support from my friends Bharathi� Esther� Raghava� Tikkana� and Vijay during the early

stages of this research�

iv

Abstract

Complexity of Lexical Descriptions and its Relevance to Partial Parsing

Srinivas Bangalore

Supervisor� Aravind K� Joshi

In this dissertation� we have proposed novel methods for robust parsing that integrate the

	exibility of linguistically motivated lexical descriptions with the robustness of statistical

techniques� Our thesis is that the computation of linguistic structure can be localized if

lexical items are associated with rich descriptions
supertags� that impose complex con�

straints in a local context� However� increasing the complexity of descriptions makes the

number of di�erent descriptions for each lexical item much larger and hence increases

the local ambiguity for a parser� This local ambiguity can be resolved by using supertag

co�occurrence statistics collected from parsed corpora� We have explored these ideas in

the context of Lexicalized Tree�Adjoining Grammar
LTAG� framework wherein supertag

disambiguation provides a representation that is an almost parse� We have used the dis�

ambiguated supertag sequence in conjunction with a lightweight dependency analyzer to

compute noun groups� verb groups� dependency linkages and even partial parses� We have

shown that a trigram�based supertagger achieves an accuracy of ����� on Wall Street

Journal
WSJ� texts� Furthermore� we have shown that the lightweight dependency anal�

ysis on the output of the supertagger identi�es ��� of the dependency links accurately�

We have exploited the representation of supertags with Explanation�Based Learning to

improve parsing e�ciency� In this approach� parsing in limited domains can be modeled

as a Finite�State Transduction� We have implemented such a system for the ATIS domain

which improves parsing e�ciency by a factor of ��� We have used the supertagger in a

v

variety of applications to provide lexical descriptions at an appropriate granularity� In

an information retrieval application� we show that the supertag based system performs at

higher levels of precision compared to a system based on part�of�speech tags� In an infor�

mation extraction task� supertags are used in specifying extraction patterns� For language

modeling applications� we view supertags as syntactically motivated class labels in a class�

based language model� The distinction between recursive and non�recursive supertags is

exploited in a sentence simpli�cation application�

vi

Contents

Acknowledgments iii

� Introduction �

��� Issues in Natural Language Parsing �

����� Computational Issues �

����� Linguistic Issues �

����� Psycholinguistic Issues �

��� Methods for Robust Parsing �

����� Finite State Grammar�based Approaches � � � � � � � � � � � � � � � �

����� Statistical Parsers �

��� Our Approach �

����� Localizing Ambiguity �

����� Using Explanation�based Learning Technique � � � � � � � � � � � � � �

��� Chapter Summaries �

� Literature Survey ��

��� Fidditch ��

��� CASS ��

��� UNIVAC�� Parser
now called Uniparse� ��

��� FASTUS ��

��� ENGCG Parser ��

��� Decision Tree Parsers ��

��� Bilder ��

vii

��� Data Oriented Parser ��

��� De Marcken�s Parser ��

���� Sene��s Extended Chart Parser ��

���� The PLNLP approach ��

���� TACITUS ��

���� Sparser ��

���� IBM�s P�CFG and HBG Model ��

���� Summary ��

� Merits of LTAG for Partial Parsing ��

��� Feature�based Lexicalized Tree�Adjoining Grammar � � � � � � � � � � � � � ��

��� Key properties of LTAGs ��

����� Derivation Structure ��

����� Categorial Grammars ��

����� Chunking and LTAGs ��

����� Language Modeling and LTAG ��

��� XTAG ��

��� Summary ��

� Supertags ��

��� Example of Supertagging ��

��� Reducing supertag ambiguity using

structural information ��

��� Models� Data� Experiments and Results ��

����� Early Work ��

����� Dependency model ��

����� Recent Work ��

����� Unigram model ��

����� n�gram model ��

����� Error�driven Transformation�based Tagger � � � � � � � � � � � � � � � ��

����� Head Trigram Model ��

viii

����� Head Trigram Model with Supertags as Feature Vectors � � � � � � � ��

��� Supertagging before Parsing ��

��� Lightweight Dependency Analyzer ��

����� Discussion ��

��� Applicability to other Lexicalized Grammars � � � � � � � � � � � � � � � � � ��

��� Summary ��

� Exploiting LTAG representation for Explanation�based Learning ��

��� Explanation�based Learning ��

��� Overview of our approach to using EBL ��

��� Feature�generalization ��

����� Storing and retrieving feature�generalized parses � � � � � � � � � � � ��

��� Recursive�generalization ��

����� Storing and retrieving recursive�generalized parses � � � � � � � � � � ��

��� Finite�State Transducer Representation ��

����� Extending the Encoding for Clausal complements � � � � � � � � � � � ��

����� Types of auxiliary trees ���

��� Experiments and Results ���

��� Phrasal EBL and Weighted FST ���

��� Discussion ���

��� Summary ���

� Stapler ���

��� Input to the Stapler� Almost Parse ���

��� Stapler�s Tasks ���

����� Identify the nature of operation ���

����� Modi�er Attachment ���

����� Assigning the addresses to the links � � � � � � � � � � � � � � � � � � ���

����� Feature Structures and Uni�cation ���

����� Data Structure ���

��� Experimental Results ���

ix

��� Summary ���

	 Parser Evaluation Metrics ���

��� Methods for Evaluating a Parsing System ���

����� Test suite�based Evaluation ���

����� Unannotated Corpus�based Evaluation � � � � � � � � � � � � � � � � � ���

����� Annotated Corpus�based Evaluation � � � � � � � � � � � � � � � � � � ���

��� Limitations of Parseval ���

��� Our Proposal ���

����� Application Independent Evaluation � � � � � � � � � � � � � � � � � � ���

����� Application Dependent Evaluation ���

����� A General Framework for Parser Evaluation � � � � � � � � � � � � � � ���

��� Evaluation of Supertag and LDA system ���

����� Performance of Supertagging for Text Chunking � � � � � � � � � � � ���

����� Performance of Supertag and LDA system � � � � � � � � � � � � � � � ���

��� Summary ���

� Applications of Supertagging ���

��� Information Retrieval ���

����� Methodology ���

����� The Experiment� POS Tagging vs Supertagging � � � � � � � � � � � ���

����� Gleaning Information from the Web � � � � � � � � � � � � � � � � � � ���

��� Information Extraction ���

��� Language Modeling ���

����� Performance Evaluation ���

��� Simpli�cation ���

����� Simpli�cation with Dependency links � � � � � � � � � � � � � � � � � � ���

����� Evaluation and Discussion ���

��� Exploiting Document�level Constraints for

Supertagging ���

��� Summary ���

x

 Conclusions ���

��� Contributions ���

��� Future Work ���

A List of Supertags ��	

xi

List of Tables

��� XTAG System Summary ��

��� Examples of syntactic environments ��

��� Supertag ambiguity with and without the use of structural constraints � � � ��

��� The e�ect of �lters on supertag ambiguity tabulated against part�of�speech� ��

��� Dependency Data ��

��� Results of Dependency model ��

��� Results from the Unigram Supertag Model ��

��� Performance of the supertagger on the WSJ corpus � � � � � � � � � � � � � � ��

��� Performance of the supertagger on the IBM Manual corpus and ATIS corpus ��

��� The list of features used to encode supertags � � � � � � � � � � � � � � � � � ��

���� Performance improvement of ��best supertagger over the ��best supertagger

on the WSJ corpus ��

���� An example sentence with the supertags assigned to each word and depen�

dency links among words ��

���� An example illustrating the working of LDA on a center�embedded construc�

tion� ��

���� An example illustrating the working of LDA on a sentence with long distance

extraction� ��

��� The explanation�based learning problem ��

��� Correspondence between EBL and parsing terminology� � � � � � � � � � � � ��

��� Description of the components in the tuple representation associated with

each word� ��

xii

��� Description of the components in the tuple representation associated with

each word� ���

��� Recall percentage� Average number of parses� Response times and Size of

the FST for various corpora ���

��� Performance comparison of XTAG with and without EBL component � � � ���

��� Performance comparison of the transformation based noun chunker and the

supertag based noun chunker ���

��� Performance comparison of the transformation based verb chunker and the

supertag based verb chunker ���

��� Performance comparison of the supertag based preposition phrase attach�

ment against other approaches ���

��� Performance of the trigram supertagger on Appositive� Parentheticals� Co�

ordination and Relative Clause constructions� � � � � � � � � � � � � � � � � � ���

��� Comparative Evaluation of LDA on Wall Street Journal and Brown Corpus ���

��� Performance of LDA system compared against the XTAG derivation structures���

��� The percentage of sentences with zero� one� two and three dependency link

errors� ���

��� Classi�cation of appoint� sentences ���

��� Precision and Recall of di�erent �lters� for relevant sentences � � � � � � ���

��� Precision and Recall of di�erent �lters� for irrelevant sentences � � � � � ���

��� Classi�cation of the documents retrieved for the search query � � � � � � � � ���

��� Precision and Recall of Glean for retrieving relevant documents� � � � � � � � ���

��� Precision and Recall of Glean for �ltering out irrelevant documents � � � � � ���

��� Word perplexities for the Wall Street Journal Corpus using the part�of�

speech and supertag based langauge models� � � � � � � � � � � � � � � � � � � ���

��� Class perplexities for the Wall Street Journal Corpus � � � � � � � � � � � � � ���

��� Performance results on extracting Noun Phrases with and without

pre�supertagging� ���

xiii

List of Figures

��� Substitution and Adjunction in LTAG ��

��� Elementary Trees for the sentence� The company is being acquired � � � � � ��

���
a� Derived Tree�
b� Derivation Tree� and
c� Dependency tree for the

sentence� The company is being acquired ��

���
a�� Tree for Raising analysis� anchored by seems
b�� Transitive tree
c��

Object extraction tree for the verb hit ��

��� Chunks for The professor from Milwaukee was reading about a biography of

Marcel Proust� ��

��� Chunks in LTAG for The professor from Milwaukee was reading about a

biography of Marcel Proust� ��

��� Flowchart of the XTAG system ��

��� A selection of the supertags associated with each word of the sentence the

purchase price includes two ancillary companies � � � � � � � � � � � � � � � � ��

��� Supertag disambiguation for the sentence the purchase price includes two

ancillary companies ��

��� Comparison of number of supertags with and without �ltering for sentences

of length � to �� words� ��

��� Percentage drop in the number of supertags with and without �ltering for

sentences of length � to �� words� ��

��� Supertag hierarchy ��

��� Flowchart of the XTAG system with the EBL component � � � � � � � � � � ��

xiv

���
a� Derivation structure
b� Feature Generalized Derivation structure
c�

Index for the generalized parse for the sentence show me the �ights from

Boston to Philadelphia ��

���
a� Feature�generalized derivation tree
b� Recursive�generalized derivation

tree
c� Recursive�generalized derivation tree with the two Kleene�stars col�

lapsed into one
d� Index for the generalized parse for the sentence show me

the �ights from Boston to Philadelphia� ��

��� Generalized derivation tree for the sentence� show me the �ights from Boston

to Philadelphia ��

��� Finite State Transducer Representation for the sentences� show me the

�ights from Boston to Philadelphia� show me the �ights from Boston to

Philadelphia on Monday� ��

��� The elementary trees for the sentence who did you say �ies from Boston to

Washington ��

���
a� Derivation structure
b� Feature Generalized Derivation structure and

c� Recursive Generalized Derivation structure for the sentence who did you

say �ies from Boston to Washington ��

��� FST for the sentence who did you say �ies from Boston to Washington � � � ���

���
a�� Modi�er Auxiliary Tree�
b�� Predicative Auxiliary Tree � � � � � � � � ���

���� Finite State Transducer Representation for the sentences� who did you say

�ies from Boston to Washington� who did you say �ies from Boston to

Washington on Monday� who did you think I said �ies from Boston to Wash�

ington� ���

����
a� Parse tree and
b� Tree�chunks for the sentence show me the �ights from

Boston to Philadelphia ���

���
a�� Output of Supertagger for the sentence The purchase price includes two

ancillary companies
b�� Output of EBL�lookup for the sentence Show me

the �ights from Boston to Philadelphia ���

���
a� Output of EBL�lookup
b� Instantiated derivation tree
c� Intended

derivation tree for the sentence Give me the cost of tickets on Delta � � � � � ���

��� Data Structure for an LTAG elementary tree � � � � � � � � � � � � � � � � � ���

xv

��� System setup used for Experiment
b�� ���

��� System setup used for Experiment
c�� ���

��� Summary of the Relation Model of Parser Evaluation � � � � � � � � � � � � � ���

��� The Phrase Structure tree and the dependency linkage obtained from the

phrase structure tree for the WSJ sentence Pierre Vinken� �� years old� will

join the board as a nonexecutive director Nov� ��� � � � � � � � � � � � � � � ���

��� Overview of the Information Filtering scheme � � � � � � � � � � � � � � � � � ���

��� Sample patterns involving POS tags and Supertags � � � � � � � � � � � � � ���

��� A sample MOP pattern using Supertags and Maximal Noun Phrases � � � � ���

��� Rule for extracting relative clauses ���

xvi

Chapter �

Introduction

Although parsers have proved uncontroversially useful in the domain of processing Pro�

gramming Languages� the issue of parsing� in the domain of Natural Languages
NL�

processing� has been a cause for tension between the computational and linguistic perspec�

tives for a long time� In the past� the controversy about parsing was due to the divergence

of objectives between natural language application developers who were oriented to de�

veloping practical parsers and psycholinguists who were concerned with the psychological

process of language comprehension� In recent times� however� developers of natural lan�

guage applications have questioned the usefulness for parsing in practical NLP systems�

This is primarily because there are no grammars that have complete coverage of freely

occurring natural language texts and there are no parsers that are robust enough to deal

with that inadequacy� This limitation is further compounded by the fact that the inherent

ambiguity of Natural Languages forces parsers to operate at speeds far from real�time re�

quirements� In this dissertation� we address the issue of robust parsing by exploring various

novel methods of using linguistically motivated� rich and complex lexical descriptions for

partial parsing�

We review some of the issues faced by NL parsers in Section ��� and summarize two

approaches to robust parsing in Section ���� In Section ��� we motivate our approach of

using rich and complex lexical descriptions for partial parsing and introduce two methods

pursued in this dissertation�

Traditionally� a parser is de�ned as a device that assigns a structural description to

�

an input string given a set of elementary structures
rules� trees or graphs� de�ned in a

grammar and the operations for combining those structures�� The output of a parser is a

parse that serves as a proof of the well�formedness of the input string given the elementary

structures of the grammar� A parse is the result of searching� selecting and combining

appropriate structures from the set of elementary structures de�ned in the grammar� so as

to span the input string� The process of combining elementary structures is represented by

the derivation structure for the input string� In the past few years� however� statistically�

induced grammarless parsing methodology �Jelinek et al�� ����� Magerman� ����� Collins�

����� has rede�ned the parsing enterprise� Although the task of parsing is still to assign a

structural description to an input� it is no longer the case that the description be arrived

by combining elementary structures of a grammar� In fact� there is� no notion of an explicit

grammar in this paradigm of parsing� A structural description to a string is assigned based

on the likelihood of that structure in a context similar to that in the string� The contexts

and likelihoods are collected from a corpus of sentences that are annotated with the desired

structural descriptions�

��� Issues in Natural Language Parsing

In order to situate our work� we brie	y review the issues involved in Natural Language
NL�

parsing� Since parsing is the computation of assigning an interpretation to a sentence via

a grammar� NL parsing enterprise has been in	uenced by computational� linguistic and

psycholinguistic considerations �Robinson� ������ In this section� we review the issues in

NL parsing from computational� psycholinguistic and linguistic perspectives in the context

of a purely grammar�based parsing approach� In the next few sections� we discuss the

emerging approaches to NL parsing that address these issues to some extent�

����� Computational Issues

Natural Languages are both lexically and structurally ambiguous� This results in both

local and global ambiguity for a natural language parser� This fact is further compounded

�Parsers for context�free grammars can be viewed this way with rules as one level trees that are combined
using substitution operation�

�

by the high performance requirements on NL parsers in terms of speed�� accuracy and

robustness which makes NLs hard to parse�

Robustness� The syntactic structure of natural language is very complex and no gram�

mar has been written that has complete coverage of any natural language� This is further

compounded by the fact that unrestricted texts contain ungrammatical and fragmented

sentences� Natural language parsers are expected to be robust in the face of incomplete

lexicon and grammar coverage� and even ungrammatical input� They are expected to

rapidly parse simple sentences and yet degrade gracefully in the face of extragrammatical

and ungrammatical input�

Speed� NL parsers that attempt to parse sentences with �� to �� words are often

faced with a combinatorially intractable task due to ambiguity inherent in natural lan�

guage descriptions� Parsers arrive at an analysis by systematically searching� selecting and

combining appropriate elementary structures from the set of possible structures de�ned in

the grammar� so as to span the input string� This aspect of searching through the space of

elementary structures of the grammar to determine the appropriate structures to combine

is the single most time�expensive component of the parsing process� The space of ele�

mentary structures to be searched and combined grows rapidly as the degree of ambiguity

of words in the input string increases� This fact is further compounded in wide�coverage

grammars where a variety of elementary structures are included in the grammar to deal

with a range of linguistic constructions� Due to the enormous size of the search space�

parsers for wide�coverage grammars are excruciatingly slow and often perform at speeds

that make them impractical to use�

Selecting Analysis� Assuming that an NL parser is fast enough to �nd a set of

analyses in a reasonable amount of time� it is faced with the problem of selecting a correct

analysis� As a result of lexical and syntactic ambiguity in NLs� parsers invariably produce

multiple parses for a given input� However� since the grammar itself does not directly

encode any preference metric with each analysis� parsers for NLs in general do not have a

method of choosing the correct analysis among competing analyses�

�We consider the speed of the parser by itself and not when the parser is embedded in an application and
can have access to other sources of information such as semantic� pragmatic� world knowledge or preference
factors�

�

Global Structure� The objective of a parser is to produce a structure that spans

the entire input string� However� due to lack of preference metrics combined with the

incompleteness of the lexicon and grammar� and possibly ungrammatical input� parsers� in

their attempt to assign a global structure to the complete input� often produce disprefered

local structures�

����� Linguistic Issues

It is quite evident that there is a close relationship between a parser and the representation

the parser manipulates� However� in recent times there has been increasing debate on

such issues as what should the representation be� how linguistically detailed should the

representation be and how does one go about constructing such a representation��

An active line of research has been to develop wide�coverage grammars in well�studied�

mathematically rigorous grammar frameworks that are linguistically adequate� A parser

based on a linguistically motivated wide�coverage grammar has many advantages� A wide�

coverage grammar that is domain independent encodes the invariances of the language

in general and is not specialized to any particular domain� As a result� such a gram�

mar is more portable across domains than a grammar developed for a particular domain�

However� for a parser to better exploit the idiosyncrasies of a domain� a wide�coverage

grammar can be specialized to that domain� thus making parsing e�cient in limited do�

mains� Also� depending on how directly a grammar framework encodes linguistic facts� a

linguistically motivated grammar developed in that framework could produce output that

is quite detailed and directly amenable to further processing� Furthermore� if a grammar

for one language is created in detail and the structures of the grammar are organized

systematically then it is conceivable that grammars for closely related languages could be

automatically generated by abstracting away from language speci�c features�

����� Psycholinguistic Issues

Humans parse natural language expressions rapidly� robustly� e�ciently and e�ectively

even in noisy environments with degraded inputs� This suggests that parsing mechanisms

�We are hesitant to limit the notion of representation to the traditional sense of grammar� since these
issues are applicable to statistical �grammar�less� parsing paradigms as well�

�

that build on what we know of human sentence processing might do better in terms of

speed and robustness�

Lexicalist Approach� Humans seem to bring in vast amounts of lexical information

and rapidly commit to a single structure on the basis of probabilistic and local contextual

information �Trueswell and Tanenhaus� ����� MacDonald et al�� ������ In view of this�

recent theories of sentence processing in psycholinguistics have emphasized the role of

lexical mechanisms� a fact independently motivated in computational formalisms as well�

Local Constaints� An important aspect of human sentence processing is use of local

constraints and rapid commitment to a single structure� even at the cost of processing

errors� Not many parsers in the past have focussed on this issue� and instead attempted at

a globally consistent parse while entertaining many possible structure in parallel instead

of risking a total failure to parse� A primary reason for this distinction is that the cost

of processing errors in humans is relatively low since they are endowed with quick error

detection and error recovery mechanism that works in conjunction with the on�line� incre�

mental processing mechanism� Recent trends in parsing can be viewed as addressing some

of these issues�

��� Methods for Robust Parsing

In this section� we discuss some of the robust parsing methods that have been adopted to

parse NLs that either address or circumvent the issues that were discussed in the previous

section� The main emphasis of these techniques has been on speed and coverage of parsing

while trading the depth of analysis to robustness� There are two main approaches for

dealing with robust parsing of natural languages� We summarize the similarities and

di�erences between these approaches�

����� Finite State Grammar�based Approaches

Finite State Grammar�based approaches to parsing is characterized by� for example� �Joshi�

����� Joshi and Hopely� ����� Abney� ����a� Appelt et al�� ����� Roche� ����� Grishman�

����� parsing systems� These systems use grammars that are represented as cascaded �nite�

state regular expression recognizers� The regular expressions are usually hand�crafted�

�

Each recognizer in the cascade provides a locally optimal output� The output of these

systems is mostly in the form of noun groups and verb groups rather than constituent

structure� often called as a shallow parse� There are no clause�level attachments or mod�

i�er attachments in the shallow parse� These parsers always produce one output� since

they use the longest match heuristic to resolve cases of ambiguity when more than one

regular expression matches the input string at a given position� At present none of these

systems use any statistical information to resolve ambiguity� The grammar itself can be

partitioned into domain independent and domain speci�c regular expressions which implies

that porting to a new domain would involve rewriting the domain dependent expressions�

This approach has proved to be quite successful as a preprocessor in information extraction

systems �Hobbs et al�� ����� Grishman� ������

����� Statistical Parsers

Pioneered by the IBM natural language group �Fujisaki et al�� ����� and later pursued by�

for example �Schabes et al�� ����� Jelinek et al�� ����� Magerman� ����� Collins� ������

this approach decouples the issue of well�formedness of an input string from the problem

of assigning a structure to it� These systems attempt to assign some structure to every

input string� The rules to assign a structure to an input is extracted automatically from

hand�annotated parses of large corpora� which are then subjected to smoothing to obtain

reasonable coverage of the language� The resultant set of rules are not linguistically trans�

parent and are not easily modi�able� Lexical and structural ambiguity is resolved using

probability information that is encoded in the rules� This allows the system to assign the

most�likely structure to each input� The output of these systems consists of constituent

analysis� the degree of detail of which is dependent on the detail of annotation present

in the treebank that is used to train the system� However� since the system attempts a

globally optimal parse� it may produce locally disprefered analysis� Also� since there is no

distinction between the domain dependent and domain independent rule sets� the system

has to be retrained for each new domain� which in turn requires an annotated corpus for

that domain�

There are also parsers that use probabilistic
weighting� information in conjunction

�

with hand�crafted grammars� for example� �Black et al�� ����b� Nagao� ����� Alshawi

and Carter� ����� Srinivas et al�� ������ In these cases the probabilistic information is

primarily used to rank the parses produced by the parser and not so much for the purpose

of robustness of the system�

��� Our Approach

In this dissertation� we have proposed novel methods for robust parsing that integrate the

	exibility of linguistically motivated lexical descriptions with the robustness of statistical

techniques� We pursue the idea that the computation of linguistic structure can be local�

ized if lexical items are associated with rich descriptions
Supertags� that impose complex

constraints in a local context� This makes the number of di�erent descriptions for each

lexical item much larger� than when the descriptions are less complex� thus increasing the

local ambiguity for a parser� However� this local ambiguity can be resolved by using statis�

tical distributions of supertag co�occurrences collected from a corpus of parses� Supertag

disambiguation results in a representation that is e�ectively a parse
almost parse��

The idea of using complex descriptions for primitives to capture constraints locally has

some precursors in AI� For example� the Waltz algorithm �Waltz� ����� for labeling vertices

of polygonal solid objects can be thought of in these terms� The idea of the algorithm is to

include the various possibilities of labeling vertices as primitives thus localizing ambiguity�

The labeling constraints associated with the primitives operate locally and are used to

�lter out mutually incompatible primitives� thus leaving only combinations of compatible

ones as solutions� However� as far as we know� there is no rendering of Waltz�s algorithm

that exploits the locality of constraints using statistical techniques�

����� Localizing Ambiguity

In the linguistic context� there can be many ways of increasing the complexity of descrip�

tions of lexical items� The idea is to associate lexical items with descriptions that allow for

localization of all and only those elements on which the lexical item imposes constraints to

be with in the same description� Further� it is required to associate each lexical item with

as many descriptions as the number of di�erent syntactic contexts in which the lexical item

�

can appear� This� of course� increases the local ambiguity for the parser� The parser has to

decide which complex description out of the set of descriptions associated with each lexical

item is to be used for a given reading of a sentence� even before combining the descriptions

together� The obvious solution is to put the burden of this job entirely on the parser� The

parser will eventually disambiguate all the descriptions and pick one per lexical item� for

a given reading of the sentence� However� there is an alternate method of parsing which

reduces the amount of disambiguation done by the parser� Just as in Waltz�s algorithm�

the idea is to locally check the constraints that are associated with the descriptions of lex�

ical items to �lter out incompatible descriptions� During this disambiguation� the system

can also exploit statistical information that can be associated with the descriptions based

on their distribution in a corpus of parses�

We employ these ideas in the context of LTAG where each lexical item is associated

with one supertag for each syntactic context that the lexical item appears in� The number

of supertags associated with each lexical item is much larger than the number of stan�

dard parts�of�speech
POS� associated with that item� Even when the POS ambiguity is

removed the number of supertags associated with each item can be large� We show that

disambiguating supertags prior to parsing speeds�up a parser by a factor of ��� More in�

teresting� is the fact that since supertags combine both phrase structure information and

dependency information in a single representation� a disambiguated supertag sequence in

conjunction with a lightweight dependency analyzer can be used to compute noun groups�

verb groups� dependency linkages and even partial parses� We have shown that training

on one million supertag annotated words from Wall Street Journal corpus and testing on

������ words of held�out data� a trigram�based supertagger assigns ����� of the words

the same supertag as they would be assigned in the correct parse of the sentences� Fur�

thermore� we have shown that the lightweight dependency analysis on the output of the

supertagger for the ������ words identi�es ��� of the dependency links accurately�

����� Using Explanation�based Learning Technique

Although hand�crafted wide�coverage grammars are portable� they can be made more

e�cient if it is recognized that language in limited domains is usually well constrained and

�

certain linguistic constructions are more frequent than others� Hence� not all the structures

of the domain�independent grammar nor all the combinations of those structures would

be used in limited domains� In this paper� we view a domain�independent grammar as a

repository of portable grammatical structures whose combinations are to be specialized for

a given domain� We use Explanation�based Learning mechanism to identify the relevant

subset of a hand�crafted general purpose grammar needed to parse in a given domain�

The use of EBL for natural language parsing involves two phases
 training phase and

application phase� In the training phase� generalized parses of sentences are stored under a

suitable index that is computed from the training sentences� In the application phase� an

index for the test sentence is used to retrieve a generalized parse which is then instantiated

to that sentence� This approach improves the e�ciency of a parsing system by exploiting

the domain speci�c sentence structures� The success of this approach depends heavily on

e�cacy to generalize parses� Rayner ������� Samuelsson ������ and Neumann ������ have

used the EBL methodology to specialize CFG�based grammars for improving the e�ciency

of their systems�

We show that the idea of increased complexity of lexical descriptions as instantiated in

LTAGs allows us to represent certain generalizations that are not possible in CFG�based

approaches� Our method exploits some of the key aspects of LTAGs� to
a� achieve an im�

mediate generalization of parses for the training set of sentences
b� achieve generalization

over recursive substructures of the parses in the training set and
c� allow for a �nite state

transducer
FST� representation of the set of generalized parses�

��� Chapter Summaries

The outline of the dissertation is as follows�

Chapter �� In this chapter� we review the previous work in robust natural language

parsing� The chapter contains reviews of three class of parsing methodologies that in�

corporate robustness� First� the �nite�state based partial parsing systems employ simple

mechanisms to group sequences of words and indicate the grammatical relations among

word groups� Second� statistical parsing systems use annotated treebanks to induce prob�

ability distributions pertaining to parsing decisions and employ smoothing techniques to

�

achieve robustness� Third� parsing systems that extend conventional parsing techniques to

achieve robustness�

Chapter �� In this chapter� we introduce the LTAG formalism and review the three

central properties of LTAGs� Lexicalization� Extended Domain of Locality and Factoring

of Recursion from the domain of dependencies� We discuss the relevance of these properties

for partial parsing and present an overview of a grammar development environment and a

wide�coverage grammar for English that is being developed in LTAG�

Chapter �� In this chapter� we present the idea of supertag disambiguation and discuss

its relationship to partial parsing� We present several models for supertag disambiguation

and their performance evaluation results on various corpora� We also present a novel

lightweight dependency analyzer that exploits the information encoded in the supertags to

compute a dependency analysis of a sentence�

Chapter �� Although hand�crafted wide coverage grammars are portable� they can be

made more e�cient when applied to limited domains� if it is recognized that language in

limited domains is usually well constrained and certain linguistic constructions are more

frequent than others� In this chapter� we present the Explanation�based Learning technique

of specializing a wide�coverage LTAG grammar to a limited domain� We show that by

exploiting the central properties of LTAGs� parsing in limited domains can be seen as

Finite State Transduction from strings to their dependency structures�

Chapter �� In this chapter� we present an impoverished parser called Stapler that

takes as input the almost parse structure resulting from an FST induced by the EBL

mechanism and computes all possible parses and instantiates it to the particular sentence�

Using this technique� the specialized grammar obtains a speed up of a factor of �� over

the unspecialized grammar on the Air Travel Information Service
ATIS� domain�

Chapter 	� This chapter addresses the issue of evaluating partial parsing systems� It

consists of two parts� In the �rst part� we review the currently prevalent evaluation metrics

for parsers and indicate their limitations for comparing parsers that produce di�erent

representations� We propose an alternate evaluation metric based on dependency relations

that overcomes the limitations of the existing evaluation metrics� In the second part of

this chapter� we provide results from extensive evaluation of the supertagger and the LDA

system on a range of tasks and compare its performance against the performance of other

��

systems on those tasks�

Chapter �� In this chapter� we discuss several applications of the supertagger and the

LDA system� Supertagging has been used in a variety of applications including information

retrieval and information extraction� text simpli�cation and language modeling� Our goal

in using a supertagger is to exploit the strengths of supertags as the appropriate level of

lexical description needed for most applications� In an information retrieval application� we

compare the retrieval e�ciency of a system based on part�of�speech tags against a system

based on supertags and show that the supertag�based system performs at higher levels of

precision� In an information extraction task� supertags are used in specifying extraction

patterns� For language modeling applications� we view supertags as syntactically motivated

class labels in a class�based language model� The distinction between recursive and non�

recursive supertags is exploited in a sentence simpli�cation application� The ability to

bring to bear document�level and domain�speci�c constraints during supertagging of a

sentence is explored in another application�

��

Chapter �

Literature Survey

In recent times� robust Natural Language
NL� parsing has received renewed attention� This

interest in robust parsing has been driven by the intuition that exploiting sophisticated

linguistic information present in NL texts should improve the performance of NL�based

applications� However� although there has been signi�cant progress in both grammar�

based and stochastic robust parsing� general purpose parsers are far from being readily

deployable in practical applications�

Robustness in parsing refers to that property of the parser that irrespective of the

grammaticality of the input string allows the parser to produce a parse that may or may not

span the entire input string� The stumbling blocks for grammar�based parsing techniques

from achieving robustness are� incomplete lexicons� inadequate grammatical coverage of

systems� extremely long sentences that take unreasonable amount of time to complete

a parse� and ungrammatical texts� The stochastic parsers� although more robust than

purely grammar�based approaches� have their share of limitations� Being heavily data

driven� stochastic approaches need vast amounts of data which need to be annotated� a

fairly expensive proposition� Further� the richness of the output produced by these parsers

is limited by the detail of the annotation�

In this chapter� we will review some of the previous approaches that have resorted to

partial parsing in an attempt to achieve robustness in parsing� By partial parsing� we

mean that these systems either always or on failure to provide a single tree spanning the

input� produce a forest of trees that span most of the input� The reviews in this chapter

��

discuss the methodologies used by the various partial parsers without providing much

description of their performance� However� cross comparison of the performance of these

parsers� which would be invaluable� is extremely di�cult to achieve for obvious reasons�

We also review a few data�driven� stochastic�based parsers that use smoothing techniques

to achieve robustness�

The particular parsers being reviewed and the main reasons for including them in this

particular set are listed below�

� Type I � Extended Finite State Transducer�based Partial Parsers

This approach to parsing use grammars that are represented as cascaded �nite�state

regular expression recognizers� The regular expressions are usually hand�crafted�

Each recognizer in the cascade provides a locally optimal output� The output of

these systems is mostly in the form of noun groups and verb groups rather than

constituent structure� often called as a shallow parse or a text chunk� There are no

clause�level attachments or modi�er attachments in the shallow parse� These parsers

always produce one output� since they use the longest match heuristic to resolve cases

of ambiguity when more than one regular expression matches the input string at a

given position� At present none of these systems use any statistical information to

resolve ambiguity� The grammar itself can be partitioned into domain independent

and domain speci�c regular expressions which implies that porting to a new domain

would involve rewriting the domain dependent expressions� This approach has proved

to be quite successful as a preprocessor in information extraction systems

� Fidditch �Hindle� ������ Industrial strength version of Marcus� parser �Mar�

cus� ����� that is used extensively in the Treebank project at the University of

Pennsylvania�

� CASS �Abney� ����b�� A multi�stage parser that employs simple and computa�

tionally inexpensive set of tools at each stage to arrive at a parse�

� UNIVAC�� Parser
now called Uniparse� �Joshi� ����� Joshi and Hopely� �������

�This paper describes the parser designed and implemented on UNIVAC�� during the period �����
��� This project was directed by Zellig Harris� The members of the project were Carol Chomsky� Lila
Gleitman� Aravind Joshi� Bruria Kau	man and Naomi Sager� See also
Harris� ����
� This parser has been

��

A parser of historical signi�cance that employed many of the so�called current

state�of�the�art techniques in parsing�

� Helsinki Parser �Karlsson et al�� ������ A parser
more of a tagger� that uses

�nite�state expressible constraints to reduce the ambiguity of morphosyntactic

tags�

� Type II� Stochastic Parsers

This approach decouples the issue of well�formedness of an input string from the prob�

lem of assigning a structure to it� These systems attempt to assign some structure

to every input string� The rules to assign a structure to an input is extracted au�

tomatically from hand�annotated parses of large corpora� which are then subjected

to smoothing to obtain reasonable coverage of the language� The resultant set of

rules are not linguistically transparent and are not easily modi�able� Lexical and

structural ambiguity is resolved using probability information that is encoded in the

rules� This allows the system to assign the most�likely structure to each input� The

output of these systems consists of constituent analysis� the degree of detail of which

is dependent on the detail of annotation present in the treebank that is used to train

the system� However� since the system attempts a globally optimal parse� it may

produce locally disprefered analysis� Also� since there is no distinction between the

domain dependent and domain independent rule sets� the system has to be retrained

for each new domain� which in turn requires an annotated corpus for that domain�

Some of the parsers that belong to this class are�

� Decision Tree Parsers� This technique was �rst introduced in �Jelinek et al��

����� and was further developed in �Magerman� ������ In this parsing paradigm�

parsing decisions are guided by the knowledge implicitly encoded in the probabil�

ity distributions of a set of features� The probability distributions are estimated

from a training corpus of parses using statistical decision tree models�

� Bilder�Collins� ������ Bilder is a bigram lexical dependency based statistical

parser that employs lexical information directly to model dependency relations

reconstructed from the original complete documentation �Papers � �� � � �� of the Transformation and
Discourse Analysis Project �TDAP�� by Phil Hopely and Aravind Joshi�

��

between pairs of words� The statistical model is far simpler than the statistical

decision tree parsing model but yet has been shown to outperform decision tree

based parser�

� Data Oriented Parsing� Data Oriented Parsing
DOP� suggested by Scha �Scha�

����� and developed in Bod
�Bod� ������ is a probabilistic parsing method that

views parsing as a process of combining tree fragments� Each tree fragment is

associated with a probability estimate based on its frequency in the training

corpus� The frequency estimates associated with the tree fragments are used to

rank order derivation steps and to retrieve the most probable parse tree�

� Type III� Extended Chart Parsers�

This class of robust parsers are a result of augmenting the chart parsing technique�

Most of these parsers use a hand crafted grammar� usually speci�c to a domain�

written in context�free grammar formalism� Robustness in these parsers is usually

achieved by using techniques for retrieving partial constituents from the chart even if

the parser fails to retrieve a complete parse� However� as discussed below� a notable

exception to this approach is �Black et al�� ����b��

� De Marcken�s Parser �Marcken� ������ Agenda�based parser with heuristics to

order the agenda� This parser is being used as a front�end to an information

extraction system� PLUM �Weischedel et al�� ������

� Sene��s Extended Chart Parser �Sene�� ������ A chart parser that has been

extended to permit the recovery of parsable phrases and clauses within a sen�

tence� This parser is presently being used in conjunction with the MIT Speech

Recognition System in the ATIS domain�

� The PLNLP System �Jensen et al�� ������ An integrated� incremental system

for broad�coverage syntactic and semantic analysis and synthesis of natural lan�

guage�

� Sparser �McDonald� ������ TACITUS �Hobbs et al�� ����� and FASTUS �Ap�

pelt et al�� ������ Multi�stage domain�speci�c partial parsers that have been

��

employed with good success in information extraction tasks aimed at template�

�lling�

� IBM�s P�CFG and HBG model �Black et al�� ����b�� Hand�crafted context�free

grammar that achieved robustness using probabilities obtained from a parsed

corpus�

The partial parsers that are reviewed here have been intrinsically designed to provide

partial output either always or on failure to provide a complete parse� However� there are

other parsers that are not included here that may provide some partial parses but do so

as a byproduct rather than being intrinsically designed that way�

��� Fidditch

The Fidditch parser�Hindle� ����� is a large�scale version of Mitch Marcus� parser� PAR�

SIFAL�Marcus� ������ PARSIFAL is based on the �determinism hypothesis� that claims

that natural language can be parsed by a computationally simple mechanism that does

not involve non�determinism and in which all grammatical structure created by the parser

is �indelible� in that it must all be output as part of the structural analysis of the parser�s

input� Once built� no grammatical structure may be altered or discarded in the course of

the parsing process�

The design goal of the Fidditch parser was to process transcripts of spontaneous speech

and produce labeled bracketed trees� partial if necessary� that represented the syntactic

structure of the input� Since the parser is based on the determinism hypothesis� it produces

a single analysis for each input�

The input to the parser is a sequence of words� each with one or more lexical categories

selected from a ������ word lexicon and morphological analyzer� The lexicon� for each

word� contains the lexical category� the subcategorization frame� and in some cases� infor�

mation on compound words� Once the lexical analysis is complete� the phrase structure is

constructed using pattern�action rules�

The parser maintains two data structures
 the stack and the constituent bu�er� The

stack is used to keep track of the incomplete nodes and the constituent bu�er is used

��

to keep track of the completed constituents� The size of the constituent bu�er is �xed

to three� which allows the parser to look through a window of three constituents before

selecting a grammar rule to apply� The grammar for the parser is a set of pattern action

rules� Each pattern in a rule is matched against some subset of the constituent bu�er and

the top node of the stack� The actions of the parser include

� Create� build a new node by pushing a category onto the stack�

� Attach� attach the �rst element of the constituent bu�er to the element on the top

of stack�

� Drop� dropping the completed constituent from the stack into the �rst position of

the bu�er�

� Switch� swap the contents of the �rst and the second elements of the bu�er� This

move is to accommodate subject�aux inversion�

� Insert� add a new element into the bu�er at some position and shift the contents one

cell to the right� This move is to accommodate an empty category�

� Attention�shift� shift the attention from the �rst constituent in the bu�er to some

later constituent� This move is to predict a leading edge of Noun Phrases�

� Punt� If attachment is not possible� then move on to the next constituent�

The part�of�speech disambiguation in Fidditch is done during the parse using certain

context sensitive rules� The parser does not attach most modi�ers� adjuncts and relative

clauses� Fidditch is the fastest partial parser� according to Abney �����b��

��� CASS

CASS
Cascaded Analysis of Syntactic Structure� �Abney� ����b� is a multi�stage parser

that uses simple and inexpensive analyzers at each stage of the parsing process� The input

sentence is tagged for POS using a trigram tagger� A stochastic NP�recognizer �Church�

����� is used to identify non�recursive noun phrases in the input� The output after applying

the above stages on the sentence ��� is shown in ����

��

���� In South Australia beds of boulders were deposited by melting icebergs in a gulf

that marked the position of the Adelaide geosyncline� an elongated� sediment��lled

depression in the crust�

���� EOS Inp �Southpn Australiapn bedsnpl� ofp �bouldersnpl� werebed depositedvbn byp

�meltingvbg icebergsnpl� inp�adet gulfn� �thatwps� markedvbd �thedet positionn� ofp

�thedet Adelaidepnoun geosynclinen�� �andet elongatedadj �� �sediment��lledadj

depressionn� inp �thedet crustn�� EOS

� Chunker� The chunker consists of a NP corrector and a chunk recognizer� The

NP corrector �xes the errors made by the stochastic NP recognizer such as NP

fragmentation resulting from conjunction of prenominal adjectives or modi�cation of

adjectives�cardinals by adverbs and quali�ers� This stage uses a regular expression

recognizer to assemble noun phrases�

The chunk recognizer also uses a small regular expression grammar to identify chunks�

These chunks usually include the NPs recognized in the previous stages� The output

after this stage on the input sentence is shown in ����

���� EOS �PP In �NP South Australia beds�� �PP of �NP boulders�� �V P were

deposited� �PP by �NP melting icebergs�� �PP in �NP a gulf�� �WHNP that� �V P

marked� �NP the position� �PP of �NP the Adelaide geosyncline��� �NP an

elongated� sediment��lled depression� �PP in �NP the crust��� EOS

� Clause Recognizer� The clause recognizer consists of two modules� the simplex clause

recognizer and the clause repair module�

� Simplex Clauses� The simplex clause recognizer attempts to identify the begin�

ning and end of each simplex clause and marks the subject and predicate of

the clause� This is done using regular expressions that leverages o� of clause

markers such as complementizers� conjunctions and periods� If no subject and

predicate can be identi�ed� the type of error encountered is classi�ed as either

NO�SUBJ
no subject� or EXTRA�VP
too many VPs��

��

� Clause Repair� The parser attempts to repair NO�SUBJ and EXTRA�VP errors

using prede�ned templates for each type of error� NO�SUBJ errors are caused

due to unrecognized partitives� run�on NPs and complementizers mistaken to

be prepositions� EXTRA�VP errors are caused due to empty relative pronouns�

empty complementizer and misanalyzed complementizers� If the error type does

not match any of the repair templates� then any NP followed by VP is regarded

as a clause and a free standing VP a predicate�

Using the information in this module� the example in ��� is correctly chunked as

follows�

���� EOS �PP In �NP South Australia�� �SUBJ �NP beds�� �PP of �NP boulders�� �V P

were deposited� �PP by �NP melting icebergs�� �PP in �NP a gulf�� �WHNP that�

�V P marked� �NP the position� �PP of �NP the Adelaide geosyncline��� �NP an

elongated� sediment��lled depression� �PP in �NP the crust��� EOS

� Attachment� This stage� unlike the previous stages� is not a regular expression rec�

ognizer� It assembles recursive structures by attaching nodes one to another based

on information about the arguments and modi�ers licensed by the head words� At

each point� the parser considers attaching the current chunk to either the preceding

chunk or to the most recent chunk with a verb� There are also templates to handle

constructions that involve conjunctions and sentence initial adjuncts� The possible

actions are ordered by heuristics and the most appropriate action is applied� If no

action is applicable� then the attachment site of the chunk is left indeterminate�

The parser has been evaluated for speed and accuracy of chunking� When used with

the part�of�speech tagger the CASS� parser can parse a million word corpus in under six

hours with a chunk segmentation accuracy of ���� The design architecture of this parser

is to make local decisions within each level and to make repairs� if any� downstream� Each

stage outputs a single best answer� This way� the problem of exponential global ambiguity

is overcome by making a sequence of independent small sets of choices� However� if the

stages were to produce N�best output� the repair modules may not be required�

��

��� UNIVAC�� Parser �now called Uniparse�

One of the foremost attempts at parsing language on a large�scale was done in the Discourse

Analysis Project �Joshi� ����� Joshi and Hopely� ����� Harris� ����� in the Department of

Linguistics at the University of Pennsylvania� This parser was designed and implemented

on UNIVAC�� during the period �������� This project was directed by Zellig Harris and

included Carol Chomsky� Lila Gleitman� Aravind Joshi� Bruria Kau�man and Naomi Sager

as members of the project� This parser� now called Uniparse �Joshi and Hopely� ������ has

been reconstructed from the original complete documentation
Papers � ��
 � �� of

the Transformation and Discourse Analysis Project
TDAP�� by Phil Hopely and Aravind

Joshi� This parser is not only historically important but it also incorporated what are

currently regarded as the state�of�the�art techniques for parsing large�scale texts�

The parser was designed as a multi�stage system� It is a cascade of Finite State Trans�

ducers
FST�� except for the last stage� which technically is not an FST� but more like a

Push Down Transducer
PDT�� Each word in the input string is �tagged� with the class

or classes to which the word belongs� If a word is tagged with multiple classes� then a

series of tests are applied to identify environments in which a class de�nitely cannot hold�

However� these negative tests may still leave the class ambiguity unresolved�

The input string is then segmented into �rst order strings based on the class marks

associated with the words of the input� First order strings are typically noun phrases�

sequence of verbs and adjunct phrase and are only minimal structures that do not include

any nesting of other �rst order strings� Once the �rst�order strings are identi�ed� their

internal structure is not analyzed� The �rst�order strings behave like chunks in which

there is a principal word and all the other words bear relation to this word� The domain

of their relationship is �local� and does not extend beyond the substring concerned� The

�rst�order strings can be recognized by a �nite state computation since there is no nesting

of �rst�order strings�

The input is scanned either left to right or right to left depending on the type of

�rst�order string being recognized� Elementary noun sequences� adjunct phrases and verb

sequences are recognized in that order� The chunks recognized in one scan are treated as

frozen for the subsequent scans� Examples with the �rst�order strings marked o� is shown

��

below� � � indicate noun phrases� f g indicate verb sequences and
 � indicate adjuncts�

���� �Those papers� fmay have been publishedg
in �a hurry���

���� �I� fmay
soon� gog�

Second order substrings are clausal in nature� Second order substrings are �xed se�

quences of �rst�order strings and can include other second order substrings� Recognition

of a second order string begins with a left to right scan on the input in which the �rst�order

substrings have been replaced by single characters� The input contains the second order

heads that are not part of any of the �rst order strings
for example� complementizers

and conjunctions or sentential subjects�� Recognition of these second�order strings is done

using a push down transducer like automaton� The well�formedness of the sentence is

determined if the subcategorization requirements of the verb are satis�ed� The following

examples illustrate the clausal annotation� The markers � and � include a clause� that�

clauses� sentential subjects and objects are included in between � and n and � marks the

end of a complement�

���� �Those� �who read �newspapers� � fwasteg �their time��

����
Under �conditions��
of �dual induction�� � � decreasing� G �the amino � acid

concentration�� � n � N
from ������
to ���� per cent�� fsuppressedg� W �beta �

galactosidase synthesis�� �
to �a greater extent�� than �nitrate reductase�

At places where there are multiple possibilities in each stage� one choice is pursued but the

alternatives are kept track of� The search is similar to a chart�based� depth��rst preference�

driven search with the possibility of backtracking�

��� FASTUS

The FASTUS system �Appelt et al�� ����� was developed in the context of the Fourth

Message Understanding Conference
MUC� in ���� as a successor to the TACITUS system�

The main motivation for developing FASTUS was that the TACITUS system was extremely

slow
taking ��hours to process ��� messages� in parsing the text in the MUC messages�

��

The FASTUS system processed the same set of ��� messages in �� minutes� The crucial

di�erence between FASTUS over TASITUS is that FASTUS used a Finite State Mechanism

to extract partial parses instead of a full parser�

Processing in FASTUS is driven by pattern matching� Patterns are used for name recog�

nition� to determine the relevance of the sentence for the task at hand� and for syntactic

and semantic processing� Each pattern is associated with at least one trigger word� The

lexicon used for syntactic recognition contains ����� lexical items with a total of �����

morphologically in	ected forms� The syntactic component consists of non�deterministic

�nite�state automata that recognize noun groups and verb groups� The noun group recog�

nizer has �� states and recognizes noun phrases� each with a head noun and left modi�ers

and determiners� The verb group recognizer has �� states and includes the verb� the auxil�

iary and any intervening adverbs� The noun and verb groups are used to recognize patterns

and output an incident structure� A series of pattern�incident structure pairs have been

written for the MUC task� There are patterns that skip over relative clauses and preposi�

tion phrases on nouns� The incident structures are merged with other incident structures

found in the same sentence� Merging is blocked if the types of the incident structures are

incompatible�

The success of this approach lies in identifying rules for chunking and associating the

interpretations to chunks� It would be interesting if these rules could be derived automat�

ically for some domain given some initial training material in that domain�

��� ENGCG Parser

The ENGCG grammar representation �Karlsson et al�� ����� Anttila� ����� imposes a

shallow analysis based on surface order resulting in a syntactic functional description for

each word of the input string� The grammatical structure is encoded in terms of tags

associated with each word rather than in terms of phrase structure bracketings� The

tags incorporate morphological information and partial�dependency relations that encode

information about the syntactic function of the word the tag is associated with� These

tags leave a number of decisions about the dependency relations ambiguous�

The parsing grammar in this framework is a set of unordered rules that specify negative

��

constraints based on the linear order of words and tags to eliminate alternate grammatical

tags for a word� The rules are hand�crafted based on observations on large samples of

authentic texts�

The parsing process involves a lookup stage where each word is assigned all possible

grammatical tags� The morphological descriptions are based on Koskeniemi�s Two�level

Model �Voutilainen� ������ There is a rule�based heuristic component that assigns gram�

matical tags to unknown words� Next� morphological disambiguation rules� numbering up

to ���� constraints� are used to �lter out the result of the morphological lookup� The

���� constraints use ���� contexts of which some ��� refer to unbounded contexts� It is

claimed that ������� of all words are fully unambiguous with a maximum error rate of

���� �Voutilainen� ������

In the syntactic �ltering stage the impossible and very unlikely
heuristically deter�

mined� grammatical tags for a word are discarded based on constraints speci�ed in the

grammar� The grammar consists of ��� syntactic disambiguation constraints and about

�� heuristic constraints� The result of this reductionist process is the grammatical analysis

of the input� The syntactic disambiguation component is claimed to achieve an recall of

������ with about ������ of words being unambiguous�Voutilainen� ������

Unlike other parsing methods� there is no structure built during parsing� Parsing in this

framework reduces to elimination of tags� The output representation is extremely shallow

and quite ambiguous� Hence evaluation of such a system should involve both accuracy and

precision� It is claimed that this approach outperforms other contemporary rule�based and

stochastic part�of�speech taggers�

��	 Decision Tree Parsers

Decision Tree Parsing was �rst introduced in �Jelinek et al�� ����� and was further developed

in �Magerman� ������ Parsing in this framework� as in other frameworks� is viewed as a

sequence of decisions such as choosing the part�of�speech of a word� choosing the constituent

structure and choosing the label of the constituent� However� the distinguishing factor of

this framework is that the decision making process is not guided by an explicit hand�crafted

knowledge base� such as a grammar or a lexicon� but instead� is guided by the knowledge

��

implicitly encoded in the probability distributions of a set of features� The probability

distributions are estimated from a training corpus of parses using statistical decision tree

models� A decision tree is a data structure wherein each internal node corresponds to a

decision question and each leaf node corresponds to a choice� A statistical decision tree is

a decision tree which assigns a probability to each of the possible choices conditioned on

the context of the decision�

The preterminal nodes in a parse tree are labeled by part�of�speech labels that are

predicted by a part�of�speech tagging model based on the two words to the left� the two

words to the right and the two nodes to the left and two nodes to the right of the current

word� The internal nodes in the parse tree are labeled by a constituent labeling model

based on speci�c words being present in the constituent� two nodes to the left and two

nodes to the right and two leftmost children and two rightmost children of the current

constituent�

A parse tree is viewed as a pattern wherein a node in a tree represents a meeting point

of a set of edges extending from the children of the node� An edge from any given node

can extend either to the right� up or left� The direction of extension of a node is predicted

by the extension model based on the two nodes to the left� two nodes to the right and the

two leftmost and the two rightmost children of the current node� The node to be extended

is predicted by a derivation model based on the current node information and the node

information from a �ve node window�

This model of parsing has been used to parse IBM computer manuals �Jelinek et al��

����� and its performance was compared to a hand�crafted P�CFG grammar based parser

whose probabilities were �ne tuned to the computer manual domain� The hand�crafted

grammar based parser� on the crossing bracket test over ���� sentences� performed at

��� accuracy� while the decision tree parsing model� on the same task� performed at ���

accuracy�

In �Magerman� ������ the same model has been trained and tested against the Penn

Treebank on the Wall Street Journal corpus� The parser could retrieve ��� of the con�

stituents that were found in the treebank and the parses for ��� of the sentences had no

crossing brackets when compared against the treebank�

��

��
 Bilder

Bilder �Collins� ����� is a bigram lexical dependency based statistical parser that employs

lexical information directly to model dependency relations between pairs of words� The

statistical model is far simpler than the statistical decision tree parsing model but yet has

been shown to outperform decision tree based parser� Bilder overcomes the shortcoming

of the decision tree based parser by depending heavily on lexical items for each decision in

the parse tree construction�

The parser takes as input� a part�of�speech tagged sentence and produces the most

likely parse for the sentence� A part�of�speech tagger based on maximum entropy princi�

ple �Ratnaparkhi� ����� is used as a preprocessor to tag a sentence� The input sentence

is reduced by removing punctuation and replacing non�recursive noun phrases with their

head�words alone� The lexical dependencies are computed using the Penn Treebank parses

by mapping the constituent structure to a dependency structure� This is done by manually

identifying which of the children of each constituent serves as the �head�child� of that con�

stituent� The head word of a constituent is the head word of its head child� A dependency

relation between pairs of words is represented as a triple� the constituent label for each of

the words and the label of the parent constituent� The objective of parsing is to �nd the

most probable set of dependencies that collectively include all the words of the sentence�

The problems of sparseness of data is handled by a back�o� model that successively backs

o� from the pair of words to the part�of�speech of the pair of words�

This parsing model has been trained on Penn Treebank parses of ������ sentences

from Wall Street Journal text� It performs at a labeled recall accuracy of ����� with

����� of the test sentences parsed with zero crossing brackets� The parser uses ��� MB

of memory and discounting the time for POS tagging� the parser parses at a speed of ���

sentences�min�

��� Data Oriented Parser

Data Oriented Parsing
DOP� suggested by Scha �Scha� ����� and developed in Bod
�Bod�

������ is a probabilistic parsing method that views parsing as a process of combining tree

��

fragments� The set of tree fragments is the set of all possible subtrees of parses in the

training corpus� Each tree fragment is associated with a probability estimate based on

its frequency in the training corpus� The tree fragments are combined using substitution

operation� Substituting one tree fragment into the leftmost node of another tree fragment

constitutes as one derivation step in the parsing process� The frequency estimates associ�

ated with the tree fragments are used to rank order derivation steps� Since a parse tree

can be generated by many derivations involving di�erent tree fragments� the probability

of a parse tree is the sum of the probabilities of all possible derivations for that parse tree�

The objective of the parser is to produce the most probable parse tree that spans the given

sequence of words�

The DOP model has been used to parse the ATIS corpus� using the parses found in the

Penn Treebank as the training corpus� Recently �Bod� ������ the DOP model of parsing

has been extended such that the tree fragments are associated with frequency estimates

obtained from Good�Turing smoothing� Further� a dictionary is used to assign the part�

of�speech categories to the words of test sentences� This extended model performs at a

sentence accuracy� of ��� and a bracketing accuracy� of ������

��� De Marcken
s Parser

De Marcken�s parser �Marcken� ����� like other robust parsers� attempts to parse simple

structures rapidly while �gracefully failing� on more complicated constructions� The text

chosen to parse is the LOB corpus� An N�best POS tagger is used as a front�end to the

parser�

The parser uses an agenda mechanism� It maintains three tables�

�� Rule�Action Table� Speci�es the action to be taken by a rule in a state that encounters

a phrase with a given category and features�

�� Single�phrase�action table� Speci�es if a phrase with a category and features should

project or start a rule�

�Percentage of sentences with no crossing brackets with respect to the treebank parses
�Percentage of brackets of the most probable parse that do not cross the brackets in the treebank parses

��

�� Phrase�phrase action table� Speci�es the action to be taken when two phrases abut

each other�

The possible actions that the parser can take are�

�� Shift the dot� Accepting a phrase� by shifting the dot in a rule�

�� Closing� Reducing a set of phrases recognized so far to a single phrase based on a

rule�

�� Lowering� Lowering is a mechanism by which� once a rule closes to a phrase� all the

phrases constituting the phrase are lowered to the bottom of the agenda� Lowering

helps in determinism�

An additional transducer mechanism is used to produce the tree relations for the out�

put� Rules are given precedence over phrases in the agenda� The usual mechanism of

retrieving the longest phrase starting at a place is used� This mechanism may fail to re�

trieve the best possible phrasal parse� The output is a list of phrasal parses� with not much

attachment information� The parser commits systematic errors in distinguishing adjuncts

from arguments�

���� Sene�
s Extended Chart Parser

Sene� ������ extends a standard chart parser �Sene�� ����� to permit the recovery of

parsable phrases and clauses within sentences� This parser was used in conjunction with

a spoken language system for ATIS domain and was shown to provide a considerable

improvement in the performance of the spoken language system�

The parser is designed to operate in two modes
 full�sentence mode and relaxed mode�

In the full�sentence mode� the parser attempts to �nd an analysis for the complete sentence�

The parser succeeds only if it �nds a sentence category that spans the entire input� In the

relaxed mode� the parser proceeds left�to�right producing all parses for the string starting

at the �rst word� The parse that spans the most number of words is selected� The parser

then attempts to parse the input starting at the �rst subsequent word� The parser skips

a word if it does not �nd a parse starting at that word� The selected parse after each

��

iteration is converted into a semantic frame based on domain knowledge� These semantic

frames are glued together using discourse information� This approach to robust parsing is

e�ective in limited domains� However� it will not be practical with a domain�independent

wide�coverage grammar�

���� The PLNLP approach

Programming Language for Natural Language Processing
PLNLP� system �Jensen et al��

����� is an integrated� incremental system for broad�coverage syntactic and semantic anal�

ysis and synthesis of natural language� This system has been used to develop a robust

computational broad�coverage grammar� the PLNLP English Grammar
PEG��

The PEG syntactic grammar is an augmented phrase structure grammar that has

a feature�structure like constraint mechanism� It has ��� rules speci�ed in the PLNLP

speci�cation language� The grammar is supported by a ������� entry lexicon that includes

part�of�speech and subcategorization information� The output of the PEG parser is a

phrase structure with each level annotated with the heads and modi�ers� The grammar

and the parser have been used in the context of a grammar checker and hence by de�nition

have to handle ill�formed text�

The parser is a bottom�up chart parser that attempts to cover the input with the

category for a sentence� The parser uses a preference metric so as to produce a ranked

set of parses� On failing� a parse �tting process is initiated in which the constituents from

the chart are retrieved and �tted together to form the �tted parse for the sentence� The

parse �tting proceeds by selecting a head constituent according to a preference list and

then �tting the remaining constituents into it� The �tting process is complete if the head

covers the entire input� If the head constituent does not cover the entire string� then the

remaining constituents are added on either side� The �tting process selects the largest

constituent at each iteration� The net result of the parse �tting is a �tted parse that

consists of the largest chunk of the sentence as a constituent and the remaining chunks

attached to it in some reasonable manner�

��

���� TACITUS

The design philosphy of TACITUS �Hobbs et al�� ����� has been to cater to detailed and

thorough analysis of natural language text� However� in order to maintain adequate level of

performance in terms of e�ciency and robustness� application�speci�c components
eg� a

Hispanic Name detector� that do not violate the overall design philosphy have been added

to TACITUS� There are modules for handling unknown words� and a relevance �lter that

decides the relevance of a sentence for the task at hand even before parsing it� using n�gram

information about words that appear in the domain�

The syntactic analysis component of TACITUS uses a broad coverage grammar derived

from the String and the DIAGRAM grammars�� The output analyses are ordered using

heuristics encoded in the grammar� The output of this component is translated into a

predicate�argument relation and subordination relation�

The syntactic analysis component consists of an agenda�based scheduling parser� a

recovery heuristic for unparsable sentences and a terminal string parser for very long sen�

tences� The parser works bottom�up using an agenda to order the nodes and edges by

their likelihood of participating in a correct parse� This allows the parser to pursue the

most likely paths in the search space without trying out all possibilities� The nodes and

edges are ranked based on parameters such as the number of words spanned� whether the

constituent is complete or not� and certain preference heuristics� The authors mention that

the preference heuristics proved to be the most e�ective of all� These preference heuris�

tics are the ones discussed in �Hobbs and Bear� ������ A majority of the errors made by

the parser were due to a few nagging problems� one such being topicalization analysis for

sentences that have two sentence initial nouns�

On a parse failure� the parser retrieves the best sequence of fragments that spans the

longest part of the sentence� Clauses� verb phrases� adverbial phrases and noun phrases are

the fragments retrieved in that order� It was observed that in many cases the lost words�

i�e� the words that did not feature in any of the fragment sequences did not add much to

the propositional content of the sentence� There were on the average two fragments for

each of the sentences that failed to parse�

�The String Grammar is a descendant of the grammar used in the UNIVAC�� parser�

��

The terminal substring parser component works on sentences longer than �� words�

The sentence is segmented into smaller substrings by breaking at commas� conjunctions�

relative pronouns and certain instances of the word �that�� The substrings are then parsed�

starting from the right and working back as one of the categories
 main� subordinate and

relative clauses� in�nitives� verb phrases� prepositional phrases and noun phrases� At each

substring� the parser also attempts to combine the set of substrings collected so far into

one of the above categories� The best structure is then selected for subsequent processing�

���� George Bush� the President� held a press conference yesterday�

This sentence is broken into three fragments� George Bush� the president� held a press

conference yesterday� The last fragment parses as a VP and then an attempt is made to

parse the string �the president� VP� as a single category which it is not� So �the president�

is parsed as an NP� Now the string �George Bush�NP�VP� is parsed as an appositive on

the subject�

The algorithm is superior to the more obvious one
 to parse each fragment individually

from left to right and then to attempt to piece the fragments together� The latter algo�

rithm would need to look inside all but the last of the fragments for possible attachment

positions� This idea of terminal substring parser is appealing� although it did not prove

very satisfactory in terms of performance for the task at hand�

���� Sparser

Sparser �McDonald� ����� was developed in the context of an information extraction system

to serve as a unrestricted wide�coverage robust parser that would parse text as it comes�

without any preprocessing of the text� The design of Sparser was based on the fact that

most wide coverage grammars lack grammatical analyses of the breadth of linguistic phe�

nomena appearing in real text� Hence� Sparser was designed as a partial parser that would

extract a particular class of information that is speci�c to the task� instead of attempting

to extract everything in the text� Sparser analyzes the part of the text that it is designed

to analyze while skipping the �extra�grammatical� portions of the text�

The following are the components of Sparser� These components can be con�gured in

��

any control structure as needed� Components can feed each other� on subsequent passes�

information which might not have been available in the �rst pass�

�� A tokenizer� This is a very conservative tokenization algorithm that groups words of

the same class together� So �	�
 million is seen as � tokens and left for subsequent

components to combine them based on the context� This delay could be advanta�

geous� F��� could be a key on a keyboard or may be a airplane depending on the

context� The tokenizer also deals with su�xes of unknown words to determine their

POS�

�� A set of transition networks� These networks serve to group adjacent elements such as

proper names� numbers and some word compounds into phrases with a 	at structure�

Though these phrases can be handled by grammatical rules
Phrase Structure rules�

it is more natural to state them in terms of transition nets� especially since they have

a 	at structure�

�� A CFG parser� This is a chart�based parser that uses semantic constraints that

are highly speci�c for the domain� For example� the word dollar is represented by a

triplet� a semantic label currency� a syntactic label head noun and a structured ambi�

guity between physical object
 quantity of money worth ��� cents and the value of U�S

currency on the international money market� In other words� the parser integrates

the process of word�sense disambiguation directly with the process of grammatical

analysis� This approach obviously reduces the structural ambiguity of a purely syn�

tactic analyzer� However� the con	ation of syntactic and domain�speci�c semantic

information limits the modularity and portability of the system to new domains�

�� A Context�Sensitive parser� This component consists of highly domain�speci�c rules

that apply only when the context associated with the rule matches the context around

the rule application in the text� An example rule is shown here�

name � person � �was named the CEO�

�� A Conceptual Analyzer� This component is responsible for skipping over extragram�

matical regions of the text and composing semantically related constituents that may

��

not be adjacent to one another� For example� a subject and predicate separated by a

long appositive can be brought together using semantic and conceptual information��

�� Forming Phrases Heuristically� This is a heuristic facility to identify phrasal bound�

aries using grammatical properties of function words and partially parsed phrases�

This is particularly useful when the system encounters unknown words� It uses func�

tion words and su�xes of unknown words to determine the phrase boundaries even

though it may not recognize most of the words in the phrase�

In summary� Sparser is a partial parser that is intended to serve as a front�end to an

information extraction system� It relies heavily on the domain knowledge for syntactic

analyses� and for combining partial parses� Hence� issues of modularity and portability are

of major concern in this system�

���� IBM
s P�CFG and HBG Model

This work �Black et al�� ����b� is distinctive from the other systems discussed in this section

in that robustness in this system was achieved using a probabilistic model of parsing� The

goal of this work was to integrate rich contextual information into a probabilistic extension

of a hand�crafted context�free grammar� Two models of including probabilities in the hand�

crafted context�free grammar were explored in this work
 the probabilistic context�free

grammar
P�CFG� model and the history�based grammar
HBG� model� Both models

used a treebank of computer manual sentences that were annotated with the correct parse

as training material�

In the P�CFG model� the rules in the hand�crafted context�free grammar were anno�

tated with probabilities which were estimated using an adaptation of the inside�outside

algorithm� The adaptation was that only parses that are consistent with the treebank

would contribute to the reestimation of the parameters of the P�CFG� After training� the

P�CFG was tested on ��� computer manual sentences with lengths ranging from � to ��

words� The performance of the parsing model was measured using two measures
 the

any�consistent rate and the Viterbi rate� The any�consistent rate measured the percentage

�The use of a grammar formalism that provides a greater domain of locality than a	orded by a CFG
will eliminate this problem�

��

of sentences for which the parse consistent with the treebank is proposed among the many

parses produced by the parser� The Viterbi rate measured the percentage of sentences

for which the most likely parse produced by the parser was consistent with the treebank

parse� A parse is regarded as consistent with the treebank parse if it matches the treebank

parse structurally including the labels for non�terminals� The P�CFG model achieved a

performance of ��� any�consistent rate and ��� Viterbi rate�

Unlike the P�CFG model where the grammar rule expansion was independent of the

context� in the HBG model the rule expansion was conditioned on rich contextual features�

The contextual features included syntactic� semantic and two lexical features� The model

predicts the syntactic and semantic labels of a constituent along with its rewrite rule and

its lexical features using the labels of the parent constituent� the parent�s lexical heads�

the parent�s rewrite rule that lead to the constituent and the constituent�s index in the

parent�s rule� These parameters are estimated using a statistical decision tree technique�

The HBG model performed at a Viterbi rate of ��� as opposed to the ��� performance

of the P�CFG model� an error reduction of ���� Thus the HBG model showed that

incorporating rich contextual features into a probabilistic model and conditioning rule

expansions on the derivation structure can improve the performance of a probabilistic

grammar� This provided a new approach to grammar development where the problem of

parsing is divided into two parts
 extending the grammar coverage and picking the correct

parse for a sentence�

���� Summary

As can be seen from the recent literature in robust parsing� there are two signi�cant

approaches emerging� The grammar based approach that incorporates some heuristic

and ranking information for selecting competing parses and resorting to partial parses

to achieve robustness and the statistical approach that employ an annotated treebank

to induce probability distributions pertaining to parsing decisions� Although there are

evaluation metrics that have been used to rank statistical parsers� there are no metrics as

yet to rank partial parsers among themselves or against statistical parsers� In chapter ��

we propose evaluation metrics that could be used to measure the performance of partial

��

parsers as well as statistical parsers�

��

Chapter �

Merits of LTAG for Partial

Parsing

Lexicalized Grammars are particularly well�suited for the speci�cation of natural language

grammars� The lexicon plays a central role in linguistic formalisms such as LFG �Kaplan

and Bresnan� ������ GPSG �Gazdar et al�� ������ HPSG �Pollard and Sag� ������ CCG

�Steedman� ������ Lexicon�Grammars �Gross� ������ LTAG �Schabes and Joshi� ������

Link Grammars �Sleator and Temperley� ������ and some version of GB �Chomsky� ������

Parsing� lexical semantics and machine translation� to name a few areas� have all bene�ted

from lexicalization� Lexicalization provides a clean interface for combining the syntactic

and semantic information in the lexicon�

In this chapter� we discuss the merits of lexicalization and other related issues in

the context of partial parsing� We take Lexicalized Tree�Adjoining Grammars
LTAGs�

as a representative of the class of lexicalized grammars� This chapter is organized as

follows� Section ��� provides an introduction to Feature�based Lexicalized Tree�Adjoining

Grammars with an example� Section ��� discusses in detail the merits of LTAGs for partial

parsing� In Section ���� we brie	y discuss the salient details of a wide�coverage grammar

system developed in LTAG formalism�

��

��� Feature�based Lexicalized Tree�Adjoining Grammar

Feature�based Lexicalized Tree�Adjoining Grammar
FB�LTAGs� is a tree�rewriting gram�

mar formalism unlike Context�Free Grammars and Head�Grammars which are string�

rewriting formalisms� FB�LTAGs trace their lineage to Tree Adjunct Grammars
TAGs��

which were �rst developed in �Joshi et al�� ����� and later extended to include uni�cation�

based feature structures �Vijay�Shanker� ����� Vijay�Shanker and Joshi� ����� and lexical�

ization �Schabes et al�� ������ For a more recent and comprehensive reference� see �Joshi

and Schabes� ������

The primitive elements of FB�LTAGs are called Elementary trees� Each elementary

tree is associated with at least one lexical item on its frontier� The lexical item associated

with an elementary tree is called the anchor of that tree� An elementary tree serves as a

complex description of the anchor and provides a domain of locality over which the anchor

can specify syntactic and semantic
predicate�argument� constraints� Elementary trees

are of two kinds�
a� Initial Trees and
b� Auxiliary Trees� In an FB�LTAG grammar for

natural language� initial trees are phrase structure trees of simple sentences containing no

recursion� while recursive structures are represented by auxiliary trees�

Examples of initial trees
�s� and auxiliary trees
�s� are shown in Figure ���� Nodes

on the frontier of initial trees are marked as substitution sites by a ���� while exactly one

node on the frontier of an auxiliary tree� whose label matches the label of the root of the

tree� is marked as a foot node by a ���� The other nodes on the frontier of an auxiliary tree

are marked as substitution sites�

Each node of an elementary tree is associated with two feature structures
FS�� the

top and the bottom� The bottom FS contains information relating to the subtree rooted

at the node� and the top FS contains information relating to the supertree at that node��

Features may get their values from three di�erent sources�

� Morphology of anchor� from the morphological information of the lexical items that

anchor the tree�

� Structural characteristics� from the structure of the tree itself
for example� the

mode � ind
imp feature on the root node in the �� tree in Figure �����

�Nodes marked for substitution are associated with only the top FS�

��

� The derivation process� from uni�cation with features from trees that adjoin or

substitute�

Elementary trees are combined by Substitution andAdjunction operations� Substitution

inserts elementary trees at the substitution nodes of other elementary trees� Figure ���
a�

shows two elementary trees and the tree resulting from the substitution of one tree into the

other� In this operation� a node marked for substitution in an elementary tree is replaced

by another elementary tree whose root label matches the label of the node� The top FS of

the resulting node is the result of uni�cation of the top features of the two original nodes�

while the bottom FS of the resulting node is simply the bottom features of the root node

of the substituting tree�

In an adjunction operation� an auxiliary tree is inserted into an elementary tree� Figure

���
b� shows an auxiliary tree adjoining into an elementary tree and the result of the

adjunction� The root and foot nodes of the auxiliary tree must match the node label at

which the auxiliary tree adjoins� The node being adjoined to splits� and its top FS uni�es

with the top FS of the root node of the auxiliary tree� while its bottom FS uni�es with

the bottom FS of the foot node of the auxiliary tree� Figure ���
b� shows an auxiliary tree

and an elementary tree� and the tree resulting from an adjunction operation� For a parse

to be well�formed� the top and bottom FS at each node should be uni�ed at the end of a

parse�

Y
tr

br
X

Y
t U tr

br

X

Y
t

=>

X

>t
Yb

Y

Y*

br

tf

bf

tr
X

t U tr

b U bf

tf

br

Y

Y

a�
b�

Figure ���� Substitution and Adjunction in LTAG

The result of combining the elementary trees shown in Figure ��� is the derived tree�

shown in Figure ���
a�� The process of combining the elementary trees to yield a parse of

the sentence is represented by the derivation tree� shown in Figure ���
b�� The nodes of the

derivation tree are the tree names that are anchored by the appropriate lexical items� The

��

NPr
agr : <1>

D agr : <1>
agr : pers : 3

num : sing/plur

the

NPf* agr : <1>

NP
agr : <1>

N agr : <1>
agr : 3rdsing : +

pers : 3
num : sing

company

Sr mode : ind/imp

agr : <3>
mode : <4>

NP1↓ agr : <3> VP agr : <3>
mode : <4>

agr : <1>
mode : <2>

V passive : +
agr : <1>
mode : <2> ppart

mode : ppart

acquired

�� �� ��

VPr

agr : <1>
mode : <2>

V agr : <1>
mode : <2>

mode : ind
agr : pers : 3

num : sing
3rdsing : +

is

VP*

mode : ger

VPr

agr : <1>
mode : <2>

V agr : <1>
mode : <2>

mode : ger

being

VP*

mode : ppart

�� ��

Figure ���� Elementary Trees for the sentence� The company is being acquired

��

Sr agr : <1> 3rdsing : +
num : sing
pers : 3

mode : <2> ind

NP agr : <1>

DetP agr : <1>

D agr : <1>

the

N agr : <1>

company

VPr agr : <1>
mode : <2>

V agr : <1>
mode : <2>

is

VP agr : <3>
mode : <4> ger

V agr : <3>
mode : <4>

being

VP agr : <5>
mode : <6> ppart

V passive : +
agr : <5>
mode : <6>

acquired

a�

αnx1V [acquired]

αNXdxN [company]

αDXD [the]

βVvx [being]

βVvx [is]

acquired

company

the

being

is

b�
c�

Figure ����
a� Derived Tree�
b� Derivation Tree� and
c� Dependency tree for the sentence�
The company is being acquired

��

combining operation is indicated by the type of the arcs
a broken line indicates substitution

and a bold line indicates adjunction� while the address of the operation is indicated as part

of the node label� The derivation tree can also be interpreted as a dependency tree with

unlabeled arcs between words of the sentence� as shown in Figure ���
c��

��� Key properties of LTAGs

In this section� we de�ne the key properties of LTAGs� Lexicalization� Extended Domain

of Locality
EDL� and Factoring of Recursion from Domain of Dependency
FRD� and

discuss how these properties are realized in natural language grammars written in LTAGs�

A more detailed discussion about these properties is presented in �Joshi� ����� Kroch and

Joshi� ����� Joshi� ����� Schabes et al�� ����� Joshi and Schabes� ������

Lexicalized Grammar� A grammar is lexicalized if it consists of

� a �nite set of elementary structures �strings� trees� directed acyclic graphs�

etc��� each structure anchored on a lexical item�

� lexical items� each associated with at least one of the elementary structures

of the grammar

� a �nite set of operations combining these structures�

This property proves to be linguistically crucial since it establishes a direct link between

the lexicon and the syntactic structures de�ned in the grammar� In fact� in lexicalized

grammars all we have is the lexicon� which projects the elementary structures of each

lexical item� there is no independent grammar�

Extended domain of Locality
EDL� This property has two parts�

�a� Every elementary structure must contain all and only the arguments

of the anchor in the same structure�

�b� For each lexical item� the grammar must contain an elementary struc�

ture for each syntactic environment the lexical item might appear in�

��

Part
a� of EDL allows the anchor to impose syntactic and semantic constraints on its

arguments directly since they appear in the same elementary structure that it anchors�

Hence� all elements that appear within one elementary structure are considered to be

local� This property also de�nes how large an elementary structure in a grammar can be�

Figure ���
a� shows the elementary tree anchored by seem that is used to derive a raising

analysis for sentence ���� Notice that the elements appearing in the tree are only those

that serve as arguments to the anchor and nothing else� In particular� the Subject NP

John in sentence ���� does not appear in the elementary tree for seem since it does not

serve as an argument for seem� Figure ���
b� shows the elementary tree anchored by the

transitive verb hit in which both the Subject NP and Object NP are realized within the

same elementary tree�

���� John seems to like Mary�

LTAG is distinguished from other grammar formalisms by possessing part
b� of the

EDL property� In LTAGs� there is one elementary tree for every syntactic environment that

the anchor may appear in� Each elementary tree encodes the linear order of the arguments

of the anchor in a particular syntactic environment� For example� a transitive verb such

as hit is associated with both the elementary tree shown in Figure ���
a� for a declarative

transitive sentence such as sentence ���� and the elementary tree shown in Figure ���
b�

for an object extracted transitive sentence such as sentence ���� Notice that the object

noun phrase is realized to the left of the subject noun phrase in the object extraction tree�

���� John hit Mary�

���� Who did John hit�

As a consequence of the fact that LTAGs possess the part
b� of the EDL property�

the derivation structure in LTAGs contain the information of a dependency structure�

Another aspect of EDL is that the arguments of the anchor can be �lled in any order�

This is possible because the elementary structures allocate a slot for each argument of the

anchor in each syntactic environment that the anchor appears in�

There can be many ways of constructing the elementary structures of a grammar so

as to possess the EDL property� However� by requiring that the constructed elementary

��

VPfin

V

seems

VPinf*

Sr

NP0↓ VP

V

hit

NP1↓

Sq

NP↓ Sr

NP0↓ VP

V

hit

NP1

NA

ε

a�
b�
c�

Figure ����
a�� Tree for Raising analysis� anchored by seems
b�� Transitive tree
c��
Object extraction tree for the verb hit

structures be �minimal�� the third property of LTAGs namely� Factoring of Recursion from

the Domain of Dependencies� follows as a corollary of EDL�

Factoring of Recursion from the Domain of Dependencies
FRD��

Recursion is factored away from the domain for the statement of dependencies�

In LTAGs� recursive constructs are represented as auxiliary trees� They combine with

elementary trees by the operation of adjunction� Elementary trees de�ne the domain for

stating dependencies such as agreement� subcategorization� and �ller�gap dependencies�

Auxiliary trees� by adjunction to elementary trees� account for the long�distance behavior

of these dependencies�

An additional advantage of a grammar possessing FRD and EDL properties is that

feature structures in these grammars are extremely simple� Since the recursion has been

factored out of the domain of dependency� and since the domain is large enough for agree�

ment� subcategorization� and �ller�gap dependencies� feature structures in such systems

do not involve any recursion� In fact they reduce to typed terms that can be combined by

simple term�like uni�cation�

��

����� Derivation Structure

In this section� we brie	y discuss the notion of a derivation structure and discuss its

status in various formalisms� A derivation structure provides information regarding the

elementary structures that participated in that derivation and how they were combined

during the process of derivation� However� it does not indicate the order of the derivational

steps� Thus a derivation structure is a representative of an equivalence class of derivations

modulo the order of individual derivational steps�

In string rewriting systems� such as CFGs� there is no independent notion of a derivation

structure� The result of a parse is a phrase structure tree that represents the rules that

were combined and the result of that combination process�

In Categorial Grammars
CG�� the result of a parse is a proof tree� The proof tree is

like a phrase structure tree of CFG� where each node is a category label� However� unlike

a CFG phrase structure tree� each step in the proof tree is annotated with the operation

that was used to combine the categories that appear at that step�

In LTAG� a parse produces two structures
 the derived tree and the derivation tree�

The derived tree is a phrase structure tree while the derivation tree records the elementary

trees that were combined using the substitution and adjunction operations in the derivation

process� The nodes of the derivation tree are labels of the elementary trees and the edges

are either substitution or adjunction links� The edges are labeled with tree addresses that

indicate the location of operation of the tree labeling the daughter node into the tree

labeling the parent node�

The fact that LTAGs produce both a phrase structure tree and a derivation tree distin�

guishes it from its counterparts in the group of Mildly Context�Sensitive Grammars such as

Combinatory Categorial Grammars� Head Grammars and Linear Indexed Grammars �Joshi

et al�� ������ This is a direct consequence of the fact that the LTAGs are tree�rewriting

systems while its counterparts are string rewriting systems�

Linguistic Relevance of a derivation structure

A phrase structure represents the constituency and linear word order information for the

given input� However� predicate�argument relations� dependency relations such as head�

complement and head�modi�er relations and some aspects of non�compositional semantics

��

are not encoded in a phrase structure� To compute these relations in a formalism with a

CFG backbone requires additional mechanisms such as functional structures� as in LFG�

In a lexicalized formalism� the elementary structures are anchored by a lexical item that

serves as the head of the structure� However� in a lexicalized string�rewriting formalism�

even though the elementary structures are headed� when two headed strings are combined�

the operation that combines them has to choose from the two heads to head the resulting

string� Such an approach is pursued in Head Grammars and Headed CFGs �Abney� ����a��

Derivation Structures and Dependencies in LTAG

As mentioned before� the LTAG derivation structure consists of nodes that are la�

beled by elementary tree names along with their anchors� The nodes are connected

by substitution and adjunction links which can be seen as relating two lexical items�

These lexical relations can be identi�ed as head�complement and head�modi�er relations�

However� as Vijay�Shankar ������ observes� while substitution is used to add a complement�

adjunction is used for modi�cation and clausal complementation� The reason for this is

that auxiliary trees could represent head�modi�er relations as well as head�complement

clausal� relations� This is because auxiliary trees represent recursive structures of the

language and are independent of the syntactic relations that they express� Hence it has

been suggested that the auxiliary trees be further partitioned into predicative auxiliary

trees and modi�er auxiliary trees� Predicative auxiliary trees are recursive and record

head�complement relations� while modi�er auxiliary trees are recursive and record head�

modi�er relations� As a result of this� it is not the case that complements enter the

derivation through substitution and modi�ers through adjunction�� Also� the derivation

structure with predicative auxiliary trees needs to be interpreted di�erently to obtain the

�standard� notion of dependency structure�

In Chapter �� we discuss how lexicalization and EDL can be exploited for dependency

style parsing of LTAGs� In Chapter �� we discuss how FRD� in conjunction with lexical�

ization and EDL� can be exploited for parsing LTAGs in restricted domains�

�D�Tree Grammars
Rambow et al�� ����
 attempt to identify the type of syntactic dependency with
the type of operation used to compose the elementary structure�

��

����� Categorial Grammars

In this section we brie	y review how the properties of Lexicalization� EDL and FRD are

realized in natural language grammars written in Categorial Grammar
CG� framework�

CGs� like LTAGs� are lexicalized grammars� A CG consists a �nite set of categories and

every category is anchored by a lexical item� Categories are combined by application and

composition operations� However� CGs di�er from LTAGs on the EDL property� While

CGs possess part
a� they do not have the part
b� of the EDL property� As a consequence

of this� in a CG� hit is assigned only one category�
SnNP��NP� This category contains

both the arguments of the anchor in the same structure� and encodes the direction of the

arguments in the declarative transitive sentence� However� CGs do not contain categories

that encode the possible orderings of the arguments in other syntactic environments� Thus

hit is assigned the same category in sentence ��� and sentence ���� The derivation for

sentence ��� requires type�raising of the subject �Steedman� ������ Hence the category�

SnNP��NP� alone does not encode the syntactic environment in which it would be used

in� A part of the proof tree needs to be speci�ed to determine the ordering of the arguments�

Thus the history of the derivation alone does not encode the dependency structure of the

input�

In the system described by Joshi and Kulick ������� the primitive objects are partial

proof trees that are formed from the categorial grammar categories by proof building

operations� These proof trees� like LTAG trees� encode the possible orderings of the

arguments in each syntactic environments they would be used in� In such a system the

history of the derivation encodes the dependency structure of the input�

����� Chunking and LTAGs

As discussed in Chapter �� a chunk�based partial parser is necessitated from an engineer�

ing requirement in wide�coverage grammar systems� The reasons include the following�

grammatical coverage of these systems is seldom complete� full parsing is often extremely

slow and sometimes requires enormous amount of semantic knowledge� and unrestricted

texts are often ungrammatical�

Abney ������ provides another reason for chunking� His motivation for chunking is

��

based on psycholinguistic studies on sentence processing by Gee and Grosjean ������ that

link pause duration in reading and naive word grouping to text clusters called ��phrases�

Abney ������ de�nes chunks as the parse tree fragments with �problematic� elements such

as conjuncts� modi�ers and in some cases� arguments� unattached� A clause is a sequence

of chunks with no nesting of chunks� An example of chunks for the sentence ��� taken from

�Abney� ����� is shown in Figure ����

���� The professor from Milwaukee was reading about a biography of Marcel Proust�

S

NP

Det

the

N

professor

PP

P

from

NP

Milwaukee

VP

V

was

VP

V

reading

PP

P

about

NP

Det

a

N

biography

PP

P

of

NP

Marcel Proust

Figure ���� Chunks for The professor from Milwaukee was reading about a biography of
Marcel Proust�

Besides the psycholinguistic motivation� chunking provides a computational advantage�

Abney ������ shows that chunks can be identi�ed with very simple computationally inex�

pensive �nite�state devices� If the decisions of attachments of chunks can be factored out

from the task of resolving ambiguities in placing chunk boundaries� then the two tasks

can be handled separately and the parsing process could be simpli�ed considerably� Once

chunks are identi�ed� they are pieced together using dependency information between

chunks�

LTAGs possess properties that are conducive for a chunk�based parsing approach�

Elementary trees compile out the various syntactic environments the anchor of the tree

can appear in� Also� elementary trees factor out recursion� Hence elementary trees may

be regarded as linguistically motivated chunk templates with �slots� for the arguments

��

of the anchor� Frozen and nearly frozen groups of words or chunks can be represented

as multi�component anchors of chunk templates� Identifying chunk boundaries in the

input reduces to assignment of the correct elementary trees to the words of the input�

Figure ��� illustrates the elementary assigned to sentence ��� in LTAG� When an anchor

of an elementary tree along with its arguments that appear within that elementary tree is

viewed as a chunk� then it is hard to miss the striking similarity between LTAG chunks

and the chunks proposed by Abney �������

DetP

D

the

NP

DetP ↓ N

professor

NP r

NP f*

NA

PP

P

from

NP ↓

NP

N

Milwaukee

VPr

V

was

VP*

NA

S r

NP 0↓ VP

V

reading

VPr

VP*

NA

PP

P

about

NP ↓

DetP

D

a

NP

DetP ↓ N

biography

NP r

NP f*

NA

PP

P

of

NP ↓

Nr

N

Marcel

Nf*

NA

NP

N

Proust

Figure ���� Chunks in LTAG for The professor from Milwaukee was reading about a
biography of Marcel Proust�

Since LTAG represents modi�ers� conjuncts and other recursive structures as auxiliary

trees� the process of identifying the sites of attachments of these structures can be separated

from the process of identifying the chunk boundaries� Also� since the �slots� in a chunk are

constrained by the anchor� constraints between chunks can be imposed naturally� Thus�

dependencies across chunks can be captured in LTAGs� Stochastic models and simple

�nite�state devices can be used for assigning elementary trees� Some of these models are

discussed in Chapter ��

����� Language Modeling and LTAG

There has been an increasing interest in predictive language modeling for a variety of

applications including speech recognition� machine translation� and statistical parsing� The

most popular language models applied to this task are N�gram based models� largely due

��

to their success in speech recognition� There have also been many attempts at applying

probabilistic context�free grammars as well �Fujisaki et al�� ����� La�erty et al�� �����

Jurafsky et al�� ������ However� both these models show a mismatch between the prediction

of the model and the distribution of the information� We summarize the inadequacies of

these models for the purpose of language modeling� A more detailed discussion is presented

in �Hindle� ������

� N�gram models� N�gram models predict the next word based on the preceding N��

words� This model is highly sensitive to lexical associations which are very useful in

identifying �xed expressions and idioms� However� this model fails to capture any

dependency relation that extends beyond the �xed N�word window� In particular�

since it does not include any structural information� it will not be able to predict

associations between words that are separated in terms of string positions but are

structurally local� For example� using a trigram model� to will be predicted in ���

but not in ���� just because the relative clause separates to from its predictor beyond

the N�word window�

���� � � � give kittens to � � �

���� � � � give kittens that were born yesterday to � � �

Another inadequacy of N�gram models is that di�erent word sequences require di�er�

ent values of N� Hindle ������ shows that while the phrase New York Stock Exchange

is followed by the phrase composite more than half the time in a �� million word

Wall Street Journal corpus� composite New York Stock Exchange is never followed

by composite� To accommodate this� ��grams are inadequate� A ��gram model is

required and with it the issues of sparseness of data needs to be addressed�

� Probabilistic Context�Free Grammars
PCFGs�� PCFGs are probabilistic versions

of CFGs where each production of a CFG is associated with a probability and the

probability of a derivation is the product of the probabilities of the rules participating

in the derivation� The major problem with PCFGs is that they are not inherently

sensitive to lexical associations� So the fact that powerful tea is less probable than

strong tea is not expressed naturally in a PCFG�

��

Another inadequacy of PCFG is that rule expansions are independent of the deriva�

tion context
context free�� Hence� the distributional evidence that pronouns are

more likely to be subject noun phrases than non�subject noun�phrases is not modeled�

since a noun phrase is derived by the same set of rules whether it occurs in the subject

position or not�

We now discuss the four features of LTAG that make it a more appropriate formalism for

language modeling� First� in LTAGs� since every tree is lexicalized� words are associated

more tightly with the structure they anchor� This allows the possibility of making the

operations of combining elementary trees to be sensitive to lexical context� Second�

since the anchors of trees can potentially be multi�word lexical items� idioms and �xed

collocations can be modeled naturally� without any additional mechanism� Third� the

EDL property of LTAGs allows the anchor to specify di�erent constraints on the di�erent

argument positions in the tree� Thus� the distributional evidence of pronouns being more

frequent in a subject noun�phrase position than in a non�subject noun�phrase position

can be naturally captured since each noun phrase appearing in an elementary tree can

be identi�ed with its grammatical function� Finally� since LTAGs factor out recursion

from the domain of dependency� the problem of intervening material disrupting locality

as seen in an N�gram approach does not arise� Referring to the previous example� the

co�occurrence of give and to is structurally local and is not a�ected by the relative clause

on kittens�

Probabilistic versions of LTAGs have been proposed by Schabes ������ and Resnik �������

Experiments on the e�cacy of Probabilistic LTAGs as language models have been stalled

due to unavailability of data needed to estimate the statistical parameters of the model�

Also� the estimation of the parameters requires a starting grammar� One possibility is to

include all possible elementary structures in the starting grammar and let the re�estimation

weed out useless structures� Alternatively� a hand�crafted grammar can serve as a very

good starting grammar� In the next section� we discuss a wide�coverage grammar system

developed in the LTAG formalism� and in subsequent chapters present some novel uses of

probabilities in LTAGs�

��

��� XTAG

A broad�coverage grammar system� XTAG� has been implemented in the LTAG formal�

ism� In this section� we brie	y discuss some aspects related to XTAG for the sake of

completeness� A more detailed report on XTAG can be found in �XTAG�Group� ������

The XTAG system consists of a Morphological Analyzer� a Part�of�Speech Tagger� a

wide�coverage LTAG English Grammar� a predictive left�to�right Earley�style Parser for

LTAG �Schabes� ����� and an X�windows Interface for Grammar development �Doran et

al�� ������ Figure ��� shows a 	owchart of the XTAG system� The input sentence is

subjected to morphological analysis and is tagged with parts�of�speech before being sent

to the parser� The parser retrieves the elementary trees that the words of the sentence

anchor and combines them by adjunction and substitution operations to derive a parse of

the sentence�

Derivation Structure

Input Sentence

Morph Analyzer

Parser

Morph DB

Tree Grafting

Tree Selection Syn DB

P.O.S Blender

Tagger

Lex Prob DB

Trees DB

Figure ���� Flowchart of the XTAG system

A summary of each of the system component is presented in Table ���� A more detailed

description of each of these components is presented in �Doran et al�� ����� XTAG�Group�

������

��

Component Details

Morphological Consists of approximately ������� in	ected items�
Analyzer and Thirteen parts of speech are di�erentiated�
Morph Database Entries are indexed on the in	ected form and return the root

form� POS� and in	ectional information�
Database does not address derivational morphology�

POS Tagger and Wall Street Journal�trained trigram tagger �Church� �����
Lexical Probabilities extended to output N�best POS

sequences �Soong and Huang� ������
Database Decreases the time to parse a sentence by an average of ����

POS Blender Combines information from the Morphology and the
POS tagger�
Outputs N�best POS sequences with morphological
information for each word of the input sentence�

Tree Database ��� trees� divided into �� tree families and �� individual trees�
Tree families represent subcategorization frames�
E�g�� the intransitive tree family contains the
following trees� indicative� wh�question� relative clause�
imperative and gerund� Individual trees are generally
anchored
�� by non�verbal lexical items that substitute or
adjoin into the clausal trees�
Feature values may be speci�ed within a tree or may be derived
from the syntactic database�

Syntactic Database Associates lexical items with the appropriate trees and
and tree families based on subcategorization information�
Statistical Database Extracted from OALD and ODCIE and contains more than

������� entries�
Each entry consists of� the unin	ected form of the word� its
POS� the list of trees or tree�families associated with the word�
and a list of feature equations that capture lexical
idiosyncrasies�

X�Interface Provides the following�
Menu�based facility for creating and modifying tree �les�
User controlled parser parameters� parser�s start category�
enable�disable�retry on failure for POS tagger�
Storage�retrieval facilities for elementary and parsed trees as
text and postscript �les�
Graphical displays of tree and feature data structures�
Hand combination of trees by adjunction or substitution
for diagnosing grammar problems�

Table ���� XTAG System Summary

��

The grammar of XTAG has been used to parse sentences from ATIS� IBM manual and

WSJ corpora �XTAG�Group� ������ The resulting XTAG corpus contains sentences from

these domains along with all the derivations for each sentence� The derivations provide

predicate argument relationships for the parsed sentences� This information is used in the

experiments discussed in the subsequent chapters�

��� Summary

In this chapter� we introduced the LTAG formalism and reviewed the properties of lex�

icalization� extended domain of locality and factoring of recursion from the domain of

dependencies in LTAGs� We also discussed the relevance of these properties for partial

parsing� Finally� we presented a brief overview of XTAG� a large wide�coverage grammar

for English that is being developed in the LTAG formalism� In the following chapters we

discuss two novel methods of exploiting the properties of LTAGs for partial parsing�

��

Chapter �

Supertags

Part�of�speech disambiguation techniques
POS taggers� �Church� ����� Weischedel et al��

����� Brill� ����� are often used prior to parsing to eliminate
or substantially reduce�

the part�of�speech ambiguity� The POS taggers are all local in the sense that they use

information from a limited context in deciding which tag
s� to choose for each word� As

is well known� these taggers are quite successful�

In a lexicalized grammar such as the Lexicalized Tree�Adjoining Grammar
LTAG��

each lexical item is associated with at least one elementary structure
tree�� The elemen�

tary structures of LTAG localize dependencies� including long distance dependencies� by

requiring that all and only the dependent elements be present within the same structure�

As a result of this localization� a lexical item may be
and� in general� almost always

is� associated with more than one elementary structure� We will call these elementary

structures supertags� in order to distinguish them from the standard part�of�speech tags�

Note that even when a word has a unique standard part�of�speech� say a verb
V�� there

will usually be more than one supertag associated with this word� Since there is only one

supertag for each word
assuming there is no global ambiguity� when the parse is complete�

an LTAG parser �Schabes et al�� ����� needs to search a large space of supertags to select

the right one for each word before combining them for the parse of a sentence� It is this

problem of supertag disambiguation that we address in this chapter�

Since LTAGs are lexicalized� we are presented with a novel opportunity to eliminate or

substantially reduce the supertag assignment ambiguity by using local information such as

��

local lexical dependencies� prior to parsing� As in standard part�of�speech disambiguation�

we can use local statistical information in the form of N�gram models based on the

distribution of supertags in a LTAG parsed corpus� Moreover� since the supertags encode

dependency information� we can also use information about the distribution of distances

between a given supertag and its dependent supertags�

Note that as in standard part�of�speech disambiguation� supertag disambiguation could

have been done by a parser� However� carrying out part�of�speech disambiguation prior

to parsing makes the job of the parser much easier and therefore speeds it up� Supertag

disambiguation reduces the work of the parser even further� After supertag disambiguation�

we would have e�ectively completed the parse and the parser need �only� combine the

individual structures� hence the term
almost parsing� This method can also be used to

parse sentence fragments and in cases where the supertag sequence after disambiguation

may not combine into a single structure�

In this chapter� we present techniques for disambiguating supertags� and evaluate their

performance and their impact on LTAG parsing� Although presented with respect to

LTAG� these techniques are applicable to other lexicalized grammars as well� Section ���

illustrates the objective of supertag disambiguation through an example� Various meth�

ods and their performance results for supertag disambiguation are discussed in detail in

Section ��� and Section ���� In Section ���� we discuss the e�ciency gained in performing

supertag disambiguation before parsing� A robust and lightweight dependency analyzer

that uses the supertag output is presented in Section ���� In Section ���� we will discuss

the applicability of Supertag disambiguation to other lexicalized grammars�

��� Example of Supertagging

LTAGs� by the virtue of possessing the Extended Domain of Locality
EDL� property�

associate with each lexical item� one elementary tree for each syntactic environment that

the lexical item may appear in� As a result� each lexical item is invariably associated with

more than one elementary tree� We call the elementary structures associated with each

lexical item as super parts�of�speech
super POS� or supertags� Figure ��� illustrates a

few elementary trees associated with each word of the sentence� the purchase price includes

��

two ancillary companies� Table ��� provides an example contexts in which each supertag

shown in Figure ��� would be used�

Supertag Construction Example

�� Nominal Predicative this is the purchase
�� Noun Phrase the price
�� Topicalization Almost everything� the price includes
�� Adjectival Predicative this is ancillary
�� Noun Phrase the company
�� Determiner the company
�� Nominal Modi�er purchase order
�� Nominal Predicative what is the price

Subject Extraction
�� Imperative include the share price
�� Determiner two hundred men
�� Adjectival Modi�er ancillary unit
�� Nominal Predicative which are the companies

Subject Extraction
�� Noun Phrase purchases have not increased�
��	 Nominal Predicative this is the price
��� Transitive Verb the price includes everything
��� Adjectival Predicative what is ancillary

Subject Extraction
��� Noun Phrase companies have not been pro�table

Table ���� Examples of syntactic environments
where the supertags shown in Figure ��� would be used�

The example in Figure ��� illustrates the initial set of supertags assigned to each word

of the sentence the purchase price includes two ancillary companies� The order of the

supertags for each lexical item in the example is not relevant� Figure ��� also shows the

�nal supertag sequence assigned by the supertagger which picks the best supertag sequence

using statistical information
described in Section ���� about individual supertags and their

dependencies on other supertags� The chosen supertags are combined to derive a parse�

Without the supertagger� the parser would have to process combinations of the entire set

of trees
at least the �� trees shown�� with it the parser need only processes combinations

of � trees�

��

Sr

NP0↓ VP

V

ε

NP1

N

purchase

NP

N

price

Sq

NP↓ Sr

NP0↓ VP

V

includes

NP1

NA

ε

S r

NP 0↓ VP

V

ε

AP1

A

ancillary

NP

N

companies

�� �� �� �� ��

NP

D

the

NP*

Nr

N

purchase

Nf*

Sq

NP↓ Sr

NP0

ε0

VP

V

ε

NP1

N

price

Sr

NP0

NA

ε

VP

V

includes

NP1↓

NP

D

two

NP*

Nr

A

ancillary

Nf*

Sq

NP↓ Sr

NP0

ε0

VP

V

ε

NP1

N

companies

�� �� �� �� �� �� ��

NP

N

purchase

Sr

NP0↓ VP

V

ε

NP1

N

price

S

NP0↓ VP

V

includes

NP1↓

Sq

NP↓ Sr

NP0

ε0

VP

V

ε

AP1

A

ancillary

NP

N

companies

�� ��	 ��� ��� ���
���

���
���

���
���

NP

D

the

NP*

Nr

N

purchase

Nf*

NP

N

price

S

NP0↓ VP

V

includes

NP1↓

NP

D

two

NP*

Nr

A

ancillary

Nf*

NP

N

companies

�� �� �� ��� �� �� ���

the purchase price includes two ancillary companies�

Figure ���� A selection of the supertags associated with each word of the sentence the
purchase price includes two ancillary companies

��

Sent� the purchase price includes two ancillary companies�

Initial �� �� �� �� ��

Assig� �� �� �� �� �� �� ��

�� ��	 ��� ��� ���
���

���
���

���
���

Final Assig� �� �� �� ��� �� �� ���

Figure ���� Supertag disambiguation for the sentence the purchase price includes two
ancillary companies

��� Reducing supertag ambiguity using

structural information

The structure of the supertag can be best seen as providing admissibility constraints on

syntactic environments in which it may be used� Some of these constraints can be checked

locally� The following are a few constraints that can be used to determine the admissibility

of a syntactic environment for a supertag��

� Span of the supertag � Span of a supertag is the minimum number of lexical items

that the supertag can cover� Each substitution site of a supertag will cover at least

one lexical item in the input� A simple rule can be used to eliminate supertags based

on the span constraint� if the span of a supertag is larger than the input string� then

the supertag cannot be used in any parse of the input string�

� Left
Right� span constraint� If the span of the supertag to the left
right� of the

anchor is larger than the length of the string to the left
right� of the word that

anchors the supertag� then the supertag cannot be used in any parse of the input

string�

�Prof� Mitch Marcus pointed out that these tests are similar to the generalized shaper tests used in the
Harvard Predictive Analyzer
Kuno� ����
�

��

� Lexical items in the supertag� A supertag can be eliminated if the terminals appearing

on the frontier of the supertag do not appear in the input string� Supertags with the

built�in lexical item by� that represent passive constructions are typically eliminated

from being considered during the parse of an active sentence�

More generally� these constraints can be used to eliminate supertags that cannot

have their features satis�ed in the context of the input string� An example of this is

the elimination of supertag that requires a wh� NP when the input string does not

contain wh�words�

Table ��� indicates the decrease in supertag ambiguity for ���� WSJ sentences
������

words�� by using the structural constraints relative to the supertag ambiguity without the

structural constraints�

System Total � of words Av� � of Supertags�word

Without structural constraints ������ ����

With structural constraints ������ ����

Table ���� Supertag ambiguity with and without the use of structural constraints

These �lters prove to be very e�ective in reducing supertag ambiguity� The graph in

Figure ��� plots the number of supertags at the sentence level for sentences of length �

to �� words with and without the �lters� As can be seen from the graph� the supertag

ambiguity is signi�cantly lower when the �lters are used� The graph in Figure ��� shows

the percentage drop in supertag ambiguity due to �ltering for sentences of length � to ��

words� As can be seen the average reduction in supertag ambiguity is about ���� This

means that given a sentence� close to ��� of the supertags can be eliminated even before

parsing begins by just using structural constraints of the supertags� This reduction in

supertag ambiguity speeds up the parser signi�cantly� In fact� the supertag ambiguity in

XTAG system is so large that the parser is prohibitively slow without the use of these

�lters�

Table ��� tabulates the reduction of supertag ambiguity due to the �lters against various

parts�of�speech� Verbs in all their forms contribute most to the problem of supertag

ambiguity and most of the supertag ambiguity for verbs is due to light verbs and verb

�wsj �� of the Penn Treebank

��

Without Filters

With Filters

of Supertgas x 103

Sentence Length

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

0.00 10.00 20.00 30.00 40.00 50.00

Figure ���� Comparison of number of supertags with and without �ltering for sentences of
length � to �� words�

particles� The �lters are very e�ective in eliminating over ��� of the verb anchored

supertags�

Even though structural constraints are e�ective in reducing supertag ambiguity� the

search space for the parser is still su�ciently large� In the next few sections� we present

stochastic and rule�based approaches to supertag disambiguation�

��

POS Average � of supertags Average � of supertags Percentage drop
without �lters with �lters in supertag ambiguity

VBP ����� ����� ����
VB ����� ����� ����
VBD ����� ����� ����
VBN ����� ���� ����
MD ����� ����� ����
VBZ ����� ���� ����
VBG ����� ���� ����
RP ���� ���� ����
IN ���� ���� ����
JJS ���� ���� ����
WRB ���� ���� ����
JJR ���� ���� ����
JJ ���� ���� ����
� ���� ���� ����

NN ���� ���� ����
NNS ���� ���� ����
NNP ���� ���� ����
NNPS ���� ���� ����
LS ���� ���� ���
FW ���� ���� ���

�RRB� ���� ���� ����
�LRB� ���� ���� ����
RBR ���� ��� ����
RBS ���� ��� ����
CC ���� ��� ����
EX ���� ��� ����
CD ���� ��� ����
TO ���� ���� ���
PRP ���� ��� ����
UH ���� ��� ����
RB ���� ��� ����
� ��� ��� ����
� ��� ��� ����

PDT ��� ��� ���
WP ��� ��� ����
WP ��� ��� ����
DT ��� ��� ����

PRP ��� ��� ����
� ��� ��� ����

POS ��� ��� ����
WDT ��� ��� ���

Table ���� The e�ect of �lters on supertag ambiguity tabulated against part�of�speech�

��

Percentage

Sentence Length

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

10.00 20.00 30.00 40.00 50.00

Figure ���� Percentage drop in the number of supertags with and without �ltering for
sentences of length � to �� words�

��� Models� Data� Experiments and Results

Before proceeding to discuss the various models for supertag disambiguation we would like

to trace the time course of development of this work� We do this not only to show the

improvements made to the early work reported in COLING��� �Joshi and Srinivas� �����

but also to explain the rationale for choosing certain models of supertag disambiguation

over others� We summarize the early work in the following subsection�

��

����� Early Work

As reported in the COLING��� paper� we experimented with a trigram model as well as the

dependency model for supertag disambiguation� The trigram model that was trained on

part�of�speech� supertag� pairs collected from the LTAG derivations of ���� WSJ sentences

and tested on ��� WSJ sentences produced a correct supertag for ��� of the words in the

test set� We have since signi�cantly improved the performance of the trigram model by

using a larger training set and incorporating smoothing techniques� We present a detailed

discussion of the model and its performance on a range of corpora in Section ������ In this

section� we describe the dependency model of supertagging that was reported in the early

work�

����� Dependency model

In an n�gram model for disambiguating supertags� dependencies between supertags that ap�

pear beyond the n word window cannot be incorporated� This limitation can be overcome

if no a priori bound is set on the size of the window but instead a probability distribution

of the distances of the dependent supertags for each supertag is maintained� We de�ne

dependency between supertags in the obvious way� A supertag is dependent on another

supertag if the former substitutes or adjoins into the latter� Thus� the substitution and

the foot nodes of a supertag can be seen as specifying dependency requirements of the

supertag� The probability with which a supertag depends on another supertag is collected

from a corpus of sentences annotated with derivation structures� Given a set of supertags

for each word and the dependency information between pairs of supertags� the objective

of the dependency model is to compute the most likely dependency linkage that spans the

entire string� The result of producing the dependency linkage is a sequence of supertags�

one for each word of the sentence along with the dependency information�

Experiments and Results

The data required for the dependency model was collected from all the derivation structures

of ���� WSJ sentences� A derivation structure associates each word with a supertag and

links two supertags with substitution and adjunction operations� Using the derivation

��

structure� the word emit probability and the dependency link probability are computed�

The word emit probability� as de�ned in
����� is the probability of emitting a word given

a supertag� The dependency link probability� de�ned in
����� is the probability that

supertag tj at ordinal distance dk depends on another supertag ti�

���� Pr
wjt� ! frequency
w�t�
frequency
t�

���� Pr
tj�dkjti� !
frequency
ti�tj �dk�P

tl

P
dm�sign�dm��sign�dk�

frequency
ti�tl�dm�

Due to sparseness of data� we used POS tags instead of words� Since the POS is

completely determined given a supertag� the word emit probability did not play a role in

this experiment� Table ��� shows the data needed for the dependency model of supertag

disambiguation� Each entry contains the following information�

Direction of
Dependent Dependent Ordinal

P�O�S�Supertag� Supertag Supertag Position Probability

D����
�� ��� �� ����

N����
�� ��� �� ����

N�����
� � � �

V�����
�� �� ��� �� ����

V�����
�� �� ��� � ����

Table ���� Dependency Data

� POS and Supertag pair�

� List of � and �� representing the direction of the dependent supertags with respect

to the indexed supertag�
Size of this list indicates the total number of dependent

supertags required��

� Dependent supertag�

� Signed number representing the direction and the ordinal position of the particular

dependent supertag mentioned in the entry from the position of the indexed supertag�

� The probability of occurrence of such a dependency� The sum probability over all

the dependent supertags at all ordinal positions in the same direction is one�

��

For example� the fourth entry in the Table ��� reads that the tree ���� anchored by

a verb
V�� has a left and a right dependent
�� �� and the �rst word to the left
����

with the tree ���� is dependent on the current word� The strength of this association is

represented by the probability �����

The algorithm for computing a dependency linkage is similar to the CKY algorithm

for categorial grammars �Steedman� ����� and for link grammars �Sleator and Temperley�

������ The dependency model of disambiguation works as follows� Suppose ��� is a member

of the set of supertags associated with a word at position n in the sentence� The algorithm

proceeds to satisfy the dependency requirement of ��� by picking up the dependency entries

for each of the directions� It picks a dependency data entry
the fourth entry� say� from

the database that is indexed by ��� and proceeds to set up a path with the �rst word to

the left that has the dependent supertag
���� as a member of its set of supertags� If the

�rst word to the left that has ��� as a member of its set of supertags is at position m� then

an arc is set up between ��� and ���� Also� the arc is veri�ed not to kite�string�tangle�

with any other arcs in the path up to ���� The path probability up to ��� is incremented

by log ���� to re	ect the success of the match� The path probability up to ��� incorporates

the unigram probability of ���� On the other hand� if no word is found that has ��� as a

member of its set of supertags then the entry is ignored� The algorithm makes a greedy

choice by selecting the path with the maximum path probability to extend to the remaining

directions in the dependency list� A successful supertag sequence is one which assigns a

supertag to each position such that each supertag has all of its dependents and maximizes

the accumulated path probability�

Table ��� shows results on the same held out test set of ��� Wall Street Journal

sentences� The table shows two measures of evaluation� In the �rst� the dependency

link measure� the test sentences were independently hand tagged with dependency links

and then were used to match the links output by the dependency model� The columns

show the total number of dependency links in the hand tagged set� the number of matched

links output by this model and the percentage correctness� The second measure� supertags�

shows the total number of correct supertags assigned to the words in the corpus by this

model�

�Two arcs �a�c� and �b�d� kite�string�tangle if a � b � c � d or b � a � d � c�

��

Total Number �
Criterion number correct correct

Dependency ��� ��� ������
links

Supertags ��� ��� ������

Table ���� Results of Dependency model

Discussion

Since �rst reported in �Joshi and Srinivas� ������ we have not continued experiments using

this model of supertagging� primarily for two reasons� Although we are certain that

the performance of this model can be greatly improved if lexical probabilities are taken

into account� we are restrained by the lack of a large corpus of LTAG parsed derivation

structures that is needed to reliably estimate the various parameters of this model� We

are currently in the process of collecting a large LTAG parsed WSJ corpus� with each

sentence annotated with the correct derivation� A second reason for the disuse of the

dependency model for supertagging is that the objective of supertagging is to see how far

local techniques can be used to disambiguate supertags even before parsing begins� The

dependency model� in contrast� is too much like full parsing and is contrary to the spirit

of supertagging�

����� Recent Work

In recent work� we have improved the performance of trigram model by incorporating

smoothing techniques into the model and training the model on a larger training corpus�

We have also proposed some new models for supertag disambiguation� In this section� we

discuss these developments in detail�

Two sets of data are used for training and testing the models for supertag disambigua�

tion� The �rst set has been collected by parsing the Wall Street Journal�� IBM�manual

and ATIS corpora using the wide�coverage English grammar being developed as part of

the XTAG system �Doran et al�� ������ The correct derivation from all the derivations

�Sentences of length � �� words

��

produced by the XTAG system was picked for each sentence from these corpora�

The second and larger data set was collected by converting the Penn Treebank parses

of the Wall Street Journal sentences� The objective was to associate each lexical item

of a sentence with a supertag� given the phrase structure parse of the sentence� This

process involved a number of heuristics based on local tree�contexts� The heuristics availed

to information about the labels of its dominating nodes
parent� grandparent and great

grandparent�� labels of its siblings
left and right� and siblings of its parent� It must be

noted that this conversion is not perfect and is correct only to a �rst order of approximation

owing to mostly to errors in conversion and lack of certain kinds of information such as

distinction among adjunct and argument preposition phrases� in the Penn Treebank parses�

Even though the converted supertag corpus can be re�ned further� the corpus in its present

form has proved to be an invaluable resource in improving the performance of the supertag

models as is discussed in the following sections�

����� Unigram model

Using structural information to �lter out supertags that cannot be used in any parse

of the input string reduces the supertag ambiguity but obviously does not eliminate it

completely� One method of disambiguating the supertags assigned to each word is to

order the supertags by the lexical preference that the word has for them� The frequency

with which a certain supertag is associated with a word is a direct measure of its lexical

preference for that supertag� Associating frequencies with the supertags and using them to

associate a particular supertag with a word is clearly the simplest means of disambiguating

supertags� Therefore a unigram model is given by�

���� Supertag
wi� ! tk � argmaxtk Pr
tk j wi��

where

���� Pr
tk j wi� !
frequency
tk�wi�
frequency
wi�

Thus� the most frequent supertag that a word is associated with in a training corpus

is selected as the supertag for the word according to the unigram model� For the words

that do not appear in the training corpus we back�o� to the part�of�speech of the word

��

and use the most frequent supertag associated with that part�of�speech as the supertag for

the word�

Experiments and Results

We tested the performance of the unigram model on the previously discussed two sets

of data� The words are �rst assigned standard parts�of�speech using a conventional tag�

ger �Church� ����� and then are assigned supertags according to the unigram model� A

word in a sentence is considered correctly supertagged if it is assigned the same supertag as

it is associated with in the correct parse of the sentence� The results of these experiments

are tabulated in Table ����

Data Set Training Set Test Set Top n Supertags � Success

n ! � �����
XTAG Parses ����� ����� n ! � �����

n ! � �����

Converted n ! � �����
Penn Treebank ��������� ������ n ! � �����

Parses n ! � �����

Table ���� Results from the Unigram Supertag Model

Although the performance of the unigram model for supertagging is signi�cantly lower

than the performance of the unigram model for part�of�speech tagging
��� accuracy�� it

performed much better than expected considering the size of the supertag set is much larger

than the size of part�of�speech tagset� One of the reasons for this high performance is that

the most frequent supertag for the most frequent words
 determiners� nouns and auxiliary

verbs is the correct supertag most of the time� Also� backing�o� to the part�of�speech helps

in supertagging unknown words� which most often are nouns� Bulk of the errors committed

by the unigram model is incorrectly tagged verbs
subcateogrization and transformation��

prepositions
noun attached vs verb attached� and nouns
head vs modi�er noun��

����� n�gram model

We had �rst explored the use of trigram model of supertag disambiguation in �Joshi

and Srinivas� ������ The trigram model was trained on
part�of�speech� supertag� pairs

collected from the LTAG derivations of ���� WSJ sentences and tested on ��� WSJ

��

sentences� It produced a correct supertag for ��� of the words in the test set� A major

drawback of this early work was that it used no lexical information in the supertagging

process as the training material consisted of
part�of�speech� supertag� pairs� Since that

early work we have improved the performance of model by incorporating lexical information

and sophisticated smoothing techniques besides training on a larger training sets� In this

section� we present the details and the performance evaluation of this model�

In a unigrammodel� a word is always associated with the supertag that is most preferred

by the word� irrespective of the context in which the word appears� An alternate method

that is sensitive to context is the n�gram model� The n�gram model takes into account

the contextual dependency probabilities between supertags within a window of n words in

associating supertags to words� Thus� the most probable supertag sequence for a N word

sentence is given by�

���� "T ! argmaxT Pr
T��T��� � ��TN � � Pr
W��W��� � ��WN j T��T��� � ��TN �

where Ti is the supertag for word Wi�

To compute this using only local information� we approximate� assuming that the

probability of a word depends only on its supertag

���� Pr
W��W��� � ��WN jT��T��� � ��TN � �
QN

i�� Pr
Wi j Ti�

and also use an n�gram
trigram� in this case� approximation

���� Pr
T��T��� � ��TN � �
QN

i�� Pr
Ti j Ti��� Ti���

The term Pr
Ti j Ti��� Ti��� is known as the contextual probability since it indicates

the size of the context used in the model and the term Pr
Wi j Ti� is called as the word

emit probability since it is the probability of emitting the word Wi given the tag Ti� These

probabilities are estimated using a corpus where each word is tagged with its correct

supertag�

The contextual probabilities were estimated using the relative frequency estimates of

the contexts in the training corpus� To estimate the probabilities for contexts that do

��

not appear in the training corpus� we used the Good�Turing discounting technique �Good�

����� combined with Katz�s back�o� model �Katz� ������ The idea here is to discount

the frequencies of events that occur in the corpus by an amount proportional to their

frequencies and utilize this discounted probability mass in the back�o� model to distribute

to unseen events� Thus� the Good�Turing discounting technique estimates the frequency

of unseen events based on the distribution of the frequency of frequency of observed events

in the corpus� If r is the observed frequency of an event� and Nr is the number of events

with the observed frequency r and N is the total number of events� then the probability

of an unseen event is given by N��N � Furthermore� the frequencies of the observed events

are adjusted so that the total probability of all events sums to �� The adjusted frequency

for observed events� r�� is computed as

���� r� !
r����Nr��

Nr

Once the frequencies of the observed events is discounted and the frequencies for unseen

events is estimated� Katz�s back�o� model is used� In this technique� if the observed

frequency of an �n�gram� supertag� sequence is zero then its probability is computed

based on the observed frequency of a
n����gram sequence� Thus�

#Pr
T�jT�� T�� ! Pr
T�jT�� T�� if Pr
T�jT�� T�� � �

! �
T�� T�� � #Pr
T�jT�� if Pr
T�jT�� � �

! Pr
T�jT�� otherwise

#Pr
T�jT�� ! Pr
T�jT�� if Pr
T�jT�� � �

! �
T�� � Pr�
T�� otherwise

where �
Ti� Tj� and �
Tk� are constants to ensure that the probabilities sum to one�

The word emit probability for the fword�supertagg pairs that appear in the training

corpus is computed using the relative frequency estimates�

Pr
wijTi� !
N
wi� Ti�

N
Ti�
if N
wi� Ti� � �

! Pr
UNKjTi� � Pr
word� featuresjTi�otherwise

��

The counts for the fword�supertagg pairs for the words that do not appear in the corpus

is estimated using the leaving�one�out technique �T�R� Niesler and P�C� Woodland� �����

Ney et al�� ������ A token �UNK� is associated with each supertag and its count NUNK

is estimated by�

Pr
UNKjTj� !
N�
Tj�

N
Tj� � �

NUNK
Tj� !
Pr
UNKjTj� �N
Tj�

�� Pr
UNKjTj�

where N�
Tj� is the number of words that are associated with the supertag Tj that appear

in the corpus exactly once� N
Tj� is the frequency of the supertag Tj and NUNK
Tj� is

the estimated count of UNK in Tj� The constant � is introduced so as to ensure that the

probability is not greater than one� especially for supertags that are sparsely represented

in the corpus�

We use word features similar to the ones used in �Weischedel et al�� ������ such as

capitalization� hyphenation and endings of words� for estimating the word emit probability

of unknown words�

Experiments and Results

We tested the performance of the trigram model on various domains such as Wall Street

Journal
WSJ�� the IBM Manual Corpus and the ATIS� For the IBM Manual Corpus

and the ATIS domains� a supertag annotated corpus was collected using the parses of

the XTAG system �Doran et al�� ����� and selecting the correct analysis for each sentence�

The corpus was then randomly split into training and test material� Supertag performance

is measured as the percentage of words that are correctly supertagged by a model when

compared with the key for the words in the test corpus�

Experiment ��
Performance on the Wall Street Journal corpus� We used the

two sets of data� from the XTAG parses and from the conversion of the Penn Treebank

parses to evaluate the performance of the trigram model� Table ��� shows the performance

��

on the two sets of data� The �rst data set� data collected from the XTAG parses� was

split into ����� words of training and ����� words of test material� The data collected

from converting the Penn Treebank was used in two experiments di�ering in the size of

the training corpus� ������� words� and ��������� words� and tested on ������ words�� A

total of ��� di�erent supertags were used in these experiments�

Data Set Size of Training Size of � Correct
training set test set

words�
words�

XTAG Parses ����� Unigram ����� �����

Baseline�
Trigram ����� ���

Unigram
Converted �������
Baseline� ������ �����

Penn Treebank Trigram ������ �����
Parses Unigram

���������
Baseline� ������ �����
Trigram ������ �����

Table ���� Performance of the supertagger on the WSJ corpus

Experiment ��
Performance on the IBM Manual corpus and ATIS� For

testing the performance of the trigram supertagger on the IBM manual corpus� a set of

����� words correctly supertagged was used as the training corpus and a set of ���� words

was used as a test corpus� The performance of the supertagger on this corpus is shown

in Table ���� Performance on the ATIS corpus was evaluated using a set of ���� words

correctly supertagged as the training corpus and a set of ��� words as a test corpus� The

performance of the supertagger on the ATIS corpus is also shown in Table ����

As expected� the performance on the ATIS corpus is higher than that of the WSJ and

the IBM Manual corpus despite the extremely small training corpus� Also� the performance

of the IBM Manual corpus is better than the WSJ corpus when the size of the training

corpus is taken into account� The baseline for the ATIS domain is remarkably high due to

the repetitive constructions and limited vocabulary in that domain� This is also true for

the IBM Manual corpus� although to a lesser extent� The trigram model of supertagging

�Sentences in wsj �� through wsj �� of Penn Treebank�
	Sentences in wsj �� through wsj ��� except wsj �� of Penn Treebank�

Sentences in wsj �� of Penn Treebank�

��

Corpus Size of Training Size of � Correct
training set test set

words�
words�

Unigram
IBM Manual ������
Baseline� ����� �����

Trigram ����� �����

Unigram
ATIS �����
Baseline� ��� �����

Trigram ��� �����

Table ���� Performance of the supertagger on the IBM Manual corpus and ATIS corpus

is attractive for limited domains since it performs quite well with relatively insigni�cant

amounts of training material� The performance of the supertagger can be improved in an

iterative fashion by using the supertagger to supertag larger amounts of training material

which can be quickly hand corrected and used to train a better performing supertagger�

E�ect of Lexical versus Contextual Information

Lexical information contributes most to the performance of a POS tagger� since the baseline

performance of assigning the most likely POS for each word produces ��� accuaracy �Brill�

������ Contextual information contributes relatively small amount towards the perfor�

mance� improving it from ��� to ������� a ���� improvement� In contrast� contextual

information has greater e�ect on the performance of the supertagger� As can be seen�

from the above experiments� the baseline performance of the supertagger is about ���

and the performance improves to about ��� with the inclusion of contextual information�

an improvement of ������ The relatively low baseline performance for the supertagger is

a direct consequence of the fact that there are many more supertags per word than there

are POS tags� Further� since many combinations of supertags are not possible� contextual

information has a larger e�ect on the performance of the supertagger�

����� Error�driven Transformation�based Tagger

In an Error�driven Transformation�based
EdTb� tagger �Brill� ������ a set of pattern�

action templates that include predicates which test for features of words appearing in the

��

context of interest are de�ned� These templates are then instantiated with the appropriate

features to obtain transformation rules� The e�ectiveness of a transformation rule to correct

an error and the relative order of application of the rules are learnt using a corpus� The

learning procedure takes a gold corpus in which the words have been correctly annotated

and a training corpus that is derived from the gold corpus by removing the annotations�

The objective in the learning phase is to learn the optimum ordering of rule applications

so as to minimize the number of tag mismatches between the training and the gold corpus�

Experiments and Results

A EdTb model has been trained using templates de�ned on a three word window� We

trained the templates on ������� words� and tested on ������ words� of the WSJ corpus�

The model performed at an accuracy of ���� The EdTb model provides a great deal of

	exibility to integrate domain speci�c and linguistic information into the model� However�

a major drawback is that the training procedure is extremely slow� it took �� days to train

on the ������� words but could not complete training on the ��������� data set due to

down time of the computer during the training process�

����� Head Trigram Model

As is well known� a trigram model is inadequate at modeling dependencies that appear

beyond a three word window� This may not be a severe limitation in the case of predicting

POS tags since long range dependencies between POS labels are not very typical� However�

since supertags encode rich syntactic information such as the subcategorization of a verb�

syntactic transformations and attachment preferences� selection of some supertags is dic�

tated by dependencies that usually span beyond a three word window� The performance

of the trigram supertagger can be improved further if these dependencies are modeled�

Consider� for example� sentences in
�����
����� and
����� as examples illustrating the

inadequacies of a trigram supertagger�

���� An assassin in Colombia killed a federal judge on a Medellin street�

�wsj �� to wsj �� of the Penn Treebank
�wsj �� of the Penn Treebank

��

����� First Options didn�t have to put any money into the bailout�

����� the man Mr� Krenz replaces has left an indelible mark on East German society�

In sentence
����� the decision that the preposition on is assigned an argument supertag

or NP adjunct supertag or a VP adjunct supertag is made based on the supertags for federal

and judge� However� ideally� the decision should be based on the supertags of the verb

killed and the noun judge� Similarly� in sentence
������ the decision if the preposition into�

serves as an adjunct or an argument is made based on supertags for any and money since

the verb is out of the trigram context� In sentence
������ the relative clause supertag

for the verb replaces would be hard to get since the word man is beyond the trigram

window� This makes the trigram context appear no di�erent from the context in which an

indicative transitive supertag would appear in� Thus� the limitation of a trigram model

is that supertags from the preceding context that in	uence the selection of a supertag for

the current word are not �visible� in the current context� We term the supertags in the

prior context that in	uence the selection of the current supertag as head supertags and the

words they are associated with as head words�

One method of allowing supertags beyond the trigram window to in	uence the selection

of a supertag is to allow it to be �visible� in the current context� This can be achieved

in one of two ways� First� the size of the window could be increased to be more than

three words� One major drawback of this method is that since an a priori bound is set on

the size of the window� no matter how large it is� dependencies that appear beyond that

window size cannot be adequately modeled��	 Also� by increasing the size of the window�

the number of parameters to be estimated increases exponentially and sparseness of data

becomes a signi�cant problem�

An alternate approach to making head supertags �visible� in the current context is to

�rst identify the head positions and then percolate the supertags at the head positions

through the preceding context� Once the positions of the head supertags are identi�ed�

the contextual probability in a trigram model is changed so as to be conditioned on the

supertags of the two previous head words instead of the two immediately preceding previous

supertags� Thus� the contextual probability for the head trigram model is given as�

�
An interesting approach of incorporating variable length n�grams in a part�of�speech tagging model is
presented in
T�R� Niesler and P�C� Woodland� ����
�

��

����� Pr
T��T��� � ��TN � �
QN

i�� Pr
Tij THi�� � THi���

where

THi�� and THi�� are the supertags associated with the two previous head words�

The head positions are percolated according to the following equations�

�����

Initialize�
H���H��� !
������

Update �
Hi���Hi� !
Hi���Hi��� if Wi is not a head word

head positions at i��� !
Hi���i� if Wi is a head word

The head trigram supertagger has two passes� In the �rst pass� the words are annotated

for heads and in the second pass the head information is used to compute the appropriate

contextual probability� For the �rst pass� the head words can be identi�ed using a stochastic

trigram tagger that uses two labels and tags words either as head words or as non�head

words� The training and test material for the head�word tagger was created from the Penn

Treebank parses of WSJ sentences using head percolation rules presented in �Jelinek et al��

����� Magerman� ������ The tagger was trained on ��������� words of WSJ corpus and

tested on ������ words from Section �� of WSJ� The tagger assigned the correct head�tag

for ����� of the words� improving on the baseline of ������ Most of head�word tagging

errors were mistakes of tagging modi�er nouns as head words in nouns group sequences�

Using the head information provided by head�word tagger� the head trigram supertagger�

trained on the ��������� words of WSJ corpus and tested on ������ words� assigned the

correct supertag for ��� of words� We suspect that since local constraints are not modeled

by the head trigram model� the performance of the trigram model is better than this model�

We are working towards integrating the two models to produce a mixed model that takes

into account both local and non�local constraints�

����	 Head Trigram Model with Supertags as Feature Vectors

As previously mentioned� supertags contain subcategorization information and localize

�ller�gap dependency information within the same structure� As a result� for example�

there are not only supertags that realize the complements of a transitive verb in their

canonical position� but there are supertags that realize complements in passives� supertags

for wh�extraction and relative clause for each of the argument positions� These various

��

supertags are present for each subcategorization frame and are transformationally related

to one another in a movement�based approach� The supertags related to one another are

said to belong to a �family�� The supertags for verbs can be organized in a hierarchy as

shown in Figure ���� It must be noted that just as the hierarchy in Figure ��� is organized

in terms of the subcategorization information� similar hierarchies can be organized based

on transformations such as Relative Clause or Wh�extraction�

Intransitive SententialComplementDitransitive

....

Transitive

PassiveWh-ObjWh-SubjImperativeDecl

Verb

........

....

....

Figure ���� Supertag hierarchy

The supertags for other categories such as nouns� adjectives and prepositions can also

be organized in similar hierarchies based on features such as modi�ers� complements and

predicates�

The representation of supertags as labels� as was done in the previous models� does not

exploit the relationship among supertags� Instead� supertags can be viewed as feature

vectors where each feature represents a dimension along which the supertags can be

clustered� Table ��� shows the list of features used in representing supertags as feature

vectors�

We are currently working on implementing a trigram model with appropriate back�o�

strategies� The trigram model� treating the supertags as feature vectors� is given in �����

A more appropriate model� we believe� for such a distributed encoding of supertags is a

model that has the 	exibility to select the best back�o� strategy as in maximum entropy

��

Feature Description

Part�of�speech Part of speech of anchor� �� di�erent parts of speech�
Type of supertag modi�er or complement supertag
Transformation Gerundive� Imperative� Relative Clause� Wh�extraction�

Indicative
Argument position for the transformation� Subject�Object�Indirect Object
Passive 	ag to indicate passive supertag
Size of argument frame number of arguments required by a supertag
Type of argument constituent type of the argument� NP� S� N� A� Adv� VP� PP
Direction of argument relative to the anchor of a supertag� left or right
Nature of argument complement or modi�ee

Table ���� The list of features used to encode supertags

model� We plan to implement a maximum entropy model for supertagging in the near

future�

����� Pr
�T���T��� � ���TN � ! argmax�T
QN

i�� Pr
Wi j �Ti� � Pr
�Tij �Ti��� �Ti���

The output of this model is a feature vector for each word of input sentence� The

performance of the model can be evaluated on a number of criteria� the most straightfor�

ward being an exact match of the feature vector to the gold standard� However� other

metrics of performance could focus on the accuracy of predicting any one or combination

of the features used to represent a supertag� For example� information pertaining to

subcategorization
number� direction and type of arguments� and nature of transformation

are the more important features useful for further processing� These features could be used

for evaluating the supertagger�

��� Supertagging before Parsing

As mentioned earlier� a lexicalized grammar parser can be conceptualized to consist of two

stages �Schabes et al�� ������ In the �rst stage� the parser looks up the lexicon and selects

all the supertags associated with each word of the sentence to be parsed� In the second

stage� the parser searches the lattice of selected supertags in an attempt to combine them

using substitution and adjunction operations so as to yield a derivation that spans the

��

input string� At the end of second stage� the parser would not only have parsed the input�

but would have associated a small set of
usually one� supertag with each word�

The supertagger can be used as a front�end to a lexicalized grammar parser so as to

prune the search space of the parser even before parsing begins� It should be clear that

by reducing the number of supertags that are selected in the �rst stage� the search space

for the second stage can be reduced signi�cantly and hence the parser can be made more

e�cient� Supertag disambiguation techniques� as discussed in the previous sections attempt

to disambiguate the supertags selected in the �rst pass� based on lexical preferences and

local lexical dependencies so as to ideally select one supertag for each word� Once the

supertagger selects the appropriate supertag for each word� the second stage of the parser

is needed �only� to combine the individual supertags to arrive at the parse of the input�

Tested on about ���� WSJ sentences with each word in the sentence correctly supertagged�

the LTAG parser took approximately � seconds per sentence to yield a parse
combine the

supertags and perform feature uni�cation�� In contrast� the same ���� WSJ sentences

without the supertag annotation took nearly ��� seconds per sentence to yield a parse�

Thus the parsing speed�up gained by this integration is a factor of about ���

In the XTAG system� we have integrated the trigram supertagger as a front�end to

an LTAG parser to pick the appropriate supertag for each word even before parsing

begins� However� a drawback of this approach is that the parser would fail completely

if any word of the input is incorrectly tagged by the supertagger� This problem could

be circumvented to an extent by extending the supertagger to produce N�best supertags

for each word� Although this extension would increase the load on the parser� it would

certainly improve the chances of arriving at a parse for a sentence� In fact� Table ����

presents the performance of the supertagger that selects at most top three supertags for

each word� The optimum value of the number of supertags that need to be output so

as to balance the success rate of the parser against the e�ciency of the parser must be

determined empirically�

A more serious limitation of this approach is that it fails to parse ill�formed and

extragrammatical strings such as those encountered in spoken utterances and unrestricted

texts� This is due to the fact the Earley style LTAG parser attempts to combine the

supertags so as to construct a parse that spans the entire string� In cases where the

��

Data Set Size of Size of Training � Correct
test set training set

words�
words�

Trigram �����
�������
Best Supertag�

Converted Trigram �����
Penn Treebank ������
��Best Supertags�

Parses Trigram �����
���������
Best Supertag�

Trigram �����

��Best Supertags�

Table ����� Performance improvement of ��best supertagger over the ��best supertagger
on the WSJ corpus

supertag sequence for a string cannot be combined into a uni�ed structure� the parser fails

completely� One possible extension to account for ill�formed and extragrammatical strings

is to extend the Earley parser to produce partial parses for the fragments whose supertags

can be combined� An alternate method of computing dependency linkages robustly is

presented in the next section�

��� Lightweight Dependency Analyzer

Supertagging associates each word with a unique supertag� To establish the dependency

links among the words of the sentence� we exploit the dependency requirements encoded

in the supertags� Substitution nodes and foot nodes in supertags serve as slots that must

be �lled by the arguments of the anchor of the supertag� A substitution slot of a supertag

is �lled by the complements of the anchor while the foot node of a supertag is �lled by a

word that is being modi�ed by the supertag� These argument slots have a polarity value

re	ecting their orientation with respect to the anchor of the supertag� Also associated with

a supertag is a list of internal nodes
including the root node� that appear in the supertag�

Using the structural information coupled with the argument requirements of a supertag�

a simple algorithm such as the one below provides a method for annotating the sentence

with dependency links�

��

Step �� For each modifier supertag s in the sentence

Compute the dependencies for s

Mark the words serving as complements as unavailable

for step ��

Step �� For the initial supertags s in the sentence

Compute the dependencies for s

Compute Dependencies for si of wi�

For each slot dij in si do

Connect word wi to the nearest word wk to the left or right of wi

depending on the direction of dij� skipping over marked supertags�

if any� such that dij � internal nodes�sk�

An example illustrating the output from this algorithm is shown in Table ����� The

�rst column lists the word positions in the input� the second column lists the words� the

third lists the names of the supertags assigned to each word by a supertagger� The slot

requirement of each supertag is shown in column four and the dependency links among

the words� computed by the above algorithm� is shown in the seventh column� The two

pass process for dependency linking is shown in the �fth and the sixth columns� The � and

the � beside a number indicate the type of the dependency relation� � for modi�er relation

and � for complement relation�

LDA is a heuristic�based� linear time� deterministic algorithm which produces depen�

dency linkages not necessarily spanning the entire sentence� LDA can produce a number of

partial linkages since it is a driven primarily by the need to satisfy local constraints without

being driven to construct a single dependency linkage that spans the entire input� This�

in fact� contributes to the robustness of LDA and promises to be a useful tool for parsing

sentence fragments that are rampant in speech utterances exempli�ed by the Switchboard

corpus�

Due to the fact that LDA produces a dependency annotated sentence as the output

of the parsing process� parsing evaluation metrics that measure the performance of con�

stituent bracketing such as Parseval �Harrison et al�� ����� are unsuitable for evaluating

��

Pos Word Supertag Slot req� Pass � Pass � Dep Links

� The �� �NP$ �$
 �$
� implicit �� �N$ �$ �$
� interior �� �N$ �$ �$
� state ��

� of �� �NP$ �NP� �$ �� �$ ��
� the �� �NP$ �$
 �$
� iteration ��

� over �� �NP$ �NP� �$ ��� �$ ���
� the �� �NP$ ��$ ��$
� hash �� �N$ ��$ ��$
�� table �� �N$ ��$ ��$
�� entries ��

�� has �� �NP� �NP� �� ��� �� ���
�� dynamic �� �N$ ��$ ��$
�� extent ��

Table ����� An example sentence with the supertags assigned to each word and dependency
links among words

the performance of LDA� Although the supertags contain constituent information� and it

is possible to convert a dependency linkage into a constituency based parse� the Parseval

metric does not have provision for evaluating unrooted parse trees since the output of LDA

can result in disconnected dependency linkages� In Chapter �� we suggest metrics that can

be used to evaluate dependency based parsers and in particular� LDA� We also present

performance evaluation results for LDA in that chapter�

����� Discussion

In this section� we discuss a few points about the supertag and LDA system� It is often

a topic of tension to balance the domain speci�city versus the portability of a natural

language grammar� The more domain speci�c a grammar is� the better is its performance

on that domain but the less portable it is� On the other hand a wide coverage grammar is

portable� but needs to be specialized to exploit the idiosyncrasies of the domain in order

to be e�cient� Given a new domain either the parsing system or the heuristics employed

by the grammar have to be retrained� In contrast� the modularising of the supertag and

LDA system achieves the balance of domain speci�city versus portability quite elegantly�

��

The domain dependent aspects are factored out and associated with the supertagger while

the LDA continues to be the domain independent unit of the system� The probability

model of the supertagger models the domain speci�c idiosyncrasies while the LDA uses

a wide�coverage grammar and linguistically motivated domain independent structures to

compute the dependency linkage� Each time this system is ported to a new domain� the

only module that needs retraining is the supertagger� The data used by the LDA remains

unchanged�

It is interesting to observe that the LDA works by �rst identifying the adjunct structures

using the distinction between recursive and non�recursive supertags� Once the arguments of

recursive structures are identi�ed� they are considered to be skippable for establishing the

arguments of non�recursive structures� The two�pass strategy of the LDA simulates a stack�

Further� the LDA relies on the locality of the arguments modulo recursive structures to

establish the dependency links� This is made possible due to the two properties of LTAGs�

extended domain of locality and factoring of recursion� The e�ectiveness of the LDA on

some examples involving relative clauses� sentence complement and PP attachment are

shown below�

Pos Word Supertag Slot req� Pass � Pass � Dep Links

� The �� �NP$ �$ �$
� rat ��

� the �� �NP$ �$ �$
� cat ��

� the �� �NP$ �$ �$
� dog ��

� chased �� �NP� �NP$ �� �$ �� �$
� bit �� �NP� �NP$ �� �$ �� �$
� ate �� �NP� �NP� �� ��� �� ���
� the �� �NP$ ��$ ��$
�� cheese ��

Table ����� An example illustrating the working of LDA on a center�embedded construc�
tion�

��

Pos Word Supertag Slot req� Pass � Pass � Dep Links

� who ��

� do �� �VP$ �$ �$
� you ��

� think �� �NP� �S$ �� �$ �� �$
� Bill ��

� believes �� �NP� �S$ �� �$ �� �$
� John ��

� loves �� �NP� �NP� �� �� �� ��

Table ����� An example illustrating the working of LDA on a sentence with long distance
extraction�

��	 Applicability to other Lexicalized Grammars

Lexicalized grammars associate with each word richer structures
trees in case of LTAGs

and categories in case of Combinatory Categorial Grammars
CCGs�� over which the word

speci�es syntactic and semantic constraints� Hence� every word is associated with a much

larger set of more complex structures than in the case where the words are associated with

standard parts�of�speech� However� these more complex descriptions allow more complex

constraints to be imposed and veri�ed locally on the contexts in which these words appear�

This feature of lexicalized grammars can be taken advantage of� to further reduce the

disambiguation task of the parser� as shown in supertag disambiguation� Hence supertag

disambiguation can be used as a general pre�parsing component of lexicalized grammar

parsers�

The degree of distinction between supertag disambiguation and parsing varies� de�

pending on the lexicalized grammar being considered� For both LTAG and CCG� supertag

disambiguation serves as a pre�parser �lter that e�ectively weeds out inappropriate elemen�

tary structures
trees or categories�� given the context of the sentence� It also indicates the

dependencies among the elementary structures but not the speci�c operation to be used

to combine the structures or the address at which the operation is to be performed
 an

almost parse� In cases where the supertag sequence for the given input string cannot be

combined to form a complete structure� the almost parse may indeed be the best one can

do�

��

In case of LTAG� even though no explicit substitutions or adjunctions are shown� the

dependencies among LTAG trees uniquely identify the combining operation between the

trees and the node at which the operation can be performed is almost always unique���

Thus supertag disambiguation is almost parsing for LTAGs� In contrast� the dependencies

among the CCG categories do not result in directly identifying the combining operations

between the categories since two categories can often be combined in more than one way�

Hence for CCG further processing needs to be performed after supertag disambiguation to

obtain the complete parse of the sentence���

The dependency model of supertag disambiguation is more closer to parsing in de�

pendency grammar formalism� Dependency parsers establish relationships among words�

unlike the phrase�structure parsers which construct a phrase�structure tree spanning the

words of the input� Since LTAGs are lexicalized and each elementary tree is associated

with at least one lexical item� the supertag disambiguation for LTAG can therefore be

viewed as establishing the relationship�� among words as dependency parsers do� Then

the elementary structures that the related words anchor are combined to reconstruct the

phrase�structure tree similar to the result of phrase�structure parsers� Thus the interplay

of both dependency and phrase�structure grammars can be seen in LTAGs� Rambow and

Joshi �Rambow and Joshi� ����� discuss in greater detail the use of LTAG in relating

dependency analyses to phrase�structure analyses and propose a dependency�based parser

for a phrase�structure based grammar�

��
 Summary

In summary� we have presented a new technique that performs the disambiguation of

supertags using local information such as lexical preference and local lexical dependencies�

This technique� like part�of�speech disambiguation� reduces the disambiguation task that

��In some cases� the dependency information between an auxiliary and an elementary tree may be
insu�cient to uniquely identify the address of adjunction� if the auxiliary tree can adjoin to more than
one node in the elementary tree� since the speci�c attachments are not shown�

��An approach similar to LTAG of including a supertag for each syntactic environment a lexical item
appeared in was attempted in
Chytil and Karlgren� ����
� However� this approach was not exploited for
robust parsing�

��The relational labels between two words in LTAG is associated with the address of the operation
between the trees that the words anchor�

��

needs to be done by the parser� After the disambiguation� we would have e�ectively

completed the parse of the sentence and the parser need �only� complete the adjunction

and substitutions� This method can also serve to parse sentence fragments in cases where

the supertag sequence after the disambiguation may not combine to form a single structure�

We have implemented this technique of disambiguation using the n�gram models using the

probability data collected from LTAG parsed corpus� The similarity between LTAG and

Dependency grammars is exploited in the dependency model of supertag disambiguation�

��

Chapter �

Exploiting LTAG representation

for Explanation�based Learning

There are currently two philosophies for building grammars and parsers� Wide�coverage

hand�crafted grammars such as �Grover et al�� ����� Alshawi et al�� ����� Karlsson et

al�� ����� XTAG�Group� ����� are designed to be domain�independent� They are usually

based on a particular grammar formalism� such as Context�Free Grammars� Constraint

Grammars or Lexicalized Tree�Adjoining Grammars� Statistically induced grammars and

parsers �Jelinek et al�� ����� Magerman� ����� Collins� ����� on the other hand� are trained

on speci�c domains using a manually annotated corpus of parsed sentences from the given

domain�

Aside from the methodological di�erences in grammar construction� the two approaches

di�er in the richness of information contained in the output parse structure� Hand�crafted

grammars generally provide a far more detailed parse than that output by a statistically

induced grammar� Also� the linguistic knowledge which is overt in the rules of hand�crafted

grammars is hidden in the statistics derived by probabilistic methods� which means that

generalizations are also hidden and the full training process must be repeated for each

domain�

Although hand�crafted wide�coverage grammars are portable� they can be made more

e�cient if it is recognized that language in limited domains is usually well constrained and

certain linguistic constructions are more frequent than others� Hence� not all the structures

��

of the domain�independent grammar nor all the combinations of those structures would

be used in limited domains� In this chapter� we view a domain�independent grammar as a

repository of portable grammatical structures whose combinations are to be specialized for

a given domain� We use Explanation�based Learning mechanism to identify the relevant

subset of a hand�crafted general purpose grammar needed to parse in a given domain� We

exploit the key properties of Lexicalized Tree�Adjoining Grammars to view parsing in a

limited domain as Finite�State Transduction from strings to their dependency structures�

��� Explanation�based Learning

Explanation�based Learning
EBL� techniques were originally introduced in the AI litera�

ture by �Mitchell et al�� ����� Minton� ����� van Harmelen and Bundy� ������ The main

idea behind explanation�based learning is that it is possible to form generalizations from

single positive training examples if the system can explain why the example is an instance

of the concept under study� The generalizer possesses the knowledge of the concept under

study and the rules of the domain for constructing the required explanation� The de�nition

of the EBL problem is summarized in Table ������

The objective of EBL in the AI domain is to keep track of suitably generalized solutions

explanations� to problems solved in the past and to replay those solutions to solve new

but somewhat similar problems in the future� Although put in these general terms the

approach sounds attractive� it is by no means clear whether it would actually improve the

performance of the system� an aspect which is of great interest to us here�

Rayner ������ was the �rst to investigate the usefulness of the EBL technique in

the context of natural language parsing systems� The correspondence between the EBL

terminology and parsing terminology is shown in Table ���� In parsing� the concept

under study is grammaticality of an input� The grammar serves as the domain theory�

A training sentence serves as an instance of the concept� A parse of a sentence represents

an explanation of why the sentence is grammatical according to the grammar� A derivation

tree represents the explanation structure� Parsing new sentences amounts to �nding

analogous explanations from the explanations for the training sentences�

�The de�nitions in this table are from
Mitchell et al�� ����

��

� Given

� Goal Concept� A concept de�nition describing the concept to be learned�

� Training Example
Instance�� An example of the goal concept�

� Domain Theory� A set of rules and facts to be used in explaining how the
training example is an example of the goal concept�

� Operationality Criterion� A predicate over concept de�nitions� specifying the
form in which the learned concept de�nition must be expressed�

� Goal�

� A generalization of the training example that is a su�cient concept de�nition
for the goal concept and that satis�es the operationality criterion�

� Terminology�

� Generalization of an example� A concept de�nition that describes a set
containing that example�

� Explanation� A proof of how an instance is an example of the concept�

� Explanation Structure� The proof tree that leads to the proof that serves as an
explanation�

Table ���� The explanation�based learning problem

As a special case of EBL� Samuelsson and Rayner ������ specialize a CFG�based

grammar for the ATIS domain by storing chunks of the parse trees present in a treebank

of parsed examples� The idea is to reparse the training examples by letting the parse

tree drive the rule expansion process and halting the expansion of a specialized rule if

the current node meets a �tree�cutting� criteria� However� the problem of specifying an

optimal �tree�cutting� criteria was not addressed in this work� Samuelsson ������ used

the information�theoretic measure of entropy to derive the appropriate sized tree chunks

automatically� Neumann ������ also attempts to specialize a grammar given a training

corpus of parsed examples by generalizing the parse for each sentence and storing the

generalized phrasal derivations under a suitable index�

Later in the chapter� we will make some additional comments on the relationship

��

EBL Terminology � Parsing Terminology

Concept � Grammaticality
Domain Theory � Grammar
Instance � Sentence
Explanation � Parse
Explanation Structure � Derivation Structure
Operationality Criterion � Elementary structures of the grammar

Table ���� Correspondence between EBL and parsing terminology�

between our approach and some of these earlier approaches� In particular� we show that

generalization in previous approaches e�ectively computes the same structures that the

LTAG representation provides to begin with�

��� Overview of our approach to using EBL

We are pursuing the EBL approach in the context of a wide�coverage grammar development

system called XTAG �Doran et al�� ������ The details of XTAG are discussed in Section ����

The training phase of the EBL process involves generalizing the derivation trees gen�

erated by XTAG for the training sentences and storing these generalized parses in the

generalized parse database under an index computed from the morphological features of

the sentence� The application phase of EBL is shown in the 	owchart in Figure ����

An index using the morphological features of the words in the input sentence is computed�

Using this index� a set of generalized parses is retrieved from the generalized parse database

created in the training phase� If the retrieval fails to yield any generalized parse then the

input sentence is parsed using the full parser� However� if the retrieval succeeds then the

generalized parses are input to the �stapler�� The �stapler� is a very impoverished parser

that generates all possible attachment sites for all
if any� modi�ers besides instantiating

the features of nodes of the trees by term uni�cation� The details of the �stapler� are

discussed in Chapter ��

The three key aspects of LTAG� as discussed in Chapter ��� are
a� lexicalization�
b�

extended domain of locality and
c� factoring of recursion from the domain of dependencies�

��

Syn DB

Trees DB

Generalized Parse
Selection

Compute Index

Gen. Parse DB

Morph Analyzer

Morph DB
P.O.S Blender

Tagger

Lex Prob DB

Input Sentence

Found?

Yes

No

Stapler

Parser

Tree Grafting

Tree Selection

Derivation Tree

Derivation Tree

Figure ���� Flowchart of the XTAG system with the EBL component

In this chapter� we show that exploiting these key properties of LTAG
a� leads to an imme�

diate generalization of parses for the training set of sentences� as discussed in Section ����

b� achieves generalization over recursive substructures of the parses in the training set� as

discussed in Section ��� and
c� allows for a �nite state transducer
FST� representation

of the set of generalized parses� as discussed in Section ���� In Section ���� we present

experimental results evaluating the e�ectiveness of our approach on more than one kind

of corpora� We contrast our approach of using EBL technique to previous approaches in

Section ����

��

��� Feature�generalization

In LTAGs� a derivation tree uniquely identi�es a parse for a sentence� A derivation tree

is a sequence of elementary trees associated with the lexical items of the sentence along

with substitution and adjunction links among the elementary trees� Also� the values for

features at each node of every elementary tree is instantiated to a value by the parsing

process� Given an LTAG parse� the generalization of the parse is truly immediate in that

a generalized parse is obtained by
a� uninstantiating the particular lexical items that

anchor the individual elementary trees in the parse and
b� uninstantiating the feature

values contributed by the morphology of the anchor and the derivation process� This type

of generalization is called feature�generalization and results in a feature�generalized parse�

In other EBL approaches based on Context�Free�based grammars� �Rayner� ����� Samuels�

son� ����� there is no independent notion of a derivation tree� The context�free parse tree

corresponds to both the derivation tree and the derived tree� So to generalize a parse� it

is necessary to walk up and down the parse tree to determine the appropriate subtrees

to generalize on and to suppress the feature values� In contrast� in our approach� the

process of generalization is immediate� once we have the output of the parser� since the

elementary trees anchored by the words of the sentence de�ne the subtrees of the parse

for generalization� Replacing the elementary trees with uninstantiated feature values is all

that is needed to achieve this generalization� The process of feature generalization is shown

in Figure ���� After feature�generalization� the trees �� and �� are no longer distinct so we

denote them by �� So also the trees �� and �� are no longer distinct� so we denote them

by � in Figure ���
b��

����� Storing and retrieving feature�generalized parses

The feature�generalized parse of a sentence is stored in a generalized parse database under

an index computed from the training sentence� In this case� the part�of�speech
POS�

sequence of the training sentence is treated as the index to the feature�generalized parse�

The index for the example sentence show me the �ights from Boston to Philadelphia is

shown in Figure ���
c�� In the application phase� the POS sequence of the input sentence

is used to retrieve a generalized parse
s� which is then instantiated to the features of the

��

α1 [show]

α2 [me] (2.2) α4 [flights] (2.3)

α3 [the] (1) β1 [from] (0)

α5 [Boston] (2.2)

β2 [to] (0)

α6 [Philadelphia] (2.2)

a�

α1 [V]

α2 [N] α4 [N]

α3 [D] β1 [P]

α5 [N]

β1 [P]

α5 [N]
V N D N P N P N

b�
c�

Figure ����
a� Derivation structure
b� Feature Generalized Derivation structure
c� Index
for the generalized parse for the sentence show me the �ights from Boston to Philadelphia

��

sentence�

We have chosen here to index the generalized parse under the POS sequence of the

training sentence� However� it must be noted that depending on the degree of abstrac�

tion from the lexical items� the generalized parse may be stored under di�erent indices

containing varying amounts of lexical speci�c information� The degree of abstraction

strongly in	uences the amount of training material required for adequate coverage of the

test sentences and the number of parses assigned to the test sentences�

This method of retrieving a generalized parse allows for parsing of sentences of the

same lengths and the same POS sequence as those in the training corpus� However� in our

approach there is another generalization that falls out of the LTAG representation which

allows for 	exible matching of the index to allow the system to parse sentences that are

not necessarily of the same length as some sentence in the training corpus�

��� Recursive�generalization

Auxiliary trees in LTAG represent recursive structures� So if there is an auxiliary tree that

is used in an LTAG parse� then that tree with the trees for its arguments can be repeated

any number of times� or possibly omitted altogether� to get parses of sentences that di�er

from the sentences of the training corpus only in the number of modi�ers� This type of

generalization can be called recursive�generalization� Figure ��� illustrates the process of

recursive generalization� The two Kleene star regular expressions in Figure ���
b� can be

merged into one and the resulting recursive generalized parse is shown in Figure ���
c��

Recursive generalization in other approaches to EBL �rst requires identifying the

appropriate subderivations that are recursive� This is achieved by cutting up the parse

tree� as is done in �Rayner� ����� or by taking arbitrary cuts of the parse tree as is done

in �Neumann� ������ These operations e�ectively rediscover the set of auxiliary trees that

the LTAG provides to begin with�

����� Storing and retrieving recursive�generalized parses

Due to recursive�generalization� the POS sequence covered by the auxiliary tree and its

arguments can be repeated zero or more times� As a result� the index of a generalized

��

α1 [V]

α2 [N] α4 [N]

α3 [D] β1 [P]

α5 [N]

β1 [P]

α5 [N]

*

α1 [V]

α2 [N] α4 [N]

α3 [D] β1 [P]

α5 [N]

β1 [P]

α5 [N]

*

a�
b�

α1 [V]

α2 [N] α4 [N]

α3 [D] β1 [P]

α5 [N]

*

V N D N
P N��

c�
d�

Figure ����
a� Feature�generalized derivation tree
b� Recursive�generalized derivation
tree
c� Recursive�generalized derivation tree with the two Kleene�stars collapsed into one

d� Index for the generalized parse for the sentence show me the �ights from Boston to
Philadelphia�

��

parse of a sentence with modi�ers is no longer a string but a regular expression pattern on

the POS sequence and retrieval of a generalized parse involves regular expression pattern

matching on the indices� The index for the example sentence is shown in Figure ���
d��

since the prepositions in the parse of this sentence would anchor auxiliary trees�

The most e�cient method of performing regular expression pattern matching is to

construct a �nite state machine for each of the stored patterns and then traverse the

machine using the given test pattern� If the machine reaches the �nal state� then the test

pattern matches one of the stored patterns�

Given that the index of a test sentence matches with one of the indices from the

training phase� the generalized parse retrieved will be a parse of the test sentence� modulo

the modi�ers� For example� if the test sentence� tagged appropriately� is

���� Show�V me�N the�D 	ights�N from�P Boston�N to�P Philadelphia�N on�P

Monday�N�

then� although the index of the test sentence matches the index of the training sentence�

the generalized parse retrieved needs to be augmented to accommodate the additional

modi�er on
P Monday
N�

To accommodate the additional modi�ers and their arguments that may be present in

the test sentences� we need to provide a mechanism that assigns the additional modi�ers

and their arguments the following�

�� The elementary trees that they anchor and

�� The substitution and adjunction links to the trees they substitute or adjoin into�

We assume that the additional modi�ers along with their arguments would be assigned

the same elementary trees and the same substitution and adjunction links as were assigned

to the modi�er and its arguments of the training example� Hence the Kleene�star around

the subderivation rooted by the preposition in Figure ���
b�� This� of course� means that

we may not get all the possible attachments of the modi�ers at this time�
but see the

discussion of the �stapler� in Chapter ��

The recursive�generalized parse shown in Figure ���
c� can be stored in the generalized

parse database indexed on the regular expression shown in Figure ���
d�� However�

��

in the application phase� matching the index requires keeping track of the number of

instantiation of the Kleene�star in the regular expression index so as to instantiate the

corresponding modi�er structure in the derivation tree� In contrast� the Finite�State

transducer representation overcomes this problem by combining the generalized parse and

the POS sequence
regular expression� that it is indexed by in a uniform representation�

��� Finite�State Transducer Representation

As mentioned earlier� a �nite state machine
FSM� provides the most e�cient method

of performing regular expression pattern matching over the space of index patterns� An

index in this representation is a path in the FSM� The generalized parse associated with

an index is stored along the path that represents the index� The idea is to annotate each

arc of the FSM with the elementary tree associated with that POS and also indicate which

elementary tree it would be adjoined or substituted into� This results in a Finite State

Transducer
FST� representation� illustrated by the example below� Consider the example

sentence
���� with the generalized derivation tree in Figure ����

���� show me the 	ights from Boston to Philadelphia�

α1 [V]

α2 [N] α4 [N]

α3 [D] β1 [P]

α5 [N]

*

Figure ���� Generalized derivation tree for the sentence� show me the �ights from Boston
to Philadelphia

��

Item Description

this tree � the elementary tree that the word anchors

head word � the word on which the current word is dependent on� �
� if the current
word does not depend on any other word�

head tree � the tree anchored by the head word� �
� if the current word does not
depend on any other word�

number � a signed number that indicates the direction and the ordinal position of
the particular head elementary tree from the position of the current
word OR

� an unsigned number that indicates the gorn�address
i�e�� the node
address� in the derivation tree to which the word attaches OR

� �
� if the current word does not depend on any other word�

Table ���� Description of the components in the tuple representation associated with each
word�

An alternate representation of the derivation tree that is similar to the dependency

representation� is to associate with each word a tuple
this tree� head word� head tree�

number� where the description for the components of the tuple is given in Table ����

Following this notation� the derivation tree in Figure ��� is represented as in
�����

����
V�
���
�
�
� N�
��� V������� D�
��� N� ������ N�
���V� ��� ���

 P�
�� N� ��� �� N�
�� P� �� ��� ��

which can be seen as a path in an FST as in Figure ����

α
3

α
2

α
4

α
1 , -1) α

1 , -1)α
4

α
4P/(β, N , , V , , V, N/(1 , - , - , -)α V/(D/(N/(

S1 S2 S3 S4 S5 S6

, +1) , N , , 2)

 N/(α , P , β , -1)

Figure ���� Finite State Transducer Representation for the sentences� show me the �ights
from Boston to Philadelphia� show me the �ights from Boston to Philadelphia on Monday�
� � �

This FST representation is possible due to the lexicalized nature and the extended

domain of locality of elementary trees because of which lexical dependencies are localized

��

to with in a single elementary structure� This representation makes a distinction between

head�modi�er dependencies and head�complement dependencies� For a head�complement

dependency relation� the number in the tuple associated with a word is a signed number

that indicates the ordinal position of its head in the input string� For a head�modi�er

dependency relation� the number in the tuple associated with a word is an unsigned number

that represents the tree�address
Gorn address� of its head in the derivation tree�

����� Extending the Encoding for Clausal complements

Long distance dependencies in LTAGs arise out of adjunction of predicative auxiliary trees

into other elementary trees� The method of recursive generalization discussed in Chapter �

does not distinguish predicative auxiliary trees from modi�er auxiliary trees� Consider the

sentence ��� as a training example�

���� who did you say 	ies from Boston to Washington

NP

N

who

VP

V

did

VP*

NP

N

you

S

NP↓ VP

V

say

S*

S

NP↓ VP

V

flies

�� �� �� �� ��

VP

VP* PP

P

from

NP↓

NP

N

Boston

VP

VP* PP

P

to

NP↓

NP

N

Washington

�� �� �� ��

Figure ���� The elementary trees for the sentence who did you say �ies from Boston to
Washington

The elementary trees for the words of this sentence are shown in Figure ��� and the

corresponding derivation tree and generalized versions are shown in Figure ���� The

��

α1[flies]

α2[who] (1) β1[say] (2)

β2[did] (0) α3[you] (1)

β3[from] (2.2)

α4[Boston] (2.2)

β4[to] (2.2)

α5[Washington] (2.2)

a�

α1[V]

α2[N] β1[V]

β2[V] α3[N]

β3[P]

α4[N]

β3[P]

α4[N]

α1[V]

α2[N] β1[V]

β2[V] α3[N]

β3[P]

α4[N]

**

*

b�
c�

Figure ����
a� Derivation structure
b� Feature Generalized Derivation structure and
c�
Recursive Generalized Derivation structure for the sentence who did you say �ies from
Boston to Washington

FST representation of this derivation structure is shown in Figure ���� Due to recursive�

generalization� generalized derivations for the following sentences can be obtained as well�

���� Long Distance dependency� who did you think I said 	ies from Boston to

Washington�

���� Subject Extraction� who 	ies from Boston to Washington�

However� in the example for the long distance dependency� although a generalized

derivation tree can be assembled by traversing the FST� the dependency relation between

think and �ies is incorrect� This is because the recursive generalization assumes that the

successive instances of recursion attach to the same head as the initial one� To remedy

this situation� the following observation is in order�

��

, V , 1, +1)αN/(3 β

V/(β2 , V , * , +1)

, V , α 1 , +1)2αN/(, V , αβP/(3 1 , 0)

N/(α 4 , P , β 3, -1)

, -- , -- , --)ε/(-- , -- , -- , --)ε/(--

S1 S2 S3

S4

S5 S6 S7

, V , V/(β 1

V/(α 1 , -- , -- , --)

α 1 , +1)

Figure ���� FST for the sentence who did you say �ies from Boston to Washington

����� Types of auxiliary trees

Auxiliary trees in LTAG have been distinguished as modi�er auxiliary trees and predicative

auxiliary trees� While the modi�er auxiliary trees modify the constituent they adjoin

on to� the predicative auxiliary trees subcategorize for the constituent they adjoin on

to� Examples of the modi�er auxiliary trees and predicative auxiliary trees are shown in

Figure ����

NPr

NPf* PP

P

from

NP↓

Sr

NP0↓ VP

V

said

S1*

a�
b�

Figure ����
a�� Modi�er Auxiliary Tree�
b�� Predicative Auxiliary Tree

The additional auxiliary trees that result from recursive generalization display di�erent

adjunction behaviour depending on the type of the auxiliary tree as shown in sentences

���

Item Description

this tree � the elementary tree that the word anchors

head word � the word on which the current word is dependent on� �
� if the current
word does not depend on any other word�

head tree � the tree anchored by the head word�
� �Tclause� if the type of the tree anchored by the head word is

a clausal tree
� �
� if the current word does not depend on any other word�
� ��� if the tree does not matter�

number � a signed number that indicates the direction and the ordinal position of
the particular head elementary tree from the position of the current
word OR

� an unsigned number that indicates the gorn�address

i�e�� the node address� in the derivation tree to which the word attaches
OR

� �
� if the current word does not depend on any other word�

Table ���� Description of the components in the tuple representation associated with each
word�

���� and
����� The successive repetitions of the modi�er in
���� can modify the same

head
�ies� as did the modi�ers in the training example� However� successive repetition of

the predicative auxiliary trees take as complement the clause following it� Thus� in
�����

think adjoins on to said and not to �ies�

���� who did you say 	ies from Boston to Washington on Monday�

���� who did you think I said 	ies from Boston to Washington�

Based on the preceding observations we assume that the additional auxiliary trees

along with their arguments would be assigned elementary trees along with substitution

and adjunction links as follows�

� The additional auxiliary trees along with their arguments would be assigned the same

generalized elementary trees as they were assigned in the training example�

� The arguments of the auxiliary trees will be assigned the same substitution and

adjunction links as they were assigned the training example�

���

N�
��� V� ��� ��� V�
��� V������
N�
��� V� ������ V�
���V�Tclause������

V�
���
�
�
�
 P�
��� V� ��� �� N�
��� P� ��� ��� �
�

a�

, V , 1, +1)αN/(3 β

V/(β2 , V , * , +1)

, V , α 1 , +1)2αN/(, V , αβP/(3 1 , 0)V/(α 1 , -- , -- , --)

N/(α 4 , P , β 3, -1)

, -- , -- , --)ε/(-- , -- , -- , --)ε/(--

S1 S2 S3

S4

S5 S6 S7

, V , V/(β 1 Tclause, +1)

b�

Figure ����� Finite State Transducer Representation for the sentences� who did you say
�ies from Boston to Washington� who did you say �ies from Boston to Washington on
Monday� who did you think I said �ies from Boston to Washington� � � �

� If the auxiliary tree is a modi�er auxiliary tree then it is assumed that it modi�es

the same head as it did in the training example�

� If the auxiliary tree is a predicative auxiliary tree then it is assumed to adjoin to the

immediately following clause� in terms of string position�

Based on these assumptions� the derivation tree in Figure ���
c� is encoded by associat�

ing each word with a tuple
this tree� head word� head tree� number� where the description

for the components of the tuple is given in Table ���� With this extended encoding and

by traversing the FST shown in Figure ����� the sentence ��� is assigned a derivation tree

with the correct dependency links�

It is interesting to note that the complement linkages of a tree are speci�ed in terms

string positions irrespective of the nature of the tree
recursive or non�recursive� while the

adjunct linkages are speci�ed in terms of tree positions�

���

��	 Experiments and Results

We now present experimental results to show the e�ectiveness of our approach� Experi�

ments
a� through
c�� are intended to measure the coverage of the FST representation of

the parses of sentences from a range of corpora� ATIS� IBM�Manual and Alvey corpus� The

results of these experiments provide a measure of repetitiveness of patterns as described

in this chapter� at the sentence level� in each of these corpora�

Experiment
a�� The details of the experiment with the ATIS corpus are as follows� A

total of ��� sentences� average length of �� words per sentence� which had been completely

parsed by the XTAG system was randomly divided into two sets� a training set of ���

sentences and a test set of ��� sentences� using a random number generator� For each of

the training sentences� the correct parse was generalized and stored as a path in a FST�

The FST was then minimized� The minimized FST was tested for retrieval of a generalized

parse for each of the test sentences that were pretagged with the correct POS sequence

� When a match is found� the output of the EBL component is a generalized parse that

associates with each word the elementary tree that it anchors and the elementary tree into

which it adjoins or substitutes into
 an almost parse��

Experiment
b� and
c�� Similar experiments were conducted using the IBM�manual

corpus and a set of noun de�nitions from the LDOCE dictionary that were used as the

Alvey test set �Carroll� ������

Corpus Size of � of States � Recall Avg� � Avg� Response Time
Training set of parses
secs�

ATIS ��� ���� ��� � ���� sec�sent

IBM ���� ���� ��� � ���� sec�sent

Alvey �� ��� ��� � ���� sec�NP

Table ���� Recall percentage� Average number of parses� Response times and Size of the
FST for various corpora

Results of these experiments are summarized in Table ���� The size of the FST obtained

for each of the corpora� the recall percentage� the average number of generalized parses

and the traversal time per input are shown in this table� The recall percentage of the FST

�See Chapter � for the role of almost parse in supertag disambiguation�

���

is the number of inputs that were assigned a correct generalized parse� Owing to the high

degree of repetitive patterns in the ATIS domain� the size of the FST and the resulting

recall are better than that for IBM manual sentences�

In Chapter �� we discuss the performance improvement gained by incorporating the

EBL component into the XTAG system�

��
 Phrasal EBL and Weighted FST

Our approach to using EBL is ideally suited for domains where the patterns are repetitive

only at the sentence level� However� this method can be extended for domains where the

patterns are repetitive at the phrasal level as well� The idea would be to identify the

repetitive phrasal subtrees from the derivation trees and create an FST as described in the

previous sections for each of those subtrees� such as an FST for NPs� FST for PPs and

so on� In the test phase these FSTs are applied as a sequence of transductions with each

transduction resulting in the type of the phrase that is recognized along with the phrase

internal substitution and adjunction links� The head of the phrase
word that does not

depend on any other word in the phrase� identi�ed by the current transduction is used in

the next transduction for linking with other words�

Another extension to our approach is to associate weights to the arcs of the FST so as

to produce ranked generalized derivations� Traversing the FST created during the training

phase could result in a set of generalized derivation structures� These derivations can be

ranked according to their likelihood if each arc of the FST is weighted by the probability of

traversing that arc� This can be achieved by simply counting the number of times each arc

is traversed during the training phase and normalizing the arc weights so that the weights

of all the outgoing arcs at each node sum to one� In the test phase� a path probability is

computed as the product of the probabilities of each arc that is a component arc of that

path�

���

��� Discussion

In this section� we will compare and contrast our approach of using EBL to the previous

approaches and highlight the representational richness provided by LTAGs�

In contrast to our approach� Samuelsson and Rayner ������ specialize a CFG�based

grammar for the ATIS domain by �cutting up� the parse tree and identifying the most

frequent subderivations using treebank of parsed examples� They then derive a specialized

grammar in which the pre�terminal yield of these frequent subderivations are compiled

out� The number of derivation steps in the specialized grammar is relatively smaller than

in the original grammar and hence the parsing process is relatively faster�

Rayner and Samuelsson use the following two rules to cut up the parse tree and recover

the subderivations� These rules seem su�cient in the ATIS domain but are not exhaustive

in general for other domains�

� If a node is labeled as an NP and is not dominated by any other node labeled NP�

then cut above it�

� If a node is labeled as an NP and does not dominate any other node labeled NP�

then cut above it�

S

NP

ε

VP

V

show

NP

me

NP

NP

NP

Det

the

NP

flights

PP

P

from

NP

Boston

PP

P

to

NP

Philadelphia

S

NP

ε

VP

V

show

NP

NP

me

NP

NP

NP

NP

NP

Det

the

NP

flights

PP

P

from

NP

Boston

PP

P

to

NP

Philadelphia

a�
b�

Figure �����
a� Parse tree and
b� Tree�chunks for the sentence show me the �ights from
Boston to Philadelphia

���

Applying these two rules to the parse of the example sentence show me the �ights from

Boston to Philadelphia results in the three tree chunks shown in Figure ����� The dotted

line in the Figure ���� shows the nodes at which the parse tree is cut� Notice that the

resulting trees are of the following three types each corresponding to a LTAG elementary

tree�

� A tree rooted at S with lexical items and NP substitution nodes on the frontier�

corresponding to an LTAG initial tree with NP arguments�

� A tree rooted at NP with lexical items on the frontier� corresponding to an LTAG

initial tree rooted at the NP node�

� A tree to express recursion� that is rooted at NP with NP nodes and lexical items

on the frontier corresponding to auxiliary trees��

As seen in this example� the tree�cutting rules e�ectively rediscover the LTAG elemen�

tary tree structures� Samuelsson ������ in continuation with his previous work uses entropy

as a metric to identify locations to cut up the parse tree� This method can identify certain

subderivations that may be missed out in �Samuelsson and Rayner� ������

Neumann
�������� in an attempt to achieve recursive�generalization� allows arbitrary

cuts through the parse tree to serve as indices thus allowing non�terminals� in particular

NPs to be part of the index� As a result� matching the index in the application phase

becomes much more complex and requires scanning� prediction and completion steps� In

contrast� recursive�generalization in our approach is triggered by lexical items that anchor

auxiliary trees and hence is quite immediate�

Another aspect that is not addressed in previous work is the issue of e�cient indexing

and retrieval of generalized parses� The FST representation used in our approach provides

an optimal method for indexing and retrieving the generalized parses� Lexicalization

and Extended Domain of Locality of LTAGs serve as the key properties for this e�cient

representation�

�The auxiliary trees may not represent minimal recursive structure� as in this case�

���

��� Summary

In this chapter� we have shown some novel applications of Explanation�Based Learning

techniques to parsing with Lexicalized Tree�Adjoining Grammars
LTAG� in limited do�

mains� The three key aspects of LTAG
a� lexicalization�
b� extended domain of locality

and
c� factoring of recursion from the domain of dependencies
�� lead to an immediate

generalization of parses for the training set of sentences�
�� achieve generalization over

recursive substructures of the parses� and
�� allow for a �nite state transducer
FST�

representation of the set of generalized parses� We have shown a methodology to speed�up

the performance of a domain�independent� wide�coverage� hand�crafted grammar when

used in limited domains� without sacri�cing the portability of the grammar� In the

next chapter� we present a novel device called Stapler that in conjunction with the EBL

component functions as a lightweight parser�

���

Chapter �

Stapler

A parser is a device that checks the well�formedness of an input string given a set of

elementary structures
a grammar� and the rules for combining them� The output of a

parser is a parse that serves as a proof of the well�formedness of the input string given

the grammar� A parse is the result of searching� selecting and combining appropriate

elementary structures from the set of possible structures de�ned in the grammar� so as

to span the input string� This fact is represented by the derivation structure for the

input string� This aspect of searching through the space of elementary structures of the

grammar to determine the appropriate structures to combine is the single most time�

expensive component of the parsing process� The search space of elementary structures

grows rapidly as the degree of ambiguity of words in the input string increases� This fact is

further compounded in wide�coverage grammars where a variety of elementary structures

are included in the grammar for the range of linguistic constructions� Due to this enormous

size of the search space� parsers for wide�coverage grammars are excruciatingly slow and

often perform at speeds that make them impractical�

Lexicalized grammars� however� provide an opportunity to reduce the ambiguity in

the elementary structures even before parsing begins� Each lexical item in an input string

contributes one elementary structure from the collection of structures it anchors� towards a

parse for the string� If this task of selecting the correct elementary structure to contribute

to the parse is done before parsing begins� then the parser�s task is reduced to combining

the selected structures using the operations of the formalism� In the context of LTAGs�

���

Supertag Disambiguation
as discussed in Chapter �� and EBL�technique for parsing
as

discussed in Chapter �� are two approaches for selecting the suitable elementary trees even

before parsing begins� In this chapter� we introduce a novel device called Stapler
 an

impoverished parser� whose only task is to combine the selected elementary trees to form

a parse�

The following is the layout of this chapter� In Section ��� we discuss the nature of

the input to the Stapler� The various tasks performed by a Stapler to complete a parse is

discussed in Section ���� Some experimental results demonstrating the speed�up obtained

by using a Stapler in contrast to a conventional parser are discussed in Section ����

	�� Input to the Stapler� Almost Parse

A stapler is a device used in conjunction with a supertagger or an EBL�lookup system�

The output of a supertagger or an EBL�lookup system is one or more supertag sequences�

each sequence annotated with dependency information
 an almost parse or a generalized

derivation tree� Figure ���
a� shows the generalized derivation trees resulting from the

supertagger as discussed in Chapter � and Figure ���
b� shows the generalized derivation

tree from EBL�look up as discussed in Chapter ��� The following are the characteristics

of an almost parse�

� Each word of the input is associated with a unique supertag�

� The supertags are linked by directed arcs originating at a dependent supertag and

terminating at a head supertag��

The stapler assembles the supertags to obtain a parse
s� of the input using the depen�

dency information present in the almost parse�

�The lexical items are shown as instantiating the supertags in Figure ���� However� the features on the
supertags are not yet instantiated with the morphological features of the lexical items that anchor them�

�A supertag � is dependent on � if � substitutes or adjoins into �� Supertag � is called the head supertag
and � is called the dependent supertag�

���

α15 [includes]

α3 [price]

α1 [the] β2 [purchase]

α6 [companies]

α10 [two] β3 [ancillary]

α1 [show]

α2 [me] α4 [flights]

α3 [the] β1 [from]

α5 [Boston]

β2 [to]

α6 [Philadelphia]

a�
b�

Figure ����
a�� Output of Supertagger for the sentence The purchase price includes two
ancillary companies
b�� Output of EBL�lookup for the sentence Show me the �ights from
Boston to Philadelphia

	�� Stapler
s Tasks

As can be seen from Figure ���� the almost parse needs to be augmented with the following

information to be a complete parse� The stapler performs these tasks�

�� Identify the nature of operation� Dependency links are to be distinguished as either

substitution or adjunction links�

�� Modi�er Attachment� Alternate sites of attachments for modi�ers needs to be com�

puted�

�� Address of Operation� Node addresses are to be assigned to dependency links to

indicate the location of operation�

�� Feature Instantiation� The values of the features on the nodes of the supertags have

to be instantiated by a process of uni�cation�

In the following sections we discuss each of the subtasks in greater detail�

����� Identify the nature of operation

Given the supertag sequence and the dependency links among them the task of this module

is to label the dependency links as either substitution links or adjunction links� This task

���

is extremely straightforward since the type of the supertags
initial or auxiliary� that a

dependency link connects determines the nature of the link� Auxiliary trees are adjoined

while initial trees are substituted into other elementary trees�

����� Modi
er Attachment

One of the generalizations made in EBL�lookup is recursive�generalization� It states that if

an auxiliary supertag is used in an LTAG parse� then that supertag with the supertags for

its arguments can be repeated any number of times� or possibly omitted altogether� to get

parses of sentences that di�er from the sentences of the training corpus in the number of

modi�ers only� However� an assumption is made that the additional instances of modi�ers

modify the same head as the training instance modi�ed� Due to this assumption� EBL�

lookup may not provide all possible attachments of the modi�ers for a given input string�

This is illustrated in Figure ���� Figure ���
a� is the generalized parse resulting from EBL�

lookup for the sentence Give me the cost of tickets on Delta� Figure ���
b� shows the

derivation tree instantiated to the words in the sentence� However� it can be clearly seen

that the intended derivation tree is the one shown in Figure ���
c��

The task of this module is to generate the alternate sites of attachments for the modi�ers

in the input string� given an almost parse for that string� The algorithm proceeds as follows�

To produce alternate attachment sites for the modi�ers� the sub�derivation rooted at

the modi�er auxiliary tree can be seen as sliding up and down the derivation tree� Each

modi�er auxiliary tree can slide up from its parent to its grandparent
if there is one�

or can slide down from its parent to its sibling� The sliding process� however� has to

be constrained so as to avoid crossing dependencies� To do so� each supertag that is

associated with a modi�er is distinguished as either left or right�anchor supertag based

on the direction of the anchor node of the supertag to the foot node of the supertag� To

avoid crossing�dependencies� left�anchor supertags can slide up� provided they do not have

a right sibling in the derivation tree and right�anchor supertags can slide up� provided they

do not have a left sibling in the derivation tree�

���

α1 [V]

α2 [N] α4 [N]

α3 [D] β1 [P]

α5 [N]

β1 [P]

α5 [N]

α1 [give]

α2 [me] α4 [cost]

α3 [the] β1 [of]

α5 [tickets]

β2 [on]

α6 [Delta]

a�
b�

α1 [give]

α2 [me] (2.2) α4 [cost] (2.3)

α3 [the] (1) β1 [of] (0)

α5 [tickets] (2.2)

β2 [on] (0)

α6 [Delta] (2.2)

c�

Figure ����
a� Output of EBL�lookup
b� Instantiated derivation tree
c� Intended
derivation tree for the sentence Give me the cost of tickets on Delta

���

����� Assigning the addresses to the links

The next step towards completing the almost parse is to assign node addresses to the

dependency links to indicate the site of substitution or adjunction� To do this� we need

to represent the internal structure of supertags� A supertag is represented by the list of

nodes that appear in it
 root node� anchor node� foot node� list of substitution nodes and

list of internal nodes that do not have Null Adjunction constraints� Each node carries its

label� its address and its features� Figure ��� illustrates this pictorially�

The process of assigning the addresses to the dependency links proceeds in two steps�

In the �rst step� the substitution links are assigned node addresses and in the second

step� the adjunction links are assigned node addresses� This allows for the possibility of

exploiting more constraints when assigning the node addresses to adjunction links� The

algorithm proceeds as follows�

For each substitution link� the possible substitution sites in the head supertag that

match the root label of the dependent supertag are collected� If there is only one such

node then that is the site for substitution� If there is more than one such node� we select

the one that respects the linear order of the anchors of the head and dependent supertags

as given in the input string�

For each adjunction link� the non�NA�internal nodes of the head supertag whose node

labels match the root label of the dependent supertag are collected� If there is only one

such node then that is the site for adjunction� If there is more than one such node� we

select one� based on the linear order of the anchors of the head and dependent supertags

given in the input string�

Once a unique node
internal or substitution� has been identi�ed� the feature values

are checked for compatibility according to the substitution and adjunction schema� In the

next section� we discuss an e�cient feature structure implementation system that exploits

some of the properties of LTAGs�

����� Feature Structures and Uni
cation

LTAGs localize the argument structure of lexical items and distinguish recursive structures

from the domain of local dependencies� Owing to these properties� features in LTAGs have

���

the following properties�

� co�indexing among features is limited to those features that appear within a supertag�

� the feature values are �nite and non�recursive�

These properties of features in LTAGs are exploited in this e�cient implementation of

the feature structures that avoids full�blown graph uni�cation� Also owing to the �nite

valued features� it is possible to provide feature negation� feature disjunction and feature

overriding mechanisms� without any computational calamities�

VAL

Top Node

Internal Node list

Subst Node list

Anchor Node list

Foot Node

Node hash-table

Environment

Top

Bottom

Tree Representation

VAR

VAR

VAR

Figure ���� Data Structure for an LTAG elementary tree

����� Data Structure

The data structure for a supertag with feature information is shown in Figure ���� The

various nodes of the supertag along with their addresses are represented in the �elds of the

Supertag Structure� The Node Hash Table is a hash table indexed by the node labels that

have features associated with them� Each hash entry in the Node Hash Table is a pair of

attribute tables corresponding to the top and bottom feature structures at that node� Each

table is indexed by the attributes present in that feature structure� Each attribute points

���

to a meta�variable VAR which in turn is either bound to a value VAL� or is unbound
	��

or is bound to another meta�variable� The bindings of the meta�variables to their values

are stored in the Environment hash table which is indexed by the meta�variables� There

is one Environment hash table for each supertag� The meta�variables are used to encode

facts of uni�cation�coindexation equations among attributes� Two coindexed attributes

are bound to the same meta�variable�

In this representation� a feature structure associated with a supertag is a pair of hash

tables
 the attribute hash table consisting of the attributes appearing in that supertag

and the environment hash table consisting of values of the features in the supertag� The

uni�cation algorithm takes two pairs of attribute and environment hash tables and returns a

new pair of attribute and environment hash tables if uni�cation succeeds� and nil otherwise�

	�� Experimental Results

In an attempt to measure the speed�up obtained by a stapler in comparison to a full parser�

we performed the following experiment� Parses of a set of ��� ATIS domain sentences were

generalized and stored as FST as discussed in Chapter �� A set of ��� sentences from ATIS

domain was used as test data for the following experiments�

Experiment
a�� The performance of XTAG on the ��� sentences is shown in the �rst

row of Table ���� The coverage represents the percentage of sentences that were assigned

a parse�

Experiment
b�� The setup for this experiment is shown in Figure ���� The almost parse

from the EBL lookup is input to the full parser of the XTAG system� The full parser does

not take advantage of the dependency information present in the almost parse� However� it

bene�ts from the supertag assignment to the words in the almost parse� This information

helps the full parser� by reducing the ambiguity of assigning a correct supertag sequence

for the words of the sentence�

The speed�up shown in the second row of Table ��� is entirely due to this reduction in

ambiguity� If the EBL lookup fails to retrieve a parse� which happens for ��� of the

sentences� then the ambiguity in supertag assignment is not reduced and the full parser

parses with all the supertags for the words of the sentence� The drop in coverage is due

���

Generalized Parse
Selection

Compute Index

Gen. Parse DB

Morph Analyzer

Morph DB
P.O.S Blender

Tagger

Lex Prob DB

Input Sentence

Parser

Tree Grafting

Tree Selection

Derivation Tree

Syn DB

Trees DB

Figure ���� System setup used for Experiment
b��

to the fact that for ��� of the sentences� the retrieved generalized parse could not be

instantiated to the features of the sentence�

System � of sentences Coverage � Average time

in secs�

XTAG ��� ���� ������

EBL�XTAG parser ��� ��� �����

EBL�Stapler ��� ��� ����

Table ���� Performance comparison of XTAG with and without EBL component

Experiment
c�� The setup for this experiment is shown in Figure ���� In this experiment�

the almost parse resulting from the EBL lookup is input to the stapler that generates all

possible modi�er attachments and performs the e�cient uni�cation� previously discussed�

thus generating all the derivation trees� The stapler uses both the supertag assignment

information and the dependency information present in the almost parse and speeds up

the system even further� by a factor of about ��� However� it results in a further decrease

in coverage by ��� due to the same reason as mentioned in Experiment
b�� It must be

���

Syn DB

Trees DB

Generalized Parse
Selection

Compute Index

Gen. Parse DB

Morph Analyzer

Morph DB
P.O.S Blender

Tagger

Lex Prob DB

Input Sentence

Found?

Yes

No

Stapler

Derivation Tree

Fail

Figure ���� System setup used for Experiment
c��

noted that the coverage of this system is limited by the coverage of the EBL lookup� The

results of this experiment are shown in the third row of Table ����

	�� Summary

In this chapter� we have presented a highly impoverished parser called the stapler that

takes as input the almost parse structure resulting from the FST induced by the EBL

mechanism and computes all possible parses and instantiates it to the particular sentence�

Using this technique� the specialized grammar obtains a speed up of a factor of �� over

the unspecialized grammar on the Air Travel Information Service
ATIS� domain�

���

Chapter �

Parser Evaluation Metrics

Performance evaluation of a parser can be distinguished into three kinds depending on the

purpose they serve� � First� intrinsic evaluation� measures the performance of a parsing

system in the context of the framework it is developed in� This kind of evaluation is

applicable to both grammar based and statistical parsing systems since it helps system

developers and maintainers to measure the performance of successive generations of the

system� For grammar based systems� intrinsic evaluation helps identify the shortcomings

and weaknesses in the grammar� and provides a direction for productive development of the

grammar� For statistical parsers� intrinsic evaluation provides a measure of performance

of the underlying statistical model and helps to identify improvements to the model� Since

the evaluation is performed in the context of the framework that the parsing system is

developed in� the metrics used for intrinsic evaluation can be made sensitive to the features

and output representations of the parsing system�

A second method of evaluation of a parsing system is extrinsic evaluation� Extrinsic

evaluation is meaningful when a parsing system is embedded in an application and it

refers to the evaluation of the parsing system�s contribution to the overall performance of

the application� Extrinsic evaluation could be used as an indirect method of comparing

parsing systems even if they produce di�erent representations for their outputs as long

as the output can be converted into a form usable by the application that the parser is

embedded in�

�These evaluation methodologies are applicable to general purpose speech and natural language
processing systems
Cole et al�� ����� Jones and Galliers� ����
�

���

A third method of evaluation is comparative evaluation� The objective here is to

directly compare the performance of di�erent parsing systems that use di�erent grammar

formalisms and di�erent statistical models� Comparative evaluation helps in identifying

the strengths and weaknesses of di�erent systems and suggests possibilities of combining

di�erent approaches� However� this evaluation scheme requires a metric that is insensitive

to the representational di�erences in the output produced by di�erent parsers� For this

purpose� the metric may have to be su�ciently abstracted away from individual represen�

tations so as to reach a level of agreement among the di�erent representations produced by

parsers� However� as a result of the abstraction process� the strengths of representations

of certain parsers might be lost completely�

In this chapter we focus on the comparative evaluation scheme� In Section ���� we

discuss the methods of parser and grammar evaluations that have been suggested and used

in the literature� We indicate the limitations of these metrics for the purpose of comparative

evaluations in Section ���� In Section ���� we present our proposal� a Relation�based

Model for Parser Evaluation� as an evaluation framework that overcomes the limitations

of previous evaluation schemes� In Section ���� we present the results of evaluating the

Supertagger and Lightweight Dependency Analyzer� using this scheme�

�� Methods for Evaluating a Parsing System

A parsing system can be evaluated along di�erent dimensions ranging from grammatical

coverage to average number of parses produced to average number of correct constituents in

a parse produced by a system� Owing to this multi�dimensionality� there have been a variety

of metrics that have been proposed for evaluating a parsing system� A comprehensive

survey of di�erent parsing metrics is provided in �Briscoe et al�� ������ These metrics can

be divided into test suite�based and corpus�based methods� The corpus based methods

are further divided into annotated and unannotated methods depending on whether the

corpus is annotated for some linguistic information or not� In the sections that follow� we

review each metric and discuss its strengths and weaknesses�

���

����� Test suite�based Evaluation

In this traditional method of parsing system evaluation� a list of sentences for each syn�

tactic construction that is covered and not covered by the grammar is maintained as a

database �Alshawi et al�� ����� Grover et al�� ����� XTAG�Group� ����� Oepen et al��

forthcoming�� The test suite is used to track improvements and verify consistency between

successive generations of the system that result from the addition of an analysis of a

construction to the grammar or altering the analysis of a previously analyzed construction

in the grammar� Although this method of evaluation has been mostly used for hand�

crafted grammars� they could also be used to track the improvements in performance of

statistical parsers with the changes in the underlying statistical model� The advantage of

this method of evaluation is that it is relatively easy and straightforward and the negative

information provides a direction for improving the system� However� the disadvantage is

that it does not quantify how the performance of a parsing system would scale up when

parsing unrestricted text data�

����� Unannotated Corpus�based Evaluation

The following methods also use unrestricted texts as corpora for evaluating parsing systems�

However� the corpora consist of sentences which are not annotated with any linguistic

information�

Coverage

Coverage is a measure of the percentage of sentences in the corpus that can be assigned

one or more parses by a parsing system �Briscoe and Carroll� ����� Doran et al�� ������ It

is a weak measure since it does not guarantee that the analysis found is indeed the correct

one� The output needs to be manually checked to determine this�

Average Parse Base

Average Parse Base
APB� �Black et al�� ����a� is de�ned as the geometric mean of the

number of analysis divided by the number of input tokens in each sentence parsed� This

metric provides a method of predicting the average number of parses that a parsing system

���

would produce for a sentence of length n tokens� The metric is useful in comparing di�erent

versions of a parsing system that is under development� when tested on the same data�

However� the disadvantage is that the metric does not measure the performance of correct

analysis provided by the system and systems that have very low coverage would perform

very well on this measure� Also� this metric cannot be used for cross�system comparative

evaluation since the inherent ambiguity in the data interacts with the ambiguity of the

grammar�

����� Annotated Corpus�based Evaluation

The following methods use unrestricted texts as corpora for evaluating parsing systems�

The corpora consists of sentences which are annotated with information such as Part�of�

speech tags� constituency labels� subject�verb�object triples� The annotation in the corpus

is termed as the gold standard� The usefulness of the following methods is heavily dependent

on the �delity and consistency of annotation in the gold standard corpus� These methods

also require that the output of the system be converted into the same representation as

the gold standard�

Tagging Accuracy

This metric is designed with a view of evaluating the intermediate steps that are produced

during the parsing process� such as part�of�speech and�or syntactic tags� The annotations

are regarded as tags whose accuracy can be evaluated against a gold standard annotated

with the correct tags� The accuracy with which a parsing system assigns the tag to a

word in running text is measured in a variety of ways� as the ratio of correct tags per

word� possibly divided into ambiguous and unambiguous and�or known and unknown

words�Church� ����� Karlsson et al�� ������

Structural Consistency

Structural Consistency metric �Black et al�� ����b� is intended to measure the constituent

accuracy of parses produced by a parsing system� Hence the gold standard annotation

���

consists of sentences with constituent brackets� Structural Consistency metric approx�

imates is de�ned as the percentage of sentences for a test corpus which receive one or

more global analyses one of which has no crossing brackets with the gold standard parse�

Crossing bracket is the number of constituents that are inconsistent with the gold standard�

Structural Consistency metric is an approximation of the more stringent metric of exact

match of constituent structure� By itself� the structural consistency metric is insu�cient

since a grammar that assigns minimal structure
hence no inconsistent constituents� can

score high on this metric as does a grammar that produces every possible bracketing for a

sentence�

Ranked Consistency

One of the drawbacks of the Structural Consistency metric is that an a priori bound cannot

be placed on how far down the list of parses produced can one expect to �nd the correct

parse� Ranked Consistency metric is designed to overcome this limitation� It is de�ned as

the percentage of sentences for a test corpus which receive one or more parses� one of the

top n ranked of which has no crossing brackets with the gold standard parse� This metric

gives a meaningful score as to how often a parsing system produces a consistent analysis

with respect to a gold standard� The metric� however� assumes close compatibility of the

output of the parsing system and the gold standard annotation� It also assumes that the

parsing system produces a ranked order of parses�

Tree Similarity Measure

Tree similarity measures� employed by Sampson �Sampson et al�� ������ uses a variety of

metrics including the ratio of rules correctly deployed in a derivation to all rules in that

derivation computed from the gold standard� This measure is more �ne�grained than full

identity of the parse in that a parsing system may not produce an entirely correct parse

yet consistently produce analyses which are close to the correct one� This measure is also

tolerant to errors in the gold standard�

���

Parseval

A metric that was designed with the aim of comparative evaluation of parsing system�

Parseval �Harrison et al�� ����� is an alternate mechanism of relaxing exact match to the

parse in the gold standard as the success criterion� This scheme utilizes only bracketing

information to compute three �gures� crossing bracket� the number of brackets in the

system�s parse that cross the treebank parse� recall� a ratio of the number of correct

brackets in the system�s parse to the total number of brackets in the treebank parse and

precision� a ratio of the number of correct brackets in the system�s parse to the total number

of brackets in the system�s parse� The Parseval scheme served its purpose of providing a

cross�representational evaluation metric using which the performance of various parsers

could be quanti�ed and compared
 a hither�to�fore impossible task�

�� Limitations of Parseval

There have been several objections to the Parseval scheme� In this section� we summarize

some of the objections and limitations of this scheme�

First� it was observed that crossing brackets measure penalizes mis�attachments more

than once �Lin� ������ Consider for example� the sentence ��� with the annotation as the

gold standard and the sentences ��� and ��� as parses from two parsing systems�

���� �She �bought ��an incredibly expensive coat� �with ��gold buttons� and �fur lining����

�at �the store����

���� �She �bought ��an incredibly expensive coat� �with ��gold buttons� and ��fur lining�

�at �the store��������

���� �She �bought �an incredibly expensive coat� with �gold buttons� and �fur lining� �at

�the store����

Due to the mis�attachment of the phrase �at �the store�� to the phrase �fur lining� in the

parse ���� three crossing brackets are created�

�� Between ��gold buttons� and �fur lining�� and ��fur lining� �at �the store���

���

�� Between �with ��gold buttons� and �fur lining��� and ��gold buttons� and ��fur lining�

�at �the store����

�� Between ��an incredibly expensive coat� �with ��gold buttons� and �fur lining���� and

��an incredibly expensive coat� �with ��gold buttons� and ��fur lining� �at �the store������

The recall of ��� is �
�	!��� and the precision is �

�	!������ In contrast� the shallow

parse in ��� with its minimal bracketing has a recall of ���� a precision of ���� and no

crossing brackets with the parse in ���� Although the parse ��� contains more information

and is closer to the intended parse ���� it scores lower on the Parseval metric�

A second objection of the Parseval metric is that the precision measure penalizes a

parser for inserting extra� possibly correct� brackets� if annotation in the treebank is skeletal

�Srinivas et al�� ������ Consider a �ner analysis of the phrase �an incredibly expensive coat�

as shown in ����

���� �an �incredibly expensive� coat�

Since the structure in ��� is more detailed than the structure for the phrase in ���� the

analysis in ��� results in a recall of ���� but a precision of ����

Due to the above mentioned limitations of the Parseval metric� it is unclear as to how

the score on this metric relates to success in parsing� It is also not clear if this metric can

be used for comparing parsers with di�erent degrees of structural �neness since the score

on this metric is tightly related to the degree of structural detail in the gold standard�

A signi�cant limitation of the Parseval metric is that it has not been designed to

evaluate parsers that produce partial parses� A partial parser could potentially produce

constituents�chunks that may not be connected in a complete tree� In cases where an

attachment of a constituent is hard to make� it might be equally useful to leave the

constituent unattached than to force the parser to always attach it to some node� However�

the bracket representation used by Parseval is inadequate to represent disconnected trees�

In the bracket notation� there is an implicit assumption that the unattached constituents

are attached to the root of the tree�

Another signi�cant limitation of the Parseval metric is that it does not compare analyses

to parsing tasks or applications� Parseval metric computes crossing brackets� recall and

���

precision as a way of approximating for the exact match criterion
identity of the output

parse with the gold standard parse�� Performance using the exact match criterion has

a direct interpretation in terms of performance on tasks that a parser may be put to

use� However� a measure that is an approximation to the exact match criterion� such

as Parseval� has a less direct interpretation since the de�nition of approximation varies

from task to task� Applications that use a parser may be interested in speci�c structures�

Noun Phrases� Appositives� Predicative Nominatives� Subject�Verb�Object relations and

so on� Parseval metric is not �ne�grained enough to evaluate parses with respect to speci�c

syntactic phenomena� It divorces the parser from the application the parser is embedded

in�

�� Our Proposal

We present a proposal for parser evaluation that overcomes the limitations of the Parseval

scheme and is also applicable for evaluating partial parsers� It is also intended to serve as

a metric for evaluating parsers that are embedded in applications�

����� Application Independent Evaluation

The objective of this evaluation is to provide a measure that can be used to compare

parsers irrespective of their output representation� Parsers are either constituency�based or

dependency�based systems� Constituency�based parsers produce a hierarchically organized

constituent structure� while dependency�based parsers produce a set of dependency linkages

between the words of a sentence�� Furthermore� parsers could produce full parses that span

the entire input string or partial parses that are a set of locally consistent parses for non�

overlapping substrings of the input� Also� in terms of the detail of a parse� statistical

constituency�based parsers produce relatively 	at structures for Noun Phrases and Verb

groups since the treebanks they are trained o� of do not annotate for the internal structures

of these elements� Hence� parsers that do produce internal structure for these elements need

to be normalized �rst so that non�recursive phrasal constituents are 	attened to chunks

such as noun chunks� verb chunks� preposition chunks�

�Dekang Lin
Lin� ����
 proposed using a dependency linkage model for the complete sentence�

���

Also� hierarchically organized constituency notation does not have the provision to

represent partial parses since an �unattached constituent� is implicitly assumed to attach

to the highest constituent� Hence to facilitate the comparison of partial and full parsers� we

propose that the accuracy of hierarchical structures be measured in terms of the accuracy

of the relations between chunks that are expressed by dependency links between certain

words
typically heads� of the chunks� Partial parses are thus penalized by their not being

able to express certain dependency links due to unattached constituents�

Thus we propose a normalized representation that is based on chunks and dependency

links� Evaluating this representation amounts to �rst evaluating the 	at phrasal structures

such as noun chunks� verb groups� preposition phrases
disregarding the attachment lo�

cation� and then evaluating the correctness of hierarchical structures using dependencies

between words
typically� heads� of the two chunks� If the dependency links are labeled

then evaluation could be performed with and without including the labels�

����� Application Dependent Evaluation

The objective of this evaluation is to serve as an Adequacy Evaluation� of a parser�

Adequacy Evaluation involves determining the �tness of a system for a purpose� It provides

users
application developers� information to determine whether a parser is adequate for

their particular task� and if so� whether it is more suited than others� The result of this

evaluation is a report which provides comparative information of the parsers and does not

necessarily identify the best parser� thus allowing the user to make an informed choice�

One of the dimensions of adequacy evaluation is to evaluate parsers from the point of

view of speci�c grammatical constructions such as minimal and maximal Noun phrases�

Appositives� Preposition Phrase modi�ers� Predicative constructions� Relative Clauses�

Parentheticals and Predicate�Argument relations� The degree of di�culty and accuracy of

identifying these grammatical constructions� given a parse� depends on the representation

adopted by the grammar underlying the parser� The appropriateness of the representation

for a task can only be evaluated by evaluating the accuracy with which these grammatical

constructions can be identi�ed� Hence we recommend that parsers be evaluated based on

their performance in identifying speci�c grammatical constructions�

�see
Cole et al�� ����
�

���

����� A General Framework for Parser Evaluation

In the preceding sections� we have identi�ed two kinds of parser evaluations
 application

independent evaluation and application dependent evaluation� In this section� we propose

a general framework called the Relation Model of parser evaluation that allows for the two

kinds of evaluations to be instantiated in it� In this framework� a parse is viewed in multiple

dimensions with each dimension expressing a relation R� A parser can be evaluated along

any one
or all� of these dimensions� A gold standard used for evaluation is viewed as

expressing one particular relation� Performance of the parser in expressing the relation R

is measured in terms of recall� precision and F�measure� F�measure provides a parameter

� that can be set accordingly� so as to measure the performance of a system depending on

the relative importance of recall to precision� A summary of the evaluation framework is

shown in ����

� Let x R y represent that x is in a relation R with respect to y �

� Let Sgold be the relation� R� expressed in the key
annotated corpus��

� Let Sout be the relation� R� expressed in the output of the parser�

� Recall !
Sgold
 Sout��Sgold

� Precision !
Sgold
 Sout��Sout

� F�Measure !

�� � �� � P � R��
�� � P � R� where � is the relative importance
of Recall and Precision�

Figure ���� Summary of the Relation Model of Parser Evaluation

A few instantiations of this general framework are as follows� For evaluating chunks

of type t where t could be a noun chunk� verb chunk� preposition phrase and so on� R is

de�ned as the relation� x starts and y ends the chunk type t� A similar instantiation could

be used to evaluate the parser on speci�c constructions� For evaluating dependencies� the

relation R is de�ned as x depends on y� The dependency links could be evaluated further

based on their labels�

���

�� Evaluation of Supertag and LDA system

In this section� we discuss the performance of Supertagging for text chunking and perfor�

mance of LDA for dependency analysis on a range of corpora�

����� Performance of Supertagging for Text Chunking

We have applied the supertag and Lightweight Dependency Analyzer
LDA� system for

text chunking� Text chunking� proposed by Abney ������ involves partitioning a sentence

into a set of non�overlapping segments� Text chunking serves as a useful and relatively

tractable precursor to full parsing� Text chunks primarily consist of non�recursive noun

and verb groups� The chunks are assumed to be minimal and hence non�recursive in

structure�

Noun Chunking

Supertag based text chunking is performed by the local application of functor�argument

information encoded in supertags� Once the head noun of the noun chunk is identi�ed�

the prenominal modi�ers that are functors of the head noun or functors of the functors of

the noun are included in the noun chunk� The head NP is identi�ed as the noun with a

initial
non recursive� supertag
A NXN�� Thus the following simple algorithm identi�es

noun chunks� for example� shown in
�����
���� and
�����

Algorithm� Scan right to left starting with the noun initial supertag �A NXN� and collect

all functors of a noun or a noun modi�er�

Some example noun chunks identi�ed by this algorithm from supertagged WSJ texts

are shown in below�

���� New Jersey Turnpike Authority

���� its increasingly rebellious citizens

���� two ��� million real estate mortgage investment conduits

Ramshaw and Marcus ������ present a transformation�based noun chunker using three

specialized tags
I�O�B�� Each word of the training corpus is annotated to indicate if the

���

word is included in a noun chunk
I�� outside a noun chunk
O� or at the boundary of

two noun chunks
B�� A set of transformation rules are then learned using an error�driven

transformation�based learning scheme presented in �Brill� ������ The performance of this

scheme using rules de�ned on parts of speech and rules incorporating lexical information

is shown in Table ������

System Training Size Recall Precision

R%M Baseline ����� �����

R%M ������� ����� �����

without lexical information�

R%M ������� ����� �����

with lexical information�

Supertags Baseline ����� �����

Supertags ������� ����� �����

Supertags ��������� ����� �����

Table ���� Performance comparison of the transformation based noun chunker and the
supertag based noun chunker

Table ����� also shows the performance of the supertag based noun chunking� trained

and tested on the same texts as the transformation�based noun chunker� The supertag�

based noun chunker performed better than transformation�based noun chunker with lexical

templates� even though the supertag�based noun chunker does not use lexical context in

determining the extent of a noun chunk� The supertagger uses lexical information on a

per word basis only to pick an initial set of supertags for a given word� Moreover� the

supertag�based noun chunking not only identi�es the extents of the noun chunks but by

the virtue of the functor�argument information� provides internal structure to the noun

chunks� This internal structure of the noun chunks could be utilized during subsequent

linguistic processing�

Verb Chunking� We also performed an experiment similar to noun chunking to identify

verb chunks� We treat a sequence of verbs and verbal modi�ers� including auxiliaries�

adverbs� modals as constituting a verb group� Similar to the noun chunk identi�cation

algorithm discussed above� the verb chunking based on supertags can be performed using

local functor�argument information encoded in supertags� However� for verb chunks� the

scan is made from left to right starting with a verbal modi�er supertag� either an auxiliary

verb or an adverbial supertag and including all functors of a verb or a verb modi�er� Thus

���

the following simple algorithm identi�es verb chunks� for example� shown in
�����
����

and
������

Algorithm� Scan left to right starting with the verb or verbal modi�er supertag and collect

all functors of a verb or a verb modi�er�

���� would not have been stymied

���� did n�t even care

����� just beginning to collect

System Training Size Recall Precision

R%M Baseline ����� �����

R%M ������� ����� �����

without lexical information�

R%M ������� ����� �����

with lexical information�

Supertags Baseline ����� �����

Supertags ������� ����� �����

Supertags ��������� ����� �����

Table ���� Performance comparison of the transformation based verb chunker and the
supertag based verb chunker

Table ����� shows the performance of the transformation based verb chunker and the

supertag based verb chunker� both trained and tested on the same sentences of the Wall

Street Journal Corpus� The supertag�based verb chunker had higher precision than the

transformation based verb chunker with lexical information but had lower recall� The

supertag�based verb chunking not only identi�es the extents of the verb chunks but by the

virtue of the subcategorization information� provides internal structure to the verb chunks�

This internal structure of the verb chunks could be utilized during subsequent linguistic

processing�

Preposition Phrase Attachment

Supertags distinguish a noun�attached preposition from a verb�attached preposition in a

sentence� as illustrated by the two di�erent supertags in
����� and
������ Due to this

���

distinction� the supertagging algorithm can be evaluated based on its ability to select the

correct supertag for the prepositions in a text�

����� sell ��� railcar platforms to�B vxPnx Trailer Train Co� of�B nxPnx Chicago

����� begin delivery of�B nxPnx goods in�B vxPnx the �rst quarter

The task of preposition attachment has been worked on by a number of researchers in

the past� Humans perform only at an accuracy of ��� accuracy �Ratnaparkhi et al�� �����

which gives an indication of the complexity of the task� Table ��� presents a comparative

evaluation of various approaches in the literature against the supertag based approach� for

the preposition attachment task�

System Accuracy

Ratnaparkhi� Reynar % Roukos �����

Ratnaparkhi� Reynar % Roukos �����

with classes�

Hindle % Rooth ������

Brill % Resnik �����

Collins % Brooks �����

Supertags �����

Table ���� Performance comparison of the supertag based preposition phrase attachment
against other approaches

It must be pointed out that the supertagger makes the preposition attachment decision

choosing between B vxPnx and B nxPnx� based on a trigram context� Most often than

not the preposition is not within the same trigram window as the noun and the verb due to

modi�ers of the noun and the verb� However� despite this limitation� the trigram approach

performs as well as Ratnaparkhi� Reynar % Roukos ������ and Hindle and Rooth �������

and is outperformed only by methods
Brill and Resnik ������� Collins and Brooks�������

that use four words� the verb� the object noun� the preposition and the complement of the

preposition in making the attachment decision�

Other Constructions

In this section� we summarize the performance of the supertagger in identifying construc�

tions such as appositives� parentheticals� relative clauses and coordinating conjunctions�

���

Appositives� In the XTAG grammar� the appositive construction has been analyzed

using a Noun Phrase modifying supertag that is anchored by a comma which takes the

appositive Noun Phrase as an argument� for example� the comma in
����� and the second

comma in
����� anchor appositive supertags� Thus� a comma in a sentence could either

anchor an appositive supertag or a set of coordination supertags� one supertag for each

type of coordination� Further� a comma also anchors supertags that mark parentheticals

as in
������ The task of the supertagger is to disambiguate among the various supertags

and assign the appropriate supertag to the comma� in the appositive context� In Table ����

we present the performance results of the supertagger on such a task� The baseline of

assigning the most likely supertag to comma results in zero percent recall�

Parentheticals� Propositional attitude verbs such as say and believe can not only appear

in the canonical word order of subject�verb�complement� but can also appear at other

positions in a sentence� as in
����� and
������ Also� the relative order of the subject and

the verb can also be reversed as in
������ The XTAG grammar distinguishes such adverbial

constructions from the sentence complement construction by assigning di�erent supertags

to the verb� A detailed analysis of this construction is presented in �Doran� ������ The

task of the supertagger is to disambiguate among the sentence complement supertag and

the various adverbial supertags for the verb given the context of the sentence� Table ���

presents the performance results of the supertagger on this task� Once again the baseline

of selecting the most likely supertag of the verb results in zero percent recall�

����� Van Pell � ��

����� � The U�S� underestimated Noriega all along � � says Ambler Moss � a former

Ambassador to Panama

����� Mr� Noriega �s relationship to American intelligence agencies became contractual

in either ���� or ���� � intelligence o�cials say �

Coordination Conjunctions� In Table ���� we also present the performance of the

supertagger in identifying coordination constructions� Coordination conjunctions anchor a

supertag that requires two conjuncts� one on either side of the anchor� There is one supertag

for every possible pair of conjunct types� We not only have supertags that coordinate like

���

Construction � of � identi�ed � correct Recall Precision
occurrences

Appositive ��� ��� ��� ����� �����

Parentheticals ��� ��� ��� ����� ���

Coordination ���� ���� ���� ����� �����

Relative Clauses ��� ��� ��� ����� �����

Relative Clauses ��� ��� ��� ����� ���

ignoring valency�

Table ���� Performance of the trigram supertagger on Appositive� Parentheticals�
Coordination and Relative Clause constructions�

types but we also include supertags that coordinate unlike types amounting to about ��

di�erent supertags for coordination�

Relative Clauses� As discussed in Chapter ���� due to extended domain of locality of

LTAGs� verbs are associated with one relative clause supertag for each of the arguments

of the verb� This is unlike CCG� where the relative pronoun is associated with multiple

supertags� A more detailed discussion about the di�erences in the distribution of ambiguity

between the CCG and LTAG is presented in �Doran and Srinivas� ������ The task of the

supertagger in LTAG is not only to identify that the verb is in a relative clause structure

but also to identify the valency of the verb and the argument that is being relativized� The

performance of the supertagger with and without the valency information being taken into

account is present in Table ����

We are unaware of any other quantitative results on WSJ data for identifying these

constructions� for comparative evaluation�� It is interesting to note that the performance of

the supertagger in identifying appositives and parenthetical construction is better than for

coordination conjunctions and relative clause constructions� We believe that this might in

part be due to the fact that Appositives and Parentheticals can mostly be disambiguated

using relatively local contexts� In contrast� disambiguation of Coordinate constructions

and Relative clauses typically require large contexts that are not available for a trigram

supertagger�

�Lin
����
 provides results for some of these constructions on the Brown corpus�

���

����� Performance of Supertag and LDA system

In this section� we present results from two experiments using the supertagger in conjunc�

tion with the LDA system as a dependency parser� In order to evaluate the performance

of this system� we need a dependency annotated corpus� However� the only annotated

corpora we are aware of� the Penn Treebank �Marcus et al�� ����� and the SUSANNE

corpus �Sampson� ������ annotate sentences with constituency trees� In the interest of

time and the need for a dependency annotated corpus� we decided to transform the

constituency trees of the two corpora using some rules and heuristics� It must be noted that

the resulting corpora is only but an approximation to a manually annotated dependency

corpus� However� although the annotation resulting from the transformation does not

conform to a standard dependency annotation� it is nevertheless an invaluable resource for

performance evaluation of dependency parsers�

The WSJ corpus from the Penn Treebank and the subset of the Brown corpus in

SUSANNE were converted by two related but di�erent mechanisms� The conversion

process of the Penn Treebank proceeded as follows� For each constituent of a parse a head

word is associated using the head percolation table introduced in �Jelinek et al�� �����

Magerman� ������ The head percolation table associates with each possible constituent

label an ordered list of possible children of the constituent whose head word is passed to

the parent� The annotation of a parse tree with head word information proceeds bottom

up� At any constituent� the percolation information is consulted to determine which of

the constituent�s children would pass the head word over to their parent� Once the head

words are annotated� the dependency notation is generated by making the head words of

non�head constituents to be dependent on the head of the head constituent� An example

of this procedure is illustrated in Figure ����

In a similar manner to the WSJ conversion process� we converted the subset of the

LOB annotation of the SUSANNE corpus into a dependency notation� However� in this

conversion process we could not use the head information table used in the WSJ conversion

process since the annotation labels are di�erent� Instead� we regard a constituent label to

be a projection of one of its children� which was regarded as the head constituent� Once

the heads are annotated the dependency notation is generated by making the head words

���

� �S

�NP�SBJ

�NP �NNP Pierre� �NNP Vinken� �

�� ��

�ADJP

�NP �CD ��� �NNS years� �

�JJ old� �

�� �� �

�VP �MD will�

�VP �VB join�

�NP �DT the� �NN board� �

�PP�CLR �IN as�

�NP �DT a� �JJ nonexecutive� �NN director� ��

�NP�TMP �NNP Nov�� �CD �	� ���

�� �� ��

� Pierre � Vinken

� Vinken
 will

� � � Vinken

� ��
 years

 years � old

� old � Vinken

� � Vinken

 will
 will

	 join
 will

�� the �� board

�� board 	 join

�� as 	 join

�� a �
 director

�� nonexecutive �
 director

�
 director �� as

�� Nov� 	 join

�� �	 �� Nov�

�
 � will

Figure ���� The Phrase Structure tree and the dependency linkage obtained from the
phrase structure tree for the WSJ sentence Pierre Vinken� �� years old� will join the board
as a nonexecutive director Nov� ���

���

of non�head constituents to be dependent on the head word of the head constituent�

In the �rst experiment we use the dependency versions of the Penn Treebank annotation

of the WSJ corpus and the LOB annotation of the SUSANNE corpus as gold standards�

However� in the second experiment� we use derivation structures of WSJ sentences that

were parsed using the XTAG system as the gold standard� The derivation structures serve

as dependency structures that are closest in conventions to those assumed by the LDA

system�

Experiment ��

The trigram supertagger trained on ������� words of the WSJ corpus was used as in

conjunction with the LDA to provide a dependency analysis for ���� sentences of Section

�� of the WSJ corpus� The Penn Treebank parses for these sentences were converted into

dependency notation which was used as the gold standard� A dependency link produced

by the LDA was regarded to be correct if the words being related by the link were also

present in the gold standard� However� to account for the di�erences in the annotation�

the dependency relations among words in a noun group were treated as equivalent to

each other� So also� dependency relations among words in a verb group were treated as

equivalent to each other� There were ������ dependency links in the gold standard and

the LDA produced ������ dependency links correctly� resulting in a recall score of ������

Also� a total of ������ dependency links were produced by the LDA� resulting in a precision

score of ������

We conducted a similar experiment using the SUSANNE corpus� Using the same

trigram supertagger trained on the ������� words of the WSJ corpus in conjunction

with the LDA� we provided a dependency analysis for the sentences in the SUSANNE

corpus
������� words�� The gold standard was created by converting the phrase structure

annotations for these sentences into dependency notation using the procedure described

above� As in the case of WSJ corpus� to account for the di�erences in the annotation�

the dependency relations among words in a noun group were treated as equivalent to

each other� So also� dependency relations among words in a verb group were treated as

equivalent to each other� There were a total of ������� dependency links in the output of

the LDA of which� ������� also present in the gold standard� resulting in a precision score

���

of ������ There were a total of ������� links in the gold standard� resulting a recall of

������ It is interesting to note that although the trigram model was trained on the WSJ

corpus� the performance of the LDA on SUSANNE is comparable to the performance of

the LDA on the WSJ corpus�

On analyzing the errors� we discovered that several of the errors were due to the

approximate nature of the dependency corpus created by the conversion process� A second

source of errors was due to the di�erences in the notion of dependency produced by the

LDA system and that resulting from the conversion of the Treebank� This is largely due

to a lack of a standard dependency notation�

Corpus System � of � produced � correct Recall Precision
dependency links by LDA

Brown LDA ������� ������� ������� ����� �����

WSJ LDA ������ ������ ������ ����� �����

Table ���� Comparative Evaluation of LDA on Wall Street Journal and Brown Corpus

Experiment �

In this experiment� we used the derivation structures produced by XTAG for ���� WSJ

sentences� as the gold standard� The correct derivation was hand picked for each of the

���� WSJ sentences� These sentences were supertagged using the supertagger trained on

���� sentences of WSJ and dependency annotated using the LDA system� The metric

for evaluation was Recall and Precision computed based on the number of dependency

links present in both the gold standard and the output produced by the system� Table ���

shows the performance of the system� Although� the derivation trees produced by the

XTAG system are closest in terms of conventions used in the dependency output of the

LDA system� there are a few points of divergences� a major one being the annotation for

sentence complement verbs� While in the LDA system� the embedded verb depends on

the matrix verb the reverse is the case in an LTAG derivation structure �Rambow et al��

������ Also� since the XTAG system� as it is implemented does not permit two auxiliary

trees to be adjoined at the same node� certain valid derivation structures are not possible

in XTAG� A precise formulation of possible derivation structures in LTAG framework is

�sentences of length less than ��

���

presented in �Schabes and Shieber� ������

Training Size Test Size Recall Precision

words�
words�

������� ������ ����� �����

Table ���� Performance of LDA system compared against the XTAG derivation structures

� sentences � sentences with � sentences with �sentences with
with � errors with �� error with �� errors with �� errors

��� ����� ��� �����

Table ���� The percentage of sentences with zero� one� two and three dependency link
errors�

Next� we present the performance of the LDA in terms of its accuracy at producing a

dependency linkage at the level of a sentence� when evaluated against an LTAG derivation

tree� Table ��� tabulates the percentage of sentences that have zero� one� two and three

dependency link errors� In contrast to evaluation against a skeletally bracketed treebank�

evaluation against LTAG derivation trees is much more strict� For example� an LTAG

derivation contains detailed annotation in terms of the internal structure of the nominal

modi�ers in Noun Phrases and verbal modi�ers in Verb groups� Also� a derivation structure

has a stricter imposition of the argument�adjunct distinction and distinguishes readings

that have similar phrase structure trees such as predicative and equative readings and

idiomatic and non�idiom readings of a sentence� Further� the derivation structure is much

more closer to semantic interpretation of a sentence than the phrase structure� Hence� the

performance �gures that are shown in Table ��� and Table ��� are more strict and hence

more signi�cant than the crossing bracket� precision and recall �gures measured against

skeletally bracketed corpora�

�� Summary

This chapter can be seen as consisting of two parts� In the �rst part� we reviewed some

of the currently prevalent evaluation metrics for parsers and indicated their limitations

for comparing parsers that produce di�erent representations� We proposed an alternate

evaluation metric based on relation model of evaluation that overcomes the limitations of

���

the existing evaluation metrics� In the second part of this chapter� we provided results

from extensive evaluation of the supertagger and the LDA system on a range of tasks and

compared its performance against the performance of other systems on those tasks�

���

Chapter �

Applications of Supertagging

Supertagging has been used in a variety of applications including information retrieval

and information extraction� text simpli�cation and language modeling� Some of these

applications have been developed in collaboration with researchers at IRCS
Dr� Baldwin�

Dr� Chandrasekar and Dr� Niv� and students
Christine Doran and Je�rey Rayner� in the

Department of Computer and Information Sciences at University of Pennsylvania�

Although it is certainly true that a full parser can be used in all the applications

discussed in this chapter� our goal in using a supertagger was to exploit the strengths

of supertags as the appropriate level of lexical description needed for most applications�

Also� due to their local nature� supertags were amenable to spot retraining� By spot

retraining we mean that if an application needs to make a certain distinction say for

example supertagging a time noun phrase
eg� last July� di�erently from a common noun

phrase
eg� primary elections�� the training material for the supertagger can be easily

changed and the supertagger can be retrained quickly� The high speed and low memory

requirements of the supertagger proved to be useful advantages as well�

The outline of this chapter is as follows� In Section ��� we discuss the use of syntactic

information in the form of supertags in an information retrieval system� We compare

the retrieval e�ciency of a system based on part�of�speech tags against a system based

on supertags� In Section ��� we discuss the application of supertags in an information

extraction task� The application of supertags as syntactically motivated class labels in a

class�based language modeling task is presented in Section ���� The distinction between

���

recursive and non�recursive supertags is exploited in a sentence simpli�cation application

that is discussed in Section ���� The ability to bring to bear document�level and domain�

speci�c constraints during supertagging of a sentence is discussed in Section ����

��� Information Retrieval

This work has been carried out in collaboration with Dr� Chandrasekar� Visiting Scholar�

IRCS� University of Pennsylvania�

The availability of vast amounts of useful textual information in machine�readable form

has led to a resurgence of interest in Information Retrieval
IR�� There is considerable

academic and business interest now in analyzing unrestricted text to extract information

of relevance� and in the development of information retrieval and information extraction

systems�

Although the ultimate goal in Information Retrieval is to have a system which �under�

stands� all the text that it processes� and responds to users� queries �intelligently�� there are

many open problems in syntactic processing� semantic analysis and discourse processing

that need to be solved before tools that are required for �understanding� texts could be

developed�

As a result of the limitation of not being able to automatically �understand� texts�

most IR systems approximate linguistic information by using keywords and features such as

proximity and adjacency operators� But the standard problems of synonymy and polysemy

adversely a�ect recall and precision of information retrieval� Users typically have to scan a

large number of potentially relevant items to get to the information that they are looking

for�
See �Salton and McGill� ������ �Frakes and Baeza�Yates� ����� for details on work in

information retrieval��

Clearly� it is inadequate to just retrieve documents which contain keywords of interest�

Since any coherent text contains signi�cant latent information� such as syntactic structure

and patterns of language use� this can be exploited to make information retrieval more

e�cient�

In this section� we demonstrate quantitatively how syntactic information is useful in

�ltering out irrelevant documents� In contrast to earlier approaches which used syntactic

���

information during information retrieval stage� for example �Croft et al�� ������ we use it in

a �ltering stage� after basic information retrieval� We also compare two di�erent syntactic

labelings
 simple Part�of�speech
POS� labeling and Supertag labeling and show how the

richer
more �ne�grained� representation of Supertags leads to more e�cient and e�ective

document �ltering�

Our task is to develop a system which uses syntactic information inherent in text to

improve the e�ciency of retrieval �given any basic IR tool� by automatically or semi�

automatically identifying patterns of relevance�

	���� Methodology

In this section� we describe how augmented�patterns for the domain of appointments
of

people to posts� are extracted from a corpus of news text� and applied to �lter out irrelevant

information� In this description� all training and testing is done with sentences as the units

of information� However� the methodology applies to larger units of text� where the relevant

sentences are extracted using simple keyword matching�

Identifying the Training Set

A large textual corpus is �rst segmented into sentences� All sentences related to the

word
s� of interest
in this case� appoint or a morphological variant� are extracted using

some simple tool� These sentences are examined to see which of them are relevant to the

domain of interest� Some decisions about the relevance of sentences may not be very easy�

These decisions determine the scope of the �ltering that is achieved using this system�

�Augmented�patterns� are then induced from the relevant sentences�

Inducing Patterns from Training Data

The training data is �rst tokenized into sentences and the relevant sentences are processed

to identify phrases that denote names of people� names of places or designations� These

phrases are converted e�ectively to one lexical item� The chunked relevant sentences are

then tagged
with POS tags or supertags� and the tags associated with the words in the

sentences are used to create noun�groups
involving prenominal modi�ers� and verb�groups

���

involving auxiliaries� modals� verbs and adverbs�� At this stage� we have an abstract view

of the structure of each sentence�

We look at a small window around the word
s� of our interest
in this case� one chunk

on either side of the word appoint or its morphological variant�� skipping punctuation

marks� The word and the syntactic labels in this window are then generalized to a small

set of augmented patterns� where each augmented pattern is a description involving tags�

punctuation symbols and some words� The patterns for all sentences are then sorted� and

duplicates removed� The resulting patterns can be used for �ltering� Once a set of patterns

is identi�ed for a particular class of query� it can be saved in a library for later use�

Generalization brings out the syntactic commonality between sentences� and permits

an economical description of most members of a set of sentences� We expect that a few

patterns will su�ce to describe the majority of sentences� while several patterns may be

necessary to describe the remaining sentences� We could also sort patterns by the number

of sentences that each of them describes� and ignore all patterns below some reasonable

threshold� Note that generalization could increase recall while reducing precision� while

thresholding decreases recall�

Pattern Application

The task in the pattern application phase is to employ the patterns induced in the pattern

training phase to classify new sentences into relevant and irrelevant ones� The new

sentences could be part of documents retrieved from news�wire texts� from the World

Wide Web
WWW�� etc� The relevance of a document is decided on the basis of the

relevance of the sentences contained in it�

In this phase� the sentences of each document are subjected to similar stages of pro�

cessing as were the training sentences� Each sentence in each document is chunked based

on simple named�entity recognition and then labeled with syntactic information
POS tags

or supertags�� The syntactic labels for the words in each sentence are used to identify noun

and verb chunks� At this stage� the sentence is ready to be matched against the patterns

obtained from the training phase� A sentence is deemed to be relevant if it matches one or

more of these patterns� Since the pattern matching is based on simple regular expressions

speci�ed over words and syntactic labels� it is extremely fast and robust� A document is

���

deemed relevant if it contains at least one relevant sentence�

Training Set Syntax
Analyzer

Pattern
Extracter

Patterns

Syntax

Analyzer

Retrieved
Documents

Pattern Training Phase

Pattern Application Phase

Tokenizer
Preprocessor &

Pattern
MatcherTokenizer

Preprocessor &

Documents
Filtered

Information
Retrieval
System

Query

Figure ���� Overview of the Information Filtering scheme

Such a tool for information �ltering� named Glean �Chandrasekar and Srinivas� ������

is being developed in a research collaboration between the National Centre for Software

Technology
NCST�� Bombay� the Institute for Research in Cognitive Science
IRCS� and

the Center for the Advanced Study of India
CASI�� University of Pennsylvania� Glean seeks

to innovatively overcome some of the problems in IR mentioned above� and is predicated

on the idea that any coherent text contains signi�cant latent information� such as syntactic

structure and patterns of language use� which can be used to enhance retrieval e�ciency� In

particular� Glean uses the notion of �agents�� a combination of augmented textual�patterns

and code� to identify speci�c structural features in the text�

In the next section� we describe experiments on retrieval e�ciency using two syntactic

labeling schemes� POS tagging and supertagging� We also discuss another experiment that

uses this methodology to �lter information retrieved from the World Wide Web�

���

	���� The Experiment� POS Tagging vs Supertagging

The objective of this experiment is to quantitatively measure the performance improvement

achieved by richer syntactic information for �ltering out irrelevant documents�

The experiment� Training Phase

The text corpus constituted of approximately �� MB of New York Times
NYT� data com�

prising of the August ���� wire service output�� The corpus was sentence�segmented� and

all sentences from this corpus that contained the word appoint or any of its morphological

variants were extracted using the Unix tool grep� We plan to handle other equivalent

words and phrases later�

The ��� sentences containing appoint� were examined manually� and a subset of them

�� sentences� which were actually relevant to appointments being announced were identi�

�ed� This constituted the training corpus� This included sentences about the appointments

of groups of people such as panel� commissions etc� We rejected sentences where appointed

was used as an adjectival or in a relative clause� and where a variant of appoint was used

in the noun sense
eg� appointee
appointment�� Most of the �� acceptable sentences came

from sentences with the word appointed� a few came from appoint and appointment�

Patterns obtained using POS tags The �� relevant sentences were preprocessed to

normalize punctuation� Named�entities were identi�ed and grouped into single tokens�

These sentences were then POS tagged and the tags were used to chunk verb groups

and noun phrases� The chunked sentences were then processed to obtain �� generalized

patterns�

Patterns obtained using supertags In a similar manner� the training sentences were

processed to obtain �� distinct patterns using supertags instead of POS tags�

Sample patterns involving POS tags and supertags respectively� which match sentences

that contain a noun phrase� followed by the transitive verb appointed� possibly quali�ed by

auxiliaries and preverbal adverbs� and followed by a noun phrase are shown in Figure ����

Using such patterns� sentences from a variety of domains were categorized into relevant

and irrelevant sentences�

�NYT text was chosen since it was felt that it would have more variety than� for instance� the Wall
Street Journal�

���

POS� nS��E NG nS��E VGQUAL appointed�VBN�E VG nS��E NG

Supertag� nS��A NXN nS��E VGQUAL appointed�A nx�Vnx��E VG nS��A NXN

Key� nS� refers to any word�phrase� E VGQUAL is any set of verbal quali�ers� E VG is a verb

group� A NXN is a noun�phrase supertag� and A nx�Vnx	 refers to a verb preceded and followed

by a noun�phrase� a transitive verb� E NG is a tag for a noun phrase� and VBN is a POS tag for

a past participle verb�

Figure ���� Sample patterns involving POS tags and Supertags

The experiment� Testing Phase

From the July ���� NYT wire service text� all sentences
a total of ��� sentences� con�

taining the word appoint or its variant were extracted using grep� This constituted the

base case� where sentences are retrieved using a simple retrieval mechanism
such as grep��

with no �ltering applied�

Domain Total Rel Classi�ed as relevant Classi�ed as irrelevant
Sents Sents Total Correct Incorrect Total Correct Incorrect

NYT July�� ��� �� ��� �� �� ��� ��� ��

Supertags�

NYT July�� ��� �� �� �� �� ��� ��� ��

POS�

Base Case ��� �� ��� �� ��� � � �

Table ���� Classi�cation of appoint� sentences

These ��� sentences also constituted the test set� The gold standard was independently

created by manually examining these sentences and classifying them into �� relevant

sentences and ��� irrelevant sentences
with respect to the task��

The patterns obtained from the training phase were applied to the ��� sentences�

As before� these sentences were processed in a manner similar to the training data� All

sentences which matched the augmented�patterns were deemed relevant by the program�

The relevant and irrelevant sets for each method
POS tags and Supertags� were compared

to the standard relevant and irrelevant sets�

The results of these experiments are summarized in Table ���� for the supertagging

���

Domain Recall Precision F�score F�score F�score

� ! ����
� ! ����
� ! ����

NYT July��
������
������� �� �� ��

Supertagging� ! ��� ! ���
NYT July��
������
������ �� �� ��

Part of Speech� ! ��� ! ���
Base Case
������
������� �� �� ��

all appoint$� ! ���� ! ���

Table ���� Precision and Recall of di�erent �lters� for relevant sentences

Domain Recall Precision F�score F�score F�score

� ! ����
� ! ����
� ! ����

NYT July��
��������
�������� �� �� ��

Supertagging� ! ��� ! ���
NYT July�� uniq
��������
�������� �� �� ��

Part of Speech� ! ��� ! ���
Base Case
������
����

all appoint$� ! ��

Table ���� Precision and Recall of di�erent �lters� for irrelevant sentences

method� the POS tag method and for the base case� The second column in the table gives

the count of sentences judged relevant by humans� The columns that follow list judgments

made by the program� and the overlap they have with the standard set�

We have computed the recall� precision and F�score measure for the three methods

shown in Table ���� F�score �Hobbs et al�� ����� is de�ned as follows�

F�score !

�� � �� � P � R��
�� �P � R�

F�score provides a method of combining recall and precision� It provides a parameter

� that can be set to measure the performance of a system depending on the relative

importance of recall to precision�

Table ��� shows the recall and precision scores for relevant sentences� for each of the

three methods shown in Table ���� It also shows F�scores for the three cases� precision is as

important as recall
�!��� precision is less important than recall
�!���� and precision is

more important than recall
�!����� Similar results for irrelevant sentences are summarized

in Table ����

���

POS Tagging � Supertagging� Merits and Demerits

In this section� we brie	y summarize the merits and demerits of POS and supertag labels

used in the experiments above�

Granularity of description�

The tags
POS and supertag labels� employed in our approach serve to categorize

di�erent syntactic contexts of a word� In general� a richer set of tags leads to a better

discrimination of the context� The supertags provide an optimal descriptive granularity�

which is neither at the level of complete parses
which may often be hard or impossible

to obtain�� nor at the simpler level of parts of speech� Since supertags are richer in

representation when compared to POS tags� it is expected that supertags would provide

better discrimination�

Sources of Error�

Both POS tagging and supertagging use statistical methods� and their accuracy and

completeness depend on the material that was used to train them� The genre of the

training material also introduces lexical biases� In addition� the vastly bigger tagset for

supertagging makes it more prone to mistakes than POS tagging� Further� errors in tagging

during the pattern training and pattern application phases can cause erroneous patterns

to be created and lead to wrong categorization of documents respectively�

	���� Gleaning Information from the Web

In this section� we describe another experiment which uses the techniques discussed in the

Section ����� on documents about appointments retrieved from the World Wide Web�

Design of the Experiment

Given a search expression� URLs
Uniform Resource Locators� of the documents that

match the search expression are retrieved� using a publicly available search engine� The

URLs are then �ltered for duplicates and the document corresponding to each URL is

then retrieved� Each retrieved document is then processed using the tools described in

Section ������ A document is deemed relevant if it matches at least one of the patterns

induced for that domain�

���

For the particular experiment we performed� we used the Alta Vista web search engine

see http���altavista�digital�com�� to retrieve the URLs matching a search expres�

sion� using the WWW��Search and WWW��Search��AltaVista Perl modules distributed

from ISI

http���www�isi�edu�lsam�tools�WWW�SEARCH��� The document corresponding to each

matching URL was downloaded using a simple socket application program� with timeouts

to account for busy networks or failed connections�

There are several hundred documents that mention events about appointments on the

Web� To restrict the set retrieved to a manageable number� we searched the Web using the

Alta Vista search expression shown below� where we require that the document retrieved

contain the expression Fortune
�� company as well as the word CEO�

�appoint� ��Fortune
�� company� �CEO

Retrieval and Filtering Performance

A total of ��� URLs matched this query� Documents corresponding to �� of these URLs

were not retrieved due to problems not uncommon on the Web� such as network failure

and sites that had moved� The �� documents that were retrieved were hand�checked

for relevance and �� documents were found to be relevant� The �� retrieved documents

were also subjected to the �ltering process described in Section ������ This classi�ed ��

documents as relevant� of which �� documents matched the hand�classi�ed data� Tables ���

to ��� show the performance of the system in terms of Recall and Precision for relevant and

irrelevant documents� The �rst row shows the performance of the web search engine by

itself� while the second row shows the performance of Glean�s �ltering on the output of the

web search engine� It is interesting to note that this method performs better in �ltering

out irrelevant documents than in identifying relevant documents�

As is seen from Tables ��� to ���� Glean �ltering increases precision signi�cantly�

Compared to the number of sentences in the column under Total Docs
which is the number

of documents retrieved by the plain search�� the number of sentences marked relevant is

about a third of the total number� The number of documents in this experiment is small�

but we intend to collect similar �gures for other experiments involving larger numbers of

���

System Total Rel Classi�ed as relevant Classi�ed as irrelevant
Docs Docs Total Correct Incorrect Total Correct Incorrect

Plain Web
Search �� �� �� �� �� � � �

No Glean�

With Glean �� �� �� �� � �� �� �
�ltering

Table ���� Classi�cation of the documents retrieved for the search query

System Recall Precision

Plain Web Search
������ ! ����
������ ! �����

Without Glean�

With Glean �ltering
������ ! �����
������ ! �����

Table ���� Precision and Recall of Glean for retrieving relevant documents�

documents�

As brie	y noted above� the performance of this mechanism is much better for �ltering

out irrelevant material than it is for identifying relevant material� This was also noticed

in our experiments with New York Times data� There are many possible reasons for this�

including extra�syntactic phenomena which we have not accounted for� inadequate size of

window used in creating patterns� unusual patterns of word use� etc�

Note that errors in supertagging could also lead to wrong categorization of documents�

System Recall Precision

Plain Web Search

Without Glean�

With Glean �ltering
������ ! �����
������ ! �����

Table ���� Precision and Recall of Glean for �ltering out irrelevant documents

���

as could errors in spelling� Errors in supertagging during the creation of patterns may

cause extremely speci�c patterns to be created� which may not be a serious problem� since

these patterns are not likely to match any of the input�

We are addressing some of these problems in order to reduce the overall error rate�

We are also testing the system with other domains and test areas� with very encouraging

results for information re�ning�

��� Information Extraction

Supertagging has also been used for information extraction tasks� In contrast to infor�

mation retrieval tasks� information extraction requires not only identifying the relevant

sentences containing the information requested by the user but also requires to �ll out the

�elds of an attribute�value matrix typically called a template� The attributes of a template

vary based on the type of information summarized by the template� A template can be

regarded as a summarized representation of the relevant document�

During the summer of ����� an information extraction project that was sponsored by

Lexis�Nexis was undertaken at the University of Pennsylvania� Two di�erent kinds of

templates were required to be �lled� management changeovers� and new product introduc�

tions� The documents were drawn from a variety of news sources such as Reuters� Business

wire� PR news� LA Times and San Fransisco Chronicle�

To do this task� we employed the EAGLE
An Extensible Architecture for General

Linguistic Engineering� system�Baldwin et al�� ����� which has been under development

since ���� at the University of Pennsylvania� The EAGLE system provides a 	exible archi�

tecture to integrate a variety of Natural Language tools in novel ways for text processing�

It contains document preprocessing tools for sentence segmentation� case normalization�

syntactic analysis tools such as a morphological analyzer� a combination of three part�

of�speech taggers� supertagger and statistical parser� and discourse processing tools for

detecting coreference information� A detailed description of each of these components of

the system is provided in �Baldwin et al�� ������ A pattern description language called

�The �elds of this template were not identical to those in the corresponding MUC�� template
Committee�
����
�

���

Mother of PERL
MOP� �Doran et al�� ����� has also been developed in conjunction with

the EAGLE system� MOP allows a user to specify patterns using the di�erent levels of

syntactic descriptions provided by the EAGLE system to spot information relevant to �ll

the �elds of a template�

The supertagger is used in EAGLE as one of the two syntactic analyzers� the other

being a statistical parser �Collins� ������ The objective of using two syntactic analyzers

was to bene�t from the strengths of the two di�erent representations and approaches to

syntactic processing� The supertagger was used to rapidly and robustly detect chunks such

as Noun groups
both minimal and maximal Noun groups� and Verb groups in a document�

These chunks were used by the Lightweight Dependency Analyzer to compute subject�verb�

object triples for a sentence� MOP patterns based on the supertag annotation� the noun

and verb chunk annotation and the subject�verb�object representation are speci�ed to spot

information that serve to �ll the management and new product introduction templates�

An example MOP pattern that employs supertags and maximal Noun phrases is shown

in Figure ����

�maxNP�� ��� ������� �����

st��B�nxVpus�B�nx�Vs�� � that �

tok������ �� ����� �� ���� � �� ��

quoted�speech� �� Comment Brackets�

Commenter Brackets� �� ��

Figure ���� A sample MOP pattern using Supertags and Maximal Noun Phrases

This is a pattern meant to match a text as follows��

Whitaker stated� �We are delighted to have this exciting product group as part

of QSound and to further solidify the successful business relationships between

SEGA and all facets of the QSound operation� We are in negotiations with the

present AGES Direct management sta� and expect to have them onboard with

us immediately��

The pattern works as follows�

�We are thankful to Christine Doran for this example�

���

�� Match a maximal NP� which does not itself contain any quotation marks
�maxNP��

��� ���j����

�� Go forward � to � tokens
������

�� Match one of the two supertags for a verb of saying in this position

st��B nxVpusjB nx�Vs���

�� Optionally match the word that
� that ��

�� Match a comma or a colon� followed by an open quote
tok���j�� ���

�� Match any number of words up to the end of the document� without crossing another

open quote� until hitting a close quote
����� � ���� � ���

This pattern makes use of various levels of representations� It uses tokens� for the oblig�

atory punctuation marks� the maximal Noun Phrases for commenter� and the supertags

to identify the relevant sub�class of main verbs� The supertags in particular o�ers just

the right level of generalization� as listing the verbs one by one is not practical for a class

of this size� and yet allowing any verb at all would be too permissive� The two pieces of

information extracted by this pattern are the Commenter and the Comment itself�

EAGLE was evaluated on ��� documents from �� di�erent publications� A hand�

analysis revealed the system�s performance to be ����� precision and ����� recall on �elds

�lled for the management changeover task� It should be noted that EAGLE was more

consistent in �lling �elds than human annotators� and ��� of the templates �lled were

completely missed by human annotators on the �rst pass� No evaluation was conducted

for new product announcements� Due to the complex nature of EAGLE� it was di�cult

to quantitatively measure the contribution of each component of EAGLE to the overall

performance of the system�

��� Language Modeling

N�gram language models have proved to be very successful in the language modeling

task� They are fast� robust and provide state�of�the�art performance that is yet to be

���

surpassed by more sophisticated models� Further� n�gram language models can be seen as

weighted �nite state automata which can be tightly integrated within speech recognition

systems �Pereira and Riley� ������ However� these models fail to capture even relatively lo�

cal dependencies that exist beyond the order of the model� We expect that the performance

of a language model could be improved if these dependencies can be exploited� However�

extending the order of the model to accommodate these dependencies is not practical since

the number of parameters of the model is exponential in the order of the model� reliable

estimation of which needs enormous amounts of training material�

In order to overcome the limitation of the n�gram language models and to exploit syn�

tactic knowledge� many researchers have proposed structure�based language models �Zue

et al�� ����� Kenji and Ward� ������ Structure�based language models employ grammar

formalisms richer than weighted �nite�state grammars such as Probabilistic LR grammars�

Stochastic Context�Free Grammars
SCFG�� Probabilistic Link Grammars
PLG� �La�erty

et al�� ����� and Stochastic Lexicalized Tree�Adjoining Grammars
SLTAGs� �Resnik�

����� Schabes� ������ Formalisms such as PLGs and SLTAGs are more readily applicable

for language modeling than SCFGs due to the fact that these grammars encode lexical

dependencies directly� Although all these formalisms can encode arbitrarily long�range

dependencies� tightly integrating these models with a speech recognizer is a problem

since most parsers of these formalisms only accept and rescore N�best sentence lists� A

recent paper �Jurafsky et al�� ����� attempts at a tight integration of syntactic constraints

provided by a domain�speci�c SCFG in order to work with lattice of word hypothesis�

However� the integration is computationally expensive and the word lattice pruning is sub�

optimal� Also� most often the utterances in a spoken language system are ungrammatical

and may not yield a full parse spanning the complete utterance�

Supertags present an alternate technique of integrating structural information into

language models without really parsing the utterance� It brings together the advantages

of a n�gram language model
 speed� robustness and the ability to closely integrate with a

speech recognizer�

In this section� we discuss a supertag�based n�gram language model that is similar to

a class�based n�gram language model except that the classes are de�ned by the supertags�

A related work that employs part�of�speech categories as classes is presented in �T�R�

���

Niesler and P�C� Woodland� ������ Since the supertags encode both lexical dependencies

and syntactic and semantic constraints in a uniform representation� supertag�based classes

are more �ne�grained than part�of�speech based classes�

	���� Performance Evaluation

The performance of a language model is ideally measured in terms of its ability to decrease

the word error rate of a recognizer� However� to avoid this expensive metric� an alternate

measure of performance� perplexity �PP� �Bahl et al�� ����� is used�

���� PP ! �
���n��log�
Pr
W ��

where

Pr
W � is the probability of the word sequence W �

In a class�based n�gram language model� the probability of a k�word word sequence W

is given by

���� Pr
W � !
P

ck
Qk

i�� P
wijci�p
cijci��� ci���

where

Pr
W � is the probability of the word sequence W �

Perplexity� roughly speaking� measures the average size of the set from which the next

word is chosen from� The smaller the perplexity measure the better the language model

at predicting the next word� The perplexity measure for a language model depends on the

domain of discourse�

In this section� we present perplexity results for two class�based models on the the

Wall Street Journal corpus� a part�of�speech based and a supertag�based trigram language

model� A set of ������� words from the Wall Street Journal was randomly split into a

set of ������� words for training and ������ words for the test corpus� The corpus was

tagged with the correct part�of�speech tags� and supertags to train the part�of�speech based

language model and supertagger based language model respectively� Then the performance

of the two models� was measured on the test corpus� The results are shown in Table ����

�The UPenn treebank tagset with �� tags was used for this purpose
�Only the best class �POS or supertag� sequence was used in the perplexity calculation�

���

Model Perplexity

Part�of�speech based
trigram model ���

Supertag based
trigram model ���

Table ���� Word perplexities for the Wall Street Journal Corpus using the part�of�speech
and supertag based langauge models�

It is interesting to note that the performance of the supertag model is better than the

part�of�speech model which suggests that the supertags de�ne a better level of contextual

generalization and provide more �ne�grained classes than part�of�speech tags� Table ���

presents class perplexity results for the part�of�speech tag model and the supertag model�

Class perplexity measures the average size of the set from which the next class is chosen

from� given the previous history of the sentence� As can be seen� even though there is much

higher ambiguity on a per word basis for supertags than for part�of�speech tags� the number

of possible combinations for supertags is much more restricted than for part�of�speech tags�

Model Perplexity

Part�of�speech ����

Supertag ����

Table ���� Class perplexities for the Wall Street Journal Corpus

��� Simpli�cation

Long and complicated sentences prove to be a stumbling block for current Natural Lan�

guage systems� These systems stand to gain from methods that syntactically simplify such

sentences� In applications such as Machine Translation� simpli�cation results in simpler

sentence structures and reduced ambiguity� In Information Retrieval systems� retrieving

information from texts with simpli�ed sentences rather than with complex sentences can

help improve the precision of the retrieval system� Simpli�cation can also be looked at as a

summarization process where complex sentences are �summarized� by removing extraneous

clauses�

���

Simpli�cation is viewed as a two step process� The �rst stage identi�es the structure

of the sentence and the second stage applies the rules of simpli�cation on the computed

structure� These rules identify the positions at which a sentence can be split based on

lexical and structural information surrounding that position� Obviously a parser could

be used to obtain the complete structure of the sentence� However� full parsing is slow

and prone to failure� especially on complex sentences� Supertagging provides an alternate

method which is both fast and yields hierarchical structure
constituent information� that

can be used for the purpose of simpli�cation�

	���� Simpli
cation with Dependency links

The output provided by the dependency analyzer not only contains dependency links

among words but also indicates the constituent structure as encoded by supertags� The

constituent information is used to identify whether a supertag contains a clausal constituent

and the dependency links are used to identify the span of the clause� Thus� embedded

clauses can easily be identi�ed and extracted� along with their arguments� Punctuation

can be used to identify constituents such as appositives which can also be separated out� As

with the �nite�state approach� the resulting segments may be incomplete as independent

clauses� If the segments are to be reassembled� no further processing need be done on

them�

Figure ��� shows a rule for extracting relative clauses� in dependency notation� We

�rst identify the relative clause tree
Z�� and then extract the verb which anchors it along

with all of its dependents� The right hand side shows the two resulting trees� The gap in

the relative clause
Y� need only be �lled if the clauses are not going to be recombined�

Examples
���� and
���� show a sentence before and after this rule has applied�

Y:NP W

Z:RelClause

X:S
Z’:S

Y:NP Y:NP W

X:S

Figure ���� Rule for extracting relative clauses

���

���� � � � an issue �that generated unusual heat in the House of Commons � � � �

���� An issue �generated unusual heat in the House of Commons �� The issue � � �

	���� Evaluation and Discussion

Preliminary results using the model presented in the previous section are very promising�

Using a corpus of Press Trust of India
PTI� newswire data� and only considering relative

clause and appositive simpli�cation� we correctly recovered �� out of �� relative clauses and

�� of �� appositives� We generated � spurious relative clause and � spurious appositives�

Dependency�based simpli�cation provides many advantages over simpli�cation meth�

ods that employ Finite�State Grammar for the analysis of a complex sentence �Chan�

drasekar et al�� ������ Simpli�cation rules in these methods manipulate noun groups

and verb groups provided by the sentence analysis phase� As a result� the rules for the

simpli�er have to identify basic predicate argument relations to ensure that the right chunks

remain together in the output� The simpli�er in the Dependency�based simpli�cation

model has access to information about argument structure� which makes it much easier to

specify simpli�cation patterns involving complete constituents� The Finite�State Grammar

based simpli�cation approach is forced to enumerate all possible variants of the LHS

of each simpli�cation rule
eg� Subject versus Object relatives� singular versus plural

NPs�� In contrast� in the Dependency�based Simpli�cation model� the rules exploit the

argument�adjunct distinctions encoded in supertags and the associated constituent types

and hence are more general�

We are presently working on automatically inducing simpli�cation rules �Chandrasekar

and Srinivas� ����� given a parallel corpus of complex sentences and their simpli�ed

counterparts� The idea is to identify the points of divergences between the dependency

structure for the complex sentence and the dependency structure for the simple sentences

and to store that divergence information indexed on the surrounding context� In the test

phase� given a complex sentence� the context information is used to retrieve the appropriate

rule to be applied for simpli�cation�

���

��� Exploiting Document�level Constraints for

Supertagging

Both statistical parsing systems as well as hand�crafted grammar�based parsing systems

model sentence level constraints and provide syntactic analysis of sentences� There are�

however� other constraints that are present at the document level as well as domain

speci�c constraints that are not integrated at the level of sentence processing� Integrating

document level constraints into hand�crafted grammar�based parsing systems greatly com�

plicates the model of processing and incorporating domain speci�c constraints into these

systems requires elucidating the domain constraints in the grammar framework used by

the system� a tedious task� For statistical parsing systems� domain constraints might be

modeled by retraining the statistical model using data from that domain� However� this

is a very expensive proposition since training data for any given domain is hard to collect�

Further� integrating discourse level constraints increases the number of parameters and

thus complicates the statistical model� Instead of a monolithic approach for integrating

these constraints� we recommend a modular approach� In this section� we illustrate how

the supertagging approach is amenable to a modular approach of incorporating document

level and domain speci�c constraints�

The lexicalized nature of supertags combined with the fact that every syntactic context

is represented by a di�erent supertag� makes it is possible to bring to bear document level

constraints as well as domain speci�c constraints when supertagging a sentence� To do

this� we simply pre�supertag the words of the sentence that are in	uenced by the higher

level constraints with a supertag that meets those constraints� For example� if we had an

oracle that decided if a preposition attaches to the Verb Phrase or to the Noun Phrase�

then the preposition could be pre�supertagged with the appropriate supertag that indicates

the type of attachment�

Another example is to use coreference information to pre�supertag noun phrases �Srini�

vas and Baldwin� ������ An interesting aspect of the coreference system �Baldwin� �����

is that there is an early pass of proper noun resolution that does not use any linguistic

analysis other than the case of the words and what sentence they are in� The algorithm

starts with a sparse matrix representation of all uppercase string matches� and attempts to

���

System Total � Recall Precision
of NPs

With Pretagging ��� ����� �����

Without Pretagging ��� ����� �����

Table ���� Performance results on extracting Noun Phrases with and without
pre�supertagging�

grow the length of the matches while maintaining that they still match as a person name

or company name� For example �Smith� and �Smith� could be expanded into �Bernard J�

Smith� and �Mr� Smith� by the algorithm� Eventually the subroutine will consider matches

of greater scope than person names and company names�

The pre�tagging a�orded by the pre�linguistic coreference recognition was successful

in improving the performance of the linguistically based Noun Phrase recognition com�

ponent� The proper noun recognizer collapses all the lexical items in a proper noun

into a single lexical item� so �Federal Railway Labor Act� becomes pretagged as �Fed�

eral Railway Labor Act��A NXN�� The advantage of collapsing the Noun Phrase is two�

fold� Besides improving the performance of the Noun Phrase recognition component� it

allows the trigram model of supertagging to skip irrelevant words in the Noun Phrase and

perhaps gain access to constraints that it otherwise would not reach given a three word

window�

The pre�supertagging improved the performance of the Noun Phrase detection system�

In particular� the recall of the system was helped by ��� with no damage to precision�

In looking at the output� it is clear that fairly simple steps could be made to improve

performance further�

It is conceivable to have an architecture that employs experts of various specialties

domain� Simple Coreference� Noun group� PP etc�� which pretag words in a sentence

with appropriately chosen supertags based on their information�

���

��	 Summary

In this chapter� we discuss several applications of the supertagger and the LDA system

including information retrieval and information extraction� text simpli�cation and language

modeling� Our goal in using a supertagger is to exploit the strengths of supertags as the

appropriate level of lexical description needed for most applications� In an information

retrieval application� we compare the retrieval e�ciency of a system based on part�of�

speech tags against a system based on supertags and show that the supertag�based system

performs at higher levels of precision� In an information extraction task� supertags are used

in specifying extraction patterns� For language modeling applications� we view supertags

as syntactically motivated class labels in a class�based language model� The distinction

between recursive and non�recursive supertags is exploited in a sentence simpli�cation

application� The ability to bring to bear document�level and domain�speci�c constraints

during supertagging of a sentence is explored in improving the performance of a noun

phrase recognizer�

���

Chapter �

Conclusions

��� Contributions

In this dissertation� we have proposed novel methods for robust parsing that integrate the

	exibility of linguistically motivated lexical descriptions with the robustness of statistical

techniques� We have shown that the computation of linguistic structure can be localized

if lexical items are associated with rich descriptions
Supertags� that impose complex

constraints in a local context� The supertags are designed such that only those elements

on which the lexical item imposes constraints appear within the same supertag� Further�

each lexical item is associated with as many supertags as the number of di�erent syntactic

contexts in which the lexical item can appear in� This makes the number of di�erent

descriptions for each lexical item much larger� than when the descriptions are less complex�

thus increasing the local ambiguity for a parser�

In Chapter �� we have presented several models for disambiguating supertags that use

statistical distributions of supertag co�occurrences� collected from a corpus of parses� to

resolve this local ambiguity� We have provided extensive evaluation results for all the

models for supertagging with the best rate of supertag accuracy of ������ We have shown

that using the supertagger as a preprocessor for a lexicalized grammar parser results in a

speed�up of a factor of about �� by simply reducing the search space for the parser even

before parsing begins� We have also shown that besides being used as a preprocessor for a

parser� a supertagger can also be used as a stand�alone parser� Supertag disambiguation

���

results in a representation that is e�ectively a parse
almost parse�� and in conjunction

with a lightweight dependency analyzer� a supertagger serves as an e�cient and robust

parser�

In Chapter � and Chapter �� we have exploited the representation of the supertags in

conjunction with Explanation�based learning
EBL� to improve the e�ciency of parsing

in limited domains� Language in limited domains is usually well constrained and certain

syntactic patterns appear more frequently than others� EBL improves the parsing e�ciency

in such domains by relying on domain speci�c sentence constructions� In addition� by

exploiting the representation of supertags in conjunction with EBL� parsing in limited

domains can be modeled as a Finite�State Transducer� We have implemented such a system

for the Air Travel Information Service
ATIS� domain which improves parsing e�ciency

by a factor of �� over a system not tuned to the domain�

We have attempted to develop a uniform evaluation metric for parsers that are either

statistical induced or grammar�based and produce full or partial parses� We advocate a two

pronged evaluation metric� an application independent glass box evaluation metric and an

application dependent black box evaluation metric� We argue that a mixed representation

of text chunks and dependencies serves as a better level of representation for a glass box

evaluation metric as opposed to a purely constituency based or a purely dependency

based evaluation metric� For a black box evaluation� we propose that parsing systems

should be measured on their ability to correctly identify various grammatical constructions

and relations such as maximal noun phrases� appositives� predicative constructions� PP

modi�ers and Predicate�Argument relations� We obtained a recall and precision �gures

of ����� and ����� respectively for noun chunking� ����� and ����� for verb chunking�

����� and ����� for appositives� ����� and ��� for parentheticals and ����� accuracy for

preposition phrase attachment using the supertagger in conjunction with the Lightweight

dependency analyzer� In terms of performance of pairwise dependency links� we obtained

a recall and precision of ����� and ����� on ������ words of Wall Street Journal corpus�

At the sentence level� ����� of the sentences had three or less pairwise dependency link

errors�

As mentioned before� we have demonstrated the usefulness of supertagger as a prepro�

cessor for a parser by achieving a speedup of a factor of ��� Moreover� supertagger has

���

been applied in a variety of applications including information retrieval and information

extraction� text simpli�cation and language modeling� The supertagger in conjunction

with the LDA has been used as a partial parser in information extraction applications� We

have also used the fact that supertags provide richer and more �ne�grained classes than

part�of�speech tags in applications of information retrieval and language modeling�

��� Future Work

In this section� we present some of the directions for future work we intend to pursue�

Supertagging Models� A number of models for supertag disambiguation have been

presented in Chapter � which vary in terms of the size of context that they take into

account� such as the trigram model� the head trigram model and the dependency model

and the representation for supertags
 symbols or vector of features� Each of these models

have di�erent strengths and limitations depending on the nature of the application domain�

We have begun to evaluate these models for their supertag accuracy� Further evaluation

of these models in terms of accuracy of predicting speci�c constructions would be very

useful� We would also like to apply more powerful statistical classi�cation techniques such

as statistical decision trees and maximum entropy models to supertagging�

Lightweight Dependency Analyzer
LDA�� In Chapter �� we presented LDA�

a simple model for producing dependency analysis� once the supertagging is complete�

The LDA uses the dependency requirements encoded in the supertags and some simple

heuristics to produce a dependency analysis for a sentence� The deterministic nature of

LDA crucially depends on the fact that each word is associated with only one supertag�

However� the performance of the LDA can be improved if it is extended to deal with N�best

supertags for each word�

Training Corpus� A distinct advantage for the statistical parsing research is the

availability of large annotated corpora in the form of Penn Treebank and SUSANNE� The

training material for supertag disambiguation models was obtained from converting the

Penn Treebank parses using heuristics� There are several errors in the resulting supertag

annotation� mostly due to errors of translation but also due to inadequacy of annotation

in the Penn Treebank for this purpose� A more appropriate corpus would be to collect

���

LTAG derivation structures based on the XTAG grammar�

Balancing Act� One of the goals of this research has been to show that a hand�

crafted grammar combined with domain speci�c statistics can perform as well as or better

than a purely statistical grammarless parsing system� Besides the �ne�grained nature of

the output� we claim that the advantage of a hand�crafted grammar system is the ease

of its portability to limited domains� We are in the process of performing experiments to

establish this claim by porting the hand�crafted grammar to a weather reporting domain�

Psycholinguistic Implications� There has been increased emphasis on the role of

lexical mechanisms in theories of sentence comprehension in the psycholinguistic litera�

ture �MacDonald et al�� ����� Trueswell and Tanenhaus� ������ By providing multiple

structural representation of words� these theories explain syntactic ambiguity resolution

in term of lexical ambiguity resolution� This view is highly compatible with the view of

Supertagging in lexicalized grammars� We have begun experiments to model supertag dis�

ambiguation using cognitively plausible architecture and processing models� The attempt

is to see to what extent the model�s processing preferences for syntactically ambiguous

phrases mimic those found in human sentence processing�

Supertag�based Applications� Synchronous TAGs �Shieber and Schabes� ����� pro�

vide a well�developed framework for Machine Translation� In this framework� elementary

trees of the source language are mapped to elementary trees of the target language via

synchronous mappings� Although this framework has been studied for its representational

capacity� there has not been a robust translation system based on Synchronous TAGs�

Supertagging in conjunction with synchronous mappings provides a natural direction for

a robust translation system�

A number of applications reported in Chapter � have employed supertags as labels of

richer classes than POS tags� This view has been very pro�table but does not exploit

the representation of supertags completely� The syntactic and the argument information

encoded in the supertags is entirely ignored� We hope to improve the performance of some

of the applications in Chapter � using the syntactic and argument information encoded in

the supertags�

Applicability of Supertagging to other Lexicalized Grammars� As discussed

in Chapter �� the idea of supertagging has wider applicability than LTAGs� Any lexicalized

���

grammar assigns multiple descriptions to a lexical item� although only one
or relatively

small number� of those descriptions would be used in the context of a given sentence� Thus

the idea of supertagging� minimizing the ambiguity in terms of the number of descriptions

assigned to a lexical item even before parsing begins� is applicable to other lexicalized

grammars as well�

CCGs and LTAGs are similar in that they are both lexicalized grammars� however they

di�er in the extent of the domain of locality� There is on�going work on the development

of a wide�coverage CCG system �Doran and Srinivas� ������ We intend to investigate the

applicability of the partial parsing methods discussed here to CCG and study the tradeo�s

adopted by CCG and LTAG with regard to notions such as constituency� dependency and

locality�

���

Appendix A

List of Supertags

The following is a the list of supertags used in the experiments described in Chapter ��

���EOS��� End of Sentence

A ARB Adverb as argument

A AXA Adjective as argument

A AXAs Adjective with sentence complement

A CONJ Conjunction as argument

A D Determiner as argument
in coordination�

A N Noun as argument
in coordination�

A NXG Genitive as argument

A NXN Noun phrase as argument

A NXNs Noun phrase with sentence complement

A P Preposition as argument
in coordination�

A PL Particles

A PU Punctuation

A PXARBPnx Complex preposition argument

A PXP Exhaustive Preposition argument

A PXPNaPnx Complex preposition argument

A PXPPnx Complex preposition argument

A PXPnx Preposition argument

���

A by by in passives

B APnxs Sentence initial complex preposition modi�er

B ARBCONJs Sentence initial complex conjunction modi�er

B ARBPnxs Sentence initial complex preposition modi�er

B ARBPs Sentence initial complex preposition modi�er

B ARBa Adverb modifying an adjective

B ARBarb Adverb modifying an adverb

B ARBarbs Sentence initial complex adverb modi�er

B ARBd Adverb modifying a determiner

B ARBn Adverb modifying a noun

B ARBnx Adverb modifying a noun phrase

B ARBpx Adverb modifying a preposition phrase

B ARBs Adverb modifying a sentence

B ARBvx Adverb modifying a verb phrase

B An Adjective modifying a noun

B COMPs Complementizer

B CONJACONJd Complex determiner modi�er

B CONJDCONJd Complex determiner modi�er

B CONJPnxs Sentence initial complex preposition modi�er

B CONJarbCONJs Sentence initial complex conjunction

B CONJnx�conjnx� Complex noun phrase conjunction

B CONJs Sentence initial conjunction

B CONJs�conjs� Complex sentence conjunction

B CONJvx�conjvx� Complex verb phrase conjunction

B Dnx Determiner

B NEGarb Negation on adverb

B NEGnx Negation on noun phrase

B NEGpx Negation on preposition phrase

B NEGvx Negation on verb phrase

B Nn Noun modi�er

B Ns Temporal noun modifying a sentence

���

B Nvx Temporal noun modifying a verb phrase

B PARBPnxs Sentence initial complex preposition modi�er

B PARBarb Complex preposition modifying an adverb

B PARBd Complex preposition modifying a determiner

B PARBnx Complex preposition modifying a noun phrase

B PARBpx Complex preposition modifying a preposition

B PARBs Complex preposition modifying a sentence

B PARBvx Complex preposition modifying a verb phrase

B PDNPnxs Sentence initial complex preposition modi�er

B PNPnxs Sentence initial complex preposition modi�er

B PNaPnxs Sentence initial complex preposition modi�er

B PPnxs Sentence initial complex preposition modi�er

B PUapu Punctuation around adjective

B PUarbpu Punctuation around adverb

B PUnpu Punctuation around noun

B PUnxpu Punctuation around noun phrase

B PUpu Punctuation on another punctuation

B PUpx Punctuation before preposition phrase

B PUpxpu Punctuation around preposition phrase

B PUpxpunx Punctuation around preposition phrase

B PUs Punctuation before a sentence

B PUspu Punctuation around a sentence

B PUvpu Punctuation around a verb

B PUvxpu Punctuation around a verb phrase

B Pnxs Sentence initial preposition modi�er

B UCONJUCONJs Complex Sentence initial conjunction

B Vn Participle verb� prenominal modi�er

B Vnxpus Parenthetical sentence complement verb

B Vnxpuvx Parenthetical sentence complement verb

B Vnxs Parenthetical sentence complement verb

B Vs Auxiliary inversion

���

B Vvx Auxiliary verb

B a�CONJa� Adjective coordination

B aARB Adverb modifying an adjective

B arb�CONJarb� Adverb coordination

B arbARB Adverb modifying an adverb

B ax�CONJax� Adjective phrase coordination

B conjAd�conjAd� Multi�anchor adverb coordination

B d�CONJd� Determiner coordination

B n�CONJn� Noun coordination

B nA Postnominal adjective modi�er

B nARB Postnominal adverb modi�er

B nPUnx Appositive for postal addresses without

�nal punctuation

B nPUnxpu Appositives for postal addresses

B nx�CONJARBCONJnx� Multi�anchor noun phrase conjunction

B nx�CONJARBnx� Multi�anchor noun phrase conjunction

B nx�CONJnx� Noun phrase conjunction

B nx�conjCONJnx� Multi�anchor noun phrase conjunction

B nxAPnx Noun phrase modifying complex preposition

B nxARB Noun phrase modifying adverb

B nxARBPnx Noun phrase modifying complex preposition

B nxGnx Possessive �s

B nxN Noun phrase modifying time noun phrase

B nxP Noun phrase modifying exhaustive preposition

B nxPDNPnx Noun phrase modifying complex preposition

B nxPNPnx Noun phrase modifying complex preposition

B nxPNaPnx Noun phrase modifying complex preposition

B nxPPnx Noun phrase modifying complex preposition

B nxPUnx Appositives without �nal punctuation

B nxPUnxpu Appositives

���

B nxPUpx Noun phrase modifying preposition

B nxPnx Noun phrase modifying preposition

B p�CONJp� Preposition coordination

B px�CONJARBCONJpx� Multi�anchor preposition phrase coordination

B px�CONJpx� Preposition phrase coordination

B pxARB Preposition phrase modifying adverb

B s�CONJs� Sentence coordination

B sARB Sentence modifying adverb

B sPU Sentence �nal punctuation

B sPUnx Sentence modifying noun phrase

B sPUs Punctuation connecting sentences

B sPnx Sentence modifying noun phrase

B v�CONJv� verb coordination

B vnxVpu Parenthetical sentence complement verb

B vx�CONJARBCONJvx� Multi�anchor verb phrase coordination

B vx�CONJvx� Verb phrase coordination

B vx�conjCONJvx� Multi�anchor verb phrase coordination

B vxAPnx Verb phrase modifying complex preposition

B vxARB Post verbal adverbial modi�er

B vxARBPnx Verb phrase modifying complex preposition

B vxCONJPnx Verb phrase modifying complex preposition

B vxN Verb phrase modifying time noun phrase

B vxNPnx Verb phrase modifying complex preposition

B vxP Verb phrase modifying exhaustive preposition

B vxPDNPnx Verb phrase modifying complex preposition

B vxPNPnx Verb phrase modifying complex preposition

B vxPNaPnx Verb phrase modifying complex preposition

B vxPPnx Verb phrase modifying complex preposition

B vxPnx Verb phrase modifying preposition

���

B vxPs Verb phrase modifying preposition with

sentence complement

A EW�nx�V Wh�question on subject of ergative verb

A Enx�V Active ergative verb

A Gnx�Ax� Gerundive adjectival predicate

A Gnx�V Gerundive intransitive

A Gnx�Varb� Gerundive verb with adverb complement

A Gnx�Vax� Gerundive verb with adjective complement

A Gnx�Vnx� Gerundive transitive verb

A Gnx�Vnx�nx� Gerundive ditransitive verb

A Gnx�Vnx�pl Gerundive transitive particle verb
shifted�

A Gnx�Vnx�s� Gerundive verb with noun phase and sentence complement

A Gnx�Vplnx� Gerundive transitive particle verb
unshifted�

A Gnx�Vpnx� Gerundive verb with preposition complement

A Gnx�Vs� Gerundive verb with sentence complement

A Inx�V Imperative intransitive verb

A Inx�Vax� Imperative adjectival predicate

A Inx�Vnx� Imperative transitive

A Inx�Vnx�pnx� Imperative verb with noun phrase and preposition complement

A Inx�Vnx�s� Imperative verb with noun phrase and sentence complement

A Inx�Vpl Imperative intransitive verb particle

A Inx�Vplnx� Imperative transitive verb particle
unshifted�

A W�nx�Vnx� Wh�question on subject of transitive verb

A W�nx�N� Wh�question on predicate of a nominal predicate

A nx�ARBPnx� Complex preposition predicate

A nx�Ax� Adjective predicate

A nx�Ax�pnx� Adjective predicate with preposition complement

A nx�Ax�s� Adjective predicate with sentence complement

A nx�BEnx� Equative

A nx�CONJPnx� Complex preposition predicate

���

A nx�N� Nominal predicate

A nx�N�s� Nominal predicate with sentence complement

A nx�PDNPnx� Complex preposition predicate

A nx�PNPnx� Complex preposition predicate

A nx�PNaPnx� Complex preposition predicate

A nx�PPnx� Complex preposition predicate

A nx�Pnx� Preposition predicate

A nx�Px� Exhaustive Preposition predicate

A nx�Px�s� Preposition predicate with sentence complement

A nx�V Intransitive

A nx�Varb� Verb with adverb complement

A nx�Vax� Verb with adjective complement

A nx�Vnx� Transitive verb

A nx�Vnx�Pnx� Dative shifted double object verb

A nx�Vnx�nx� Ditransitive verb

A nx�Vnx�pl Transitive verb particle
shifted�

A nx�Vnx�pnx� Verb with noun phrase and preposition phrase complement

A nx�Vnx�nx� Ditransitive verb

A nx�Vpl Intransitive verb particle

A nx�Vplnx� Transitive verb particle
unshifted�

A nx�Vplpnx� Verb particle with preposition complement

A nx�Vpnx� Verb with preposition complement

B nx�Vs� Verb with sentence complement

A nx�lVN� Intransitive light verb

A nx�lVN�Pnx� Light verb with preposition complement

A nx�V Transitive passive verb with no by�phrase

A nx�Vbynx� Transitive passive verb with by�phrase

A nx�Vnx� Ditransitive passive verb with no by�phrase

A nx�Vpl Transitive passive verb particle with no by�phrase

A nx�Vplbynx� Transitive passive verb particle with by�phrase

���

A nx�Vpnx� Dative passive verb with no by�phrase

A pW�nx�Pnx� Wh�question on object of preposition predicate

A s�N� Sentence subject nominal predicate

B Inx�Vs� Imperative verb with sentence complement

B N�nx�Ax� Relative clause on subject of adjective predicate

B N�nx�Ax�s� Relative clause on subject of adjective predicate with

sentence complement

B N�nx�BEnx� Relative clause on subject of equative

B N�nx�N� Relative clause on subject of nominal predicate

B N�nx�Pnx� Relative clause on subject of preposition predicate

B N�nx�Px� Relative clause on subject of exhaustive preposition predicate

B N�nx�V Relative clause on subject of intransitive verb

B N�nx�Varb� Relative clause on subject of verb with adverb complement

B N�nx�Vax� Relative clause on subject of verb with adjective complement

B N�nx�Vnx� Relative clause on subject of transitive verb

B N�nx�Vnx�Pnx� Relative clause on subject of dative verb

B N�nx�Vnx�arbx� Relative clause on subject of verb with noun phrase and

adverb complement

B N�nx�Vnx�nx� Relative clause on subject of double object verb

B N�nx�Vnx�pl Relative clause on subject of transitive verb particle

unshifted�

B N�nx�Vnx�pnx� Relative clause on subject of verb with noun phrase and

preposition phrase complement

B N�nx�Vnx�s� Relative clause on subject of verb with noun phrase and

sentence complement

B N�nx�Vnx�nx� Relative clause on subject of double object verb

B N�nx�Vpl Relative clause on subject of intransitive verb particle

B N�nx�Vplnx� Relative clause on subject of transitive verb particle

B N�nx�Vplpnx� Relative clause on subject of verb particle with

preposition complement

���

B N�nx�Vpnx� Relative clause on subject of verb with preposition phrase

complement

B N�nx�Vs� Relative clause on subject of verb with sentence complement

B N�nx�BEnx� Relative clause on object of equative verb

B N�nx�Vnx� Relative clause on object of transitive verb

B N�nx�Vnx�Pnx� Relative clause on object of dative verb

B N�nx�Vnx�nx� Relative clause on object of double object verb

B N�nx�Vnx�pnx� Relative clause on object of verb with noun phrase and

preposition phrase complement

B N�nx�Vnx�s� Relative clause on object of verb with noun phrase and

sentence complement

B N�nx�Vplnx� Relative clause on object of transitive verb particle

B N�nx�Vpnx� Relative clause on object of verb preposition complement

B N�nx�V Relative clause on object of passive transitive verb

B N�nx�VPnx� Relative clause on object of passive dative verb

B N�nx�Vax� Relative clause on object of passive verb with

adjective complement

B N�nx�Vbynx� Relative clause on object of passive transitive verb

with by�phrase

B N�nx�Vnx� Relative clause on object of passive double object verb

B N�nx�Vpl Relative clause on object of passive verb particle

B N�nx�Vpnx� Relative clause on object of passive verb with

preposition phrase complement

B N�nx�Vs� Relative clause on object of passive verb with

sentence complement

B N�nx�Vnx�pnx� Relative clause on indirect object of dative verb

B N�nx�Vpnx� Relative clause on indirect object of passive dative verb

B Nnx�Ax� Adjunct relative clause for an adjective predicate

B Nnx�BEnx� Adjunct relative clause for an equative

B Nnx�N� Adjunct relative clause for a nominal predicate

���

B Nnx�Pnx� Adjunct relative clause for a prepositional predicate

B Nnx�V Adjunct relative clause for an intransitive

B Nnx�Vnx� Adjunct relative clause for a transitive

B Nnx�Vnx�nx� Adjunct relative clause for double object verb

B Nnx�Vnx�pl Adjunct relative clause for a transitive verb particle

B Nnx�Vnx�s� Adjunct relative clause for a verb with noun phrase and

sentence complement

B Nnx�Vpl Adjunct relative clause for a verb particle

B Nnx�Vpnx� Adjunct relative clause for a verb with preposition phrase

complement

B Nnx�Vs� Adjunct relative clause for a verb with sentence complement

B Nnx�V Adjunct relative clause for a passive transitive verb

B Nnx�Vpnx� Adjunct relative clause for a passive verb with

preposition phrase complement

B Nnx�Vs� Adjunct relative clause for a passive verb with

sentence complement

B nx�A�s�s Presentential clausal adjunct of adjective predicate with

sentence complement

B nx�Ax�s Presentential clausal adjunct of adjective predicate

B nx�Vnx�pnx�s Presentential clausal adjunct of dative verb

B nx�Vnx�s Presentential clausal adjunct of transitive verb

B nx�Vpls� Presentential clausal adjunct of intransitive verb particle

B nx�Vpnx�s Presentential clausal adjunct of transitive verb particle

B nx�Vs Presentential clausal adjunct of intransitive verb

B nx�Vs� Verb with sentence complement

B nx�Vbynx�s Presentential clausal adjunct of passive transitive verb

with by�phrase

B nx�Vps Presentential clausal adjunct of passive verb with

preposition complement

���

B nx�Vs Presentential clausal adjunct of passive verb

B nx�Vs� Passive verb with sentence complement

B nxVnxpus Parenthetical sentence complement verb

B nxVpus Parenthetical sentence complement verb

B nxVpuvx Parenthetical sentence complement verb

B nxVs Parenthetical sentence complement verb

B pN�nx�Vpnx� Relative clause on the object of verb with

preposition complement

B pN�nx�Vpnx� Relative clause on the indirect object of dative verb

B sVnx Parenthetical sentence complement verb

B snxV Parenthetical sentence complement verb

B snxVnx Parenthetical sentence complement verb

B vxnx�ARBPnx� Postsentential clausal adjunct of complex preposition

predicate

B vxnx�Ax� Postsentential clausal adjunct of adjective predicate

B vxnx�V Postsentential clausal adjunct of intransitive verb

B vxnx�Vax� Postsentential clausal adjunct of verb with

adjective complement

B vxnx�Vnx� Postsentential clausal adjunct of transitive verb

B vxnx�Vnx�nx� Postsentential clausal adjunct of double object verb

B vxnx�Vnx�pl Postsentential clausal adjunct of transitive verb particle

shifted�

B vxnx�Vpnx� Postsentential clausal adjunct of verb with preposition phrase

complement

B vxnx�V Postsentential clausal adjunct of passive transitive verb

B vxnx�Vbynx� Postsentential clausal adjunct of passive transitive verb with

by�phrase

B vxnx�Vnx� Postsentential clausal adjunct of passive ditransitive verb

B vxnx�Vpnx� Postsentential clausal adjunct of passive dative verb

���

Bibliography

�Abney� ����a� Steven Abney� Rapid Incremental parsing with repair� In Proceedings of the

�th New OED Conference� Electronic Text Research� pages �
�� University of Waterloo�

Waterloo� Canada� �����

�Abney� ����b� Steven P� Abney� Rapid Incremental Parsing with Repair� In Proceedings

of the �th New OED Conference� University of Waterloo� Waterloo� Ontario� �����

�Abney� ����� Steven Abney� Parsing by chunks� In Robert Berwick� Steven Abney� and

Carol Tenny� editors� Principle�based parsing� Kluwer Academic Publishers� �����

�Abney� ����a� Steven Abney� Dependency Grammars and Context�Free Grammars�

Manuscript� University of Tubingen� March �����

�Abney� ����b� Steven Abney� Partial Parsing� Tutorial given at ANLP���� Stuttgart�

October �����

�Alshawi and Carter� ����� Hiyan Alshawi and David Carter� Training and scaling

preference functions for disambiguation� Computational Linguistics� ��
��� �����

�Alshawi et al�� ����� Hiyan Alshawi� David Carter� Richard Crouch� Steve Pullman�

Manny Rayner� and Arnold Smith� CLARE � A Contextual Reasoning and Cooperative

Response Framework for the Core Language Engine� SRI International� Cambridge�

England� �����

�Anttila� ����� A� Anttila� Constraint Grammar� A Language�Independent System for

Parsing Unrestricted Text� chapter How to recognize subjects in English� Mourton de

Gruyter� Berlin and New York� �����

���

�Appelt et al�� ����� D� Appelt� J� Hobbs� J� Bear� D� J� Israel� and M� Tyson� FASTUS�

a �nite�state processor for information extraction from real�world text� In Proceedings

of IJCAI���� Chambery� France� September �����

�Bahl et al�� ����� L�R� Bahl� J�K� Baker� F� Jelinek� and R�L� Mercer� Perplexity � a

measure of the di�culty of speech recognition tasks� Program of the �	th Meeting of the

Acoustical Society of America J� Acoust� Soc� Am�� ��� �����

�Baldwin et al�� ����� Breckenridge Baldwin� Christine Doran� Je�rey Reynar� Michael

Niv� B� Srinivas� and Mark Wasson� EAGLE� An Extensible Architecture for General

Linguistic Engineering� Manuscript� Department of Computer and Information Sciences�

University of Pennsylvania� �����

�Baldwin� ����� F� Breckenridge Baldwin� CogNIAC � A Discourse Processing Engine�

PhD thesis� Department of Computer and Information Sciences� University of Pennsyl�

vania� �����

�Black et al�� ����a� Ezra Black� R� Garside� and G� Leech
eds��� Statistically�driven

computer grammars of English� The IBM
Lancaster approach� Rodopi� Amsterdam�

�����

�Black et al�� ����b� Ezra Black� Fred Jelinek� John La�erty� David M� Magerman� Robert

Mercer� and Salim Roukos� Towards History�based Grammars� Using Richer Models

for Probabilistic Parsing� In Proceedings of the ��st Conference of Association of

Computational Linguistics� �����

�Bod� ����� Rens Bod� Enriching Linguistics with Statistics� Performance Models of Nat�

ural Language� PhD thesis� ILLC Disertation Series �������� University of Amsterdam�

����� ftp���ftp�fwi�uva�nl�pub�theory�illc�dissertations�DS�������text�ps�gz�

�Brill and Resnik� ����� E� Brill and P� Resnik� A rule�based approach to prepositional

phrase attachment disambiguation� In Proceedings of the International Conference on

Computational Linguistics �COLING ��	�� Kyoto� Japan� �����

���

�Brill� ����� Eric Brill� Automatic grammar induction and parsing free text� A

transformation�based approach� In Proceedings of the ��st Annual Meeting of the

Association for Computational Linguistics� Columbus� Ohio� �����

�Briscoe and Carroll� ����� Ted Briscoe and John Carroll� Developing and Evaluating a

Probabilistic LR Parser of Part�of�Speech and Punctuation Labels� In Proceedings of

the Fourth International Workshop on Parsing Technologies �IWPT�
�� Prague� Czech

Republic� �����

�Briscoe et al�� ����� Ted Briscoe� John Carroll� Nicoletta Calzolari� Stefano Federici�

Simonetta Montemagni� Vito Pirrelli� Greg Grefenstette� Antonio San�lippo� Glenn

Carroll� and Mats Rooth� Shallow parsing and knowledge extraction for language

engineering
 work package �� Speci�cation of Phrasal Parsing� Pre�nal Report� May

�����

�Carroll� ����� John Carroll� Practical Uni�cation�based Parsing of Natural Language�

University of Cambridge� Computer Laboratory� Cambridge� England� �����

�Chandrasekar and Srinivas� ����� R� Chandrasekar and B� Srinivas� Using syntactic

information in document �ltering� A comparative study of part�of�speech tagging and

supertagging� Technical Report IRCS ��
��� University of Pennsylvania� �����

�Chandrasekar et al�� ����� R� Chandrasekar� Christine Doran� and B� Srinivas� Motiva�

tions and methods for text simpli�cation� In Proceedings of the Sixteenth International

Conference on Computational Linguistics �COLING ����� Copenhagen� Denmark�

August �����

�Chomsky� ����� Noam Chomsky� A Minimalist Approach to Linguistic Theory� MIT

Working Papers in Linguistics� Occasional Papers in Linguistics No� �� �����

�Church� ����� Kenneth Ward Church� A Stochastic Parts Program and Noun Phrase

Parser for Unrestricted Text� In �nd Applied Natural Language Processing Conference�

Austin� Texas� �����

���

�Chytil and Karlgren� ����� Michal P� Chytil and Hans Karlgren� Categorial grammars

and list automata for strata of non�cf languages� In Wojciech Buszkowski� Witold Mar�

ciszewski� and Johan van Benthem� editors� Categorial Grammar� Benjamin Cummings�

Philadelphia and Amsterdam� �����

�Cole et al�� ����� Ronald A� Cole� Joseph Mariani� Hans Uszkoreit� Annie Zaenen� and

Victor Zue� Survey of the state of the art in human language technology� �����

http���www�cse�ogi�edu�CSLU�HLTsurvey��

�Collins and Brook� ����� Michael Collins and James Brook� Prepositional phrase attach�

ment through a backed�o� model� In Proceedings of the Third Workshop on Very Large

Corpora� MIT� Cambridge� Boston� �����

�Collins� ����� Michael Collins� A New Statistical Parser Based on Bigram Lexical

Dependencies� In Proceedings of the �	th Annual Meeting of the Association for

Computational Linguistics� Santa Cruz� �����

�Committee� ����� The MUC�� Program Committee� The information extraction task

de�nition� v���� In Proceedings of the Sixth Message Understanding Conference� �����

�Croft et al�� ����� Bruce W� Croft� Howard R� Turtle� and David D� Lewis� The use of

phrases and structured queries in information retrieval� In Proceedings of the ��th Annual

International Conference on Research and Development in Information Retrieval �SIGIR

����� pages ��
��� Chicago� USA� �����

�Doran and Srinivas� ����� Christine Doran and B� Srinivas� A Wide�Coverage CCG

Parser� In Proceedings of the �rd TAG� Conference� Paris� France� �����

�Doran et al�� ����� Christy Doran� Dania Egedi� Beth Ann Hockey� B� Srinivas� and

Martin Zaidel� XTAG System � AWide Coverage Grammar for English� In Proceedings of

the ��th International Conference on Computational Linguistics �COLING ��	�� Kyoto�

Japan� August �����

�Doran et al�� ����� Christine Doran� Michael Niv� Breckenridge Baldwin� Je�rey Reynar�

and B� Srinivas� Mother of Perl� A Multi�tier Pattern Description Language� Manuscript�

Department of Computer and Information Sciences� University of Pennsylvania� �����

���

�Doran� ����� Christy Doran� Punctuation in Quoted Speech� In Proceedings of the

SIGPARSE��� Santa Cruz� California� June �����

�Frakes and Baeza�Yates� ����� W� B� Frakes and R� S� Baeza�Yates� Information Re�

trieval� Data Structures and Algorithms� Prentice Hall� �����

�Fujisaki et al�� ����� T� Fujisaki� Jelinek J� Cocke� E� Black� and T� Nishino� A

Probabilistic Parsing Method for Sentence Disambiguation� In Proceedings of the �st

Annual International Workshop of Parsing Technologies� Pittsburgh� �����

�Gazdar et al�� ����� G� Gazdar� E� Klein� G� Pullum� and I� Sag� Generalized Phrase

Structure Grammar� Harvard University Press� Cambridge� Massachusetts� �����

�Gee and Grosjean� ����� James Gee and Fran&cois Grosjean� Performance structures� a

psycholinguistic and linguistic appraisal� Cognitive Psychology� ������
���� �����

�Good� ����� I�J� Good� The population frequencies of species and the estimation of

population parameters� Biometrika 	� �� and 	�� �����

�Grishman� ����� Ralph Grishman� Where�s the Syntax' The New York University MUC�

� System� In Proceedings of the Sixth Message Understanding Conference� Columbia�

Maryland� �����

�Gross� ����� Maurice Gross� Lexicon�Grammar and the Syntactic Analysis of French�

In Proceedings of the ��th International Conference on Computational Linguistics

�COLING��	�� Stanford� California� �����

�Grover et al�� ����� Claire Grover� John Carroll� and Ted Briscoe� The Alvey Natural

Language Tools Grammar� �th release edition� �����

�Harris� ����� Zelig Harris� String Analysis of Language Structure� Mouton and Co�� The

Hague� Netherlands�� �����

�Harrison et al�� ����� P� Harrison� S� Abney� D� Fleckenger� C� Gdaniec� R� Grishman�

D� Hindle� B� Ingria� M� Marcus� B� Santorini� and T� Strzalkowski� Evaluating

syntax performance of parser�grammars of English� In Proceedings of the Workshop

on Evaluating Natural Language Processing Systems� ACL�� �����

���

�Hindle and Rooth� ����� Don Hindle and Mats Rooth� Structural ambiguity and lexical

relations� In ��th Meeting of the Association for Computational Linguistics� Berkeley�

CA� �����

�Hindle� ����� D� Hindle� Deterministic Parsing of Syntactic Non�Fluencies� In Proceedings

of the ��st Annual Meeting of the Association for Computational Linguistics� �����

�Hindle� ����� D� Hindle� Prediction of lexicalized tree fragments in text� In ARPA

Workshop on Human Language Technology� March �����

�Hobbs and Bear� ����� Jerry R� Hobbs and John Bear� Two Principles of Parse

Preference� In Current Issues in Natural Language Processing� In Honor of Don Walker�

Giardini with Kluwer� �����

�Hobbs et al�� ����� Jerry Hobbs� Douglas E� Appelt� John S� Bear� Mabry Tyson� and

David Magerman� The TACITUS system� The MUC�� experience� Technical report�

AI Center� SRI International� ��� Ravenswood Ave�� Menlo Park� CA ������ October

�����

�Hobbs et al�� ����� Jerry Hobbs� Doug Appelt� John Bear� David Israel� and W� Mary

Tyson� FASTUS� a system for extracting information from natural language text�

Technical Report ���� SRI� �����

�Hobbs et al�� ����� Jerry R� Hobbs� Douglas E� Appelt� John Bear� David Israel� Andy

Kehler� Megumi Kamayama� David Martin� Karen Myers� and Marby Tyson� SRI

International FASTUS system MUC�� test results and analysis� In Proceedings of the

Sixth Message Understanding Conference� Columbia� Maryland� �����

�Jelinek et al�� ����� Fred Jelinek� John La�erty� David M� Magerman� Robert Mercer�

Adwait Ratnaparkhi� and Salim Roukos� Decision Tree Parsing using a Hidden

Derivation Model� In Proceedings from the ARPA Workshop on Human Language

Technology Workshop� March �����

�Jensen et al�� ����� Karen Jensen� George E�Heidorn� and Stephen D� Richardson�

Natural Language Processing� The PLNLP Approach� Kluwer Academic Publishers�

Boston�Dordrecht�London� �����

���

�Jones and Galliers� ����� Karen Sparck Jones and Julia R� Galliers� Evaluating natural

language processing systems � an analysis and review� Number ���� in Lecture notes in

computer science� Lecture notes in arti�cial intelligence� Springer� Berlin � New York�

�����

�Joshi and Hopely� ����� Aravind Joshi and Philip Hopely� A parser from antiquity�

Natural Language Engineering� �
��� �����

�Joshi and Kulick� ����� Aravind Joshi and Seth Kulick� Partial proof trees as building

blocks for a categorial grammar� Linguistics and Philosophy� ����� To appear�

�Joshi and Schabes� ����� Aravind Joshi and Yves Schabes� Handbook of Formal

Lanaguages and Automata� chapter Tree�Adjoining Grammars� Springer�Verlag� Berlin�

�����

�Joshi and Srinivas� ����� Aravind K� Joshi and B� Srinivas� Disambiguation of Super

Parts of Speech
or Supertags�� Almost Parsing� In Proceedings of the ��th International

Conference on Computational Linguistics �COLING ��	�� Kyoto� Japan� August �����

�Joshi et al�� ����� Aravind K� Joshi� L� Levy� and M� Takahashi� Tree Adjunct Grammars�

Journal of Computer and System Sciences� �����

�Joshi et al�� ����� Aravind K� Joshi� K� Vijay�Shanker� and David Weir� The Convergence

of Mildly Context Sensitive Grammatical Formalisms� In Peter Sells� Stuart Shieber�

and TomWascow� editors� Foundational Issues in Natural Language Parsing� MIT Press�

Cambridge� Massachusetts� �����

�Joshi� ����� Aravind K� Joshi� Advances in Documentation and Library Science� volume

III� Part �� chapter Computation of Syntactic Structure� Interscience Publishers� Inc��

New York� �����

�Joshi� ����� Aravind K� Joshi� Tree Adjoining Grammars� How much context Sensitivity

is required to provide a reasonable structural description� In D� Dowty� I� Karttunen�

and A� Zwicky� editors� Natural Language Parsing� pages ���
���� Cambridge University

Press� Cambridge� U�K�� �����

���

�Joshi� ����� A� K� Joshi� An introduction to tree adjoining grammars� In A� Manaster�

Ramer� editor� Mathematics of Language� John Benjamins� Amsterdam� �����

�Jurafsky et al�� ����� D� Jurafsky� Chuck Wooters� Jonathan Segal� Andreas Stolcke� Eric

Fosler� Gary Tajchman� and Nelson Morgan� Using a Stochastic CFG as a Language

Model for Speech Recognition� In Proceedings� IEEE ICASSP� Detroit� Michigan� �����

�Kaplan and Bresnan� ����� Ronald Kaplan and Joan Bresnan� Lexical�functional Gram�

mar� A Formal System for Grammatical Representation� In J� Bresnan� editor� The Men�

tal Representation of Grammatical Relations� MIT Press� Cambridge� Massachusetts�

�����

�Karlsson et al�� ����� Karlsson� Voutilainen� Heikkil(a� and Anttila� Constraint Grammar�

A Language�Independent System for Parsing Unrestricted Text� Mourton de Gruyter�

Berlin and New York� �����

�Katz� ����� Slava M� Katz� Estimation of probabilities from sparse data for the language

model component of a speech recognizer� IEEE Transactions on Acoustics� speech and

SignalProcessing� ��
������
���� �����

�Kenji and Ward� ����� Kita Kenji and Wayne Ward� Incorporating LR Parsing into

SPHINX� In Proceedings� IEEE ICASSP� �����

�Kroch and Joshi� ����� Anthony S� Kroch and Aravind K� Joshi� The Linguistic

Relevance of Tree Adjoining Grammars� Technical Report MS�CIS������� Department

of Computer and Information Science� University of Pennsylvania� �����

�Kuno� ����� S� Kuno� Harvard predictive analyzer� In David G�Hays� editor� Readings in

automatic language processing� American Elsevier Pub� Co�� New York� �����

�La�erty et al�� ����� John La�erty� Daniel Sleator� and Davy Temperley� Grammatical

Trigrams� A Probabilistic Model of Link Grammar� Technical Report CMU�CS��������

School of Computer Science� Carnegie Mellon University� �����

�Lin� ����� Dekang Lin� A Dependency�based Method for Evaluating Broad�Coverage

Parsers� In Proceedings of IJCAI���� Montreal� Canada� August �����

���

�Lin� ����� Dekang Lin� Evaluation of principar with the susanne corpus� In Proceedings

of the Workshop on Robust Parsing at European Summer School in Logic� Language and

Information� Prague� August �����

�MacDonald et al�� ����� Maryellen MacDonald� Neal Pearlmutter� and Mark Seidenberg�

The lexical nature of syntactic ambiguity resolution� Psychological Review� �������
����

�����

�Magerman� ����� David M� Magerman� Statistical Decision�Tree Models for Parsing� In

Proceedings of the ��rd Annual Meeting of the Association for Computational Linguistics�

�����

�Marcken� ����� Carl G� De Marcken� Parsing the LOB Corpus� In ��th Meeting of the

Association for Computational Linguistics� �����

�Marcus et al�� ����� Mitchell M� Marcus� Beatrice Santorini�

and Mary Ann Marcinkiewicz� Building a Large Annotated Corpus of English� The

Penn Treebank� Computational Linguistics� ��������
���� June �����

�Marcus� ����� Mitchell P� Marcus� A theory of syntactic recognition for natural language�

Cambridge Massachusetts and London� England� The MIT Press� �����

�McDonald� ����� David McDonald� Sparser� In Text�based Intelligent Systems� Hillsdale�

N�J� � L� Erlbaum Associates� �����

�Minton� ����� Steve Minton� Quantitative Results concerning the utility of Explanation�

Based Learning� In Proceedings of �th AAAI Conference� pages ���
���� Saint Paul�

Minnesota� �����

�Mitchell et al�� ����� Tom M� Mitchell� Richard M� Keller� and Smadar T� Kedar�Carbelli�

Explanation�Based Generalization� A Unifying View� Machine Learning �� ����
���

�����

�Nagao� ����� Makoto Nagao� Varieties of Heuristics in Sentence Processing� In Current

Issues in Natural Language Processing� In Honour of Don Walker� Giardini with Kluwer�

�����

���

�Neumann� ����� G(unter Neumann� Application of Explanation�based Learning for

E�cient Processing of Constraint�based Grammars� In ��th IEEE Conference on

Arti�cial Intelligence for Applications� San Antonio� Texas� �����

�Ney et al�� ����� Herman Ney� Ute Essen� and Reinhard Kneser� On the estimation of

�small� probabilities by leaving�one�out� IEEE Transactions on Pattern Analysis and

Machine Intelligence� ��
��� �����

�Oepen et al�� forthcoming� Stephan Oepen� Klaus Netter� and Judith Klein� TSNLP

� Test Suites for Natural Language Processing� CSLI Lecture Notes� forthcoming�

http���cl�www�dfki�uni�sb�de�tsnlp��

�Pereira and Riley� ����� Fernando C�N� Pereira and Michael D� Riley� Speech recognition

by composition of weighted �nite automata� In Proceedings of the ARPA Workshop on

Human Language Technology Workshop� March �����

�Pollard and Sag� ����� Carl Pollard and Ivan A� Sag� Information�Based Syntax and

Semantics� Vol �� Fundamentals� CSLI� �����

�Rambow and Joshi� ����� O� Rambow and A�K� Joshi� Dependency parsing for phrase�

structure grammars� University of Pennsylvania� �����

�Rambow et al�� ����� Owen Rambow� David Weir� and K� Vijay�Shanker� D�Tree

Grammars� In Proceedings of the ��rd Conference of Association of Computational

Linguistics� �����

�Ramshaw and Marcus� ����� Lance Ramshaw and Mitchell P� Marcus� Text chunking

using transformation�based learning� In Proceedings of the Third Workshop on Very

Large Corpora� MIT� Cambridge� Boston� �����

�Ratnaparkhi et al�� ����� A� Ratnaparkhi� J� Reynar� and S� Roukos� A maximum entropy

model for prepositional phrase attachment� In Proceedings of ARPA Workshop on

Human Language Technology� Plainsboro� NJ� March �����

���

�Ratnaparkhi� ����� Adwait Ratnaparkhi� A Maximum Entropy Part�of�speech Tagger�

In Proceedings of the Emperical Methods in Natural Language Processing Conference�

Philadelphia� �����

�Rayner� ����� Manny Rayner� Applying Explanation�Based Generalization to Natural

Language Processing� In Proceedings of the International Conference on Fifth Genera�

tion Computer Systems� Tokyo� �����

�Resnik� ����� Philip Resnik� Probabilistic tree�adjoining grammar as a framework for

statistical natural language processing� In Proceedings of the Fourteenth International

Conference on Computational Linguistics �COLING ����� Nantes� France� July �����

�Robinson� ����� Jane Robinson� Perspectives on parsing issues� In Proceedings of ACL

���� pages ��
���� �����

�Roche� ����� Emmanuel Roche� Analyse syntaxique transformationelle du francais par

transducteurs et lexique�grammaire� PhD thesis� Universite Paris ��� �����

�Salton and McGill� ����� Gerard Salton and Michael J� McGill� Introduction to Modern

Information Retrieval� McGraw�Hill� New York� �����

�Sampson et al�� ����� G� Sampson� R� Haigh� and E� Atwell� Natural language analysis

by stochastic optimization� a progress report on project april� Journal of Experimental

and Theoretical Arti�cial Intelligence� �����
���� �����

�Sampson� ����� G� Sampson� SUSANNE� a Doomsday book of English Grammar� In

Corpus�based Research into Language� Rodopi� Amsterdam� �����

�Samuelsson and Rayner� ����� Christer Samuelsson and Manny Rayner� Quantitative

Evaluation of Explanation�Based Learning as an Optimization Tool for Large�Scale

Natural Language System� In Proceedings of the ��th International Joint Conference

on Arti�cial Intelligence� Sydney�Australia� �����

�Samuelsson� ����� Christer Samuelsson� Grammar Specialization through Entropy

Thresholds� In ��nd Meeting of the Association for Computational Linguistics� Las

Cruces� New Mexico� �����

���

�Scha� ����� Remko Scha� Taaltheorie en taalthechnologie� competence en performance� In

Q�A�M� de Kort and G�L�J� Leerdam� editors� Computertoepassingen in de Neerlanistiek�

Almere� Landelijke Verening van Neerlandici� �����

�Schabes and Joshi� ����� Yves Schabes and Aravind K� Joshi� Parsing with Lexicalized

Tree Adjoining Grammar� In M� Tomita� editor� Current Issues in Parsing Technologies�

Kluwer Academic Publishers� �����

�Schabes and Shieber� ����� Yves Schabes and Stuart Shieber� An Alternative Conception

of Tree�Adjoining Derivation� In Proceedings of the ��th Meeting of the Association for

Computational Linguistics� �����

�Schabes et al�� ����� Yves Schabes� Anne Abeill)e� and Aravind K� Joshi� Parsing

strategies with �lexicalized� grammars� Application to Tree Adjoining Grammars�

In Proceedings of the ��th International Conference on Computational Linguistics

�COLING����� Budapest� Hungary� August �����

�Schabes et al�� ����� Y� Schabes� M� Roth� and R� Osborne� Parsing the Wall Street

Journal with the Inside�Outside Algorithm� In Proceedings of the European ACL� �����

�Schabes� ����� Yves Schabes� Mathematical and Computational Aspects of Lexicalized

Grammars� PhD thesis� Computer Science Department� University of Pennsylvania�

�����

�Schabes� ����� Yves Schabes� Stochastic lexicalized tree�adjoining grammars� In

Proceedings of the Fourteenth International Conference on Computational Linguistics

�COLING ����� Nantes� France� July �����

�Sene�� ����� Stephanie Sene�� A relaxation method for understanding spontaneous

speech utterances� In Proceedings� Speech and Natural Language Workshop� San Mateo�

CA� �����

�Shieber and Schabes� ����� Stuart Shieber and Yves Schabes� Synchronous Tree Adjoin�

ing Grammars� In Proceedings of the ��th International Conference on Computational

Linguistics �COLING����� Helsinki� Finland� �����

���

�Sleator and Temperley� ����� Daniel Sleator and Davy Temperley� Parsing English with

a Link Grammar� Technical report CMU�CS�������� Department of Computer Science�

Carnegie Mellon University� �����

�Soong and Huang� ����� Frank K� Soong and Eng�Fong Huang� Fast Tree�Trellis Search

for Finding the N�Best Sentence Hypothesis in Continuous Speech Recognition� Journal

of Acoustic Society� AM�� May �����

�Srinivas and Baldwin� ����� B� Srinivas and Breckenridge Baldwin� Exploiting supertag

representation for fast coreference resolution� In Proceedings of the International

Conference on Natural Language Processing and Industrial Applications �NLP�IA �����

Moncton� Canada� June �����

�Srinivas et al�� ����� B� Srinivas� Christine Doran� and Seth Kulick� Heuristics and

parse ranking� In Proceedings of the �th Annual International Workshop on Parsing

Technologies� Prague� September �����

�Steedman� ����� Mark Steedman� Combinatory Grammars and Parasitic Gaps� Natural

Language and Linguistic Theory� �����
���� �����

�Steedman� ����� Mark Steedman� Surface Structure and Interpretation� MIT Press� �����

�Steedman� ����� Mark Steedman� editor� The Syntactic Interface� MIT Press� Cambridge

Massachusetts and London� England� �����

�T�R� Niesler and P�C� Woodland� ����� T�R� Niesler and P�C� Woodland� A variable�

length category�based n�gram language model� In Proceedings� IEEE ICASSP� �����

�Trueswell and Tanenhaus� ����� John Trueswell and Mike Tanenhaus� Toward a lexicalist

framework for constraint�based syntactic ambiguity resolution� In K� Rayner C� Clifton

and L� Frazier� editors� Perspectives on sentence processing� Lawrence Erlbaum Asso�

ciates� Hillsdale� NJ� �����

�van Harmelen and Bundy� ����� Frank van Harmelen and Allan Bundy� Explanation�

Based Generalization ! Partial Evaluation� Arti�cial Intelligence� ������
���� �����

���

�Vijay�Shanker and Joshi� ����� K� Vijay�Shanker and Aravind K� Joshi� Uni�cation

Based Tree Adjoining Grammars� In J� Wedekind� editor� Uni�cation�based Grammars�

MIT Press� Cambridge� Massachusetts� �����

�Vijay�Shanker� ����� K� Vijay�Shanker� A Study of Tree Adjoining Grammars� PhD

thesis� Department of Computer and Information Science� University of Pennsylvania�

�����

�Vijay�Shanker� ����� K� Vijay�Shanker� Using Descriptions of Trees in a Tree Adjoining

Grammar� Computational Linguistics� ��� �����

�Voutilainen� ����� Atro Voutilainen� Two�level Morphology� A General Computation

Model for Word�form Production and Generation� Publications of the Department of

General Linguistics� University of Helsinki� �����

�Voutilainen� ����� Atro Voutilainen� Designing a parsing grammar� Publications of the

Department of General Linguistics� University of Helsinki� �����

�Waltz� ����� D� Waltz� Understanding line drawings of scenes with shadows� In

P� Winston� editor� Psychology of Computer Vision� MIT Press� �����

�Weischedel et al�� ����� Ralph Weischedel� Damaris Ayuso� Sean Boisen� Heidi Fox� and

Robert Ingria� A New Approach to Text Understanding� In Proceedings� Speech and

Natural Language Workshop� San Mateo� CA� �����

�Weischedel et al�� ����� Ralph Weischedel� Richard Schwartz� Je� Palmucci� Marie

Meteer� and Lance Ramshaw� Comping with ambiguity and unknown words through

probabilistic models� Computational Linguistics� ��������
���� June �����

�XTAG�Group� ����� The XTAG�Group� A Lexicalized Tree Adjoining Grammar for

English� Technical Report IRCS ������ University of Pennsylvania� �����

�Zue et al�� ����� Victor Zue� James Glass� David Godine� Hong Leung� Michael Phillips�

Joseph Polifroni� and Stephanie Sene�� Integration of Speech and Natural Language

Processing in MIT Voyager System� In Proceedings� IEEE ICASSP� �����

���

