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Abstract

This paper presents URA, a programming language for access
control that treats ordinary programming constructs (éngegers
and recursive functions) and authorization logic constrife.g.,
principals and access control policies) in a uniform wayRrA is

based on polymorphic DCC and uses dependent types to permit

assertions that refer directly touRA values while keeping com-
putation out of the assertion level to ensure tractabilitye main
technical results of this paper include fully mechanicaiyified
proofs of the decidability and soundness favsa’s type system,
and a prototype typechecker and interpreter.

1. Introduction

There can be no universal definition of security. Every piacmn-
fidential data and every sensitive resource may have siesdaic-
cess control requirements. At the same time, almost evedemo
computer system stores some private information or prevédser-
vice intended only for certain clients. To ensure that orligveed
principals—human users or other computer systems—carh reac
the protected resources, these access control requirenrargt
be carefully defined and enforced. Asthorization policyspec-
ifies whether a request by a principal to access a resouragdsho
be granted, and eeference monitomediates all access to the re-
source, ensuring that the handling of requests compliels thi
authorization policy.

One significant challenge in building secure systems that en
force access control is that, as the number of resourcesrard-p
pals grows, specifying the authorization policy becomesendtif-
ficult. The situation is further complicated in decentraetlzor dis-
tributed settings, where resources may have different mvaed
the principals may have non-trivial trust relationshipsic® the
policies become sufficiently complex, understanding whpcin-
cipals may access which resources is itself a daunting @mabl
Consequently, reference monitors that enforce such pslialso

rization logics is that proofs of propositions in the logencact as
capabilitiesthat provide the reference monitor with evidence that
a given request should be granted. As proposed by Appel dnd Fe
ten [6], proof-carrying authorizatiorplaces the burden of validat-
ing the authorization decision on the principal requestngess.
Moreover, the explicit proofs can be logged for future audit
which can help track down bugs in the authorization poli][3
Authorization logics are rich and concise languages focspe
ifying access control policies, abstracting away low-ledetails
like authentication and cryptography. Unfortunately,séhéogics
are rather removed from the languages used to write softthiate
must respect the access control policies; tools like typelodrs that
help the programmer write correct programs will not necélysa
help the programmer make correct use of an authorizatioic.log
This is especially problematic in the case of a referenceitoon
which has the task of enforcing policies written in an auittetion
logic and must be considered part of the trusted computisg.ba
This paper presents the design ob®a, a domain-specific
programming language that incorporates a constructiieosiat-
tion logic based on DCC [4, 2] as part of its type system. Rathe
than mediating between programs and policy statementsewrit
in two distinct languages, URA usesdependent type® permit
policy statements that refer directly tauRA values (like integers
or datatype constructors). For example, a funcptayFor, which
plays a song on behalf of a principap, might have the following
type, which requires a proof that principgals permitted to play:

(s:Song — (p:prin) — pf (self says MayPlayp s) — Unit.

As indicated by this type, BRA programs may construct and ma-
nipulate authorization proofs just as they might other progval-
ues, and the BRA programming model provides notions of princi-
pals ), authority 6elf), and policy assertiondVayPlay) in ad-
dition to standard functional language features like higiveler
functions, polymorphism, and recursive algebraic datdyjn ad-
dition, security-relevant implementation details—like tcreation

become complex, which is not a desired situation when (as in a of audit trails or the cryptographic interpretation of eémtlogi-

conventional access control scheme) the reference masifart
of the trusted computing base.

To help mitigate this complexity, researchers have prapose
authorization logicsthat facilitate reasoning about principals, re-
quests, and policy assertions [5, 14, 20, 1, 2]. Severalesfethog-
ics have been concerned with specifying access contratipslin
distributed settings [44, 6, 11, 21, 20]. Part of the appéalutho-

cal statements—can be handled automatically with littledgro-
grammer intervention.

Because policy assertions are part affa’s type system, de-
ciding whether to grant access amounts to typecheckingd phe
ject. This can be performed byukA’s runtime, removing individ-
ual reference monitors from the trusted computing baseebar,
any program written in ARA benefits from the immediate avail-



ability of the authorization logic; many misbehaving prags can
now be ruled out at compile time. Finally, DCC, on whicluRa
is based, has been shown to be useful in representing ottmes fo
of language-based security, such as the type-based emfentc®f
information-flow properties as found in Jif [30] or FlowCaj8#];
AURA thus represents a promising avenue for further work in con-
necting these concepts.

The main contributions of this paper are as follows:

¢ We present the design of corauRA, a language with support
for first-class, dependent authorization policies.

e We give a fully machine-checked proof of type soundness for
the core language.

¢ We also give a fully machine-checked proof of decidability o
typechecking for ARA.

The potential design space of dependently-typed languages
is quite large, and there are many challenges in striking @ go
balance between expressiveness and tractability of tyohahg.
AURA’s design strives for simplicity, even at the cost of express
ness. This section describes/Ra’s design, concentrating on the
features relevant to access control.

As alluded to by the functioplayForin the introduction, we use
an AURA implementation of a jukebox server as a running example
throughout this paper. The full example is given in Sectipthg
rest of this section will illustratplayFor in more detail.

2.1 AURA asan authorization logic

We first turn our attention to BRA’s assertions, which are based
on the polymorphic core calculus of dependency (DCC) [4]iand
particular on DCC's interpretation as an authorizatioridgg].* In
both DCC and AIRA, an indexed monashys associates proposi-

¢ We describe a prototype implementation of a typechecker and tions with principals. The statemeatsays P holds when a proof

interpreter and give sample programs.

Typical dependently typed languages (see Section 6) uss typ
to encode precise program specifications. Our goal is éiffer
ent; AURA uses dependent types to naturally connect data with
proofs for run-time policy enforcement. Compared with aveon
tional dependently typed languagep®Ra adds some features—
assertion types, digitally signed objects as proofs stiye and pf
modalities—and restricts or removes others—only valueg apa
pear in dependent types. The result is a system tuned fondgna
authorization but unsuitable for, e.g., static progranifieation.

Our proof of soundness is implemented in Coq and encom-
passes all of ARA’s features, including higher order and poly-
morphic types, mutually recursive datatypes and propmussti a
restricted form of dependent types, and authorization ferod/e
believe that the mechanized proof is of independent vakipags
of the proof may be reused in other settings.

for P is known, whera says P logically follows from monad oper-
ations that we will describe shortly, or when the principalirectly
affirms P. It is critical to note, however, thatsays P does not im-
ply P. We augment DCC with dependent types, which allow prin-
cipals to assert propositions about data, and with the naristay
andsign, which allow for the aforementioned direct affirmations.

Principals in AJRA, writtena, b, etc. and having typerin, rep-
resent distinct components of a software system. They mag-co
spond to human users or system components such as an ogeratin
system kernel, a particular server, and so on. Formallycjpals
are treated as special values iwma; they are characterized by
their ability to index the family ofays monads.

As ‘asays’ is a monad[41], we can construct a term of type
asays P from a proofp of P using the operatiometurn ap. A
proof encapsulated insays monad cannot be used directly; rather,
the monad’s bind operation, writtefbind p (Ax:P. g)) allows x
to stand in for the proof encapsulated pyand appear in the

The rest of this paper focuses on the novel core features of expression.

AURA. The next section introducesuRA’s programming model
and illustrates its novel features by example. Section 8a/for-
mal account of the core URA language, including its type system
and operational semantics, along with our main technicalltg,
soundness and decidability of typechecking. Section 4ribesc
our prototype implementation. Section 5 gives a largereseshm-
ple demonstrating how BRA’s features work in concert. Section 6
situates AIRA with respect to related work, especially prior work
on authorization logics and languages with dependent tyfpies
nally, Section 7 concludes with a discussion of future aesrfor
extending AJRA.

AURA as we present it is most suitable as a compilation target
for a more convenient surface syntax. As such, we defer the im
portant (and practical) issues of type inference, patteattincom-
pilation, and the like to future work. Additional topics féuture
study include authentication, credential revocation,itierpreta-
tion of AURA values in cryptography, and integration with mixed
language (e.g. C or .NET) systems.

2. Programmingin AURA

AURA is intended to be used to implement reference monitors [12]
for access control in security sensitive settings. A refeeamonitor
mediates access by allowing and denying requests to a oesour
(based, in this case, on policy specified in an authorizdtgit).

It must also log accesses to enablepost factaudit. This latter
point we have covered in detail elsewhere [39] (although iseuss
logging briefly in Section 2.3); in this paper we concentrate
the details of integrating general purpose programmindn \&it
authorization logic.

For example, consider the principasndb, the sondreebird,
and the assertioklayPlayintroduced earlier. The statements

ok : asays (MayPlay a freebird
delegate: bsays ((p:prin) — (s:Song —
(asays (MayPlay p 9) —
(MayPlay p 9)

assert thaa gives herself permission to pldyeebird andb dele-
gates taoa the authority to make any variety MayPlay statement

on his behalf. These two terms may be used to create a proof of
b says (MayPlay a freebird as follows:

bind delegate(Ad: ((p: prin) — (s: Song —
(asays (MayPlay p9) —
(MayPlay p $).
return b (d a freebird oR)

Such a proof might have direct utility—it could be passedhi® t
playFor function if self is b—or it might become part of a larger
chain of reasoning.

In addition to uses ofeturn, AURA allows for the introduction
of proofs ofa says P without corresponding proofs & by provid-
ing a pair of constructsay andsign, that represent a principal’s
active affirmation of a proposition. The valsign(a, P) has type
asays P; intuitively we may think of it as a digital signature using
a’s private key on propositioR. Such a value is intended to have a
stable meaning as it is passed throughout a distributedrsayst

1 AURA is most similar to the cut-down variant of DCC called CDD [3].
Full DDC, as opposed to ¥rA and CDD, features a relaxed typing rule for
bind and admits type coercions unsuitable for access control.



Only the principala—or, equivalently, programs with access
to a's private key—should be able to create a term of the form
sign(a, P). We thus prohibit such terms from appearing in source
programs and introduce the related tesap P, which represents
an effectful computation that uses the runtime’s curretti@uity—
that is, its private key—to sign propositiéh\When executeday P
generates a fresh valsign(self, P), whereself is a distinguished
principal representing the current runtime authority.

It is worth noting that a principal can assert any propositio

able can be used in non-trivial ways. This turns out to be ghaa
ensure the decidability of érRA’s type system.

AURA offers a type-refining equality test atomic values—
for instance, principals and booleans—as well as a dynaast c
between objects of equivalent types, which prove necedsary
certain equalities that arise only at runtime. For exampleen
typecheckingf self = a then e; else eq, the fact thaself = a is
automatically made available while typecheckinddue to the fact
that prin is an atomic type), and hence proofs of tye# says P

evenFalse Because assertions are confined to the monad—thankscan be cast to type says P and vice-versa.

to the non-interference property of DCC—such an assertan ¢
do little harm apart from making that particular princigatwn
assertions inconsistent. In practice, it is useful to retstihe kinds
of assertions that various principals can make, augriori, AURA
requires no such constraints.

The concept of a program’s runtime authority already hag-a na
ural analog in the operating system world—a UNIX process, fo
example, has an associated user ID that often, but not always
responds to the user who started the process. In a morebdistli
setting, running under the authority @fcan indeed be represented
by possession ad’s private key. In such a setting objects of the
formsign(a, P) can be represented by actual digital signatures, and
principal identifiers—which, in ARA, are first class values of type
prin—can be thought of as public keys.

The restriction of authority to a single principal is only fm-
plicity’s sake; although syntax would need to be changething
in our development would conflict with a more complex notidn o
authority. AURA currently provides no means tansferring au-
thority, in effect disallowing programs from directly maniating
private keys; this preventsURA programs from creating new prin-
cipals (i.e., key pairs) at runtime but also trivially disals the ac-
cidental disclosure of private keys. Wer@Ra to be extended with
support for dynamically generated principals, the additbinfor-
mation flow tracking could assist in ensuring that privatgsketay
sufficiently private.

2.2 Authorization proofs and dependent types

By defining assertions as types and proofs as terms we argytaki
advantage of the well-known Curry-Howard Isomorphism 4,
between logic and programming languages. One benefit taphis
proach is that ARA programs use the same constructs to manip-
ulate both data and proofs. More critically it provides—aigpen-
dent typing, which allows types to mention terms—an elegayt

for access control statements to mention data. For instamtlee
example given earliefreebirdis data that appears at the assertion
(i.e. type) level. The type signature for the functiglayFor in the
introduction is another example of such dependency.

AURA incorporates dependent types directly—in contrast to, for
example, using GADTSs [33] or static equality proofs [36] t;ms
ulate the required dependencies. Such an approach allighst
forward use of data at the type level and avoids replicatioth®
same constructs in both static and dynamic form, but uncainsd
use of dependent types can quickly lead to an undecidabiegtyp
judgment. Moreover, care must be taken to separate effectio-
putations from pure proof objects.

Much like CIC [18], AURA has separate universd@gpe and
Prop, with the constantdype and Prop themselves being clas-
sified by Kind. The previously mentioned assertiMayPlay, for
instance, would be given the assertion typ@ — Song — Prop.
Unlike CIC, both types of kind'ype and propositions of kinérop
describe data that may be available at runtime. Propositioow-
ever, are required to be completely computation-free: gsitiipns
never reduce and URA does not employ type-level reduction dur-
ing typechecking, meaning that only dependencies on vdlies
well-formed normal forms) for which equality comparisoraisil-

The distinction betweefype and Prop is also illustrated by
the previously introduceday andsign. On the one handsay P
certainly belongs inType’s universe. We intend it to be reduced
by our operational semantics—and this reduction is an fle@f
trivial) computation dependent on a program’s runtime axit
On the other handign(a, P) should be of type: says P, which,
like P, is of kind Prop. To solve this dilemma we introduce the
modality pf : Prop — Type, allowing us to givesay P the typepf
(self says P) of kind Type. The pf modality comes equipped with
its own bind andreturn operations, allowing proofs to be manip-
ulated by computations while keeping the worlds of comporat
and assertions separate.

AURA’s dependent types also address something that might
have seemed odd about our cryptographic interpretatiomeahys
monad, namely that one most often thinks of digitally sigrdata,
whereasign(a, P) signs only an assertion. With dependent types,
however, this issue evaporates, as an assertion can refaatever
data might be endorsed. We find this design compelling, Isecau
digital signature on raw data does not necessarily have sibden
meaning; signing only propositions ensures that the sigiaea is
attributed with some semantics, just as, for example, aighlys
signature on a contract will indicate whether the signeraigypto
the contract or merely a witness.

Our previous work [39] addressed only tReop fragment of
AURA; it did not consider th@ype level constructs necessary for
programming. This paper presents a complete programmirtgino
that includes recursive datatypes, constructs such as thedality
and say operator, and dynamic type refinementifrstatements,
which are absent from our previous work. The new additiortbéo
language (particularly recursive datatypes) signifigacdimplicate
the metatheory.

2.3 Auditingin AURA

Passing proofs at runtime is also useful for after the faditang
of AURA programs. The full details are given elsewhere [39] but
we note that, when full proofs are logged for every resource a
cess, it becomes possible to deterntiog/access was granted at a
very fine granularity. This is of great importance when therih of
some institutional policy is not properly reflected in théuat rules
enforced by a software system—for example, an auditor camex
ine the proof that allowed an unwanted access to take plade an
determine whether and where authority was improperly deéely

These guarantees can be made as long as the interface to the
resources of interest is sufficiently rich: we can simplyrdechat
every interface function—that is, a function that wrapsvedolevel
operating system call—must write its arguments to the Idweré
are no constraints on what the rest of the reference monigrdn
other than that it must respect this interface; it is not jiedo in-
advertently add a path through the program that causeditisnt
information to be logged. This is in keeping wittuRA’s general
philosophy of resilience toward programmer mistakes.

Returning toplayFor, let us assume that there exists a native
functionrawPlayFor: Song— Unit that is not security-aware and
hence is not available to the programmer. We define the auderf



functionplayFor as simply
As:Song Ap: prin. Aproof: pf (self says MayPlayp s).
rawPlayFors.

BecauseplayFor is an interface function—i.e., because it has ac-
cess torawPlayFor—its arguments will automatically be logged,

rest of the paper, we use metavariable conventions that ritake
easier to recall constraints placed on a term by the typeisyst
a ranges over principald? ranges over propositiong,ranges over
proofs,e ranges over program expressions, arsfands for values.
All of these metavariables are synonymous wittvhich we use to
indicate syntactic objects of any flavor. Th&Ra-specific syntax

and because the access control policy is entirely encoded injs given by:

playFor's signature, the log will automatically contain everyiin
an auditor needs to determine precisely how any song was-auth
rized to be played.

3. TheAuRraA Corelanguage

This section presents the main technical contributionkisfgaper,
namely a formal description of theURA core language, its type
system, operational semantics, and the correspondingfspaio
type soundness and decidability of typechecking.

We adopt the design philosophy of elaboration-style seitant
(as used, for example, by Lest. al [28]): the AURA intermedi-
ate language is intended to make typechecking as expligpbss
sible. Following this principle, our design eschews compat-
tern matches, equality tests over complex values, andéihpésts.
Our goal was to cleanly divide the compiler into two parts: an
elaboration phase that uses inference, possibly with $t&giand
programmer-supplied hints, to construct an internal regmeation
that makes all type information explicit; and a compilatjgmse
that processes the fully elaborated intermediate reptatsem into
executable code.

3.1 AURA coresyntax

As described above, URA is a call-by-value polymorphic lambda
calculus. It consists of a “term-level” programming langea
(whose expressions are classified by types of Kipple) for writ-
ing algorithms and manipulating data and a “proof-leveBeation
language (whose expressions are classified by proposiifdasd
Prop) for writing proofs of access control statements. These two
languages share many featuresapstraction, application, con-
structors, etc.) and, because of dependent types, prigpssand
types may both mention terms of either sort. To simplify threspn-
tation of AURA, it makes sense to unify as many of these constructs
as possible. We thus adopt a lambda-cube style presenfatipn
that uses the same syntactic constructs for terms, progiest
and propositions. Different categories are distinguidiethe type
system as necessary. This approach also has the appeahty gre
reducing the number of objects in the language, which sfiapli
both the metatheory and implementation. Our design wasfisign
cantly influenced by the Henk intermediate language [25]jcivh
also adopts this compact representation.

The lambda-cube terms of thauRA core syntax are given by:

Terms t = x |ctr]| ...
| AT:t1. to | t1t2 | (:E:t1)—>t2
| match ¢1 t2 with {b} | <t1 :t2>
Branches b ::= - | blctr =t

Here, z ranges over variables, aradr ranges over programmer-
defined constructors created using datatype declaratisndea
scribed below. In addition to the standard lambda abstmacti
application, and dependent arrowsuma also has a pattern
matching construct and an explicit typecast. In the exjwass
match ¢ t2 with {b}, ¢1 is the term under analysig; is the
return type, and is a list of branches thdt is matched against.
Type annotationi> ensures that typechecking is straightforward
even when the set of branches is empty. The explicit ¢ast ¢t2)
ensures (safely) that be considered to have type.

To express and reason about access controR AAextends the
core syntax above with additional terms. Here, and througtie

t ::= ... | Type | Prop | Kind
prin | asaysP | pf P
self | sign(a,P) | say P
returns a p | binds e e2
return, p | bind, e1 ez

if v1 = v2 then ey else e

3.2 Typechecking AURA
AURA’s type system contains the following judgments:

Well-formed signature Sk o

Well-formed typing environment S+ E

Well-typed term SEkFt:s

Well-typed match branches S E; s;argst branches: ¢

Figure 1 shows the term typechecking rules. We omit the rules
for typechecking signatures and branches, though we testtweir
salient features below. The full type system can be foundhén t
Appendices and the Cog implementation.

In all these judgmentsS is a signature that declares types,
propositions, and assertions (described in more detaivelA
typing environmentE maps variables to their types as usual, but
it also records the hypothetical equalities among atonmetime
values. In the definition of environments below, a binding~
(v1 = v2):t indicates that values; andwv. have typet, and that
the run-time values of; andv, are equal.

| Ejz:t | E;z~ (v = v2)it

Environments E

3.3 Signatures: data declarations and assertions

Programmers can define bundles of mutually recursive dzaty
and propositions in ARA just as they can in other programming
languages. A signaturg collects together these data definitions
and, as a consequence, a well-formed signature can be tholugh
as map from constructor identifiers to their types. We pregden
formal grammar and typing rules for signatures, which argely
straightforward, in Appendix A; here we explain signatuves
examples.

Data definitions may be parameterized. For example, thd-fami
iar polymorphic list declaration is written:

data List: Type — Type {
Inil :(t:Type) — Listt
|cons:(t:Type) —t — Listt — Listt

AURA’s type system rules out data declarations that require
nontrivial equality constraints at the type level. For epéan the
following GADT-like declaration is ruled out, sindgad t uwould
imply ¢t = u:

data Bad:Type — Type — Type {
|bad:(t: Type) — Badtt

Logical connectives like conjunction and disjunction can b
encoded using dependent propositions, as in Coq and other ty
based provers. For example:

2|n the Coq development, these constructs are represeriteglamstants
and term application.



SFE

SFE

SEF Type : Kind WFTMTYPE S E T Prop - Kind WFTM-PROP
SFE Sotr) =t SFE E)=t SEx:tiFta:ks ks € {Type, Prop, Kind}
————— WF-TM- ————— WF-TM- WE-TM-ARR
SErcr.¢  WFTM-CTR SEraz.t  WFRTM-RV SEF (z:t1) — t2: ko
SErt:k SExz:ttu:ki SEF (z:u) — ki:ke k€ {Type, Prop,Kind} k2 € {Type,Prop}
WE-TM-ABS

SEF Azt u: (z:t) — k1

S;Ektli

(z:u2) = u SEFt2:u

val(t2) orx ¢ fv(u)

SEF t1ts:

SEle:s s=ctraiaz---an
branchescover S branchestr SE;s; (a1, ---
SEkFs:u SErRt:u wue {Type,Prop}

ty) =
,an) - branches: ¢

WF-TM-APP

{z/t2}u
Sctr) = (z1

(xn i tn) — u

WF-TM-MATCHES

S E + match e t with {brancheg : ¢

SFE

m WEF-TM-PRIN

SEFa:prin SEF P: Prop

SEF a:prin

L WEF-TM-SELF
S EF self : prin
val(a) SEFp: P SEF P:Prop

S EF asays P : Prop WF-TM-SAYS

SEFei:asaysP SEFes:

WF-TM-SAYS-RET

SEF returns a p: asays P
(z:P) — asays@ z ¢ fv(Q)

WF-TM-SAYS-BIND

S EF binds e1 e2 : asays Q

S-Fa:prin S-F P:Prop
S Etsign(a, P) : asays P

WEF-TM-SIGN

SEFR P: Prop

SEF P: Prop
S EF say P : pf selfsays P

WEF-TM-SAY

SEFp: P SEFR P:Prop

m WE-TM-PF

SEkei:pfP SEkes:

WF-TM-PFRET

S EF return, p: pf P
(x:P) = pfQ = ¢ Q)

S EF bind, e1 €2 :

SEFwvi:k SERw:k atomicS val(vi) val(ve)

WF-TM-PFBIND

pf Q@

SEx~(v1 =v2)kter:t SEkFes:t

WF-TM-IF

SEF ifv; =vgtheneg else es : t

SEkle:s

converts Es t

SEF(e:t):t

WF-TM-CAST

Figurel. AURA typing rules

data And:Prop — Prop — Prop {
|both:(p1:Prop) — (p2:Prop) — pl — p2 — And pl p2

AURA’s type system conservatively constraPxop definitions
to be inductive by disallowing negative occurrence$edp con-
structors. Such a restriction is essential for consisteftlye logic,
since otherwise it would be possible to write loops that bihany
proposition, includind-alse Falseitself is definable: it is a propo-
sition with no constructors:

data False:Prop { }

Assertions, like theMayPlay proposition from Section 2, are
uninhabited constants that constr@ebps:

assert MayPlay:prin — Song — Prop

While assertions are similar in flavor to datatypes with nastauic-
tors, there is a key difference. When an empty datatype is scr

type, A says False would follow from A says MayPlay A freebird
In contrast, there is no elimination form for assertionssTheans
that principals may sign assertions without compromisineirt
says monad’s consistency.

3.4 Coreterm typing

Type is the type of computation expressions, d@dp is the type
of propositions. The constattind classifies bothType andProp,
as shown in rules W-Tm-TYPE and WF-TM-PROR (Here and
elsewhere, we use the lowercase word “type” to mean anyifitass
in the type system-RProp and Type are both “types” in this sense.)
The typechecking rules for constructors declared in theasig
ture (WF-TM-CTR) and for free variables (W TM-FV) are com-
pletely standard. More interesting is RAfM-ARR, which states
that the type of an arrow is the type of arrow’s output typee Th
latter is required to be one diype, Prop, or Kind, which rules out

tinized by a match expression, the match may be assigned anynonsensical arrow forms. For examp(e, Type) — Type is legal

type. Hence if we were to defifdayPlayas an empty inductive

whereaqz : Type) — self is not—the former could be the type of



the polymorphic list constructor while the latter doesnéka sense
sinceself is a computation-level value.

The WF-TMm-ABS rule for introducing functions is standard ex-
cept that, as in other lambda-cube like languagesrArestricts
what sorts of abstractions may be created. The argumentutoca f
tion can be a term value, a proof, a type or a proposition. Ehe r
sulting lambda must be typable with an arrow that itself lypet
Type or Prop. These restrictions imply that lambda abstractions
may only be computational functions or proof termsuRa does
not supportType—level lambdas (as seen i),) because doing so
would require support fop-reduction at the type level. Such re-
ductions, while useful for verification, appear superflubese.

The interesting part of the WTm-APPrule is the side condition
requiring either that, is a value Yal(¢2)) or thatu does not depend
onz (z ¢ fv(w)). This restriction has the effect that, whileJRA
seems to be quite liberal with respect to the dependendimseal
by well-formed(x : s) — ¢ terms, the actual dependencies admitted
by the type system are quite simple. For instance, althdugtype
system supports singleton types like S(0), it cannot chdtk®
because the latter type depends on a non-value.

The upshot of these restrictions is that truly dependergstyp

converts E s

converts Es ¢ CONV-SYMM

converts Et ¢ CONV-REFL

converts Es v converts Eu ¢
converts Es t

CONV-TRANS

x~(s=t):keE

converts Es ¢ CoNv-AXIOM

converts Es; t1  converts Ess o
converts E(s1 s2) (t1t2)

CONV-APP

converts Es; ¢;  converts Ess ¢2
converts E(Ax:s1. s2) (Ax:t1. t2)

CONV-ABS

converts Es; t1  converts Ess ¢
converts E((x:s1) — s2) ((z:t1) — t2)

CONV-ARR

Figure2. Conversion

tice, this means that two distributeduRA programs that wish to

AURA depend on values—i.e. terms that cannot reduce. While this exchange proofs need to agree on the signatures used toumtnst

limits the applicability of dependent types for programifieation
tasks, it greatly simplifies the metatheory, since thereipossi-
bility of effectful computations appearing in a type.

Typechecking pattern match expressions is fairly stan(lafmet
TM-MATCHES), though it is a bit intricate due to URA’s support
for a rich class of parameterized recursive datatypes. @rly
pressions that have saturated (fully applied) types candtehad
against. The types of the branches must exhaustively math t
constructors declared in the signature, and any paraméters
the datatype being analyzed are also made available insa&le t

those proofs.

Creatingsign(a, P) requiresa’s authority. AURA models the
authority of a running program with the principal constsuif. The
say P operation creates an object of typeself says P. Intuitively,
this operation creates the signed asserign(self, P) and injects
it as a proof term for further manipulation (seeF\WM-SAY).

AURA uses the constamif : Prop — Type to wrap the ac-
cess control proofs that witness propositions as prograoesa
as shown in the rule W TM-PF. The pf type operates monadi-
cally: return, p injects a proofp into the term level andbind,, al-

branches. Each branch must return an expression of the samdows a computation to compose proofs (rules¥m-PFRET and

type, which is the result type of the entire match expresssamce
datatypes and propositions iruRA may be nullary (have zero con-
structors), typechecking without inference requires thatmatch
expression carry an annotation. The auxiliary definitiond the
judgments used for typechecking the branches themselvebeca
found in Appendix B.

3.5 Principalsand proofs

Principals are an integral part of access control logicd, AORA
treats principals as first-class objects with typ@. The only built-

in principal isself, which represents the identity of the currently
running process (see WTrM-PRIN and WF-TM-SELF); additional
principal identifier constants could be accommodated bynadd
them with typeprin, but we omit such a rule for simplicity’s sake.

As described in Section 2, URA uses the principal-indexed
says monad to express access control policies. The proposition
asays P means that principak has asserted propositioR (ei-
ther directly or indirectly). The expressioaturn, a p introduces
proofs into thex says monad, andind; e; ez allows for reasoning
under the monad. These constraints are shown in rulestM:
SAYS, WF-TM-SAYS-RET and WE-TM-SAYS-BIND. The rules are
adapted from DCC [2], or more properly CDD [3], awRA es-
chews DCC's label lattice in favor of explicit delegation @mg
principals.

The expressiorsign(a, P) witnesses the assertion of propo-
sition P by principal a (WF-TM-SIGN). Sincesign(a, P) is in-
tended to model evidence manufacturedabyithout justification,
it should never appear in a source program. Moreover, sigoed
propositions are intended to be distributed and thus magpesihe
scope of the running BRA program, they are required to be closed.
Note, however, that the declaration signat8raust be available in
whatever context the signature is to be ascribed meaningrale:

WEF-TM-PFBIND). Such a separation between proofs and compu-
tations is necessary to prevent effectful program expoassirom
appearing in a proof term. For example sify P was given type
self says P rather tharpf (self says P), it would be possible to cre-
ate a bogus “proof’Ax : Prop. say z; the meaning of this “proof”
would depend on the authoritge(f) of the program that applied
the proof object.

3.6 Equality and conversion

Some typing rules (e.g. WTM-APP) require checking that two
terms can be given the same type. Satisfying such constriairat

dependently typed language requires deciding when twostarm
equal—a difficult static analysis problem in the best case.

In AURA we address this with a conditional construct. Dynam-
ically, if v1 = v2 then ey else ez steps toe; whenwvy, andwv, are
equal, otherwise the expression steps:4o Statically (rule We-
TM-IF), thethen branch is typed in an environment containing the
static constrainfvi = v2). As we will see shortly, the constraint
may be used to perform safe typecasts. This is an instandeeof t
type refinement problem, well known from pattern matchinigin
guages such as Coq [17], Agda [32], and Epigram [29].

AURA limits its built-in equality tests to inhabitants efomic
types. The built-irprin type is atomic, as is any type defined by a
non-parameterizedype declaration, each of whose constructors
takes no arguments. THest type is not atomic, nor idist nat
(sinceconstakes an argument). However, the followiBgngtype
is atomic:

data Song Type { |freebird Songlironman Song}

In other words, atomic types agein and enumerated types. Our
definition of atomic type is limiting, but we believe it can be
naturally extended to first-order datatypes.



With equalities over atomic types in the context, we can now
consider the issue of general type equality. As in standaasgmta-
tions of the Calculus of Constructions [10] we address typeaéty
in two acts.

Two types in AJRA are considered equivalent when they are re-
lated by the conversion relation. This relation, writtemvertsand
defined in Figure 2, is of course reflexive, symmetric, andsira
tive; the key rule is ©NVv-AXIOM, which uses equality assump-
tions in the environment. For instance, under assumptienself,
term x says P converts toself says P. As equalities only mention
atomic values, conversion will only alter the “value” padtsa
type—convertible types always have the same shape up todembe
ded data values.

AURA contains explicit, safe typecasts. As specified in rule-W
TM-CAST, term (e : T') is assigned typ&’ whenevere’s type is
convertible withT. Many standard presentations of dependently
typed languages use implicit conversions, which may ocoyr a
where in a type derivation, but the explicit cast is appegs it
gives an algorithmic type system. Casts have no run-timeceff
and are simply discarded by our operational semantics.

3.7 Evaluationrules

Figure 3 defines BRA’s operational semantics using a call-by-
value small-step evaluation relation.

Most of the evaluation rules are straightforward. The rute P
BIND is a standard beta reduction for monads. The tesmnP
creates a proof that principatlf has asserted that propositiéh
is true; therefore, it evaluates to an assertion “signedpbgci-
pal self. There are two possibilities in the evaluationibfv; =
ve then ey else es: whenwv; equalsve, it evaluates ta:;, other-
wise it evaluates te>. We define two auxiliary reduction relations
to implement the reduction rule for pattern matching.

We write (v,b) — e to denote the evaluation of a value
against a set of branches. These evaluation rules seaothgththe
list of branches untib matches with the constructor of one of the
branches, at which point the rules focus on the branch anplysup
the body of the branch with the argumentsunThe tricky part
lies in correctly identifying the arguments inand discarding the
type parameters. We writé, ¢,body) +—. (e,n) to denote the
evaluation of the body of the branch wherematches with the
constructore in the branch. Herep is the number of parameters
that should be discarded before the first argumentisfound. For
example, the first parameteat in the valuecons nat 3nil nat) of
type List nat has no computational content; therefore it should be
discarded during the evaluation of pattern matching. Nt the
semantics represents constructors as a pair of the cotstname
¢ and its number of type parameters. For instance, in the tefini
of polymorphic lists shown previously, the representatibrtons
is (cons, J.

3.8 Metatheory

We have proved soundness (in terms of progress and presejvat
for AURA. The proofs are fully mechanized in the Coq proof
assistant.

Theorem 1 (Preservation) If S;- F e : t ande — ¢/, then

S-Fe:t.

Theorem 2 (Progress) If S; - = e : ¢ then either vale) or existse’
such thate — ¢’.

We have also proved that typechecking in®a is decidable.
Theorem 3 (Typechecking is Decidable)

e If Sk ¢ and Sk E, thenVe, Vt, it is decidable whether there
exists a derivation such thatE+F ¢ : ¢.

t—t
val(v) A
(Az:t. e)v— {v/x}e PP
bind, (return, e1) e2 — ez €1 PF-BIND
SAY
say P — return, (sign(self, P))
V1 = V2
if v1 = vz then e; else ex — €3 IF-EQ
v1 # V2
if v1 = w2 then e; else ex — ez IF-NEQ
val(v)
(vit) —w CAST
(v, branche$ —y e M
match v ¢t with {brancheg — e ATCH
(v,b) =y e
(v, ¢, body) . (e,0) 5
(v, brn ¢ body {rest) —y e~ TRE
(v,rest) —p e B
(v,brn ¢ body {rest)) —p e — RHER
‘ (1)7 & bOdy) e (e7n) ‘
((e:), (e, ), body) — (bodym) ' PASE
val(v2) m >0
(v1, (¢,n), body) —. (body, m)
(01 03, (c,n), body) e (body, m — 1) CTR-PARAM
(’017 (C7 n)? bOdy) e (67 0)
CTR-ARG

(v1 v2, (¢,n),body) . (ev2,0)

Figure3. Reduction Rules

o [f Sk o thenVE itis decidable whether there exists a derivation
such that $- E.
e |tis decidable whether there exists a derivation such thats

We have mechanized all parts of these decidability resylts b
giving constructive proofs of the form Vv —¢. For instance, the
constructive proof of St ¢) V =(S+ ¢) is a total algorithm that
decides signature well-formedness.

For ease of explanation, the judgments and rules presemted i
this section are a close approximation of the formal deéingiof
AURA. For instance, in order to prove the preservation of pattern
matching, we have to take the parameters and argumentsesiippl
to the constructor in the pattern matching evaluation rutesrder
to prove the decidability of typechecking, we strengtheittes
typing judgments to take two signature arguments: one awthe
type declarations of the top-level type constructors (&igt) that
can appear in mutually recursively defined datatypes andttier
is used for looking up the constructors (emjl, cong of the top-
level type constructors. However, this simplified prestotahas
the same key invariants as the full type system. The fullideta
version of the type system can be found in the Appendices.



4. Validation and Prototype | mplementation

Mechanized proofs AURA has 20 reduction rules, 40 typing judg-
ments (including the well-formedness of terms, environts@md
signatures), and numerous other relations such as atomaigg
types to constrain the type system. For a system of this size,
plementing a fully complete, mechanized version of the doess
proofs is challenging.

We formalized the proofs of soundness and the decidability
of typechecking for ARA in the Coq proof assistahtWe use a
variant of the locally nameless representation [9] to fdimeathe
metatheory of the language. Well documented definitionsugt A
including typing rules, reduction rules, and other relateldtions
require about 1400 lines of Coq code. The soundness prdds ta
about 6000 lines of Coq code, and the proofs of the decidiploii
typechecking take about 5000 lines of Coq code. The automati
used in the these Coq proofs is relatively rudimentary; veendit
devote much time to writing automation tactics.

The most intricate parts of the language design are theiamntsr
of the inductive datatypes, the dependent types, atomialiggu
types, and the conversion relations. This complexity isodéd in
the Coq proof development in two ways: one is in the number of
lemmas stating the invariants of the datatype signatuhesother
is in the number of revisions made to the Coq proofs due t@desi
changes motivated by failure to prove soundness. We fouad th
for such a complicated system, mechanized proofs are witdes
for dealing with design iteration, as Coq can easily idgntihich
proofs require modification when the language design clmange

Because ARA is a superset of system F with inductively de-
fined datatypes, we conjecture that, without much difficulg
could extract mechanized soundness proofs of other retgpesd
systems from the Coq proofs ofuRA.

Typechecker and interpreter The prototype AIRA typechecker
and interpreter together implement the language as it imdtized
in Coq with only minor differences. The typechecker recagsia
small number of additional types and constants that arenesept
in the formal definition, including literal 32-bit integeriteral
strings and tuples. Although it is derivable iuRA, we include a
fix constant for defining recursive functions; by using thisstant
together with tuples, mutually recursive functions can béngd
more succinctly than is possible in the formal definition.allow
for code reuse, we have addediadlude statement that performs
textual substitution from external files. The software sartluded
files in dependency order and copies each only once.

AURA is not meant for general-purpose application develop-
ment; instead, it is designed to be used synergisticalli exist-
ing production programming languages. One way we plan te tak
to reach this goal is to eventually target the .NET runtingjta
encourages language intermingling (see Section 7). Wetplex-
pose authorization polices written inuRA to the .NET common
type system by providing libraries for interacting at romei with
propositions. We will also explore the possibilities of riimg an-
notated methods in compiled .NET code to make implicit calls
these libraries. This approach allows any language that thee
common type system to interoperate witb@a.

5. An Extended Example

In this section, we illustrates the key features afiR’s type
system by explaining a program implementing a simple stiegm
music server.

The extended code sample is given in Figures 4 and 5. The
example program typechecks in the prototyperA interpreter
and uses some of the language extensions discussed inrSéctio

3Code available atittp://www.cis.upenn.edu/ stevez/sol/

On line 1) the program imports library code that defines tytili
types (such as dependent tuples and lists).

We imagine that the server implements a policy in which every
song may have one or more owners, corresponding to prisscipal
who intrinsically have the right to play the song. Addititigasong
owners may delegate their listening rights to other prialsip

This policy is defined over predicateédwns and MayPlay,
which are declared as assertions in lines 5 and 6. Recalb#at
sertions are appropriate because we cannot expect to fisddlo
proofs of ownership and delegation in pure type theory.

The main policy ruleshareRulgline 12) is defined using say
expression. The type ghareRulds an implication wrapped in two
monads. The outgsf monad is required becaussy accesses a pri-
vate key and must be treated effectfully. The insef says monad
is required to track the provenance of the policy. The ingtlan
encodes the delegation policy above. This rule providesyatwa
build up a value of typef (self says (MayPlay a 9), which is re-
quired beforea can play song.

The exact form ofshareRuleis somewhat inconvenient. We
derive two more convenient ruleshareRulé and shareRulé&
(lines 53 and 76). These rules use monadic bind and return op-
erations to change the placementpdfand says type construc-
tors relative toshareRulés type. The resulting type afhareRulé
shows that one can obtain a proof gff(self says (MayPlay a 3)
by a simple application ofhareRul€ to various arguments, as
shown in line 101.

The key functionality of the music server is provided by adun
tion stub,playFor, which is intended to model an effectful func-
tion that streams a provided song to a specified principatyfie
is given by the annotation on line 20. Th&ayFor function takes
the song to be played and the principal it should play on tehal
of as its first two arguments. The third argument is a proohef t
propositionself says (MayPlay A 9, demonstrating the requesting
principal’'s capability to play the song, which is requirey the
server’s policy. As modeling an audio APl would clutter thxaum-
ple, playFor simply returns a unit value. In a real implementation,
playFor would call into the trusted computing base, which would
also log appropriate proofs for future auditing.

The remaining code implements the application’s main func-
tionality. The handleRequesiunction takes a delegation request
and, using a provided database of owner information, att®map
construct an appropriates!f says MayPlay proof. If it succeeds,
playForis invoked.

The implementation ohandleRequediine 93) is straightfor-
ward. There are two interesting things to note. FiiandleRequest
takes a database of owner information expressed as a list of
OwnerRecord. OwnerRecordline 8) is an inductive type whose
single constructor has a dependent type. BecawggerRecort
third argument depends on its first tw@wnerRecorcencodes an
existential type. Second, thaatch expression on line 98 relies
on the fact that(getOwnerProof s o)l returns an object of type
Maybe(pf (self says (Owns p 3)). Getting such a type is possible
because, whegetOwnerProopulls a proof from the list, its type
is refined so that the existentially bound principal and sarg
identified withp ands.

GetOwnerProofline 30) performs this type refinement in sev-
eral steps. It uses the fixpoint combinator (line 33) to penfa list
search. After eac®wnerRecords decomposed, we must check its
constituent parts to determine if it is the correct record,ahso,
refine the types appropriately. The action occurs betwews {12
and 48. At runtime the firgf expression tests for dynamic equal-
ity between the principal we're searching f@, and the princi-
pal store in the current recorg,. A similar check is performed
for betweenSong s ands'. If both checks succeed then we cast
proof:pf (self says Owns ps’) to type pf (self says Owns p $ and



include "tuple.core” include "list.core”
data Song: Type { |freebird Songlironman Song}

assert Owns:prin — Song — Prop;
assert MayPlay:prin — Song — Prop;

o

data OwnerRecordType {
|ownerRecord(p: prin) — (s: Song —
10 (pf (self says (Owns p $)) — OwnerRecord

©

12 let shareRule
pf (self says ((0: prin) — (r: prin) — (s: Song —

14 (Owns 03 — (osays (MayPlayrg) — (MayPlayrg)) =
say ((0: prin) — (r: prin) — (s: Song —
16 (Owns 03 — (osays (MayPlayrg) — (MayPlay r9)

n
18
(* A real implementation would do something heje
20 let playFor:(s: Song — (p: prin) —
(pf (self says (MayPlay p§)) — Unit=
22 AS: Song Ap: prin . Aproof: (pf (self says (MayPlay p 9)) . unit
n
24
let notFound:(p: prin) — (s: Song —
26 (Maybe(pf (self says (Owns p 3))) =
Ap: prin. As: Song. nothind pf (self says Owns p $)
28 In

30 let getOwnerProaf(s: Song — (p: prin) —
(List OwnerRecoryl — (Maybe(pf (self says (Owns p 3))) =
As: Song Ap: prin . AownerRecordsList OwnerRecord .
fix (Arec: (List OwnerRecorjl —

w
R

34 (Maybe(pf (self says (Owns p 3))).
Al: (List OwnerRecor)l.
36 match | with (Maybe(pf (self says Owns p §)) {
Inil — notFound p s
38 |cons — Ax:OwnerRecordAxs List OwnerRecord .
match x with (Maybe(pf (self says Owns p $)) {
40 | ownerRecord— Ap’:prin. As':Song.
Aproof: pf (self says (Owns g 5')).
a2 ifp=p’
thenifs=¢
44 then
just (pf (self says (Owns p 3))
46 (proof: (pf (self says (Owns p 3)))
else rec xs
48 else rec xs
F1)
50 ownerRecords

in
52
let shareRulé:
(pf ((0: prin) — (r: prin) — (s: Song —
(self says (Owns 0§) — (osays (MayPlayrg) —

o
i

56 (self says (MayPlay r 9))) =
bind shareRulg\sr: (self says

58 ((o: prin) — (r: prin) —
(s:Song — (Owns 03 —

60 (osays (MayPlayr9) —
(MayPlay r9)) .

62 return (XO: prin. Ar: prin. As: Song.

Aowns (self says (Owns 0 $).
64 Amay (osays (MayPlay r g).
bind sr (Asr’: ((0’: prin) — (r’: prin) — (s': Song —

66 (Owns d§') — (0 says (MayPlay r §')) —
(MayPlay r §')) .

68 bind owns(Aowns :(Owns 0 3.

return self (sr' o r s owné may)))))
70 in

Figure4. AuRA code for a music store (cont. in Figure 5).

76

98

100

102

let shareRul¢: (o: prin) — (p: prin) — (s: Song —
(pf self says (Owns 0 §) —
(pf (0says (MayPlay p§)) —
(pf self says (MayPlay p §) =
AO: prin. Ap: prin. As: Song.
AownsPf pf (self says (Owns 0 3).
AplayPf pf (o says (MayPlay p 9).
bind ownsPf(Aopf. (self says (Owns 0 $).
bind playPf(Appf: (0 says (MayPlay p 3).
bind shareRulé (Asr':
((0': prin) — (r": prin) — (s': Song —
(self says (Owns 6 §')) —
(o’ says (MayPlay r §')) —
(self says (MayPlay r '))) .
(return (sr’ o p s opf ppf))))

in

let handleReques{s: Song — (p: prin) — (0: prin) —
(List OwnerRecoryl —
(delPf pf (0says (MayPlay p9)) — Unit=
As: Song.Ap: prin. Ao: prin. Al: List OwnerRecord.
AdelPf pf (o says (MayPlay p 9).
match (getOwnerProof s o)lwith Unit {
| nothing — unit
ljust — Ax: (pf (self says (Owns 0 $)).
playFor s p(shareRul€ o p s x delPf
}

in unit

Figure5. AuRA code for a music store (cont. from Figure 4).

return it packaged ashMaybe If either dynamic check fails we re-
peat again, and, if no match is found, we eventually reNothing

6. Related Work

We have published related results ou®a,, a language closely re-
lated to theProp fragment of AJRA [39]. This includes soundness
and strong normalization proofs foruRAo, as well as discussion
and examples of audit in the presence of authorization proof
One intended semantics forukA implements objects of form
sign(A, P) as digital signatures. All cryptography occurs at a lower
level of abstraction than the language definition. This apphn
has previously be used to implement declarative informeatftiov
policies [40]. An alternative approach is to treat keys geesyor
first class objects and to provide encryption or signing fives
in the language [7, 15, 35, 27, 26]. Such approaches typicall
provide the programmer with additional flexibility but colicate
the programming model.

Authorization logics Many logics and languages [5, 6, 14, 11,
21, 2, 20] have tracked authorization uskags. We follow the ap-
proach of DCC [2], a logic in whickays is defined as an indexed
monad. This is compelling for several reasons. First, DCabfsr
are lambda-terms, a fact we exploit to closely coupleRhgp and
Type universes. Second, DCC is a strong logic and important au-
thorization concepts, such as taets-forrelation and the hand-off
rule (Asays B acts-for A — (B acts-for A, can be defined or de-
rived. Third, DCC is known to enjoy a non-interference pyen

the absence of delegation, statements inAlkeys monad will not
affect theB says monad. In our setting this means that a given pro-
gram cannot be tricked by what an untrusted program saygAA
modifies DCC in several ways. In addition to adding dependent
types, AURA omits DCC’s protects relation. The protects relation
strengthens monadic bind, making propositidnsays (B says P)
andB says (A says P) interderivable. While useful in other settings,
such equivalences appear incorrect for access controltidulally
AURA’s use of signatures changes some meta-theoretic prapertie



of DCC leading to, for example, a more subtle proof of noraeali
tion [39].

The Grey project [11] uses proof carrying authorization in a
manner similar to ARA. In Grey, mobile phone handsets build
authorization proofs that unlock doors. WhileJRA is a unified
authorization logic and computation language, Grey'sdaginot
integrated with a computation language.

DeYoung, Garg, and Pfenning [20] describe a constructive au
thorization logic that is parameterized by a notation oftifiropo-
sitions and proofs are annotated with time intervals duvitnich
they may be judged valid. This allows revocation to be matlee
credential expiration.

Language-based access control The trust management system
PolicyMaker [13] treats the handling of access control sieais
as a distributed programming problem. A PolicyMakessertion
is a pair containing a function and (roughly) a principal.gen-
eral, assertion functions may communicate with each oted,
each function’s output is tagged by the associated prihcia-
icyMaker checks if a request complies with policy by runnaib
assertion functions and seeing if they produce an outpuhinlwa
distinguished principal POLICY says “approve”. Principads ap-
pear similar is purpose, but not realizationstgs in AURA. Note
also that expressing security properties via term-leveimatation
is fundamentally different from expressing them as typls,ap-
proach followed in other work discussed here. The ideas licy?0
Maker have been refined in KeyNote [13] and REFEREE [16].

Fournet, Gordon and Maffeis [21, 22] discuss authorization
logic in the context of distributed systems. They use a &ahit
form of dependent pairs to associate propositions with. détéke
in AURA, proofs are erased at runtime. Consequently, their type
discipline is best suited for closed systems that do notiredpgh-
assurance logging.

The Fable language [37] associates security labels withwddt
ues. Labels may be used to encode information flow, acces®ton
and other policies. Technically, labels are terms that mayed
ferred to at the type levetoloredjudgments separate the data and
label worlds. The key security property is that standard foatar
tions (i.e. application computations described with c@lpp) are
parametric in their labeled inputs. UnlikeuRA proofs, the label
sub-language (i.e. policy computations described witlorcpbl)
admits arbitrary recursion. Hence the color separation rastyict
security sensitive operations to a small trusted compudagg, but
does not give rise to a logical soundness property.

Dependent type theory The AURA language design was influ-
enced by dependent type systems like the Calculus of Canstru
tions (CoC) [10, 18]. Both CoC anduURA contain dependent types
and a unified syntax encompassing both types and terms. ldowev
there are several important differences between CoC arrlaA
Most critically, CoC'’s type equality includes beta equarade but
AURA’s does not. Type-level beta reduction, while convenient fo
verification, is unnecessary for expressing authorizgtieadicates,
and greatly complicates language design and use.

As realized in the Coq proof assistant [17], CoC can contain
inductive types and different universes for computatiod kgic
types—AURA universesProp and Type correspond to Prop and
Set in Coq. However, because Set is limited to pure compuisiti
Coq does not need URA’s pf mechanism to separate Prop from
Set. In Coq all inductive declarations are subject to a cempbs-
itivity constraint which ensures inductive types have a well-défine
logical interpretation. By contrast,URA uses a simpler positivity
constraint inProp and no constraint iMype. Additionally, AURA
permits less type refinement than Coq does for type indicesg—C

AURA is strictly weaker for defining logical predicates, but isreo
expressive for defining datatypes for use in computation.

Several other projects have combined dependent types agé pr
matic language design. Ynot (an embedding of Hoare Type The-
ory [31] in Coq), Agda [32], and Epigram [29] are intended tips
port general purpose program verification and usually rechiat
the programmer construct proofs interactively. By cortiaspen-
dent ML [46], ATS [46, 45], and RSP1 [43] provide distinguésh
dependency domains and can only express constraints octobje
from these domains. These dependency domains are inteaded t
be amenable to automated analysis. Cayenne [8] extendeMHask
with general purpose dependent types. In Cayenne, typéditydaa
checked by normalizing potentially divergent Haskell teyanstrat-
egy which may cause typechecking itself to diverge. Hane@otk
Setzer [23] present a core calculus for interactive prognarg in
dependent type theory; their language uses an IO monad &penc
sulate stateful computations. Inhabitants of the monadacdeled
as imperative programs and type equality is judged up toimbis
lation on (imperative) program text.

Peyton Jones and Meijer describe the Henk typed interneediat
language [25]. Henk is an extension of the lambda cube faafily
programming languages that includes CoC. LikerA, Henk is
intended to be a richly-typed compiler intermediate lamgguaJn-
like AURA, Henk has not been proved sound. Additionally, its lack
of a pf monad (or equivalent technique for isolating computations
from proofs) makes it unsuitable for programming in the pree
of both dependent types and effects.

7. FutureWork

Futurework: Theory One important direction for future work is
to study AURA’s security properties, such as the non-interference
of AURA’s authorization logic and the strong normalization of
AURA’s authorization proofs. The non-interference propertgwf
thorization logics (c.f. [2]) allows analysis on the inflwenof
one principal’'s assertions to other principals’ beliefss fprovides
more confidence in the correctness of authorization log@asce
AURA used DCC as the authorization logic, we believe a proof sim-
ilar to that presented in [2] is also possible fooRa.

AURA allows programmers to specify secure functions such as
playFor to protect access to resources. As a corollary of the type
safety theorem, these functions cannot be invoked unlesdic v
proof is provided. To ensure that proofs are meaningful aand c
later be compared during auditing, we would like to provet tha
every reduction of a proof will result in the same normal form
In our previous work [39], we have proved that a simpliffeep
fragment of AURA is strongly normalizing and confluent. As future
work, we intend to prove the same results for the Puthp fragment
of AURA using similar techniques.

As discussed in Section 3,URA’s restrictions on dependency
and its weak notion of type refinement allow for decidableetyp
checking. We believe that there may be other decidable, bvem
liberal, variants of the type system. As we continue to WAteRA
programs, we expect to discover precisely what relaxatofrike
type system would be useful to programmers. Additionalg t
literature on GADTs [33] and dependent pattern matching [32
promises to be a fertile source of inspiration and examflesire
versions of AIRA may be extended along these lines.

Likewise, while making thef construct a monad was a conve-
nient and effective design decision, we might be able taxréta
treatment. For instancef’s elimination form is currently monadic
bind, but it is probably safe to instead elimingié by pattern
matching when constructing arbitrary objectsTiype. We conjec-
ture that this does not affect the soundness 0RA, and we plan

datatypes can be used to encode GADTs. Compared with Coq,to explore such alternative designs in the future.
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Section 2 describes the correspondence betweenys P
and objects digitally signed by’s private key. It is natural,
then, to wonder about the possibility of an analog for pukbg
encryption—perhaps terms of tyf¥e for a could be constructed
from objects of typel” encrypted witha's public key. It is unclear
how to integrate such an additional construct withrRX, not least
because while theays monad makes complete sense operating
only at theProp level, we almost certainly want to encrypt data of
kind Type. Additionally, our use of dependent types means that the
type of an AJRA term will often reference part of the term, which
may well be unacceptable for data that is meant to be enatypte

The tracking of information flow was one of the first uses pro-
posed for DCC [4], and even without encryptionRa’s assertions
are sometimes reminiscent of confidentiality tracking;enemcryp-
tion to be added, the similarities would be even more prooednit
may be possible to take advantage of this by equippingAwith
a more general notion of information flow—which does not sece
sarily have as straightforward a cryptographic interpieta—for
use internal to a single well-typed application while réwvey to
the coarser-graineshys (and possiblyfor) when communication
with the outside world is desired. The challenge, of couiséo
make this change of granularities as fluid and light as ptessib

Even without information flow it may still be useful to have a
better idea of which proofs may come from the outside worlfteA
all, operations on digital signatures are not trivial, bate proofs
are defined to be computation-free, a purely local proof add
given a more efficient but less portable representation centain
proofs might be completely elided at runtime. For the firgteca
we would first need to extend our formalism with some notion of
network communication; inference could be performed backis/
from communication points to ascertain which proofs needbeo
represented in portable form. As an initial step towardegeing
the second case, we might consider an additional form ofadst
tion, with an argument that cannot be used in certain wayssbut
guaranteed to be necessary only at compile time; ideallyefer,
we would want to infer these abstractions during compitatio

It is clear from our examples thatuRA is fairly verbose. As
it is meant to be an intermediate language, this is not a ipigess
usability issue. We hope that a higher-level language tha¢gates
AURA will be able to cut down on this verbosity using inference
techniques. Our proof-passing style also suggests thefusame
variety of proof inference. Of course, this very quickly bewes
undecidable, but that does not rule out practical partiaitsms.

Finally, although AJRA emphasizes the security aspects of pro-
gramming with an embedded authorization logic, there might
other applications of this idea. In particular, one of thal@nges
of making program verification via dependent types pratiica
the need to construct and otherwise manipulate proof abjé€xft
course, one can always add axioms to the logic, but doing s0 ca
easily compromise its consistency. Failures due to a poaicelof
axioms might be hard to isolate when debugging. $&h& mon-
ads of DCC provide a possible intermediate ground: One could
imagine associating a principal with each module of the oy
and then allowing modules to make assertions. Explicit wlee-
gations would then be required when importing axioms frora on
module to another; such delegations would document the laodu
dependencies and help the typechecker isolate uses of fault
ioms. We speculate that it is even possible that blame (istyle
similar to that proposed by Wadler and Findler [42]) can berep
priately assigned to offending modules whenever a run-gmer
caused by incorrect assertions is encountered.

Future work: Practice The single-step interpreter is useful as a
tool for checking the correctness of small examples; howétvis
infeasible to use it to run code in a production environmést.
such, we are extending the implementation to generate Cié-by
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code compatible with both Microsoft’s .NET CLR and the open-
source Mono runtime. Don Syme’s work on ILX aids us greatly
in this effort. ILX, described in [38], is a group of extensfoto
the CIL that facilitates the use of higher-order functiodiscrimi-
nated unions and parametric polymorphism. By compilingHics
existing standard execution environment, we will gain asde the
ecosystem of .NET software and libraries. Most notably, nauid

be able to make use of existing code for cryptography andseros
platform networking. We will also be free from having to wprr
about lower-level issues like efficient machine code geiwrand
garbage collection, both of which are well outside of therA
project’s scope.

Additionally, there remain practical issues that®a must ad-
dress in order to fully express policies likely to be foundtgin-
tended problem domain. Chief among these is the demandédor th
signatures thaxpire either due to explicit revocation or simply the
passage of time. This stands in contrast to our current iisma—
and, indeed, most formalisms of programming languagestexsa
that successfully typechecks is generally seen as validefpard-
less of the time or the state of the world. It would, of coutse,
possible to define the operational semantics 0RA such that ev-
ery operation has a chance to fail at runtime due to digitedatiure
expiration, but this could easily make programming quitmbar-
some. Instead, we hope to find a solution that allows time ewatr
cation to be referenced byuRA in an intuitive way; one possibil-
ity, explored by Garg and Pfenning [20], is the usdiéar logic,
which is naturally suited to describing resources that caspme
sense, be used up.
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A. AURA’s Signatures
A.1l Syntax
The formal definitions for ARA’s signatures are as follows.

Constructor Decls cdecls ::= - | cdecldctr: ¢

Data Decl ddecl = datactr: ¢ {cdecls
Definitions defns = ddecl | defnswith ddecl
Assertions assn = assertCtr:t

Bundle bundle ::= defns| assn
Signature S = - | Shbundle

An AURA signatureSis a list of bundles. Each bundle consists
of either an assertion or a list of mutually recursively dedin
datatype declarations. Each datatype declaration is a nfplhe
type constructor name, its type, and a list of its data cansir
declarations. Each data constructor declaration is igsgfir of the
data constructor’s name and its type.

A.2 Typingrulesfor signatures

In Figure 6, we present the auxiliary definitions used by tleénm
typing judgments for well-formed signatures.

positive ctrgt

positive ctrs ctr

positive ctrgy  ctrsn ctrs.of t2 = ()
positive ctrstq t2

positive ctrgo  ctrsnctrs.oft; =0

positive ctrx :t1) — t2
wf_dom(defng

wf_dom(-)

wf.dom(defng dom(cdecl§ N dom(defng = 0
ctr ¢ domdefng ctr ¢ dom(cdeclg

wf_dom((defnswith data ctr : ¢ {cdecls))

gettctr_defngdefng ‘

gettctr_defng-) = -

gettctr_defngdefng = defns

gettctr_defngdefnswith data ¢ : ¢ {cdeclg)
= defn$ with datac: ¢ {-}

Figure 6. Auxiliary Definitions

To ensure the consistency of tReop fragment, the data types
in the Prop universe are subject to positivity check. We write
positive ctrs tto denote that the set of type constructons only
appear positively in typé. AURA’s positivity constraint is a sim-
plified version of the strictly positivity constraints. Wheis ¢; t2,
ctrsonly appear positively in if ctrsappear positively in; but do
not appear irt2. Whent is (z:t1) — t2, ctrsonly appear positively
in ¢ if ctrsappear positively i, but do not appear ity .

Judgmenwf_dom(defng checks that the type constructors and
the data constructors are uniquely declaredléfns Finally, we
define a functiorgettctr_defngdefng that strips off the data con-
structor declarations and returns only the type construda€ini-
tions indefns

The main judgments in checking the well-formedness of signa
tures are listed below.
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Well-formed signatures Sk o

Well-formed definitions P;Si; S - defns
Well-formed type constructors St defns: ¢
Well-formed data constructorsP; S;; $; ctr; ¢ - cdecls

Note the first two judgments require two signatures. Thisis b
cause a datatype’s declaration may mention constructdisede
in the same bundle (e.gefng by mutual recursion. Such a dec-
laration is checked under a provisional assumption thatréise
of its bundle is well-formed. One signaturs,, is extended with
only new type constructors. The oth&,, is extended with the
datatype’s entire bundle. The careful separatiorlsobnd S, al-
lows us to prove decidability of type checking by inductiantbe
structure ofS;, while adding—viaS;—necessary provisional as-
sumptions. We return to this point in Appendix B.

JudgmentP; S;; S;; ctr; ¢t - cdeclschecks that the data con-
structorscdeclsdefined forctr are well-formed. The signatur&s
andS; are as explained abovB.is a set of type constructors that
can only appear positively in the typesddecls The typet is the
type ofctr.

JudgmentP; S;; S, + defnschecks that a definition is well-
formed.S;, S, andP have the same meaning as above. Judgment
St defns: ¢ checks the well-formedness of the types given to the
type constructors idefns Finally, S+ ¢ is the top level judgment
for signature well-formedness.

A summary of the rules for type checking signatures is pre-
sented in Figure 7. Judgme8t- ¢ is recursively defined over the
structure ofS. The rule WE-ASSERTapplies when the signature’s
last bundle an assertion. It checks that the assertionis tgm-
structs aProp and is classified b¥Kind. The rule WE-DEFN-TYPE
applies when the bundle under scrutiny is composed of dagaty
definitions in univers@ype. It checks that the declared construc-
tors are unique, and that the definitionsdefnsare well-formed
in the current signature. The MMDEFN-PROPrule is similar to the
WF-DEFN-TYPE rule except that the definitions are in tReop
universe and occurrences of new type constructors arecsubje
a positivity constraint. Both the WDEFN-TYPE and \WWF-DEFN-
pRrRoPrules call an auxiliary judgments using two signatures as de
scribed above.

A bundle is checked for well-formedness by separately emami
ing new type constructors and the new data constructorsnélbis
type constructors are analyzed By- defns: t. The straightfor-
ward judgments ensures that the type constructors arefavetied
and construct types of the proper kind.

A bundle’s data constructors are analyzed by judgment:

P: Si; S;ctr; t - cdecls

The rule WE-CTR-DECLS-cONSchecks the main invariants for
data constructors. These are:

1. Data constructor declarations do not introduce nameictmifl
2. The data constructor’s typg,is well-formed.

3. tis acurried arrow type withn-many arguments.
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. t's first n arguments (note < m) instantiate type datatype’s
(e.g.ctr's) parameters.

5. ¢t obeys the positivity constraint relative to the namesFin
For declarations inType, P will be empty. For non-trivial
declarations irProp, P will be non-empty.

B. Summary of Typing Rules

Environment typing rules  The typing rules for environments are
in Figure 8. The first two rules are standard. The last rule- W
ENV-CONS-EQensures that an equality binding in the environment
is well-formed. AURA allows equality tests between two values of



P;Si; S;ctr; t - cdecls

PSSt k-
P; Si; S;ctr; k - cdecls

t=x1:8 — x2:
k=k — ---

m>n positive Pt

(¢,n) ¢ dom(cdecly
S+ = T 1 Sm — (Clray -~ xy)
— ky, — K whereK = Type or Prop

WF-CTR-DECLS-NIL

S &5 Ft: T

WF-CTR-DECLS-CONS

P; Si; S;ctr; k - cdecls| (¢, n)

P;Si; S + defns|

7

P;S;S: +defns RBS;S;ctr;t - cdecls

WF-BUNDLE-CTR-NIL

WF-BUNDLE-CTR-CONS

WF-TCTR-CONS

WF-ASSERT

P;S; S+ - P; Si; S F (defnswith data ctr : ¢ {cdeclg)
S S Ft:Kind Skdefns:k SS-Ft:Kind t=(z1:t1) = (Tn:tn) — k
——<——— WF-TCTR-NIL -
SE-:t St (defnswith data ctr : ¢ {cdeclg) : &k
Sko
Sko S-Ft:Kind ¢t=(x1:t1) — - (xn : tn) — Prop ctr ¢ domS)
Fo WF-sIG-NIL Sassertctr:t o
Sk o St defns: Type
wf.dom(defng dom(defng N dom(S) = ¢
-; (S, gettetr_defngdefng); (S, defng F defns
WEF-DEFN-TYPE
S defnst ¢
Sk ¢ St defns: Prop
wf_dom(defng dom(defng N dom(S) = ¢

dom(defng; (S, gettctr_defngdefng); (S, defng I defns

S defnsk ¢

WF-DEFN-PROP

Figure7. AURA signature typing rules

atomic types; therefore; andt¢» have an atomic typg, andk is
classified byType. Since there is n@ equivalence at the type level,
t1 andt, both have to be values.

——=— WF-ENV-NIL
S;S -
S;SFE S;S;ERT:k a:freshW
S SFExzl F-ENV-CONS-VAR

S;SFE S;S55ERG ik
S;S;EFte i Kk atomicS k
Si;SEF K Type
val(ti) val(tz) x fresh

S;S FE x~(t =t2):k

WF-ENV-CONS-EQ

Figure8. AURA environment typing rules

Term typing rules We summarize the term typing rules in Fig-
ure 9. As we mentioned earlier, the typing judgment for temeeds

to take two signature arguments. The typing rules for termes p
sented in Section 3 is a simplified version and only takes apie s
nature argument. However, most of the rules in Figure 1 becom
the same as the ones in Figure 9 if the single signature iacegl
by the two signature§, andS;. The only interesting differences
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are in the WE-TM-CTR, WF-TM-MATCHES and WF-TM-IF rules
where one of the two signatures has to be picked for lookinthep
types of the constructors or for looking up the data consbrscof

a type constructor. The two signatures only differ when khnep
the types in datatype declarations; and that when theyrd8fes
always well-formed but does not contain the data constractef-
initions for the bundle that is currently being examinedle/s;
contains the complete data type declarati®@ss used for looking
up the types of constructors, aSglis used for operations that need
to look up the data constructors in a datatype declaratiberéer
fore, in the We-TM-CTR rule, the type ofctr is looked up inS;;

in the WF-TM-MATCHESrule, S; is used to check branches cover-
age; and in the W-TM-IF rule, S; is used to perform the check of
atomic types.

Pattern matching Lastly we explain the typing rules for pattern
matching, which are listed in Figure 10. The judgment forokiey
branches has the for§,; S;; E; s; args = branches: ¢ where

s is the type of the term being analyzeatgs is the list of type
parameters i, andt is the result type of the match. For instance,
if sisList nat theargsis (nat). The rule for the above judgments
make use of judgmer® ; S;; s; args t.; ty; t- F © for checking the
type invariants of each branch.

In the judgmentS;; S; s; args; t.; ty; £t = ©, s andargs have
the same meaning as befotg,is the type of the data constructor
being matched against in the branch, i.e. the typeoof ¢, is the
type of the body of the branches, andis the result of the pat-



S; S FE W S;SEFE W
SiSHEF Type:Kind ' M TPE SUSIEF Prop:Kind M TROP

S;S$EE S(etr) =t
Si;S;Elctr:t WF-TM-CTR

S;SHE E@)=t
S;SERa it WE-TM-FV

Si;S;E,z:t1 Fta: ko ko € {Type, Prop, Kind}

SUSHEF (zit1) — b2 : ks WEF-TM-ARR

S;S;EF (z:u) — k1 : ke k € {Type, Prop,Kind} k2 € {Type, Prop}
S SHER Azt u (x:t) = Ky

S;SERtE S S Erittuk

WEF-TM-ABS
S;;SER L (ziu2) > u S ER b2 i ue val(ts) orx ¢ fu(u)

WF-TM-APP
S S EFtita: {:E/tg}u

S;S;EFe:s s=ctraraz---an Si(ctr)=(z1:t1) = (Tn:tn) > u
branchescover S branches ctr  § $;E; s; (a1, - -

-++ ,an) - branches: t
Si;SEFs:u S;SERLu u e {Type, Prop}

Si; S;; E - match e t with {brancheg : ¢

S;SEFE

W S; S FE W
S;; S E b prin : Type F-TM-PRIN S1: Sy EF self - prin F-TM-SELF

Si;;S$EFa:prin S;SEF P Prop W
Si;S;EF asays P : Prop F-TM-SAYS
Si;S;ElRa:prin val(a)

WF-TM-MATCHES

S;S;EFp: P S;9EF P:Prop

S:SEF retumn, ap:asays P WF-TM-SAYS-RET

Si;;S;ERertasaysP S8 ERex: (2:P) — asaysQ ¢ v(Q)

Si;S; EF binds e1 ez : asays @

S1;S;-Fa:prin S1;S;-F P Prop WETM-SIGN Si;S;EF P Prop W
Si;$;;E - sign(a, P) : asays P o S;; S; EF say P : pf selfsays P F-TM-SAY

WEF-TM-SAYS-BIND

Si;S;ER P Prop W b S;S;ERp: P Sl;SQ;EFP:PropW
SiSHEFpfP:Type 0 MTF S S:EF return, pipf P F-TM-PF-RET

SUSHEF e pf P SiSiERes: (n:P) = pfQ s ¢MQ)
Si;S; EF bind, e1 es : pf Q F-TM-PFBIND

S;SEFv ik S S;ER vk atomicS k val(vi)
S;; S ERifur =

val(ve) Si;S;E x~(vi =)k e

vo then ey else es @ ¢

it S;SElRes:t

WE-TM-IF
S;S$;EFe:s converts Est W
SiSHEF (e:t):t FrTM-CAST

Figure9. AURA typing rules

S;; $; E; s;argst branches : t

S S s;args L toi b o

Si; S E;s;argsk -0t

Si; S 88t o
_ Si; ;85 bu ko
Si: S E - body: t, S; S8 (xit) =t (xit) —usk o
Si5 S 85 QS tei toi tr - © S;; S5 s;args {a/z}t;usk F o
Si; S;E;s;argst b | ¢ = body: ¢, S:Sisia,args (r:h) — LuikFo
Figure 10. AURA branches typing rules

Si; S E s;argsk bt Si(e) =
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tern match. We illustrate the rules through the followinguayple
branch.

cons — Ax: nat. Axs.List nat. b

In this branchb is the branch body. The result of the pattern
match ist, = natands =List nat

te = (z:Type) — (y:x) — (z:Listz) — Listz.

ty, = (z:nat) — (xs:Listnat) — nat

Intuitively, the types of the arguments that the branch ltakgs
is directly linked to the argument typesadns and the return type
of the branch body should be the same,adn type checking this
branch, first we apply. to the list of type parameteesgs(the third
rule). In doing so, we reveal the arguments that the brancly bo
should take. Then we check that theakes the same arguments as
required byt. (the second rule). In the end, we should reach a state
wheres = t., andt, = ¢, (the first rule).
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