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Abstract

In the current highly interconnected computing environments, users
regularly use insecure software. Many popular applications, such as Netscape
Navigator and Microsoft Word, are targeted by hostile applets or mali-
cious documents, and might therefore compromise the integrity of the
system. Current operating systems are unable to protect their users from
this kind of attacks, since the hostile software is running with the user’s
privileges and permissions.

We introduce the notion of the SubOS, a process-specific protection
mechanism. Under SubOS, any application that might deal with incom-
ing, possibly malicious objects, behaves like an operating system. It views
those objects the same way an operating system views users—it assigns
sub-user id’s—and restricts their accesses to the system resources.

Keywords: Secure systems, capabilities, process—specific protection.

1 Introduction

Many important applications, such as mailers, Web browsers, word processors,
etc., have many of the characteristics of operating systems. In particular, they
accept requests from a variety of mutually-suspicious sources, grant different
permissions based on the source (or other attributes, such as a cryptographic
token), and mediate access to assorted resources. But applications are poorly
suited to this task. For example, they have to implement file access restrictions
by matching file names against assorted patterns. History shows, however, that
that approach is fraught with danger (i.e., CERT Advisories CA:98-04 and
CA:97-03). Real operating systems, which bind permissions to the protected
objects, rarely have many problems like that.

In this paper we introduce the notion of a sub-operating system (called
SubOS hereafter). A SubOS is an application that might have to operate on
untrusted objects. By the term untrusted object we refer to any incoming file
to our systemn, such as a Word document received in the mail, a postscript file
down-loaded from some ftp site, or a Java applet, that a browser might load from



a Web page. These applications use operating system protection mechanisms
to implement their own.

More precisely, applications that “touch” possibly malicious objects, like the
ones listed above, will no longer maintain the users privileges, but will rather
get restricted access rights to the underlying resources. Figures 1 and 2 display
the differences of a regular, and a SubOS enabled operating systerm.
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Figure 1: User applications executing on an operating system maintain the user
privileges, allowing them almost full access to the underlying operating systemn.

The paper is organized as follows. In Section 2 we discuss the motivation
behind this work. In Section 3 we present the design and implementation details
of a SubOS-capable OpenBSD [11] system. In Section 4 we discuss work that
is related to SubOS, and finally we conclude in Section 5.

2 Motivation

A number of trends in computing are fueling the need for a more flexible, yet
stricter security model in operating systems.

2.1 Information Exchange

With the growth of the Internet, exchange of information over wide-area net-
works has become essential for both applications and users. Modern applica-
tions often fetch help files and other data over the World Wide Web. In extreme
cases, like some flavors of the BSD UNIX operating system, even whole oper-
ating systems install and upgrade themselves over the network. However, the
most common case is electronic mail. Users regularly receive mail from unknown
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Figure 2: Under SubOS enabled operating systems user applications that
“touch” possibly malicious objects no longer maintain the user access rights,
and only get restricted access to the underlying system.

sources with a number of possibly malicious attachments. The attached docu-
ments use vulnerabilities in the helper applications that are invoked to process
them, which in turn could compromise system security. The need for connec-
tivity and exchange of information even at this most basic level is therefore a
major threat to security.

It is also the case that seemingly inactive objects like Web pages or e-mail
messages are very much active and potentially dangerous. Omne example is
JavaScript programs which are executed within the security context of the page
with which they were down-loaded, and they have restricted access to other
resources within the browser. Security flaws exist in certain Web browsers that
permit JavaScript programs to monitor a user’s browser activities beyond the
security coutext of the page with which the program was downloaded (CERT
Advisory CA:97.20). It is obvious that such behavior automatically compro-
mises the user’s privacy.

Another example is the use of Multipurpose Internet Mail Extensions (MIME).
The MIME format permits email to include enhanced text, graphics, and au-
dio in a standardized and inter-operable manner. Metamail(1) is a package
that implements MIME. Using a configurable mailcap(4) file, metamail (1)
determines how to treat blocks of electronic mail text based on the content as
described by email headers. A condition exists in metamail (1) in which there
is insufficient variable checking in some support scripts. By carefully crafting
appropriate message headers, a sender can cause the receiver of the message to
execute an arbitrary command if the receiver processes the message using the

mailcap(4) package (CERT Advisory CA:97.14) [10].



2.2 Application Complexity

But the problem is deeper than obvious forms of mobile code. Given the in-
creasingly complex environment presented to many applications, we assert that
these applications have many of the characteristics of operating systems, and
should be implemented as such.

Even simple HTTP requests return a complex object, wherein the remote
side tells the local browser what to do, up to and including a request to run
certain applications. Print spoolers have to check file access permissions. Email
can be delivered directly to programs. Web servers have to run scripts, often
via an interpreter, while denying direct access to the interpreter and perhaps
ensuring that one script does not access or modify the private data of another
script. All of these applications should worry about resource consumption. And
these, of course, are the characteristics of operating systems. In fact, arbitrating
access to various objects is more or less the definition of what an operating
system does.

However, re-implementing an operating system with each new application
would be extreme. Instead, our goal is to add sufficient functionality to an
existing system so that applications can rely on the base operating system to
carry out its own particular security policy. That security policy, in turn, can
reflect its own particular needs and its degree of certainty as to the identity of
users.

2.3 Inadequate Operating System Support

The lack of flexibility in modern operating systemns is one of the main reasons
security is compromised. The UNIX operating system, in particular, violates the
principle of least privilege. The principle of least privilege states that a process
should have access to the smallest number of objects necessary to accomplish a
given task. UNIX only supports two privilege levels: “root” and “any user”.

To overcome this shortcoming, UNIX, can grant temporary privileges, namely
setuid(2) (set user id) and setgid(2) (set group id). These commands allow
a program’s user to gain the access rights of the program’s owner. However,
special care must be taken any time these primitives are used, and as experience
has shown a lack of sufficient caution is often exploited [12].

Another technique used by UNIX is to change the apparent root of the file
system using chroot (2). This causes the root of a file system hierarchy visible
to a process to be replaced by a subdirectory. One such application is the
ftpd (8) daemon; it has full rights in a safe subdirectory, but it cannot access
anything beyond that. This approach, however, is very limiting, and in the
particular example commands such as 1s(1) become unreachable and have to
be replicated.

These mechanisms are inadequate to handle the complex security needs of
todays applications. This forces a lot of access control and validity decisions to
user—level software that runs with the full privileges of the invoking user. Appli-
cations such as mailers, Web browsers, word processors, etc., become responsible



for accepting requests, granting permissions and managing resources. All this
is what is traditionally done by operating systems. These applications, because
of their complexity as well as the lack of flexibility in the underlying security
mechanisins, possess a numnber of security holes. Examples of such problems are
numerous, including macros in Microsoft Word, JavaScript, malicious Postscript
documents, etc.

We wish to offer users flexible security mechanisms that restrict access to
system resources to the absolute minimum necessary.

3 The SubOS Architecture
3.1 What is SubOS?

SubOS is a process—specific protection mechanism. Under SubOS any appli-
cation (e.g. ghostscript, perl, etc.) that might operate on possibly malicious
objects (e.g. postscript files, perl scripts, etc.) behaves like an operating sys-
tem, restricting their accesses to system resources. We are going to call these
applications SubOS processes, or sub-processes in the rest of this paper. The
access rights for that object are determined by a sub-user id that is assigned to
it when it is first accepted by the system. The sub-user id is a similar notion to
the regular UNIX user id’s. In UNIX the user id determines what resources the
user is allowed to have access to, in SubOS the sub-user id determines what re-
sources the object is allowed to have access to. The advantage of using sub-user
id’s is that we can identify individual objects with an immutable tag, which
allows us to bind a set of access rights to them. This allows for finer grain
per-object access control, as opposed to per-user access control.

The idea becomes clear if we look at the example shown in Figure 3. Let us
assume that our untrusted object is a postscript file foo.ps. To that object we
have associated a sub-user id, as we will discuss in Section 3.3. Foo.ps initially is
an inactive object in the file system. While it remains inactive it poses no threat
to the security of the system. However the moment gs(1) opens it, and starts
executing it’s code, foo.ps becomes active, and automatically a possible danger
to the system. To contain this threat, the applications that open untrusted
objects, inherit the sub-user id of that objects, and are hereafter bound to the
permissions and privileges dictated by that sub—user id.

The advantages of our approach become apparent if we consider the alter-
native methods of ensuring that a malicious object does not harm the system.
Again using our postscript example we can execute foo.ps inside a safe inter-
preter that will limit its access to the underlying file systein. There are however
a number of examples on how relying on safe languages fails [10]. We could
execute the postscript iuterpreter inside a sandbox using chroot (2), but this
will prohibit it from accessing font files that it might need. Finally we could
read the postscript code and make sure that it does not include any malicious
commands, but this is impractical.

Our method provides transparency to the user and increased security since
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Figure 3: In the left part of the Figure we see an object, in this case a postscript
file foo.ps, with its associated sub—user id. The moment the ghostscript applica-
tion opens file Foo.ps, it turns into a SubOS process and it inherits the sub—user
id that was associated with the untrusted object. From now on, this process
has the permissions and privileges associated with this sub-user id.

each object has its access rights bound to its identity, preventing it from harming
the system.

3.2 Where should SubOS be Implemented?

The most important design decision is where we should add the SubOS func-
tionality. The two possible answers are user level and kernel level; each has its
advantages and disadvantages.

A user level approach would require each application of interest to be linked
with a library that will provide the required security mechanisms. This has
the advantage that it is operating system-independent, and so does not require
any changes in the kernel code. However such a solution requires rewriting the
application in such a way as to use the security mechanisins. Since there are a
lot more applications than operating systerns, this approach is not scalable and
also more likely to have implementation errors.

An alternative user level implementation would be similar to that taken by
[6]. Processes that might pose potential danger to the system have their system
calls traced, using ptrace(2) or a similar facility. Using this approach, the
application runs until it performs a system call. At this point, it is put to sleep
and a tracing process wakes up. The tracing process determines which system
call was attempted, along with the arguments of the call. It can then determine
whether to allow or deny this system call based on policies set by either the user
or the administrator.

For a kernel level approach, we would need access to the operating system
source code. This restricts our prototype to open source operating systems like



BSD and Linux. ! However there is no other constraint limiting us to UNIX
like operating systems, and similar implementations are possible for operating
systems like Microsoft Windows. The main advantage of this approach is that
the additional security mechanisms will be large transparent to the applications.
Specifically, although the applications may need to be aware of the SubOS struc-
ture, they will not need to worry about access control or program containment.

3.3 How does SubOS enforce its Security Mechanisms?

As we mentioned earlier, every time the system accepts an incoming object it
associates a sub-user id with it, depending on the credentials the object carries.
The sub-user id is permanently saved in the Inode of the file that holds that
object, which is now its immutable identity in the system and specifies what
permissions it will have. It has essentially the same functionality as a UNIX
user id. One can view this as the equivalent of a user logging in to the system.

Figure 4 shows the equivalence of the two mechanisms. In the top part of
the figure we see the regular process of a user Bar logging in a UNIX system Foo
and getting a user id. In the same way, objects that enter the system through
ftp, mail, etc., “log in” and are assigned sub-user id’s based on their (often
cryptographically-verified) source.

Login User Bar

Host Foo
Password  UNIX password

—>‘ user id '

' ftp, mail, Object Bar.{ps,htm], ...}
Host Foo Jea=ed Web, etc.

| Password  Cryptographic Token

Figure 4: In the top part of the Figure we see the regular process of a user Bar
logging in a UNIX systemn Foo and getting a user id. In the same way objects
that enter the system through ftp, mail, etc., “log in” using a cryptographic
token, and are assigned sub-user id’s.

To test the functionality of our current prototype we modified a mailer,
mh(1), to take advantage of the SubOS architecture. To do this we extended

1Sometimes, operating systems are structured to permit easy additions to the kernel, even
without source code availability.



mh(1) to irnplement a login-like mechanism. Depending on the source of the
message—ideally, this should be cryptographically verified—mh(1) will attach
a sub—user id to that file when it saves it. Mh(1) assigns sub-user id’s using a
file, similar to the UNIX /etc/passwd, that matches e-mail addresses to id’s.

Similar implementations are possible for other applications, like ftp(1), or
Web browsers.

3.4 What should SubOS Protect?

The SubOS mechanisms should protect the various resources of the users com-
puter from viruses, Trojan Horses, worms, etc. In order to do so, it should
monitor the creation of network connection, accesses to the file system, execu-
tion time of processes and allocation of physical memory, that might result from
malicious code in untrusted objects.

3.4.1 Process-related Controls

The most basic operation supported by SubOS is the inheritance of the sub-
process id from an inactive file system object to a running process. To accom-
plish this we extended the open(2) system call. When it is used on objects that
contain sub—user id's, it copies the sub—user id to the proc structure of that
process (Figure 3). At that point the process becomes a SubOS process bound
to that sub—user id.

It is crucial that a sub-process can never “escape” its sub-process status. To
enforce this, whenever a sub-process forks and execs, the identity is inherited
by the child process. To achieve this we extended the fork(2) and exec(2)
system calls to have created processes inherit that status. Furthermore we mod-
ified the creat(2) system call, so that any files created by sub-processes have
the sub-—-user id of the creator assigned in their Inode. Finally sub-processes are
not allowed to execute setuid programs, to enforce this we block the setuid re-
lated (setuid(2), seteuid(2), setgid(2), setegid(2) system calls in the
kernel.

It is not clear that that is the right choice. However, UNIX has traditionally
had trouble when setuid programs invoked other setuid programs. To give just
one historical example, in the days when the mkdir(2) call was implemented
by executing a setnid—root program, subsystems that were themselves setuid
had trouble creating directories.

3.4.2 Controlling Network Connections

The way SubOS processes protect against unauthorized network use is by fil-
tering the network related system calls, using a firewall-like mechanism. To do
that it uses a list of firewall entries as shown in Figure 5.

By default a SubOS process is not allowed to create network connections. If
we want to allow specific SubOS process to use the network we need to add a



struct FWE {

int subp_pid;
int host;
int port;

Figure 5: Firewall entry.

firewall entry in the kernel specifying the sub—user id, the host it is allowed to
connect to, and the port.

Tmplementing policies similar to Java’s—that a host can connect back to the
host the applet was originally loaded from—requires more bookkeeping at the
application level. Specifically, some database mapping sub—user ids to network
policies must be maintained. While policies are always necessary, the actual
permission bits are maintained in the file system for file accesses.

A practical implementation would require considerable attention to policies,
including wild cards for port numbers, network masks for the host, etc. It might
also be desirable to include certain known-safe local host/port combinations.
For example, we may wish to permit opean access to a local DNS proxy, for
safe name resolution. On the other hand, wide-open access to a real name
server might permit the controlled process to map local domains, which may be
undesirable.

When a SubOS process enters the kernel on a network-related system call,
the firewall entry list is traversed and if the right permissions are found the
system call is allowed to continue; otherwise we return with an error indicator.

3.4.3 Controlling File System Accesses

In order for the SubOS to restrict file system accesses we introduce the notion
of a view. The view refers to the permissions a sub-process has to parts of the
directory tree. Sub-processes don’t use the permission bits that are normally
used by processes (user, group, other). Rather, they have their own permissions
that are defined in a configuration file, which the user or the administrator
is responsible for maintaining (Figure 6). This is very much like chroot(2)
but more like pruning the directory tree of the file system than setting a new
root. In the example in Figure 6 both sub—processes are allowed to execute
commands cp(1) and 1s(1), which are typical utilities in /bin, and both have
full access rights to /tmp. However each one has it’s own private subdirectory
under /home/foobar/.netscape.

The extended permission bits are added in lists in the Inodes of the files
specified in the configuration file. Every time the kernel identifies a file system
access originating from a sub—process, it uses those permission bits instead of
the normal bits set for user, group or other.

For example, looking at Figure 6, the inode for /home/foobar/.netscape
will have an ACL with two entries, for sub—user id’s 1024 and 1025 and execute



Subp_pid Path Permissions
# allow execute access to the commonly used commands ls and cp

1024,1026 / execute

1024,1025 /bin execute

1024,1025 /bin/1ls execute

1024,1025 /bin/cp execute

# allow full access rights to the temporary directory /tmp
1024,1025  /tmp read write execute

# give each sub-process full access rights
# to it’s own subdirectory

1024,1025  /home execute
1024,1025 /home/foobar execute
1024,1025 /home/foobar/.netscape execute
1024 /home/foobar/.netscape/subl read write execute
1025 /home/foobar/ .netscape/sub2 read write execute

Figure 6: Example permissions file. This file holds the permissions that SubOS
processes with sub—user id's 1024 and 1025 have, in the file hierarchy.

permissions for both. However the inode for /home/foobar/.netscape/subl
will only have an entry for sub—user id 1024. If the sub-process with id 1025 tries
to access /home/foobar/.netscape/subl, the kernel will first identify that the
access is being made by a sub—process, and then follow the ACL on the inode
of /home/foobar/.netscape/subl to find whether or not it should permit the
operation. In this case of course it will fail, since 1025 has no permissions for
that file, and the default behavior if no permissions are specified is deny.

3.4.4 Controlling CPU Consumption

Sub-process execution time is monitored so that malicious code does not ham-
per the smooth operation of the system. Sub-processes have no access to the
setpriority(2) or setrlimit(2) system calls, prohibiting them from execut-
ing at a higher priority than the parent process and limiting the amount of
cpu time they are allocated. Furthermore every time a sub-process forks, its
allocated cpu time (RLIMIT_CPU) is divided by two, ensuring that it cannot
execute forever. There are a number of more elaborate cpu scheduling tech-
niques, but they are beyond the scope of this work.

3.4.5 Controlling Memory Allocation

As with cpu time allocation, the amount of resident memory data of sub-
processes is also controlled. This is done by using the RLIMIT_RSS field of
the rlimit structure in the kernel. We use the same approach as above, reduc-
ing the amount of permissible resident memory by half every time a sub-process
forks. Since setrlimit(2) calls are not permited, we protect against malicious
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code that attacks the memory subsystem.

3.5 Sub-Users

In order for a SubOS to be effective, different sub-user ids must be assigned
to different protection domains. Just how this is done depends on the the
application and on how the file has arrived on the local system.

For e-mailed files, the senders identity is used to select the sub-user id. That
is, if email arrives twice from the same user, any content will be executed using
the same sub-user id. (Naturally, such mail should be digitally signed.) Mail
from a previously-unknown user, or mail that cannot be assigned with enough
confidence to a particular sender, receives a new sub-user id.

For Web browsers, finer-grained protection is desirable. Each site visited
is assigned its own sub-user id, thus preventing one site from interfering with
another’s content. This could, for example, have prevented the “Frame Spoof”
bug in Internet Explorer (MS98-020).

3.6 Accessing Multiple Objects

So far we have assumed that sub-processes will operate on only one object at a
time. However it is possible for a sub-process to open mulitiple objects, each with
its own sub-user id. We are currently in the process of implementing support for
this case, and we will describe our design. When a sub-process opens another
object containing a sub-user id it inherits that id, and the new permissions are
those of the intersection of the individual permissions.

This is easily accomplished in the case of cpu and memory allocation, the
new sub-process will have the minimum of the two for allocated memory and
cpu time. In the case of network and file system access, any request is denied
unless it is allowed by the permissions of sub-user id’s.

4 Related Work

The area of operating system security is a field that has received a great deal
of attention, and has been researched extensively. However, the ever-increasing
demand and need for communication and openness has put new strains on
operating systems. Communication environments like the Internet require us to
solve a whole new set of problems that researchers have just recently started to
address. In this section we focus our attention to work that is directly related
to ours.

There are several methods for intrusion prevention in operating systemns,
ranging from type-safe languages [15, 17, 23, 8, 7], fault isolation [21] and code
verification [18], to operating system-specific permission mechanisms [16] and
system call interception [2, 5, 6, 1].

Capabilities and access control lists are the most common mechanisms op-
erating systems use for access control. Such mechanisms expand the UNIX

11



security model and are implemented in several popular operating systems, such
as Solaris and Windows NT [3, 4]. However they offer no protection for the user
against programs owned by the user, which may contain errors, Trojan Horses,
or viruses.

The traditional Orange Book-style systems offer protection against viclation
of security levels by malicious programs. But there is no barrier to attacks on
files at the current security level, nor to attacks at that security level over the
network. For example, a Top Secret worm can would still be able to spread,
though it would only be able to infect other Top Secret-rated systems.

A different approach relies on the notion of system call interception, and
its used by systems like TRON [2], MAPbox [1], Software Wrappers (5] and
Janus [6]. TRON and Software Wrappers enforce capabilities by using system
call wrappers compiled into the operating systern kernel. The syscall table is
modified to route control to the appropriate TRON wrapper for each system
call. The wrappers are responsible for ensuring that the process that invoked
the system call has the necessary permissions. The Janus and MAPbox sys-
tems implement a user-level system call interception mechanism. It is aimed
at confining helper applications (such as those launched by Web browsers) so
that they are restricted in their use of system calls. To accomplish this they
use ptrace(2) and the /proc file system, which allows their tracer to register a
call-back that is executed whenever the tracee issues a system call. These sys-
tems are the most related to our work; however, our system differs in a major
point. We view every object as a separate user, each with its own sub-user id
and access rights to the system resources. This sub-user id is attached to every
incoming object when it is accepted by the system, and stays with it throughout
it's life, making it impossible for malicious objects to escape.

The methods that we mentioned so far rely on the operating system to
provide with some sort of mechanism to enforce security. There are, however,
approaches that rely on safe languages, {14, 15, 20, 13, 9] the most common
example being Java [17]. In Java applets, all accesses to unsafe operations must
be approved by the security manager. The default restrictions prevent accesses
to the disk and network connections to computers other than the server the
applet was down-loaded from. Our system is not only restricted to a limited set
set of type safe languages. We can secure any process running on the system
that has touched some untrusted object.

Code verification is another technique for ensuring security. This approach
uses proof-carrying code [18] to demonstrate the security properties of the object.
This means that the object needs to carry with it a formal proof of its properties;
this proof can be used by the system that accepts it to ensure that it is not
malicious. Code verification is very limiting since it is hard to create such
proofs. Furthermore, it does not scale well; imagine creating a formal proof for
every Web page.

All the above mechanism deal with the security issues. There is, however,
the Quality of Service (QoS) [19, 22] aspect which we do not address directly
in this paper. Many attacks will take up system resources but might not harm
data. The most common issue is CPU scheduling. There is a lot of research
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that addresses CPU allocation to ensure fair CPU access for all running pro-
cesses. Our SubOS uses the simple methods described in Section 3.4 to ensure
fairness and a smooth running system. Incorporating any state of the art QoS
mechanisms is possible, it is however beyond the scope of this work.

5 Conclusions

We have designed and implemented a process-specific mechanism to contain
untrusted objects. We restrict the environment that such objects can operate
in, and the resources they can access, by extending the UNIX security model
to assign sub-user id’s to them and then treating them like regular user. The
implementation is part of the kernel of the operating system, since that is the
only natural and secure place for security mechanisms to enforce policies. SubOS
is a working prototype implemented as part of the OpenBSD operating system.
Finally, we have shown how SubOS relates to other security mechanism and
how it strengthens UNIX security.
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