
Sub-operating Systems: A New Approach to
Application Security

Sotiris Ioannidis
sotiris@dsl.cis.upenn.edu

University of Pennsylvania

Steven M. Bellovin
smb@research.att .corn
-4T&T Labs Research

Abstract

In the current highly interconnected computing environments, users
regularly use insecure software. Many popular applications, such as Netscape
Navigator and Microsoft Word, are targeted by hostile applets or mali-
cious documents, and might therefore compromise the integrity of the
system. Current operating systems are unable to protect their users from
this kind of attacks, since the hostile software is running with the user's
privileges and permissions.

We introduce the notion of the SubOS, a process-specific protection
mechanism. Under SubOS, any application that might deal with incom-
ing, possibly malicious objects, behaves like an operating system. It views
those objects the same way an operating system views users-it assigns
sub-user id's-and restricts their accesses to the system resources.

Keywords: Secure systems, capabilities, process-specific protection.

1 Introduction

Many irslportant applications, such as mailers, m7eb browsers, word processors,
etc., have rrlany of the characteristics of operating systenis. In particular, they
accept requests fro111 a variety of mutually-suspicious sources. grant different
permissions based on the source (or other attributes, such as a cryptographic
token), a11d ~riediate access to assorted resources. But applicatioris are poorly
suited t o this task. For exarnple, they have t o implenierit file access restrictions
by ~natching file nanies against assorted patterns. History shows, however, that
tha t approach is fraught with danger (i.e., CERT .Advisories CA:98-04 and
CA:97-03). Real operating systems, which bind permissions t o the protected
objects, rarely have many problems like that .

In this paper we irltroduce the riotiorl of a sub-operating systern (called
SubOS hereafter). A SubOS is an applicatios~ that might have t o operate 011
u~itrusted objects. By the term tintlusted object we refer t o any ir~conling file
t o our systerri, such as a Word docurr~er~t received i11 the mail, a postscript file
dowrl-loaded from some ftp site, or a Java applet that a browser ~riight load fro111

a Web page. These applications use operating syste~ri protection ~rieclia~lis~ris
to irnplerr~e~it their own.

More precisely, applications that "touch" possibly malicious objects, like the
ones listed above, will 110 lor~ger maintain the users privileges, but will rather
get restricted access riglits to the underlying resources. Figures 1 arld 2 display
the differences of a regular, and a SubOS enabled operating system.

Figure 1: User applicatio~is executirig 011 an operating system rnai11tai11 tlie user
privileges, allowing the111 al~riost full access to tlie underlying operating syste111.

~pplications

The paper is orga~~ized as follows. 111 Section 2 we discuss the motivation
behirid this work. 111 Sectio~l 3 we present tlie desigri and irliplenientatiorl details
of a SubOS-capable OpenBSD [Ill system. 111 Sectiori 4 we discuss work that
is related to SubOS, arid finally we co~lclude i11 Section 5 .

2 Motivation

,4 ~lu~rlber of trends in co~riputirig are fueli~~g the need for a more flexible, yet
stricter security rriodel in operating syste~ris.

- *
77s
Q M

2
~ . g g 3
u 3

2.1 Information Exchange

$ 0
2 3 *,

e E
g .s

With the growth of the Internet, excha~lge of ir~for~natior~ over wide-area net-
works has become essential for both applicatio~is a ~ i d users. Modern applica-
tioris often fetch help files and other data over the World Wide Web. In extreme
cases, like sorrie flavors of the BSD UNIX operating system, even wllole oper-
ating systerns i~istall and upgrade themselves over the network. However, the
~riost coInrnon case is electro~~ic ~riail. Users regularly receive 111ai1 from uriknown

Unprotected Space

Operating System

Resources

(CPU, Memory, Disk, Network, etc.:

.....

Protected Space

- * -
n La

g;
i?,
m.c C

i

Figure 2: Under SubOS enabled operating systems user applicatiorls that
"touch" possibly malicious objects no longer 111ai11tain the user access rights,
and only get restricted access to the u~iderlying systerrl.

~pplicationr

Operating System

sources wit11 a ~iu~rlber of possibly rrlalicious attacl~~nerlts. The attached docu-
ments use vulnerabilities i11 the helper applicatio~ls that are invoked to process
them, which in turn could corrlpro~rlise syste~rl security. The need for connec-
tivity and exchange of i11formatio11 eve11 at this rrlost basic level is therefore a
major threat to security.

It is also the case that see~ningly inactive objects like Web pages or e-mail
Irlessages are very ~nuch active and potentially dangerous. One exa111ple is
JavaScript prograIrls which are executed within the security co~~ tex t of the page
with which they were down-loaded, and they have restricted access to other
resources withi11 the browser. Security flaws exist i11 certain Web browsers that
per~r~i t JavaScript prograrrls to rnonitor a user's browser activities beyo~ld tlie
security context of the page with which the prograIri was dow~lloaded (CERT
Advisory Ck97.20). It is obvious that such behavior autonlatically colnpro-
~nises tlie user's privacy.

ilnother exa~nple is the use of Multipurpose 111terrlet Mail Exte~lsio~ls (MIME).
The MIME for~nat permits e~nail to include erlhanced text, graphics, and au-
dio in a standardiaed and i~~ter-operable manIier. Metamail(1) is a package
that i~rlple~rle~its MIME. Using a configurable mailcap (4) file, metamail (1)
deter~rliries how to treat blocks of electronic nail text based on the content as
described by e~riail headers. -4 conditiorl exists i ~ i metamail (1) in wl~icli there
is i~~sufficient variable checking i11 soIrle support scripts. By carefully crafting
appropriate Iliessage headers, a sender can cause the receiver of tlie Irlessage to
execute a11 arbitrary co~rlrna~ld if the receive1 processes the Inessage usi~lg the
mailcap (4) package (CERT -4dvisory C.4:97.14) [lo].

5 : Q w

8 $
$ 3
&

Resources

(CPU. Memory, Disk. Network, etc.:
Protected Space

I
0 -

cn
a
V1

Unprotected Space

p
V,

2.2 Application Complexity

But the problem is deeper than obvious forms of mobile code. Given the in-
creasingly complex enviro~iment presented to many applicatiorls, we assert that
these applications have many of the cliaracteristics of operating systems, and
should be impler~iented as such.

Even siniple HTTP requests return a conlplex object, wherein the rernote
side tells the local browser what to do, up to and including a request to run
ce r t a i~~ applications. Print spoolers have to check file access permissions. Elnail
can be delivered directly to programs. Web servers have to run scripts, often
via an interpreter, while denying direct access to the interpreter and perhaps
ensuring that one script does not access or ~r~odify the private data of another
script. All of these applications sllould worry about resource co~isu~nption. And
these, of course, are the characteristics of operating systems. 111 fact, arbitrating
access to various objects is Inore or less the definition of what an operating
systerrl does.

However, re-in~plenienting an operati~~g syste~r~ with each new applicatio~i
would be extreme. Instead, our goal is to add sufficient functionality to an
existing syster~~ so that applicatiorls can rely on the base operating system to
carry out its ow11 particular security policy. That security policy. in turn, can
reflect its ow11 particular needs arid its degree of certainty as to the identity of
user S.

2.3 Inadequate Operating System Support

The lack of flexibility in modern operating syste~ns is one of the main reasons
security is compromised. The UNIX operating system, in particular, violates the
principle of least privilege. The principle of least privilege states that a process
should have access to the smallest ~lurnber of objects necessary to accor~iplish a
give11 task. UNIX only supports two privilege levels: "root" and "any user".

To overcolrle this sliortcomi~lg, UNIX, can grant temporary privileges. ~ia~rlely
se tu id(2) (set user id) and setgid(2) (set group id). These co~rl~nands allow
a program's user to gain the access rights of the program's owner. However,
special care rrlust be take11 any tirrie these primitives are used, and as experience
has showri a lack of sufficient cautiori is often exploited [12].

.41iother technique used by UNIX is to change the apparent root of the file
syste111 using chroot (2). Tliis causes the root of a file syste~ri hierarchy visible
to a process to be replaced by a subdirectory. One such application is the
f tpd(8) daemori: it has full rights in a safe subdirectory, but it ca1111ot access
anytlii~lg beyond that. This approach, however, is very limiting, and in the
particular exa~rlple coninlands such as Is (1) become unreachable and have to
be replicated.

These ~neclianis~r~s are inadequate to handle the coniplex security needs of
todays applications. This forces a lot of access co~itrol arid validity decisio~~s t o
user-level software that runs with the full privileges of the invoki~lg user. Appli-
cations such as mailers, Web browsers, word processors, etc., beco~rie responsible

for accepting requests, granting per~rlissiorls and managing resources. All this
is what is traditionally done by operating systerrls. These applicatio~a, because
of their complexity as well as the lack of flexibility in the underlying security
rnechanisrns, possess a rmmber of security holes. Examples of such problems are
numerous, including macros i11 Microsoft Word, JavaScript, malicious Postscript
documents, etc.

We wish to offer users flexible security mechanisms that restrict access to
systern resources to the absolute nlimirrlurrl necessary.

3 The SubOS Architecture

3.1 What is SubOS?

SubOS is a process-specific protectiorl mecharlis~n. Under SubOS any appli-
cation (e.g. ghostscript, perl, etc.) that might operate 0x1 possibly malicious
objects (e.g. postscript files, perl scripts, etc.) behaves like an operating sys-
tem, restricting their accesses to system resources. We are going to call these
applications SubOS processes, or sub-processes in the rest of this paper. The
access rights for that object are deterrr~ined by a sub-user id that is assigned to
it when it is first accepted by the system. Tlle sub-user id is a si~nilar notion to
the regular UNIX user id's. 111 UNIX the user id deternlines what resources the
user is allowed to have access to, in SubOS the sub-user id determines what re-
sources the object is allowed to have access to. The advantage of using sub-user
id's is that we can identify iridividual objects with an immutable tag, whicll
allows us to bird a set of access rights to them. This allows for finer grain
per-object access control, as opposed to per-user access control.

The idea becon~es clear if we look at the example shown in Figure 3. Let us
assume that our untrusted object is a postscript file foo.ps. To that object we
have associated a sub-user id, as we will discuss in Section 3.3. Foo.ps initially is
an inactive object in the file systern. While it rerrlairls inactive it poses no threat
to the security of the system. However the rrlorrlent gs(1) opens it, and starts
executi~ig it's code, foo.ps becorrles active, a~ id auto~riatically a possible danger
to the system. To comtairl this threat, the applications that open untrusted
objects, inherit the sub-user id of that objects, arld are hereafter bound to the
permissio~~s and privileges dictated by that sub-user id.

Tlle advantages of our approach becorrle apparent if we consider the alter-
native nletllods of ensuring that a ~nalicious object does not harrn the syste~n.
Again using our postscript exa~riple we can execute foo.ps inside a safe inter-
preter that will limit its access to the urlderlying file syste~n. There are however
a rlurrlber of exarriples on how relying on safe languages fails [I@]. We could
execute the postscript i~it,erpreter inside a sandbox using chroot (2), but this
will prohibit it from accessir~g font files that it might need. Firially we could
read the postscript code and make sure that it does not include arly nlalicious
co~r~rrlar~ds. but this is impractical.

Our rrletl~od provides trarlsparericy to the user a~ id increased security sir~ce

File
f0o.ps
sub-user id

Process
gv foo.ps

sub-user id

Figure 3: In the left part of tlie Figure we see an object, in this case a postscript
file foo.ps, witli its associated sub-user id. The rrlorrient the gliostscript applica-
tion opens file Foo.ps, it tur~is into a SubOS process arid it inherits the sub-user
id that was associated with the uritrusted object. From now 011, tliis process
has the perniissio~ls and privileges associated wit11 this sub-user id.

each object has its access rights bound to its identity, preve~iting it fro111 liar~r~ing
the syste~~i .

3.2 Where should SubOS be Implemented?

The most i ~ r ~ p o r t a ~ ~ t design decisio~i is where we should add the SubOS fum-
tionality. The two possible answers are user level and kernel level; each has its
advantages and disadvantages.

.4 user level approach would require each applicatio~~ of interest to be li~lked
with a library that will provide tlie required security ~rieclianis~~~s. Tliis has
the advantage that it is operatirig systerrl-iridepe~ide~it, and so does riot require
any changes in tlie kernel code. However sucll a solution requires rewriting tlie
applicatior~ i11 such a way as to use the security ~r~echa~iis~ris. Since there are a
lot lriore applicatio~is than operating systerns, this approach is 11ot scalable and
also no re likely to have i~r iple~~ie~~tat ion errors.

An alternative user level i~r~pler r~e~i ta t io~~ would be silrlilar to that take11 by
[6]. Processes that night pose potential danger to the systerri have tlieir syste111
calls truced, usi~ig ptrace(2) or a si~rlilar facility. Using this approach, the
applicatiori runs until it perfor~ns a systeIri call. At this point, it is put to sleep
and a tracing process wakes up. The tracing process determines which system
call was attempted. along witli the argurrlents of the call. It can then deter~riine
whether to allow or deny tliis syste~rl call based on policies set by either tlie user
or the ad~rii~~istrator.

For a kernel level approach, we would need access to the operating system
source code. Tliis restricts our prototype to ope11 source operating systems like

BSD and Li~iux. ' However there is 110 other constraint li~riiting us to UNIX
like operatirig syste~ns, and si~r~ilar i~nplerne~itatioris are possible for operating
systerns like Microsoft Windows. The rriain advantage of this approach is that
tlie additional security ~~iecha~iisrris will be large transparerit to the applications.
Specifically, although the applications may need to be aware of the SubOS struc-
ture, they will not need to worry about access control or program containment.

3.3 How does SubOS enforce its Security Mechanisms?

As we ~nentioned earlier, every tiirie the syste~ri accepts an incorriing object it
associates a sub-user id with it, deperiding on the credentials the object carries.
The sub-user id is pern~a~~er~t ly saved iri tlie Inode of the file tliat holds that
object, which is now its i~rirriutable identity in the system and specifies what
perrnissio~is it will have. It has esser~tially tlie sarne functior~ality as a UNIX
user id. One can view tliis as the equivalent of a user logging in to the system.

Figure 4 shows the equivalence of the two n~ecl~a~~isrris. In the top part of
the figure we see tlie regular process of a user Bar loggi~lg i11 a UNIX systeni Foo
a ~ i d getting a user id. 111 the same way, objects tliat e~iter the system tllrougl~
ftp, mail, etc., "log in" and are assigned sub-user id's based on their (often
cryptographically-verified) source.

1-1 \I,ogin User Bar 1
7 Password UNlX password

I user id I

Host Foo
ftp, mail, Object Bar.{ps,html, ,..)
Web, etc.
Password Cryptographic Token

4 sub-user id 1

Figure 4: Iri tlie top part of tlie Figure we see the regular process of a user Bar
logging in a UNIX system Foo and getting a user id. 111 the same way objects
that enter the systerri tlirougli ftp,]nail, etc., "log in" using a cryptographic
token, arid are assigried sub-user id's.

To test the fumctio~iality of our current prototype we ~nodified a nailer,
mh(i), to take advantage of the SubOS architecture. To do this we extended

'Sometimes, operating systems are structured to permit easy additions to the kernel, even
without source code availability.

7

mh(1) to i~rlple~nent a login-like ~rieclla~~is~ri. Depending on the source of the
message-ideally, this should be cryptographically verified--mh(l) will attach
a sub-user id to that file wlie11 it saves it. Mh(1) assigns sub-user id's using a
file, similar to the UNIX /etc/passwd, that ~natches e-mail addresses to id's.

Sirr~ilar inlplementations are possible for other applications, like f t p (l) , or
Web browsers.

3.4 What should SubOS Protect?

The SubOS ~nechanis~ris should protect the various resources of the users COIII-
puter froni viruses, Trojan Horses, worms, etc. In order to do so, it should
~rlonitor the creation of network connection, accesses to the file system, execu-
tion time of processes and allocation of physical memory, that might result fro111
rr~alicious code in untrusted objects.

3.4.1 Process-related Controls

The Iriost basic operation supported by SubOS is the inl~eritance of the sub-
process id from an inactive file syste~ri object to a run~ii~ig process. To accorn-
plish this we extended the open(2) system call. When it is used on objects that
coritai~l sub-user id's, it copies the sub-user id to the proc structure of that
process (Figure 3). At that point the process becornes a SubOS process bound
to that sub-user id.

It is crucial that a sub-process can never "escape" its sub-process status. To
enforce this, whenever a sub-process forks and execs, the identity is inherited
by the child process. To achieve this we extended the f ork(2) and exec(2)
syste~rl calls to have created processes inherit tliat status. Furtlierrnore we 11iod-
ified the c rea t (2) syste~ri call, so that any files created by sub-processes have
the sub user id of the creator assigned in their Inode. Finally sub-processes are
not allowed to execute setuid prograIris, to e~lforce this we block the setuid re-
lated (se tu id(2) , se teu id(2) , se tg id(2) , setegid(2) system calls i ~ i the
kernel.

It is not clear that tliat is the right choice. However, UNIX has traditionally
had trouble when setuid prograxns invoked other setuid programs. To give just
one historical exar~lple, in the days wlle11 the mkdir(2) call was inlple~rie~lted
by executing a setuid-root program, subsyste~ris that were therriselves setuid
had trouble creating directories.

3.4.2 Controlling Network Connections

The way SubOS processes protect against urlauthorized network use is by fil-
tering the network related syste~rl calls, using a firewall-like nleclia~iis~n. To do
that it uses a list of firewull entries as shown in Figure 5.

By default a SubOS process is not allowed to create network con~iectio~ls. If
we want to allow specific SubOS process to use the network we need to add a

s t r u c t FWE C
i n t subp-pid;
i n t hos t ;
i n t por t ;

>;

Figure 5: Firewall entry.

firewall eritry in tlie kernel specifyi~ig the sub-user id, the host it is allowed to
connect to, and tlie port.

I~riple~rienti~~g policies sir~~ilar to Java's-that a host can cori~iect back to tlie
host the applet was origi~ially loaded from-requires Iriore bookkeeping at the
application level. Specifically, sorrie database niapping sub-user ids to network
policies rriust be maintained. While policies are always necessary, the actual
per~riission bits are maintained in the file system for file accesses.

-4 practical implerrielitation would require co~isiderable attenti011 to policies,
iricludi~lg wild cards for port numbers. rietwork masks for the host, etc. It might
also be desirable to include certain known-safe local host/port cornbir~atioris.
For example, we may wish to permit opean access to a local DNS proxy, for
safe IiaIIie resolution. On the otlier hand, wide-open access to a real rlarrie
server rrlight per~nit tlie co~~trolled process to map local domains, which may be
undesirable.

Wlieri a SubOS process enters the kernel or1 a network-related systeIrl call,
the firewall entry list is traversed and if the right permissions are fourld tlie
syste~ri call is allowed to continue; otherwise we return with an error indicator.

3.4.3 Controlling File System Accesses

In order for the SubOS to restrict file syste~ri accesses we i~itroduce the rlotion
of a view. Tlie view refers to tlie per~riissioris a sub-process has to parts of the
directory tree. Sub-processes don't use tlie per~riission bits that are rior~nally
used by processes (user, group, otlier). Rather, they have their ow11 per~r~issioris
that are defined in a corifiguration file, wliicli tlie user or the ad~rii~iistrator
is responsible for ~naintaining (Figure 6). This is very much like chroot (2)
but rrlore like pruning the directory tree of tlie file system than setting a new
root. 111 tlie example i11 Figure 6 both sub-processes are allowed to execute
cor~i~r~ands cp (1) and Is (I) , which are typical utilities i11 /bin, arid both have
full access rights to /tmp. However each one has it's own private subdirectory
under /home/f oobar/ . netscape.

Tlie exte~ided per~riissiori bits are added in lists in tlie Inodes of tlie files
specified in the co~ifiguratiori file. Every time the kernel identifies a file systeni
access origi~lati~ig from a sub-process, it uses those permissiori bits instead of
tlie 11or1ria1 bits set for user, group or other.

For exan~ple, looking at Figure 6, the inode for /home/f oobar/ . netscape
will have ari ACL witli two entries, for sub-user id's 1024 arid 1025 arid execute

Subp-pid Path Permissions
allow execute access to the commonly used commands 1s and cp
1024,1025 / execute
1024,1025 /bin execute
1024,1025 /bin/ls execute
1024,1025 /bin/cp execute
allow full access rights to the temporary directory /tmp
1024,1025 /tmp read write execute
give each sub-process full access rights
to it's own subdirectory
1024,1025 /home execute
1024,1025 /home/foobar execute
1024,1025 /home/foobar/.netscape execute
1024 /home/foobar/.netscape/sub1 read write execute
1025 /home/foobar/.netscape/sub2 read write execute

Figure 6: Example permissions file. This file holds the perrriissio~is that SubOS
processes with sub-user id's 1024 and 1025 liave, in tlie file hierarchy.

perniissions for both. However tlie inode for /home/f oobar/ .netscape/subl
will only have an entry for sub-user id 1024. If the sub-process wit11 id 1025 tries
to access /home/f oobar/ .netscape/subl, the kernel will first identify that tlie
access is being made by a sub-process, and then follow tlie ACL 011 the inode
of /home/f oobar/ .netscape/subl to find whether or not it should per~rlit the
operation. 111 this case of course it will fail, since 1025 has IIO pern~issio~is for
that file, and the default behavior if no per~~iissions are specified is deny.

3.4.4 Controlling CPU Consumption

Sub-process execution time is nlomitored so that ~rlalicious code does not liarn-
per the smooth operation of tlie systeni. Sub-processes liave no access to the
setpriority(2) or setrlimit (2) syste111 calls, prohibiting t l~e~r i fro111 execut-
ing at a higher priority than the parent process and lirriiti~ig the amount of
cpu ti~rle they are allocated. Furthermore every time a sub-process forks, its
allocated cpu tirr~e (RLIMIT-CPU) is divided by two, e~~suring that it ca111lot
execute forever. There are a number of niore elaborate cpu scheduli~ig tecli-
~iiques, but they are beyond the scope of this work.

3.4.5 Controlling Memory Allocation

As with cpu time allocatio~i, the amount of resident Inerrlory data of sub-
processes is also controlled. This is done by using the RLIMIT-RSS field of
the rlimit structure in the kernel. We use tlie sarrie approach as above, reduc-
ing tlie amount of perniissible resident nierrlory by half every ti~rie a sub-process
forks. Sirice setrlimit (2) calls are not perrnited, we protect against rrialicious

code that attacks the merriory subsysterri.

3.5 Sub-users

111 order for a SubOS to be effective, different sub-user ids 111ust be assigned
to different protection domains. Just how this is done depends on the the
application and on how the file has arrived 011 the local system.

For e-mailed files, the senders identity is used to select the sub-user id. That
is, if ernail arrives twice from the same user, any content will be executed using
the sarrle sub-user id. (Naturally, such mail should be digitally signed.) Mail
fro111 a previously-unknown user, or mail that cannot be assigned with enough
confidence to a particular sender, receives a new sub-user id.

For Web browsers, finer-grained protection is desirable. Each site visited
is assigned its ow11 sub-user id, thus preventing one site fro111 interfering wit11
a~lother's content. This could, for exa~nple, have prevented the "F'ra~ne Spoof"
bug in Internet Explorer (MS98-020).

3.6 Accessing Multiple Objects

So far we have assumed that sub-processes will operate on only one object at a
t i~ne. However it is possible for a sub-process to open r~~ultiple objects, each with
its own sub-user id. We are currently in the process of i~nplementirlg support for
this case. and we will describe our design. When a sub-process opens arlother
object co~ltairlirlg a sub-user id it inllerits that id, and tlie new permissions are
those of the iritersectio~l of the individual per~nissio~ls.

This is easily accomplisl~ed i11 the case of cpu and Inemory allocation, the
new sub-process will have the nlini~nurrl of the two for allocated IneInory and
cpu time. 111 tlie case of network and file systerri access, any request is denied
urlless it is allowed by the pernlissio~ls of sub-user id's.

4 Related Work

The area of operating systerll security is a field that has received a great deal
of attention, and has been researched extensively. However, the ever-irlcreasirlg
derrlarld and need for cornmunicatiorl and openness has put new strains on
operatirlg systerrls. Corn~nunicatio~l erviron~rlents like the Internet require us to
solve a whole new set of proble~ns that researchers have just recently started to
address. In this section we focus our attention to work that is directly related
to ours.

There are several rnetliods for intrusio~i prevention in operating systerrls,
ranging fro111 type-safe languages [15, 17, 23, 8, 71, fault isolation [21] arid code
verification [IS], to operating syste~n-specific per1rlissio11 ~nechariis~rls [16] and
systeni call irlterceptio~l [2, 5 , 6, 11.

Capabilities and access control lists are the most corrlrrion ~r~ecl~a~lisrns op-
erating systems use for access control. Such rnecl~a~~isms expand the UNIX

security nod el and are i~nplemented in several popular operating systelns, such
as Solaris and Windows NT [3, 41. However they offer no protection for the user
against prograIIls owned by the user, which Inay contain errors, Trojan Horses,
or viruses.

The traditional Orange Book-style syste~ns offer protection against violation
of security levels by nlalicious programs. But there is no barrier to attacks on
files at the current security level, nor to attacks at that security level over the
network. For exaniple, a Top Secret wonn can would still be able to spread,
though it would only be able to infect other Top Secret-rated systems.

A different approacl~ relies 011 the notion of syste~r~ call interception, and
its used by systems like TRON [2], MAPbox [I], Software Wrappers [5] and
Ja~lus [6]. TRON and Software Wrappers enforce capabilities by u s i ~ ~ g system
call wrappers co~rlpiled into the operating systerrl kernel. The syscall table is
111odified to route control to the appropriate TRON wrapper for each syste~n
call. The wrappers are responsible for ensuring that the process that invoked
the syste~n call has the necessary permissions. The Janus and MAPbox sys-
te~rls ir~lplenlent a user-level syste~n call interceptio~~ ~nechanism. It is aimed
at confini~~g helper applicatio~ls (suc11 as those launched by Web browsers) so
that they are restricted i11 their use of system calls. To acco~rlplisli this they
use ptrace(2) and the /proc file system, which allows their tracer to register a
call-back that is executed whenever the tracee issues a systenl call. These sys-
te~ris are the most related to our work; however, our syste~n differs in a major
point. We view every object as a separate user, each with its own sub-user id
and access rights to the system resources. This sub-user id is attached to every
incoming object when it is accepted by the system, and stays with it throughout
it's life, n~aking it i~npossible for rrlalicious objects to escape.

The rnethods that we ~ner~tioned so far rely 011 the operating system to
provide with sonle sort of nlechanis~n to e~lforce security. There are, however,
approaches that rely 011 safe languages, [14, 15, 20, 13, 91 the Ir~ost coInmon
example being Java [17]. In Java applets, all accesses to unsafe operations ~rlust
be approved by the security manager. The default restrictions prevent accesses
to the disk and network con~~ections to co~nputers other than the server the
applet was down-loaded from. Our systenl is not o~lly restricted to a 1i111ited set
set of type safe languages. We can secure any process run~lirlg on the system
that has touched sorrle u~ltrusted object.

Code verificatior~ is another technique for e~lsuring security. This approach
uses proof-car7yiriy code [18] to de~~io~istrate the security properties of the object.
This means that the object needs to carry with it a for~nal proof of its properties;
this proof can be used by t.he systerrl that accepts it to ensure that it is not
malicious. Code verification is very limiting since it is hard to create sucll
proofs. Furthermore, it does 11ot scale well; i~rlagirle creating a for~rlal proof for
every Web page.

All the above ~rlecha~lisrrl deal with the security issues. There is, however,
the Quality of Service (QoS) [19, 221 aspect whicli we do not address directly
in this paper. Many attacks will take up syste~n resources but might not ha r~n
data. The 111ost corrl~rlo~i issue is CPU scl~eduli~lg. There is a lot of research

that addresses CPU allocatio~~ to ensure fair CPU access for all running pro-
cesses. Our SubOS uses the simple ~netllods described in Section 3.4 to ensure
fairness and a srnooth running systen~. I~~corporating any state of the art QoS
rr~eclia~iisms is possible, it is however beyond the scope of this work.

5 Conclusions

We have designed and i~rlple~ne~lted a process-specific n~eclianisn~ to corltairl
u~itrusted objects. We restrict the e11viro11111ent that sucli objects can operate
in, and the resources they caIl access, by extending the UNIX security ~riodel
to assign sub-user id's to them and the11 treating them like regular user. The
i~nplenie~ltatio~~ is part of the kernel of the operating system, since that is the
only natural and secure place for security ~rlechanisrrls to enforce policies. SubOS
is a worki~ig prototype i~nplerrlerited as part of the OperiBSD operatirig system.
Finally, we have shown how SubOS relates to other security ~rlechanis~r~ and
how it strengthe~ls UNIX security.

References

[I] Anurag Acharya a11d Mandar Raje. Mapbox: Using parameterized behavior
classes to confi~~e applications. 111 Proceedings of the 2000 USENIX Security
Syn~posiurr~, pages 1-17, Denver, CO, August 2000.

[2] Andrew Berman, Virgil Bourassa, and Erik Selberg. TRON: Process-
Specific File Protection for the UNIX Operating System. 111 USENIX 1995
Techr~icul Confere~~ce, New Orlea~~s, Louisiana. Ja~iuary 1995.

[3] Helen Custer. Inside Windows NT. Microsoft Press, 1993.

[4] Helen Custer. Inside the Windows N T File Syste~n. Microsoft Press, 1994.

[5] Tin1 Fraser, Lee Badger, and Mark Feld1na11. Hardening COTS Software
with Generic Software Wrappers. In P~wxedings of the IEEE Syrriposiurn
071 Security and Pri~acy, Oakland, (2.4, May 1999.

[6] Ian Goldberg. David Wagner, Randi Tlio~nas, and Eric -4. Brewer. A
Secure Enviror~~rie~lt for Untrusted Helper Applicatio~ls. 111 USENIX 1996
Techrbical C o r ~ f t . r e ~ ~ e ~ 1996.

[7] Li Gong. Inside Java 2 Platfo7,rrr Security. Addi~on-i4~esley, 1999.

[8] James Gosling, Bill Joy, and Guy Steele. The Java Lunguuge Speczficatiun.
Addison Wesley, Reading, 1996.

[9] M. Hicks, P. Kakkar, J. T. Moore, C. .A. Gurter, a~ id S. Nettles. PLAN: ,4
Programming Language for -4ctive Networks. Tecllrlical Report MS-CIS-
98-25, Department of Computer and Iriforn~atiorl Scie~~ce, U~~iversity of
Pe~~~~sylvania , February 1998.

[12] R. Kaplan. SUID and SGID Based Attacks on UNIX: a Look a t One For111
of then Use arid Abuse of Privileges. Computer Security Journal, 9(1):73-7,
1993.

[13] X. Leroy. Le systkrne cam1 special light: 111odules et co~npilation efficace en
caml. Research report 2721, INRIA, November 1995.

[14] J . Y. Levy, J . K. Ousterhout, and B. B. Welch. The Safe-Tcl Security
Model. In Proc. of the 1998 USENIX Annual Technical Conference, June
1998.

[15] Jacob Y. Levy, Laurent Denlailly, John K. Ousterhout, and Brent B. U7elch.
The Safe-Tcl Security Model. In USENIX 1998 Annual Technical Confer-
ence, New Orlea~ls, Louisiana, June 1998.

[16] David Mazieres and M. Frans Kasshoek. Secure Applications Need Flexible
Operating Systems. 111 The 6th Workshop on Hot Topics in Operating
Systems, May 1997.

[17] Gary McGraw arid Edward W. Felten. Java Security: hostile upplets, hules
and antidotes. Wiley, New York, NY, 1997.

[18] G. C. Necula and P. Lee. Safe, U~itrusted -4gents using Proof-Carrying
Code. 111 Lecture Notes in Computer. Science Special Issue 071 Mobile
Agents. October 1997.

[19] Jason Nieh and Monica S. Larn. Tlle Design, I~r~ple~nentatiori arid Evalua-
tion of SMART: A Scheduler for Mult i~nedia Applications. 111 P~oceedings
of the 16th ACM Sy~r~posiu7r~ on Operating Systems Principles, October
1997.

[20] J . Tardo and L. LTalente. Mobile .4ge1it Security and Telescript. In F0rt.y-
First IEEE Computer Society Conference (COMPCON), 1996.

[21.] Robert LlTahbe, Steven Lucco, Tlio~rias E. Anderson, arid Susan L. Graham.
Efficient Software-Based Fault Isolatio~~. 111 Proceedings of the 14th ACM
Sy7nposiu71~ 071 Operating Systems Pri7~c'iples~ pages 203-216, Dece~riber
1993.

[22] Carl A. NTaldspurger and William E. NTeilil. Lottery Scheduling: Flexi-
ble Proportional-Share Resource Management. In Proceedings of the First
USENIX Symposium 071 Operating System Design and Imple7r~entutior~,
Novernber 1994.

[23] Dan S. NTallacli, Dirk Balfanz, Drew Dean, and Edward W. Felten. Ex-
terisible Security Architectures for Java. 111 Proceedings of the 16th ACM
Syrrtposivrn on Operating Systerris Principles, October 1997.

