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Abstract— Left atrial voltage maps are routinely ac-
quired during electroanatomic mapping in patients undergoing
catheter ablation for atrial fibrillation (AF). For patients, who
have prior catheter ablation when they are in sinus rhythm
(SR), the voltage map can be used to identify low voltage
areas (LVAs) using a threshold of 0.2 - 0.45 mV. However,
such a voltage threshold for maps acquired during AF has
not been well established. A prerequisite for defining a voltage
threshold is to maximize the topologically matched LVAs
between the electroanatomic mapping acquired during AF and
SR. This paper demonstrates a new technique to improve the
sensitivity and specificity of the matched LVA. This is achieved
by computing omni-directional bipolar voltages and applying
Gaussian Process Regression based interpolation to derive the
AF map. The proposed method is evaluated on a test cohort of 7
male patients, and a total of 46,589 data points were included in
analysis. The LVAs in the posterior left atrium and pulmonary
vein junction are determined using the standard method and
the proposed method. Overall, the proposed method showed
patient-specific sensitivity and specificity in matching LVAs of
75.70% and 65.55% for a geometric mean of 70.69%. On
average, there was an improvement of 3.00% in the geometric
mean, 7.88% improvement in sensitivity, 0.30% improvement in
specificity compared to the standard method. The results show
that the proposed method is an improvement in matching LVA.
This may help develop the voltage threshold to better identify
LVA in the left atrium for patients in AF.

I. INTRODUCTION

The voltage map is one form of data provided by elec-
troanatomic mapping (EAM) and is often used to demarcate
low voltage areas (LVAs) and preserved voltage areas during
catheter ablation therapy to treat atrial fibrillation (AF). LVAs
correspond to areas of diseased atrium (fibrosis) or dense
scars from prior ablations. Identifying LVA can help in
planning ablation strategies especially in patients requiring
repeat ablation procedures for arrhythmia recurrences, for
example, AF and atypical atrial flutter.

The cutoff threshold voltage for a voltage map that deter-
mines LVAs has been established for maps obtained while
the patient is in sinus rhythm (SR) [1][2]. However, this same
threshold is not applicable to maps collected during AF.

For example, Fig. 1(a) depicts the SR map with a cutoff
threshold of 0.45 mV. The regions below the threshold
are clearly delineated from the healthy regions (magenta).
However, in (b), applying the same threshold to the AF map
for the same patient distorts the LVAs distribution. After
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Fig. 1: Example of need for a threshold to be used on voltage
maps obtained during AF. Magenta area is healthy tissue, other
colors are scar tissue. (a) The SR cutoff threshold of 0.45 mV is
applied to the SR map. (b) Applying the same threshold to the AF
map distorts LVAs in the AF map. (c) Adjusting the threshold to
0.16 mV restores the LVAs.

adjusting to a lower threshold, as in (c), the LVAs on the
AF map are restored to match the SR map.

Several studies have shown that the local atrial signal
acquired during AF is lower than in SR. Thus, identifying
LVA during EAM in AF should require a lower cutoff voltage
[3]. However, determining a consistent threshold that can be
applied to all patients remains challenging. A prerequisite
is determining the best match of LVAs that can be obtained
between the SR map and the AF map and thereby finding
the best threshold to be applied on a patient-by-patient basis.

Problem Statement: Given a set of measurements during SR
and AF for a patient, maximize the topologically matched
LVAs between the derived SR and AF map and determine
the best patient-specific cutoff voltage threshold.

In this paper, we demonstrate a method of deriving the AF
map which is robust to noise and error in the measurements
and improves the patient-specific sensitivity and specificity of
matched LVAs in comparison to the standard method through
the following the contributions:
• Compute omni-directional bipolar voltages which are

invariant to the orientation of the catheter, thus improv-
ing signal strength during AF.

• Apply Gaussian process regression (GPR) interpolation
which improves the accuracy of LVA detection in re-
gions of the atrium with lower measurement density.

II. BACKGROUND: STANDARD VOLTAGE MAP

Fig. 2 depicts the steps of deriving the current standard
left atrial (LA) voltage map during catheter ablation of AF.
Initially, as in (1), a 3D anatomical mesh is generated by
manipulating a multi-electrode mapping catheter (Lasso or
Pentaray) to different parts of the LA [4]. As the mesh is
being created, recordings of 2.5 seconds of electrogram are
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Fig. 2: Standard method of deriving voltage map. (1) Anatomical
mesh is computed from catheter locations. (2) Bipolar voltages are
computed from measurements of electrogram at points along the
mesh. (3) The bipolar voltages are interpolated to the remainder of
the mesh to derive the voltage map.

Fig. 3: Bipolar voltages are computed as the peak-to-peak voltage
in a pre-specified window within a 2.5 seconds recording of the
endocardium electrogram.

collected at various locations around the endocardium. (2)
shows the locations of all such sampled points on the LA
mesh. The voltage value is interpolated to the remaining
areas of the mesh to derive the final voltage map as shown
in (3). The colors of the voltage map are based on a pre-
specified cutoff threshold, where areas above the threshold
are marked in magenta, and areas below the threshold are
considered LVAs.

Fig. 3 shows that within the 2.5 seconds, a 300 ms time
window is defined relative to the QRS peak, and the peak-
to-peak voltage is computed within the time window.

III. ROBUST METHOD FOR VOLTAGE MAP DERIVATION

Our proposed robust method deriving the voltage map
differs from the standard method in terms of two compo-
nents: a) omni-directional bipolar voltage and b) GPR-based
interpolation.
a) Omni-directional bipolar voltage: Fig. 4 shows a lim-
itation of bipolar recording, the dependency on electrode
orientation. If the bipolar placement is parallel to the iso-
electric potential line, the bipolar recording will be zero,
which does not reflect the local electric activity [5]. To
reduce such dependency, we derive the omni-directional
bipolar voltage. For each sample point, we select the unipolar
electrogram recorded in the vicinity of the sample and
compute all possible bipolar electrogram from this set.
We approximate the omni-directional bipolar voltage as the
largest bipolar amplitude from this set. Fig. 4 (1) Blue depicts
the histogram of the voltages for a patient. Red shows how
the corresponding voltages are amplified. In the tail portion,
the voltages of some LVA have increased above the threshold
to be classified as healthy tissue. (2) and (3) exemplifies how

Fig. 4: Benefits of using omni-directional bipolar voltages. (1)
Bipolar voltages in AF (blue) are amplified (red), improving the
signal. (2), (3) Regions of previously low voltage (red in (2)) are
increased after computing omni-directional bipolar voltages (yellow
in (3)).

Fig. 5: Standard interpolation vs. GPR-based interpolation. (1) Due
to interpolation error, the circled region is determined as a LVA. (2)
GPR-based interpolation accounts for measurements in the vicinity
and reduces the LVA in the circled region.

the original red areas of voltage ∼0.06 mV are enhanced into
yellow and green areas of voltage ∼0.17 mV.
b) Gaussian process regression based interpolation: If
we model the endocardium as a surface and define the entire
set of samples as, D = {xn, yn}Nn=1, where inputs X =
{xn}Nn=1 correspond to the locations on the mesh and y =
{yn}Nn=1 are the voltage value at that location. Interpolating
from these measured samples to the remainder of the mesh
can be thought of as determining the estimates of the voltages
at locations X∗. The two major sources of interpolation
error are the low measurement density and measurement
noise. Both of these can be accounted for by modeling
them using a Gaussian process GP (m(x, k(x,x′))) [6],
which is characterized by the mean m(x) and the covariance
k(x,x′) kernel functions. We assume the common zero mean
function and use the squared exponential function k(x,x′) =
exp(−||x− x′||/(2 · l2)). Fig. 5(1) shows how the standard
interpolation can result in regions that are classified as LVAs,
due to interpolation error. (2) shows GPR-based interpolation
can improve the boundaries of LVAs by considering the
surrounding measurements.

For determining the optimum threshold, a search in the
range of 0-0.45 mV is performed to maximize the product
of sensitivity and specificity. Here, sensitivity = TP

TP+FN
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Fig. 6: Experimental setup. For each patient: From the SR map (1), LVA are determined (2) as well as the region of interest (3). Both
(2) and (3) are topologically transferred to the AF map (4) and (5). (4) (5) are intersected to obtain the true LVAs on the AF map (6).
The optimal patient-specific threshold is determined by maximizing the product of sensitivity and specificity accordin to (8).

and specificity = TN
TN+FP , where a true positive (TP)

indicates that the corresponding face on the anatomical mesh
is detected as a LVA and the true label is a LVA.

IV. EXPERIMENTAL SETUP

The proposed method of voltage map derivation was
evaluated on a test cohort of 7 patients that underwent repeat
catheter ablation for AF at the Hospital of the University of
Pennsylvania. Patient demographics are: age 66± 0.7 years,
height 5′10”±4”, weight 238.9±50 lb and ejection fraction
49.4%. Details are in Table I. For each patient, voltage maps
were sequentially obtained using Carto3 (Biosense Webster)
during SR and AF or vice-versa. Fill threshold was 5 mm,
and filters were set at 2 to 240 Hz for unipolar electrograms
(EGMs), 16-500 Hz for bipolar EGMs, and 0.5-200 Hz for
surface electrogram recordings. We assumed that the LVA
observed based on the SR voltage map is the ground truth.

The overall evaluation process is depicted in Fig. 6. From
the original data (1), we apply the standard 0.45 mV cutoff
threshold on the SR map to identify regions of LVA (2).
We select a region of interest (ROI) on the SR map (3),
which consists of the posterior LA and pulmonary vein (PV)
junctions. Both the LVA and the ROI is transferred to the AF
mesh and intersected to form the final LVA on the AF map
(4),(5),(6). Then result (7) is determined as shown in (8) in
terms of sensitivity and specificity.

V. RESULTS AND DISCUSSION

A total of 46,589 data points were included in analysis,
that was on average 6,656 data points for each of the 7

Patient 1 2 3 4 5 6 7
Age 66 58 70 70 69 58 76

Height 71” 75” 72” 62” 70” 72” 68”
Weight 290 lb 260 lb 266 lb 243 lb 267 lb 200 lb 146 lb

Ejection Function 65% 50% 25% 50% 55% 60% 40%

TABLE I: Patient population

patients. Table II summarizes the results of evaluation for
each patient. On average, our proposed method showed a
sensitivity and specificity of 75.70% and 66.55%, respec-
tively. This was a 3.00% improvement in the geometric mean
compared to the standard method. Moreover, our proposed
method exhibited a 7.88% improvement in sensitivity and a
0.30% improvement in specificity. ROC curves were obtained
for each of the methods and the area under the curve was
computed as shown in Fig. 7. Our proposed method showed
an average of 3.91% improvement in terms of the area under
the curve (AUC).

Fig. 8 depicts patient 1 with the improved detection
of LVAs after applying the optimal threshold. First, the
improvement is due to the enhanced signal in the omni-
directional bipolar voltages. On the boundaries of the ROI
LVAs are correctly categorized as healthy regions using the
proposed method. Second, in the areas of high electrode
density, GPR-based interpolation discounts the amplitude
when voltage spikes due to noise occur. Finally, in re-
gions of lower measurement density, the standard method

Fig. 7: ROC curve comparing, baseline method vs proposed
method using omni-directional bipolar voltages and GPR-based
interpolation. The proposed method shows improved or similar
performance across various thresholds.
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Patient Baseline Omni.+GP Percentage of Improvement
Sens. Spec. GM AUC Voltage Threshold Sens. Spec. GM. AUC Voltage Threshold ∆Sens. ∆Spec. ∆GM ∆AUC

1 76.18 63.56 69.58 0.77 0.26 84.92 70.74 77.51 0.85 0.23 11.47 11.30 11.40 10.39
2 54.87 57.64 56.24 0.57 0.09 72.72 47.49 58.77 0.61 0.11 32.53 -17.61 4.50 7.02
3 77.38 71.48 74.37 0.80 0.16 91.22 69.59 79.67 0.86 0.15 17.89 -2.64 7.13 7.50
4 79.52 78.08 78.80 0.85 0.26 85.42 77.07 81.14 0.89 0.30 7.42 -1.29 2.97 4.71
5 58.08 66.88 62.32 0.67 0.36 69.24 56.71 62.66 0.66 0.38 19.21 -15.21 0.55 -1.49
6 80.61 74.64 77.57 0.83 0.32 72.87 83.41 77.96 0.85 0.21 -9.60 11.75 0.50 2.41
7 70.24 52.57 60.77 0.63 0.10 53.54 60.87 57.09 0.61 0.17 -23.78 15.79 -6.06 -3.17

Average 70.98 66.41 68.52 0.73 0.22 75.70 66.55 70.69 0.76 0.22 7.88 0.30 3.00 3.91
Std 10.49 9.19 8.87 0.11 0.11 12.72 12.34 10.65 0.13 0.09 18.96 13.32 5.54 4.95

TABLE II: Results for patient-specific performance for all patients

Fig. 8: Example of improved result: Patient 1, baseline vs proposed
method.

Fig. 9: Patient 7. Baseline vs proposed method. Poor performance
can be attributed to the dominance of LVAs in the ROI, thus
penalizing specificity.

underestimates the interpolated voltage when spurious low-
voltage measurement exist. In this case the combination
of omni-directional bipolar voltages enhances the signal,
and GPR-based interpolation filters such noise, preventing
classification as LVAs.

In patient 7, our proposed method did not improve per-
formance. Upon further inspection, we discovered that 90%
of the ROI was LVA as shown in Fig. 9. This patient had
undergone prior extensive surgical ablation and so had exten-
sive areas of dense scar in the ROI, making discrimination
difficult. Optimizing the threshold with a different criterion
which accounts for this bias may result in a better outcome.

Limitations: The results of our study are limited in scope,
mostly in part by the small cohort size. Bias due to the
particular demographics of the cohort may have affected
the results and different results may be obtained with a
larger cohort. Selection of different hyperparameters for the
method, such as a different kernel for GPR-based regression
may affect the performance. Finally, establishing a standard
protocol for obtaining data may lead to improvement.

VI. CONCLUSION

In this work, we have presented a method for deriving the
voltage map during AF and comparing it to voltage maps
acquired during SR. Our method computes omni-directional
bipolar voltages from the measurements and utilizes GPR-
based interpolation to derive the voltage map. Evaluation

on the test cohort showed that, in general, the method
improved the patient-specific sensitivity and specificity in
determining LVAs of the AF map compared to the standard
method, though some exceptions exist. This improvement
in matched areas between the maps is significant and has
important practical implications as clinicians interpret volt-
age maps according to the areas and not by the individual
point measurements. More accurate information about LVA
distribution is helpful to clinicians in planning ablation
strategies for patients who require repeat catheter ablation for
arrhythmia recurrences. Immediate future work is to apply
the method over a larger cohort. In a practical clinical setting,
patient-to-patient variability may need to be accounted for
in the criterion. Overall, the results provide evidence that
the proposed method improves the detection of LVAs in AF
maps. Because of the robustness to measurement noise and
interpolation error, the proposed method could lead to a more
consistent criterion.
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