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Abstract 

This paper presents a proof of the conjecture that the complexity 
classes P and AfP are not equal. The proof involves showing that a 
particular problem in NP cannot be solved in polynomial time. The 
problem in question is the satisfiability problem for logical expressions 
in conjunctive normal form (CSAT). The strategy of the proof is to 
construct what amounts to the most efficient algorithm for CSAT and 
then show that this algorithm does not run in polynomial time. The 
algorithm is constructed by constructing, from first principles, a set 
of constraints that any efficient algorithm for CSAT must satisfy. The 
constraints are made so restrictive that any two algorithms that satisfy 
all of them are essentially interchangeable. 

1 Introduction 

Almost no one questions the assertion that  the complexity classes P  and 
NP are not equal; the problem is to  prove it.  To prove this assertion, i t  
suffices to prove that  any particular problem in NP is not in P, that  is, 
no algorithm for that problem runs in polynomial time. Needless t o  say, a 
straightforward proof using this strategy is impossible, because the number 
of algorithms that  can solve any particular problem is uncountably infinite. 
We have t o  use a different strategy. 

Here is the strategy I propose. First, choose a particular problem in 
NP. Then, by reasoning from first principles, construct a set of constraints 
such that  any algorithm that  solves that  problem efficiently must satisfy 
every constraint in the set. Make the constraints so restrictive that  any two 



algorithms that satisfy them are essentially interchangeable. Construct an 
algorithm A that satisfies the constraints and argue that any other algorithm 
that does the same is equivalent to A in this sense. Finally, demonstrate 
that A does not run in polynomial time. Since the problem is in N P ,  it 
follows that P # N P .  

Clearly, the success of this strategy depends critically on the nature 
of the problem. Most non-trivial problems do not lend themselves to  this 
strategy; if they did, then the study of algorithms would certainly be less 
challenging. 

The problem that I choose for my proof is the satisfiability problem 
for logical expressions in conjunctive normal form, known as CSAT. The 
following section briefly describes CSAT. 

2 A Brief Description of CSAT 

A Boolean variable (or logical variable) is a variable that can be either true 
or false (denoted by T and F, respectively). A disjunction is a sequence of 
one or more logical expressions separated by the Boolean or operator (v) ;  
a conjunction is a sequence of one or more logical expressions separated by 
the Boolean and operator (A). A liteml is either a Boolean variable or the 
complement of one. A clause is a disjunction of literals. A logical expression 
is in conjunctive normal form (CNF) if it is a conjunction of clauses. For 
example, the following expression is in CNF: 

where P, Q, R, and S are Boolean variables (hereafter referred to as vari- 
ables). 

A truth assignment is a function from the set of logical variables t o  {T, 
F). Given a truth assignment h and a logical expression E, h satisfies E 
if h makes E true; otherwise, h does not satisfy E .  We also say that a 
truth assignment h satisfies a clause C or a literal L if h makes C or L true, 
respectively. 

The CNF-satisfiability problem (CSAT) is defined as follows: Given a 
logical expression E in CNF, is there a truth assignment h that satisfies E? 
Note that CSAT is a decision problem, that is, a problem that requires a yes 
or no answer. 



3 Constraints, Unconstraints, and Facts 

I begin my proof by listing the constraints that must hold for any efficient 
algorithm A that solves C S A T  for a given CNF-expression E in the manner 
described above. I also list some unconstmints on A, which specify choices 
that A has to make that do not affect the amount of time A takes to find 
a solution. Finally, I list some facts that help determine some of these 
constraints and help justify others. 

3.1 Initial Constraints 

Constraint 1 A terminates when it has found a truth assignment that sat- 
isfies E l  or when it has determined that no such truth assignment exists. 

Justification: This is what it means for A to  solve CSAT for E .  

Constraint 2 A satisfies E by satisfying every clause i n  E .  

Constraint 3 A satisfies a clause in  E by satisfying at least one literal i n  
that clause. 

Justification: These two constraints follow from what it means for a 
Boolean expression to be true. 

Fact 1 During the execution of A, every variable in  E can have one of three 
possible truth values: true, false, or indeterminate. Initially every variable 
is  indeterminate. The same is true for literals. 

Fact 2 During the execution of A, every clause C in  E can have one of 
three possible truth values: true (at least one literal i n  C is true), false (all 
literals in  C are false), or indeterminate (out of a total of n literals in  C ,  k 
are false, where 0 5 k 5 n - 1; the rest are indeterminate). Initially every 
clause is indeterminate. 

Fact 3 During the execution of A ,  E itself can have one of three possible 
truth values: true (all clauses i n  E are true), false (at least one clause in  E 
is  false), or indeterminate (out of a total of n clauses i n  El k are true, where 
0 5 k 5 n - 1; the rest are indeterminate). Initially E is indeterminate. 

Constraint 4 When trying to satisfy El A only tries to satisfy indetermi- 
nate clauses i n  El and when trying to satisfy an indeterminate clause C, A 
only tries to satisfy indeterminate literals in C .  



Justification: This should be obvious. 

Constraint 5 If A tries to satisfy an indeterminate clause C and A suc- 
ceeds i n  doing so by satisfying one of its indeterminate literals, A must not 
try to satisfy any additional indeterminate literals in  C .  

Justification: This is all that is necessary; trying to satisfy any additional 
indeterminate literals would be a waste of time. 

3.2 Adding Parallelism to A 

It  is sometimes possible t o  add parallelism to  A. 

Fact 4 If we partition the set of clauses i n  E into blocks (i.e., subsets) of 
clauses such that no two blocks have any variables i n  common, then we can 
satisfy those blocks independently, and hence i n  parallel. 

Justification: The truth assignments for each block do not interfere with 
each other, because they range over disjoint sets of variables. 

The next two facts should both be obvious. 

Fact 5 If we partition the set of clauses i n  E into blocks having the above 
property, and we manage to find a satisfying truth assignment for each block, 
then the satisfying truth assignment for E is  just the composition of the 
satisfying truth assignments for each block. 

Fact 6 If we partition the set of clauses i n  E into blocks having the above 
property, and we determine that at least one of these blocks is  a contradic- 
tion, then E itself is a contradiction. 

Fact 7 W e  can partition the set of clauses i n  E into blocks having the above 
property i n  polynomial time. 

Justification: This problem reduces to  the problem of finding the con- 
nected components of a graph. Given E ,  we can construct an appropriate 
graph G with n vertices and m edges as follows. There is one vertex in G 
for every possible literal in E, that is, every variable that appears in E and 
its complement. There is one edge between every pair of vertices whose cor- 
responding literals belong in the same block. Thus there is an edge between 
every pair of vertices corresponding to  a literal and its complement, and for 



every clause in E containing k literals, there are k - 1 edges linking those 
corresponding vertices together. Let r be the number of variables that ap- 
pear in E, and let s be the total number of literals in E .  Then n is equal to  
2r,  and m is equal to  r + (s - 1)  -the total number of clauses in E; therefore 
m is bounded above by r + s. 

We can construct G in time proportional to  s ,  and we can find the 
connected components of G in time O(max(n,m)), which is usually just 
O(m) = O(r  + s) .  Therefore we can find the blocks of E in time O(r + s) .  

Constraint 6 A must partition the set of clauses in E into blocks having 
the above property and then try to satisfy those blocks zn parallel. 

Justification: With parallelism, the running time of A is a function of 
the number of clauses in the largest block; without parallelism, the running 
time is a function of the total number of clauses in E, which is always greater 
than or equal to the number of clauses in the largest block. 

The constraints in the next two sections only apply to the operation of 
A with respect to  a block of clauses B, not to  E itself. In these sections, the 
phrase "the current truth assignment" refers to the current truth assignment 
for B. 

3.3 Initial Constraints for Blocks of Clauses 

Constraint 7 A must not change the current truth assignment (i.e., back- 
track) until it absolutely has to. 

Justification: A must assume that the current truth assignment is correct 
until it has definite evidence to the contrary; otherwise, it will not be finding 
a satisfying truth assignment as quickly as possible. 

Fact 8 There are 2n possible ways in which A can extend the current truth 
assignment by n variables (called candidate extensions). 

Justification: This should be obvious. 

Constraint 8 If a candidate extension falsifies at least one clause in B,  
then A must detect this problem and fix it. 

Justification: This follows from Constraint 2. 



Constraint 9 If a candidate extension falsifies at least one clause in  B,  
then A must detect this problem and fix it immediately. 

Justification: If A continues to  extend the current truth assignment after 
a candidate extension falsifies at  least one clause in B, it may have to undo 
some of this work when it eventually gets around to  fixing the false clause(s), 
thereby wasting time. For example, consider the following expression. 

Suppose that A tries to satisfy this expression as follows. First, A extends 
the (empty) truth assignment by the variables P and R, where both variables 
are true. This extension falsifies the third clause, but before A tries to fix 
this problem, it extends the truth assignment again by the variables T and 
V, where both variables are true. Now there is no way that A can fix the 
third clause without undoing part of the second extension. In order to make 
the third clause true, A must either make P false, R false, or both P and 
R false. If A makes P false, it must make Q true to satisfy the first clause. 
If A makes R false, it must make S true to satisfy the second clause. If A 
makes both P and R false, it must make both Q and S true. If A makes 
Q true, however, the second-to-last clause will become false; if A makes S 
true, the last clause will become false; and if A makes both Q and S true, 
both of these clauses will become false. The only way to fix these problems 
is to change the truth values of T ,  V, or both T and V respectively. In any 
case, part of the second extension is wasted. 

Constraint 10 Suppose that A is trying to extend the current truth assign- 
ment by  n variables at the same time. A must keep trying each of the 2n 
candidate extensions in turn until either it finds a candidate extension that 
does not falsify at least one clause in B or it runs out of candidate extensions 
to try. 

Justification: In the above situation, suppose that A tries one of the 
2n candidate extensions, and that candidate extension falsifies at least one 
clause in B. By Constraint 9, A must do something about this problem 
immediately. There are only two other things that A can do: 

1. Give up prematurely and change the current truth assignment. Ac- 
cording to Constraint 7, this is inefficient. 



2. Keep the current truth assignment as it is, but try to  extend it by 
a different set of variables (i.e., different with respect to either the 
number of variables, the variables themselves, or both). If A does 
this, then it will not have gained any information from the candidate 
extension, so it will have wasted time. 

Therefore A must pick another candidate extension and try again. 

The next two facts should both be obvious. 

Fact 9 In the above situation, if A runs out of candidate extensions to try, 
then the proposed extension does not work. 

Fact 10 In the above situation, if A runs out candidate extensions to try 
and the current truth assignment is empty, then B is a contradiction. 

The following constraint is what I am really after. 

Constraint 11 A extends the current truth assignment by exactly one vari- 
able at a time. 

Justification: Suppose that A is trying to extend the current truth as- 
signment by n variables at the same time, where n > 1. Further suppose 
that this extension does not work. By Constraint 10, A will try all 2n candi- 
date extensions in turn. A will determine that the extension does not work, 
but it will take time proportional to 2n to do it. Clearly, A must minimize 
the amount of time it takes to make this determination; the only way to do 
this is to choose n = 1. 

This constraint is critically important because it tells us that, although 
we can parallelize the operation of A with respect to  E, we cannot parallelize 
it with respect to B. In other words, we cannot add any more parallelism 
to A. 

Constraint 12 A tries to satisfy exactly one clause in B at a time. 

Justification: This follows trivially from the previous constraint, because 
satisfying a clause involves extending the current truth assignment. 



3.4 Backtracking 

Constraint 13 If, given the current truth assignment, at least one clause 
in  B is impossible to satisfy, then A must detect this problem and fix it by 
backtracking. 

Justification: This follows from Constraint 2. 

Constraint 14 If, given the current truth assignment, at least one clause 
i n  B is impossible to satisfy, then A must detect this problem and fix it as 
soon as possible by backtmcking. 

Justification: Suppose that A is trying to satisfy a particular clause that 
is impossible t o  satisfy, and A gives up after only trying to  satisfy a few of its 
indeterminate literals. After A does some additional work, it will eventually 
try to satisfy the clause again and discover that it cannot do so; then it will 
backtrack, a t  which point it may undo some of the additional work, thereby 
wasting time. 

Constraint 15 A must successively try every possible way to satisfy a par- 
ticular clause. 

Justification: This follows from the previous constraint, because the 
clause may be impossible to satisfy. 

Constraint 16 Suppose that A is trying to satisfy a clause C by picking 
an  indeterminate literal L i n  C and making L true. If the resulting truth 
assignment falsifies at least one other clause i n  B, A must change it to make 
L false and then check whether this truth assignment falsifies at least one 
other clause in  B. 

Justification: This follows from Constraint 10 with n = 1. 

Constraint 17 Again suppose that A is trying to satisfy a clause C by 
picking an indeterminate literal L in  C and making L true. If A encounters 
an immediate problem, and then makes L false and encounters no immediate 
problem, A must immediately pick another indeterminate literal i n  C and 
try to satisfy that literal instead. 

Justification: This is what i t  means for A to  successively try every pos- 
sible way to  satisfy C. 



Constraint 18 In the above situation, i f  A runs out of indeterminate lit- 
erals i n  C to satisfy, it must backtrack immediately. 

Justification: There is no other way to  satisfy C, so Constraint 14 applies. 

Unconstraint 1 The order in which A tries to  satisfy the indeterminate 
literals i n  an  indeterminate clause does not matter. 

Justification: We have no prior information about the indeterminate 
literals, other than the fact that they are indeterminate, that could help us 
determine an appropriate order. 

Constraint 19 Again suppose that A is trying to satisfy a clause C by 
picking an indeterminate literal L in  C ,  etc. If A makes L both true and 
false, and both of the resulting truth assignments falsify at least one other 
clause i n  B ,  then A must backtrack immediately. 

Justification: B may not be a contradiction, and given the current truth 
assignment, there may not be a way to  satisfy B that does not require 
making L either true or false. A must backtrack immediately because, if 
this is in fact the case, A will waste time trying to  find a way to  satisfy B 
without using L. For example, consider the following expression. 

By Unconstraint 1, we can assume without loss of generality that A tries to  
satisfy the indeterminate literals in a clause from left to  right. Let us also 
assume for now that A satisfies the clauses in the expression from left to 
right. (I will justify this assumption in Section 3.8.) A proceeds by making 
P true, then R true, then T true. If A then makes V true, the last clause 
becomes false; if A makes V false, the second-to-last clause becomes false. If 
A ignores V and makes W true, it will be unable to  satisfy either of the last 
two clauses. This expression is not a contradiction, however; for example, 
A can satisfy it by making P true, R false, S true, T true, and V true. 
Therefore A must backtrack. 

Constraint 20 A must keep track of the sequence of clauses i n  B that it 
has explicitly satisfied. 



Justification: Otherwise, if A has to  backtrack, it will not be able to  
determine which clause i t  should backtrack to. 

I will address the issue of exactly which clause A should backtrack to  in 
Section 3.6. 

Constraint 21 When A backtracks from a clause C to a clause C', A must 
retract all the assignments of truth values to variables that it made when 
trying to  satisfy both C and C'. 

Justification: The whole idea behind backtracking is to find a different 
way to  satisfy C', and since A satisfied C' before it satisfied C ,  A must also 
retract the changes it made to  the truth assignment while trying to satisfy 
C .  

The next section applies to E itself, not just to a block of clauses in E. 

3.5 One-Literal Clauses 

I now consider the special status of clauses in E that contain exactly one 
literal. 

Fact 11 The variables that appear in one-literal clauses i n  E are immune 
from backtracking. No other variables i n  E are immune from backtracking. 

Justification: There is only one way to  satisfy a one-literal clause. There 
is always more than one way to satisfy a clause of length greater than or 
equal to  2. 

Constraint 22 If a variable i n  E is immune from backtracking, A must 
recognize it and treat it as such. 

Justification: It is clearly a waste of time to  retract the truth value of a 
variable that can only have one truth value. 

This means that when A backtracks past a clause C ,  A must retract the 
truth values of all the variables in C except the variables that are immune 
from backtracking. (See Constraint 21.) 

Constraint 23 A must assign truth values to the variables that are immune 
from backtracking first. 



Justification: If a clause C of length at least 2 contains an indeterminate 
literal L that is the same as some one-literal clause C', then satisfying C' 
will satisfy L, and hence C ,  so it would be inefficient to try to satisfy another 
indeterminate literal in C, as doing so might very well lead to a backtracking, 
but satisfying C' by definition will not. 

Therefore all of the previous constraints only apply to clauses of length 
at  least 2. 

Unconstraint 2 The order in which A satisfies the one-literal clauses in 
E does not matter. 

Justification: This should be obvious. 

We also have a necessary condition for testing whether E is a contradic- 
tion. 

Fact 12 If both a variable and its complement are one-liteml clauses in  E ,  
then E is a contradiction. 

Note that this test only detects a few contradictions. In the next section, 
I will present a test that detects all other contradictions. 

3.6 Overall Search Strategy 

The next three sections only apply to a particular block of clauses B, not 
to  the entire expression E. 

We can think of a block B as defining a search tree, and we can think 
of the operation of A as a movement from the root of this tree to its leaves. 
Each node in the tree corresponds to a clause of B. The branches from each 
node correspond to  the indeterminate literals of the appropriate clause. A 
branch emanating from a node corresponds to an indeterminate literal in the 
appropriate clause that, when satisfied, does not cause any immediate prob- 
lems. Moving from one node to  another along a given branch corresponds to  
satisfying the first node's corresponding clause by satisfying the appropri- 
ate literal and then attempting to satisfy the second node's corresponding 
clause. 

We should therefore ask what search strategy A should adopt to move 
through this search tree. The strategy must satisfy the following two con- 
straints: 



1. It must move from one end of the search tree to the other as quickly 
as possible. 

Justification: This is what it means for A to find a satisfying truth 
assignment as quickly as possible. 

2. It must be exhaustive. 

Justification: A must terminate on all inputs, so A must terminate on 
all contradictions, so A must systematically try all possible ways to 
satisfy the clauses of B to determine whether B is a contradiction. 

The only search strategy that satisfies these two constraints is depth-first 
search. Therefore A must conduct a depth-first search of the search tree, so 
A itself must also satisfy these two constraints: 

Constraint 24 The order in  which A satisfies the clauses in  B must be 
fixed. 

Constraint 25 When A backtracks past a clause in  B,  it must backtrack to 
that clause's immediate predecessor in the clause sequence for B. 

We now have a means of determining whether B is a contradiction that 
succeeds when the test in the previous section fails. 

Fact 13 If A attempts to  backtrack past the first clause in  the clause se- 
quence for B, then B is a contradiction. 

3.7 Failed Literals 

All of the constraints in this section follow indirectly from the conclusions 
about A's overall search strategy presented above. 

Constraint 26 Suppose that A backtracks from a clause C to  a clause C'. 
There is some literal L in  C' that A explicitly satisfied i n  order to  satisfy 
C' .  A must not satisfy this literal again; it is a failed literal, i.e., a literal 
that, when satisfied, eventually led to  an  unsatisfiable clause. 

Justification: Satisfying such a literal twice might lead to an infinite 
loop, which is intolerable; besides, the whole idea behind backtracking is to 
find a different way to satisfy C'. 



Constraint 27 Along with the sequence of clauses i n  B that A has explicitly 
satisfied, A must also remember the literal in each of those clauses that it 
explicitly satisfied. 

Justification: A must remember which literal in a clause it explicitly 
satisfied so it can make that literal a failed literal if i t  ever backtracks to  
that clause. A cannot rely on the current truth assignment to  identify this 
literal, because there may be other literals in the clause that are also true 
as a result of A's attempts to  satisfy other clauses. 

Constraint 28 Suppose that A is trying to  satisfy a clause C by picking an 
indeterminate literal L i n  C and trying to satisfy L.  If L is a failed literal, 
A must make L false and then check whether this truth assignment creates 
an immediate problem. 

Justification: This constraint is true for the same reason that Constraint 
16 is true. The only difference is that in in this case, we know that satisfying 
L leads to  a long-term problem, as opposed to  a short-term problem. 

Constraint 29 Again suppose that A is  trying to satisfy a clause C by pick- 
ing an  indeterminate literal L i n  C ,  e t ~ .  If L is a failed literal, and making 
L false makes some other clause i n  B false, A must backtrack immediately. 

Justification: This constraint is true for the same reason that Constraint 
19 is true; the only difference is that here, we know that satisfying L leads 
to  a long-term problem, as opposed to a short-term problem. For example, 
consider the following expression. 

By Unconstraint 1, we can assume without loss of generality that A tries t o  
satisfy the indeterminate literals in a clause from left to  right. Let us also 
assume for now that A satisfies the clauses in the expression from left t o  
right. (I will justify this assumption in Section 3.8.) A proceeds by making 
P true, then R true, then T true. It then tries t o  make V both true and false 
and fails, so i t  backtracks to  the third clause and makes T a failed literal for 
that clause. It tries t o  satisfy the third clause again; it discovers that T is a 
failed literal, and makes i t  false, but doing so makes the last clause false. If 
A ignores T and makes U true, it will be unable to  satisfy the last clause. 
This expression is not a contradiction, however; for example, A can satisfy 
it by making P true, R false, S true, T true, and V true. Therefore A must 
backtrack again. 



Fact 14 A clause can have more than one failed literal. 

Justification: A may backtrack to the same clause over and over again, 
explicitly satisfying a different indeterminate literal each time. It  can do 
this as many times as there are indeterminate literals in the clause. 

Constraint 30 Again suppose that A is trying to satisfy a clause C by 
picking an  indeterminate literal L i n  C ,  etc. If L is a failed literal and 
making L false does not cause any immediate problem, A must immediately 
pick another indeterminate literal i n  C and try to satisfy that literal instead. 

Justification: Like Constraint 17, this follows from Constraint 15. 

Constraint 31 In the above situation, if A runs out of indeterminate lit- 
erals i n  C to satisfy, it must backtrack immediately. 

Justification: There is no other way to  satisfy C ,  so Constraint 14 applies. 

Constraint 32 When A backtracks from a clause C to a clause C', A must 
forget about all of the failed literals i n  C .  

Justification: The failed literals for a clause are only useful when A 
backtracks to that clause, not when A backtracks past it. 

Constraint 33 When A backtracks from a clause C to a clause C', A must 
also forget about the literal i n  C that it explicitly satisfied. 

Justification: This follows from Constraint 21. 

3.8 Choosing an Initial Clause Order 

Next, I consider the important issue of the order in which A should try to 
satisfy the clauses in B. Given no other constraints, we would conclude that 
A should use the following strategy: try to satisfy the clauses in B having 
the smaller number of indeterminate literals first. This is because, after 
satisfying these clauses, the number of indeterminate literals in each of the 
remaining clauses will be as large as possible, which maximizes the chance 
that A will be able to find indeterminate literals in those clauses that work, 
and thus minimizes the chance that A will backtrack. This implies that A 
should choose the clauses it satisfies dynamically; that is, A should find the 
clause in B having the smallest number of indeterminate literals, satisfy that 



clause, and repeat. We have already concluded, however, that the order in 
which A satisfies the clauses must be fixed. Therefore A must choose some 
order in which to satisfy them at the start. What should this order be? The 
only prior information we have that could help us answer this question is 
the length of the clauses. We therefore have the following constraint. 

Constraint 34 If some of the clauses in B are of different lengths, A must 
try to satisfy the shorter clauses first. 

Justification: This follows from the approximation that clauses with 
fewer literals are more likely to have fewer indeterminate literals at  any 
time during the execution of A. 

Therefore a straightforward and obvious way (but certainly not the only 
way) to satisfy B that satisfies this constraint is to sort the clauses in B 
by increasing length and then satisfy those clauses from left to right. This 
approach also ensures that A satisfies all of the one-literal clauses in B first. 

Unconstraint 3 If some of the cJauses in B are of the same length, A can 
try to satisfy them in any order. 

Justification: Again, we have no prior information about the clauses, 
other than their length, that could help us determine an appropriate order. 

3.9 On the Efficiency of Data Structures 

It  may seem that the data structures for A should be as efficient as possible. 
This is not necessarily true, however, for the following reason. We are trying 
to determine whether or not A runs in polynomial time. A must satisfy all 
of the other constraints in this paper in order for us to make this determi- 
nation. With respect to the data structures, though, what matters is not 
how efficient they are with respect to the operations they support, but how 
many times they must perform those operations. 

As long as the data structures perform all the operations they support 
in polynomial time, the other constraints in this paper will determine how 
many times they must do so, and hence whether or not A runs in polynomial 
time. Therefore we have the following (easily satisfied) constraint. 

Constraint 35 The data structures for A must perform all of the operations 
they support in polynomial time. 



3.10 One Final Constraint 

The last constraint is important for the purposes of the proof. 

Constraint 36 A must not do anything other than try to find a satisfying 
truth assignment for E ,  or indicate that no such assignment exists if it 
cannot do so. 

Justification: Anything else would be a waste of time. 

4 On the Equivalence of Two Algorithms 

When most people state that two algorithms are equivalent, they mean 
that,  given the same inputs, the algorithms return the same outputs. This 
definition says nothing about the relationship of the time complexity of the 
algorithms, and is therefore too weak for my purposes. I would like to  define 
equivalence in such a way that two algorithms are equivalent if, given the 
same inputs, they take exactly the same amount of time to  find a solution. 

Unfortunately, i t  is impossible to  formally compare two algorithms to  
decide whether they are equivalent in this sense. The reason lies in the 
definition of an algorithm. An algorithm is defined as a description of a 
sequence of steps that solves a given problem. There is no constraint on 
the language of the description: it could be a formal language, an informal 
language, or even a natural language, as long as anyone who reads the 
description can understand it. Hence there is no place for a rigorous proof 
of equivalence, given such a definition. Instead, I define the equivalence of 
two algorithms in the following way. 

Definition 1 Two algorithms are equivalent if their overall sequence of 
atomic steps is the same and the actions they take during each atomic step 
(i.e., the basic operations they perform on data and decisions they make) are 
the same, irrespective of the way in which their descriptions are structured 
as procedures and irrespective of any aspects of either algorithm that do not 
aflect the amount of time they take to find a solution (i.e., unconstmints). 

Claim 1 This definition makes sense. 



5 An Efficient Algorithm for CSAT 

This algorithm is called A-CSAT. I have written it in a list-processing lan- 
guage based on the programming language Scheme. In fact, the description 
that appears below is actually the heart of a complete, fully working Scheme 
program (with the exception of parallelism). Any assumptions the algorithm 
makes are also described below. 

; Representations : 
, 
; A (Boolean) variable is  represented as an atom. 
; A l i t e r a l  is represented as ei ther  a variable or '(not V), where V is a 
; variable. 
; A clause is represented as a list of l i t e r a l s .  
; A CNF-expression is represented as a list of clauses. 

; We need a global list that  contains a l l  the one-literal clauses i n  the 
; expression. 

; For each block, we need a stack that  contains a l l  of the clauses of 
; length a t  least  2 that  the algorithm has expl ici t ly  sa t i s f ied .  Each 
; entry in the stack is a pair  of the form '(clause l i t e r a l ) ,  where 
; " l i t e ra l1 '  is the l i t e r a l  that  the algorithm made t rue i n  order t o  make 
; "clause" true. We need t o  know what t h i s  l i t e r a l  is in  case we have t o  
; backtrack over the clause; i f  we do, then it becomes a "fai led l i t e r a l "  
; f o r  the clause (see below). 

; For each block, we also need a table that contains, fo r  each clause 
; in the expression of length a t  l eas t  2 ,  the l i t e r a l s  within that  clause 
; which eventually led t o  a backtracking (known as "failed l i t e r a l s " ) .  
; These l i t e r a l s  can not and should not be considered again. 

; Variables, l i t e r a l s ,  and clauses can have one of three possible 
; t ru th  values: t rue,  fa lse ,  and indeterminate, represented by ' true, 
; ' fa lse ,  and 'indeterminate, respectively. 

; Each block has its own truth assignment, represented by a list of 
; pai rs  of the form '(variable truth-value). 

; The sat isfact ion procedure i t s e l f .  In  t h i s  procedure, (comap f 1) is 

; an imaginary function that  takes a function f and a l i s t  1, applies 
; f t o  the elements of 1 in para l le l ,  and returns the resulting l i s t .  
; I f  "map" is  substituted fo r  "comap", t h i s  procedure works just f i ne  on 
; a sequential machine. 

(define (sat isfy exp) 
( l e t  ((sorted-exp (merge-sort exp))) 



(set  ! one-literal-clauses (one-li terals sorted-exp) ) 
( l e t  ((one-lit-h (satisfy-one-li ts)))  

( i f  (equal? one-lit-h 'contradiction) 
(display "This expression is a contradiction.") 
( l e t  ((big-sorted-clauses (two-or-more-lits sorted-exp))) 

(cond ((null? big-sorted-clauses) 
(display 
"There is a sat isfying t ru th  assignment:") 

(newline) 
(display one-lit -h) ) 

(e lse  
( l e t  ((f inal-h 

( f l a t t en  
(comap (lambda (block) 

(sat isf  y-block 
one-lit-h 
empty-f a i led- l i ts - table  
empty-pair-sequence 
block 
( f i r s t  block) ) ) 

(find-blocks big-sorted-clauses))))) 
(cond ((member 'contradiction final-h) 

(display 
"This expression is a contradiction.")) 

(e lse  
(display 
"There is a sat isfying t r u t h  assignment : ")  

(newline) 
(display f inal-h) 1) 1) 1) 1) 1) 

; The procedure f o r  sat isfying a block. This procedure re turns  a 
; sa t i s fy ing  t r u t h  assignment f o r  the  block, or '(contradiction) i f  
; the  block is a contradiction. The indeterminate clauses i n  the 
; block are  s a t i s f i e d  from l e f t  t o  r igh t .  

(define (satisfy-block h f l t  ps exp current-clause) 
( i f  (true-expression? h exp) 

h 
( l e t  ( ( resu l t  (sa t isf  y-clause h f lt ps exp current-clause))) 

( i f  (equal? ( f i r s t  r esu l t )  ' fa i led)  
( i f  (null? ps) 

' (contradict ion) 
( l e t  ((previous-clause ( f i r s t  ( f i r s t  ps) ) ) 

(previous-lit (second ( f i r s t  ps))) )  
(sat isf  y-block 
( re t rac t -a l l - l i t s  h previous-clause) 
(erase-f a i l ed- l i t e ra l s  



(add-f a i l e d - l i t e r a l  
f l t  
previous-li t  
previous-clause) 

current-clause) 
(previous-pairs ps) 

erp  
previous-clause))) 

( sa t  i s f  y-block 
(second resu l t )  
f l t  
( t h i r d  resu l t )  

exp 
(find-next-clause 

(second r e s u l t )  
(rest-of (member current-clause exp) ) ) ) ) ) ) )  

; The procedure f o r  sa t is fying an indeterminate clause. The indeterminate 
; l i t e r a l s  in a clause a re  t r i e d  from l e f t  t o  r i g h t .  This procedure 
; re tu rns  a list of three  items: a f l a g  indicating success or  f a i l u r e ,  
; the  resu l t ing  t r u t h  assignment, and the  resul t ing pair-sequence. 

(define (satisfy-clause h f l t  ps exp current-clause) 
(define (clause-loop h temp) 

(cond ( (nul l?  temp) ( l i s t  ' f a i l ed  h ps)) 
((indeterminate-li teral? h ( f i r s t  temp)) 
( i f  (f a i l ed - l i t e ra l?  f lt ( f i r s t  temp) current-clause) 

( i f  (f alse-expression? 
(extend-lit h ( f i r s t  temp) ' fa lse)  
exp) 

( l i s t  ' f a i l ed  h ps) 
(clause-loop 
(extend-lit h ( f i r s t  temp) ' fa lse)  
(rest-of temp))) 

( i f  (f alse-expression? 
(extend-li t  h ( f i r s t  temp) ' t rue)  
exp) 
( i f  (false-expression? 

(extend-li t  h ( f i r s t  temp) ' f a l se )  
exp) 

( l i s t  ' f a i l ed  h ps) 
(clause-loop 
(extend-lit h ( f i r s t  temp) ' fa lse)  
(rest-of temp) 1) 

( l i s t  'succeeded 
(extend-lit h ( f i r s t  temp) ' true) 
(push-pair ( l i s t  current-clause ( f i r s t  temp)) 



ps))))) 
(else (clause-loop h (rest-of temp))))) 

(clause-loop h current-clause)) 

6 The Remainder of the Proof 

The remainder of the proof is straightforward. 

Claim 2 Any efficient algorithm for CSAT satisfies all of the constraints 
in Section 3. 

Justification: We must show that it is not possible for an algorithm to 
fail to satisfy one or more of the constraints in Section 3 and still be more 
efficient than an algorithm that satisfies all of them. 

There are two kinds of constraints in Section 3: trivial constraints and 
non-trivial constraints. The trivial constraints deal with the basic operation 
of A; every valid algorithm for CSAT must satisfy all of them. The non- 
trivial constraints are the ones that an algorithm for CSAT may or may not 
satisfy. The non-trivial constraints are these: Constraints 5-7, 9-12, 14-19, 
and 22-36. 

The proof of this claim lies in the justifications of the non-trivial con- 
straints. In each of these justifications, I have shown either directly or 
indirectly that if A fails to  satisfy the constraint in question, its running 
time will either increase or remain the same at best (but this is never guar- 
anteed). Therefore any efficient algorithm for CSAT must satisfy all of the 
non-trivial constraints, and hence all of the constraints, in Section 3. 

Claim 3 A-CSAT satisfies all of the constraints in Section 3. 

Justification: It was constructed that way. 

Claim 4 Any algorithm that satisfies all of the constraints of Section 3 is 
equivalent to A-CSAT. 

Justification: This claim follows from the restrictiveness of the con- 
straints. The first 35 constraints are so restrictive that any algorithm that 
satisfies them must perform the same overall sequence of atomic steps and 
the same basic actions in each atomic step as A-CSAT. Constraint 36 guar- 
antees that such an algorithm does not perform any other random steps. 



These three claims imply that any efficient algorithm for CSAT is equiv- 
alent to  A-CSAT. Therefore we can say that A-CSAT is the most efficient 
algorithm for CSAT. 

Claim 5 A-CSAT does not run in polynomial time. 

Justification: We can easily prove this with a simple counterexample. 

Therefore no efficient algorithm for CSAT runs in polynomial time, so 
no algorithm for CSAT runs in polynomial time, so CSAT is not in P. Since 
CSAT is in N P ,  it follows that P # N P .  
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