
P IS NOT EQUAL TO
NP

Jon Freeman

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

Otober 1989

P Is Not Equal

J o n Freeman
Depar tment of Computer a n d Information Science

University of Pennsylvania
Philadelphia, PA 19104

October 1989

Abstract

This paper presents a proof of the conjecture that the complexity
classes P and AfP are not equal. The proof involves showing that a
particular problem in NP cannot be solved in polynomial time. The
problem in question is the satisfiability problem for logical expressions
in conjunctive normal form (CSAT). The strategy of the proof is to
construct what amounts to the most efficient algorithm for CSAT and
then show that this algorithm does not run in polynomial time. The
algorithm is constructed by constructing, from first principles, a set
of constraints that any efficient algorithm for CSAT must satisfy. The
constraints are made so restrictive that any two algorithms that satisfy
all of them are essentially interchangeable.

1 Introduction

Almost no one questions the assertion that the complexity classes P and
NP are not equal; the problem is to prove it. To prove this assertion, i t
suffices to prove that any particular problem in NP is not in P, that is,
no algorithm for that problem runs in polynomial time. Needless t o say, a
straightforward proof using this strategy is impossible, because the number
of algorithms that can solve any particular problem is uncountably infinite.
We have t o use a different strategy.

Here is the strategy I propose. First, choose a particular problem in
NP. Then, by reasoning from first principles, construct a set of constraints
such that any algorithm that solves that problem efficiently must satisfy
every constraint in the set. Make the constraints so restrictive that any two

algorithms that satisfy them are essentially interchangeable. Construct an
algorithm A that satisfies the constraints and argue that any other algorithm
that does the same is equivalent to A in this sense. Finally, demonstrate
that A does not run in polynomial time. Since the problem is in N P , it
follows that P # N P .

Clearly, the success of this strategy depends critically on the nature
of the problem. Most non-trivial problems do not lend themselves to this
strategy; if they did, then the study of algorithms would certainly be less
challenging.

The problem that I choose for my proof is the satisfiability problem
for logical expressions in conjunctive normal form, known as CSAT. The
following section briefly describes CSAT.

2 A Brief Description of CSAT

A Boolean variable (or logical variable) is a variable that can be either true
or false (denoted by T and F, respectively). A disjunction is a sequence of
one or more logical expressions separated by the Boolean or operator (v) ;
a conjunction is a sequence of one or more logical expressions separated by
the Boolean and operator (A). A liteml is either a Boolean variable or the
complement of one. A clause is a disjunction of literals. A logical expression
is in conjunctive normal form (CNF) if it is a conjunction of clauses. For
example, the following expression is in CNF:

where P, Q, R, and S are Boolean variables (hereafter referred to as vari-
ables).

A truth assignment is a function from the set of logical variables t o {T,
F). Given a truth assignment h and a logical expression E, h satisfies E
if h makes E true; otherwise, h does not satisfy E . We also say that a
truth assignment h satisfies a clause C or a literal L if h makes C or L true,
respectively.

The CNF-satisfiability problem (CSAT) is defined as follows: Given a
logical expression E in CNF, is there a truth assignment h that satisfies E?
Note that CSAT is a decision problem, that is, a problem that requires a yes
or no answer.

3 Constraints, Unconstraints, and Facts

I begin my proof by listing the constraints that must hold for any efficient
algorithm A that solves C S A T for a given CNF-expression E in the manner
described above. I also list some unconstmints on A, which specify choices
that A has to make that do not affect the amount of time A takes to find
a solution. Finally, I list some facts that help determine some of these
constraints and help justify others.

3.1 Initial Constraints

Constraint 1 A terminates when it has found a truth assignment that sat-
isfies E l or when it has determined that no such truth assignment exists.

Justification: This is what it means for A to solve CSAT for E .

Constraint 2 A satisfies E by satisfying every clause i n E .

Constraint 3 A satisfies a clause in E by satisfying at least one literal i n
that clause.

Justification: These two constraints follow from what it means for a
Boolean expression to be true.

Fact 1 During the execution of A, every variable in E can have one of three
possible truth values: true, false, or indeterminate. Initially every variable
is indeterminate. The same is true for literals.

Fact 2 During the execution of A, every clause C in E can have one of
three possible truth values: true (at least one literal i n C is true), false (all
literals in C are false), or indeterminate (out of a total of n literals in C , k
are false, where 0 5 k 5 n - 1; the rest are indeterminate). Initially every
clause is indeterminate.

Fact 3 During the execution of A , E itself can have one of three possible
truth values: true (all clauses i n E are true), false (at least one clause in E
is false), or indeterminate (out of a total of n clauses i n El k are true, where
0 5 k 5 n - 1; the rest are indeterminate). Initially E is indeterminate.

Constraint 4 When trying to satisfy El A only tries to satisfy indetermi-
nate clauses i n El and when trying to satisfy an indeterminate clause C, A
only tries to satisfy indeterminate literals in C .

Justification: This should be obvious.

Constraint 5 If A tries to satisfy an indeterminate clause C and A suc-
ceeds i n doing so by satisfying one of its indeterminate literals, A must not
try to satisfy any additional indeterminate literals in C .

Justification: This is all that is necessary; trying to satisfy any additional
indeterminate literals would be a waste of time.

3.2 Adding Parallelism to A

It is sometimes possible t o add parallelism to A.

Fact 4 If we partition the set of clauses i n E into blocks (i.e., subsets) of
clauses such that no two blocks have any variables i n common, then we can
satisfy those blocks independently, and hence i n parallel.

Justification: The truth assignments for each block do not interfere with
each other, because they range over disjoint sets of variables.

The next two facts should both be obvious.

Fact 5 If we partition the set of clauses i n E into blocks having the above
property, and we manage to find a satisfying truth assignment for each block,
then the satisfying truth assignment for E is just the composition of the
satisfying truth assignments for each block.

Fact 6 If we partition the set of clauses i n E into blocks having the above
property, and we determine that at least one of these blocks is a contradic-
tion, then E itself is a contradiction.

Fact 7 W e can partition the set of clauses i n E into blocks having the above
property i n polynomial time.

Justification: This problem reduces to the problem of finding the con-
nected components of a graph. Given E , we can construct an appropriate
graph G with n vertices and m edges as follows. There is one vertex in G
for every possible literal in E, that is, every variable that appears in E and
its complement. There is one edge between every pair of vertices whose cor-
responding literals belong in the same block. Thus there is an edge between
every pair of vertices corresponding to a literal and its complement, and for

every clause in E containing k literals, there are k - 1 edges linking those
corresponding vertices together. Let r be the number of variables that ap-
pear in E, and let s be the total number of literals in E . Then n is equal to
2r, and m is equal to r + (s - 1) -the total number of clauses in E; therefore
m is bounded above by r + s.

We can construct G in time proportional to s , and we can find the
connected components of G in time O(max(n,m)), which is usually just
O(m) = O(r + s) . Therefore we can find the blocks of E in time O(r + s) .

Constraint 6 A must partition the set of clauses in E into blocks having
the above property and then try to satisfy those blocks zn parallel.

Justification: With parallelism, the running time of A is a function of
the number of clauses in the largest block; without parallelism, the running
time is a function of the total number of clauses in E, which is always greater
than or equal to the number of clauses in the largest block.

The constraints in the next two sections only apply to the operation of
A with respect to a block of clauses B, not to E itself. In these sections, the
phrase "the current truth assignment" refers to the current truth assignment
for B.

3.3 Initial Constraints for Blocks of Clauses

Constraint 7 A must not change the current truth assignment (i.e., back-
track) until it absolutely has to.

Justification: A must assume that the current truth assignment is correct
until it has definite evidence to the contrary; otherwise, it will not be finding
a satisfying truth assignment as quickly as possible.

Fact 8 There are 2n possible ways in which A can extend the current truth
assignment by n variables (called candidate extensions).

Justification: This should be obvious.

Constraint 8 If a candidate extension falsifies at least one clause in B,
then A must detect this problem and fix it.

Justification: This follows from Constraint 2.

Constraint 9 If a candidate extension falsifies at least one clause in B,
then A must detect this problem and fix it immediately.

Justification: If A continues to extend the current truth assignment after
a candidate extension falsifies at least one clause in B, it may have to undo
some of this work when it eventually gets around to fixing the false clause(s),
thereby wasting time. For example, consider the following expression.

Suppose that A tries to satisfy this expression as follows. First, A extends
the (empty) truth assignment by the variables P and R, where both variables
are true. This extension falsifies the third clause, but before A tries to fix
this problem, it extends the truth assignment again by the variables T and
V, where both variables are true. Now there is no way that A can fix the
third clause without undoing part of the second extension. In order to make
the third clause true, A must either make P false, R false, or both P and
R false. If A makes P false, it must make Q true to satisfy the first clause.
If A makes R false, it must make S true to satisfy the second clause. If A
makes both P and R false, it must make both Q and S true. If A makes
Q true, however, the second-to-last clause will become false; if A makes S
true, the last clause will become false; and if A makes both Q and S true,
both of these clauses will become false. The only way to fix these problems
is to change the truth values of T , V, or both T and V respectively. In any
case, part of the second extension is wasted.

Constraint 10 Suppose that A is trying to extend the current truth assign-
ment by n variables at the same time. A must keep trying each of the 2n
candidate extensions in turn until either it finds a candidate extension that
does not falsify at least one clause in B or it runs out of candidate extensions
to try.

Justification: In the above situation, suppose that A tries one of the
2n candidate extensions, and that candidate extension falsifies at least one
clause in B. By Constraint 9, A must do something about this problem
immediately. There are only two other things that A can do:

1. Give up prematurely and change the current truth assignment. Ac-
cording to Constraint 7, this is inefficient.

2. Keep the current truth assignment as it is, but try to extend it by
a different set of variables (i.e., different with respect to either the
number of variables, the variables themselves, or both). If A does
this, then it will not have gained any information from the candidate
extension, so it will have wasted time.

Therefore A must pick another candidate extension and try again.

The next two facts should both be obvious.

Fact 9 In the above situation, if A runs out of candidate extensions to try,
then the proposed extension does not work.

Fact 10 In the above situation, if A runs out candidate extensions to try
and the current truth assignment is empty, then B is a contradiction.

The following constraint is what I am really after.

Constraint 11 A extends the current truth assignment by exactly one vari-
able at a time.

Justification: Suppose that A is trying to extend the current truth as-
signment by n variables at the same time, where n > 1. Further suppose
that this extension does not work. By Constraint 10, A will try all 2n candi-
date extensions in turn. A will determine that the extension does not work,
but it will take time proportional to 2n to do it. Clearly, A must minimize
the amount of time it takes to make this determination; the only way to do
this is to choose n = 1.

This constraint is critically important because it tells us that, although
we can parallelize the operation of A with respect to E, we cannot parallelize
it with respect to B. In other words, we cannot add any more parallelism
to A.

Constraint 12 A tries to satisfy exactly one clause in B at a time.

Justification: This follows trivially from the previous constraint, because
satisfying a clause involves extending the current truth assignment.

3.4 Backtracking

Constraint 13 If, given the current truth assignment, at least one clause
in B is impossible to satisfy, then A must detect this problem and fix it by
backtracking.

Justification: This follows from Constraint 2.

Constraint 14 If, given the current truth assignment, at least one clause
i n B is impossible to satisfy, then A must detect this problem and fix it as
soon as possible by backtmcking.

Justification: Suppose that A is trying to satisfy a particular clause that
is impossible t o satisfy, and A gives up after only trying to satisfy a few of its
indeterminate literals. After A does some additional work, it will eventually
try to satisfy the clause again and discover that it cannot do so; then it will
backtrack, a t which point it may undo some of the additional work, thereby
wasting time.

Constraint 15 A must successively try every possible way to satisfy a par-
ticular clause.

Justification: This follows from the previous constraint, because the
clause may be impossible to satisfy.

Constraint 16 Suppose that A is trying to satisfy a clause C by picking
an indeterminate literal L i n C and making L true. If the resulting truth
assignment falsifies at least one other clause i n B, A must change it to make
L false and then check whether this truth assignment falsifies at least one
other clause in B.

Justification: This follows from Constraint 10 with n = 1.

Constraint 17 Again suppose that A is trying to satisfy a clause C by
picking an indeterminate literal L in C and making L true. If A encounters
an immediate problem, and then makes L false and encounters no immediate
problem, A must immediately pick another indeterminate literal i n C and
try to satisfy that literal instead.

Justification: This is what i t means for A to successively try every pos-
sible way to satisfy C.

Constraint 18 In the above situation, i f A runs out of indeterminate lit-
erals i n C to satisfy, it must backtrack immediately.

Justification: There is no other way to satisfy C, so Constraint 14 applies.

Unconstraint 1 The order in which A tries to satisfy the indeterminate
literals i n an indeterminate clause does not matter.

Justification: We have no prior information about the indeterminate
literals, other than the fact that they are indeterminate, that could help us
determine an appropriate order.

Constraint 19 Again suppose that A is trying to satisfy a clause C by
picking an indeterminate literal L in C , etc. If A makes L both true and
false, and both of the resulting truth assignments falsify at least one other
clause i n B , then A must backtrack immediately.

Justification: B may not be a contradiction, and given the current truth
assignment, there may not be a way to satisfy B that does not require
making L either true or false. A must backtrack immediately because, if
this is in fact the case, A will waste time trying to find a way to satisfy B
without using L. For example, consider the following expression.

By Unconstraint 1, we can assume without loss of generality that A tries to
satisfy the indeterminate literals in a clause from left to right. Let us also
assume for now that A satisfies the clauses in the expression from left to
right. (I will justify this assumption in Section 3.8.) A proceeds by making
P true, then R true, then T true. If A then makes V true, the last clause
becomes false; if A makes V false, the second-to-last clause becomes false. If
A ignores V and makes W true, it will be unable to satisfy either of the last
two clauses. This expression is not a contradiction, however; for example,
A can satisfy it by making P true, R false, S true, T true, and V true.
Therefore A must backtrack.

Constraint 20 A must keep track of the sequence of clauses i n B that it
has explicitly satisfied.

Justification: Otherwise, if A has to backtrack, it will not be able to
determine which clause i t should backtrack to.

I will address the issue of exactly which clause A should backtrack to in
Section 3.6.

Constraint 21 When A backtracks from a clause C to a clause C', A must
retract all the assignments of truth values to variables that it made when
trying to satisfy both C and C'.

Justification: The whole idea behind backtracking is to find a different
way to satisfy C', and since A satisfied C' before it satisfied C , A must also
retract the changes it made to the truth assignment while trying to satisfy
C .

The next section applies to E itself, not just to a block of clauses in E.

3.5 One-Literal Clauses

I now consider the special status of clauses in E that contain exactly one
literal.

Fact 11 The variables that appear in one-literal clauses i n E are immune
from backtracking. No other variables i n E are immune from backtracking.

Justification: There is only one way to satisfy a one-literal clause. There
is always more than one way to satisfy a clause of length greater than or
equal to 2.

Constraint 22 If a variable i n E is immune from backtracking, A must
recognize it and treat it as such.

Justification: It is clearly a waste of time to retract the truth value of a
variable that can only have one truth value.

This means that when A backtracks past a clause C , A must retract the
truth values of all the variables in C except the variables that are immune
from backtracking. (See Constraint 21.)

Constraint 23 A must assign truth values to the variables that are immune
from backtracking first.

Justification: If a clause C of length at least 2 contains an indeterminate
literal L that is the same as some one-literal clause C', then satisfying C'
will satisfy L, and hence C , so it would be inefficient to try to satisfy another
indeterminate literal in C, as doing so might very well lead to a backtracking,
but satisfying C' by definition will not.

Therefore all of the previous constraints only apply to clauses of length
at least 2.

Unconstraint 2 The order in which A satisfies the one-literal clauses in
E does not matter.

Justification: This should be obvious.

We also have a necessary condition for testing whether E is a contradic-
tion.

Fact 12 If both a variable and its complement are one-liteml clauses in E ,
then E is a contradiction.

Note that this test only detects a few contradictions. In the next section,
I will present a test that detects all other contradictions.

3.6 Overall Search Strategy

The next three sections only apply to a particular block of clauses B, not
to the entire expression E.

We can think of a block B as defining a search tree, and we can think
of the operation of A as a movement from the root of this tree to its leaves.
Each node in the tree corresponds to a clause of B. The branches from each
node correspond to the indeterminate literals of the appropriate clause. A
branch emanating from a node corresponds to an indeterminate literal in the
appropriate clause that, when satisfied, does not cause any immediate prob-
lems. Moving from one node to another along a given branch corresponds to
satisfying the first node's corresponding clause by satisfying the appropri-
ate literal and then attempting to satisfy the second node's corresponding
clause.

We should therefore ask what search strategy A should adopt to move
through this search tree. The strategy must satisfy the following two con-
straints:

1. It must move from one end of the search tree to the other as quickly
as possible.

Justification: This is what it means for A to find a satisfying truth
assignment as quickly as possible.

2. It must be exhaustive.

Justification: A must terminate on all inputs, so A must terminate on
all contradictions, so A must systematically try all possible ways to
satisfy the clauses of B to determine whether B is a contradiction.

The only search strategy that satisfies these two constraints is depth-first
search. Therefore A must conduct a depth-first search of the search tree, so
A itself must also satisfy these two constraints:

Constraint 24 The order in which A satisfies the clauses in B must be
fixed.

Constraint 25 When A backtracks past a clause in B, it must backtrack to
that clause's immediate predecessor in the clause sequence for B.

We now have a means of determining whether B is a contradiction that
succeeds when the test in the previous section fails.

Fact 13 If A attempts to backtrack past the first clause in the clause se-
quence for B, then B is a contradiction.

3.7 Failed Literals

All of the constraints in this section follow indirectly from the conclusions
about A's overall search strategy presented above.

Constraint 26 Suppose that A backtracks from a clause C to a clause C'.
There is some literal L in C' that A explicitly satisfied i n order to satisfy
C' . A must not satisfy this literal again; it is a failed literal, i.e., a literal
that, when satisfied, eventually led to an unsatisfiable clause.

Justification: Satisfying such a literal twice might lead to an infinite
loop, which is intolerable; besides, the whole idea behind backtracking is to
find a different way to satisfy C'.

Constraint 27 Along with the sequence of clauses i n B that A has explicitly
satisfied, A must also remember the literal in each of those clauses that it
explicitly satisfied.

Justification: A must remember which literal in a clause it explicitly
satisfied so it can make that literal a failed literal if i t ever backtracks to
that clause. A cannot rely on the current truth assignment to identify this
literal, because there may be other literals in the clause that are also true
as a result of A's attempts to satisfy other clauses.

Constraint 28 Suppose that A is trying to satisfy a clause C by picking an
indeterminate literal L i n C and trying to satisfy L. If L is a failed literal,
A must make L false and then check whether this truth assignment creates
an immediate problem.

Justification: This constraint is true for the same reason that Constraint
16 is true. The only difference is that in in this case, we know that satisfying
L leads to a long-term problem, as opposed to a short-term problem.

Constraint 29 Again suppose that A is trying to satisfy a clause C by pick-
ing an indeterminate literal L i n C , e t ~ . If L is a failed literal, and making
L false makes some other clause i n B false, A must backtrack immediately.

Justification: This constraint is true for the same reason that Constraint
19 is true; the only difference is that here, we know that satisfying L leads
to a long-term problem, as opposed to a short-term problem. For example,
consider the following expression.

By Unconstraint 1, we can assume without loss of generality that A tries t o
satisfy the indeterminate literals in a clause from left to right. Let us also
assume for now that A satisfies the clauses in the expression from left t o
right. (I will justify this assumption in Section 3.8.) A proceeds by making
P true, then R true, then T true. It then tries t o make V both true and false
and fails, so i t backtracks to the third clause and makes T a failed literal for
that clause. It tries t o satisfy the third clause again; it discovers that T is a
failed literal, and makes i t false, but doing so makes the last clause false. If
A ignores T and makes U true, it will be unable to satisfy the last clause.
This expression is not a contradiction, however; for example, A can satisfy
it by making P true, R false, S true, T true, and V true. Therefore A must
backtrack again.

Fact 14 A clause can have more than one failed literal.

Justification: A may backtrack to the same clause over and over again,
explicitly satisfying a different indeterminate literal each time. It can do
this as many times as there are indeterminate literals in the clause.

Constraint 30 Again suppose that A is trying to satisfy a clause C by
picking an indeterminate literal L i n C , etc. If L is a failed literal and
making L false does not cause any immediate problem, A must immediately
pick another indeterminate literal i n C and try to satisfy that literal instead.

Justification: Like Constraint 17, this follows from Constraint 15.

Constraint 31 In the above situation, if A runs out of indeterminate lit-
erals i n C to satisfy, it must backtrack immediately.

Justification: There is no other way to satisfy C , so Constraint 14 applies.

Constraint 32 When A backtracks from a clause C to a clause C', A must
forget about all of the failed literals i n C .

Justification: The failed literals for a clause are only useful when A
backtracks to that clause, not when A backtracks past it.

Constraint 33 When A backtracks from a clause C to a clause C', A must
also forget about the literal i n C that it explicitly satisfied.

Justification: This follows from Constraint 21.

3.8 Choosing an Initial Clause Order

Next, I consider the important issue of the order in which A should try to
satisfy the clauses in B. Given no other constraints, we would conclude that
A should use the following strategy: try to satisfy the clauses in B having
the smaller number of indeterminate literals first. This is because, after
satisfying these clauses, the number of indeterminate literals in each of the
remaining clauses will be as large as possible, which maximizes the chance
that A will be able to find indeterminate literals in those clauses that work,
and thus minimizes the chance that A will backtrack. This implies that A
should choose the clauses it satisfies dynamically; that is, A should find the
clause in B having the smallest number of indeterminate literals, satisfy that

clause, and repeat. We have already concluded, however, that the order in
which A satisfies the clauses must be fixed. Therefore A must choose some
order in which to satisfy them at the start. What should this order be? The
only prior information we have that could help us answer this question is
the length of the clauses. We therefore have the following constraint.

Constraint 34 If some of the clauses in B are of different lengths, A must
try to satisfy the shorter clauses first.

Justification: This follows from the approximation that clauses with
fewer literals are more likely to have fewer indeterminate literals at any
time during the execution of A.

Therefore a straightforward and obvious way (but certainly not the only
way) to satisfy B that satisfies this constraint is to sort the clauses in B
by increasing length and then satisfy those clauses from left to right. This
approach also ensures that A satisfies all of the one-literal clauses in B first.

Unconstraint 3 If some of the cJauses in B are of the same length, A can
try to satisfy them in any order.

Justification: Again, we have no prior information about the clauses,
other than their length, that could help us determine an appropriate order.

3.9 On the Efficiency of Data Structures

It may seem that the data structures for A should be as efficient as possible.
This is not necessarily true, however, for the following reason. We are trying
to determine whether or not A runs in polynomial time. A must satisfy all
of the other constraints in this paper in order for us to make this determi-
nation. With respect to the data structures, though, what matters is not
how efficient they are with respect to the operations they support, but how
many times they must perform those operations.

As long as the data structures perform all the operations they support
in polynomial time, the other constraints in this paper will determine how
many times they must do so, and hence whether or not A runs in polynomial
time. Therefore we have the following (easily satisfied) constraint.

Constraint 35 The data structures for A must perform all of the operations
they support in polynomial time.

3.10 One Final Constraint

The last constraint is important for the purposes of the proof.

Constraint 36 A must not do anything other than try to find a satisfying
truth assignment for E , or indicate that no such assignment exists if it
cannot do so.

Justification: Anything else would be a waste of time.

4 On the Equivalence of Two Algorithms

When most people state that two algorithms are equivalent, they mean
that, given the same inputs, the algorithms return the same outputs. This
definition says nothing about the relationship of the time complexity of the
algorithms, and is therefore too weak for my purposes. I would like to define
equivalence in such a way that two algorithms are equivalent if, given the
same inputs, they take exactly the same amount of time to find a solution.

Unfortunately, i t is impossible to formally compare two algorithms to
decide whether they are equivalent in this sense. The reason lies in the
definition of an algorithm. An algorithm is defined as a description of a
sequence of steps that solves a given problem. There is no constraint on
the language of the description: it could be a formal language, an informal
language, or even a natural language, as long as anyone who reads the
description can understand it. Hence there is no place for a rigorous proof
of equivalence, given such a definition. Instead, I define the equivalence of
two algorithms in the following way.

Definition 1 Two algorithms are equivalent if their overall sequence of
atomic steps is the same and the actions they take during each atomic step
(i.e., the basic operations they perform on data and decisions they make) are
the same, irrespective of the way in which their descriptions are structured
as procedures and irrespective of any aspects of either algorithm that do not
aflect the amount of time they take to find a solution (i.e., unconstmints).

Claim 1 This definition makes sense.

5 An Efficient Algorithm for CSAT

This algorithm is called A-CSAT. I have written it in a list-processing lan-
guage based on the programming language Scheme. In fact, the description
that appears below is actually the heart of a complete, fully working Scheme
program (with the exception of parallelism). Any assumptions the algorithm
makes are also described below.

; Representations :
,
; A (Boolean) variable is represented as an atom.
; A l i t e r a l is represented as ei ther a variable or '(not V), where V is a
; variable.
; A clause is represented as a list of l i t e r a l s .
; A CNF-expression is represented as a list of clauses.

; We need a global list that contains a l l the one-literal clauses i n the
; expression.

; For each block, we need a stack that contains a l l of the clauses of
; length a t least 2 that the algorithm has expl ici t ly sa t i s f ied . Each
; entry in the stack is a pair of the form '(clause l i t e r a l) , where
; " l i t e ra l1 ' is the l i t e r a l that the algorithm made t rue i n order t o make
; "clause" true. We need t o know what t h i s l i t e r a l is in case we have t o
; backtrack over the clause; i f we do, then it becomes a "fai led l i t e r a l "
; f o r the clause (see below).

; For each block, we also need a table that contains, fo r each clause
; in the expression of length a t l eas t 2 , the l i t e r a l s within that clause
; which eventually led t o a backtracking (known as "failed l i t e r a l s ") .
; These l i t e r a l s can not and should not be considered again.

; Variables, l i t e r a l s , and clauses can have one of three possible
; t ru th values: t rue, fa lse , and indeterminate, represented by ' true,
; ' fa lse , and 'indeterminate, respectively.

; Each block has its own truth assignment, represented by a list of
; pai rs of the form '(variable truth-value).

; The sat isfact ion procedure i t s e l f . In t h i s procedure, (comap f 1) is

; an imaginary function that takes a function f and a l i s t 1, applies
; f t o the elements of 1 in para l le l , and returns the resulting l i s t .
; I f "map" is substituted fo r "comap", t h i s procedure works just f i ne on
; a sequential machine.

(define (sat isfy exp)
(l e t ((sorted-exp (merge-sort exp)))

(set ! one-literal-clauses (one-li terals sorted-exp))
(l e t ((one-lit-h (satisfy-one-li ts)))

(i f (equal? one-lit-h 'contradiction)
(display "This expression is a contradiction.")
(l e t ((big-sorted-clauses (two-or-more-lits sorted-exp)))

(cond ((null? big-sorted-clauses)
(display
"There is a sat isfying t ru th assignment:")

(newline)
(display one-lit -h))

(e lse
(l e t ((f inal-h

(f l a t t en
(comap (lambda (block)

(sat isf y-block
one-lit-h
empty-f a i led- l i ts - table
empty-pair-sequence
block
(f i r s t block)))

(find-blocks big-sorted-clauses)))))
(cond ((member 'contradiction final-h)

(display
"This expression is a contradiction."))

(e lse
(display
"There is a sat isfying t r u t h assignment : ")

(newline)
(display f inal-h) 1) 1) 1) 1) 1)

; The procedure f o r sat isfying a block. This procedure re turns a
; sa t i s fy ing t r u t h assignment f o r the block, or '(contradiction) i f
; the block is a contradiction. The indeterminate clauses i n the
; block are s a t i s f i e d from l e f t t o r igh t .

(define (satisfy-block h f l t ps exp current-clause)
(i f (true-expression? h exp)

h
(l e t ((resu l t (sa t isf y-clause h f lt ps exp current-clause)))

(i f (equal? (f i r s t r esu l t) ' fa i led)
(i f (null? ps)

' (contradict ion)
(l e t ((previous-clause (f i r s t (f i r s t ps)))

(previous-lit (second (f i r s t ps))))
(sat isf y-block
(re t rac t -a l l - l i t s h previous-clause)
(erase-f a i l ed- l i t e ra l s

(add-f a i l e d - l i t e r a l
f l t
previous-li t
previous-clause)

current-clause)
(previous-pairs ps)

erp
previous-clause)))

(sa t i s f y-block
(second resu l t)
f l t
(t h i r d resu l t)

exp
(find-next-clause

(second r e s u l t)
(rest-of (member current-clause exp))))))))

; The procedure f o r sa t is fying an indeterminate clause. The indeterminate
; l i t e r a l s in a clause a re t r i e d from l e f t t o r i g h t . This procedure
; re tu rns a list of three items: a f l a g indicating success or f a i l u r e ,
; the resu l t ing t r u t h assignment, and the resul t ing pair-sequence.

(define (satisfy-clause h f l t ps exp current-clause)
(define (clause-loop h temp)

(cond ((nul l? temp) (l i s t ' f a i l ed h ps))
((indeterminate-li teral? h (f i r s t temp))
(i f (f a i l ed - l i t e ra l? f lt (f i r s t temp) current-clause)

(i f (f alse-expression?
(extend-lit h (f i r s t temp) ' fa lse)
exp)

(l i s t ' f a i l ed h ps)
(clause-loop
(extend-lit h (f i r s t temp) ' fa lse)
(rest-of temp)))

(i f (f alse-expression?
(extend-li t h (f i r s t temp) ' t rue)
exp)
(i f (false-expression?

(extend-li t h (f i r s t temp) ' f a l se)
exp)

(l i s t ' f a i l ed h ps)
(clause-loop
(extend-lit h (f i r s t temp) ' fa lse)
(rest-of temp) 1)

(l i s t 'succeeded
(extend-lit h (f i r s t temp) ' true)
(push-pair (l i s t current-clause (f i r s t temp))

ps)))))
(else (clause-loop h (rest-of temp)))))

(clause-loop h current-clause))

6 The Remainder of the Proof

The remainder of the proof is straightforward.

Claim 2 Any efficient algorithm for CSAT satisfies all of the constraints
in Section 3.

Justification: We must show that it is not possible for an algorithm to
fail to satisfy one or more of the constraints in Section 3 and still be more
efficient than an algorithm that satisfies all of them.

There are two kinds of constraints in Section 3: trivial constraints and
non-trivial constraints. The trivial constraints deal with the basic operation
of A; every valid algorithm for CSAT must satisfy all of them. The non-
trivial constraints are the ones that an algorithm for CSAT may or may not
satisfy. The non-trivial constraints are these: Constraints 5-7, 9-12, 14-19,
and 22-36.

The proof of this claim lies in the justifications of the non-trivial con-
straints. In each of these justifications, I have shown either directly or
indirectly that if A fails to satisfy the constraint in question, its running
time will either increase or remain the same at best (but this is never guar-
anteed). Therefore any efficient algorithm for CSAT must satisfy all of the
non-trivial constraints, and hence all of the constraints, in Section 3.

Claim 3 A-CSAT satisfies all of the constraints in Section 3.

Justification: It was constructed that way.

Claim 4 Any algorithm that satisfies all of the constraints of Section 3 is
equivalent to A-CSAT.

Justification: This claim follows from the restrictiveness of the con-
straints. The first 35 constraints are so restrictive that any algorithm that
satisfies them must perform the same overall sequence of atomic steps and
the same basic actions in each atomic step as A-CSAT. Constraint 36 guar-
antees that such an algorithm does not perform any other random steps.

These three claims imply that any efficient algorithm for CSAT is equiv-
alent to A-CSAT. Therefore we can say that A-CSAT is the most efficient
algorithm for CSAT.

Claim 5 A-CSAT does not run in polynomial time.

Justification: We can easily prove this with a simple counterexample.

Therefore no efficient algorithm for CSAT runs in polynomial time, so
no algorithm for CSAT runs in polynomial time, so CSAT is not in P. Since
CSAT is in N P , it follows that P # N P .

Acknowledgments

I would like to thank Professors Sanguthevar Rajasekaran and Lokendra
Shastri for their comments and criticisms.

