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ABSTRACT

HETEROTIC CHEN-RUAN COHOMOLOGY

Ryan Manion

Tony Pantev

We extend the construction of the Chen-Ruan cohomology in the setting of

heterotic string theory. We show that it properly reduces to the Chen-Ruan coho-

mology in the case where the gauge bundle E is chosen to be the tangent bundle

TX and examine its basic properties, followed by demonstrating nontrivial examples

and computations. The second portion of this work examines the extension of the

anomaly cancellation condition for gerbes through an extended example. Namely,

we use Fourier-Mukai transforms and the methods of [13] to set up a construction

of bundles over a gerbe which should be non-anomalous.
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Chapter 1

Introduction

String theory proposes that rather than considering the usual four space-time di-

mensions to model the universe, we instead consider spaces of the form R4 × X

where X is some compact manifold which must satisfy some stringent geometric

conditions. The physical states comprising the “spectrum” of the theory manifest

themselves mathematically as cohomology classes of certain sheaves on this compact

piece of space-time X. The sheaves come from the local sections of vector bundles

over X, whose construction must again satisfy various geometric conditions arising

from physical requirements. Mathematically such constraints correspond to state-

ments about characteristic classes. Both matter and force particles are encoded in

the various vibrational modes of the string propagating in this background. One

direction in which to extend the possibilities of such a theory would be to replace

the space X by a stack X. Stacks naturally arise in quantum gauge theories and
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are mathematical constructs which formalize the notion of an internal symmetry at

each point of space-time. Much work has been done to understand what physically

relevant theories arise from string propagating on stacks. The stacks of particular

interest are gerbes due to the fact that their categories of sheaves are slightly larger

than that of the space which they lie over. Considering the case when X is a gerbe

has the potential to give us entirely new quantum physics.

The geometric objects of interest in our physical theory are a space (or orbifold,

or stack) denoted X (or X when an orbifold or stack) along with a vector bundle

(“gauge bundle”) E over it. The particles manifest themselves as cohomology classes

of the sheaf of sections of bundles associated to this bundle E. In the case of a non-

stacky space X, we need to impose the following conditions coming from physics:

ωX ∼= det(E∗)

ch2(TX) = ch2(E)

 (Anomaly cancellation)

E is stable

E has a structure group E8× E8

X is a Calabi-Yau manifold


(Supersymmetry)

We will primarily focus on the first two of these conditions for this work. There exist

characterstic classes for vector bundles over general smooth differentiable stacks [6],

so the anomaly cancellation condition has an obvious candidate for a stacky inter-

pretation. In the case of a global quotient stack X = [X/G] these are precisely the

equivariant characteristic classes. For stacks and gerbes the notion of characteristic
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class can be refined in various ways. Of particular interest are the “Chern classes

with values in representations”, or “Chern reps” chrep
i , coming from the work of

Segal and Toën [21] [22]. The chrep
i ’s are precisely the characteristic classes needed

to formulate the various index and Riemann-Roch theorems for stacks. Requiring

equality of chrep
i ’s in the anomaly cancellation is a stronger statement - it would

imply the equivalence of the stacky ch2’s.

This thesis is organized as follows. In chapter 2 we review and set notation

for the language of stacks and gerbes, as well as the Riemann-Roch theorem for

stacks. In chapter 3 we analyze a construction of the Heterotic Chen-Ruan coho-

mology (suggested by Sharpe). We prove that the proposal is independent of the

presentation of the stack, its invariance under Serre duality, and discuss certain

obstructions to its existence and other properties. We follow this with examples

which demonstrate both computational methods and evidence of existence of ex-

amples, which are nontrivial to construct. In chapter 4 we review and set notation

for the language of Fourier-Mukai transforms and elliptic fibrations in preparation

for chapter 5. In chapter 5, following the work of [13], we use these transforms in

a specific computation which assists us in finding what the anomaly cancellation

condition should be for a gerbe through a concrete example. This is done by us-

ing a gerbey version of the spectral construction of [15]. The spectral construction

is a common method to construct bundles of a desired geometric type on ellipti-

cally fibered spaces f : X → Y . This is done by applying a relative (meaning

3



fiberwise) Fourier-Mukai transform, which exchanges vector bundles (locally free

sheaves) with sheaves (more generally complexes of sheaves) supported on a proper

closed subspace which forms a branched cover of the base Y . More precisely, the

transform is an equivalence of triangulated categories from Db(X) to itself. This

was initially done with the additional assumption that the fibration f had a section,

which allowed one to construct a sheaf over all of X inducing the transform. Drop-

ping the assumption of this section existing necessarily changes the target space

for the Fourier-Mukai transform from Db(X) to Db(X) for a gerbe X. In chapter 5

we describe a space X which has two distinct elliptic fibrations, one with a section

and one without. This allows us to perform two Fourier-Mukai dualities. Beginning

with a bundle satisfying anomaly cancellation on X, we transform via the fibration

with a section to obtain spectral data on X, which we transform via the fibration

without a section to obtain a bundle on a gerbe X. This bundle should serve as a

gerbey prototype for a non-anomalous bundle - or omalous bundle as defined in

[12] - and thus it is of interest to determine its characteristic classes at the level of

Chern reps.
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Chapter 2

Stacks and Gerbes

This chapter we review and set notation for the language of stacks. An excellent

introductory reference is [23] a more comprehensive introduction is [18], and an

important historical initial application of stacks is [10].

2.1 Stacks, definitions

2.1.1 Stacks categorically

The definition of a stack is a purely categorical notion, which we briefly recall.

Given a site C and a fibered category X over it with functor π : X → C, one calls

X a stack over C if it satisfies certain descent conditions on the categories X(A) for

each A ∈ Ob(C). Here X(A) denotes the “fiber” category (which will always be
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assumed to be a groupoid):

Ob(X(A)) := {X ∈ X|π(X) = A}

HomX(A)(X1, X2) := {f : X1 → X2|π(f) = idA}

Further, for each A ∈ Ob(C) one has the fibered category (C/A) defined as:

Ob(C/A) := {f : B → A}

Hom(C/A)(f1 : B1 → A, f2 : B2 → A) := {g : B1 → B2|f1 = f2 ◦ g}

This assignment is clearly functorial, and it gives us a fully faithful embedding of

C into the (2-)category (St/C) of stacks over C (we will assuming the topology to

be subcanonical). This is a consequence of:

Lemma 2.1.1. [Yoneda’s lemma] The functor Φ : C→ (St/C) given by Φ(A) =

(C/A) gives us the following equivalence of categories for any stack X:

Hom(St/C)((C/A),X) ∼= X(A)

In other words, we can study the stack in its entirety by analyzing the maps

from spaces A (identified with (C/A), an abuse of notation which we make from

this point on) mapping into X. We also frequently make use of the word “space”

to describe objects of our base category C.

The category of stacks forms a 2-category in which 2-fiber products exist. One

can then make sense of a morphism from a space f : A → X having the usual

geometric properties (flatness, properness, etc). This is done by imposing the said
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geometric condition on the base changed morphism of f along any map from a space

g : B → X. That the pullback is a space is an extra condition on f : One calls f

a representable morphism if the fiber product A×X B is a space for any such g.

More generally, one calls a morphism of stacks f : Y→ X representable if Y×X B

is a space for any mapping from a space g : B → X.

For the purposes of this paper, our base category will be (An/C) the category

of complex analytic spaces over C equipped with the topology induced by defining

covers to be surjective families of étale morphisms.

2.1.2 Stacks geometrically

In order to do geometry, one introduces algebraic (and Deligne-Mumford) stacks.

Definition 2.1.2. A stack X is algebraic [resp. Deligne-Mumford] if there

exists a space X with a surjective, smooth [resp. étale] morphism f : X → X such

that for any space Y , any morphism g : Y → X is representable. The space X

(paired with f) is called an atlas for X.

One useful way to study algebraic stacks is via groupoid objects in our base

category C. Given a stack X with atlas f : X → X, one obtains a space X ×X X

along with the following morphisms:

1. Two projections s, t : X ×X X → X called the “source” and “target” maps.

s(x, y) = y t(x, y) = x
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2. The interchange of factors i : X ×X X → X ×X X, called the “inversion” map.

i(x, y) = (y, x)

3. The diagonal morphism e : X → X ×X X called the “identity” map.

e(x) = (x, x)

4. The projection onto the first and third factors m : X ×X X ×X X → X ×X X

called the “multiplication” morphism.

m(x, y, z) = (x, z)

These morphisms give the structure of a groupoid with objects the points of X

and morphisms the points of X ×X X. In other words, they satisfy the expected

compatabilities. Moreover, for any space A one can form the groupoid with objects

X(A) = Hom(A,X) and morphisms (X ×X X)(A) = Hom(A,X ×X X). One can

construct a fibered category bX×XX ⇒ Xc such that over each A in C, we have this

groupoid. This fibered category need not satisfy the descent conditions, but there

is a canonical stack it maps to called the stackification of the fibered category,

denoted [X ×X X ⇒ X]. This stack is isomorphic to our original stack X, thus we

can study X by studying the groupoid.

Let us make this correspondence more precise. One calls the tuple of data

(X,X×XX, s, t, i, e,m) a groupoid object in C. A morphism between two groupoid

objects (U1, R1, s1, t1, i1, e1,m1) and (U2, R2, s2, t2, i2, e2,m2) consists of a pair of
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morphisms f : U1 → U2 and g : R1 → R2 which induce a functor between the cor-

responding groupoids. One calls a morphism coming from (f, g) a Morita equiv-

alence if f is smooth and surjective, and the following commutative diagram is

cartesian in C:

R1
(s1,t1) //

g

��

U1 × U1

f
��

R2
(s2,t2) // U2 × U2

These two conditions correspond to the functor at the level of groupoids being

essentially surjective and fully-faithful, respectively. One calls two groupoids Morita

equivalent if there exists a chain of Morita equivalences connecting them. We now

recall the following correspondence:

{Isomorphism classes of stacks} ∼= {Morita equivalence classes of groupoids}

This correspondence takes a stack X with atlas X → X to the groupoid (X,X ×X

X, s, t, i, e,m) above. The reverse direction takes a groupoid (U,R, s, t, i, e,m) to

the stackification [R ⇒ U ] of the fibered category described above. For this reason,

we will focus purely on groupoid objects in the category of complex analytic spaces

for the remainder of this work. Groupoids are frequently denoted simply by R ⇒ U ,

with the existence of the other structure morphisms to be implied. In what follows

we focus on formulating all of our theorems and constructions in the language

of groupoids for concreteness and for preparation for doing computations at the

groupoid level.

9



2.1.3 Quotient stacks

Given a group G acting on a space X, one can construct the quotient stack from

the so-called transformation groupoid:

R ⇒ U := (X ×G) ⇒ X

s : X ×G→ X t : X ×G→ X m : (X ×G)×s,X,t (X ×G)→ X ×G

s(x, g) = x t(x, g) = g · x m((x, g), (y, h)) = (y, gh)

e : X → X ×G i : X ×G→ X ×G

e(x) = (x, 1) i(x, g) = (g · x, g−1)

We denote this stack by [X/G]. This stack has the property that the atlas morphism

X → [X/G] gives X the structure of a G-torsor over [X/G]. In other words, this

quotient always behaves as nicely as possible.

2.2 Gerbes, inertia stacks, and descent

2.2.1 Sheaves on stacks

Given a groupoid R ⇒ U representing a stack X, one possible way to describe

sheaves on the stack is via descent. A sheaf on X will be the data of a sheaf

E ∈ ShShSh(U) on the atlas and an isomorphism ϕ : s∗E → t∗E satisfying the cocycle

condition p∗1ϕ ◦ p∗2ϕ = m∗ϕ on R ×s,U,t R, where pi is the projection onto the i-th

factor. (Note that for quotient stacks [X/G], this translates to the fact that a sheaf

10



on [X/G] is equivalently defined as a G-equivariant sheaf on X.) We will frequently

make use of this equivalence of categories:

ShShSh([X/G]) ∼= ShShShG(X) = (G− equivariant sheaves)

Of particular interest is the case when X is a point, which this reduces to:

ShShSh([pt/G]) ∼= ShShShG(pt) = (G− representations)

To describe the pullback of a sheaf along any morphism f : A→ X from a space A,

consider the diagram:

(A×X U)×A (A×X U) //

����

U ×X U

����
A×X U //

��

U

��
A // X

Pulling back the sheaf E to A ×X U and pulling back ϕ, we obtain by descent a

sheaf on A when X is an algebraic stack.

A morphism between sheaves (F , ϕ) and (E , ψ) consists of a map:

α : F → E

Such that the following diagram commutes:

s∗F
ϕ //

s∗α
��

t∗F

t∗α
��

s∗E
ψ // t∗E

11



2.2.2 Gerbes

Here we introduce the stacks of particular interest, namely gerbes. These arise in

taking quotients by non-effective group actions. First, a general definition:

Definition 2.2.1. We say that a stack Y is a gerbe over a stack X if there is

morphism of stacks f : Y→ X satisfying:

1. The map f is an epimorphism.

2. The diagonal map ∆ : Y→ Y×X Y is an epimorphism.

Definition 2.2.2. A morphism of stacks f : Y → X over a site C is an epimor-

phism if for any object x ∈ X(U), there exists a cover {Ui}i∈I of U in C, and

objects yi ∈ Y(Ui) such that f(yi) ∼= x|Ui for all i.

Typically one is interested in gerbes over spaces, namely a stack X with a map

to a space M over which it is a gerbe. This will be the type of gerbes we study,

because as we will see, their geometry is not too different from that of the space M .

If X → M is a gerbe, then the two conditions of definition 2.2.1 imply that

the objects of X are all locally isomorphic, and the categories X(U) are locally

nonempty. In particular, the automorphism groups of any two objects in X(U) for

some U are isomorphic locally, and encoded by a sheaf of groups on the base M .

For our purposes we only consider the case where this is a constant sheaf of groups.

In terms of the representing groupoids, one could think of a gerbe over a space as

simply as adding in additional automorphisms to each object without adding in

new objects - see section 2.3.
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2.2.3 Inertia stacks

Our next definition is that of the inertia stack. It is necessary for the construction of

the Grothendieck-Riemann-Roch theorem for stacks. It naturally arises in the index

theory of orbifolds and its cohomology (with coefficients in C) is recovers precisely

the Chen-Ruan Cohomology [9] and its additive structure. Intuitively, it is the space

of “loops” in your stack, with each object of the inertia stack corresponding to an

automorphism of an object of X. In this section we explicitly construct the groupoid

of the inertia stack for any stack, and demonstrate a canonical automorphism which

acts on any sheaf over the inertia stack, which will be vital in what follows.

Definition 2.2.3. Given a stack X, the inertia stack IX is defined to be the pull-

back under the diagonal morphisms:

IX //

��

X

∆
��

X
∆ // X× X

One can show that IX → C is a fibered category which is equivalent (as a fibered

category over C) to a category whose objects and morphisms can be described as

follows:

Ob(IX) =
{

(x, σ)|x ∈ Ob(X), σ ∈ Aut(x)
}

HomIX

(
(x, σ), (y, τ)

)
=
{
α ∈ HomX(x, y)|α ◦ σ = τ ◦ α

} (2.2.1)

Given a sheaf F on the stack X, the pullback of the sheaf to IX will have a

natural automorphism acting on it. This is because giving an object of IX(U) is

the same as giving an object of X(U) along with an automorphism of this object

13



by above, which is the same as giving a morphism f : U → X along with an

automorphism of f . This will induce an autmorphism of the pullback sheaf f ∗F

to U for any such f , as desired. We make this more precise below.

We can explicitly write out a groupoid presentation for the inertia stack of a

stack X with atlas f : X → X. First construct the standard groupoid from this

atlas: (X ×X X ⇒ X). There is a general recipe for constructing the groupoid

representing the fiber product of two groupoids over another (see section 9 of [20]).

Tracing through the details, one finds that the atlas F , or “space of automorphisms,”

is:

F := X ×∆,X×X,(s,t) (X ×X X)

Note that F is a closed subscheme of X ×X X, so we may apply the structure

morphisms of the groupoid to elements of it. One can then define a conjugation

action of the morphisms on these automorphisms. This gives us an action map:

a : (X ×X X)×s,X,pX F → F

a(r, f) := rfr−1 (More precisely, m(r,m(f, i(r))))

Here pX denotes the projection from F onto the X in its first coordinate. This action

takes us from an automorphism of s(r) to one of t(r) as can been seen pictorially

via the simple diagram:

•
s(r)

r
,,

f


•
t(r)

r−1

ll

One can check can now construct the groupoid representing IX as follows, where

14



we denote our source and target maps via a projection onto F denoted πF and the

above action morphism a rather than s and t:

IX ∼= [(X ×X X)×s,X,pX F ⇒ F ]

πF : (X ×X X)×s,X,pX F → F a : (X ×X X)×s,X,pX F → F

πF (r, f) = f a(r, f) = rfr−1

m : [(X ×X X)×s,X,pX F ]×πF ,F,a [(X ×X X)×s,X,pX F ]→ [(X ×X X)×s,X,pX F ]

m((r1, f1), (r2, f2)) = (r1r2, f2)

e : F → (X ×X X)×s,X,pX F i : (X ×X X)×s,X,pX F → (X ×X X)×s,X,pX F

e(f) = (1, f) i(r, f) = (r−1, rfr−1)

We have omitted the m and i morphisms defining composition and inversion on

the above groupoid presentation for IX for notational ease. We can express the

morphism π : IX → X at the level of groupoids as follows:

F
pX // X

(X ×X X)×s,X,pX F
pX×XX //

πF

OO

a

OO

X ×X X

s

OO

t

OO
(2.2.2)

A sheaf on X will be given by a pair (F , ϕ) of F ∈ ShShSh(X) and an isomorphism

ϕ : s∗F → t∗F satisfying the cocycle condition. Because the pair (pX , pX×XX) is a

morphism of groupoids, we have then that the pair (p∗XF , p∗X×XX
ϕ) defines a sheaf

on IX. Moreover, we have a non-trivial (meaning not equal to e) morphism from

the atlas of IX to the relations, defined as:

γ : F → (X ×X X)×s,X,pX F (2.2.3)

15



γ(f) := (f, f)

Note that πF ◦ γ = a ◦ γ = idF , so that one may consider γ as mapping an object

of IX to an automorphism of that object. This will be the automorphism acting on

each sheaf over IX. This is the content of the following theorem:

Theorem 2.2.4. Let X be a stack with atlas f : X → X and corresponding groupoid

X ×X X ⇒ X. Then for any sheaf (F , ϕ) ∈ ShShSh(X ×X X ⇒ X) ∼= ShShSh(X), there

is a canonical nontrivial automorphism of the pullback sheaf (p∗XF , p∗X×XX
ϕ) ∈

ShShSh((X×XX)×s,X,pX F ⇒ F ) ∼= ShShSh(IX) via the projection π : IX → X. It is induced

at the groupoid level on the atlas of IX via the morphism γ defined in 2.2.3:

γ∗p∗X×XX
ϕ : γ∗p∗X×XX

s∗F︸ ︷︷ ︸
∼=p∗XF

→ γ∗p∗X×XX
t∗F︸ ︷︷ ︸

∼=p∗XF

This morphism satisfies the required commutativity condition to induce a morphism

of sheaves on the stack IX.

Proof. Given a sheaf (E , ψ) over the groupoid defining IX, consider the pullback

γ∗ψ:

γ∗π∗FE
γ∗ψ // γ∗a∗E

E E

In other words, γ∗ψ ∈ Aut(E ). In order to show it defines an automorphism of the

sheaf on IX, one must further have that the following diagram commutes:

π∗FE
ψ //

π∗F γ
∗ψ

��

a∗E

a∗γ∗E

��
π∗FE

ψ // a∗E

16



The commutativity of the above diagram follows from the cocycle condition which

ψ satisfies. Looking at the above diagram stalkwise, one finds morphisms Υ1 and

Υ2 which one can use to pull back the cocycle condition of ψ to prove this. These

maps are defined as follows:

Υi : [(X ×X X)×s,X,pX F ]→ [(X ×X X)×s,X,pX F ]×πF ,F,a [(X ×X X)×s,X,pX F ]

Υ1(r, f) := ((r, f), (f, f))

Υ2(r, f) := ((rfr−1, rfr−1), (r, f))

Further we define a morphism β as follows:

β : [(X ×X X)×s,X,pX F ]→ [(X ×X X)×s,X,pX F ]

β(r, f) := (rf, f)

Then pulling back the cocycle condition p∗1ψ ◦ p∗2ψ = m∗ψ via both Υi, and noting

the following isomorphisms:

Υ∗1p
∗
1ψ
∼= ψ Υ∗1p

∗
2ψ
∼= π∗Fγ

∗ψ Υ∗1m
∗ψ ∼= β∗ψ

Υ∗2p
∗
1ψ
∼= a∗γ∗ψ Υ∗2p

∗
2ψ
∼= ψ Υ∗2m

∗ψ ∼= β∗ψ

We have that the following two diagrams commute:

π∗FE
β∗ψ

""
π∗F γ

∗ψ

��
π∗FE

ψ // a∗E

π∗FE
ψ //

β∗ψ ##

a∗E

a∗γ∗E

��
a∗E

Combining these two commutative triangles yields the desired commutative dia-

gram.
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One might wonder if the above automorphism depends on the choice of presen-

tation for X. If one has a Morita equivalence between groupoids representing X,

then one induces a Morita equivalence between the induced groupoids representing

IX, and under this presentation the two constructions of the morphism γ will corre-

spond exactly and induce identical automorphisms on any sheaf. Alternatively, one

case phrase the existence of this automorphism purely categorically by using the

categories described in (2.2.1). From this perspective, clearly any object (x, σ) ∈

Ob(IX) has an automorphism induced via σ. Again, our goal is concreteness and

computability (for later chapters), so we make each construction as explicit as pos-

sible.

2.2.4 Inertia stacks of quotient stacks

Of particular interest are stacks of the form X = [X/G] = [X × G ⇒ X]. Using

the previous section, one finds that the induced groupoid for IX is also a quotient

groupoid in this case:

I[X/G] = [F/G] = [F ×G⇒ F ]

Where:

F = {(x, g)|g · x = x} ⊆ X ×G

And the group G acts on F via:

h · (x, g) := (h · x, hgh−1)

18



If we further assume that the group G is discrete, or more weakly that the set of

g ∈ G with Xg 6= ∅ is discrete, then the space F decomposes:

F =
⊔
g∈G

Xg × {g}

Since the G action is via conjugation on the second component, the quotient stack

breaks up into a disjoint union of stacks indexed by the conjugacy classes of G

which we will denote Conj(G). Let [[g]] denote the conjugacy class of g. Then one

can show that:

I[X/G]
∼=

⊔
[[g]]∈Conj(G)

[Xg/C(g)] =
⊔

[[g]]∈Cong(G)

[Xg × C(g) ⇒ Xg] (2.2.4)

Here C(g) denotes the centralizer of g. Note that we have chosen a representative

of each conjugacy class for this presentation, but the isomorphism class of I[X/G] is

independent of this choice. Simply noting that when G is abelian then C(g) = G

for all g ∈ G gives us the following:

Corollary 2.2.5. Let G be an abelian group acting on a space X such that the

subgroup H ⊆ G defined by H = {g ∈ G | g · x = x for some x ∈ X} is discrete.

Then the inertia stack of [X/G] is:

I[X/G] =
⊔
g∈G

[Xg/G]

Given a sheaf (F , ϕ) on [X/G], in other words a G-equivariant sheaf, the pull-

back to the inertia stack I[X/G] corresponds simply to the induced C(g)-equivariant

sheaves F |Xg for each g. One finds that with this groupoid presentation of I[X/G],
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the corresponding morphism γ : Xg → Xg × C(g) of Lemma 2.2.4 is simply

γ(x) = (x, g). In other words, the induced automorphism of the C(g)-equivariant

sheaf F |Xg is the one coming from the g-action of the equivariant structure. The

element g fixes the entire space Xg but may act nontrivially on the sheaf F |Xg .

2.3 O∗ gerbes over spaces

Given an abelian group A and a class α ∈ H2(X,A), one can construct the cor-

responding A-banded gerbe over X as follows. Choose an Leray open covering

U = tUi of X so that we have Hk(UI , A) = 0 for all multi-indices I and k ≥ 1.

Then we have α = [αijk] ∈ Ȟ2
U(X,A) ∼= H2(X,A) for some representing cocycle

αijk relative to the cover U. Then one can construct the following groupoid:

⊔
i,j∈I

Uij × A⇒
⊔
i∈I

Ui

s :
⊔
i,j∈I Uij × A→

⊔
i∈I Ui t :

⊔
i,j∈I Uij × A→

⊔
i∈I Ui

s(xij, λ) = xj t(xij, λ) = xi

m : (
⊔
i,j∈I Uij × A)×s,ti∈IUi,t (

⊔
i,j∈I Uij × A)→

⊔
i,j∈I Uij × A

m((xij, λ), (xjk, µ)) = (xik, αijk(xijk)λµ)

e :
⊔
i∈I Ui →

⊔
i,j∈I Uij × A i :

⊔
i,j∈I Uij × A→

⊔
i,j∈I Uij × A

e(xi) = (xii, 1) i(xij, λ) = (xji, λ
−1)
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This groupoid has a natural morphism to the groupoid
⊔
ij Uij ⇒

⊔
i Ui repre-

senting X: ⊔
i Ui

id //
⊔
i Ui

⊔
ij Uij × A

πU //

s

OO

t

OO

⊔
ij Uij

s

OO

t

OO
(2.3.1)

This gives the space the structure of an A-banded gerbe over X - notice that πU is

an A-torsor. Given a sheaf (E , ϕ) on the groupoid
⊔
i,j∈I Uij×A⇒

⊔
i∈I Ui, one can

attempt to push the isomorphism down along the A-torsor πU by descent, which

must necessarily involve fixing equivariant structures. More precisely, we have that:

ϕ : π∗Us
∗E → π∗U t

∗E

We can choose a character χ1 ∈ Â in order to fix an equivariant structure on π∗Us
∗E ,

then also choose χ2 ∈ Â in order to determine an equivariant structure on π∗U t
∗E .

The morphism ϕ will thus only descend if it is equivariant with respect to the char-

acter χ−1
1 χ2. We must split the bundle E up into summands for which ϕ is equiv-

ariant with respect to a given character, and then descend each of these subbundles

separately. The twisted multiplication map will descend as an obstruction to the

cocycle condition of our descent data on the base groupoid. What we will obtain

are twisted sheaves in the sense of [8] with twisting class χ(αijk) ∈ H2
U(X,A). In

other words, sheaves Ei ∈ ShShSh(Ui) and isomorphisms ψij : Ej|Uij → Ei|Uij satsifying:

ψij ◦ ψjk ◦ ψki = χ(αijk)id

One can construct slightly more general presentations for gerbes of a given class

α ∈ H2(X,A). Suppose we choose a cover in which α|Ui = 0, so that we can find
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cocycles βi ∈ C1
U(Ui, A) such that ∂βi = α|Ui . Then we have ∂

(
βi|Uij − βj|Uij

)
= 0,

thus representing a class in H1
U(Uij, A), or in other words, an A-torsor over each

Uij. The above case (2.3.1) occurs when these A-torsors are trivial, and in such

a case one could also arrive at the twisted sheaves by simply pulling back ϕ via a

section of this A-torsor. But, in the more general situation where this torsor has no

section, the descent methods above work as well. One would still call such sheaves

α-twisted sheaves.

The sheaves on such a A-gerbe over a space X are thus naturally graded by

the characters Â. Of particular interest to us will be gerbes with structure group

C∗ which we call O∗-gerbes. The sheaves on them (more generally their derived

categories) thus have a natural Ĉ∗=Z-grading on them, which we call the weight.

The sheaves of weight k on an O∗X-gerbe X → X have a nice interpretation [13]

which goes as follows. Choose an open cover U = {Ui}i∈I of X such that α|Ui = 0

for all i, and let T define the C∗ torsor over Uij as discussed above. Then we have

the following map of groupoids corresponding to X→ X:⊔
i Ui

id //
⊔
i Ui

T

s

OO

t

OO

π //
⊔
ij Uij

s

OO

t

OO

Then let L denote the line bundle obtained by taking the associated vector bundle

to T under the tautological representation:

L := (T × C∗)
/

(t · λ, z) ∼ (t, λ · z) for all λ ∈ C∗

Then a sheaf of weight k on X is the same as a pair (E , ϕ) where E ∈ ShShSh(tUi)
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along with an isomorphism:

ϕ : s∗E → t∗E ⊗L ⊗k

Satisfying an analogous cocycle condition. Such sheaves form a category, where

a morphism between two sheaves (E , ϕ) to (F , ψ) of weight k consists of a map

f : E → F such that:

s∗E
s∗f //

ϕ

��

s∗F

ψ
��

t∗E ⊗L ⊗k t∗f⊗id // t∗F ⊗L ⊗k

2.4 GRR for stacks

Töen [22] generalized the Grothendieck-Riemann-Roch theorem to the case of stacks,

which will be relevant to our future calculations. Here we review it and set nota-

tion. We feel compelled to also mention the work of Edidin [14], who proved the

Hirzebruch-Riemann-Roch theorem using localization theorems in equivariant Chow

rings in the spirit of Atiyah-Bott [4].

Given a sheaf E on a stack X, let π : IX → X be the projection from its inertia

stack. Let T denote the “translation morphism”:

T : K0(IX)→ K0(IX)

Given a class [V ] ∈ K0(IX), restricting it to a component α ⊂ IX there is a natural

finite cyclic group of automorphisms of [V ]|α coming from Theorem 2.2.4. Let i ∈ I
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index the eigenspaces and eigenvalues, then define T on this component by:

T (
∑
i

[V |α]i) :=
∑
i

[V |α]i ⊗ λi

Then define chrep to be the following composition:

K0(X) π∗ // K0(IX) T // K0(IX)⊗ C ch⊗1 // H•(IX,C)

This given morphism to the cohomology is not functorial over proper pushforward,

but can be corrected to make it so. To this end, for each component α ⊂ IX, consider

the inclusion α→ X so that we can define the conormal bundle N∗α/X ∈ K0(α). One

defines the lambda operation for any stack Y as:

λ−1 : K0(Y)→ K0(Y)

λ−1([V ]) = 1− [V ] + [∧2V ]− . . .+ (−1)r[∧rV ]

Here V is a vector bundle of rank r. Then we can define the following correction

term for each component of the inertia stack:

ch(T ◦ λ−1(N∗α/X))−1Td(Tα) ∈ H•(α,C) ⊂ H•(IX,C)

Denote by TD(X) ∈ H•(IX,C) the class which restricts to the above class on each

component of the inertia stack. Then we have the following:

Definition 2.4.1. Let X be a Deligne-Mumford stack and [V ] ∈ K0(X). We define

the Riemann-Roch morphism:

R : K0(X)→ H•(IX,C)

R([V ]) := chrep([V ])TD(X)
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This morphism satisfies the desired functoriality properties for arbitrary (not

necessarily representable!) morphisms of stacks (see [22]), and will thus enable one

to compute cohomological Fourier-Mukai transforms for Deligne-Mumford stacks.
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Chapter 3

Additive Analogues of Chen-Ruan

Cohomology

This chapter will describe a novel orbifold sheaf cohomology theory that generalizes

Chen-Ruan orbifold cohomology [2] [9]. The orbifold sheaf cohomology described

herein is motivated by physics, specifically by massless spectra in orbifolds of het-

erotic strings, for which reason we call it Heterotic Chen-Ruan (HCR) coho-

mology. Just as Chen-Ruan cohomology is the cohomology theory pertinent to

the A model topological field theory on orbifolds, HCR is the cohomology theory

pertinent to a heterotic analogue of the A model, known as the A/2 model [3].

This chapter will focus on understanding the additive part of the cohomology ring.

Multiplicative structures on smooth manifolds are defined by what is known as

quantum sheaf cohomology [12]. Multiplicative structures in the HCR cohomology
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on orbifolds are left to future work.

3.1 HCR Cohomology Definition

The initial input data for the physics inspired construction is that of a finite abelian

group G which acts on a space X along with a G-equivariant vector bundle E over

X. On this data we impose the following anomaly cancellation conditions:

chG2 (E) = chG2 (TX) det(E∗) ∼= KX (3.1.1)

The notation signifies we are using G-equivariant characteristic classes, and the

isomorphism in 3.1.1 is a G-equivariant isomorphism. Note that as a consequence

of the second condition, we have that cG1 (E) = cG1 (TX), which would be the natural

equivariant analog of the usual anomaly cancellation conditions. This stronger

condition we impose is used to construct what is called the A/2 model. Given the

above data, for each g ∈ G such that the fixed locus Xg = {x ∈ X | g · x = x} is

nonempty, we can restrict both the bundle E and the tangent bundle TX to Xg.

We have that if x ∈ Xg then for any h ∈ G we have since G is abelian:

g · (h · x) = h · (g · x) = h · x

In other words, the action of G preserves the fixed locus Xg. This action could be

nontrivial on the fibers of the bundles E and TX restricted to Xg, however. So, if

we let tg := |g| <∞, then over each x ∈ Xg, the fibers Ex and TXx are Z/tgZ ∼= 〈g〉
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representations, and thus split into eigenspaces:

E|Xg = Eg
0 ⊕ E

g
1 ⊕ · · · ⊕ E

g
tg−2 ⊕ E

g
tg−1

TX|Xg = T g0 ⊕ T
g
1 ⊕ · · · ⊕ T

g
tg−2 ⊕ T

g
tg−1

Where g acts via ζ itg on Eg
i and T gi , where ζtg = e

2πi
tg . One might need to do this

over each connected component of Xg, but for notational simplicity we will assume

that each fixed locus is connected so that the above splitting occurs over all of Xg.

We also define dgi := rank(Eg
i ). Further, consider the following subsets of Q

Mj(g) := exp−1(ζ−jtg ) = Z− j

tg
(for j = 0, 1, . . . , tg − 1)

Nj(g) := exp−1(ζjtg) = Z +
j

tg
(for j = 0, 1, . . . , tg − 1)

Here exp(θ) := e2πiθ. These correspond to “energy levels” of certain particles.

Now define the set of maps Φ(g) which count the allowable multiplicities of particles

with given energy levels:

Φ(g) ⊂ Hom((M0(g))<0, {0, 1, . . . , dg0})× . . .×Hom((Mtg−1(g))<0, {0, 1, . . . , dgtg−1})

×Hom((N0(g))<0, {0, 1, . . . , dg0})× . . .× Hom((Ntg−1(g))<0, {0, 1, . . . , dgtg−1})

An element (p∗, q∗) = (p0, . . . , ptg−1, q1, . . . , qtg−1) ∈ Φ(g) if and only if it satisfies

the following condition:

tg−1∑
j=0

 ∑
m∈(Mj(g))<0

mpj(m) +
∑

n∈(Nj(g))<0

nqj(n)

 = EL,g (3.1.2)
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One should consider the functions p∗ and q∗ as mapping energy levels to their

multiplicities, which are bounded by the ranks of the eigenbundles Eg
i . Then the

left-hand side of 3.1.2 can be understood as a “total energy” value. The constant

EL,g, called the “vacuum energy,” is coming from the following.

Definition 3.1.1. Let ηTi ∈ [0, 1) denote exp−1(λi) where the λi are the eigenvalues

of g acting on TX|Xg . Similarly we define ηEi ∈ [0, 1) via the g-action on E|Xg .

Then we define:

Λg
T :=

rk(TX)∑
i=1

(
1

2
ηTi (1− ηTi )

)
Λg
E :=

rk(E)∑
i=1

(
1

2
ηEi (1− ηEi )

)
The vacuum energy is then defined to be the rational number:

EL,g := Λg
T − Λg

E

For physical reasons, we only consider cases in which EL,g ≤ 0.

The subscript “L” of EL,g means “left-moving” in the context of physics, to

distinguish it from other energies associated to the theory.

Remark 3.1.2. Note that the sum in the left-hand side of (3.1.2) lies in Z
tg

, while

the vacuum energy EL,g is in Z
t2g

. Thus, it is entirely possible for the set Φ(g) to be

empty.

We are now able to define the HCR cohomology.

Definition 3.1.3. Let X be a G-space for an abelian group G with a G-equivariant

vector bundle E over it satisfying the anomaly cancellation conditions 3.1.1. Denote
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by E the corresponding sheaf of sections of E. Now we define for each g ∈ G the

sheaf cohomology group H•g :=

H•

Xg,
⊕

(p∗,q∗)∈Φ(g)

tg−1⊗
j=0

 ⊗
m∈(Mj(g))<0

∧pj(m)(E g
j )∗

⊗
n∈(Nl(g))<0

∧qj(n)(E g
j )

⊗ V (E )g

G

V (E )g := ∧•(E g
0 )∗ ⊗

√
KXg ⊗ det(E g

0 )

(3.1.3)

In the case that the vacuum energy of a component is zero, we define:

H•g := H• (Xg, V (E )g)G

Here KXg is the canonical bundle of Xg, and there is an implicit sum over all

values of • in all occurences. The definition of V (E )g involves the choice of a

G-equivariant square root bundle (which may be obstructed). We then define the

Heterotic Chen-Ruan cohomology (or HCR cohomology) to be:

H•HCR :=
⊕
g∈G

H•g

Remark 3.1.4. We work with the assumption that the bundle whose sheaf coho-

mology we are computing is G-equivariant, so there is a natural G-action on the co-

homology group. As mentioned above, we require that the bundle
√
KXg ⊗ det(E g

0 )

exists and also has a G-equivariant structure, in other words we need an equivariant

square root. Defining the HCR cohomology thus involves a choice of square root for

each g ∈ G. Since KXg ⊗ det(E g
0 ) = KXg−1 ⊗ det(E g−1

0 ), we may choose the same

square root and equivariant structure for each pair {g, g−1}. This assumption will
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be implicit in what follows, and allows one to assume then that:

V (E )g = V (E )g
−1

(3.1.4)

This obstruction to the equivariant square root bundle is measured by a sheaf

cohomology class on the stack [X/G], which we will see soon.

3.2 Basic Properties

In this section we examine the properties of the HCR cohomology defined in the

previous section.

3.2.1 HCR Cohomology on Stacks

The definition of the HCR cohomology in the previous section is naturally formu-

lated in terms of sheaf cohomology on a quotient stack [X/G] for a finite abelian

group. Recall that for a global quotient stack X = [X/G] by a finite group with

E ∈ ShShSh(X), we can compute the cohomologies H i(X,E ) by considering E ∈ ShShShG(X)

and using the isomorphism:

H i([X/G],E ) ∼= H i(X,E )G (3.2.1)

This can be proven by using a Leray spectral sequence to the X-fibration π :

[X/G]→ [pt/G]. Then we have that:

ΓX = Γ[pt/G] ◦ π∗ ⇒ RΓX = RΓ[pt/G] ◦ Rπ∗
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The spectral sequence associated to the composition of derived functors is then:

Ep,q
2 = RpΓ[pt/G] (Rqπ∗E )→ Hp+q(X,E )

A sheaf on [pt/G] is equivalent to a G-representation, in which case Γ[pt/G] is

the functor of taking invariants. Thus the derived functors compute the group

cohomology of this G-module:

Ep,q
2 = Hp(G,Hq(X,E )) =


Hq(X,E )G if p = 0

0 if p 6= 0

This follows because all higher group cohomology of a finite group is torsion.

More generally, for any reductive group G we have the same collapsing of the E2

page.

Because of equation (3.2.1), we may rewrite the equation 3.1.3 defining the HCR

cohomology in terms of sheaf cohomology on a stack. We denote by Ψg the sheaf

occuring in the H•g summand of the HCR cohomology 3.1.3, and Ψ the sheaf on the

inertia stack whose restriction to each component [Xg/G] corresponds to Ψg:

H•HCR =
⊕
g∈G

H•g

=
⊕
g∈G

H•(Xg,Ψg)
G

=
⊕
g∈G

H•([Xg/G],Ψg)

= H•(
⊔
g∈G

[Xg/G],Ψ)

= H•(I[X/G],Ψ)
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This hints at a way to generalize the definition of the HCR cohomology for more

general stacks. One must just formulate the bundle Ψ without reference to some

globally acting group G. This is done by using sheaf automorphism constructed in

theorem 2.2.4. Given any stack X such that for all x ∈ Ob(X), we have |Aut(x)| <

∞. Then pulling back a sheaf E on X to IX, we can use that the aforementioned

automorphism is finite order to deduce that our sheaf decomposes into eigensheaves,

and thus come to a definition of the sheaf Ψ above:

Theorem 3.2.1. Let E be a sheaf on a stack X such that the automorphism group

of any object in X is finite, and that E satisfies the anomaly cancellation conditions:

ch2(E ) = ch2(TX) det(E ∗) ∼= KX

Let π : IX → X denote the usual projection from the inertia stack to X. Suppose IX =

tα is a decomposition of the inertia stack into connected components. Then there

exists a definition of the HCR cohomology for the pair E and X which specializes

to the previous definition in the case of a global quotient stack by a finite abelian

group, which will be of the form:

H•HCR =
⊕
α⊆IX

H•α =
⊕
α⊆IX

H•(α,Ψα)

Proof. The main idea is the following. We show that the sheaf automorphism µ ∈

Aut(π∗E ) constructed in Theorem 2.2.4, when restricted to a component α, is of

finite order tα. Then one can decompose π∗E |α according to eigensheaves and

construct a sheaf Ψα analogous to 3.1.3.
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In more detail, suppose we use the notation and groupoid presentations from

(2.2.2), so that we have a pair (E , ϕ) defining a sheaf on the groupoid presentation

for X. Then:

µ = γ∗p∗X×XX
ϕ : p∗XE → p∗XE

We claim that the fact that the stabilizers are finite implies that this automorphism

µ has finite order, and thus splits the sheaf into eigenbundles under its action. For

any n ∈ N, consider the following equality of sheaf morphisms:

p∗1ϕ ◦ p∗2ϕ ◦ . . . ◦ p∗nϕ = m∗nϕ (3.2.2)

These are maps between sheaves on the n-fold fiber product:

(X ×X X)×s,X,t (X ×X X)×s,X,t . . .×s,X,t (X ×X X)

We define pi to be the projection onto the i-th component and mn to be the multi-

plication of all of the elements together. Define the following map:

∆n : F → (X ×X X)×s,X,t (X ×X X)×s,X,t . . .×s,X,t (X ×X X)

∆n(f) = (f, f, . . . , f)

Applying ∆∗n to (3.2.2) and using that ∆∗np
∗
i = ξ∗ where ξ : F ↪−→ X ×X X, and

∆∗nm
∗
n = θ∗n where θn(f) = fn, we obtain:

(ξ∗ϕ)n = θ∗nϕ (3.2.3)

Notice that since pX×XX ◦ γ = ξ that in fact ξ∗ϕ = µ, thus by (3.2.3) we have that

µn = θ∗nϕ. Further, for every f ∈ F there is some n such that fn = 1, or more
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precisely f = (e ◦ pX)(f). Define the following subset of F :

Fn := θ−1
n (e(X))

As pX : F → X is a bundle of finite groups (the stabilizer subgroup Gx is over

each x) with section e, the subset e(X) is both open and closed in F , and thus

so also is each Fn. If Z ⊆ F is a connected component, then Z ⊆ Fn(Z) for some

n(Z), and correspondingly θn(Z)|Z = e ◦ pX . Thus θ∗n(Z)ϕ|Z = p∗Xe
∗ϕ|Z = id since

e∗ϕ = id. We have thus shown that (µ|Z)n(Z) = id. It follows that on the stack

IX, over each connected component α ⊆ IX there is some smallest tα ∈ N>0 such

that (µ|α)tα = id. Thus π∗E |α has a natural base-preserving Z/tαZ-action on it,

under which we can decompose it (as well as the tangent bundle) into eigenbundles

exactly as before:

E|α = Eα
0 ⊕ Eα

1 ⊕ · · · ⊕ Eα
tα−2 ⊕ Eα

tα−1

TX|α = Tα0 ⊕ Tα1 ⊕ · · · ⊕ Tαtα−2 ⊕ Tαtα−1

Here µ|α acts via ζjtα on Eα
j and Tαj where ζtα = e

2πi
tα . From here one can compute

the vacuum energy EL,α for each component using the same prescription. One

then constructs the bundles of interest on each component α with the same recipe

as before. Again, take special note that the construction involves the choice of

a square root
√
Kα ⊗ det(E α

0 ) for each α, whose obstruction to existence is an

obstruction to the HCR cohomology existing, and whos various choices will result

in different HCR cohomologies.
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Thus we can make sense of the HCR cohomology for any appropriate sheaf E

on any stack with finite stabilizers.

Remark 3.2.2. One must again be wary of the obstructions to the HCR cohomol-

ogy existing, namely in the existence of the square root bundles
√
Kα ⊗ det(E α

0 )

on each component α. These obstructions can be succinctly stated in terms of the

Kummer sequence on each component of the stack:

1 // µ2
// O∗α

( )2 // O∗α // 1

Here the obstruction to the existence of the square root of [L ] ∈ H1(α,O∗α) lies in

H2(α, µ2) and the square roots themselves are only unique up to a class in H1(α, µ2).

3.2.2 Reduction to Chen-Ruan

As a special case of the HCR cohomology, consider when E = TX. Then the

anomaly cancellation conditions hold for trivial reasons. In this case, we have the

following:

Theorem 3.2.3. Suppose that E = TX, where X is a compact, Kahler orbifold.

Then we recover the additive Chen-Ruan cohomology through constructing the HCR

cohomology:

H•HCR
∼= H•CR

Proof. Because the bundles are identical, over each component α of IX we have

the ηTi ’s and the ηEi ’s are logarithms of eigenvalues of the same bundles, and thus
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EL,α = 0. It follows that (p∗, q∗) ∈ Φ(α) if and only if all of the functions {pi, qi}tα−1
i=0

are identically zero. Moreover, the trivial eigenspace Tα0 of TX|α is simply the

tangent space Tα of the component α viewed as a closed substack of X. So we

have:

H•HCR =
⊕
α⊆IX

H•
(
α,∧•(Tα0 )∗ ⊗

√
Kα ⊗ detTα0

)
=
⊕
α⊆IX

H•
(
α,∧•(Tα)∗ ⊗

√
Kα ⊗ det(Tα)

)
=
⊕
α⊆IX

H• (α,∧•Ωα)

=
⊕
α⊆IX

dim(α)⊕
k=0

⊕
p+q=k

Hp,q(α)

=
⊕
α⊆IX

dim(α)⊕
k=0

Hk(α,C) (For compact Kahler orbifolds)

=

dim(IX)⊕
k=0

Hk(IX,C)

Thus we recover the Chen-Ruan cohomology groups with their additive structure,

as desired. Note that we chose a square root of the bundle Kα ⊗ det(Tα) ∼= Oα to

simply be Oα itself, while we could have substituted different 2-torsion bundles on

α and obtained a different spectrum.

3.2.3 Invariance Under Serre Duality

Note that the inertia stack IX has a naturally defined involution taking a component

α to α−1. More precisely, recall that objects in the category IX are of the form

(x, σ) for x ∈ Ob(X) and σ ∈ Aut(x). Then the involution ι is defined simply
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by ι(x, σ) = (x, σ−1). At the level of groupoids using our atlas from (2.2.2), one

can see the involution as a pair of morphisms (β0, β1) forming an automorphism of

groupoids:

F
β0 // F

(X ×X X)×s,X,pX F
β1 //

πF

OO

a

OO

(X ×X X)×s,X,pX F

πF

OO

a

OO

β0(f) = f−1 β1(r, f) = (r, f−1)

(3.2.4)

So we denote these paired components (which are equal if and only if |α| = 2)

by α and α−1. Then the statement we will prove in this section is as follows:

Claim. Serre duality induces isomorphisms:

H•α
∼= //
(
H•α−1

)∗
Thus the entire spectrum H•HCR ⊕H•HCR∗ is invariant under the isomorphisms in-

duced above.

This preservation under Serre duality is of critical significance to the physical

theory. We will demonstrate the above for any vector bundle E over X. First

we re-interpret the set Φ(α) combinatorially, namely by considering elements as

corresponding to integer partitions. Recall that (p∗, q∗) ∈ Φ(α) if and only if it

satisfies equation (3.1.2). Multiplying both sides of (3.1.2) by −tα and changing

variables to m = −tαm and n = −tαn:

tα−1∑
j=0

 ∑
m∈(tαZ+j)>0

mpj(−
m

tα
) +

∑
n∈(tαZ−j)>0

nqj(−
n

tα
)

 = −tαEL,α =: Fα ≥ 0
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The above can be considered as an integer partition of the non-negative integer

Fα by integers indexed by m and n, with multiplicities being defined by the values

of the functions pj and qj. In particular, the multiplicities of each integer occuring

in each partition is constrained by values determined from the {dαj }j.

To be more precise, let a ∈ Z>0. Note that the above sum can be written as:

tα−1∑
j=0

∑
m≡j
m>0

mpj(−
m

tα
) +

∑
n≡−j
n>0

nqj(−
n

tα
)

 = Fα

Where ≡ denotes congruence modulo tα. The following is true for each such a:

• If a ≡ 0 then the multiplicity of a occuring in a partition (p∗, q∗) ∈ Φ(α) is

p0(− a
tα

) + q0(− a
tα

) ≤ 2dα0 .

• If a ≡ j ≡ −(tα− j) for j = 1, 2, . . . , tα−1, then the multiplicity of a occuring

in a partition (p∗, q∗) ∈ Φ(α) is pj(− a
tα

) + qtα−j(− a
tα

) ≤ dαj + dαtα−j.

In particular, we can identify elements of Φ(α) with partitions of Fα which are

split into two partitions P and Q. We make this into a definition for convenience.

Definition 3.2.4. Let N ∈ N. Then a segregated partition of N is a partition∑k
i=1 nk = N along with the data of two subsets P,Q ⊆ {1, 2, . . . , k} such that

P
⋂
Q = ∅ and P

⋃
Q = {1, 2, . . . , k} indexing two disjoint subsets of the partition.
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We now define a function:

Xα : Φ(α)→ {Segregated partitions of Fα}

By defining Xα(p∗, q∗) to be equal to:

P =


1 with multiplicity

p1

(
− 1
tα

) ,
2 with multiplicity

p2

(
− 2
tα

) , . . . ,

m with multiplicity

pj

(
−m
tα

)
if m ≡ j

j ∈ {0, 1, . . . , tα − 1}



Q =


1 with multiplicity

qtα−1

(
− 1
tα

) ,
2 with multiplicity

qtα−2

(
− 2
tα

) , . . . ,

n with multiplicity

qtα−j

(
− n
tα

)
if n ≡ j

j ∈ {0, 1, . . . , tα − 1}


Then the combinatorial description of Φ(α) above can be stated as:

Lemma 3.2.5. The function Xα gives a bijection between Φ(α) and the set of all

segregated partitions of Fα such that the following hold:

m ≡ 0 =⇒ (multiplicity of m in P ) ≤ dα0 and (multiplicity of m in Q) ≤ dα0

m ≡ 1 =⇒ (multiplicity of m in P ) ≤ dα1 and (multiplicity of m in Q) ≤ dαtα−1

m ≡ 2 =⇒ (multiplicity of m in P ) ≤ dα2 and (multiplicity of m in Q) ≤ dαtα−2

...
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m ≡ j =⇒ (multiplicity of m in P ) ≤ dαj and (multiplicity of m in Q) ≤ dαtα−j

for j = 1, . . . , tα − 1

Proof. This is simply a restatement of the condition (3.1.2).

This combinatorial description of H•α will make it easier to compare it with the

HCR cohomology coming from α−1. Under the identification ι : α ∼= α−1, we can

identify E|α with E|α−1
∼= ι∗(E|α). We have the following decomposition of E|α−1

relative to the α−1 action:

E|α−1 = Eα−1

0

Eα
0

⊕ Eα−1

1

Eα
tα−1

⊕ Eα−1

2

Eα
tα−2

⊕ . . .⊕ Eα−1

tα−1

Eα
1

(3.2.5)

If we define the ranks as before, the above equality implies that:

dα
−1

0 = dα0 and dα
−1

i = dαtα−i for i ∈ {1, . . . , tα − 1}

Using these equalities above we have Φ(α−1) being defined as the subset (note that

tα−1 = tα = |α| which implies that Mj(α
−1) = Mj(α), Nj(α

−1) = Nj(α)):

41



Φ(α−1) ⊂Hom((M0(α))<0, {0, 1, . . . , dα0})×

Hom((M1(α))<0, {0, 1, . . . , dαtα−1})×

...

Hom((Mt−1(α))<0, {0, 1, . . . , dα1})×

Hom((N0(α))<0, {0, 1, . . . , dα0})×

Hom((N1(α))<0, {0, 1, . . . , dαtα−1})×

...

Hom((Nt−1(α))<0, {0, 1, . . . , dα1})

Where (p∗, q∗) = (p0, . . . , pt−1, q1, . . . , qt−1) ∈ Φ(α−1) if and only if it satisfies

equation (3.1.2):

tα−1∑
j=0

 ∑
m∈(Mj(α))<0

mpj(m) +
∑

n∈(Nj(α))<0

nqj(n)

 = EL,α−1 = EL,α

Once again multiplying the above by −tα and using the change of variables m :=

−tαm, n := −tαn we obtain the condition that:

tα−1∑
j=0

∑
m≡j
m>0

mpj(−
m

tα
) +

∑
n≡−j
n>0

nqj(−
n

tα
)

 = Fα

We can thus again consider (p∗, q∗) as a segregated partition of Fα with almost

mirror conditions as to those on element of Φ(α). We make this precise below, by

again first defining a function:
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Yα : Φ(α−1)→ {Segregated partitions of Fα}

By defining Yα(p∗, q∗) to be equal to:

P =


1 with multiplicity

ptα−1

(
− 1
tα

) ,
2 with multiplicity

ptα−2

(
− 2
tα

) , . . . ,

n with multiplicity

ptα−j

(
− n
tα

)
if m ≡ j

j ∈ {0, 1, . . . , tα − 1}



Q =


1 with multiplicity

q1

(
− 1
tα

) ,
2 with multiplicity

q2

(
− 2
tα

) , . . . ,

m with multiplicity

qj

(
−m
tα

)
if m ≡ j

j ∈ {0, 1, . . . , tα − 1}


Then we accordingly have:

Lemma 3.2.6. The function Yα gives a bijection between Φ(α−1) and the set of all

segregated partitions of Fα such that the conditions of Lemma 3.2.5 hold.

Proof. This is simply a restatement of the condition (3.1.2).

Now we have the desired correspondence:

Corollary 3.2.7. The composition:

X−1
α ◦ Yα : Φ(α−1)→ Φ(α)
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Defines a bijection of sets, and is given explicitly by:

(p∗, q∗) 7→ (p∗, q∗)

p0

(
−m

tα

)
= q0

(
−m

tα

)
and q0

(
−m

tα

)
= p0

(
−m

tα

)
And for j = 1, . . . , tα − 1:

pj

(
−m

tα

)
= qtα−j

(
−m

tα

)
and qj

(
−m

tα

)
= ptα−j

(
−m

tα

)

With this we can now prove Serre duality for arbitrary orbifolds/DM stacks with

dualizing complex ωα[dim(α)] for each component α of the inertia stack. In this case

Serre duality on each component α ⊆ IX is of the form H i(α,E ) ∼= Extn−i(E , ωα)∗

as in the classical case, see Theorem 2.22 in [19].

Theorem 3.2.8. [Serre duality] Serre duality induces an isomorphism:

H•α → H•α−1
∗

Proof. First note that V (E )α = ∧•(Eα
0 )∗ ⊗

√
Kα ⊗ det(Eα

0 ) has the property that:

[V (E )α]∗ ⊗Kα
∼= V (E )α

This will be used below when applying Serre duality. The following long calculation

can be summarized in the following steps:

Line 1 → Line 2: Serre duality.

Line 2 → Line 3: Apply Corollary 3.2.7 to rewrite.

44



Line 3 → Line 4: Change variables k := tα − j and use the identification of eigen-

bundles coming from equation (3.2.5).

H•α = H•

α, ⊕
(p∗,q∗)∈Φ(α)

tα−1⊗
j=0

⊗
m≡j
m>0

∧pj(−
m
tα

)(E α
j )∗

⊗
n≡−j
n>0

∧qj(−
n
tα

)(E α
j )

⊗ V (E )α


∼= H•

α, ⊕
(p∗,q∗)∈Φ(α)

tα−1⊗
j=0

⊗
m≡j
m>0

∧pj(−
m
tα

)(E α
j )
⊗
n≡−j
n>0

∧qj(−
n
tα

)(E α
j )∗

⊗ [V (E )α]∗ ⊗Kα


∗

= H•

α, ⊕
(p∗,q∗)∈Φ(α−1)

⊗
m≡0
m>0

∧q0(− m
tα

)(E α
0 )
⊗
n≡0
n>0

∧p0(− n
tα

)(E α
0 )∗

⊗
tα−1⊗
j=1

⊗
m≡j
m>0

∧qtα−j(−
m
tα

)(E α
j )
⊗
n≡−j
n>0

∧ptα−j(−
n
tα

)(E α
j )∗

⊗ V (E )α


∗

∼= H•

α, ⊕
(p∗,q∗)∈Φ(α−1)

⊗
m≡0
m>0

∧q0(− m
tα

)(E α−1

0 )
⊗
n≡0
n>0

∧p0(− n
tα

)(E α−1

0 )∗

⊗
tα−1⊗
k=1

⊗
m≡−k
m>0

∧qk(− m
tα

)(E α−1

k )
⊗
n≡k
n>0

∧pk(− n
tα

)(E α−1

k )∗

⊗ V (E )α
−1


∗

= (H•α−1)
∗
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3.3 HCR Cohomology With 0-Dimensional Iner-

tia

Note that the inertia stack IX always has a connected component which is isomorphic

to the original stack X. The simplest nontrivial case for a computation of HCR

cohomology would be the case where X is a Deligne-Mumford stack such that the

other components of the inertia stack IX are 0-dimensional.

Theorem 3.3.1. Let X be a Deligne-Mumford stack. Then if its decomposition into

connected components IX = X t (tiYi) is such that dim(Yi) = 0 for all i, then we

have:

IX = X t

(⊔
i∈I

[pt/Gi]

)
(3.3.1)

Where Gi are all finite groups.

Proof. Since all Deligne-Mumford stacks are locally of the form [X/G] for some

finite group G (see Lemma 2.2.3 of [1]), if we let M denote the coarse moduli space

of X, then there exists an étale covering taMa of M such that we have the following

diagram, both squares being cartesian:

taI[Ua/Ga]

��

// IX

��
ta[Ua/Ga] //

��

X

��
taMa

//M

46



Here |Ga| <∞ for all a. By possibly refining the cover tMa, we may assume that

it is an open cover of M . Moreover we have that by equation (2.2.4) that:

I[Ua/Ga] =
⊔

[[g]]∈Conj(Ga)

[U g
a/C(g)]

= [Ua/Ga] t

 ⊔
[[g]]∈Conj(Ga)

[[g]]6=[[1]]

[U g
a/C(g)]


Note that we implicitly have chosen representatives for each conjugacy class. With-

out loss we may assume that if g is chosen to represent [[g]], then g−1 is chosen to

represent [[g−1]], if they are distinct classes. Since dim([U g
a/C(g)]) = 2dim(U g

a ) −

[dim(U g
a ) + dim(C(g))] = 0 and C(g) is finite, we have that dim(U g

a ) = 0. Thus, it

breaks into a disjoint union of C(g)-orbits which we will index by J(a,[[g]]). For each

orbit j ∈ J(a,[[g]]), fix a representative xj. Then we have:

I[Ua/Ga] = [Ua/Ga] t

 ⊔
[[g]]∈Conj(Ga)

[[g]]6=[[1]]

⊔
j∈J(a,[[g]])

[Orbit(xj)/C(g)]


∼= [Ua/Ga] t

 ⊔
[[g]]∈Conj(Ga)

[[g]]6=[[1]]

⊔
j∈J(a,[[g]])

[pt/C(g)xj ]


Where here C(g)xj denotes the stabilizer subgroup of xj. Note that since they are

components of fibers of open substacks, the [pt/C(g)xj ] are open substacks of IX.

They are also closed substacks and thus represent connected components of IX.

We now discuss the computation of the HCR cohomology in the case of 0-

dimensional inertia, when we will have equation (3.3.1). Begin with a vector bun-

dle E over such X satisfying anomaly cancellation. We will have one summand
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of the HCR cohomology for each of the above components of the inertia stack.

Over the “identity component” isomorphic to X, the vacuum energy is zero for this

component so we simply obtain:

H•
(
X,∧•E ∗0 ⊗

√
KX ⊗ det(E0)

)
= H•

(
X,∧•E ∗ ⊗

√
OX

)
This follows by the fact that E0 = E as we are splitting E into eigenbundles of

the action of the identity element, and anomaly cancellation trivializes the bundle

under the square root. We choose OX to be this square root in what follows.

Restricting E to the substack [pt/Gi] ⊂ X we have E|[pt/Gi] ∈ ShShSh([pt/Gi]) is a

Gi−representation. Moreover, each component [pt/Gi] of IX comes equipped with a

natural g ∈ Gi coming from the proof of Theorem 3.3.1 (identifying Gi
∼= C(g)xj) or

equivalently the map γ defined in equation (2.2.3). We will use the notation [pt/Gi]g

to denote the corresponding component of IX. Note that the natural involution

ι : IX → IX defined in the diagram (3.2.4) will map between the components

[pt/Gi]g and [pt/Gi]g−1 (or acts as the identity when g = g−1). If we let tg := |g|,

then the E and TX split into eigenbundles of the g-action:

E|[pt/Gi]g = Ei,g
0 ⊕ E

i,g
1 ⊕ . . .⊕ E

i,g
tg−1

TX|[pt/Gi]g = T i,g0 ⊕ T
i,g
1 ⊕ . . .⊕ T

i,g
tg−1

Further we define:

di,g0 := rank(Ei,g
0 ) , di,g1 := rank(Ei,g

1 ) , . . . , di,gtg−1 := rank(Ei,g
tg−1)
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Now the HCR cohomology is of the form

H•HCR = H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

H•([pt/Gi]g,Ψi,g)

]

= H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

H•(pt,Ψi,g)
Gi

]

= H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

H0(pt,Ψi,g)
Gi

]

= H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

ΨGi
i,g

]

In other words, other than the term from the identity component it is simply the

sum of the trivial subrepresentation of the representations Ψi,g. To determine this

representation, recall that there was an obstruction/choice involving the square root

bundle
√
K[pt/Gi] ⊗ det(Eg

0). Here, K[pt/Gi] is trivial (as a Gi-representation), but

the determinant bundle det(Eg
0) could be given by a nontrivial character ηi,g : Gi →

C∗ such that ηi,g(g) = 1. Suppose a choice χi,g exists such that χ2
i,g = ηi,g. Keeping

in mind the assumption from equation (3.1.4) of remark 3.1.4, we assume also that

χi,g−1 = χi,g, where χi,g−1 is the square root of the isomorphic representation lying

over the component [pt/Gi]g−1 . Then considering Ψi,g as a Gi-representation, we

have:

ΨGi
i,g =

[
Υi,g ⊗ ∧•(Ei,g

0 )∗ ⊗
√
K[pt/Gi] ⊗ det(Ei,g

0 )

]Gi
∼=
[
Υi,g ⊗ ∧•(Ei,g

0 )∗ ⊗ χi,g
]Gi

∼=
[
Υi,g ⊗ ∧•(Ei,g

0 )∗
]χ̄i,g

Where the superscript χ̄i,g denotes the operation of projecting to the subrepresen-
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tation consisting of all copies of the Gi-representation χ̄i,g inside Υi,g ⊗ ∧•(Ei,g
0 )∗.

Here Υi,g denotes the bundle obtained via the formula (3.1.3), a construction which

we will review in this context. For each pair (i, g) we can compute the vacuum

energy (3.1.1) EL,i,g by using the logarithms of the eigenvalues of the g-action on

both E and TX restricted to [pt/Gi]g. If EL,i,g ∈ Z[ 1
tg

]≤0 then we wish to find

all the segregated partitions of Fi,g := −tgEL,i,g ∈ Z≥0 such that they satisfy the

conditions of lemma 3.2.5, in other words:

Definition 3.3.2. Let Si,g denote the set of segregated partitions of Fi,g into two

subsets P and Q such that:

m ≡ 0 =⇒ (multiplicity of m in P ) ≤ di,g0 and (multiplicity of m in Q) ≤ di,g0

m ≡ 1 =⇒ (multiplicity of m in P ) ≤ di,g1 and (multiplicity of m in Q) ≤ di,gtg−1

m ≡ 2 =⇒ (multiplicity of m in P ) ≤ di,g2 and (multiplicity of m in Q) ≤ di,gtg−2

...

m ≡ j =⇒ (multiplicity of m in P ) ≤ di,gj and (multiplicity of m in Q) ≤ di,gtg−j

for j = 0, . . . , tg − 1, and all congruences are modulo tg.

We will describe Υi,g in terms of Si,g. Denote elements of Si,g by:

(1, 2, 5, 6, 6︸ ︷︷ ︸
Elements of P

| 2, 2, 4︸ ︷︷ ︸
Elements of Q

)i,g ∈ Si,g

Following the equation 3.1.3, we arrive at the following summands of Υi,g(n•|m•)

for each element (n•|m•)i,g ∈ Si,g. Given a partition:

(n1, n2, . . . , na |m1,m2, . . . ,mb)i,g ∈ Si,g
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Begin with the trivial 1-dimensional Gi-representation. For each integer n ∈ P

occuring with multiplicity k, we tensor our previous representation with ∧k(Ei,g
n )∗

where we reduce n modulo tg to lie in {0, 1, . . . , tg − 1}. For each integer m ∈ Q

occuring with multiplicity k, we tensor our previous representation with ∧k(Ei,g
−m)

where we reduce −m modulo tg to lie in {0, 1, . . . , tg − 1}. After running through

the entire partition we arrive at our desired summand Υi,g(n•|m•):

Υi,g =
⊕

(n•|m•)i,g∈Si,g

Υi,g(n•|m•) (3.3.2)

Example 3.3.3. Suppose that tg = 4, Fi,g = 32, and the ranks of the di,g• are such

that we have the following allowable segregated partition of 32:

(1, 2, 2, 6 | 1, 1, 1, 4, 7, 7)i,g ∈ Si,g

Then the corresponding summand of Υi,g would be:

Υi,g(1, 2, 2, 6 | 1, 1, 1, 4, 7, 7) = (Ei,g
1 )∗︸ ︷︷ ︸

1∈P

⊗∧2(Ei,g
2 )∗︸ ︷︷ ︸

2,2∈P

⊗ (Ei,g
2 )∗︸ ︷︷ ︸

6∈P

⊗∧3Ei,g
3︸ ︷︷ ︸

1,1,1∈Q

⊗ Ei,g
0︸︷︷︸

4∈Q

⊗∧2Ei,g
1︸ ︷︷ ︸

7,7∈Q

Remark 3.3.4. Note that Serre duality can be observed at the level of partitions

in this notation by noting that:

(n1, n2, . . . , na |m1,m2, . . . ,mb)i,g ∈ Si,g

If and only if

(m1,m2, . . . ,mb |n1, n2, . . . , na)i,g−1 ∈ Si,g−1

One may check that the corresponding summands of Υi,g and Υi,g−1 defined above

are indeed paired under Serre duality as in theorem 3.2.8.

51



We have thus shown:

Algorithm 3.3.5. Let E be a bundle over X with 0-dimensional inertia as in

equation (3.3.1). The one compute the HCR cohomology in the following steps:

(I) Choose a square root χi,g =
√

det(Ei,g
0 ) for all pairs {g, g−1} ∈ Gi. If no such

exists, the HCR cohomology is not defined.

(II) For each (i, g), compute the vacuum energy EL,i,g. If it is in Z[ 1
tg

]≤0 then define

Fi,g := −tgEL,g,i ∈ Z≥0.

(III) For each (i, g) such that step (II) yielded an Fi,g, construct the set of segregated

partitions Si,g of Fi,g. Use the correspondence in (3.3.2) to construct Υi,g.

(IV) Finally arrive at:

H•HCR = H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

[
Υi,g ⊗ ∧•(Ei,g

0 )∗
]χ̄i,g]

(3.3.3)

Note that in the case where χi,g = 1 is the trivial character for all (i, g), we are

simply taking the Gi-invariants and the above formula reduces to:

H•HCR = H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

[
Υi,g ⊗ ∧•(Ei,g

0 )∗
]Gi]

(3.3.4)

Note also that our freedom of choosing each χi,g allows us to multiply our choices

by any 2-torsion character ξi,g ∈ Ĝi, in which case the HCR cohomology becomes:

H•HCR = H•(X,∧•E ∗)⊕

[⊕
i∈I

⊕
g∈Gi

[
Υi,g ⊗ ∧•(Ei,g

0 )∗
]χ̄i,g ξ̄i,g]

Given the above algorithm, we can show the following lemma. Recall that a

priori, for each component [pt/Gi]g of the inertia stack IX we have a corresponding
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automorphism of any sheaf on it of order tg and a vacuum energy EL,i,g which we

require to be in Z[ 1
tg

]. In the case of 0-dimensional inertia, we have the following:

Lemma 3.3.6. Suppose that E is a bundle satisfying anomaly cancellation over a

stack X with 0-dimensional inertia. Then if [pt/Gi]g is a component of the inertia

stack such that E|[pt/Gi] yields a nonzero contribution to the HCR cohomology, then

the corresponding vacuum energy EL,i,g lies in Z[1
2
]. If in addition we have that |g|

is odd, then EL,i,g ∈ Z.

Proof. By (3.3.3) we have the following corresponding contribution to H•HCR:

[
Υi,g ⊗ ∧•(Ei,g

0 )∗ ⊗ χi,g
]Gi 6= {0}

This thus implies in particular that there is a nontrivial subspace on which g acts

trivially. Let tg := |g| and choose ζ = e
2πi
tg . We examine with what weight (meaning

power of ζ) g acts on the above representation. By construction, g acts with weight

tgEL,i,g on Υi,g. Also, g acts with weight 0 on ∧•(Ei,g
0 )∗, and depending on the

given square root we have χi,g(g) = ±1, or in other words g acts with weight 0 or

tg
2

(in which case tg must be even). By assumption, we have a nontrivial subspace

of weight 0, meaning that either:

tgEL,i,g ≡ 0 (mod tg) or tgEL,i,g +
tg
2
≡ 0 (mod tg)

Which would imply then that:

EL,i,g ∈ Z or EL,i,g ∈ Z
[

1

2

]
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The second case was only possible in the event that tg were even, thus if it were

odd then the vacuum energy must be integral.

3.4 Examples

This section serves as both proof that nontrivial examples of the HCR cohomology

construction exist as well as a demonstration for how one would compute the HCR

cohomology using Algorithm 3.3.5.

Example 3.4.1. Let X denote an abelian variety with dimC(X) = 4. Let G =

Z/2Z = 〈g〉 act on X via inversion, thus giving us 28 = 256 fixed points. Let

OX denote the structure sheaf with its canonical G-equivariant structure, and Oχ
X

the same sheaf with the equivariant structure twisted by the nontrivial character

χ : G → C∗. Then let E = (Oχ
X)⊕28. We compute the HCR cohomology. First we

verify that anomaly cancellation holds:

chG2 (X) = chG2 ((Oχ
X)⊕4) = 4chG2 (Oχ

X) = 2cG1 (Oχ
X)2 = cG1 (Oχ

X)cG1 (OX) = 0 (3.4.1)

This follows because Oχ
X ⊗ Oχ

X
∼= OX as G-equivariant bundles, then taking first

Chern classes to get:

2cG1 (Oχ
X) = cG1 (OX) = 0

Where the we have used that OX is trivial equivariantly. Further, we have:

KX = det(Oχ
X
⊕4) ∼= OX (3.4.2)
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Now we compute for E:

chG2 (E) = 28chG2 (Oχ
X) = 14cG1 (Oχ

X)2 = 7cG1 (Oχ
X)cG1 (OX) = 0 matching equation (3.4.1)

Further:

det(E) = det((Oχ
X)⊕28) ∼= OX

So then: det(E∗) ∼= OX matching equation (3.4.2)

Thus anomaly cancellation holds.

(I) Let {xi}256
i=1 = XG, and note that the inertia stack is of the form:

IX = X t

[
256⊔
i=1

[xi/G]

]

We now choose our square roots of det(Ei
0), where we use a superscript i to denote

the fiber of E at xi. As this representation is trivial, we may choose χi = 1 be our

square root representations for all xi ∈ XG.

(II) Next, we compute the vacuum energies for the fixed points. For each xi ∈ XG,

the fibers of the vector bundles TX i and Ei are 4 and 28 copies of the nontrivial

representation of G, respectively. Thus ηTj = 1
2

= ηEk for j = 1, . . . , 4 and k =

1, . . . , 28. Thus the vacuum energy at xi is:

EL,xi = Λi
T − Λi

E =
1

8
[4− 28] = −3

This number lies in Z[1
2
] and thus we may define our cohomology group of interest.

We identify di0 = 0 and di1 = 24 as the ranks of the eigenbundles of Ei under

the g action. In light of lemma 3.2.5, we consider segregated partitions of Fxi =
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−|g|EL,xi = 6 under the restrictions that:

m ≡ 0 =⇒ (multiplicity of m in P ) ≤ 0 and (multiplicity of m in Q) ≤ 0

m ≡ 1 =⇒ (multiplicity of m in P ) ≤ 24 and (multiplicity of m in Q) ≤ 24

(The congruences above are modulo tg = 2.) In other words, our partitions must

consist purely of odd integers, none occuring with multiplicity greater than 2di1 = 48.

So consider the only such partitions:

5 + 1 3 + 3 3 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1

(III) For each such partition we must vary over all permitted segregated partitions

as in lemma 3.2.5, splitting each of the above up into P and Q. Then for each such

we compute the relevant bundle whose cohomology is of interest. Note that this

list is identical for each xi, so we omit the i superscript for each bundle for ease of

notation:

Υ(P |Q) (P |Q)

E∗1 ⊗ E∗1 (1, 5 | )

E∗1 ⊗ E1 (5 | 1)

E∗1 ⊗ E1 (1 | 5)

E1 ⊗ E1 ( | 1, 5)

Υ(P |Q) (P |Q)

∧2E∗1 (3, 3 | )

E∗1 ⊗ E1 (3 | 3)

∧2E1 ( | 3, 3)
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Υ(P |Q) (P |Q)

∧3E∗1 ⊗ E∗1 (1, 1, 1, 3 | )

∧2E∗1 ⊗ E∗1 ⊗ E1 (1, 1, 3 | 1)

E∗1 ⊗ E∗1 ⊗ ∧2E1 (1, 3 | 1, 1)

E∗1 ⊗ ∧3E1 (3 | 1, 1, 1)

∧3E∗1 ⊗ E1 (1, 1, 1 | 3)

∧2E∗1 ⊗ E1 ⊗ E1 (1, 1 | 1, 3)

E∗1 ⊗ ∧2E1 ⊗ E1 (1 | 1, 1, 3)

∧3E1 ⊗ E1 ( | 1, 1, 1, 3)

Υ(P |Q) (P |Q)

∧6E∗1 (1, 1, 1, 1, 1, 1 | )

∧5E∗1 ⊗ ∧1E1 (1, 1, 1, 1, 1 | 1)

∧4E∗1 ⊗ ∧2E1 (1, 1, 1, 1 | 1, 1)

∧3E∗1 ⊗ ∧3E1 (1, 1, 1 | 1, 1, 1)

∧2E∗1 ⊗ ∧4E1 (1, 1 | 1, 1, 1, 1)

∧1E∗1 ⊗ ∧5E1 (1 | 1, 1, 1, 1, 1)

∧6E1 ( | 1, 1, 1, 1, 1, 1)

(IV) We now can compute the HCR cohomology using equation (3.3.4), giving us:

H•HCR = H•(X,∧•E ∗)⊕

[
256⊕
i=1

[
Υxi ⊗ ∧•(Ei

0)∗
]Z/2Z]

Where Υxi is the direct sum of the sheaves/representations from the above tables.

Note that:

Ei
0 = 0

(Ei
1)∗ = (⊕28

i=1Cχ)∗ ∼= (⊕28
i=1Cχ̄) = ⊕28

i=1Cχ = Ei
1

Thus since every summand of Υxi is the same tensor product of an even number of

such representations, they are all trivial representations and thus Z/2Z-invariant.

So we have:

H•HCR = H•(X,∧•E ∗)⊕ [Υx1 ]
⊕256
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To compute H•(X,∧•E ∗) ∼= H•(X,∧•E ∗)G, note that:

∧•E ∗ = ∧•(Oχ
X)⊕28

∼=

 28⊕
i=0
i even

O
⊕(28

i )
X

⊕
 28⊕
i=0
i odd

(Oχ
X)⊕(28

i )


Thus the contribution from the first of the two above summands is:

4⊕
k=0

Hk

X, 28⊕
i=0
i even

O
⊕(28

i )
X


G

=
4⊕

k=0

28⊕
i=0
i even

[
Hk(X,OX)G

]⊕(28
i )

∼=
4⊕

k=0
k even

28⊕
i=0
i even

Hk(X,OX)⊕(28
i )

Here we are using that Hk(X,OX) ∼= H0,k(X) which is spanned by k-fold wedges

of {dz̄i}4
i=1, which is clearly G-invariant if and only if k is even. Likewise, for the

second summand of the above we have only odd forms coming out due to twisting

by χ:

4⊕
k=0

Hk

X, 28⊕
i=0
i odd

(Oχ
X)⊕(28

i )


G

=
4⊕

k=0

28⊕
i=0
i odd

[(
Hk(X,OX)⊗ χ

)G]⊕(28
i )

∼=
4⊕

k=0
k odd

28⊕
i=0
i odd

Hk(X,OX)⊕(28
i )

In sum, we have the following complete description of the HCR cohomology:

H•HCR
∼=

 4⊕
k=0
k even

28⊕
i=0
i even

Hk(X,OX)⊕(28
i )

⊕
 4⊕
k=0
k odd

28⊕
i=0
i odd

Hk(X,OX)⊕(28
i )

⊕ [Υx1 ]
⊕256

Moreover, as the stabilizer groups are all 2-torsion, Serre duality interchanges the

HCR cohomology over the same component of the inertia stack, and can be seen

by simply swapping the P and Q portions of the corresponding partition.
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We now consider examples over weighted projective stacks. Consider the weighted

projective stack (ki ∈ N):

X = P[k0, k1, . . . , kr] = [Cr+1 − {0}/C∗]

With C∗ action given by:

λ · (x0, x1, . . . , xr) = (λk0x0, λ
k1x1, . . . , λ

krxr)

One may identify vector bundles on X with C∗-equivariant bundles over the punc-

tured (r + 1)-plane. Denote by OX(n) the trivial bundle over Cr+1 − {0} with the

equivariant structure tensored by χn where χ is the tautological character of C∗.

Alternatively, the total space of OX(n) is given by the quotient stack:

[
(
Cr+1 − {0})× C/C∗]

λ · (x0, . . . , xr, z) = (λk0x0, . . . , λ
krxr, λ

nz)

We consider examples where E fits into the following exact sequence:

0 // E // ⊕iOX(ni) // OX(m) // 0

First we check for anomaly cancellation. Note that we have the following weighted

euler sequence for the tangent bundle:

0 // OX
// ⊕ri=0OX(ki) // TX // 0
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If we define α := cC
∗

1 (OX(1)) then we find that:

chC∗
2 (E ) =

1

2
(Σn2

i −m2)α2 det(E∗) ∼= OX(m− Σni)

chC∗
2 (TX) =

1

2
(Σk2

i )α
2 KX

∼= OX(−Σki)

So anomaly cancellation is equivalent to:

Σni −m = Σki Σn2
i −m2 = Σk2

i (3.4.3)

Example 3.4.2. Consider the weighted projective stack P[1, 2, 3]. Let E be the

following kernel:

0 // E // OX(−5)⊕ OX(−2)⊕ OX(2)⊕ OX(7)⊕2 ⊕ OX(18)
φ // OX(21) // 0

φ(s1, s2, s3, s4, s5, s6) = p1s1 + p2s2 + p3s3 + p4s4 + p5s5 + p6s6

Where the pi(x0, x1, x2) are polynomials of the requisite degree, chosen generically

so that they are never all zero and thus φ is surjective. One checks that they satisfy

(3.4.3) so that anomaly cancellation holds. The inertia stack takes the form:

IX = X t [p/(Z/2Z)]g t [q/(Z/3Z)]h t [pt/(Z/3Z)]h2

Here p = [0 : 1 : 0] and q = [0 : 0 : 1] are the points with nontrivial stabilizer, and g,

h, and h2 are used to label the two components of the inertia stack corresponding

to the 〈h〉 ∼= Z/3Z stabilizer subgroup of q and the 〈g〉 ∼= Z/2Z stabilizer subgroup

of p.

(I) The fibers E|[p/(Z/2Z)] and E|[q/(Z/3Z)] are representations of cyclic groups in which
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every non-identity element generates the group, thus the trivial eigenspaces of any

such group element are trivial as representations as well. Thus the representations

det(Eg
0), det(Eh

0 ), and det(Eh2

0 ) are all trivial and we may choose the trivial repre-

sentation for their square roots.

(II) We compute the vacuum energies. Restricting the sequence defining E to the

fiber above p, we obtain a short exact sequence of (Z/2Z)-representations, which

necessarily splits. We accordingly have that the fiber E|[p/(Z/2Z)]g decomposes:

E|[p/(Z/2Z)]g = C⊕3 ⊕ (Cχ)⊕2

Here χ denotes the nontrivial (Z/2Z) character. Similarly we have the decomposi-

tion of the fiber at p for the tangent bundle:

TX|[p/(Z/2Z)]g = (Cχ)⊕2

From here we see that the vacuum energy at p is simply the difference in the ranks

of the nontrivial eigenspaces of the (Z/2Z)-action, or:

EL,p,g = 0

Restricting E to q, we obtain:

E|[q/(Z/3Z)]h = (Cη)⊕4 ⊕ Cη2

E|[q/(Z/3Z)]h2
= Cη2 ⊕ (Cη)⊕4

Where η is the tautolical representation when viewing (Z/3Z) ⊂ C∗. For the tangent

bundle we have:

TX|[q/(Z/3Z)]h = Cη ⊕ Cη2
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TX|[q/(Z/3Z)]h2
= Cη2 ⊕ Cη

Then the vacuum energy for both components is:

EL,q,h = EL,q,h2 =
1

2

[
1

3

2

3
+

2

3

1

3

]
− 1

2

[
4 · 1

3

2

3
+

2

3

1

3

]
= −1

3

(III) By Lemma 3.3.6, since the vacuum energies at the q components of IX are

not in Z[1
2
], the do not contribute to the HCR cohomology. The component corre-

sponding to p contributes simply:

[
∧•(Eg

0)∗ ⊗
√

det(Eg
0)
]Z/2Z

= ∧•(Eg
0)∗ ∼= ∧•C⊕3

(IV) The total HCR cohomology is thus:

H•HCR
∼= H•(X,∧•E ∗)⊕ ∧•C⊕3

Example 3.4.3. Let us consider a general weighted projective stack with 0-dimensional

inertia, and let E be a vector bundle defined by a short exact sequence:

0 // E //
⊕a

i=1 OX(ni) // OX(m) // 0 (3.4.4)

In this case we will find the vacuum energies for each component of the inertia stack

in complete generality. Since these spaces produce a wealth of nontrivial examples,

these computations should be of use.

Let X = P[k0, k1, . . . , kr]. Then X having 0-dimensional inertia is equivalent

to (ki, kj) = 1 for i 6= j. In such a case, the only orbits of Cr+1 − {0} under

the C∗ action defining the global quotient stack with nontrivial stabilizers are the
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coordinate axes, each with a cyclic stabilizer subgroup. These correspond to the

following stacky points of X:

p0 = [1 : 0 : 0 : . . . : 0] = [pt/(Z/k0Z)]

p1 = [0 : 1 : 0 : . . . : 0] = [pt/(Z/k1Z)]

...

pj = [0 : . . . 0 : 0 : 1] = [pt/(Z/kjZ)]

Accordingly, the inertia stack decomposes:

IX = X t

 r⊔
i=0

⊔
g∈(Z/kiZ)

g 6=1

[pt/(Z/kiZ)]g


We will use the letter g to denote the generator for the cyclic group of each compo-

nent, and thus label the components by the pair (pj, g
k), where k = 1, . . . , kj − 1.

Let us compute the vacuum energy for an arbitrary component corresponding to

(pj, g
k). Restricting the short exact sequence defining E to the point pj, we can

consider it as a short exact sequence of (Z/kjZ)-representations:

0 // Epj
// ⊕iCχ

ni
j // Cχmj // 0 (3.4.5)

Here χj is the tautological character of (Z/kjZ) ⊂ C∗. Let ζj = e
2πi
kj . Then g

acts with eigenvalue ζnij on Cχ
ni
j , and thus gk acts via ζknij on the same eigenspace.

Since the above sequence splits, one of the eigenspaces in the middle space must be

isomorphic to Cχmj as a representation. To compute the vacuum energy, we must
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take the logarithms of these eigenvalues. More specifically, we compute the unique

exp−1(λ) ∈ [0, 1) for each eigenvalue where exp(x) = e2πix. Let {x} := x − bxc

denote the fractional part of a real number. Then:

exp−1(ζknij ) = exp−1exp

(
kni
kj

)
=

{
kni
kj

}

These are the logarithms that we use to compute one half of the vacuum energy:

Λ
pj ,g

k

E =
1

2

a∑
i=1

{
kni
kj

}(
1−

{
kni
kj

})
− 1

2

{
km

kj

}(
1−

{
km

kj

})
(3.4.6)

Note that the subtracted term serves to cancel out the contribution from whichever

representation is mapped isomorphically onto Cχmj in equation (3.4.5). Similarly,

we restrict the euler sequence to compute the contribution coming from TX:

0 // C // ⊕iCχ
ki
j // TXpj

// 0

From this we obtain that gk acts with eigenvalues ζkkij , and thus the second half of

the vacuum energy is:

Λ
pj ,g

k

T =
1

2

r∑
i=0

{
kki
kj

}(
1−

{
kki
kj

})
(3.4.7)

Note that when i = j that term gives 0 contribution to the above sum, as it should,

since that eigenspace is actually the kernel of the above short exact sequence and

is thus not a summand of TXpj . Thus we have shown:

Theorem 3.4.4. Let E be a vector bundle over X = P[k0, . . . , kr] where (ki, kj) =

1 for i 6= j which fits into the exact sequence (3.4.4). Then the vacuum energy
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corresponding to the component of the inertia stack (pj, g
k) is:

EL,(pj ,gk) =
1

2

r∑
i=0

{
kki
kj

}(
1−

{
kki
kj

})
− 1

2

a∑
i=1

{
kni
kj

}(
1−

{
kni
kj

})
. . .

+
1

2

{
km

kj

}(
1−

{
km

kj

})

Proof. Combine equations (3.4.6) and (3.4.7) along with the equation:

EL,(pj ,gk) = Λ
pj ,g

k

T − Λ
pj ,g

k

E

Remark 3.4.5. In light of Lemma 3.3.6, if one desires examples for which the HCR

cohomology contribution from the stacky points to be nonzero, one is interested

when the above sum is in Z
[

1
2

]
.
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Chapter 4

Elliptic Fibrations and

Fourier-Mukai Transforms

In this chapter we review and fix notation of derived categories and Fourier-Mukai

transforms in preparation for the following chapter, where we will need this language

for investigating the twisted anomaly cancellation conditions.

4.1 Fourier-Mukai Transforms

First we have the following definitions:

Definition 4.1.1. Let X be a projective variety. We define its bounded derived

category Db(X) to be the bounded derived category of the associated abelian cate-
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gory of coherent sheaves on X:

Db(X) := Db(Coh(X))

We frequently identifyDb(X) as the full triangulated subcategory ofDb(Qcoh(X))

with coherent cohomology objects - see [17] for a detailed introduction. Objects

are complexes E • a differential of degree +1, and we define the shift functor

T (E •) = E •[1], where (E •[1])n = E n+1. Given any morphism f : X → Y , one

can define the usual derived functors:

Rf∗ : D+(X)→ D+(Y )

Lf ∗ : D−(Y )→ D−(X)

Further for an object E • ∈ Db(X) one can define the derived tensor product:

E • ⊗L : D−(X)→ D−(X)

Definition 4.1.2. Given any two projective varieties X and Y along with an object

E • ∈ Db(X × Y ), we define the integral transform ΦE •
X→Y to be the composition

of derived functors:

ΦE •

X→Y (F •) := RπY ∗(π∗XF • ⊗L E •)

For some such functors they induce equivalences of triangulated categories:

Definition 4.1.3. Let E • ∈ Db(X × Y ) be such that ΦE •
X→Y defines an equiva-

lence of triangulated categories. Then we call the functor ΦE •
X→Y a Fourier-Mukai

transform.
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4.2 Elliptic Fibrations & Relative Fourier-Mukai

Let f : X → B be a smooth morphism of projective varieties such that the fibers are

smooth genus one curves. We call such a morphism a smooth genus one fibration.

If we further impose that the fibration has a section σ : B → X, then we call f a

smooth elliptic fibration. If f is elliptic, one can globally perform a Fourier-Mukai

transform over the fibers by using the section σ to globally identify each elliptic

fiber Eb (for b ∈ B) with its dual Pic0(Eb). More precisely if we define the sheaf:

P := OX×BX(∆− [σ ×B X]− [X ×B σ]− ξ∗(D))

Here ξ : X ×B X → B is the projection. Then P|Eb×Eb is the usual Poincaré sheaf

on each fiber, inducing a fiberwise Fourier-Mukai transform. A bundle satisfying

such a condition fiberwise is determined only up to a pull back from B, in which

case the divisor D is chosen to impose the normalization conditions P|σ×BX ∼= O

and P|X×Bσ ∼= O.

When no such section exists, one can only do the above construction locally

(assuming local sections exist). So one can construct local Poincaré sheaves Pi

over f−1(Ui) for some Ui ⊂ B. The obstruction to gluing them, namely the bundles

Nij = Pi|Uij ⊗P∗
j |Uij , can be considered as a geometric representation of an O∗X

gerbe X over X - see section 1.1 of [8]. What this is really telling us is that the

moduli problem of interest (relative degree zero line bundles) is not parametrized

by a space but by the stack X, so thus our induced Fourier-Mukai transform should

be thought of as a map from Db(X) to Db(X). The stacks X over X which arise
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in the above dualities are O∗X-gerbes and are parametrized by the cohomology class

H2(X,O∗X).

4.2.1 Cohomological Fourier-Mukai

Since we are interested in the induced map on characteristic classes, we make the

following definition:

Definition 4.2.1. Let ΦE •
X→Y be a Fourier-Mukai transform. Then the cohomolog-

ical Fourier-Mukai transform fmE • is defined on the subspace of VX ⊆ H•(X,Q)

lying in the image of the Chern character. It is uniquely defined by making the

following diagram commute:

Db(X)

ch
��

ΦE•
X→Y // Db(Y )

ch
��

VX
fmE• // VY

Remark 4.2.2. Typically one adjusts the morphism to the cohomology ring by the

(invertible) square root of the Todd class (this adjustment is known as the Mukai

vector) in order to make the cohomological Fourer-Mukai morphism more directly

mirror that of the Fourier-Mukai morphism itself. We do not use this convention.

4.2.2 Elliptic Fibrations Without Section

Given a smooth elliptic fibration f : X → B with section σ, one has the sheaf of

sections X of f taking values in abelian groups. One can thus define the Tate-
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Shafarevich group:

XB(X) = H1(B,X )

This sheaf cohomology group describes twisted versions of the original fibration,

some of which may not have sections. The above group exists in more general

situations - for a detailed reference see Dolgachev and Gross [11]. It suffices for our

purposes to note that in this situation we have an exact sequence:

0 // Br(B) // Br(X) π //XB(X) // 0

Here Br(X) denotes the Brauer group, which is a subgroup of H2(X,O∗X). Such

classes correspond to equivalence classes of gerbes. A theorem of Căldăraru (The-

orem 4.4.1 of [8]) shows that the above morphism π directly relates gerbes arising

as obstructions to the existence of global Poincaré sheaves to twisted copies of the

fibration f : X → B. More precisely, if g : Y → B is a twisted version of f , then

if one takes the obstruction α ∈ Br(X) to the existence of a Poincaré sheaf on

Y ×B X, then π(α) = [g] ∈XB(X). In particular, if Br(B) = 0 we have that the

orders of α and [g] are equal. The order of α corresponds to the smallest k such

that we have an αk-twisted line bundle, while the order of [g] corresponds to the

minimal degree of a multisection of the fibration [g]. Further, if αk = 1 then we can

represent the gerbe by a cocycle α̃ ∈ H2(X,µk), and thus represent the gerbe as a

Deligne-Mumford stack. Here we are using the long exact sequence coming from:

0 // µk // O∗X
( )k // O∗X // 0
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Thus the minimal degree of a multisection of a twisted fibration will also tell us

the minimal order of the cyclic group G such that we can describe the image of

the transform as lying on a G-gerbe. This is important since we are interested in

applying Riemann-Roch, thus we want to have an inertia stack with finitely many

connected components. We will be interested in a fibration which admits no section

but admits a multisection of degree 2. By the above arguments, such a transform

can take values in a µ2-gerbe over an elliptic fibration.
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Chapter 5

Twisted Anomaly Cancellation for

Gerbes

We now set our sights on comparing the anomaly cancellation conditions at the

level of Chern-reps. Let us give an outline of how we will proceed. We begin by

describing a smooth K3 surface X which contains two distinct genus one fibrations

which we will call ρi : X → P1 for i = 1, 2. Of these, only one will have a section,

say ρ1. We use the fibration with a section to transform an omalous bundle V over

X to spectral data on X, and then discuss how one could transform this spectral

data along ρ2 to obtain a vector bundle over some associated gerbe solving the

relative moduli problem along the fibers of ρ2.
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5.1 Construction of X

First, we recall some properties of the relevant space X constructed in section 4.3

of [7]. The space X is K3 with two genus one fibrations ρ1 and ρ2, with only ρ1

having a section. The fibration ρ2 has two I∗0 fibers. The double component of each

I∗0 is a section for the ρ1 fibration. The ρ1 fibration has 8 singular fibers of type I2.

The two sections of the ρ1 fibration intersect two different components of each of

the I2 fibers.

5.2 Construction of the Spectral Data

Now given X as constructed above, we seek to find a curve ι : C ↪→ X and a line

bundle N ∈ Pic(C) such that the sheaf ι∗N is Fourier-Mukai dual (with respect

to the elliptic fibration ρ1) to a vector bundle V over X satisfying the anomaly

cancellation conditions:

c1(V ) = c1(TX) ch2(V ) = ch2(TX)

As X is K3, we have that c1(TX) = 0 and ch2(TX) = −c2(TX) = −24 (where we

identify H4(X,Z) ∼= Z via the fundamental class of X). Denote by FMρ1 := ΦP
X→X

the induced Fourer-Mukai transform. We will work in the following steps:

1. Compute ch(ι∗N ) for a large family of possible choices of spectral data depend-

ing on some parameters.
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2. Compute the cohomological Fourier-Mukai transform fmρ1(η) for a set of coho-

mology classes η ∈ H•(X,Q) spanning the image of ch(ι∗N ).

3. Use the information from step 2 to compute the transform fmρ1(ch(ι∗N )) =

ch(FMρ1(ι∗N )) = ch(V) and determine for which values of the parameters in step

1 do we have that the bundle V satisfies anomaly cancellation.

5.2.1 Chern Character of Spectral Data (Step 1)

Before we compute the characteristic classes of ι∗N with the Grothendieck-Riemann-

Roch theorem, we fix some notation.

Notation: Let NS(X) denote the Néron-Severi group of X. Let f denote the

class of a fiber of ρ1 and let σ1 and σ2 be the two rational curves making up the two

sections of ρ1 inside the I∗0 fibers of ρ2. We use the notation ηα ∈ H•(X,Q) to denote

the Poincaré dual of a homology class α of X. In particular, ηf , ησ1 , ησ2 ∈ H2(X,Q)

are duals of the homology classes of the respective curves in X, and ηpt ∈ H4(X,Z)

is the class of the volume form, and ηX = 1 ∈ H0(X,Z). On the spectral curve C

we denote by ω ∈ H2(C,Z) the volume form of C.

Lemma 5.2.1. We will choose our spectral curve C to be in the linear system:

C ∈ |aσ1 + bσ2 + cf | For some a, b, c ∈ Z
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The line bundle N will be in Picd(C) for some d. Then we have that:

ch(ι∗N ) = aησ1 + bησ2 + cηf + [d+
1

2
χ(C)]ηpt

Proof. The Grothendieck-Riemann-Roch theorem applied to the sheaf N and the

morphism ι : C ↪→ X yields:

ι∗ (ch(N ) · td(C)) = ch (ι!N ) · td(X) (5.2.1)

Now we have that:

td(X) = 1 +
1

2
c1(TX) +

1

12

[
c2

1(TX) + c2(TX)
]

= 1 + 2ηpt

And therefore:

td(X)−1 = 1− 2ηpt

Also, we have:

td(C) = 1 +
1

2
c1(TC) = 1 +

1

2
χ(C)ω and ch(N ) = 1 + dω

Since ι is an affine morphism we have that:

ι!(N ) = Σi≥0(−1)iRiι∗N = ι∗N
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Substituting these equalities in to 5.2.1 and solving for ch(ι∗N ) gives us:

ch(ι∗N ) = ι∗

(
[1 + dω] · [1 +

1

2
χ(C)ω]

)
· (1− 2ηpt)

= ι∗

(
1 + [d+

1

2
χ(C)]ω

)
· (1− 2ηpt)

=

(
ηC + [d+

1

2
χ(C)]ηpt

)
· (1− 2ηpt)

= ηC + [d+
1

2
χ(C)]ηpt

= aησ1 + bησ2 + cηf + [d+
1

2
χ(C)]ηpt

5.2.2 Cohomological Fourier-Mukai Transform (Step 2)

We now compute the cohomological Fourier-Mukai for the classes of interest. Let

σ1 and σ2 also denote the morphisms σi : P1 → X. We begin with the following:

Lemma 5.2.2. The Chern characters of the following classes are:

ch(σi∗OP1) = ησi + ηpt (for i = 1, 2)

ch(σ1∗Ot) = ηpt ch(ρ∗1Ot) = ηf ch(OX) = ηX

Proof. The first follows from the short exact sequence:

0 // OX(−σi) // OX
// σi∗OP1 // 0
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Then we have that:

ch(σi∗OP1) = ch(OX)− ch(OX(−σi))

= 1− (1− ησi +
1

2
η2
σi

)

= ησi + ηpt

The last equality is justified as follows. Since the cup product is dual to the inter-

section product and then using the adjunction formula we have: η2
σi

= (σi . σi)ηpt =

−χ(σi)ηpt = −2ηpt.

Since we have (t ∈ P1) ρ∗1Ot = Of , the short exact sequence of the divisor f

yields:

ch(ρ∗1Ot) = ch(Of ) = ch(OX)− ch(OX(−f))

= 1−
(

1− ηf +
1

2
η2
f

)
= ηf

To compute ch(σ1∗Ot) we push forward the exact sequence via σ1∗:

0 // OP1(−1) // OP1 // Ot
// 0

As the morphism σ1 is affine, we preserve exactness after pushing forward and

deduce that:

ch(σ1∗Ot) = ch(σ1∗OP1)− ch(σ1∗OP1(−1))

Since σ1∗OP1(−1) ∼= σ1∗σ1
∗OX(−f) ∼= σ1∗OP1 ⊗ OX(−f) from the projection for-
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mula, we thus have:

ch(σ1∗Ot) = ch(σ1∗OP1) (1− ch(OX(−f)))

= (ησ1 + ηpt)

(
1− [1− ηf −

1

2
η2
f ]

)
= (σ1.f)ηpt

= ηpt

Now we have a series of sheaves on X which can generate any of the possible

Chern characters of our spectral data. Notice that all of these sheaves are either a

pushforward of a sheaf from a section of the fibration ρ1 or the pullback of a sheaf

via ρ1. Our next objective is to see how the Fourier-Mukai transform maps sheaves

of these two types. Let P := OX×P1X
(∆ − [σ1 × X] − [X × σ1] − 2F ) denote the

normalized Poincaré sheaf relative to the ρ1 fibration and using σ1 as the identity

section, where F := ξ−1(pt) where ξ : X ×P1 X → P1 is the projection. This factor

of 2F is the normalization factor which imposes the conditions that P|X×P1σ
∼= O

and P|σ×P1X
∼= O, in turn making the isomorphism class of such a P unique.

Theorem 5.2.3. Let F be a sheaf on X. Then we have that:

FMρ1(ρ∗1F ) = σ1∗(F ⊗ OP1(−2))[−1]
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Proof. By definition we have that:

FMρ1(ρ∗1F ) = Rπ2∗(π
∗
1ρ
∗
1F ⊗P)

∼= Rπ2∗(π
∗
2ρ
∗
1F ⊗P)

∼= ρ∗1F ⊗L Rπ2∗P

Here we used the projection formula and the commutativity of:

X ×P1 X
π1

zz

π2

$$
X

ρ1
$$

X

ρ1
zz

P1

Now for any p ∈ X consider the base change morphism induced from the fol-

lowing cartesian diagram:

X ×P1 {p}
ρ1
��

� �
ιXp // X ×P1 X

π2

��
{p} � � ιp // X

For each i we have the morphism:

Riπ2∗P ⊗ κ(p)→ H i(Xp, (ιXp)
∗P)

We have (ιXp)
∗P ∼= OXp((σ1 ◦ ρ1)(p) − p) which has nonzero cohomology if and

only if p ∈ σ1. Thus, via [16] theorem 12.11 followed by Nakayama’s lemma we

have that the sheaves Riπ2∗P vanish when restricted to X − σ1. In other words,

they are supported on σ1.
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Since P is a torsion-free sheaf, so also is its pushforward R0π2∗P = π2∗P.

Since supp(P) ⊆ σ1, it is also torsion, so that π2∗P = 0. Moreover, because the

fibers of π2 are curves, Riπ2∗P = 0 for i ≥ 2. Thus we have Rπ2∗P = R1π2∗P[−1].

We can now apply another base change theorem to compute this.

Recall [5] proposition A.85 which states:

Theorem 5.2.4 (Base change in the derived category). Consider a cartesian dia-

gram of algebraic varieties:

X ×Z Y v //

g

��

X

f

��
Y

u // Z

Then for any complex M • of OX-modules the is a natural morphism:

Lu∗Rf∗M • → Rg∗Lv∗M •

Moreover, if M • has quasi-coherent cohomology and either f or u is flat, then this

is an isomorphism.

Applying this to our current situation and the following cartesian diagram:

X ∼= X ×P1 σ1
g //

ρ1
��

X ×P1 X

π2
��

P1 σ1 // X

Since π2 is flat, the induced map:

Lσ∗1Rπ2∗P → Rρ1∗Lg∗P (5.2.2)

is an isomorphism. The lefthand side is:

Lσ∗1(R1π2∗P)[−1]
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Here we have used the vanishing of the other derived functors discussed above.

Because of the normalization condition on P, the righthand side of 5.2.2 becomes:

Rρ1∗Lg∗P ∼= Rρ1∗OX

Further from relative duality we have that:

R1ρ1∗OX
∼= (ρ1∗ωX/P1)∨ ∼= (ρ1∗[ωX ⊗ ρ∗1ω∨P1 ])∨ ∼= (ρ1∗ρ

∗
1OP1(2))∨ ∼= OP1(−2)

From here, taking cohomology objects at degree 1 in 5.2.2 we obtain:

H1(Lσ∗1R1π1∗P[−1]) ∼= H1(Rρ1∗OX)

H0(Lσ∗1R1π1∗P) ∼= R1ρ1∗OX

σ∗1R1π1∗P ∼= OP1(−2)

Now we can deduce the following after pushing the above forward via σ1:

FMρ1(ρ∗1F ) ∼=
(
ρ∗1F ⊗L σ1∗OP1(−2)

)
[−1]

∼= Rσ1∗
(
Lσ∗1ρ∗1F ⊗L OP1(−2)

)
[−1]

∼= σ1∗ (F ⊗ OP1(−2)) [−1]

Where here we have used that σ1 is an affine morphism, ρ1 ◦ σ1 = idP1 , and that

OP1(−2) is locally free to remove the derived functors.

Now that we have this result, let us consider sheaves which are pushed forward

to X via some section of ρ1.
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Theorem 5.2.5. Let s : P1 → X be a section of ρ1. Then we have that:

FMρ1(s∗F ) = ρ∗1F ⊗ OX(s− σ1)⊗ ρ∗1OP1(−s.σ1 − 2)

Proof. By definition we have that FMρ1(s∗F ) = Rπ2∗ (π∗1s∗F ⊗P). Since

supp(s∗F ) ⊆ s, we have that supp(π∗1s∗F ) ⊆ s×P1 X. Tensoring with P will not

change the support, so we have supp(π∗1s∗F ⊗P) ⊆ s ×P1 X. Consider now the

following diagram:

X ∼= s×P1 X �
� ι // X ×P1 X

π1 // X

For any sheaf G supported on s×P1 X, we have an isomorphism G → ι∗ι
∗G , so we

may apply this to the above sheaf. So we have:

FMρ1(F ) ∼= Rπ2∗ι∗ι
∗ (π∗1s∗F ⊗P)

∼= Rπ2∗ι∗︸ ︷︷ ︸
id∗

(ι∗π∗1s∗F )⊗ ι∗P

∼= s∗F ⊗ ι∗P

Here we have used that π1 ◦ ι is the identity map when restricted to s, thus the

pullback of s∗F via this morphism is itself. Now it suffices to notice that:

ι∗P ∼= OX×P1X
(∆− [σ1 ×X]− [X × σ1]− 2F )|s×P1X

∼= OX(s− (s.σ1)f − σ1 − 2f)

∼= OX(s− σ1)⊗ ρ∗1OP1(−(s.σ1)− 2)
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We can now compute the cohomological Fourier-Mukai transform for the classes

of interest:

Theorem 5.2.6. Let X be constructed as above. Let {1, ησ1 , ησ2 , ηf , ηpt} be an

ordered basis for the subspace V ⊂ H•(X,Q) of interest. Then relative to this basis,

the cohomological Fourier-Mukai transform with respect to the ρ1 fibration takes the

form:

fmρ1



a

b

c

d

e


=



0 1 1 0 0

−1 0 −1 0 0

0 0 −1 0 0

0 −1 −3 0 1

−1 0 2 −1 0





a

b

c

d

e
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Proof.

fmρ1(1) = fmρ1(ch(OX))

= ch(FMρ1(ρ∗1OP1))

= ch(σ1∗(OP1 ⊗ OP1(−2))[−1]) (Theorem 5.2.3)

= ch(σ1∗OP1(−2)[−1])

= −ch(σ1∗OP1(−2))

= −ch(σ1∗σ
∗
1OX(−2f)) (Since σ1 . f = 1)

= −ch(OX(−2f)⊗ σ1∗OP1) (Projection formula)

= −ch(OX(−2f))ch(σ1∗OP1)

= −(1− ηf )(1− [1− ησ1 +
1

2
η2
σ1

])

= −ησ1 − ηpt

fmρ1(ηpt) = fmρ1(ch(σ1∗Ot)) (Lemma 5.2.2)

= ch(FMρ1(σ1∗Ot))

= ch(ρ∗1Ot ⊗ OX(σ1 − σ1)⊗ ρ∗1OP1(−σ2
1 − 2)) (Theorem 5.2.5)

= ch(ρ∗1Ot)

= ηf (Lemma 5.2.2)
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fmρ1(ησ1 + ηpt) = fmρ1(ch(σ1∗OP1)) (Lemma 5.2.2)

= ch(FMρ1(σ1∗OP1))

= ch(ρ∗1OP1 ⊗ OX(σ1 − σ1)⊗ ρ∗1OP1(−σ2
1 − 2)) (Theorem 5.2.5)

= ch(ρ∗1OP1)

= ch(OX)

= 1

Using the previous two calculations we have that:

fmρ1(ησ1) = fmρ1(ησ1 + ηpt)− fmρ1(ηpt) = 1− ηf

fmρ1(ησ2 + ηpt) = fmρ1(ch(σ2∗OP1)) (Lemma 5.2.2)

= ch(FMρ1(σ2∗OP1))

= ch(ρ∗1OP1 ⊗ OX(σ2 − σ1)⊗ ρ∗1OP1(−σ2 . σ1 − 2)) (Theorem 5.2.5)

= ch(OX(σ2)⊗ OX(−σ1)⊗ OX(−2f))

= (1 + ησ2 +
1

2
η2
σ2

)(1− ησ1 +
1

2
η2
σ1

)(1− 2ηf )

= 1− ησ1 − ησ2 − 2ηf + 2ηpt

Using the above calculation we have that:

fmρ1(ησ2) = fmρ1(ησ2 + ηpt)− fmρ1(ηpt) = 1− ησ1 − ησ2 − 3ηf + 2ηpt
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fmρ1(ηf ) = fmρ1(ch(ρ∗1Ot))

= ch(FMρ1(ρ∗1Ot))

= ch(σ1∗(Ot ⊗ OP1(−2))[−1]) (Theorem 5.2.3)

= −ch(σ1∗Ot)

= −ηpt (Lemma 5.2.2)

5.2.3 Describing the Parameters (Step 3)

Using the computations of the cohomological Fourier-Mukai transform in theorem

5.2.6, we deduce the following simple corollary:

Corollary 5.2.7. Let ι : C → X be any curve in the linear system |rσ1 + 24f |

for r ≥ 0 and choose any N ∈ Pic25r−r2(C). Then the Fourier-Mukai transform

FMρ1(ι∗N ) = E is a vector bundle of rank r on X satisfying the anomaly cancel-

lation conditions.

Proof. Suppose more generally that C is a curve in the linear system |aσ1+bσ2+cf |,

and N ∈Picd(C). By theorem 5.2.1, in the ordered basis of theorem 5.2.6 we

have that ch(ι∗N ) = (0, a, b, c, d + 1
2
χ(C)). We apply the cohomological Fourier-

Mukai transform by using the matrix in 5.2.6, and set this equal to the vector

(r, 0, 0, 0,−24) (as X is K3, so c1(X) = 0, ch2(X) = −24ηpt, and the rank can be
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arbitrary): 

0 1 1 0 0

−1 0 −1 0 0

0 0 −1 0 0

0 −1 −3 0 1

−1 0 2 −1 0





0

a

b

c

d+ 1
2
χ(C)


=



r

0

0

0

−24


From this system of equations, one deduces that a = r, b = 0, c = 24, and

−r + d+
1

2
χ(C) = 0

For this last equation, consider:

χ(C) = −C .C (X is K3)

= −(rσ1 + 24f)2

= −(r2σ2
1 + 48rσ1 . f)

= −(−2r2 + 48r)

= 2r2 − 48r

Plugging this in to the equation for d above, we obtain:

d = 25r − r2
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5.3 Twisted Transform

Now theoretically one can take the spectral data constructed in the previous section

and transform relative to the genus one fibration ρ2 : X → P1 without a section to

obtain a vector bundle over the dual gerbe. To do so, we would want to follow the

construction of [13]. We recall the following theorem:

Theorem 5.3.1 (Donagi-Pantev). Suppose f : J → B ∼= P1 is a non-isotrivial

elliptic fibration with a section on a smooth complex surface J . Assume that f has

I1 fibers at worst. Let α, β ∈XB(J) be two elements such that β is torsion. Then

there is an equivalence

FM : Db
1( Jα β )→ Db

1( J−β α )

of the derived category of weight 1 coherent sheaves on the gerbe Jα β over Jβ and

the derived category of weight 1 coherent sheaves on the gerbe J−β α over Jα.

For the precise construction of the gerbes see [13]. It suffices to note that given

a class δ ∈XB(J) that is n-torsion, then any gerbe of the form Jδ α will correspond

to an n-torsion class in H2(Jα,O∗Jα), and therefore some gerbe over Jα. Thus, the

gerbe comes from a class in H2(Jα, µn) under the inclusion of µn ↪→ O∗Jα .

In our situation we have slightly worse singular fibers, so the construction of the

above gerbes would have to be extended. Our fibration ρ2 : X → P1 corresponds to

a 2-torsion class β ∈XP1(J). If we assume the above construction can be extended

to our situation, then we could apply it to the case where α = 0 and β defines ρ2.
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What we would obtain is a Fourier-Mukai equivalence between weight one sheaves

on a trivial gerbe J0 β over Jβ ∼= X and a weight one sheaves on the nontrivial gerbe

Jβ 0 over J0
∼= J → P1 (note β = −β). Since the gerbe J0 β is trivial, we have an

equivalence:

Db
0( J0 β ) ∼= Db

1( J0 β )

From here we deduce the following composition of equivalences will map our spectral

data to the desired bundle over a gerbe Jβ 0 :

Db(X) = Db(Jβ) // Db
0( J0 β ) // Db

1( J0 β ) FM // Db
1( Jβ 0 )

Since the target gerbe is induced by a µ2-gerbe, one can consider the sheaves as

lying over a µ2-gerbe. This allows one to compute the Chern reps, noting that the

corresponding inertia stack will just be two copies of the µ2-gerbe itself. This must

be left for future work.
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