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ABSTRACT 

 

LARGE PROTEIN FOLDING AND DYNAMICS STUDIED BY ADVANCED HYDROGEN 

EXCHANGE METHODS 

Benjamin Thomas Walters 

S. Walter Englander 

 

Protein folding studies over the past 50 years have been largely focused on small proteins (< 200 

residues) leading to a dearth of information about large protein folding. Regardless of protein 

size, research has generally lacked the structural tools with necessary temporal resolution to 

provide mechanistic insight into the process. This goal requires incisive information on transient 

kinetic intermediate conformations that describe the folding pathway. In this work special 

challenges that hinder large protein folding studies are addressed, and advancements to both 

HX NMR and HX MS experiments are described that provide unparalleled temporal resolution of 

structure formation than has been previously possible. These various advanced hydrogen 

exchange methods are used to study folding behaviors of the large, 370-residue, two-domain 

maltose binding protein from E. coli and provide a description of its folding pathway in structural 

detail. This work sheds light on two basic unresolved problems regarding the mechanisms of 

protein folding, the first being the enigmatic nature of the initial folding collapse event seen in 

many proteins, and the second concerning the nature of the folding pathway. We find that from 

an initially heterogeneous hydrophobic collapse, an obligatory intermediate emerges with a 7-

second time constant followed by an apparent sequential pathway to the native state. These 

results add the largest protein studied at structural resolution to-date to the list of proteins 

known to fold through obligatory, native-like intermediates in distinct pathways and this work 

highlights strategies that may be employed to interrogate other large systems in future work. 
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PREFACE 

 

 In the fall of 2008, I joined the Englander lab and embarked on a quest to understand 

the folding pathway of MBP (maltose binding protein). We were all intrigued that folding took 

so long. This meant all sorts of little annoyances that are not a concern with faster folders, such 

as the fact that it may take a full day of 5-10 minute intervals to collect enough replicates to get 

good data for some trivial optical experiment such as generating the folding arm of a chevron 

plot. Things like lamp stability, diffusion artifacts in instruments, many hours in hot, loud 

laboratory closets, tightly packed with big machines causing one to lose focus and make simple 

mistakes etc… These things cause one to have to repeat that somewhat irritating day many 

times before getting it right.  

 Everything is slower and most things more difficult with a slow folding protein; but, I 

contend, the lessons learned from these efforts are more beneficial to basic science. It is 

beneficial firstly because we understand much less about large, slow protein folding – small fast 

folding protein studies have been popular for decades. It is interesting from a biological 

perspective because we are seeing folding diseases become more and more prevalent as our life 

expectancies are increasing and we realize that most of our proteome is comprised of large and, 

very probably, slow folding proteins. Understanding the conformational dynamics of larger 

proteins becomes medically relevant with this in mind, and the dearth of information on large 

protein folding is a result primarily of not having the proper technology to study these 

molecules. Thus, this work is important because the drive to understand the folding pathway of 

MBP stimulated the development of new methods and analytical techniques, described herein, 

that may generally be used to interrogate large protein folding and dynamics in ways that have 

not been possible in the past. 

 In the first chapter, a general introduction to the long-standing protein folding problem 

is given along with a discussion of particular aspects of the problem addressed by this work. This 

is followed by an introduction to maltose binding protein (MBP) including an overview of 

background knowledge and justification for using MBP to study protein folding in a large 

molecule. The chapter closes with an overview of this work along with a set of specifically 

defined questions addressed herein.  
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 The second chapter is concerned with all things hydrogen exchange. Here I hope to 

provide the reader with background information that is useful for appreciating what follows in 

this dissertation. First, I present HX theory, and then describe the various experiments one 

might employ to utilize hydrogen exchange for studying protein folding and structural dynamics. 

 This dissertation covers work that lead to three first author publications (1-3), and three 

supporting author publications (4-6). The bulk of my work is contained in Chapters 3, 4, and 5, 

which are framed largely around these manuscripts. Method development is contained in 

Chapter 3 (HX NMR) and Chapter 4 (HX MS); followed by the results of these methods as applied 

to the study of MBP folding in Chapter 5. These three chapters are previewed below. The 

dissertation closes with Chapter 6 on general conclusions and potential future directions for 

studies on MBP.  

Chapter 3: 

 As a first year graduate student, I had begun working with MBP and wanted to measure 

its hydrogen exchange rates. I rotated with a renowned NMR expert, Joshua Wand, before 

joining the Englander lab and was interested in the capabilities of NMR; using NMR to measure 

MBP HX seemed the natural choice. Ultimately, NMR was dropped in favor of mass 

spectrometry but I did some constructive work along the way which resulted in a co-first author 

paper (reference (1)) where we developed a 3D HX experiment aimed at providing site resolved 

real time exchange measurements for large proteins. I additionally learned some useful 

information from NHX experiments on MBP and created tools that specifically addressed 

difficulties of doing HX NMR on large proteins. 

This chapter follows my work with HX NMR chronologically. In the introduction (section 3.1), 

I discuss the benefits of studying HX by NMR and generally the challenges facing HX NMR 

experiments on large proteins along with introducing the reader to my solutions for each that 

will be fully developed in subsequent sections. In section 3.2, HSQC-NMR based HX strategies 

are discussed in detail along with a presentation of pilot MBP HX data. In section 3.3, my 

contributions to the 3D NMR HX experiment (the content of publication (1)) are summarized 

before closing with a few general sentiments regarding my work and the lessons learned by 

NMR HX on MBP in section 3.4. 



xv 
 

Chapter 4: 

 As my graduate career progressed, it became clear that I would need to go beyond HX 

NMR to understand the folding pathway of MBP. Mass spectrometry (MS) offered a solution to 

challenges faced with NMR; I spent the majority of my time as a graduate student working with 

this instrument. This work was particularly fruitful resulting in a first author publication (2). My 

contributions to the design of modern HX MS methodology and analysis of HX MS data further 

led to three supporting author publications (4-6). 

 Following a brief history of the HX MS experiment (Section 4.1) to place my work in the 

appropriate context, the second and third sections discuss solutions developed in our laboratory 

to combat the two major challenges in HX MS experiments. Section 4.2 addresses the problem 

of low sequence coverage using content from a supporting author publication (4) to explain the 

modern fragmentation-separation HX MS experiment and highlight how our procedure 

ameliorates the issue of low coverage. This is followed in section 4.3 by the content of a first-

author publication (reference (2)) where the back-exchange problem is discussed and 

minimized. Section 4.4 departs from published work and is devoted to my data analysis strategy. 

Here I describe my approach to extract useful information from mass spectrometry data; in 

doing so, I am able to highlight a major advantage for HX MS as opposed to HX NMR. This work 

was not published alone but it has proven essential to all of our folding HX experiments in the 

lab. It has been highlighted in a recent second author publication that uncovered the folding 

pathway of ribonuclease H (5) and in my third first-author publication on the folding pathway of 

MBP (Chapter 5). 

My contributions to the HX MS experiment cover all aspects of the technique, both 

experimental design and data analysis – all efforts serve my purpose of understanding the 

folding pathway of MBP. Though I spent more than half of my time focused on methodology, 

every detail of this work contributed to the success of the experiment and results in Chapter 5. 

Chapter 5 

 Chapter 5 is the climax of this work where everything comes together for MBP, both 

literally (we let it fold) and figuratively (we learn how it folds). This data was published in 
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reference (3). This was a team effort, Walter, Leland, and I spent perhaps hundreds of hours 

looking at data, testing ideas, tussling over interpretations, and nearly always becoming puzzled 

and/or intrigued over the various complexities associated with the kinetic pulse labeling HX MS 

experiment and/or some aspect of the protein folding problem. All of the method development 

in the previous two chapters is put to work and we are able to contribute substantially towards 

the scientific community’s knowledge of large protein folding events. 

 In response to our manuscript (reference (3)) Robert Baldwin, a leader in the field, 

stated, “Considering the second problem [the nature of protein folding pathways] first, the 

authors have obtained a clearcut result that will have a major influence on thinking about the 

protein folding problem.” 
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Chapter 1 - Protein Folding & Maltose Binding Protein 

1.1 The Protein Folding Problem 

 Understanding how a polypeptide acquires native structure represents one of the oldest 

unsolved problems in molecular biology; we are interested in understanding how proteins are 

able to fold on a biologically relevant time scale. Clearly, proteins do not fold by exhaustively 

searching their manifold of available conformations; in formative work, Cyrus Levinthal pointed 

out that such a random search process would require eons to complete (7) and this led 

researchers to search for folding pathways.  

 Biochemical pathways are almost universally characterized by isolating intermediates 

and characterizing their nature; however, this is most difficult in protein folding studies. Most 

proteins fold in less than a second and their ephemeral intermediate states are nearly 

impossible to isolate (8). Research has largely focused on whether folding is 2-state/multi-state 

etc… and on the kinetic features of the process, but these facts do not provide structural insight 

into folding mechanisms. 

 Two leading theories that take surprisingly disparate views of the folding process have 

emerged. Based largely on theory and simulation, one view is that proteins fold by way of 

independent unrelated pathways (IUP model) and that intermediates are not productive, they 

slow down the folding process. Alternatively, based largely from experimentation, the other 

view is that proteins fold by way of predetermined pathways with optional errors (9-11) (PPOE 

model) and that intermediates, when observed, are the result of misfolding. This view holds that 

proteins fold upon a conformational scaffold whereby the native structure is progressively built 

by the addition of foldons – intermediates speed up folding and the sequential nature of their 

progression sketches out a macroscopic folding pathway. To settle this dispute, structural 

information on protein folding processes will be required. 

 Hydrogen exchange (HX) experiments afford the ability to explore the folding process 

with sufficient depth to make structural conclusions. In this work, we are able to study the 

folding of maltose binding protein (MBP) at structural resolution. We show that these results 

support pathway-directed folding and that ideas originating from proponents of the IUP 
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perspective are useful in interpreting aspects of the data presented herein. In the following 

discussion, questions relevant to protein folding research that are addressed by our study of 

MBP are introduced. Specific issues regarding early events in protein folding and the two 

aforementioned theories, PPOE and IUP, are explored. 

1.1.1 The Unfolded State and Protein Collapse 

 Many studies (e.g. (12-15)) have demonstrated some change in signal (CD, fluorescence, 

etc…) that occurs completely within instrumental dead times during refolding experiments1 and 

these observations are often referred to as burst events or burst-phases. Determining the 

causative element for burst events has proven to be most difficult because measurements 

generally lack structural information. Burst signals are, on occasion, interpreted as a reduction in 

the radius of gyration (Rg) and thus taken to represent chain collapse events (e.g. (16-31)) which 

are akin to the concept of a coil-globule transition.  

 It is commonly thought that one of the earliest events in protein folding involves a 

collapse of the unfolded chain into a more compact configuration; however, it is clear that a 

random chain collapse, as has been suggested (32), is not ubiquitous in all proteins studied (33, 

34). Broad disagreement also exists as to whether random collapse without the formation of 

structure occurs. To understand the nature of polypeptide collapse, the physics of unfolded 

conformations and the mechanism of chemical denaturation deserve attention. 

 What does it mean to say a molecule is “unfolded” by chemical denaturants? Tanford’s 

classical experiments (35) demonstrated that many proteins exhibit hydrodynamic properties of 

random coils in high concentrations of chemical denaturant. The term “unfolded” usually 

implies conditions where random-coil polymer behavior is observed (36) and backbone ϕ,ψ 

dihedral angles are uncorrelated with one another. In vitro protein folding experiments usually 

employ denaturant concentrations just slightly beyond that required to observe a cooperative 

transition (37). However, many lines of evidence indicate the unfolded ensemble in some real 

proteins continues to swell with increasing concentrations of denaturant.  

                                                           
1 typically < 10 ms, although burst signals have been observed with dead-times approaching 
microseconds. 
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 Why do solutions with high concentrations of chemical denaturants promote unfolded 

states of protein molecules? Both in simulation (38) and experiment (39) guanidinium ions are 

dehydrated along their planar face suggesting that they participate in hydrophobicity-driven 

stacking interactions. Guanidinium has also been shown to decrease the hydrophobic effect in a 

very simple (and therefore more reliable) simulation involving only water, guanidinium, and two 

hydrophobic plates (40). Thus, it appears that the strength of the hydrophobic effect and the 

concentration of chemical denaturants are inversely related. By solvating hydrophobic residues, 

chemical denaturants such as urea and guanidinium selectively promote random coil 

conformations (41). 

 Theoretically, if a polypeptide has the proper fraction of hydrophobic residues, as 

proposed by Ken Dill in 1985, a collapsed conformation devoid of specific contacts may be 

energetically favorable (42), the hydrophobic effect drives this event. More compact 

conformations should exhibit some internal structure (43), albeit, not necessarily native 

structure and the extent of structural induction is expected to increase with compactness. 

Severe steric constraints facilitate conformational selection. This will lead to the formation of 

intrachain contacts. 

 The notion that aspecific polypeptide collapse could occur as a result of changing the 

solvation conditions (42, 44-46) has led many to conclude that most proteins do collapse 

randomly before regular structure forms and often this causes a burst-phase; however, finding 

definitive evidence of this is quite difficult. In experiments where single molecule fluorescence 

studies involving fluorescence resonance energy transfer (FRET) indicate a collapse transition 

that precedes structure formation, small angle x-ray scattering (SAXS) experiments fail to 

corroborate these findings (33, 34, 47, 48).  

 The question remains, do some proteins collapse in absence of structure formation? If 

so, what effect, if any, does this have on subsequent folding? Do burst-phases indicate regular 

structure formation like one would expect in a kinetic folding intermediate, or might they reflect 

a compact unfolded state? Recent reviews of the evidence for and against non-specific 

polypeptide collapse (48, 49) and a commentary about early burial in protein folding (50) are 

useful sources where interested readers may further explore the subject. 
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 Perhaps the question of whether structure forms during the collapse is poorly phrased; 

“structure” has a variety of definitions. A better question might be, “do some proteins collapse 

in absence of stable structure formation?” The issue here is that often “structure formation” is 

taken to mean, for example, a change in ANS2 binding or CD222 signals. Certainly, these signals 

are affected by the presence of structural elements but they are ensemble-averaged 

measurements and allow substantial leeway in interpretation. ANS binding may reflect the 

formation of a hydrophobic surface, or it could simply indicate random small patches of 

hydrophobes (51, 52). Changes in CD signals may reflect the presence of helices, but could also 

be the result of random aromatic sidechain burial (53-56). Proponents of random collapse often 

discredit changes in signals when convenient, but then cite observations in these signals, such as 

multi-exponential behavior, to make strong statements about the folding problem. 

 Jennings and Wright studied the burst-phase in apomyoglobin using hydrogen exchange 

methods (57) and found that the burst-phase product exhibited substantial protection from 

exchange in the A, G, and H helices – this led authors to conclude concurrent collapse and 

structure formation (6.1 ms dead time). More recently, with a reduced dead time (300 µs), 

Uzawa et al. (58) concluded apomyoglobin collapsed randomly; however, 50% of the change in 

CD222 signal, observed during folding, occurred simultaneously. This was made consistent with 

random collapse by suggesting that the helix formation, observed earlier and taken to represent 

concurrent structure formation, was in fact explained by multi-exponential kinetics in the CD222 

signal – one phase had a lifetime of 5 ms and authors concluded this must represent the 

formation of helices A, G, and H. 

 MBP has a burst-phase that appears to persist for hundreds of milliseconds before 

subsequent changes in fluorescence and circular dichroism signals are observed. This provides 

an opportunity to explore the burst-phase product in detail. We employ SAXS measurements to 

determine the radius of gyration following the burst and compute a rough envelope 

reconstruction to get an estimate for what it might look like. We also assess any structure that 

might form during the burst, and stability thereof, using HX.  

                                                           
2 8-anilino-1-naphthalene sulfonate 
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 We are able to verify that the MBP burst is the result of a nonspecific collapse event and 

likely a representation of the unfolded state under permissive folding conditions. A few very 

short regions of chain do appear to develop structure quickly. We cannot distinguish between 

induced structure resulting from the collapse, and the rapid association of structural elements 

causing the collapse. One thing is certain, we find no indication these structural elements are 

related to foldons or the kinetic folding pathway. We also present evidence of low levels of 

heterogeneous structure throughout the molecule as a product of the burst collapse. This 

suggests that each molecule likely has formed very many intrachain H-bonds that reorganize 

rapidly. Perhaps large proteins fold slowly because their conformational search speed is reduced 

in the collapsed state.  

1.1.2 Kinetic Protein Folding Models 

 Over the many years that researchers have been interested in folding phenomena, two 

models that seek to describe how a protein is able to find its native conformation within a 

biologically relevant time scale are most prevalent today.  

Predetermined Pathways with Optional Errors (PPOE Model) 

 The classical model of protein folding by pathways has persisted through the years and 

the PPOE model (59) formally describes the emergence of macroscopic folding pathways from 

the basic physical principle of cooperativity and an interaction principle known as sequential 

stabilization (9, 60, 61). In this model, cooperative elements of structure appear in the order of 

their relative stabilities, the basic cooperative unit is called a foldon and these are determined 

by experiment. The interaction principle suggests when a two foldons associate, they are 

mutually stabilized. By the combination of these two principles, pathways emerge. In the 

absence of folding errors, folding will be a two-state process with the rate-limiting step being 

consolidation of the first foldon. Subsequent steps are faster than preceding steps as 

conformational freedom reduces with each foldon addition. Subsequent foldons coalesce onto 

the growing native conformational scaffold in the order of their relative stabilities. Pathway 

branching may occur (62) when subsequent foldons are energetically similar, but this does not 

change the classical paradigm whereby proteins fold by sequential processes nor does it violate 

the PPOE hypothesis. 
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 Complicated multi-exponential kinetic signatures arise from optional misfolding errors. 

Misfolding errors represent non-native intrachain contacts that must be broken for folding to 

proceed; this can slow a subset of the folding population and would appear indistinguishable 

from independent folding pathways by optical measurements. Structural characterizations of 

intermediate conformations are required to distinguish between these two possibilities (59). 

  The observation of an obligatory intermediate would be strongly suggestive of a folding 

mechanism where all molecules are channeled through the same conformation en route to the 

native state. Unrelated pathways should not have a common intermediate, by definition. 

However, proving that an intermediate is obligatory requires strong evidence that all molecules 

visit the intermediate. In a favorable case for cytochrome C, an intermediate can be made to 

accumulate to roughly 85% (63). 

 Experimental support for the PPOE model may be found largely in HX studies of the 

folding process, perhaps because HX experiments represent one of the only ways to obtain 

broad level information regarding time-dependent structure formation. Foldons generally are 

hidden in kinetic folding experiments; they are not observable for 2-state folding proteins, 

nonetheless they are intermediates. Evidence for foldons comes primarily from equilibrium 

hydrogen exchange experiments (see the review (11)) but also from sulfhydryl labeling 

experiments (64, 65) and theoretical studies (66-68). Recently, we were able to demonstrate 

that the folding pathway of ribonuclease H, elucidated in structural detail by HX experiments, 

folds by a PPOE mechanism (5), evidence was not found suggesting any misfolding in this case. 

Independent and Unrelated Pathways (IUP/Funnel Model) 

 Many researchers turned to simple statistical mechanics models and computer 

simulations in an attempt to circumvent difficulties in experimental protein folding in the early 

1990’s (e.g. (69)). These efforts were undertaken to explain complex folding kinetics measured 

by optical spectroscopy and led to a model of the folding process meant to assist interpretation. 

This model, sometimes referred to as the “New View” (70), de-emphasizes folding pathways and 

the importance of specific intermediate structures (71-82). It was popularized and described by 

Dill and Chan in 1997 metaphorically, “…folding is seen as more like the trickle of water down 

mountainsides of complex shapes, and less like the flow through a single gulley (82).” 
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 The IUP model suggests kinetic partitioning (32) gives rise to ensembles of molecules 

that fold on characteristically different time scales, leading to the idea of fast and slow folding 

tracks. Multi-exponential kinetic signatures observed from spectroscopic experiments are 

suggested to represent, in some cases, these different tracks. In this way, it is possible that 

burst-phase signals could represent a fraction of molecules folding to the native state on a so-

called fast track. In our state-sensitive HX experiments with MBP, if there are multiple tracks to 

the native state, they will be seen directly. 

 Neither the absence of a fast folding track, the observation of foldons, nor lack of 

evidence for multiple independent pathways would disprove the IUP model. Proponents of IUP 

would argue that the model does not preclude pathway-directed folding, macroscopically. We 

explore whether this model is useful for understanding MBP data. 

The Importance of Kinetic Models 

 Conclusions reached in many folding experiments often depend on the question being 

asked; the thoroughly studied hen egg white lysozyme (HEWL) folding intermediate serves as an 

example. Comprehensive experiments and analysis of kinetic folding/unfolding data and 

denaturant dependencies for HEWL led authors to conclude (83-87), in every case, that folding 

proceeds by independent unrelated pathways. In 2007, Englander and Krishna (59), using the 

same data, were able to show that the model of pre-determined pathways with optional errors 

fit the same data with comparable or lower χ2 scores and fewer fitting parameters. PPOE and 

IUP are directly opposed from one another in spirit; yet, by law, both fit the spectroscopic data 

nicely. 

 Without additional information, the parsimonious conclusion is that HEWL folds by a 

PPOE mechanism – this example demonstrates both that optical spectroscopy is insufficient for 

the question being considered, and that kinetic models of protein folding do tend to guide how 

we imagine the process. Spectroscopic studies do assist understanding of folding processes. One 

can define a rough estimate of the time scale associated with the global folding event and can 

explore whether a given perturbation slows or enhances the global folding rate. The fact 

remains, however, that structural folding information is required to properly distinguish IUP 

from PPOE mechanisms. 
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 We chose to rely on hydrogen exchange for decisions regarding IUP or PPOE. HX will 

enable us to measure multiple independent pathways if they exist. Likewise, if intermediates are 

present, HX will provide necessary structural resolution for their characterization. Deciding 

between the models will likely require demonstrating a preponderance of evidence for one 

model that is inconsistent with the other. Information is needed regarding broad-level folding 

studies of a large diversity of different protein molecules (sequence composition, size). MBP is 

more than 100 residues larger than the largest protein with a folding mechanism characterized 

at structural resolution, to our knowledge.  

1.2 Large Protein Folding with MBP 

 Kinetics and thermodynamics of large multi-domain protein folding processes are poorly 

understood (88-90); however, roughly 40-65% of prokaryotic proteins and 65-80% of eukaryotic 

proteins contain more than a single domain, as demonstrated by analysis of different genomes 

(91-95). Most protein folding reactions, in vivo, involve much larger systems than those typically 

studied in biophysics. 

 There have been a small number of folding studies involving large proteins (see reviews 

by Jaenicke (96) and Clarke (97)); however, none attain the site-specific conformational 

resolution requisite for true insight into folding processes. Defining the folding pathway for a 

large multi-domain protein, like MBP, will facilitate insights into how the basic driving forces for 

folding scale with protein size.  

1.2.1 Background  

MBP Structure 
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Figure 1.1: The complex topology of the two domain MBP. The chain crisscrosses between domains three times, 
naturally dividing into four sections on this basis and represented with colors as indicated above. In both cases, 
domains form from two sequentially discontinuous sections of the chain. There are 21 trans-proline residues (cα 
spheres) and tryptophan residues are colored black. PDB ID: 1OMP (98) 

 Complex topology of the 41 kDa, 370-residue maltose binding protein is shown in Figure 

1.1 where the two domains formed by discontinuous regions of the primary sequence are 

highlighted by color. The primary structure is composed of 21 prolines, 8 tryptophans (good for 

fluorescence spectroscopy) and 176 hydrophobic3 residues (47.6%). It would be predicted to 

have a rather compact unfolded state based on work mentioned earlier by Ken Dill (42). MBP 

displays an α/β fold architecture with 164 residues forming 19 helices (44%) and 74 residues 

comprising 22 beta strands (20%) which associate to form 3 sheets in the native protein 

(predicted by DSSP (99)).  

                                                           
3 Hydrophobic residues were defined as A,I,L,V,F,W,Y,P 
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many biophysics texts (88-90), that we know very little about large protein folding. Obviously, 

there is some relationship between chain length and folding complexity, perhaps a deeper 

understanding of large protein folding processes could suggest reasons for this trend. 

 Native-like on-pathway intermediates have been observed in a number of cases (110-

124). There have actually been a number of proteins characterized at structural resolution; the 

overwhelming evidence in those cases (5, 9, 125, 126) point towards a PPOE-type model for 

folding. There are studies involving large protein folding (14, 15, 104, 127, 128); but none 

provides structural insight into the folding mechanism. The absence of information drove us in 

the direction of studying large protein folding.  

MBP Burst-phase & Compaction 

 In seminal MBP folding work, Lynn Randall’s group observed rapid (within instrument 

dead time) formation of what they termed a pre-rate-limiting step intermediate (now called the 

burst-phase), accounting for ~20-30% of the total change in tryptophan fluorescence upon 

folding (106). This burst-phase structure exists at what appears to be steady state for the first 

few seconds of folding; perhaps due to a dramatic reduction in subsequent rates, it is 

hypothesized that the burst species may either fold to the native state, or, polymerize in a 

process of “reversible aggregation (109)”.  

 FRET data suggests the burst-phase to have roughly 70% of the native state compaction 

(129) and therefore representative of a collapse event. Though where FRET indicates collapse, 

often SAXS demonstrates an expanded ensemble causing many researchers to doubt that 

proteins collapse without forming substantial native-like structure (41).  

 Does MBP collapse and bury tryptophan residues from the solvent leading to the burst-

phase fluorescence signal? Does it form any regular structure during the burst-phase? Is the 

burst-phase simply a new unfolded state, reflecting “poor” solvation once diluted out of 

chemical denaturant? If it is stabilized by spurious intrachain contacts, what effect might this 

have on subsequent folding? Answers to these questions (Chapter 5, p. 81) require experiments 

that can provide structural information, such as HX.  
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1.2.2 Exploring Kinetic Folding Models with MBP 

 Perhaps MBP folds via IUP mechanisms. An ultra-fast track to the native state could 

explain why 20-30% of the fluorescence signal is recovered in the burst and help support an IUP 

model. A rate such as the one predicted by MBP’s contact order (10,000 sec-1) would be 

unresolvable using the instruments employed thus far, perhaps this estimate represents an 

ultra-fast track to native. The multi-exponential relaxation behavior observed in spectroscopic 

refolding experiments could be reconciled by independent folding tracks. Such explanations 

could be easily evaluated with an experiment that provided reliable state and structural 

information, such as HX.  

 Perhaps MBP folds via PPOE mechanisms. The presence of sequential folding, such as 

the observation of native-like structure building upon itself with respect to time, would be 

suggestive of sequential stabilization. Accumulation of a stable obligatory intermediate would 

indicate the presence of a single macroscopic pathway and strongly support the PPOE model; 

this would reconcile the slow folding observed in MBP. These questions also will require some 

state and structurally sensitive measurement, such as HX. 

 Finally, one must consider the possibility that ideas from both mechanisms, PPOE and 

IUP, could be useful for describing the folding of MBP. If MBP collapses to a random ensemble of 

conformations, it may be that very different energetic barriers separate different molecules 

from assuming a conformation that is permissible for downstream pathway-directed folding, as 

has been suggested recently (130). Such a mechanism might be better represented 

metaphorically by a funnel that empties into a pathway. In any case, it will be necessary to 

measure the temporal acquisition of structure in a state sensitive manner as the many 

molecules transition from the unfolded to the native state. 

1.3 Dissertation Overview 

 Large proteins are harder to study at structural resolution for many reasons described 

by others (97) and in chapters that follow. This is the likely explanation for the dearth of 

structural information on large protein folding. No folding pathway or mechanism has been 

structurally characterized for chain lengths greater than ~250 residues to our knowledge. 

Following a description of HX theory and general experimental overview (Chapter 2, page 15), 
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we describe technological advances in HX by NMR (Chapter 3, page 25) and MS (Chapter 4, page 

49) developed, in part, to assist our work on large protein folding. Equipped with the necessary 

tools, we examine and present the folding of MBP (Chapter 5, page 81) in structural detail. We 

close with a discussion of future directions for MBP research and larger protein folding studies in 

general (Chapter 6, page 106). 

1.4 Impact and Specific Questions Addressed In This Dissertation 

 Using HX NMR, HX MS, optical fluorescence (tryptophan, ANS), circular dichroism, and 

SAXS, we characterize the folding pathway, the burst-phase, questions regarding collapsed and 

unfolded states, and assess the application of IUP and PPOE models to these results. We 

specifically explore the following questions: 

• Does MBP collapse? 

o  Is regular structure present? 

� What does it look like?  

• What causes the optical burst in MBP? 

o Is the burst a rapid re-equilibration of the denatured ensemble? 

o Does the burst represent a classical intermediate? 

o Does the burst represent a fast folding track to N? 

• Are there multiple pathways from U � N? 

• Are there folding intermediates?  

o What do they look like? 

o Are they obligatory? 

o What might they suggest about energetic barriers? 

• Is there evidence of sequential folding/unfolding behavior? 

o Do we see foldons? 

• Can we generalize about large protein folding? 

o Why does MBP fold slowly? 

o Do we see evidence of similar features in other large proteins? 

 The combination of many technologies and advancements described in this thesis 

allowed us to study and provide answers, directly in most cases, to these questions in chapter 5. 
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We hope the technologies developed for this work and described herein will enable others to 

overcome the various issues faced in large proteins and contribute, as we have, to further our 

structural understanding of large protein folding processes. 
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Chapter 2 - HX Theory & Experiment 

 

Labile protons, such as those bound to nitrogen and oxygen atoms, continually 

exchange with solvent protons. The exchange reaction is catalyzed by acids and bases, most 

frequently H+ or OH-. As such, the main factors contributing to the measured first order reaction 

rate are temperature and pH; however, protons participating in hydrogen bonding interactions 

are sequestered from catalyst and are not free to exchange. This unique sensitivity to hydrogen 

bonding has led to the growing popularity of hydrogen exchange labeling experiments in 

structural biology and biophysics. Most useful for these purposes, and the focus of this thesis, 

are backbone amide protons, one for each amino acid aside from proline. In addition, the 

sidechains Asp, Glu, Asn, Gln, Ser, Thr, Tyr, Lys, Arg, Trp, and His each have one labile proton; 

however, their rates of exchange are much faster than the amide proton and are less useful for 

structural studies. 

2.1 Amide Hydrogen Exchange Basic Principles 

2.1.1 The Chemical Basis 

Proton transfer reactions may be written as: 

 
− − −

+ ←→ ←→ ←→ +L L 31 2
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 Eq. 2.1 

The maximum rate being given by the diffusion limited rate constant, k1, predicted long-ago by 

Debye to be roughly 1010 M-1 sec-1. By considering the effects of neighboring functional groups 

to individual amide pKa, values one may determine the pH- and structure-dependent first-order 

rate constant,
chk , the “chemical rate” for each exchangeable site on the protein backbone, 
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 [ ] 32 H OH OOH
int int 2 int 3( , ) OH ( , ) H O ( , ) H O .chk k k kλ ρ λ ρ λ ρ− +   = + +     Eq. 2.2 

Aside from an expected dependence on temperature and solvent isotopes (not shown), 

the second-order “intrinsic” rate constants in Eq. 2.2, λ ρint ( , )catalyst
k , depend on inductive and 

steric effects from the local chemical environment (nearest sideschains, represented by λ ρ( , ) ) 

and to a smaller degree, the ionic strength of the solution. HX chemistry is now fairly well 

understood – the intrinsic exchange rate constants are available for all 19 relevant amide 

protons under any combination λ ρ( , )  that might be present in protein structures (132) and a 

spreadsheet is available to make these calculations with ease at www.hx2.med.upenn.edu.  

The fortunate aspect of hydrogen exchange for the protein biophysicist as we will see is 

the particular ∆
a

pK between relevant catalysts (OH-, H3O
+) and the amide proton. Most other 

hydrogen exchange reactions are either too fast or too slow for convenient operational use. The 

chemical rate constants for HX between aqueous catalysts and protein amide protons are 

adjustable over many orders of magnitude – at low pH, exchange lifetimes are hundreds of 

minutes; at high pH, lifetimes are microseconds. This provides tremendous flexibility for 

experimental design; conditions may be selected to be most suitable for the system being 

studied. A useful rule-of-thumb for design purposes: at pH 7.0 and 273K, the amide proton 

lifetime is roughly 1 second and increases by a factor of 10 per pH unit and similarly per 20K 

increase in temperature. Primary structure effects, including full reasoning for the neglect of 

non-amide proton transfer reactions herein may be found in references (131-134). 

2.1.2 The Structural Basis of Hydrogen Exchange 

In the early fifties, Professor Linderstrøm-Lang began investigating hydrogen-deuterium 

exchange in small peptides and proteins (135) and in attempt to describe slowly exchanging 

protons, proposed that protein conformational states influence exchange competence – there 

are conformations where exchange does not occur. In subsequent years (136), it became clear 

that H-bonding interactions were responsible for slowing exchange rates.  

Hydrogen exchange provides time-resolved information on structural dynamics because 

H-bonding interactions must first break or open before exchange can proceed. H-bonding 
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interactions protect the proton from catalyst and prevent the exchange reaction. This is 

conveyed in the following diagram: 

 → →←NH(closed) NH(open) exchanged
op

ch

cl

k
k

k
 Eq. 2.3 

Thus, HX chemistry (
chk ) provides an upper limit for the measured exchange rate. The measured 

exchange rate, 
exk , is slowed by the presence of protein structure, permitting access to H-bond 

opening ( opk ) and closing (
cl

k ) rates. For a thorough treatment of the mathematics, see the 

seminal work of Aase Hvidt (137, 138). My purpose here is to provide a functional explanation of 

HX phenomenon as it relates to protein structure. A full review of these concepts along with a 

history of HX experiments may be found in reference (139) and more recently in Englander et al. 

(11). The structural basis of HX slowing may be described by the following: 

 =
+ +

op ch

ex

op cl ch

k k
k

k k k
 Eq. 2.4 

A plethora of alternative explanations for observed slowing has been explored in the 

experimental literature along with testing on staphylococcal nuclease NMR data in a recent 

study (140) – while other factors may potentially slow HX reactions, the dominant cause for HX 

slowing, by many orders of magnitude, is protection by H-bonded structure. 

2.1.3 Limiting Conditions 

Two limiting cases emerge when one considers structure effects (141-145). The EX2 limit 

occurs when two conditions are satisfied. First, any exposed proton must have a greater 

likelihood of protecting than exchanging ( >>cl chk k ) and second, the protected state must be 

favored over the exposed state ( <<op clk k ). If these conditions are met, proton exchange 

competes with proton H-bonding. By rewriting Eq. 2.4 to express EX2 conditions, the equilibrium 

constant ( opK ) for H-bonded structure and its free energy ( HXG∆ ) may be determined from the 

measured exchange rate ( exk ) in the following way: 

 = = =EX2,op op ch

op ex op ch

cl cl

k k k
K k K k

k k
 Eq. 2.5 
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 Eq. 2.6 

 

The second limiting condition occurs when the chemical exchange rate is much faster 

than H-bond formation ( >>ch clk k ) and there is no longer a competition for exchange. In this 

condition, known as EX1, every opening event leads to exchange, every solvent exposed proton 

exchanges. Here, the measured exchange rate and the opening rate of the H-bonded structure 

are numerically equivalent: 

 =EX1
ex opk k  Eq. 2.7 

2.2 HX Labeling In Practice 

Hydrogen exchange is a labeling method. Most labeling techniques involve covalent 

modification of protein structure, often introducing new functional groups and can have 

undesirable side effects; hydrogen exchange involves the simplest modification possible, the 

addition of a single neutron. The technique is minimally invasive. Furthermore, exchange 

experiments may be done in both directions, H-to-D and D-to-H to verify that the label has no 

meaningful influence on the system. Additionally, because each amino acid is independently 

labeled, HX measurements principally provide structural information for each residue in the 

polypeptide. Other labeling techniques are typically restricted in resolution because labeling 

generally involves only a subset of residues in the protein and many different labeling strategies 

must be combined to provide a global picture. These features set HX apart from all other 

labeling techniques. 

2.2.1 Native State Hydrogen Exchange (NHX-type) 

“A protein cannot be said to have ‘a’ secondary structure but exists mainly as a group of 

structures not too different from one another in free energy… the molecule must be conceived 

as trying out every possible structure each in accordance with its Boltzmann factor.” This 

statement was written in 1959 by K.U. Linderstrom-Lang and John Schellman (136) working 

together on protein hydrogen exchange and long before the exact types of motion that 

determine HX behavior were known.   
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The NHX namesake arises because of collecting these experiments under conditions 

where all molecules have structurally equilibrated and often where the native state is favored. 

In such conditions, the ensemble average conformation is native; however, all molecules are 

continuously exploring higher energy, exchange competent forms and the frequency of these 

deviations are reflective, under EX2 conditions, of the free energies of local structure. Structures 

with lower stability exchange faster than those with higher stability.  

NHX experiments have been successfully utilized to study unfolding reactions of 

proteins, notably, the method was used to structurally characterize independently unfolding 

subunits of structure in a protein that optically unfolds in a two state manner (9). NHX 

experiments are also used to characterize structural changes that result from ligand binding. In 

one example for a lipid binding protein (146), regions where labeling rates change in the 

presence of lipid provide information on the induction of structure by binding. In Chapter 3, NHX 

experiments on MBP analyzed by NMR are discussed briefly. 

2.2.2 Pulse-Labeling Hydrogen Exchange (KHX-type) 

 Kinetic pulse-labeling experiments (KHX) provide time-resolved insight into temporally 

fleeting events that are not accessible via the NHX method. In contrast to NHX where the 

experiment is conducted under equilibrium conditions, KHX experiments are generally 

synchronized-start experiments and involve interrogating a system as it relaxes to equilibrium. 

KHX has traditionally been used for studying protein folding reactions; but has also been used 

for more exotic purposes such as studying conformational changes occurring during the catalytic 

cycle of chymotrypsin (147). 
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Figure 2.1: The kinetic pulse labeling HX experiment. The protein is fully unlabeled in the unfolded state before 
diluting into permissive refolding conditions. At a variable time during folding, the HX pulse is applied. This is 
analogous to spray-paint that will not stick to hydrogen bonded residues, such as those in the helical conformation 
above. Following the pulse, for MS analysis, the sample is digested by proteases and the fragments separated, this is 
described in Chapter 4, page 51. For NMR analysis, the sample is allowed to continue folding until the native structure 
is acquired. Those regions with no paint were folded at the time of the pulse. 

 KHX experiments, in the context of protein folding investigations, are typically 

performed with a rapid mixing device to facilitate fine control over labeling times. Starting from 

a chemically unfolded state, folding is initiated by dilution of denaturant to permissible folding 

conditions where exchange is neutralized. Folding is allowed to proceed for a variable amount of 

time before rapidly exchanging solvents, usually by rapid dilution, into a brief, high pH condition 

where exchange is accelerated. This is quite analogous to the application of spray-paint only to 

those regions of structure that are not H-bonded, as is illustrated in Figure 2.1. This process 

results in a labeling pattern which reports on the structure that formed during the folding phase, 

before application of the labeling pulse.   

Under favorable conditions where both structural opening and closing reactions are 

negligible over the period of the pulse, KHX is a binary experiment and easily interpreted. Amide 

protons that develop H-bonded structure during the folding phase, such as in an intermediate, 

are protected from exchange whereas sites that remain unfolded will label to completion during 
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the pulse. Structural information may then be directly inferred from the time dependence of H-

bonding. Regions of the sequence involved in intermediate structures will display protection 

from labeling on a similar time scale.  

If structural opening reactions occur on the time scale of the pulse, residues that would 

have been completely protected during the pulse may lose some label and introduce a second 

order effect on the measurement. In these situations, changing the pulse length, pH, or 

temperature can each provide information on the equilibrium constant for H-bonding at each 

protected site and allow one to draw inferences regarding structural heterogeneity. In Chapter 

5, I characterize an obligatory intermediate in the folding pathway of MBP using the binary 

experiment and discover heterogeneous structural features of the MBP burst-collapse event 

using variable pulse lengths at a fixed folding time. 

2.3. State Sensitivity in HX MS 

 HX MS provides an opportunity to independently monitor the partition of molecules 

between definable non-degenerate conformational states. State sensitivity is essential for 

discerning between multiple pathway models such as IUP and sequential pathway models such 

as PPOE. There are an exceedingly small number of ways to achieve state-sensitive 

measurements. To our knowledge, HX MS is the only direct approach. By using an example from 

the MBP pulse labeling HX MS dataset (presented in Chapter 5), this exceptionally rare capability 

is demonstrated here.  



 

Figure 2.2: State sensitivity in HX MS experiments. Spectra are shown at different refolding times for three MBP 
peptides. Three states appear due to the presence of an obligatory intermediate (7 second li
peptide 21-43 and not peptide 44
to two states with this approach. If states are degenerate with respect to the number of H
indistinguishable; states are also hard to resolve if they are not sufficiently separated by mass.

 In KHX experiments, we interpret protection from exchange as representative of H

bonded structure that formed prior to application of the labeling pulse (or spra

2.1). Because mass measurements are not ensemble

HDpop program, described on page
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populations whose sum is traced in red. The area contained within each blue dashed line 
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the average number of deuterium retained. 

 The KHX experiment, a focus of this dissertation, tends to have a binary nature with 

respect to stable H-bonded structure formed before the labeling pulse. For example, if an 

: State sensitivity in HX MS experiments. Spectra are shown at different refolding times for three MBP 
peptides. Three states appear due to the presence of an obligatory intermediate (7 second li

43 and not peptide 44-61. A peptide covering both is also shown to demonstrate that we are not limited 
to two states with this approach. If states are degenerate with respect to the number of H-bonds, they will appear 

tinguishable; states are also hard to resolve if they are not sufficiently separated by mass. 

In KHX experiments, we interpret protection from exchange as representative of H

bonded structure that formed prior to application of the labeling pulse (or spra

). Because mass measurements are not ensemble-averaged in the classical sense, using 

program, described on page 73, for analysis of mass distributions provides unbiased 

state sensitivity; this is illustrated in Figure 2.2 where the blue dashed lines demarcate individual 

populations whose sum is traced in red. The area contained within each blue dashed line 

represents the relative population fraction of molecules in the particular HX state, defined by 

the average number of deuterium retained.  

The KHX experiment, a focus of this dissertation, tends to have a binary nature with 

bonded structure formed before the labeling pulse. For example, if an 
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: State sensitivity in HX MS experiments. Spectra are shown at different refolding times for three MBP 
peptides. Three states appear due to the presence of an obligatory intermediate (7 second lifetime) that contains 
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In KHX experiments, we interpret protection from exchange as representative of H-

bonded structure that formed prior to application of the labeling pulse (or spray-paint in Figure 

averaged in the classical sense, using the 
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The KHX experiment, a focus of this dissertation, tends to have a binary nature with 

bonded structure formed before the labeling pulse. For example, if an 
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initially deuterated 20 residue peptide has 10 protecting H-bonds due to structure that formed 

in 50% of the molecules prior to pulsing the sample with H2O, we would expect to see two 

populations – one with the mass of the unfolded control and the other shifted by roughly 10 Da 

after back exchange correction. Each population would have an equivalent area reflecting the 

50/50 distribution of molecules. Figure 2.2 shows MBP peptide 21-43 who behaves in this 

manner. This peptide stably forms a tentative helix that protects 12 deuterons with a folding 

lifetime of 7 seconds; thus, we observe a heavy population who transitions from the unfolded, 

low mass, distribution to the +12 mass distribution with an appropriate time signature. Similarly, 

peptide 44-61 also gives a binary result although the transition occurs on a different time scale. 

The power of HX MS state sensitivity is most clearly demonstrated in peptide 21-61 which 

clearly shows three populations who transition between one-another on timescales reflective of 

the two different behaviors in the smaller peptides in Figure 2.2.  

 Generally, each population in a KHX experiment has a constant mass with respect to 

folding time; but, if observed, the time dependence of mass changes for a given population may 

provide useful information. For example, the light population centroid in peptide 44-61 appears 

to shift by approximately +3 Da between the 0 s and 30 s time points after correcting for back 

exchange. Upon quantitation of the time dependence, we observe this mass shift to coincide 

with the bulk population transition shown in peptide 21-43. This can occur when two 

populations are not resolved from one another – in this case, the centroid of the cumulant6 

population will move, just as observed in peptide 44-61. We interpret such observations to 

represent, in most cases, two populations who are unresolved. In this particular example, the 

mass shift observed in 44-61 represents a β-strand with three H-bonds whose concerted 

formation with the helix described above and proximity of the residues in the native structure 

implies both structures form together with a characteristic lifetime of seven seconds. This is 

explored in detail in Chapter 5. 

 A binary KHX result, such as the one just described, requires that the opening rate 

lifetime of protecting structure exceed the duration of the pulse by at least a factor of three; 

                                                           
6 Cumulant – I have defined this to describe two populations who are unresolved from one another. As 
the fraction of molecules in one unresolved population transition to the other unresolved population, the 
centroid mass of the cumulant envelope will shift from being dominated by the first to being dominated 
by the second unresolved mass centroid. 
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otherwise, preformed structure will open in a significant fraction of the molecules during the 

pulse and subsequently exchange. In this case, there will appear to be fewer molecules in the 

protected population than actually existed when the labeling pulse was applied. Modulating the 

pulse duration allows us to test for such behavior during the MBP collapse (p. 91). 

2.4 Conclusions 

 The amide hydrogen exchange experiment is most useful for studying the dynamics of 

protein structure because of the similarity in pK between HX catalysts and the backbone amide 

group of polypeptides. Because structure leads to H-bonding and H-bonding in turn sequesters 

any amide proton from exchange, by measuring the difference between the well-calibrated free 

exchange rate (kch) and that observed in experiment (kex), one may draw conclusions about the 

nature of protecting structure. 

 Due to the sensitivity of the exchange rate to pH, under equilibrium conditions, the HX 

measurement can provide information on the free energy of protecting structure and on its 

opening rate. When operating in kinetic mode, HX may also be used to study the temporal 

acquisition of structure during protein folding reactions. Beyond these provisions, HX coupled to 

MS provides unbridled state-sensitivity, a feature that we capitalize on throughout this work. 

Much more detail about the HX MS experimental methodology and data processing algorithms 

are described in Chapter 4. For completion, my work involving NMR and primarily the NHX 

experiment are also included and described in Chapter 3. 
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Chapter 3 - Nuclear Magnetic Resonance & HX NMR 

 

3.1 Introduction  

 Fundamentally, HX experiments are interested in measuring either the rate of proton 

exchange (NHX type experiments) or the proton:deuteron ratio (KHX type experiments) at each 

amide on the protein back-bone. The measurement of HX data by NMR capitalizes on the fact 

that 2H is NMR silent. Therefore intensity of any given amide 1H signal will decrease linearly as 

molecules exchange 1H with deuterated solvent and are replaced by 2H. NMR is the only method 

capable of directly providing site-resolved hydrogen exchange measurements, as such, the value 

of an HX NMR experiment relies acutely on ability to resolve each amide and precisely measure 

the change in signal intensity with respect to time. HX NMR on larger protein systems faces 

three problems that directly interfere with the ability to make reliable and comprehensive HX 

measurements.   

3.1.1 Molecular Tumbling Time 

 The challenge of NMR, in general, for larger proteins lies in the effect of molecular 

tumbling time on the line width of the signal. Generally, as protein size increases, so does 

molecular tumbling time. Longer tumbling times broaden the NMR signal due to their effect on 

transverse relaxation (see (148) for a thorough explanation of this effect). Increased tumbling 

time effectively reduces the precision of the HX measurement and magnifies issues of peak 

overlap.  

 MBP sits on the edge of this issue, the tumbling time is slow (~19 ns (149)) but still 

amenable for NMR at 37°C. The issue of slow tumbling time is mentioned here in an effort to 

present a complete picture of the challenges facing NMR for large proteins. Were it not for the 

faster tumbling time at 37°C without a loss in stability for MBP, this would have been an issue. 

Josh Wand’s group has pioneered a strategy involving reverse micelle encapsulation to address 

the slow tumbling problem (150); this strategy has been explored for the purposes of HX NMR 

with limited success. 
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3.1.2 Spectral Crowding in Large Proteins 

   The number of NMR signals increases linearly with the number of amino acids for HX 

experiments. Even for proteins with a high degree of spectral dispersion, peak overlap or 

spectral crowding (for two-dimensional experiments) becomes an issue for proteins greater 

than 100 amino acids (148) and the problem worsens as the number of signals (residues) 

increases; MBP has 370 residues. As long as a signal is resolved7, the HX rate may be measured; 

however, the number of resolved signals will decrease as the total number of signals increase 

and therefore the amount of useful information recorded during the HX NMR by HSQC is 

diminished. For HX NMR experiments on large proteins where spectral crowding is an issue, a 

method to determine which peaks are resolvable in 2D and then match observed peaks with 

their appropriate assignment is needed. 

 

Figure 3.1: 1H-MBP HSQC spectrum collected at pH 9.6. Using the peak picking routine in Sparky, this spectrum was 
determined to have 253 peaks, 334 peaks are expected. This difference is a result of spectral crowding. 

 Using the 370-residue MBP, my strategies to allay the effects of spectral crowding are 

discussed. We first had to develop an algorithm to determine which peaks in the observed 

spectrum could be matched unambiguously to known chemical shifts for MBP deposited in the 

Biological Magnetic Resonance Data Bank (BMRB). The resulting algorithm not only deals with 

                                                           
7 A peak ( 1m ) is resolved if the following condition is met for all ‘x’ nearby peaks: σ σ− > +1 1x xm m , m

=midpoint, σ = Gaussian width. This is written for the 1D case, see later text for expansion into multiple 
dimensions. 
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spectral crowding, but also automates peak matching for any NMR experiment (any 

dimensionality) and is available upon request (ben@btwalters.com). Using this algorithm 

(described in section 3.2.1) we determined that 172 of the 253 peaks in Figure 3.1 were fully 

resolved and unambiguously assigned; thus one could reliably measure 51% of the available 

amide protons in MBP. As a result, I was able to determine an upper bound on the free energy 

of the native state for MBP. 

 

Figure 3.2: The advantage of HX 3D-NMR. (A) A typical HSQC spectrum for MBP with a high degree of spectral 
crowding and paying attention to the peak highlighted by the black box, (B) these two peaks are only resolved by the 
addition of a second dimension that required ~16 hours of acquisition time. (C) Using the AMORE-HX method, both 
peaks in panel B are resolved with the appropriate time resolution for measuring the rate of exchange as is shown by 
the solid blue line drawn through the data points.  

 To avoid the spectral crowding issue altogether, we created a novel three-dimensional 

experiment called AMORE-HX (1). Peaks that are unresolved due to crowding in the HSQC 

(Figure 3.1 & Figure 3.2A) may be resolved by the inclusion of a third dimension (Figure 3.2B) 

and their exchange rates for amides overlapped in 2D may be measured (Figure 3.2C-D). The 

main challenge here was time resolution. A single HSQC spectrum may be collected in ~40 

minutes whereas the HNCO typically requires a full day to collect with equivalent signal-to-

noise. This time resolution makes HX measurements nearly impossible. In the AMORE-HX 

experiment, we present a cadre of strategies that focus on increasing the time resolution of the 

1H-15N-13C backbone HNCO correlation experiment for the purposes of HX NMR. Figure 3.2 

collectively demonstrates the capability of our solution, termed affectionately, AMORE-HX. 

Where only 51% of the available chemical shifts were resolved in the HSQC, in section 3.3, I 

describe the AMORE-HX experiment and show how 92% of the deposited chemical shifts for 
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Second order issues in HX NMR. The top trace shows what would appear to be a signal growing more 
intense with time (this should be impossible) before starting to decay later. Upon inspection of th

as expected, with roughly the same lifetime as the growing trace above. The spectral 
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This is the cause for the growing signal observed in the top trace which results from the exchange shown in the 

The final issue regards an effect on both longitudinal (T1) and transverse relaxation

that manifests through the continuously changing spectral density during the HX experiment. 

The rate of transverse relaxation for an amide 1H signal increases as neighboring protons are 

replaced by deuterium. This narrows the linewidth of the 1H signal and has the effect of 

red amplitude as shown in Figure 3.3 – the amplitude of residue 97 (top) 
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effect of line narrowing that results from a reduced spectral density has been exploited in 

structural NMR studies by selective deuteration to overcome line broadening from longer 

tumbling times in large proteins (149, 151, 152), whereas in HX NMR this introduces a second 

order error in the HX measurement and is undesirable. 

 The same changing spectral density has the opposite effect on longitudinal relaxation 

rates (spin-lattice relaxation) which decrease during the HX experiment. A recycle or inter-scan 

delay is set in between pulses to allow the system to relax and realign with the magnetic field. If 

the relaxation time of a given spin increases during an experiment beyond the fixed inter-scan 

delay it will introduce non-equilibrium effects from over-pulsing. As more and more neighbors 

become deuterated during an HX experiment, the longitudinal relaxation time increases and so 

too does the degree of over-pulsing. As more and more deuterium is exchanged in, the 

remaining protons relax more slowly. To the HX measurement, exchange and over-pulsing have 

equivalent effects – both reduce the number of NMR-active nuclei from one scan to the next, if 

not corrected, this artificially causes an overestimation of the HX rate. The magnitude of this 

artifact (30-35% difference in the HNCO) can be quite large as is discussed in section 3.3.2. 

 Recent developments in pulse sequence design have brought about the use of selective 

excitation pulses termed SOFAST (153-158) and BEST (159, 160) which may largely solve this 

problem when used in HX NMR experiments. Selective excitation pulses only excite a subset of 

the nuclei of a particular type and results in more pathways existing for spin-lattice relaxation. In 

turn, inter-scan delays in non-HX applications can be reduced by a factor of ~50 as these pulses 

greatly accelerate spin-lattice relaxation rates. Speeding up the NMR experiment was the 

motivation for development of these selective pulses. With a faster intrinsic spin-lattice 

relaxation rate, incorporating selective excitation into the traditional experiment should 

eliminate the over-pulsing problem altogether. We explored the potential for using this strategy 

while developing the AMORE-HX experiment and show that selective excitation is able to 

completely ameliorate the issue arising from over-pulsing. 

3.2 HX NMR using the HSQC on MBP 

 In recent years, the 15N-HSQC has become the standard method to measure NHX 

experiments. The first step entails acquisition of the fully protonated spectrum before rapidly 
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replacing the buffer with D2O and then collecting sequential spectra as peaks decay due to 

exchanging NMR active hydrogen with NMR inactive deuterium. Though resolving the maximum 

number of cross-peaks is challenging for larger protein systems, misinformation resulting from 

incorrectly assigned peaks is arguably much more of an issue. Avoiding misinformation was a 

key motivation in our efforts to develop the AMORE-HX experiment that is discussed in later 

(page 38). In this section, I will present my unique solution for avoiding misinformation resulting 

from the spectral crowding problem along with an example of HX NMR using the HSQC on MBP. 

3.2.1 An Algorithm to Handle Spectral Crowding 

 The 2D HSQC experiment may not be able to resolve the rates of exchange for every site 

of a large protein; however, there are resolved peaks that may be monitored. To do this, one 

must distinguish resolved from overlapped and unresolvable peaks. The task of accurately 

mapping known assignments onto a highly crowded spectrum presents unique challenges. The 

number of expected peaks (334 for MBP from the BMRB, entry 4986, (161)) outnumbers 

observed peaks found in the experimental spectra because in the observed spectrum, a single 

degenerate peak results from the presence of multiple overlapped peaks. Peaks that result from 

overlapped and unresolved peaks are difficult to manually detect and complicate matching the 

observed signals with known assignments.  

 The parity mismatch between the number of expected signals and the number of 

observed signals requires, at the first level, that we determine which peaks, defined by chemical 

shifts deposited in the BMRB, are expected to be resolved at the field strength and experimental 

conditions being employed, ultimately this helps avoid misinformation. Once this has been 

done, the next challenge is to assign the observed peaks to one or more peaks in the resolved 

BMRB spectrum in a consistent and unbiased way. Ultimately, we must determine which of the 

observed peaks are unambiguously assignable to only one entry in the BMRB as these peaks are 

followed during the NHX experiment. We also need to determine which of the observed peaks 

are not matched directly with one BMRB entry, these come in two flavors. First, there are those 

observed peaks that are assigned to an overlapped multi-peak in the BMRB. There are also 

observed peaks that may not be overlapped in reality but that match to more than one entry in 

the BMRB. These peaks are flagged because they often are incorrectly assigned and ambiguous. 

This algorithm is explained in the following discussion. 



 

Defining peaks that are expected to be unresolved in the BMRB at the field strength and 

solution conditions employed for the HX experiment involves first collecting a reference HSQC 

spectrum such as is shown in

provide automated peak picking routines, the resolution determination algorithm described 

here is written in python to 

automated peak picking routine to determine peak positions and their respective line widths at 

half height. This information along with resonance assignments from the BMRB are used as 

inputs to the algorithm here.

Figure 3.4: Resolution determination. 
distributions to determine the expected line width of an observed peak in each experimental dimension. 
diagram to accompany Eq. 3.2-Eq. 

Using the accepted notion that two Gaussian distributions are resolved if they are 

separated by more than the sum of their individual standard deviations to measure peak 

resolution, the algorithm determines the expected Gaussian standard deviations of the 

observed peaks along each experimental dimension using information from the line widths at 

half maximum in the observed spectrum. By plotting line

reference HSQC (Figure 3.1

3.4A, that these distributions are narrow and asymmetric. The skew in these distributions occurs 

because of peak overlap. To avoid bias in the arithmetic mean of non

median of the distribution is taken as the expected line width 

widths are related to the Gaussian standard deviation by

Defining peaks that are expected to be unresolved in the BMRB at the field strength and 

solution conditions employed for the HX experiment involves first collecting a reference HSQC 

spectrum such as is shown in Figure 3.1. Most of the available NMR visualization packages 

provide automated peak picking routines, the resolution determination algorithm described 

here is written in python to interface with the Sparky NMR program. Sparky provides an 

automated peak picking routine to determine peak positions and their respective line widths at 

half height. This information along with resonance assignments from the BMRB are used as 

algorithm here. 

: Resolution determination. (A) The line widths from an observed spectrum are plotted as cumulative 
distributions to determine the expected line width of an observed peak in each experimental dimension. 

Eq. 3.5. 

Using the accepted notion that two Gaussian distributions are resolved if they are 

than the sum of their individual standard deviations to measure peak 

resolution, the algorithm determines the expected Gaussian standard deviations of the 

observed peaks along each experimental dimension using information from the line widths at 

mum in the observed spectrum. By plotting line-width information acquired from a 

1 for MBP) as a cumulative distribution we can clearly see in 

A, that these distributions are narrow and asymmetric. The skew in these distributions occurs 

because of peak overlap. To avoid bias in the arithmetic mean of non-normal distributions, the 

median of the distribution is taken as the expected line width l  in each dimension. Line 

widths are related to the Gaussian standard deviation by 
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Defining peaks that are expected to be unresolved in the BMRB at the field strength and 

solution conditions employed for the HX experiment involves first collecting a reference HSQC 

. Most of the available NMR visualization packages 

provide automated peak picking routines, the resolution determination algorithm described 

interface with the Sparky NMR program. Sparky provides an 

automated peak picking routine to determine peak positions and their respective line widths at 

half height. This information along with resonance assignments from the BMRB are used as 

 

The line widths from an observed spectrum are plotted as cumulative 
distributions to determine the expected line width of an observed peak in each experimental dimension. (B) A 
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than the sum of their individual standard deviations to measure peak 
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 .
2 2ln2

σ =
l

 Eq. 3.1 

The algorithm iterates through the BMRB peaks and for each, performs a binary 

comparison with all other BMRB peaks to determine whether the peak should be resolved from 

the others in a 2D HSQC given the operational conditions of the experiment. Figure 3.4B shows a 

sketch of the quantities used in this process to accompany Eq. 3.2-Eq. 3.5 below. 

For each pair of peaks in the BMRB, we are given two points, C and P, representing the 

mid-points of the peaks. The point R is then determined, 

 ( )= ,x yR P C , Eq. 3.2 

allowing us to define the angle between the two peaks, 

 θ −
 
 =
 
 

uur uur
�

uur uur
1cos

CP CR

CP CR
. Eq. 3.3 

We then use θ  to determine a directional Gaussian standard deviation by defining the point E8, 

 ( )σ θ σ θ= + +cos( ) , sin( )x x y yE C C , Eq. 3.4 

and then classify the peak C as resolved if the inequality, 

 >
uur uur

2CP CE , Eq. 3.5 

holds for all possible overlapping peaks. If the peak is not resolved, we create a multi-peak to 

represent the overlapped peak and write down the identities of each peak contained within the 

multi-peak, and compute a new midpoint by determining the multi-peak’s center of mass. 

                                                           
8 Depending on the direction of 

uur
CP , we may be defining location of the image of point E (the image of E is 

shown by the dashed line in figure 4B, however in the case shown, the actual point is determined). Due to 
symmetry and the purpose of the algorithm, whether we have defined E or its image is of no 
consequence. 
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 To briefly summarize, we take the median spectral linewidth at half peak height (Figure 

3.4A) in each dimension and convert it to a Gaussian standard deviation, σ σ→l l, ,x yx y
 

(Eq. 3.1). For each pair of peaks, we are able to determine a directional standard deviation, 
uur
CE  

using Eq. 3.2-Eq. 3.4. Finally, we consider the peaks resolved if separated by greater than the 

sum of their standard deviations (Eq. 3.5). BMRB peaks that pass the test are considered 

resolvable using the instrument and conditions present during acquisition of the reference 

spectrum. BMRB peaks who fail the test are combined into a single overlapped multi-peak, the 

center of mass of each degenerate peak cluster defines a new peak position for each multi-peak.  

 With this catalogue of peaks who are resolvable, the next task is to assign these peaks 

with the observed peaks in our reference spectrum. 
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Figure 3.5: Peak assignment algorithm. (A) Before running the peak assignment algorithm, a non-uniform offset, 
highlighted, in the grey rectangle, is observed between peaks found in Figure 3.1 and those deposited in the BMRB 
(Entry 4986). There are 334 H-N assignments deposited in the BMRB (green), 264 of which are resolvable, 71 are 
unresolvable and result in 32 overlapped peaks, shown in blue. (B) Out of 253 observed peaks in panel A (red), 199 
were matched to one or more peaks from the BMRB. Unambiguous assignments were found for 172 peaks, 20 peaks 
were found to match 2 entries in the BMRB (one example is shown in the gray rectangle), and 7 peaks were paired 
with 3 or more potential assignments. 

Resolvable (BMRB) 

Multipeak (BMRB) 

Observed (Sparky) 
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 Before the matching of resolvable BMRB chemical shifts with the observed peaks, one 

must determine expected offsets and the variance in offsets between the reference spectrum 

and the BMRB chemical shifts entries. This is easily visualized by plotting the sets of points 

together as has been done in Figure 3.5A, observed or reference peaks are red, resolvable BMRB 

peaks are green, and BMRB overlapped multi-peak centers of mass are blue. By inspection of 

Figure 3.5A, and in particular those peaks highlighted by the gray rectangle, one notices a 

variable offset between the peaks deposited in the BMRB with those found in the reference 

spectrum. The algorithm presents this information to the user in an interactive interface where 

peaks that are thought to be paired are selected, such as those in the gray rectangle. Once five 

or more pairs have been selected, the algorithm determines the mean offset and variance in 

each dimension to facilitate the matching process that follows. 

 To begin matching, the algorithm first shifts the observed spectrum by the mean offsets 

determined previously and then enters a series of N, usually 1000, iterations to match the two 

sets of points. For each point in the observed spectrum, at each iteration, all points in the BMRB 

set that are in the neighborhood of each observed peak are compared with one another. Using 

similar mathematics as in the first part of the algorithm (Eq. 3.2 and Eq. 3.3), the angle between 

an observed peak C and each potential candidate peak P is computed,θCP
, along with the 

distance between the two peaks, 
uur
CP . For a given iteration, 

in , an acceptable matching radius 

between the two peaks is defined by 

 ( ) ( )2 2

( , | , , ) 3 cos( ) sin( )i
CP i x y x CP y CP

n
r n N

N
θ ν ν ν θ ν θ= + , Eq. 3.6 

and an assignment is made between two peaks, A and B, if the distance between them is less 

than the matching radius, ( , | , , )AB i x yAB r n Nθ ν ν≤
uur

. Here, the variances to the offsets between 

the observed peaks and BMRB peaks are represented by &
x y

ν ν  and the total number of 

iterations given by N . In the final iteration, the matching radius expands to three standard 

deviations from the mean offset in all directions. After evaluating all potential matches in a 

given iteration, unambiguous matches are removed. If an observed peak matches more than 
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one peak in the BMRB in a single iteration, the assignment is ambiguous and all matching points 

are removed from the spectrum.  

Peaks that were matched to resolved peaks and multi-peaks from the BMRB are shown 

in Figure 3.5B. Out of 253 peaks in the observed spectrum, unambiguous assignments were 

found for 172 peaks; 27 peaks matched either a multi-peak or more than one peak in the BMRB 

and 54 observed peaks were not matched. Thus, with MBP in the 2D HSQC, only 51% of the 

assigned resonances can be followed with sufficient resolution. This problem will grow worse 

with protein size – however, the algorithm described here should allow one to proceed 

collecting the maximum amount of unambiguous information possible.  

In cases where spectral crowding is not an issue, the algorithm allows one to match 

observed spectra to reference spectra in an automated fashion even when there is a non-

uniform offset between the two. Previously, this was done manually and this may introduce a 

source of bias. Manual peak matching may often present ambiguous cases, which lead to 

incorrect assignment because of human inconsistencies. This algorithm provides a consistent 

means to match assignments quickly. It is also not limited to 2D experiments. With little effort, 

the algorithm may be modified to n-dimensional spaces. This formalism was not included 

because the equations would be redundant and the modifications are directly obvious. 

3.2.2 pD 9.6 HX NMR Experiment on MBP. 

 Though there were many challenges that needed to be solved, using my peak matching 

algorithm (section 3.2.1), we were able to unambiguously assign 172 cross peaks distributed 

throughout the protein and proceeded with a NHX style experiment on MBP at pD 9.6. All work 

on MBP had been done at pH 7.5, but we needed to use higher pH to study the folding pathway 

(Chapter 5) and I wanted to verify that the structural dynamics at this higher pH were equivalent 

to pH 7.5. Qualitatively, we knew MBP had maintained native structure because the dispersion 

pattern at pH 9 matched pH 7.5; however, this would be true even if there were stability 

changes. 
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Figure 3.6: Six representative HX profiles observed in a pD 9.6 experiment. Many peaks do not exchange, these traces 
are represented in the top two panels. Of the 172 peaks with assignments, only 76 were followed through the 
experiment, many exchange too fast to measure. Blue dots are intensity values for consecutive HSQC’s, the green 
traces show single exponential fits to the exchange profiles. The residue assignment is indicated in each panel. 

 At pH 7.5, the stability of MBP had been measured by multiple groups using a standard 

optical denaturant melt experiment (37, 162-165) and was found to be between 10-14 

kcals/mol, depending on the denaturant used. Using Eq. 2.6 (page 17), I determined that at pD 

9.6 and 310K, on average, an exchangeable site with 12.5 kcal/mol stability should have an HX 

lifetime of roughly 24 hours. With this in mind, I collected a series of standard HSQC 
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experiments, over a period of 24 hours with each HSQC requiring 23 minutes. Any site with a 

stability of less than 9-9.5 kcal/mol will completely exchange before the first time point. 

 Six representative decay traces are shown in Figure 3.6 from this experiment. At the first 

time point, only 76 of the 172 unambiguously assigned peaks remained. By the end of the 24-

hour period, 21 peaks appeared to have not exchanged a single time, such as A105 in Figure 3.6. 

This implies a global stability in excess of 15 kcal/mol for the most stable sites. These 

measurements exceeded the estimated stability from optical experiments. This is not surprising, 

HX stability measurements often are larger than those gleaned from optical denaturant melts 

due to a flaw in the analysis of denaturant melts for non-two-state systems (166). This 

experiment was completed in 2009 – recently a group published data on MBP from HXNMR at 

pH 7.5 (167). All 15 cross peaks who did not appreciably exchange at pH 7.5 in their study were 

all among the 21 non-exchanging peaks in my data. Taken together, we conclude that the 

stability at pH 9 is similar to pH 7.5. 

3.2.3 Concluding Remarks 

 This experiment at pD 9.6 did provide useful facts. In Chapter 5, we measure the 

stability of MBP by optical denaturation and find the stability to be much lower than this 

experiment indicated; reasons for this discrepancy are given in Chapter 5. We ultimately 

pursued kinetic folding experiments at pH/pD 9.0. This experiment confirmed that the native 

state of MBP at elevated pH was similar in stability to that of pH 7.5. We reasoned from this that 

information gleaned from folding at pH 9.0 would be relevant to the majority of MBP folding 

studies conducted at pH 7.5. 

3.3 AMORE-HX: a multidimensional optimization of radial enhanced 

NMR-sampled hydrogen exchange 

This section is the result of a co-first-author (1) publication, which resulted from a collaboration 

with John M. Gledhill Jr. of the laboratory of Joshua Wand.  

3.3.1 Introduction 

In theory, increasing to a three-dimensional experiment could overcome resolution 

issues which grow with protein size in two-dimensional experiments such as the HSQC. Figure 
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3.2 exemplifies the additional resolution from the third dimension. Peaks corresponding to 

residues T53 and G327 from MBP are coincident in the HSQC (Figure 3.2A) and are resolved by 

the HNCO (Figure 3.2B). The traditional Cartesian sampled HNCO may generally resolve the 

spectral crowding issue in 2D NMR because of its third dimension; but, in requiring > 12 hours 

per spectrum, this experiment simply lacks the necessary time resolution required for hydrogen 

exchange measurements.  

Sparse sampling techniques such as radial sampling (168, 169) with attendant 

processing schemes (170-175) combined with optimization of the longitudinal relaxation 

properties (153, 159, 176, 177) can be employed to reduce the time required per HNCO spectra 

and increase the time resolution for HX purposes. Transverse relaxation optimization reduces 

acquisition time by decreasing the delay between transient scans. Typically, the inter-scan delay 

is the longest delay during a pulse sequence, thus substantial time savings is achieved by 

reducing this delay. Alternatively, sparse sampling achieves a decrease in acquisition time by 

reducing the number of increments collected in indirect dimensions. Sparsely sampled data 

cannot be processed using traditional approaches and the resulting frequency domain spectra 

require special treatment for extraction of HX measurements. Our efforts here focus primarily 

on sparse sampling and show that radial sampling time can be further reduced with transverse 

relaxation optimization. 

This 3D HX NMR experiment, termed a multidimensional optimization of radially 

enhanced NMR-based hydrogen exchange in proteins or AMORE-HX, exploits various features of 

longitudinal relaxation optimization and radial sampling to increase the time resolution, 

sensitivity, and accuracy of large protein HX data using the radial-HNCO experiment. The 

advantage of this method is seen directly in Figure 3.2C-D where two peaks which were 

overlapped in the two dimensional experiment are resolved and their exchange rates measured 

using the AMORE-HX experimental design and HX processing scheme described here. 
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3.3.2 Description of AMORE-HX  

 

Figure 3.7: Graphic representation of the ridge artifacts from radial sampling. Radial interferrograms are simulated for 

three fictitious peaks after FFT of the direct 1H dimension (ω3 ) for 10° (A) and 45° (B) sampling angles. Ridge artifacts 

(C,D), resulting from the simultaneous 2D-FT of the co-evolved dimensions, t1 and t2, are shown as cylinders in 3D 
frequency space; the separable positive (E,F) and negative components (G,H) are shown for angles 10° and 45°, 

respectively. Note the convention: ω = F (t )i i
, F is the Fourier transform operator. Figure reprinted from (1). 

The radial HNCO (178) is accomplished by sampling the directly detected dimension (t3,

ω3 ) normally and linking the indirect dimensions by ( )τ α=1 cost  , ( )τ α=2 sint and linearly 

sampling the time period, τ . The result of this linkage is shown Figure 3.7A-B for sampling 

angles α = o10  (A) and α = o45  (B). When processed by a true two-dimensional Fourier 

transformation (170, 171, 175), linkage of the indirect dimensions results in a fundamental 

artifact manifested as a ridge of intensity extending through the peak positions at the sampling 

angle  90± o , this is illustrated in Figure 3.7C-D. The positive and negative components of each 

sampling angle may be separated (Figure 3.7E-H) using a sum and difference of matching and 

non-matching Fourier transforms (174).  

A geometric method, described previously (179), may be used to determine which peaks 

are resolved by any given sampling angle provided the chemical shifts and line widths of all 

peaks are known. If two authentic peaks fall on the same ridge, the intensity will be the sum of 

the two (notice how there are three components in Figure 3.7G whereas coincident ridges sum 
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leaving only two components in Figure 3.7E). Consequentially, not all chemical shifts will be 

resolved for any given sampling angle. The selection of sampling angles is perhaps one of the 

most important aspects of AMORE-HX. Each angle requires a fixed amount of acquisition time 

and one must collect multiple angles to resolve all peaks.  

Selection of Sampling Angles 

It was recently shown how one could determine which peaks are resolved by any given 

sampling angle (179). This work also provided a best-first-sorting algorithm to select a set of 

sampling angles sufficient to resolve all peaks in the Cartesian HNCO. The best sampling angle by 

best-first-sorting is the angle that resolves the largest number of peaks. The best angle is 

selected and all peaks resolved by the best angle are removed from the lists of resolved peaks 

for all other angles. This task proceeds iteratively, each time selecting the best angle, until all 

peaks are resolved by at least one angle. This may result in more angles than are necessary to 

resolve all peaks and thus reduces the experimental time resolution. 

To illustrate the weakness of the best-first-sorting approach, suppose we have a 

fictitious spectrum with six peaks, 1-6, and three potential sampling angles, A, B, & C. The peaks 

resolved by each angle are computed and stored as lists, one list for each angle. Suppose angle 

A resolves peaks 1-4; angle B resolves peaks 2, 3, and 5; and angle C resolves 1, 4, and 6. The 

best first sorting algorithm first selects angle A because it resolves four peaks; however, by 

selecting angle A first, both of the remaining angles are needed to resolve all peaks. Had we 

instead chosen either angle B or C first, we would have then been able to resolve all peaks by 

angles B and C. The severity of this problem scales with the number of peaks and therefore with 

protein size. This problem with best-first-sorting motivated a new angle selection algorithm 

described below. 

The optimal set of angles is defined as the minimal set of angles that together will 

resolve all peaks. To find this set we use a combination of Boolean logic and linear algebra and 

exploit the fact that some peaks are resolved by a large number of angles while other peaks are 

resolved by relatively few. Once the peaks resolved by each potential sampling angle have been 

catalogued, the information is tabulated as a ×M N  Boolean array, A , where N is the total 

number of cross peaks and M  is the total number of angles to choose from. For any given 
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angle/peak combination, ,n ma is set to true (1) if peak n  is resolved by angle m and set to false 

(0) otherwise. 

To generate a measure of resolution for each peak we define a count matrix C as the 

inner product of a unity row matrix of length M and the Boolean resolution data M x N matrix A  

 [ ]= ⋅11 , ,1MkC A . Eq. 3.7 

The vector C contains an inventory of the number of times a peak is resolved for each 

radial sampling angle. We define a weight function to facilitate choosing angles based on 

uniqueness, 

 ω = −( ) 1
max( )

C
C

C
. Eq. 3.8 

The largest element of C  is given by ( )max C . The elements of the weight function ( )ω C  

approach unity when a peak is only resolved by a few angles – this weighting quantitates which 

peaks are difficult to resolve and which angles resolve these peaks. The final step is to compute 

the measure function by taking the inner product between the Boolean matrix A and the 

transposed weight function, Eq. 3.8, 

 ( )µ ω= ⋅ ( )T T
C A C . Eq. 3.9 

Each element in ( )µ T
C corresponds to the sum of the now weighted terms in A , the angle 

identified by ( )( )µmax C  is selected. Subsequent angles are selected after removing all peaks 

resolved by the selected angle from A and the process is repeated. 
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Ultimately, sub-windows are not required; they provide a means to inspect the data. 

Orthogonal vectors (projections in Figure 3.10) may be computed directly using the 2D FT by 

supplying the corresponding paired frequency components. The resulting one-dimensional 

vector provides a cross-section of the peak. This vector is stacked with respect to time and an 

example of this is shown for peak D197 in MBP in Figure 3.10. By fitting a single exponential to 

the maximum intensity of each orthogonal vector or its area with respect to time, the exchange 

rate is obtained. If the decay rate is sufficiently slow, multiple angles that resolve the peak may 

be averaged. Averaging angles will reduce the time resolution; however, when appropriate, the 

advantage of averaging can be seen clearly in the observable S/N increase between the single 

angle in Figure 3.10B and the average result in Figure 3.10C. Notably, the S/N is much better in 

the HSQC than in the HNCO and averaging may be necessary in some cases. 

3.3.3 Over-pulsing effect is minimized using shaped excitation pulses  

 The NMR measurement is sensitive to the effects on the relaxation properties of any 

given amide hydrogen by exchange of a neighboring amide proton for deuterium. This effect 

manifests in both the longitudinal (T1) and transverse (T2) relaxation rates; the latter of which 

may be overcome under opportune circumstances by measuring cross peak integrals as 

discussed earlier. The effect on amide proton T1 may not be easily overcome; it results from 

non-equilibrium effects introduced by not allowing angular momentum vectors to relax and re-

align with the bulk magnetic field in between pulses. 

Inversion recovery measurements with the HSQC and HNCO using a pre-deuterated 

15N13C MBP sample at HX equilibrium in either 10% or 90% D2O were employed to assess the 

magnitude. Effective T1 rates were approximated by fitting a single exponential to signal 

recovery curves (signal intensity versus recycle delay). The mean percent difference9 in T1 

lifetimes for HSQC measurements was -7 ± 6% indicating a small but significant effect. With 

13C15N MBP sampled by the Cartesian HNCO we found a much larger deviation of -35 ± 40%.  

Since the majority of time during an NMR experiment is spent between pulses, NMR 

practitioners generally try to reduce this inter-scan delay as much as possible; as a result, inter-
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scan delays and T1 lifetimes are generally quite similar because inter scan delay duration is 

usually minimized using fully protonated samples. Differences as small as -7% observed in the 

HSQC experiment will introduce a second order error in HX measurements and artificially 

increase apparent exchange rates non-uniformly throughout the protein. If these effects are 

present and ignored, HX by NMR is more detrimental to scientific advancement than it is useful. 

No data is better than bad data. 

We found selective excitation pulses used in the BEST approach (153-155, 159) to be 

particularly useful at mitigating this effect. The same measurements, using the BEST-HNCO 

(Cartesian-HNCO with selective excitation pulses), gave a negligible mean fractional deviation of 

+0.06 ± 0.24 %. By selectively exciting only the protons of interest, T1 relaxation rates are much 

faster; therefore, modest slowing of any individual rate has no effect because the inter-scan 

delay greatly exceeds relaxation lifetimes.  
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3.3.4 Summary of AMORE-HX 

 

 

Figure 3.11: A work-flow diagram for the AMORE-HX experiment. 

 The overall workflow for AMORE-HX is shown in Figure 3.. The first step here is similar to 

the standard HX NMR HSQC procedure, a reference spectrum in protic buffer (HNCO) allows 

determination of the coordinates for each cross peak and downstream matching of assignments 

to observed cross-peaks. Once the reference has been collected, one must select the 
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appropriate angles for the experiment. All other differences between the AMORE-HX protocol 

and the traditional HSQC based methods are kept hidden by way of a computer program that I 

wrote to automate this process and described earlier. The product of the two methods is the 

same, decay traces that allow determination of the exchange rate. This was done on purpose 

with the hopes of making this complicated experiment accessible to researchers who have not 

traditionally focused on NMR. 

 My computer program for the AMORE-HX experiment called RidgeGlider interfaced with 

a pythonic version of Al-NMR (180), written by Dr. John Gledhill Jr. for phasing and transforming 

the sparsly-sampled data (2D FT) into the frequency domain. Without Al-NMR, this project 

would not have been possible. 

3.4 Concluding Remarks 

 HX experiments traditionally measured by NMR are becoming increasingly rare. 

Researchers seem to be favoring mass spectrometry for HX measurements as assessed by the 

volume of publications. This is not surprising when one considers the various issues in HX NMR 

discussed in section 3.1, page 25. HX MS experiments tend to be easier to conduct, require far 

less protein, and are much cheaper as the protein does not need to be isotopically labeled for 

analysis. These reasons and others are explored in detail in Chapter 4. 
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Chapter 4 - Hydrogen Exchange by Mass Spectrometry 

4.1 A Historical Context for HX MS Experiments  

The first method proposed generally for HX experiments involved the use of a tritium 

tracer (181) and provided exchange information on a whole molecule level. Pioneering work by 

Walter Englander (182-185) and Rosa and Richards (186) were able to provide sub-global 

structural information using the method of fragmentation-separation. For the first time, the 

authors showed that HX could provide structurally resolved information on conformational 

dynamics and their method remains popular in HX MS experiments to this day. In 

fragmentation-separation experiments, following HX labeling, the exchange reaction is 

quenched10 by reduction of temperature and pH (5+ orders of magnitude) allowing time to 

prepare the sample for analysis without extensive loss of the experimental label, known as back 

exchange. The quenched sample is proteolyzed by the addition of acid proteases (pepsin, 

generally) and fragments separated using LC. In its original form, the extent of exchange was 

monitored by scintillation counting of LC fractions and fragment identities obtained from amino 

acid hydrolysate analysis. This process was very time consuming, difficult to perform, and 

generally suffered from low sequence coverage.  

HX NMR was developing (187) and was first shown to provide exchange information on 

each amino acid in the primary sequence of cytochrome C by Josh Wand in 1986 (188). For more 

than a decade, NMR became the preferred method for HX measurements due to this site-

resolution capability.  

Despite its popularity, HX NMR has serious problems that are exacerbated by larger 

protein systems. Protein solubility remains a challenge because of the high concentration of 

protein required. One also needs to resolve and assign each amide hydrogen in the spectrum; a 

task that proves to be exceptionally difficult in larger molecules (see page 30 for discussion). 

Perhaps the biggest issue for HX NMR lies in its inherent protein size limitation. Slow molecular 

                                                           
10 It is common to refer to the low pH, low temperature condition as quenched. The reaction is still 
occurring albeit orders of magnitude slower than during HX labeling, roughly 1% per minute for a solvent 
exposed amide. 
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tumbling times for larger proteins relegate most biologically relevant molecules inaccessible to 

NMR measurement. Interest in HX MS stemmed from a need to circumvent these hurdles. 

The first HX MS experiments were introduced in the early 90s (189, 190) using a 

methodology very similar to the earlier H-T fragmentation-separation experiments (182). Since 

then, HX MS experiments have become dominant in HX literature. Unlike NMR, the MS method 

has no size limitations making HX experiments possible for larger molecules; however, sequence 

resolution remains an issue. The first HX MS demonstration (190) found nine fragments in total 

reporting on less than 50% of the protein’s primary sequence. Localization of exchange 

information, paramount to achieving structural resolution, in HX MS is limited to the size of each 

proteolytic fragment; this turned out to be a persistent issue. 

The same problems of low sequence coverage and loss of information due to back-

exchange that hindered the first HX MS experiments have remained burdensome for nearly two 

decades. Among other things, these problems are solved in the work described below.  

4.2. The HX MS Experiment 

4.2.1 Introduction 

Hydrogen exchange measurements in large biologically important protein systems that are 

inaccessible to NMR may be routinely measured by the HX MS fragmentation-separation11 

method. Unlike the typical HX NMR experiment where real-time spectra are acquired while the 

sample is exchanging, measurements by MS involve a staged approach whereby labeling and 

measurement are decoupled in time. As in the earlier H-T exchange method, proteins are 

labeled using either NHX- or KHX-type experiments (Chapter 2, page 18), samples are taken in 

time before being partially quenched by a reduction of pH and temperature. This dramatically 

slows the exchange reaction facilitating time to prepare the sample for MS measurement. The 

quenched sample is proteolytically digested (fragmentation) and run through HPLC separation. 

The LC eluent is ionized by electro-spray and injected into the mass spectrometer to measure 

the number of incorporated deuterium in each peptide fragment. 

                                                           
11 HX MS experiments described in this dissertation are always conducted using the method of 
fragmentation-separation unless otherwise stated. 



51 
 

 One major problem in current HX MS technology is sequence coverage, peptide 

fragments often wind over sizeable12 regions of the protein sequence and generally represent 

less than the whole sequence. Where the NMR measurement provides direct site-resolution, MS 

resolution is limited to the size of each fragment. Changes in the HX rate of a whole peptide 

cannot distinguish precisely which residues within the peptide have changed. When a change is 

detected, one cannot determine whether it involves large changes to a few residues or small 

changes to all residues. This hinders interpretation. 

 Collision induced dissociation (CID) of peptide fragments in-flight is a popular way to 

determine the sequence of a peptide and was initially explored as a possible strategy to help 

localize the label and achieve site resolution. Unfortunately, extreme bond vibrational energies 

caused by CID result in a redistribution or randomization of the label within each peptide, this is 

known as scrambling (191). Non-ergodic methods such as electron transfer or electron capture 

dissociation have been shown to avoid the scrambling problem (192-196) and have been able to 

provide site-resolution in a limited number of cases. 

 Alternatively, through comparison of many overlapping peptides, one may be able to 

infer where in the peptide the label has gone, this is equivalent to site-resolution; the challenge 

becomes one of identifying and accurately measuring as many peptides as possible. In a group 

publication (4) where I was a supporting author, we describe a home-built system capable of 

producing, on average, 10 unique peptides per residue in the native protein for HX MS 

experiments. This section summarizes those endeavors. 

4.2.2 Measuring HX Labeling by LC ESI MS  

 A labeled and quenched sample must be prepared for mass measurement; broadly, this 

involves proteolytic digestion to produce peptide fragments, washing of the fragments to 

remove molecules that would interfere with mass measurement, and separation of the 

fragments by HPLC. During preparation, back-exchange occurs and degrades the labeling 

pattern; it is necessary to move quickly through these steps. For this purpose, we developed a 

cold-flow online system to facilitate digestion, washing, and peptide separation all within a 

                                                           
12 The average peptide length for HX MS MBP experiments is 12 residues. 



 

closed apparatus that is temperature controlled at or slightly below 0° C. The online system and 

instrumentation employed are described below.

The On-line System 

  

Figure 4.1: On-line HX MS analysis system 
Peltier cooled chamber (21x15x25 cm; from an automobile accessory supplier) that maintains 0±1 °C, monitored with 
a thermocouple thermometer. An internal 
Liquid flow is precooled in a large loop positioned in the airflow. Switching valves are mounted on a ridged board 
backed with foam insulation with valve handles outside easily accessib
the valves, the injection loop, and columns are contained in the cold chamber. Liquid lines and the thermometer leads 
are threaded through small holes in the insulation and mounting board. A short length of outf
analytical column to the MS electrospray source is packed with ice

 Illustrated in Figure 

flow system. The precise details of injection volumes and flow rates depend on factors that may 

differ depending on the protein and type of HX experiment being conducted. For KHX 

experiments with MBP, th

quenched and partially unfolded (1M GdmCl) condition. Flipping of the first valve diverts pre

cooled washing buffer (buffer compositions are described in

µl/minute into the injection loop and passes the sample through protease columns for digestion. 

Peptide fragments are trapped as they exit the protease column by flowing through a small C

column (1 x 5 mm, 5 µm beads). After three minutes, the flow rate from the 

doubled and the sample is washed for two minutes to prepare for HPLC separation. Five minutes 

after injecting the sample, the second switch is flipped, a low volume HPLC pump flows through 

closed apparatus that is temperature controlled at or slightly below 0° C. The online system and 

instrumentation employed are described below. 

line HX MS analysis system (reprinted from reference (4)). The entire flow system is contained within a 
Peltier cooled chamber (21x15x25 cm; from an automobile accessory supplier) that maintains 0±1 °C, monitored with 

thermocouple thermometer. An internal fan circulates air across the Peltier element and through the chamber. 
Liquid flow is precooled in a large loop positioned in the airflow. Switching valves are mounted on a ridged board 
backed with foam insulation with valve handles outside easily accessible for manual operation. The wetted parts of 
the valves, the injection loop, and columns are contained in the cold chamber. Liquid lines and the thermometer leads 
are threaded through small holes in the insulation and mounting board. A short length of outflow tubing from the C
analytical column to the MS electrospray source is packed with ice-filled plastic bags. 

Figure 4.1, a Peltier cooled chamber contains all components of the online 

flow system. The precise details of injection volumes and flow rates depend on factors that may 

differ depending on the protein and type of HX experiment being conducted. For KHX 

experiments with MBP, the injection loop is loaded with 300 µl of 166 nM MBP in the acid 

quenched and partially unfolded (1M GdmCl) condition. Flipping of the first valve diverts pre

cooled washing buffer (buffer compositions are described in section 4.3

e into the injection loop and passes the sample through protease columns for digestion. 

Peptide fragments are trapped as they exit the protease column by flowing through a small C

column (1 x 5 mm, 5 µm beads). After three minutes, the flow rate from the 

doubled and the sample is washed for two minutes to prepare for HPLC separation. Five minutes 

after injecting the sample, the second switch is flipped, a low volume HPLC pump flows through 

52 

closed apparatus that is temperature controlled at or slightly below 0° C. The online system and 

 

The entire flow system is contained within a 
Peltier cooled chamber (21x15x25 cm; from an automobile accessory supplier) that maintains 0±1 °C, monitored with 

fan circulates air across the Peltier element and through the chamber. 
Liquid flow is precooled in a large loop positioned in the airflow. Switching valves are mounted on a ridged board 

le for manual operation. The wetted parts of 
the valves, the injection loop, and columns are contained in the cold chamber. Liquid lines and the thermometer leads 

low tubing from the C18 

cooled chamber contains all components of the online 

flow system. The precise details of injection volumes and flow rates depend on factors that may 

differ depending on the protein and type of HX experiment being conducted. For KHX 

e injection loop is loaded with 300 µl of 166 nM MBP in the acid 

quenched and partially unfolded (1M GdmCl) condition. Flipping of the first valve diverts pre-

section 4.3), flowing at 100 

e into the injection loop and passes the sample through protease columns for digestion. 

Peptide fragments are trapped as they exit the protease column by flowing through a small C8 

column (1 x 5 mm, 5 µm beads). After three minutes, the flow rate from the isocratic pump is 

doubled and the sample is washed for two minutes to prepare for HPLC separation. Five minutes 

after injecting the sample, the second switch is flipped, a low volume HPLC pump flows through 
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the trap and then onto a C18 analytical column (0.3 x 50mm, 3 µm beads) for a rough peptide 

separation. Peptides are directed into the instrument as they elute from the column. To 

minimize eluent overlap and achieve constant numbers of peptides per unit time, we employ a 

non-linear 10-15 minute water/acetonitrile gradient (8 µl/min, 10-50% AcCN), gradient shaping 

is described in Appendix B. 

 A cleaning gradient is applied between each run consisting of 2-3 sequential 0-100-0% 

AcCN up-downs, 3 minutes each, to maintain low column backpressure and elute very large 

peptides that remain bound to the analytical column. To avoid the problem of peptide carry-

over (197) the protease column is washed using two injections of 1M GdmCl at low pH while the 

trap and analytical columns are being washed. Blank injections containing no protein sample are 

run periodically to check for carry-over. In total, each run requires 20 minutes for HX MS 

preparation and measurement followed by a 10-15 minute cleaning cycle and a final 5 minutes 

for pressure re-equilibration before the next run. 

Proteolysis 

 Acid proteases are used to digest the protein samples. Though this may be done in free-

solution, passage through an immobilized protease column has proven to be more effective 

(198, 199). Often, protease digestion may be improved by protein unfolding by the addition of 

chemical denaturants (2 M Urea, 1 M GdmCl, or 0.5 M GdmSCN) and TCEP to reduce disulphide 

bonds (200), if needed. Commercial protease columns are available; however, compelling 

evidence suggests that these columns may promote back-exchange (198). We prefer using 2mm 

x 20mm guard columns packed with POROS AL beads to which are ligated either pepsin or 

fungal protease XIII following manufacturer instructions. The protease is gel-filtered prior to 

ligation removing any contaminating amines that may be present in buffers used to 

commercially purify the enzyme as they will compete for binding sites on the POROS AL. In 

literature, it is common to perform the coupling reaction in the cold for an unknown reason; 

however, the manufacturer instructions clearly state that the coupling reaction must be done at 

room temperature. Sodium sulphate is used during coupling for salting out the protein, this 

increases the density of ligated molecules on the surface of the bead – ligating in the cold is 

inefficient because of reduced Na2SO4 solubility. 
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 Using the previously stated flow rates, transit time on the protease column ranges from 

3 to 35 seconds. When necessary, increasing or decreasing the flow rate during digestion can be 

useful to bias peptide size distributions towards smaller or larger fragments, respectively. In an 

effort to discover the limits of our system, we have used pepsin and fungal protease XIII alone 

and in tandem for three separate injections. In section 4.3 and later in Chapter 5, only pepsin is 

employed as this condition yields an abundance of overlapping peptides sufficient for the level 

of sequence resolution needed in each case. This is the cause for differences in the reported 

number of peptides in different sections of this dissertation. 

Instrumentation 

 

Figure 4.2: Illustration of the many peptides available and the requirement for high resolution instrumentation. (A) 
The retention time chromatogram for a 15 minute linear 10-40% AcCN gradient on peptic fragments from MBP. (B) A 
MS scan taken at 7.75 minutes in panel A. (C) Five co-eluting peptides in MBP observed within a small mass range 
from panel B (indicated by the gray shading in B). 

 High-resolution MS instruments are necessary to obtain large numbers of peptides in 

the experiment. Figure 4.2 illustrates this point using data taken on MBP. Figure 4.2A shows the 
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full retention time chromatogram where the sum intensity of the ions being injected is plotted 

on the y-axis. Inspection of a single scan (Figure 4.2B) taken at 7.75 minutes retention time 

demonstrates the presence of many peptides eluting simultaneously. Frequently, peptide mass 

distributions overlap with one another and may reduce the number of useful peptides for HX. 

The density of peptides is highlighted in Figure 4.2C by zooming in on the shaded region in 

Figure 4.2B. Here, five peptides are shown to occupy only 2% of the total mass-to-charge axis 

per scan (200-2000 m/z). Were it not for the high resolution (60,000 at 1 s/scan) of our 

ThermoScientific LTQ Orbitrap XL, we would have no hope of resolving 177-194 from 21-61 and 

would be unable to use the data shown for either peptide as they contaminate each other.  

4.2.3 A Method to Obtain Many Overlapping Peptides for HX MS Experiments 

 Peptides are not fragmented by CID in the HX MS experiment. To identify deuterated 

peptides, a peptide pool database is first constructed containing the retention times, 

monoisotopic masses, and sequences for all peptides that may be present in the labeling 

experiment. Building the database consists of running data-dependent MS/MS on fully 

protonated samples and identifying precursor ions from daughter CID fragmentation spectra 

with the SEQUEST algorithm (201). The identifications are evaluated using an independently 

calibrated quality score to reduce the false discovery rate to less than 0.1%. Our in-house 

program, ExMS, described elsewhere (202), is then used to further validate these peptides 

under conditions that mimic HX MS experiments with partially deuterated samples. 

Peptide Identification & The Peptide Pool 

 To construct the peptide pool, unlabeled samples are prepared for mass analysis using 

the online system (page 52) and conditions to be employed in downstream labeling 

experiments. We use tandem MS in data-dependent acquisition mode (DDA) for mass analysis 

to generate fragment spectra that are subsequently used for peptide identification. In DDA 

mode, relative intensities of eluting ions are determined by full MS (parent) scans using the 

orbitrap. In each parent scan, the masses of the four most abundant ions that are not on a 

dynamic exclusion list are sent to the LTQ for CID fragmentation and subsequent measurement. 

Ions selected for fragmentation are added to the dynamic exclusion list, each entry expires after 

30 seconds.  
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 In practice, we use three DDA MS/MS runs for each protease condition to build the 

peptide pool. Peptides identified by the SEQUEST algorithm with acceptable Ppep scores 

(described below) for each condition are added to a static exclusion list for use in subsequent 

MS/MS runs. The static exclusion list is operationally equivalent to the dynamic exclusion list 

except entries on the static list are only excluded for ± 1 minute to their respective retention 

times. This procedure ensures inclusion of lower abundance peptides in the peptide pool. One 

could continue beyond three runs but the effort produces diminishing returns. 

 We use SEQUEST (ThermoScientific Bioworks 3.3.1) for searching MS/MS results against 

a database containing the protein of interest and all possible contaminants. Briefly, the 

database contains the E. coli proteome (including MBP), entries for all proteins studied in this 

lab, a variety of human and dog13 keratins, and the sequences of both pepsin and fungal 

protease XIII. We use a search tolerance of 4 ppm for parent ions and 0.1u for fragments and 

calibrate our instrument daily using positive-ion CalMix (ThermoScientific). 

Ppep Calibration and Use 

 Ppep is a proprietary statistical goodness-of-fit parameter provided by the Bioworks 

software for each peptide identified by SEQUEST. Though it was designed apparently for a 

different purpose, we found it useful in eliminating false positive identifications from our 

MS/MS runs. To calibrate the Ppep score for our purpose, we constructed a decoy database by 

sequence reversal of the real database; this adds decoy entries and allows us to check for false 

positive identifications. MS/MS data were searched against both the real and decoy databases 

(203), any fragment identified in the decoy database is a false positive. Figure 4.3 shows the Ppep 

distribution of four proteins studied in the lab, each protein was searched separately and the 

results merged, blue data represents searching against the real database, red data are decoy 

results. 

                                                           
13 Montana, a golden retriever, is a member of the lab and frequently stops by for a pat on the head while 
we work. Including dog keratins seemed logical although we have not identified dog or human keratins in 
our samples. 
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represent SEQUEST hits for MS/MS data run against a large database with reversed sequences. Data in blue 
represents hits on the experimental protein for MS/MS data run against t
forward sequences. Results for the four proteins studied are merged to provide a large statistical sampling. The inset 
focuses on the poorest scoring matches. These results show that the cutoff P
identifications to <0.1% is 0.990. 
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thorough description of this program, see reference (202)). For each protease condition, we ran 

three injections through the online system that had been equilibrated in 50% D

program searches deuterated MS spectra using peptide pool information described earlier. 

Upon identification of a peptide, ExMS provides a selected ion chromatogram where sequential 

scans deemed acceptable are summed and the data for each peptide is exported for further 

, manual verification. For each deuterated run, identified peptides were 

correctly identified peptides were added to our peptide inventory. The 

intersection of peptides for all three runs was taken as a measure of the useful identifica
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 The ExMS program found nearly 100% of the respective peptide pools for all unlabeled 

samples, but a smaller fraction of peptide pool entries were identified in deuterated samples. 

The 50% deuterated condition is most challenging because isotope env

overlap are maximized in this state. Searching this data provided a mechanism for us test and 

optimize user defined parameters in ExMS. Once optimized, ExMS was able to find and 

internally confirm 50 to 75% of the peptide pools in

peptides could be manually verified upon inspection; however, ~20% of the pool was eliminated 

through this process. 

Peptide Identifications and Further Validation

 Useful peptides are those that met all selection

than 0.990 and were found in all three 50% deuterated replicates for each protease condition. 

Collectively, the MBP peptide pool has 443 unique peptides and over 70% are found in more 

than one charge state.  

Figure 4.4: The Peptide Inventory for MBP. 
number of peptides reporting on each of the 370 residues in MBP. The lower panel shows unique peptides found in 
each protease condition and the regions 
peptides are found in the fungal protease XIII digest, and green are those peptides found in the tandem condition.

The ExMS program found nearly 100% of the respective peptide pools for all unlabeled 

samples, but a smaller fraction of peptide pool entries were identified in deuterated samples. 

The 50% deuterated condition is most challenging because isotope envelope widths and spectral 

overlap are maximized in this state. Searching this data provided a mechanism for us test and 

optimize user defined parameters in ExMS. Once optimized, ExMS was able to find and 

internally confirm 50 to 75% of the peptide pools in each deuterated run. Many of the remaining 

peptides could be manually verified upon inspection; however, ~20% of the pool was eliminated 

Peptide Identifications and Further Validation 

Useful peptides are those that met all selection criteria, they all have P

than 0.990 and were found in all three 50% deuterated replicates for each protease condition. 

Collectively, the MBP peptide pool has 443 unique peptides and over 70% are found in more 

: The Peptide Inventory for MBP. (reprinted from reference (4)). In the top panel, a histogram shows the 
number of peptides reporting on each of the 370 residues in MBP. The lower panel shows unique peptides found in 
each protease condition and the regions of sequence covered. Red peptides are found in the pepsin digest, blue 
peptides are found in the fungal protease XIII digest, and green are those peptides found in the tandem condition.
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The ExMS program found nearly 100% of the respective peptide pools for all unlabeled 

samples, but a smaller fraction of peptide pool entries were identified in deuterated samples. 

elope widths and spectral 

overlap are maximized in this state. Searching this data provided a mechanism for us test and 

optimize user defined parameters in ExMS. Once optimized, ExMS was able to find and 

each deuterated run. Many of the remaining 

peptides could be manually verified upon inspection; however, ~20% of the pool was eliminated 

criteria, they all have Ppep scores less 

than 0.990 and were found in all three 50% deuterated replicates for each protease condition. 

Collectively, the MBP peptide pool has 443 unique peptides and over 70% are found in more 

 

In the top panel, a histogram shows the 
number of peptides reporting on each of the 370 residues in MBP. The lower panel shows unique peptides found in 

of sequence covered. Red peptides are found in the pepsin digest, blue 
peptides are found in the fungal protease XIII digest, and green are those peptides found in the tandem condition. 
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 The inventory of useful peptides for MBP is shown in Figure 4.4. Notice that many of the 

peptides share a common N-terminus. This speaks to the validity of our method, these peptide 

groups occur at high probability cut sites. Upon checking for peptides produced by prohibited 

cut sites (204) (no Arg, His, Lys, or Pro at the P1 site) no violations were found for MBP. Over all 

four proteins used in the group analysis, only one violation was found at an Arg-Phe site. 

 

Figure 4.5: Comparing Retention Times and Centroids Using Redundant Ions. 651 Ions are plotted representing 225 
useful unique MBP peptides, generated by pepsin proteolysis. The two y-axes plot the difference in retention times 
and centroid values for each ion from the average values of all ions reporting on the peptide. The apparent steps in 
the RT offset distribution (blue) result from a quantized time axis due to the instrument providing 1 scan per second. 

 Peptides with the same sequence but different charge states should have similar 

retention times and mass centroids. We find remarkable agreement in both features as shown 

in Figure 4.5. The information in this figure was produced as follows: for each unique peptide 

identified, if there were more than a single charge state/ion, the differences of centroid mass 

and retention time were taken from the average of each variable across all charge states of the 

peptide and then collected to produce the cumulative distributions shown in Figure 4.5. On 

average, retention times for redundant charge states were within 5 seconds of one another. 

Likewise, deuterated centroids were all within 0.01 Daltons. This result would be highly unlikely 

if our peptide pool was fraught with incorrect identifications. These observations further verify 
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that our method accurately identifies a very large number of overlapping peptide fragments for 

use in HX MS experiments. 

4.2.4 Conclusions 

 There are many reasons to strive for as many overlapping peptides as possible in HX MS 

experiments. Many overlapping peptides are necessary for accurate site-resolution efforts (6). 

Overlapping peptides also provide an internal consistency check – agreement in overlapping 

peptides increases ones confidence. In comparative analyses or in epitope mapping studies, 

complete sequence coverage is paramount; however, in most cases this has not been achieved. 

Typical HX MS studies in the literature are plagued by far fewer peptides than we readily find. 

 Our analysis shows that many more peptides may be available than what is commonly 

reported in the literature. Here (4), we have shown how to verify peptide identifications and lay 

down a procedural map that obtains on average 10 overlapping peptides per residue – that this 

coverage redundancy was true for all proteins tested speaks to the generality of our method. 

Important determinants are a reliable on-line cold flow system, high resolution and sensitivity in 

the mass spectrometer, and multiple on-line protease conditions. In a publication that 

accompanied the one described here, ExMS was shown to outperform other available programs 

designed for HX MS in terms of finding deuterated peptides, this program is described 

elsewhere (202). Without the combination of the methods described here and the ExMS 

program’s ability to find deuterated peptides, our coverage would have certainly been far less 

impressive. The strategy presented here should be broadly applicable to all HX MS experiments 

in other laboratories where high resolving powers are available.  

 

4.3 Minimizing the Back Exchange Problem 

 

This section focuses on the content of my manuscript published in the Journal of the American 

Society for Mass Spectrometry in 2012 titled “Minimizing Back Exchange in the Hydrogen 

Exchange-Mass Spectrometry Experiment”, the full citation is included in the bibliography (2). 



61 
 

4.3.1 Introduction 

 Hydrogen exchange investigations of larger and biologically more interesting protein 

systems can be achieved by a proteolytic fragmentation method (182) followed by mass 

spectrometry analysis (190, 205-207). In this method, protein samples taken from an H-D 

exchange experiment are proteolytically fragmented and separated in preparation for MS 

analysis to determine the quantity and position of carried D-label at a fragment-resolved level. A 

problem is that some D-label is variably lost during sample preparation due to back exchange in 

the H2O solutions used. The different residues in any given peptide fragment unavoidably lose 

D-label at different rates (132) (refer to Chapter 2), and this residue-level variability cannot be 

reconstructed and corrected for when one has only fragment-level data. The problem can only 

be minimized by reducing the level of back exchange. 

Because back exchange quickly degrades HX MS analysis, it continues to receive a great 

deal of attention (198, 208-217). The typical level of D-label recovery reported in the fragment 

separation literature is about 70% (30% back exchange). Higher reported values generally 

depend on results for only one or a few peptides. However, we find that different peptide 

fragments experience a wide range of back exchange values. Among other implications, any 

computational correction for back exchange will be flawed.  

One popular method to correct for back exchange involves spiking a fully deuterated 

reference peptide into each sample when the experimental labeling phase is quenched. This 

approach leads to serious error because of the wide range of back exchange values observed in 

peptide fragments. We correct each peptide using the level of back exchange observed for that 

particular peptide in a fully deuterated (FD) control experiment. Here, an FD sample is quenched 

and subjected to the same preparation and mass measurement conditions used in labeling 

experiments. By doing this, one is able to determine an expected level of back exchange for 

each experimental peptide. We find that run-to-run back exchange variability is roughly 2%. 

Correction factors obtained for individual peptides are certainly more reliable than a uniform 

correction factor determined by a reference peptide; however, the correction remains 

fundamentally flawed since different amide sites will be labeled in experimental and control 

situations and each site will lose label to back exchange at different rates. Thus, MS 

measurement accuracy of deuterium incorporation during the labeling phase of an HX 
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experiment depends heavily on the minimization of back exchange while preparing the sample 

for analysis. 

 We systematically studied the conditions that determine back exchange including pH, 

ionic strength, ion transfer tube temperature, the interaction of peptides with reverse phase 

columns, and the time consumed at each stage of sample preparation. The optimization of these 

variables reduces back exchange by a factor of two to three.  

4.3.2 Results and Discussion 

In the typical HX MS fragment separation analysis, an experimental protein is exposed to 

H-D exchange for a period of time. Each amide hydrogen exchanges at its own rate determined 

by solvent conditions, its intrinsic chemical rate, and protecting structure, modified by the 

experimental variable being studied. To measure the extent of D-labeling, protein samples are 

taken and prepared for MS analysis by quenching into a minimum HX rate condition (low pH and 

temperature). The protein unfolds but HX is greatly slowed, allowing a short time for sample 

preparation without excessive loss of D-label. In the present experiments, the protein was 

proteolytically fragmented (immobilized pepsin column), the peptide fragments were caught on 

a trap column, washed and buffer exchanged, roughly separated by fast reverse phase 

chromatography, and then injected by ESI into the spectrometer to determine the mass of each 

fragment and thus the amount of carried D. These sample preparation steps were performed in 

an online flow system described on page 52.  

To study the effect of various preparatory conditions on back exchange, we used 

maltose binding protein (MBP, 370 residues) that had been fully deuterated by exchange in D2O. 

We measured the recovery of D-label for each of many MBP peptide fragments after passage 

through the entire analysis. Recovery calculations are described in Appendix A. Although our 

methods found 225 MBP fragments (pepsin proteolysis alone), we used for each experimental 

series only the peptides that were observed in all experiments in order to ensure unbiased 

comparisons. Identification and analysis of these many peptides used SEQUEST 

(ThermoScientific Bioworks 3.3.1) and the ExMS program (202). 

pH and Ionic Strength 
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Figure 4.6: Dependence of HX rates on pH and ionic strength at 0 °C. (reprinted from reference(2)). (A) Expected pH 
dependence for the hypothetical peptide GGVALISTDENQRHKCMFTW. The rate at any pH is the sum of the H3O+ ion 
catalyzed reaction (red) and the OH- ion catalyzed reaction (blue), each of which varies by 10-fold per pH unit. The 
additional pH-independent contribution due to water catalysis is shown with hatch marks. The averaged fragment-
level HX rate constant shown is taken as the geometric mean (log averaged) of the 20 amides, each of which 
exchange with somewhat different rate constants. (B) Cumulative population distribution pH series. (C) Slices taken 
across B at given population percentiles. (D) Effect of ionic strength at pH 2.5. 

Figure 4.6A shows the expected dependence of HX rate on pH for a hypothetical peptide 

with all amino acids, calculated from standard reference values (132, 134). The theoretical 

minimum HX rate, computed by taking the log-average rate for a hypothetical peptide 

containing all 19 amino acids and two N-terminal alanines is expected to be reached at pH 2.5. 

Accordingly, the quench and running buffers in fragment-separation experiments have always 

been prepared near this condition (182). To test this expectation we performed a series of D-

recovery experiments over a range of experimental pH values (Figure 4.6B). Single peptide 

values are often used as a back exchange reference in the literature. In fact, different peptides 

display a wide range of D-label recoveries. This can be expected since amide HX rate varies with 

amino acid type and nearest neighbors (132, 134). Unexpectedly however, the minimum rate 
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with significantly reduced back exchange was reached at pH 2.25 (Figure 4.6C). Upon further 

inspection of the literature, we found in Z. Zhang’s 1995 Purdue dissertation (218) an example 

where pH 2.3 was promoted as the ideal quench pH; however, no explanation for the observed 

difference between measurement and theory was presented. 

Testing showed that the shift in the pH of minimum rate depends on ionic strength. 

When ionic strength is 20 mM or higher, HX rate is a minimum at pH 2.5 and matches expected 

values (Figure 4.6D). The earlier HX rate calibrations (132, 134), which underlie theoretical rate 

computations, were done in high salt (0.5 M KCl) purposely to shield against extraneous charge 

effects. However, MS analysis requires electrospray solutions with low salt where, we find, the 

pH of minimum HX rate is significantly shifted. The amide group acts like it has a small net 

positive partial charge which, at low ionic shielding, favors the OH- -catalyzed reaction and 

disfavors H3O
+, shifting the pH-rate curve to the left. 

The present results show how these different requirements for minimizing back 

exchange rate can be satisfied. Experimental HX samples normally contain significant salt and 

after quench due to the presence of GdmCl (0.5 to 2 M) added to promote protein unfolding 

and improve digestion in the proteolysis step. Therefore, in this first stage of sample preparation 

we use quench buffer with 1 M GdmCl at pH 2.5. The sample is then caught on a trap column, 

washed, eluted with an acetonitrile gradient through the LC step, and injected online into the 

mass spectrometer. These latter steps should use low salt, desirable for ESI MS, and the lower 

pH. We use wash and elution buffers with 0.1% formic acid adjusted to pH 2.25 with TFA. 

Solution pH values were measured and adjusted in the pertinent solutions at room temperature 

and then used at 0° C.  

 

Desolvation Temperature 

Details of the ion source depend on instrument design. In our spectrometer, after 

nebulization at the electrospray needle, droplets of solution are pulled by a pressure differential 

through a heated capillary (~200 °C), which speeds solvent evaporation and ionization. As 

exchange rates in solution depend sharply on temperature (~3-fold per 10 °C) (132, 134), sample 

heating in the capillary might greatly promote back-exchange. 
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Figure 4.7: The dependence of D-label recovery on transfer tube temperature (reprinted from reference(2)). 

We measured back exchange as a function of capillary temperature. Cumulative 

recovery distributions are shown in Figure 4.7. The results show a broad maximum in D-recovery 

when capillary temperature is set between 100 and 200 °C, with declining recovery at higher 

and lower temperature. We did not observe a difference in recovery between charge states of 

the same peptide as reported before (216), apparently due to instrumental differences. Results 

for given peptides with different charge state agreed in these and our other experiments to < 

0.1 D. 

Interestingly, the 75 °C data shows distinctly reduced recovery. Less efficient 

evaporation at 75 °C could lead to increased time at temperature above 0 °C in the liquid phase 

before solvent evaporation, leading to increased back-exchange. Given these results, we 

adopted a capillary temperature setting of 100 °C. 

Time on the LC Column 

To study the HX behavior of peptides bound to the C18 media of reverse phase columns, 

we compared HX rates of column-bound peptides with rates expected from earlier calibrations 

in free solution. Fully deuterated MBP samples were placed into quench conditions in H2O, 

injected into the online flow system, digested, and washed onto the trap column (5 min elapsed 

time). Peptides were held on the column for an additional experimental delay time between 0 

and 45 min, then eluted from the trap column, through the analytical LC column, and into the 

mass spectrometer (3 to 18 minutes additional time). 
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Figure 4.8: Exchange on the column (reprinted from reference(2)). (A) Observed D-recovery for all peptides across the 
delay time series. The inset places the variable delay time during sample preparation. (B) Recovery for the various 
peptides after a 20 minute delay on the trap column. (C–E) Observed (data points) and theoretical (dashed lines) D-
label recovery. (C) Some peptides with normal recovery. (D) A peptide with large slowing on the column due to 
structure formation and two component peptides with normal recovery. (E) Some histidine-containing peptides with 
accelerated early loss. 

Figure 4.8 shows cumulative recovery distributions across the time series, and compares 

these results with the expected time-dependent loss of D-label in free solution (Appendix A 

describes how the expected recovery was determined during preparatory steps where the pH 

and temperature are not constant). We assumed that D-label on side chains (132) and the N-

terminal amino group is lost too rapidly to measure (expected rate > 10 s-1), and similarly for the 

amide on the second residue. The accelerated rate for the second residue is due to the absence 

of an amide group on the prior residue (10-fold in rate), and it is promoted by another 10-fold 

by the fixed positive charge on the neighboring N-terminal amino group, especially at the low 

salt concentration used here. This effect is contained in the older literature on HX of peptide 

models (see Table 1 in Molday et al. (133)) and has been directly measured more recently (219).  

A comparison between observed and expected D-recovery from the 20 minute delay 

experiment is shown for the whole peptide population in Figure 4.8B and for a number of 
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individual peptides across the delay series in Figure 4.8C-E. During the sample preparation time 

including proteolysis and column interaction, most of the peptides exchange as expected. A few 

are much slower. Large retardation with HX slowing up to 20-fold while bound to the column 

matrix was seen for 11 overlapping peptides between the C-terminal residues 340 to 370. Figure 

4.8D shows one of these and two shorter component peptides which exchange as expected. 

Interestingly, in native MBP this segment adopts a helix-turn-helix motif and docks with a 

hydrophobic interface on the C-domain. Evidently, this peptide and some subfragments are 

induced to form mildly stable H-bonded structure, perhaps aided by hydrophobic interaction 

with the hydrocarbon chains of the reverse phase column. The slowing factor decreases 

systematically as either (helix) segment is cut back. Similar but more modest slowing, up to 4-

fold, was seen for sets of peptides derived from several other protein segments (116-149, 169-

194, 283-301, 312-330), apparently due to tentative helix formation.  

A recent publication (220) that following the manuscript described here affirmed the 

idea that helix formation may be promoted by binding to the LC column. In this work, peptides 

were designed to form amphiphilic helical surfaces. The authors found that these peptides 

exhibited reduced exchange rates when bound on an LC column than when free in solution. This 

work appears to confirm our hypothesis that binding to the LC column may induce helix 

formation and provide additional protection from back exchange. 

Some peptides show a small but noticeable negative offset between the expected and 

observed number of D atoms at the earliest time point, indicating additional D-loss. This 

included all of the 15 peptides that contain one of the three MBP histidine residues, suggesting 

some (acid) catalysis of nearby residues by the imidazolium side chain. However, we have not 

seen indications of this phenomenon with histidine-containing peptides in some other proteins.  

Sample Preparation Time 

 



 

Figure 4.9: The effect of reducing LC gradient length (time) on peptide recoveries
Sharper elution gradients provide little reduction in back exchange and sacrifice peptide frag
preparation time by increasing flow rates (termed the fast flow condition, see text) increased recovery levels from the 
green to the colored distributions.
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The effect of reducing LC gradient length (time) on peptide recoveries (reprinted from reference

Sharper elution gradients provide little reduction in back exchange and sacrifice peptide fragment yield. Minimizing 
preparation time by increasing flow rates (termed the fast flow condition, see text) increased recovery levels from the 
green to the colored distributions. 

Most previous attempts to minimize back exchange focus on minimizing the tim

samples spend on the reverse phase column, with modest improvement. We find that time 

reduction accomplished by shortening the acetonitrile elution gradient (15, 10 or 5 minutes) 

produces surprisingly small gains (Figure 4.9). The reason appears to be that early eluting 

peptides experience almost no time reduction while later eluting peptides tend to have a slower 

(more large apolar side chains (132), more time in higher acetonitrile) so 

that increased exposure time has less than the expected effect on back exchange. Consider the 

following, whereas the amides of polar residues lose label at the rate of 1% to 2% per minute, 

the large apolar residues do so ~4 times more slowly (132). Experimental evidence for this view 

comes from the fact that we find no correlation between the level of D-recovery and column 

elution time. In these experiments, total back exchange time varied between 10 and 20 minutes. 
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number of sequentially overlapping peptides and multiple residue coverage. Chromatographic 

crowding became a problem in the 5-minute gradient resulting in 40% fewer useful peptides 

(see Table 4.1). Gradient shaping (Appendix B) used to equalize peptide density through the 

chromatogram reduces but does not overcome this problem.  

We more broadly reduced the time required to navigate the free volume in our flow 

system by increasing overall system flow rates. An increase in flow rates, to “fast flow” 

conditions (300 µl/min during digestion, 450 µl/min for buffer exchange, 10 µl/min during 

peptide elution) reduced overall sample preparation time by 4.3 minutes. These flow rates 

maintained pressures below 2000 psi as recommended for POROS media (protease column). 

The increased D-recovery illustrated in Figure 4.9 is consistent with the expected back exchange 

loss rate of about 1 to 2% per minute on average of carried D-label at the pH minimum and 0 °C 

(132). 

Other Considerations 

 Are these results for maltose binding protein typical for proteins in general? Each test 

shown here used ~90 peptides, and they vary over a wide range in size, amino acid content, 

hydrophobicity, etc. It seems unlikely that sets of peptides from other proteins will behave 

differently. In agreement, we have now used our previous sample processing conditions and the 

improved conditions described here in ongoing experiments with other proteins (cytochrome c, 

staphylococcal nuclease, ribonuclease H, apolipoprotein A-I, Hsp104). The gain in D-recovery 

was comparable in all cases.  

When is back exchange important? For HX MS experiments in which one attempts to 

define epitopic or ligand binding sites, one may be satisfied with crude peptide-level changes. 

These are less dependent on back exchange. Back exchange becomes most important when 

reaching for the amino acid level of resolution that has made the HX NMR experiment so 

powerful for protein studies. Recent progress using ECD and ETD to strive for site resolution 

minimizes the back exchange problem. In this case, the whole protein can be injected directly 

into the mass spectrometer, avoiding the fragment separation analysis. However, a major 

advantage of the fragment separation analysis is the ability to study much larger and biologically 

more important proteins than HX NMR can accomplish. This goal probably exceeds the 

capability of direct ECD/ETD methods. In order to study large proteins by these methods, it 
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seems likely that the fragment separation approach will be required as an initial step, 

resurrecting the back exchange problem. 

The ability of the HX MS method to achieve high structural resolution depends on 

obtaining high quality data for many overlapping peptide fragments. We previously described 

methods for obtaining (4) and efficiently analyzing (202) hundreds of useful protein fragments 

with data accuracy to ~0.1 D. The present work shows that attention to the various factors that 

determine back exchange can increase D-recovery into the range 75 to 95%, as summarized in 

Figure 4.9. These capabilities taken together give the investigator freedom to choose among 

different options. For example, if the effort to reach single amino acid resolution requires 

exceptionally low back exchange, the sacrifice of the lower half of the peptide population shown 

in Figure 4.9 would still retain a very large number of peptides with high data quality, i.e. with D-

recovery in the range of 90 ± 5%. 

4.3.3 Conclusions 

A systematic study of the factors that influence back exchange in the typical HX MS 

setup reveals a number of surprises and shows how the back exchange problem can be 

minimized. We find that different peptides exhibit a range of back exchange levels. Among other 

implications, this situation negates the use of any one or a small number of peptides as a 

reference marker for the degree of back exchange or its correction by computation. This must 

be done peptide by peptide and even then is imperfect since different amide sites will be 

detected in experimental and reference situations. 

Results show that there is no single best back exchange condition; it varies with ionic 

strength. The first stage of sample preparation, involving proteolysis and sample trapping, is 

best performed at pH 2.5 and 0oC in high ionic strength, often with substantial GdmCl. The 

trapped peptides should then be washed and passed through the analytical HPLC column in pH 

2.25 solution at low ionic strength. The common approach of trying to limit chromatographic 

time (reduced column size; shorter elution gradient) yields limited gains and is potentially 

counter-productive in respect to the yield of useful peptides. Sample exposure time can be 

more simply minimized by using high flow rates to rapidly clear system free volume. Putting 

aside the previously unexpected ionic strength effect, the loss of D-label through the sample 

preparation time proceeds closely as predicted from previous amide HX rate calibrations (132, 
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134) although peptide-column interaction can have some unexpected effects such as structure 

formation. The combination of previously described methods for producing (4) and analyzing 

(202) many peptide fragments together with the ability to largely negate deleterious back 

exchange moves toward the goal of obtaining ultimate amino acid structural resolution for HX 

MS analysis. 

 

4.4 Extracting Information from HX MS Peptides 

4.4.1 Introduction 

 

 

Figure 4.10: The fully deuterated MBP peptide 163-195 with centroid indicated by the green dashed line. 

The principle information of interest in an HXMS experiment is the average deuteration 

level of each peptide. Typically, each peptide contains a single mass distribution and its average 

deuteration level is easily obtained by computation of the peptide’s mass centroid, such as 

shown in Figure 4.10. However, during kinetic biochemical processes such as protein folding, 

molecular ensembles may be distributed over many independent conformational states. When 

interrogated by HXMS pulse labeling, each state typically has a different degree of protection 

from HD exchange. This results in multiple mass distributions present within a single peptide 

mass envelope and renders the centroid computation irrelevant.  
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Figure 4.11: Multimodal Distributions. (A) demonstrates the failure of a single centroid computation (green dashed 
line) to extract useful information from a multimodal mass spectrum. (B) The results from fitting this data with 
HDpop. The red line is the sum of the individual population fits shown in blue. There are three populations, each with 
a different centroid. The green dashed lines demonstrate the centroids of each population, as computed by HDpop. 

A folding time point for the same peptide as in Figure 4.10 but before native equilibrium 

is shown in Figure 4.11. This time point was chosen to illustrate the issue that arises from 

multiple populations. The raw centroid is drawn using a dashed green line in Figure 4.11A 

highlighting that the computation is meaningless in multi-modal mass envelopes – it reports 

information about the whole envelope and remains oblivious to the presence of multiple 

populations. 

The challenge for practitioners collecting such data is to determine the number of mass 

distributions or populations present in a mass envelope and then further to characterize the 

fraction of molecules in each population and the average deuteration level of each one. In this 

section, a program referred to as HDpop is introduced and described to satisfy this challenge. 

For the peptide in Figure 4.11, HDpop determines that three populations are present; the 

HDpop results are presented in panel B. Each population is identified by the dashed blue lines 

and the sum of all populations traces the peptide envelope in red. Theoretical centroids, one for 

each population found by HDpop, are shown in green dashed lines. 

A number of groups have addressed this challenge by fitting peptide mass distributions 

using a Gaussian (202, 221-224) or binomial function (225) written to include the possibility of 

up to two populations. These methods are often capable of providing an accurate estimate of 

the deuteration level and mole fraction of each distribution or state; however, none provides 

any mechanism to determine the statistical significance of incorporating an additional 

population into the model and all are limited to two populations. A statistical mechanism for 
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determining how many populations are present is necessary to avoid bias in interpretation, and 

the limited expansion to two populations may be inadequate as is shown by the three-

population envelope in Figure 4.11. 

4.4.2 The HDpop Program 

The method introduced here and implemented in HDpop offers two important 

advantages over what is currently available. First, this method incorporates the F-test (a 

parametric statistical hypothesis test) to determine the merit of incorporating an additional 

population to the fit; a valid p-value accompanies the decision to expand the number of 

populations. This establishes a statistical population detection mechanism whose false positive 

rate is adjustable to a user-desired confidence interval (the − p value ). Second, the number of 

degrees of freedom in the dataset determines the maximum number of populations possible. 

This circumvents the arbitrary limitation to two populations. A description of this method in the 

context of our programmatic implementation, HDpop, is described below accompanied by an 

example of the application of HDpop to define the folding pathway of ribonuclease H.  

Preparing the Data for Analysis 

 

* EUCLID typeface indicates an ordered list of scalar variables. 

* [ ]Y i  ' 'i indexes the list Y , square brackets in this context refer to list indices. Numbering 

begins with i=0. 

The first step of HDpop is to compute the natural abundance mass spectrum14 for the 

peptide. Intensities15 of similar isotopologues (ie. +1 13C or +1 15N) are combined by addition 

resulting in one intensity for each integer offset from the monoisotopic peak. A full discussion 

regarding nominalization of the mass axis, the monoisotopic peak, and the details for computing 

the natural abundance distribution are presented in Appendix C.  

                                                           
14 Natural Abundance Mass Spectrum refers to the mass distribution resulting from isotopes of C, N, O, S. 
15 Model intensities refer to the probability of observing a particular mass in the mass distribution. 
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After computing the natural abundance distribution, peak intensities are stored in a list 

and the list is culled to reflect instrument sensitivity. Starting from the last entry and progressing 

towards the first, peaks are removed until the first peak is encountered with sufficient intensity 

to be detected; this detection threshold is defined by the user. This list =P K0 1, , ,natural ky y y  

contains the natural abundance distribution. Nominal mass information is encoded by list 

indices. The monoisotopic peak takes the subscript ‘0’, +1 isotopologues take the subscript ‘1’ 

and so on.  

HDpop then computes the degrees of freedom for the measured data which is used 

later to define the maximum number of fit populations. The variable k  represents one less than 

the number of theoretically detectable peaks in the natural abundance distribution, Pnatural
; 

thus, k  defines the degrees of freedom in a non-deuterated version of the mass envelope and 

accounts for the experimental signal-to-noise by way of the user-defined sensitivity described 

earlier. Experimental degrees of freedom for a deuterated peptide are 

 = +datadF k s , Eq. 4.1 

where the variable s  represents the number of exchangeable sites on the peptide. The number 

of exchangeable sites is determined by the number of non-proline residues that exist on the 

peptide not counting the first two residues, as they are known to back-exchange completely 

(132, 134). If the peptide was fully deuterated, the natural abundance distribution would be 

nominally shifted by s , giving + s  potentially detectable peaks. 

Our peptide identification program (ExMS,(202)) determines one peak intensity per 

integer offset from the monoisotopic mass and reports a 42-entry list, YExMS
 , indexed in the 

same way as Pnatural
 for every peptide identified. During import into HDpop, a normalization 

constant is determined and the data is read as a normalized list of peak intensities: 

 η
=

= ∑
Y

Y
0

[ ]
ExMS

i

i , Eq. 4.2 

 
η

=P Y �
1

data ExMS . Eq. 4.3 
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N-population Binomial Fitting 

HDpop employs a non-linear least squares optimization (the Levenburg-Marquardt 

algorithm (226), implemented in python (227)) to minimize the error function16:  

 ( )= − ∗E P P Pfit data fit natural  Eq. 4.4 

Here, the convolution operator is represented by ∗ , various HDpop implementations of this 

operator are described in Appendix C.  

To evaluate the error function, an s+1 element list, Pfit , is constructed by the N-

population binomial function which contains all floating parameters: 

 ( ) [ ] [ ] [ ]
−

−

=

 
= − − 
∑A PR A PR PR

1

0

!
: , , ( )(1 )

!( )!

N
x s x

i

s
B x N i i i

x s x
, Eq. 4.5 

 ( )= ≤ ≤P A PR[ ] ; , , |0fit x B x N x s . Eq. 4.6 

Fit parameters A and PR  contain N amplitude and probability entries, one for each population. 

The fraction of molecules in the thi population, [ ]=Aif i , and the expected number of 

incorporated deuterons, [ ]= PR �id i s , are obtained directly from the fit parameters. The total 

number of floating degrees of freedom in the fit model is 

 = −( ) 2 1fitdF N N . Eq. 4.7 

One is subtracted because regardless of the size of N, one amplitude is determined a priori due 

to the normalization condition: =∑A 1 . Before construction of Pfit  (Eq. 4.6) and subsequent 

evaluation of the error function (Eq. 4.4), an arbitrary amplitude of 1 is appended to A and then 

the amplitudes are normalized. 

                                                           
16 Before evaluation of the error function, all lists must contain +1datadF  elements and this is achieved by 

either list truncation or zero-padding. The 42-element list from ExMS, Pdata
, is truncated by removing 

trailing zeros. The k+1 element and s+1 element lists, Pnatural
 and Pfit  (described in the text) are zero-

padded.   
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Population Detection 

HDpop detects the number of statistically justified populations at user-determined 

confidence interval by hypothesis testing via the F-test. The F-test may be used to choose 

between two nested17 models referred to as reduced (N populations) and expanded (N+1 

populations), note that <reduced expandeddF dF 18 must be true. As a result, the expanded model will 

always be able to fit the data at least as well as the reduced model. The F-test determines if the 

expanded model fits the data significantly better.  

HDpop takes the null hypothesis to be that the expanded model (one more population 

than the reduced model) does not fit the data significantly better than the reduced model. To 

test the hypothesis, first the residual sum of squares scalar is computed from the error function 

(Eq. 4.4) for each model and then used to compute the F-statistic as follows: 

 [ ]
=

= ∑ E
2

0

datadF

fit fit

i

RSS i , Eq. 4.8 

 

 −
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dF dF
F

RSS

dF dF

. Eq. 4.9 

The probability of falsely rejecting the null hypothesis (accepting the additional population when 

we should not have done so) is given by the − p value , obtained by integrating the 

parameterized F-distribution, from the F statistic to zero:  

 

( )
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   
− = − +   
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∫

∫
. Eq. 4.10 

                                                           
17 The term nested means that by setting certain coefficients in the expanded model to zero, the nested 
and expanded models are equivalent. 
18 = ( )reduced fitdF dF N , = +exp ( 1)anded fitdF dF N  
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The F-distribution has two degrees of freedom defined by 1 expanded reducedd dF dF= − and 

2 expdata andedd dF dF= − , estimation of the integral is performed using python and hyper 

trigonometric functions. If the − p value is less than or equal to the user supplied critical value (1 

– C.I.), the reduced model is rejected. 

For any given peptide, If ≤ (2)data fitdF dF  is true, the F-test does not run and HDpop 

defaults to a single population fit – in this rare case, a p-value is not computed. Typically, HDpop 

begins by fitting a single population (N=1, reduced model) and a double population binomial 

(N=2, expanded model) to the data before performing an F-test to determine whether the 

double population binomial gives a statistically significant improvement in the residual sum of 

squares with respect to the changes in available degrees of freedom. Then the program enters 

an F-test loop where the previous expanded model becomes the reduced model, and the new 

expanded model increases by one population. The new expanded model is fit and the result F-

tested. The program continues iterating over the F-test loop until stopping criteria are met.   

There are two stopping criteria in HDpop. The obvious conclusion is when the F-test fails 

to reject the null hypothesis and accepts the reduced model. The loop also closes if the 

maximum number of populations have been tested, determined either by the user or by the 

program. If determined by HDpop, the maximum number of populations has been tested when 

the inequality ≤ +( 1)data fitdF dF N  is true.  

The program reports these p-values in a spreadsheet that is presented to the user 

following analysis. 

4.4.3 A Sequential Folding Pathway Defined with HDpop 

 HDpop was recently highlighted in a HXMS pulse-labeling study (5) whereby the 

mechanism and complete folding trajectory of RNaseH was fully determined in structural detail. 

Previous studies (111) found that RNaseH folds by way of a rapid unresolved burst-phase, 

complete by 15 ms of folding, followed by a slower phase leading to the native state. These 

studies were not able to attain definitive structural resolution that was achieved here (5) by 

using HX MS pulse labeling followed by HDpop analysis. 
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Figure 4.12: HX MS data for RNase Folding (reprinted from reference (5)). (A-D) Four peptides represent the four 
general categories of folding behaviors observed in the experiment. (E) The fraction of molecules that are heavy 
(indicative of native structure) showing three sequential foldons plotted as a function of folding time. The inset 
renormalizes the yellow curves to demonstrate that they are indeed trailing the green curves in time. (F) The slow 
folding peptides plotted in the same way as panel E. (G) The structure of RNase H colored to represent the order of 
folding as defined by the folding rates shown in panels E and F. 

 In this study, a population of fully deuterated and unfolded RNaseH molecules was 

diluted into refolding conditions where exchange rates are slow. After a variable amount of 

folding time, the sample was subjected to conditions that rapidly favor exchange of unprotected 

amides (the pulse). During the 10 ms pulse, the mean HX lifetime of unprotected backbone 

amides was roughly 0.4 ms giving unprotected sites ~25 lifetimes to exchange. Any deuterium 

remaining after the pulse may then be attributed to the formation of H-bonded or tertiary 

structure during the variable folding phase of the experiment.  

During the progression of folding, any given fragment will convert from a lighter 

unfolded state to a heavier state, and the heaviest observed state is taken to represent the 

native conformation. Before a given segment has fully reached the native state, molecules will 
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be found in both states and peptide mass envelopes are expected to be multi-modal. The sub 

stoichiometric ratios of each mass distribution reflect the fraction of molecules in the particular 

state and provide a measure of the folding rate for the particular segment. Examples of multi-

modal mass distributions fit by HDpop can be seen in Figure 4.12A-D representing the various 

folding rate categories observed in the experiment. 

HDpop was integral to the analysis of this data in two distinct ways. First, the program 

was employed to resolve the overlapped peptide mass distributions and provide a measure of 

the fraction of molecules in each state. By following the fraction of molecules in the heavy 

population with respect to time, a sequential nature to the folding pathway was discovered as 

shown in Figure 4.12E-F. The population detection feature combined with HDpop’s accurate 

determination of the fraction of molecules in each population directly led to the disambiguation 

of fast folding behavior into three sequential events occupying regions of the molecule colored 

blue, green, and yellow in Figure 4.12G. Without a mechanism to detect and resolve heavily 

overlapped populations, such as shown in Figure 4.12B-C, the folding rates of these three 

distinct regions would have been blurred. Though blue, green, and yellow peptides would have 

all been observed to fold faster than the slowest folding red peptides. The differences within the 

fast group and resulting structural implications could not have been defined with such clarity 

without HDpop. Second, HDpop was used indirectly as a filter for a program called HDsite that 

was used to determine the deuteration levels of individual sites utilizing information from 

overlapping peptides. The HDsite algorithm requires strictly uni-modal mass envelopes for 

reasons that are described elsewhere (6) and briefly mentioned in Appendix C, page 124. Only 

peptides having a single population, as determined by HDpop at the 95% confidence interval, 

were included in the HDsite analysis. Importantly, the site-resolved information from HDsite 

verified that the protection observed in the pulse labeling experiment corresponded to native 

secondary structure elements. This capability indirectly depended on HDpop. 

 

4.4.4 Conclusions 

 HX MS provides unparalleled insights into folding pathways as a product of its state 

sensitivity; however, without the proper analytical tools, much of this information is ignored. A 
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proper analytical tool for this purpose must take an unbiased approach in fitting the data as the 

number of populations found potentially changes the interpretation. The program HDpop 

utilizes the statistical F-test to make an unbiased decision regarding the number of populations 

utilizing a user adjustable confidence interval. Because the maximum number of populations is 

defined by degrees of freedom in the dataset, the analysis is not limited to two populations as in 

other available programs. HDpop should be useful for all HX MS data in other laboratories. 

 HDpop has proven essential to our work in the Englander laboratory. We check every 

dataset with HDpop, regardless of whether we expect multi-population behavior. The analytical 

method has been employed to unravel the folding pathway of RNaseH in exquisite detail and 

also the folding pathway for MBP (discussed in Chapter 5). 

4.5 Concluding Remarks 

 In the early days of HX experiments, NMR was preferred because of the ability to 

measure deuterium occupancy at the site-resolved level. NMR methods have some serious 

negatives that are overcome by the advent of high-resolution mass spectrometry and the 

strategies presented in this chapter.  

 Specifically, with respect to studying the folding pathway of MBP, NMR could not have 

been employed for kinetic pulse labeling HX measurements discussed in Chapter 5. This is 

because of the slow folding of MBP and the NMR requirement that the molecules be properly 

folded for pairing chemical shifts with their residue identities. The protein will not fold at the 

low pH condition necessary for slowing hydrogen exchange rates to minimize back exchange; 

thus, at elevated pH required for folding, all of the label would be lost. The fragmentation-

separation experiment by mass spectrometry has no such requirement. Directly after pulsing 

the sample, we drop the pH to quench exchange and immediately digest the protein into 

peptides for MS measurement. This allows us to preserve the experimental labeling pattern.  

 In this chapter, we have shown methods that advance the HX MS experiment. The 

needs to obtain many overlapping peptides, minimize back exchange, and properly analyze 

experimental results were hurdles for HX MS in the past that are hindrances no longer. With 

these methods, we are now equipped to study the folding of MBP at structural resolution in the 

next chapter.  
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Chapter 5 – Studies on MBP Folding 

 

The work presented in this chapter was submitted to PNAS in October, 2013 (condensed, less 

text) and appeared in the PNAS Early Edition on November 4
th

, 2013. Citation information is 

given in reference (3). 

5.1 Introduction 

 The protein folding problem is fundamental for understanding in vitro protein 

biophysics and in vivo biological proteostasis. Yet, 50 years after Anfinsen’s seminal 

demonstration that an unfolded protein can refold spontaneously when placed under native 

conditions, major questions concerning the folding process are still ambiguous (48, 228-230). 

Important questions relate to the condition of the unfolded state, its degree of compaction, the 

reality and character of residual structure before folding begins and its possible role in guiding 

the folding process (49, 130, 231, 232). Analogous questions relate to the folding pathway more 

broadly. Do proteins fold through many alternative independent pathways, an IUP-type 

mechanism, as earlier theoretical investigations have suggested, (71-73) or do they fold through 

predetermined intermediates in a distinct pathway (9), a PPOE-type mechanism, as a growing 

list of experimental observations indicate (5, 11)? 

 To answer these questions it will be necessary to define experimentally the residual 

structure that exists in the unfolded state and the intermediate forms that proteins move 

through on their way to the native state. This goal is beyond the reach of the usual high 

resolution crystallographic and NMR structural methods. The great majority of experimental 

folding studies have therefore relied on low-resolution optical methods that can follow folding 

in real time but rarely provide the kind of structural information necessary to resolve the basic 

mechanistic questions. Recent work has demonstrated an advanced hydrogen exchange - pulse 

labeling - mass spectrometry technology (HX MS) that is able to detect and characterize local 

structure even when it is only transiently present during the course of kinetic folding (5, 114). 

The method provides a snapshot of main chain amide sites that are protected against HX 

labeling by H-bonds that are present at the time of the labeling pulse. The measurements can 
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determine the position, stability, and dynamic behavior of native and non-native H-bonded 

structure, independently of whether it persists or dissipates in subsequent folding. In recent 

work the method was able to describe the structure and time-dependent formation of three 

sequential native-like folding intermediates in the 155 residue ribonuclease H protein (5).  

 Protein folding studies, whether theoretical or experimental, have been limited to 

relatively small proteins, with few exceptions. However, biological proteomes and the 

considerations they raise are dominated by larger proteins. Here we extend an advanced HX MS 

technology, introduced in Chapter 4, to the two-domain, 370 residue, maltose binding protein 

(MBP). MBP is synthesized in the E. coli cytoplasm and transported to the periplasm (233) where 

it serves as a soluble receptor for the high affinity capture and transport of maltose and 

maltodextrins (234). The protein folds in vivo after deletion of a signal sequence; we study here 

the mature protein with the signal sequence deleted.  

 When unfolded MBP is placed into native conditions, it rapidly adopts a 

heterogeneously collapsed dynamic state, which can lead to aggregation in vitro and inclusion 

body formation in vivo when the concentration is >1 µM (109). Folding to the native state occurs 

much more slowly even in the absence of aggregation, moving through the formation of an 

obligatory intermediate substructure (~7 sec) and thence to the native state (~100 sec). The HX 

MS experiment provides incisive information on the nature of the initially collapsed state, the 

slow formation and identity of the on-pathway native-like intermediate, and the even slower 

emergence of native structure.  

5.2 Results & Discussion 

5.2.1 Optical Measurements 

 Because folding rates could be sensitive to pH and we needed to pulse label during the 

HX experiment discussed later at pH 9.0; we uniformly conduct optical studies using a pH of 9.0 

and use a deuterated protein in D2O solvent. 

Equilibrium Stability and Unfolding at pH 9.0 

 The global stability and thermodynamic characterization of wild-type MBP has been 

previously assessed by chemical denaturation over a range of temperatures (Urea and GdmCl) 
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and calorimetric analysis (162, 164, 165) at pH 7.1. In GdmCl, Sheshadri et al. (162) measured a 

stability of 12-14.5 kcal/mol with a GdmCl C½ of 1.03 M (C½ is the [GdmCl] where kf=ku). In all of 

these studies, the pre- and post-transition baselines had been removed. Baseline behavior is 

useful for interpretation. We also wanted to assess the stability at pD 9.0 since published data 

was for lower pH values. 

 

Figure 5.1: Equilibrium melt of MBP at pH 9.0 and 20 °C. CD absorption was measured at 222nm, fluorescence 
measurements were acquired with 280nm excitation and a 309 nm long-pass cutoff filter between the sample and 
photomultiplier for measurement. 

 In our hands, denaturation at pD 9.0 follows a distorted sigmoidal curve with non-linear 

baselines, shown in Figure 5.1. The melting curve can be extrapolated to a global stability of 5.12 

± 0.33 and 5.38 ± 0.32 kcal/mol for CD222 and fluorescence, respectively. This extrapolation 

assumes unfolding and refolding are two-state processes; we know that MBP likely violates this 

assumption. The usual 6-parameter Santoro-Bolen equation (37) will produce a relatively good 

fit to any reasonably sigmoidal curve, regardless of whether the system is two state (166).  

 Baseline curvature such as we observe in the post-transition region of Figure 5.1, may 

also cause the Santoro-Bolen equation to produce misleading results. Using only the data 

between 0.2-1.2 M GdmCl, the Santoro-Bolen stability estimate increases to 6.5 kcal/mol (see 

Figure 6.3, page 110). Additionally, the baseline curvature may indicate a second transition.
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 We turn to NHX experiments for reliable estimates of global stability, as has been done 

before (140). When assessed by HX NMR in 2D, (page 36), we find 21 amides (NMR cross peaks) 

that do not appreciably exchange (< 5%) in 24 hours at pD 9.6, nor do they exchange in 2 

months at pD 7.5 (data not shown). Thus, we can suggest a lower limit for the global stability to 

be ~15.0 kcal/mol, consistent with the estimates provided by calorimetric studies. Native 

stability was not the focus of this work; we are interested in the denaturant melt because it 

allows us to draw inferences about the burst behavior as discussed later. 

Kinetic Refolding at pH 9.0 

 

Figure 5.2: MBP folding and burst amplitude assessed by a variety of optical probes. 

 D-MBP (10 µM) was unfolded in 2 M GdmCl and then diluted 1:9 into pD 9 buffer to 

initiate refolding, subsequent kinetics were observed by a variety of optical probes shown in 

Figure 5.2 – solid lines drawn through the data represent double exponential fits to the data. 

With the exception of the ANS binding data, all measurements shown in Figure 5.2 were 

normalized to U and N endpoints19. Due to the growth and decay phases in the ANS data and 

                                                           
19 We observed a low level of photo-bleaching to different extents in the tryptophan fluorescence traces 
(excited with 280nm photons) necessitating a point-wise normalization scheme,

ˆ( ) ( )( ( )) ˆ ˆ( ) ( )
U

N U

y t y t
Norm y t

y t y t
−= −

; for tryptophan fluorescence, N and U baselines were fit by exponentials, 
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because both endpoints (U=0.44, N=0.53) gave lower signals than the observed data, the signal 

intensity directly from the photomultiplier for ANS data is multiplied by a constant such that the 

maximum is coincident with 1.0 on the y-axis. Within the dead time20 of spectroscopic 

observations, MBP exhibits a fast initial burst-phase increase in tryptophan fluorescence, ANS 

binding, and the formation of ~40% of its native circular dichroism signal (CD222) corresponding 

to as much as ~20% helical content. The burst-phase signal persists for approximately 500 ms, as 

if it has reached pseudo equilibrium before subsequent changes in signal are observed.  

Single Jump Double-Jump ANS 

CD Fl Fl U = 0.44, N=0.53 

Burst Amplitude 44% 20% 13% 0.46 (+) 

λ1 
Amplitude 21% 18% 44% 0.08 (+) 

Lifetime 15.1 ± 2.1 sec 16.0 ± 0.5 sec 9.3 ± 0.1 sec 3.6 ± 0.01 sec 

 

λ2 
Amplitude 34% 62% 43% 0.47 (-) 

Lifetime 80.5 ± 6.3 sec 92.8 ± 0.8 sec 74.1 ± 0.7 sec 159.5 ± 0.5 sec 

Table 5.1: Fit parameters for kinetic optical data shown in Figure 5.2. Italicized values represent fits to non-normalized 

values. For ANS data, the signs + and – represent growth and decay, respectively; the N signal for ANS fluorescence is 

equivalent to the fit value for 0y  and the U signal was determined by averaging the unfolded baseline. 

 We fit the optical data to double exponentials (solid lines in Figure 5.2),

τ τ
   

− −   
   = − −1 2

0 1 2( )

t t

y t y A e A e  , and determined the burst-phase amplitude by − −0 1 2y A A  ; the fit 

parameters along with errors (95% confidence band) are given in Table 5.1. These results are 

similar to those reported in the literature (107) for single jump experiments; no double jump 

refolding data has been published.  

 A double jump experiment allows one to test for proline mis-isomerization effects on 

folding kinetics. As molecules are only unfolded for a few seconds in the double jump, proline 

residues do not have time to re-isomerize; thus, the effect of proline mis-isomerization on 

relaxation constants may be eliminated. We find a small difference in relaxation properties 

                                                                                                                                                                             
variables with hats represent values predicted from this fit. For CD and ANS data, variables with hats 
represent the average value of the N and U baselines. This was done to avoid propagating error. 
20 23 ms for CD, 3.2 ms for Fl double jump, 8.3 ms for Fl single jump and ANS. Early time points shown in 
Figure 5.2 were symmetrically averaged (0-200ms) such that the first point was 100 ms to increase signal-
to-noise. We found that the burst-phase was unresolved at our shortest dead-time of 3.2 ms. 
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between single and double jump experiments, apparently due to proline mis-isomerization; but, 

the differences are not substantial, the protein still folds slowly.  

Fast Initial Compaction & The Burst-phase 

 

Figure 5.3: Exploring the burst-phase in MBP. (A) Fitted (burst) amplitudes from a kinetic refolding experiments (pH = 
9, 20 °C, Figure 5.2) with normalized melt data for comparison (same data as Figure 5.1). (B) Experiments collected by 
SAXS measurements and (inset) envelope reconstructions for the burst species. (C) Charge-state distribution 
experiments (see text for description). (D) Viscosity dependence, of folding assessed using glycerol to increase 
viscosity and reported in units of centipoise. kf was determined using a single stretched exponential21 over two 
rounds of fitting. First by floating the stretching parameter (β) and rate for each condition and then refitting the rates 
with β fixed to the average value from the first round of fits (β = 0.63 as shown here). 

 As discussed in Chapter 1, unfolded states may gradually expand in response to 

increasing concentrations of chemical denaturants. Extrapolation of the unfolded baseline 

measured in thermodynamic melting experiments has been used to test for this, if the burst 

amplitude is equivalent to the baseline extrapolation, one concludes that the burst-phase signal 

change does not represent a barrier-crossing event. In the denaturant melt (Figure 5.1) there is 

                                                           
21 ( ){ }0( ) |0 1fk t

y t y Ae
β

β−
= − < ≤
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no clear demarcation between the cooperative transition and the unfolded baseline therefore it 

is difficult to decide on what data to use for the baseline. As a qualitative test, in Figure 5.3A, we 

normalize the melt data (blue and black lines for CD and Fl data) to kinetic endpoints (N=1, U=0; 

red circles) and compare it to burst amplitudes (plus symbols) observed in a refolding 

denaturant series. The kinetic burst amplitudes seem to follow the same trend as the post-

transition equilibrium measurements and the post-transition shoulder that appears in both CD 

and Fl melt data may represent a cooperative transition. Perhaps the burst represents some 

cooperative folding event. Structural information is required to determine the cause for burst 

behavior observed in MBP. 

 We collected small angle x-ray scattering data to determine the Rg (radius of gyration) of 

the mature burst species (Figure 5.3B). In these experiments, 11-second exposures were 

collected under continuous flow conditions with an experimental dead time of 0.7 seconds. 

Native and Unfolded profiles were collected using standard SAX equilibrium protocols. In 2M 

GdmCl, unfolded MBP has an Rg 73.3±0.5 Å, similar to the value expected for a random coil of 

appropriate length, 69 Å, computed by Rg=2N0.6 (36). The native structure has an Rg of 22.3±0.7 

Å in 0.2M GdmCl, this is practically identical to the expected value of 23 Å calculated from the 

crystal structure (PDB ID: 1OMP). After 0.7±0.1 seconds of refolding, the measured Rg has 

dropped to 36.4±1.1 Å representing 75% of the total ΔRg between native and unfolded states. 

The P(r) curves clearly demonstrate the near-native compaction occurring early during refolding 

experiments. Three representative envelope reconstructions generated from the P(r) 

distribution are shown in the Figure 5.3B inset. Unlike the image brought to mind by term 

molten globule, this species in MBP appears to be polyglobular, characterized by multiple small 

clusters likely stabilized by hydrophobic side-chain contacts. 

 Figure 5.3C shows the charge state distribution (CSD) produced by injecting MBP by 

electrospray ionization (ESI) into a mass spectrometer (LTQ orbitrap XL) within ~50 ms of 

initiating folding. The spectrum is shifted from the high charge state pattern characteristic of 

unfolded protein toward the much lower charge state distribution of the native protein, 

consistent with a significant compaction and reduction in surface exposure to solvent (235, 236). 

A small population fraction with CSD like that of the unfolded protein is also seen but it can be 

noted that the populations measured in this way are greatly biased toward exaggerating the 
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more unfolded component (235). This indicates that the collapsed conformation(s) observed in 

SAXS experiments at 0.7 seconds of folding time are perhaps present in the initial burst-phase.  

 Others (232) have suggested that collapsed states should have relatively high internal 

friction because of the random intrachain interactions that must form to stabilize collapsed 

ensembles. If this were the case, one might expect the folding rate to be relatively insensitive to 

solvent viscosity because chain diffusion rates would depend on first breaking spurious contacts 

formed in any given collapsed state. CD and fluorescence data show virtually no dependence of 

folding rates on solvent viscosity (Figure 5.3D). This observation indicates that polypeptide 

reconfiguration during the conformational searching that ultimately organizes the native 

structure is not limited by diffusional searching of the polypeptide chain through free solvent 

but rather by the difficulty of conformational reorganization within and between condensed 

polyglobular regions. Significant differences between our findings and timescales suggested for 

restricted chain diffusion in smaller proteins commonly attributed to so-called internal friction 

(237, 238) should be appreciated. The present time scale is nine orders of magnitude slower 

than is observed in small molecules, in part due to the degree of chain collapse, but also 

because the folding event measured here requires a specific nearly simultaneous multi-point 

interaction rather than a general two-point interaction as for example in a FRET experiment. 

Conclusions from Optical Experiments 

 In summary, many measurements agree that, upon dilution from unfolding denaturant, 

MBP experiences a fast molecular collapse into an ensemble of compact polyglobular forms and 

then folds slowly in a way that is limited by the difficulty of chain reconfiguration therein. The 

optical burst signal is most likely the result of transitioning from an expanded random coil state 

to the collapsed state upon dilution from high denaturant concentration. However, these widely 

used methods only monitor whole molecule behavior. They provide little detailed information 

about structure in the compact state or the folding mechanism that produces the native state.   
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5.2.2 Kinetic Pulse Labeling 

 

Figure 5.4: KHX experiment diagram and MBP peptides used in this work (figure taken from reference (3)). (A) 
Experimental work-flow for pulse labeling experiments. The box labeled “Low pH, H2O/AcCN…” represents the on-line 
system shown in Figure 4.1 on page 52. (B) 225 unique peptides in the peptide pool for pepsin-proteolyzed MBP.  

 To achieve a structural picture of the folding process, we employed a quench-flow HX 

pulse labeling experiment, diagramed in Figure 5.4A, measured by mass spectrometry. During 

kinetic refolding, D-MBP, unfolded in 2 M D6-GdmCl, is diluted 1:9 into a pD 9.0 D2O solvent 

initiating refolding at 0.2 M D6-GdmCl. After variable refolding time, the labeling pulse is applied 

by further diluting the sample 1:4 with a pH 9.0 H2O buffer for a duration of 12 to 43 ms at 20 

°C. The average exchange lifetime of an unprotected amide is ~1 ms in these conditions. Amides 

in pre-existing H-bonds when the pulse is applied tend to retain the deuterium label. 

Immediately after the pulse, the labeling reaction is slowed by pH reduction and cold 

temperature (section 4.3, page 60), the sample digested and washed, the fragments separated 

by HPLC, and their mass distributions measured by MS (section 4.2, page 50). 

 We find 225 unique peptides from pepsin proteolysis (often with multiple charge states) 

that each monitor the folding behavior of the protein segment from which it was derived. These 

peptides are shown with respect to their location in the MBP primary sequence in Figure 5.4B. 



 

The peptides are identified 

the HDpop program (section 4.4

regarding signal-to-noise and with a larger separation in mass between p

inferences about MBP folding in this work; within this set, every peptide had at least one 

overlapping peptide to provide consistency checks.

 In the discussion below, it will be useful to recall earlier discussions regarding 

state sensitivity introduced in Chapter 2 on

collect an unfolded control, pulsed in 2M GdmCl, and this identifies

observed for any given peptide

sample that has been refolded on the bench 

distribution reflects how the peptide will appear if properly folded. 

exchange as indicated in Chapter 4.

spectrum reflect the partition of molecules between

22), identified by HDpop at the 99% confidence interval, and the centroid masses of each, after 

back-exchange correction, indicate the number of protected sites.

Figure 5.5: The heavy population amplitude vs. folding tim

 By following the relative area of the heavy

experiment, one is able to estimate the folding lifetime

ntified as described in Chapter 4 and the extent of labeling determined by 

section 4.4.2, page 73). We only used 116 peptides of the highest quality 

noise and with a larger separation in mass between populations to make 

about MBP folding in this work; within this set, every peptide had at least one 

overlapping peptide to provide consistency checks. 

In the discussion below, it will be useful to recall earlier discussions regarding 

introduced in Chapter 2 on page 21. For HX MS pulse labeling experiments, we 

collect an unfolded control, pulsed in 2M GdmCl, and this identifies the lightest population 

observed for any given peptide. We also collect a native control by pulsing a fully deuterated 

sample that has been refolded on the bench for one hour prior to pulse application 

distribution reflects how the peptide will appear if properly folded. All data is corrected for back 

exchange as indicated in Chapter 4. The relative areas of each sub-population

reflect the partition of molecules between observed states (recall Figure 

at the 99% confidence interval, and the centroid masses of each, after 

exchange correction, indicate the number of protected sites. 

: The heavy population amplitude vs. folding time for 116 peptides.   

By following the relative area of the heavy (native) population during a folding 

o estimate the folding lifetime of each peptide. The entire 
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peptides of the highest quality 

opulations to make 

about MBP folding in this work; within this set, every peptide had at least one 

In the discussion below, it will be useful to recall earlier discussions regarding HX MS 

For HX MS pulse labeling experiments, we 

lightest population 

by pulsing a fully deuterated 

for one hour prior to pulse application – this mass 

All data is corrected for back 

population in a given mass 

Figure 2.2 on page 

at the 99% confidence interval, and the centroid masses of each, after 

 

population during a folding 

The entire time series, 



 

pulsed for 43 ms at each time point, is shown 

midpoint of exchangeable sites

analyzed first by breaking the

protection pattern. 

Early HX Protection 

Figure 5.6: Peptides that show early protection (13 peptides with high signal

 
Region 1 
  
Region 2 
Region 3 
  
Region 4 
 
Table 5.2:  Regions of the molecule identified by peptides in our KHX 
during refolding experiments.  

 Incomplete protection was observed in 

peptides segregate into four distinct regions of the protein. By comparing these peptides with 

others, we are able to define sequence boundaries, given in 

30% of the molecules were found in the protec

however, two regions (1 and 4) stood out because the numbers of protected de

pulsed for 43 ms at each time point, is shown in Figure 5.5 and peptides are colored

midpoint of exchangeable sites to show their positions in the protein sequence.

analyzed first by breaking the peptides into categories based on the time dependence of their 

Peptides that show early protection (13 peptides with high signal-to-noise are shown)

Location D's 
90-97 7 
104-111 3 
149-162 3 
235-247 6 
251-262 4 
340-347 6 or 7 
Total  30 

Regions of the molecule identified by peptides in our KHX experiment that show 20

Incomplete protection was observed in the thirteen peptides shown in 

peptides segregate into four distinct regions of the protein. By comparing these peptides with 

others, we are able to define sequence boundaries, given in Table 5.2, for this behavior.

30% of the molecules were found in the protected heavy populations for these peptides; 

however, two regions (1 and 4) stood out because the numbers of protected de
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peptides are colored by the 

protein sequence. This data is 

peptides into categories based on the time dependence of their 

 

noise are shown) 

experiment that show 20-30% protection early 

the thirteen peptides shown in Figure 5.6, these 

peptides segregate into four distinct regions of the protein. By comparing these peptides with 

, for this behavior. Only 20-

ted heavy populations for these peptides; 

however, two regions (1 and 4) stood out because the numbers of protected deuterium were 
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equivalent to that seen in their respective native controls, the heavy populations in regions 2 

and 3 were less protected than native.  

 Incomplete protection could not be the result of a fraction of the molecules reaching 

the native state on a fast folding track because we did not similar behavior in the other 

peptides. There are other possibilities. The fractional behavior could be the result of 20-30% of 

the molecules in these regions being protected, while the others are not. Alternatively, it could 

mean that 100% of the molecules were protected during early folding in these 4 regions but 70-

80% of those molecules opened and exchanged during the 43 ms pulse. In most other peptides 

the light population mass did appear to grow slightly heavier in the first second of folding – this 

would be expected if spurious low-level protection resulted from an aspecific increase in chain 

density. We could not decide between these explanations without measuring structural opening 

rates. 

 

Figure 5.7: Modulation of the pulse time at a fixed folding time (reprinted from reference(3)). (A) All peptides, 
including those with and without two populations are plotted in terms of their fractional change in centroid mass with 
respect to the unfolded and fully deuterated endpoints. (B) Peptides that display bimodal spectra are plotted as the 
population fraction protected versus the pulse length (strength; blue traces represent peptides that form the 7 s 
intermediate (already 7% folded). (C,D) Non-bimodal and bimodal data, identified by black lines in panels A & B, are 
shown to illustrate respective spectral responses to pulse modulation. Centroids are indicated with vertical dashed 
lines and HDpop envelope fits in red with sub-population(s) shown in black dashed lines. (E) A visual presentation of 
the 12 ms pulse length data. Peptides with two populations are shown as bars with heights representative of the 
fraction of molecules heavy (ie. panel B & D) and fractional centroid values (ie. panels A, C-D) are given for all 
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peptides with a solid black line, each drawn through peptide midpoints. AGADIR helical propensities, and Kyte-
Doolittle hydrophobicity22 (15 – residue sliding window) are also shown. 

 To explore these possibilities, we modulated the pulse duration between 12 and 43 ms 

and held the folding time fixed at 0.5 seconds; the results are shown in Figure 5.7. For all 

peptides, regardless of whether they have two populations, the mass centroid taken for each 

pulse length was scaled to the mass centroids of experimental endpoints23 that are unaffected 

by pulse length (0s and All D). Fractional centroid values are shown with respect to pulse time in 

Figure 5.7A. Representative unimodal and bimodal mass spectra are shown in Figure 5.7C-D – 

the centroids of both example peptides, shown in black in Figure 5.7A, are represented by the 

vertical dashed lines for each pulse time in panels C and D. The majority of one-population 

peptides exhibited low-level protection with roughly equivalent responses to reduction in pulse 

time; however, this was not universal – the thirteen peptides from Figure 5.6 with two 

populations at 0.5 seconds of folding deviated from this trend. 

 For all peptides with clearly two populations at 0.5 s, we are able to plot, in Figure 5.7B, 

the change in heavy and protected populations with respect to pulse time. Blue lines represent 

peptides which go on to form the 7 second intermediate, these areas of MBP are already 7% 

folded at 0.5 seconds of folding and are discussed later. From the four regions in Table 5.2 that 

show 20-30% of the molecules in a heavy population in the 43 ms pulse, the same two regions 

(1 and 4) that stood out earlier appear to be fully protected in the 12 ms pulse. Many 

overlapping peptides confirm this observation.  

 What can be said about these observations collectively? The fact that we see two 

discrete populations does indicate regions of MBP exchange by some cooperative unfolding 

mechanism and the similar responses to pulse time reduction in regions 1 and 4 could be 

suggestive that both are members of the same cooperative structural unit. These two segments 

of primary structure do not interact in the native protein; thus, we do not expect this to 

correspond to native-like structure but cannot eliminate the possibility that this represents an 

early, non-native, low stability intermediate present in almost every molecule. The other regions 

                                                           
22 Computed using the setting “Hphob. / Kyte & Doolittle” on http://web.expasy.org/protscale/ with a 
window size of 15 residues. 
23 Centroids in these endpoints do not respond to changes in pulse length, thus we were able to use the 
information for scaling purposes. 



 

of the protein that exhibit low levels of protection appear to be

bonding with low stability

energetic penalty of non-paired potential H
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represent rapid reconfiguration of random H-bonding patterns in the polyglobular state, 

behavior that is reminiscent of what might be expected in the Vijay Pande kinetic hub model of 

protein folding (239). The two regions of the molecule with apparent correlated protection are 

not expected in the kinetic hub model, this behavior suggests classical pathway-directed folding. 

We are able to hypothesize that that chain reconfiguration times within the randomly collapsed 

high-energy polyglobule are likely on the millisecond time scale (ie opening reaction lifetimes 

are ~10 ms) and that opening reactions are generally followed by H-bond reformation times 

faster than ~1 millisecond.  

 Burial has been shown to drive H-bonding (240); earlier work by Ken Dill demonstrated 

that collapsed but unfolded chains will create an environment that favors helix formation (42); 

both regions that near 100% protection in the 12 ms pulse are capable of forming amphipathic 

helices. It is likely that the energetic need to satisfy H-bonding requirements of the polar 

backbone amide group accounts for the large CD222 burst shown in Figure 5.2; however, the 

regions showing substantial protection do not correlate with AGADIR predictions for helical 

propensity (241-243). Perhaps the four regions in MBP that show early protection and especially 

those that appear to be completely protected at the shortest pulse lengths have a higher 

probability of helix formation in the collapsed polyglobule. Figure 5.7E shows that these regions 

with nearly 100% protection are geometrically correlated with two of the four regions of high 

hydrophobicity in MBP (see footnote 22, page 93); it is possible that the high hydrophobicity of 

the chain in these sections results in a higher probability for burial of these segments during 

collapse. 

 Consistent with the idea that a compact relatively unstructured polyglobule should 

promote random H-bonding interactions throughout the molecule, we observe only one 

population in the majority of peptides and their mass centroids progressively grow heavier with 

a reduction in pulse duration after 0.5 s of folding time. This data indicates heterogeneous low-

level protection throughout the molecule and is highlighted by the black line in Figure 5.7E 

representing the fractional centroid value for all peptides at the 12 ms pulse.  

 These results indicate widespread, diverse, low-level HX protection among the various 

sites within each protein molecule and for any given segment distributed throughout the 
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protein population. This behavior is consistent with the development of heterogeneous non-

native molecular collapse in the initial denaturant dilution step. Apparently, structural collapse 

is too fast to allow native-like structure formation initially, and produces a condition like that in 

the equilibrium melting experiment after the main melting transition (Figure 5.1 & Figure 5.3A). 

Distinct, stable structure forms on a much slower time scale, suggestively because the randomly 

collapsed milieu interferes with subsequent conformational searching.  



97 
 

The 7 s Obligatory Intermediate 

 

Figure 5.9: Intermediate and Slow Folding Behavior for MBP (figure taken from reference (3)). (A) Peptides originally 
shown in Figure 5.5 are now recolored to represent our interpretation of this data. Blue traces are peptides from the 
7 s intermediate and black traces represent early folding peptides shown in Figure 5.6. Others that fold in the very 
slow grouping are graded from early (green), through gray, to late (red). (B) Contact map colored to match panel A. 
(C, D) Placement of the blue, green, and red segments in native MBP, stars indicate the sites of slow folding mutants, 
see text. (E-G) HX mass spectra showing the time-dependent folding of color-marked segments in panel A. 
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strands can be observed to protect by paying attention to their unfolded populations centroid 

masses. As first mentioned in footnote 6 on page 23, if two or more populations are not 

sufficiently separated, HDpop will default to a single cumulant population whose time 

dependent change in mass reflects the fractions of molecules ( f ) in each unresolved 

subpopulation. The mass of a cumulant population is described by 

= + +1 2 1 21 2
/

cumulant
Mass f Mass f Mass f f . In general, mass shifts in this dataset are 

restricted to the heavy population and reflect stability increases during folding (i.e. Figure 5.9E, 

heavy population); however, for the two small β strands in the 7 s intermediate, we observe a 

very rare light population mass shift, shown in Figure 5.10, for peptide 8-20. Inferring population 

transitions from mass shifts are less convincing than if we had measured those population 

transitions directly; but, is hard to imagine how the other strands in Figure 5.9C, with resolved 

population transitions, could occur without these two other strands also forming 

simultaneously. All evidence is consistent with this interpretation. 

The slow native transition 

The remaining peptides transition in a two-state although not accurately exponential 

way to a highly protected form, on a 60-120 s time scale (Figure 5.9A, red, grey, green). This 

time scale matches the spectroscopic folding kinetics in Figure 5.2 and Table 5.1, which tracks 

native state formation. The spread of folding rates among the late folding segments is clearly 

broader than is seen for the 7-second class (Figure 5.9). Earlier and later folding peptides are 

colored. The bimodal transition behavior of peptides drawn from the earlier and later regions 

are shown in Figure 5.9F&G. Folding halftimes for the differently colored regions are ~55 s for 

the earlier (green) peptides and ~100 s for the later (red) ones.  

The spread suggests that different protein segments fold with somewhat different time 

signatures, but the large number of peptides with apparent half-times between 60-120 seconds 

are too close to resolve into clearly separate groupings. It is interesting that peptides that 

occupy the earliest part of the spread (green) are adjacent to the 7 s intermediate structure in 

the native protein, as would be expected from the sequential stabilization mechanism (59). 

Similarly, the slowest folding peptides shown in red are remote and even in the other C-terminal 

domain of native MBP.  
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5.3 Impact of This Work 

 This work used standard optical techniques and a developing HX pulse labeling method 

to study the folding of the large, 2-domain, 370-residue maltose binding protein. Upon mixing 

into folding conditions, the unfolded MBP polypeptide quickly condenses. The results 

characterize the condensed state and display the subsequent formation of an obligatory on-

pathway intermediate and the even slower folding to the native state.  

5.3.1 Insight into Earlier MBP Folding Work 

 N-domain mutants (V8E, Y283D) located within the 7 s intermediate (stars show their 

locations in Figure 5.9C) have been previously found to slow folding and increase aggregation 

propensity (106). In one case, the malE31 double loop mutant (G32/I33 to D32/P33) reduced 

the earliest resolvable Fl280 lifetime to 110 s and almost all of the protein, upon over-expression, 

aggregated into inclusion bodies. This mutant has little effect on the unfolding rate (107). In the 

same work, a similar loop double mutation made in the C-domain has little effect on the earliest 

resolvable F280 lifetime, does slow the later lifetime, and does not result in increased aggregation 

propensity. The C-domain mutant increases the unfolding rate. One way to interpret these 

observations would be to suggest that unfolding of the C-domain is rate limiting for unfolding 

studies, and that formation of the 7 s N-domain obligatory intermediate may protect the protein 

from aggregation. When the aggregation sensitive collapsed state is present for an extended 

amount of time, by these N-domain mutations, the concentration threshold for aggregation is 

reduced compared to that of the wild-type protein; therefore, increased aggregation propensity 

is observed.  

 Inquiries into the increased aggregation propensity resulting from these N-domain 

mutants began many years ago (106). These mutants were combined (244) in GroE chaperone 

studies. Where the wild-type protein does not interact favorably with GroE, the slow and 

aggregation prone N-domain mutants experience folding rate enhancement by interaction with 

the GroE chaperonin system (129). Later it was shown that this rate enhancement is due to the 

prevention of aggregation (245). It is clear that N-domain mutants located within the 7 s 

intermediate disrupt folding; thus, we are able to suggest that the conformation that is 

susceptible to aggregation is the aspecific polyglobule. 
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 A rate-limiting step (RLS) for MBP folding has been hypothesized to be the formation of 

N-domain structure (106), this hypothesis has been repeated in many other manuscripts so 

much that it has become something of a fact. More recently (246), authors suggested that the 

first step of MBP folding involves a concerted core assembly in both domains. Although these 

were reasonable conclusions, in both cases, the experiments were wholly incapable of 

addressing the question; our work is able to address these statements directly and find both to 

be incorrect. 

 Because we are able to define its structure, the 7 s obligatory intermediate suggests that 

the core of both the N and C domains are not formed in a concerted manner; the N-domain core 

forms first. We reconcile the observation that N-domain mutations (in the 7 s intermediate) 

slow both phases of folding whereas C-domain mutants only affect the slower of the two 

relaxation constants (107) by being able to show that the N-domain intermediate is obligatory – 

slowing formation of this intermediate will slow everything subsequent to this step. We are also 

able to reject that formation of the N-domain core is rate limiting because the N-domain core 

forms in 7 s. Folding of the C-domain is much slower suggesting that the RLS for folding lies in 

the formation of C-domain structure. A preponderance of evidence suggests that all molecules 

in transit to the native state must form the N-domain intermediate that we have identified at 7 

seconds.  

5.3.2 Protein condensation 

 A quantity of work on relatively small proteins has focused on the character of the 

unfolded state and its possible role in guiding subsequent folding (49, 76, 130, 232, 247, 248). Is 

the denatured state ensemble compact under native conditions at the start of the folding 

process? Is significant pre-folding structure present? If so, does it help to guide or hinder the 

folding process? These questions are significant for understanding protein folding and other 

biophysical properties such as the quality of water as a polypeptide solvent, the energy balance 

between the favorable drive to occlude hydrophobic surfaces and the unfavorable entropy of 

chain collapse, and the accompanying requirement to satisfy the H-bonding propensity of polar 

groups that become buried in the collapse step. 
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The methodology used here provides some answers, although large proteins like MBP 

with many more hydrophobic interaction possibilities are likely to bias more toward the 

collapsed condition in initial folding (249, 250). When unfolded MBP is mixed into folding 

conditions, the polypeptide chain rapidly condenses to a polyglobular form. Low level HX 

protection in the loosely compacted chain indicates that structure is dynamic, relatively 

unstable, and heterogeneous. Hydrophobic interactions that drive condensation bring together 

sites that allow ANS-to-protein binding and can similarly promote protein-to-protein 

aggregation. This includes binding of the exposed hydrophobic sites of apparently condensed 

but still unfolded proteins to the apical hydrophobic sites of GroEL. Large proteins like MBP are 

the common client substrates of the GroE chaperonin system and other chaperonins (251) 

which function to bind and shield them from aggregation during their vulnerable slow-folding 

time period (252). The present characterization of the MBP pre-folded state supports this view. 

Over time the entire MBP refolding population self-organizes, forming a distinctly 

structured, native-like intermediate, and then proceeds to assemble the native state. It appears 

that the compacted condition contributes to the slow folding observed, in part because it 

constrains chain reconfigurational searching. Results show that the weakly H-bonded 

interactions detected in the earliest collapse do not contribute to formation of the early 

intermediate and probably not to later folding steps.  

5.3.3 Nature of the Protein Folding Pathway 

 Figure 5.9E, F & G show isotopic envelopes for peptides that help to define the 7 s 

intermediate (blue), the following step (green), and a slowest (red) peptides. These spectra 

directly show that 100% of the population adopts each of these structures. Given that the pulse 

time was 43 ms (pH 9, 20oC, where intrinsic HX lifetime is ~1 ms) and the D-occupancy is 

maintained at the native level, the protection of these structures against pulse labeling is > 100, 

corresponding to > 3 kcal/mol of stability assuming EX2 behavior, and/or greater than 150 ms 

unfolding lifetimes. In comparison, the D-occupancy observed for peptides protected in the 

burst-phase decreases even for shorter pulse lengths indicating protection stability < 1 kcal and 

unfolding lifetimes on the order of 12 msec.   
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 In the early history of the protein folding field, it was assumed that proteins fold 

through discrete intermediates in discrete pathways, like other biochemical pathways. Early 

theoretical efforts to study protein folding mechanisms led to a view of the pre-folded protein 

that seems reminiscent of the initial condensed state studied here. It was inferred that proteins 

then fold through multiple pathways (71, 73-82). In spite of a dearth of experimental 

verification, this view is still current and experimental as well as theoretical folding results are 

often phrased in this language. Some spectroscopy-based experiments have been taken to 

suggest a small number of folding pathways (85, 86, 253-255), but it has been shown that this 

kind of data cannot distinguish alternative parallel pathways from a given pathway with 

alternative misfolding barriers (59, 256).  

A quantity of more recent experimental work using hydrogen exchange and associated 

methods has found much more organized folding behavior. Many proteins have been found to 

form at least one specifically structured native-like on-pathway intermediate (110-116, 120-124, 

257-259), and even more impressively an organized folding sequence that progressively 

assembles the native protein (5, 9, 48, 116, 126). The present work used an advanced mass 

spectrometry analysis to extend HX pulse labeling folding studies to a larger protein with multi-

state folding where multiple pathways, if they exist, should be more evident. The results clearly 

define the formation of an initial obligatory native-like intermediate and the subsequent 

formation of adjacent structure apparently in a stepwise sequential stabilization way. This work 

adds to the growing list of experimental demonstrations that proteins tend to fold through 

distinct intermediates in distinct pathways. Recent progress in physically-based molecular 

dynamics simulations now finds similar, repeatable folding pathways for a number of small 

proteins (67, 260).   

5.4 Methods 

5.4.1 Protein Purification 

 The version of E. coli apo-MBP (Protein Data Bank (PDB) ID: 1OMP) used herein is the 

wild-type mature protein without its 26-residue leader sequence. Expression and purification 

have been described previously (106). 
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5.4.2 Optical Experiments 

 Equilibrium melting experiments used 0.8 µM [MBP] in a 20 µM borate buffer at pD 9.0. 

Following a change in denaturant, samples were allowed to equilibrate for 20 minutes prior to a 

20-second signal acquisition. Kinetic refolding experiments were collected using the same 

conditions for refolding as described below for pulse labeling. For measurement of ANS binding, 

126 µM of ANS (8-Anilino-1-naphthalenesulfonic acid) was added to refolding buffers, 380 nm 

photons were used for excitation and emission recorded using a long wavelength pass filter 

(CWI Mellties Griot) with 50% transmission at 450 nm. Double jump experiments were 

performed by first diluting 10 µM deuterated protein into 3 M D6-GdmCl at pD 9 for 3 seconds 

before a 10-fold dilution into refolding conditions (0.5 µM protein, 0.3 M D6-GdmCl, pD 9). SAXS 

experiments were collected using the same refolding conditions employed for pulse labeling, 

dilution was performed in a home-built t-mixer before passing through the BioCAT  (APS, 

Argonne National Labs) under continuous flow conditions measured for an 11-second exposure 

to increase signal-to-noise following 0.7 seconds of dead time. These samples were measured by 

our collaborator Dr. Tobin Sosnick and his graduate student James Henshaw in November of 

2012. 

5.4.3 KHX MS Experiments 

 Unfolded MBP, initially fully deuterated at exchangeable hydrogen sites in D2O, was 

diluted into folding conditions (pD 9, D2O, 0.8 µM protein, 0.2 M D6-GdmCl, 20oC), allowed to 

fold for some predetermined time, and then probed by a brief pulse of D to H labeling (usually 

43 ms) to obtain a snapshot of the structure that had been formed to that point. Initial dilution 

into D2O instead of the usual H2O was used to avoid back exchange loss of D-label during the 

lengthy (many seconds) pre-pulse period. For pulse labeling, the refolding protein was diluted by 

5-fold into H2O buffer at pH 9. D-label on amide sites not yet protected by H-bonding exchanges 

to H during the brief pulse (average unprotected HX time constant ~1-2 msec). The labeling 

pulse was terminated by dilution into low pH (pH 2.5, 1.2 M GdmCl, ~0oC) as suggested by 

recent work (2). For the 0 s time point (unfolded control), the pre-pulse folding phase was 

eliminated and 2M GdmCl was added to the pulse buffer. For the native control, the refolding 

dilution was performed manually and allowed to fold for one hour before being pulsed and 

quenched as described above. To estimate back-exchange, a fully deuterated sample was 
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collected as described in previous work (2). Immediately following the low pH dilution, the 

samples were injected into an online flow system (4) where the protein was cleaved into many 

peptide fragments in an immobilized pepsin column, the fragments were caught in a trap 

column and washed, and then separated by HPLC (shaped H2O/AcCN gradients, see Appendix B,  

were employed (2)) and injected by electrospray ionization (ESI) into the mass spectrometer. 

The resulting mass spectra were analyzed by the ExMS program (202) to identify the many 

peptides and our in-house program, HDpop, to measure their remaining D-label. Spectra for 

multiple charge states of the same peptide were added to increase S/N. The reproducibility of 

measured bound D per peptide in replicate experiments was in the range ± 0.01 D/peptide. 

Comparison of data for multiple overlapping peptides allows many internal consistency checks. 

For structural analysis, we used subsets of peptides with high abundance and signal/noise (116 

peptides of the 225 shown in Figure 5.4B).   
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Chapter 6 –Concluding Remarks & Future Directions 

 

6.1 Summary & Sentiment 

 Understanding the kinetic accessibility of the native conformation has been a goal of 

protein folding science since the very beginning. The main problem has been a lack of necessary 

tools to study the process. We, as protein folding researchers, have learned a great deal from 

small protein studies; though, large proteins, such as MBP, dominate our proteome and we 

know very little about their folding dynamics. Experiments that have been sufficient for smaller 

proteins are not particularly well suited for larger species. In this dissertation, the folding 

behaviors of the largest protein studied at structural resolution to date are described using an 

advanced hydrogen exchange mass spectrometry experiment created for this purpose. The 

experiment provides incisive structural information on the process; here we will take a moment 

to review the key findings for MBP, their significance, and then address potential future 

directions for both MBP and large protein folding research in general. 

 The argument has been raised that because the unfolded state is characterized by 

random coil conformations, at the onset of folding some of these random conformations should 

be better suited to fold than others, there should be a spread of folding rates and perhaps a 

plethora of independent and unrelated routes leading to the energetic minimum of the native 

state. This explanation must soothe the mind because it has become immensely popular. After 

all, it is reasonable to ask, how could stochastic chain diffusion give rise to an apparently 

predetermined pathway? 
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Figure 6.1: Summary of the early and late folding events in MBP. (A) Almost identical to Figure 5.7E, expanded for 
ease of inspection and with the envelopes generated by SAXS measurements shown in the inset. This is the result of 
pulsing for only 12 ms at 0.5 seconds of folding. The heavy population fraction is shown in bars for those peptides 
with two populations. The fractional mass increment interpolated between unfolded and fully deuterated controls is 
shown for every peptide in the thick black line. Secondary structures in the native state and sequence helical 
propensities and hydrophobicity are shown for reference. More information can be found in Chapter 5. (B) Groups of 
peptides shown individually in Figure 5.9 have here been averaged to give a better representation of each group. (C) 

The same as Figure 5.9D, reproduced for convenience.  

 It appears that the aspecific collapse, summarized in Figure 6.1A represents a plethora 

of chain configurations, with a nearly native radius of gyration, which leads to the optical burst 

signal. This state represents the denatured state ensemble (DSE) under permissible folding 

conditions. About the presence of structure in DSEs, we do observe low levels of protection 

throughout the molecule as shown by the centroid changes and find two particular regions with 

exceptionally high levels of early protection. We find no indication that these two elements are 

native-like; however, they are the primary candidates for the gain in CD222 signal observed 
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by features expected for pathway-directed folding. The energetic descent to the native 

conformation in MBP fits the predetermined pathway model. 

 The emergence of a predetermined pathway from stochastic diffusive chain kinematics 

is not surprising when one remembers two well-established physical principles. The first being 

the principle of cooperativity and the second being an interaction principle observed throughout 

biology known as sequential stabilization. Cooperative structural units have a tendency to 

explore particular regions of conformational space more frequently due to the energetic 

benefits of those configurations relative to the others that are available. We call these basic 

cooperative units foldons. All foldons are randomly appearing and disappearing during the early 

stages of folding, albeit some foldons appear at a higher frequency than others. When the most 

stable foldon collides with the second most stable foldon, they mutually stabilize one another 

through the free energy of association. Together, the foldons persist for much longer than either 

taken in isolation. This increases the probability that the first two foldons are folded properly 

when the next foldon transiently forms and so on. The third and later foldons only experience 

the additional stability from binding to the conformational scaffold containing all earlier foldons; 

else pathway branching may occur. A deterministic sequence of macroscopic events emerges as 

less stable foldons are sequentially stabilized by their addition to a growing conformational 

scaffold; their addition further stabilizes the scaffold. 

 The founding father of folding research, Christian B. Anfinsen, introduced everyone to 

the longstanding view that the kinetic accessibility of the native conformation is determined by 

the sequence of amino acids alone. This specificity of the primary sequence in proteins serves as 

the key difference between the physics of protein folding and that of simple polymers and spin-

glasses26. This can be shown simply by the fact that random sequences of amino acids do not 

fold into specific structures.  

 Experimental evidence has shown that at least one specifically structured native-like on 

pathway intermediate exists for many proteins (110-116, 119-124, 257, 258). Organized folding 

sequences have also been demonstrated experimentally (5, 9, 48, 116, 126) and more recently 

                                                           
26 Models of multiple independent and unrelated pathways were born out of simple polymer physics & 
theory. 
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in simulation for small proteins (67, 260). Definitive evidence for innumerable independent 

folding pathways, as implied by the IUP model, have not been observed in experiments that 

have the capacity to directly measure this type of behavior such as the one presented here.   

6.2 Future Directions 

6.2.1 Low pH Molten Globule & The Kinetic Polyglobule 

 Prajapati et al. conducted a study of molten globule states in periplasmic binding 

proteins, one of which was MBP (261). They found that at low pH, MBP adopts a molten globule 

(MG) conformation and binds the hydrophobic dye, ANS, just as we observe early during the 

folding of MBP (shown in Figure 5.2, page 84). In a separate study, it was shown that unfolding 

of the MG in MBP was characterized by significant ΔCp and ΔH (162).  

 

Figure 6.3: Re-analyzing the denaturant melt of MBP as measured by optical fluorescence. The data shown here is 
also presented in Figure 5.3A page 86. The Santoro-Bolen fit to the entire GdmCl range along with the residuals are 
shown in Figure 5.1, page 83. This is merely to play with the melt data and ponder whether there is any significance in 
the energetic values estimated by this approach. Certainly by summing the free energies (DG, sum = 11.78 kcal/mol), 
one arrives closer to the stability estimate provided by HX NMR measurements in Chapter 3 of ~ 14-15 kcal/mol for 
the most stable H-bonds.  

 Could it be possible that the post-transition baseline we observe in a denaturant melt of 

MBP (shown in Figure 5.3A) is actually a second transition that describes unfolding of an MG? 
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Perhaps our kinetic polyglobule and the equilibrium MG described here at low pH are similar. To 

first test this hypothesis, using the melt data for MBP at pH 9.0, normalized to kinetic endpoints 

(0.2 M GdmCl � N, 2 M GdmCl � U) so that we could fit sub-regions of the melt separately, we 

see in Figure 6.3 two transitions. The transition connected to our kinetic burst data is similar to 

that observed in these other studies of the low pH MBP molten globule (162, 261). Additionally, 

by summing the free energies, the optical melt allows one to more closely approach the roughly 

14-15 kcal/mol stability measured by HX NMR in Chapter 3. Playing around with data in this 

manner is recreational, and not meant to suggest a deep physical relationship between our 

polyglobule and the low pH MG; however, it does tickle the mind a little.  

 

Figure 6.4: Optical similarities between the kinetic burst and low pH MG. The normalized signal acquired by starting 
from an unfolded state equilibrated at pH 7.0 (not shown) is nearly coincident with the blue data, at pH 9.0 the later 
signal fills in slightly quicker but the early behavior also resembles the blue data (see Figure 5.2, page 84 for 
comparison). 

 By optical measurements shown in Figure 6.4, the difference in the amplitude of the 

kinetic burst phase and the difference between the chemically denatured state and the low pH 

molten globule are similar; perhaps both species have a similar change in solvent accessible 

surface area. One assumes the polyglobule state gives rise to the burst-phase we observe in 

optical kinetics, but the transient nature of this state presents some difficulties that may be 

overcome if conditions were found that promoted this species at equilibrium. Perhaps the low 

pH condition favors a polyglobular state similar to the one described in this work. 



112 
 

 In data not shown in this dissertation, we performed a native hydrogen exchange 

experiment where we passingly attempted to define the structure of the low pH molten globule. 

The behavior did resemble the same sort of low-level protection observed in our pulse 

modulation experiment (see Figure 5.8, page 94), but we did not see specific areas of increased 

protection in the low pH MG. Perhaps this is because the low pH MG exchanges largely by way 

of local fluctuations (262), or experiences electrostatic slowing of chemical exchange rates from 

the collapsed state (263) and therefore gives a spread of unremarkable slowing factors.  

 A denaturant series, similar to what has been done in the past for cytochrome C (9) 

might shed light onto the structure of the low pH MG and facilitate comparisons with what we 

observe in our kinetic polyglobule. Additionally, pulsing the low pH MG for a few milliseconds, 

similar to our pulse time modulation strategy may reveal the same regions with high protection 

observed in the kinetic polyglobule to be present also in the low pH MG. 

6.2.2 Pulse power modulation 

 In our current work, we modulated pulse time at 0.5 seconds of folding and were able to 

show that while many peptides did not exhibit multiple populations, they were more structured 

than was implied by focusing only on the time dependence of their heavy population fractions; 

additionally, the fraction of heavy molecules in the biphasic peptides (black traces in Figure 

6.5B) increased as we reduced the pulse strength. Pulse power modulation shows that a few of 

these peptides were actually 100% protected after 0.5 seconds of folding but their structural 

opening rates were such that it appeared only 20-30% were protected in a 43 ms pulse. Those 

peptides that formed the 7 s intermediate did not respond to the change in pulse strength 

because their protecting structure was sufficiently stable. 

 Many other peptides deviated from single exponential behavior (such as the grey traces 

in Figure 1B), albeit not as strongly as the early biphasic peptides. Perhaps by modulating the 

strength of the pulse, we could uncover similar findings in these later events shown in Figure 

6.1B. Changes in stability during folding, such as those seen in a 12 ms pulse (Figure 6.1A) 

compared to the 43 ms pulse (Figure 6.1B) are suggestive that opening rates decrease as more 

and more structure adds onto the growing native-like scaffold. Pulse-power modulation at all 
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folding times may uncover other interesting aspects of the folding pathway that we did not 

observe in our work. 

6.2.3 Double Jump Pulse Labeling HX MS 

 By eliminating the effects of proline mis-isomerization, some of the slower behavior in 

MBP might be resolved more clearly. Upon inspection of Figure 6.1B, one notices the formation 

of the blue intermediate; but, beyond this, separable events are less clearly defined. It is 

possible that mis-isomerized proline residues lead to ambiguity in the sequence of later events; 

perhaps the grey and red groups in Figure 6.1B are actually three separate groups; the degree of 

overlap in the current data prevents us from making this conclusion. We know that proline mis-

isomerization does slow down the folding process somewhat (compare single and double jump 

traces in Figure 5.2, page 84). Figure 5.4 on page 89 shows that all four syringes on our stop flow 

are used in the single jump experiment. To perform a double jump HX pulse labeling study, we 

would need an additional syringe and delay line. We would be curious to see whether a double 

jump HX pulse labeling experiment would resolve additional behaviors in the slower folding 

regions of MBP. 

6.3 Moving Forward 

 Perhaps the most interesting questions are those that we are now inclined to ask about 

other large proteins. These questions could be addressed directly using the advanced hydrogen 

exchange methods outlined in this work. Do other large proteins possess a collapsed unfolded 

state in permissible refolding conditions? Do large molecules frequently collapse aspecifically? 

Are all collapsed states sensitive to reversible aggregation? Do most large proteins fold by way 

of a predetermined pathway? We do not have answers to these questions because there are no 

other studies of large protein folding with the degree of structural resolution presented here. 

The technological advancements presented in this dissertation provide a road map for future 

studies. We hope the technologies developed for this work and described herein will enable 

others to overcome the various issues faced in large proteins and contribute, as we have, to 

further our structural understanding of large protein folding processes.  
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Appendix A - Calculation of Expected D-Recovery 

 

Fractional recovery is represented as 

 
−

= FD H
obs

Mass Mass
R

s
. Eq. 7.1 

where s represents the number of exchangeable amides on the peptide, which is the number of 

residues in the peptide minus the first two and minus the number of prolines beyond the first 

two residues. The subscripts FD and H refer to the protein sample being fully deuterated or 

protonated, respectively. Masses were experimentally determined using the appropriate 

centroids in the standard way: Mass = z*centroid, where centroid is in m/z units and z 

represents the charge state. 

To compute the expected recovery (or fractional deuteration) of a given peptide in the reported 

data (or any multi stage HX experiment), the following tuples are defined for each different 

chemical environment (n= number of different environments): 
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. Eq. 7.2 

Phi contains the fractional solvent deuteration level for each condition. Kappa contains a 

complete set of chemical exchange rates (132) with ‘s’ entries for each exchange site for each 

pH/temperature condition. Tau holds time intervals for each pH/temperature condition such as 

digest/wash time, elution time, etc. for each different condition encountered in the experiment. 

Fractional deuteration at some time, ( )dF t , can be represented as follows, 



115 
 

 

τ

τ

ϕ ϕ τ

ϕ ϕ τ τ τ τ

ϕ ϕ τ τ τ

−

=

−

=

− −

=

− −− −

= = = =

 
− − ≤ 

 
 

− − < ≤ +  
=  
 
 
 ∑
 − − < ≤ 
  

∑

∑

∑ ∑ ∑ ∑

M M M

1

1

1

1

1 1 1
1

( )

2 2 1 1 1 2
1

( )1 1

1 1 1 1

1
[ ]

1
[ ( )]

( )

1
[ ( )]

j

ij

n

nj p

p

s
k t

initial

j

s
k t

d

j
d

k ts n n n

n n d p p p

j p p p

f e if t
s

F e if t
sF t

F e if t
s

, Eq. 7.3 

where 
initialf  is the initial fractional deuteration of the peptide present before the experiment 

begins. The form of Eq. 7.3 describes all HX expectation curves in either direction (exchange-in 

or -out) so long as the sign conventions are followed, but does not consider the back reaction, 

+ +�solvent solventND H NH D , because free deuteron (or proton if in the reverse direction) levels 

in solution are negligible during the majority of preparation time. 
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Appendix B - LC Gradient Shaping 

 

 The effort to reach single amino-acid resolution requires high precision mass 

measurements on many overlapping peptides with minimal back-exchange. To accomplish this 

we want to efficiently separate peptides using reversed-phase chromatography in the shortest 

possible time; however, reduction of chromatography time leads to chromatographic crowding 

which can significantly reduce the number of peptides resolved. The effect of crowding was 

evidenced by the 40% reduction in unique peptides identified between a 10- and 5-minute 

gradient (section 4.3.2, page 65). Chromatographic shaping is based on the idea that constant 

peptide elution density per unit time will be the most efficient separation in terms of 

minimization of gradient length while maximizing the number of unique peptide overlaps 

identified. 

B.1 Linear and Shaped LC Gradients  

 Typically, in ESI-MS experiments, peptides are eluted from a reverse phase column using 

a linear elution gradient which can are described in the following way: 

 ρ =( ) ( ( ))t f ACN t , Eq. 8.1 

 == + 0( ) gradient tAcCN t m t AcCN . Eq. 8.2 

The term ρ(t) represents the population density of unique peptides eluting at a particular time. 

Using a linear ACN gradient, eluate peptide density may vary significantly over the gradient. 

Linear gradients may be inefficient depending on the composition of peptides bound to the LC 

column, there may be H2O:AcCN compositions where many peptides elute simultaneously 

interspersed between compositions that yield few peptides. For data dependent tandem MS 

experiments, such as those used to create the peptide pool (described in Chapter 4, page 51), 

when many unique peptides are eluting simultaneously, it may be impossible for the instrument 

to select and fragment each peptide and this will result in fewer identifications. This inefficiency 

is shown in Figure B.1A for a 10-minute linear ACN gradient (red trace) which spans the same 

ACN range as our 10-minute shaped condition in the main text. The linear gradient gives 177 

unique peptides (blue circles).  
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Figure B.1: Chromatographic optimization by shaped gradients. 
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Inverting Eq. 8.1 will provide a constant elution density per unit time and increase 

chromatographic efficiency: 

 ρ− =1( ( )) ( )f t ACN t . Eq. 8.3 

This inversion is shown in Figure B.1B where we resolved 191 unique peptides with a 10 minute 

shaped gradient. Its effect on producing a constant elution density per unit time is contrasted 

with the linear gradient in Figure B.1C.  

B.2 Implementation and Discussion of Gradient Shaping 

 Our HPLC pump was designed for traditional step-gradients therefore we used a 

discrete implementation of Eq. 8.3. This involved first collecting a slow reference linear gradient 

from 0-50% AcCN. Retention times for identified peptides were used to generate 30 evenly 

spaced time bins where each bin was assigned the value of the number of peptides eluting over 

that time range (our pump software accepted 30 steps). We then matched retention time with 

%ACN during elution which allowed us compute the necessary ∆%ACN for each bin such that 

the bins contain equal numbers of peptides.  

 Chromatographic shaping improved our 10-minute gradient from 177 (linear) to 191 

(shaped) uniquely identified peptides using a mass resolving power of 100,000. High resolution 

instruments with resolving powers, 
∆ 50% intensity

mass

mass
, at or above 100,000 somewhat mitigate 

the benefit of chromatographic shaping as peak capacity increases with resolving power. The 

difference in number of identified peptides between our 10 minute shaped and linear gradients 

are somewhat understated due to the high resolving power available with our instrument. 

However, many laboratories employ QTOF and lower resolution instruments for the acquisition 

of hydrogen exchange data. We imagine chromatographic shaping will improve the number of 

peptides identified significantly in those cases.  

 While we only increased our peptide resolution by 14 unique identifications, Figure B.1C 

demonstrates that shaping achieves our goal of equal peptide density per unit time during 

chromatography. As HX MS experiments move to larger and larger protein systems, researchers 

will not have the flexibility of running longer linear gradients to achieve adequate separation. 
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Proteins much larger than MBP with potentially thousands of unique peptides should show a 

larger effect. Though not always necessary, one can easily envisage situations that would 

improve tremendously by gradient shaping. 
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Appendix C - Simulating MS Data 

C.1 Nominalization of the Mass Axis 

Nuclide Atomic Mass Nominal Offset ρ (probability) 
12

C 12.0000 + 0 0.9893 
13

C 13.0034 +1 0.0107 
14

N 14.0031 +0 0.9964 
15

N 15.0001 +1 0.0036 
16

O 15.9949 +0 0.9979 
18

O 17.9992 +2 0.0021 
32

S 31.9721 +0 0.9495 
33

S 32.9715 +1 0.0076 
34

S 33.9679 +2 0.0429 
Table C.1: Isotopic abundances and nominal offsets for atoms relevant to peptide MS. 

 

 

Figure C.1: Peak nominalization for a peptide spectrum. The monoisotopic mass is defined as +0. Each additional peak 
is defined by an integer offset from the monoisotopic mass as indicated above each peak. 

Table C.1 contains the relevant information for stable isotopes encountered in peptide 

mass spectrometry. The monoisotopic mass of the molecule is the molecular weight computed 

by the masses of the most abundant stable isotope for each atom (red in Table C.1, +0 in Figure 

C.1). An example natural abundance distribution computed by HDpop for the MBP peptide 

SAGINAASPNKE is shown in Figure C.1 and the monoisotopic peak is the lightest peak in the 
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distribution. Isotopes lighter than the most abundant for atoms observed in peptide mass 

spectrometry (C, O, N, & S) have negligible natural abundances and are always expected to be 

far below the limit of detection. Therefore, the monoisotopic mass or formula mass of the 

molecule composed of the most abundant isotopes for each atom type (red in Table C.1) is 

always the lightest peak of the peptide mass distribution. To nominalize the mass axis, the 

monoisotopic peak is indexed ‘+0’ and the absolute mass information for each additional peak 

may be replaced by an appropriate integer offset from the monoisotopic peak. These nominal 

offsets, one for each isotopologue27 group are written above each peak in Figure C.1. All 

isotopologues of the molecule containing only one 13C or only one 15N contribute to the 

measured intensity of the +1 nominal mass as shown in Figure C.2 below. 

 

Figure C.2 Unresolved isotopologues (blue) for the +1 peak in Figure C.1. The area of the gray peak is equivalent to the 
sum of the areas for each isotopologue. 

Each peak or isotopologue of the molecule in the mass spectrum results from some 

combination of the isotopes in Table C.2; however, many isotopologues will overlap and are 

indistinguishable. Currently, the maximum resolution28 used for HX experiments in the literature 

is 100,000 and the typical resolution is 20,000. To resolve the two isotopologues (blue) shown 

                                                           
27 An isotopologue, as defined in the IUPAC Compendium of Chemical Terminology, is a 
molecular entity that differs only in isotopic composition (number of isotopic substitutions). For 

example, the carbon isotopologues for ethane are 12 1 12 13 1 13 1
2 6 6 2 6, ,C H C C H C H ,  only stable 

nuclides are considered. 

28 MS resolution is defined by ∆ 50%/ Intensitymass mass  
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for the +1 peak in Figure C.2, one would need greater than 150,000 resolution. At 100K and 

lower resolutions, isotopologues within a single nominal group blend and are therefore 

represented by a single peak in the computed natural abundance distribution mentioned in 

Chapter 4 on page 73(gray, Figure C.2). These single peaks in Figure C.1 are the sum of the 

probabilities for observing each isotopologue in a given nominal group as shown in Figure C.2.  

C.2 HDpop Implementation 

Computing the expected mass spectrum of a peptide is equivalent to determining the 

isotopic abundances of all isotopologues for a given chemical formula. This task can become 

particularly laborious as the number of atoms increase in the molecule. HDpop has two methods 

for simulating mass distributions, they are described below.  

The method most typically employed is valid in the case that similar mass isotopologues 

are unresolved, in this case, only the nominal natural abundance distribution needs to be 

computed. This is the only method used for fitting HX data simply because our peptide 

identification program, ExMS, does not attempt to resolve isotopologues. ExMS determines the 

intensity of the peaks at each integer offset from the monoisotopic peak in experimental data 

and sends those intensities to HDpop for analysis. Therefore, HDpop only needs to determine 

one peak intensity per nominal offset from the monoisotopic peak for the typical HX MS 

dataset. The convolution method employed in HDpop, page 73, involves application of the 

discrete Fourier transform and is similar to the work of Rockwood et al (264). This approach is 

much less demanding from a computational perspective than the second exact method, which 

may be employed to determine the exact isotopologue distribution.  

This exact polynomial method is not employed for the work presented in Chapter 4, 

page 73. However, a description is included as there are some interesting implications regarding 

site resolution of D occupancies that were discovered in the process of development. After 

developing this method, I found an early paper recommending the use of Diophantine equations 

(265) for this purpose – this approach is very similar to the one described here, although 

truncations are made reducing the accuracy of that other method. The exact method is 

discussed following the DFT method. 
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C.3 Nominal Natural Abundance Distribution Using the DFT 

To compute the natural abundance distribution, HDpop first determines individual 

distributions for each atom type and then convolves them together using the discrete Fourier 

transform, using the python SciPy function signal.convolve (227). For each atom, the 

natural isotopic distribution can be modeled using a binomial expansion29, 

 ( ) ( )ρ ρ ρ −
= × × −

−

!
: , 1

!( )!

k xxk
I x k

x k x
, Eq. 8.4 

= 0x  corresponds to the probability of observing the molecule containing only the most 

abundant isotope of the atom, =1x  gives the probability of observing only one heavy isotope of 

the particular atom and so on. Fixed variables k and ρ represent the number of atoms of a 

given type in the chemical formula and the probability of observing the heavy isotope, 

respectively.  

A list is constructed using equation Eq. 8.4 for each non-zero nominal mass in table 1, 

ρ ρ ρ=P K(0 : , ),(1: , ), ,( : , )atom atom atom atom atom atom atomk k k k . Conveniently, the indices of all atom lists 

except 18O and 34S directly correspond to the nominal mass shifts associated with each 

probability in the list. However, as is indicated by the +2 nominal masses for 18O or 34S, these 

lists must be modified for the previous statement to hold. New lists are created for these atoms 

by inserting a zero between each entry such that the new list equals twice the cardinality of the 

original minus one. 

The ability to ignore differences between isotopologues with similar atomic masses 

means that the indices of each Patom
 list correspond directly to the intensity contribution of each 

particular atom to the intensity of the peaks in the full spectrum given by the nominal offsets 

(+0, +1, …) introduced in earlier. Thus, the grids for each atom are uniform with respect to each 

other and with respect to each consecutive entry; the data does not require resampling in order 

to apply the DFT convolution. All lists are zero padded to equivalent lengths before convolution. 

                                                           
29 It is worth noting that sulfur is not properly modeled using the binomial, there are three possibilities 
and the distribution is trinomial. In practice, modeling the sulfur distribution using binomials does not 
introduce significant error because of the low number of sulfur atoms in the average peptide, typically 
zero. Using the binomial for sulfur (there are two binomial sulfur distributions) was chosen for method 1. 
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 The Fourier transform of a convolution is equivalent to the point-wise products of 

Fourier transforms. Restated, convolution in the time domain is equivalent to multiplication in 

the frequency domain. Point-wise multiplication involves far fewer computations than algebraic 

convolution making this approach attractive. Let ∗denote convolution and �point-wise 

multiplication operators. Let F  denote the discrete Fourier transform operator, and −F 1 its 

inverse. Convolution may then be represented as: 

 { } { }{ }−∗ =A B A BF F F�1  Eq. 8.5 

 

Where A and B  are arbitrary lists of equal cardinality on a uniform grid. The natural abundance 

distribution is = ∗ ∗ ∗ ∗P P P P P P13 15 18 33 34natural C N O S S
. Computationally, this is done in an iterative 

fashion, first we form a kernel: =P P Pkernal 1 2( , )atom atomscipy.signal.convolve , then loop 

through the remaining atoms, =P P Pkernal kernal( , )atomscipy.signal.convolve . When no 

atoms remain, Pkernal = Pnatural
. 

C.4 Exact Natural Abundance Distribution Using a Polynomial Method  

HDpop also has the option to generate the expected natural abundance distribution at 

infinite resolution using an exact method. This method is computationally unbearable for large 

molecules. For each atom, a relation must be created which allows regeneration of mass 

information following polynomial convolution. For example, to cast the carbon distribution 

appropriately (under the terms set in Table C.1), we define the following relationships: 

 
∆ = ⋅

∆ = ⋅

12 12

13 13

x

C C

x

C C

x mass

x mass
 Eq. 8.6 

We then cast the distribution for carbon as a binomial using the natural abundances of carbon 

isotopes as coefficients and the atom counts as exponents: 

 ( )ρ ρ∆ + ∆12 12 13 13

1 1 carbonk

C C C C
, Eq. 8.7 
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carbonk is the number of carbon atoms in the molecule and ρ 12C
is the probability of observing a 

single 12C atom; this is reflected the exponent which is set to one. For an atom requiring a 

trinomial, such as sulfur, the distribution is written the same way,

( )ρ ρ ρ∆ + ∆ + ∆32 32 33 33 34 34

1 1 1 sulfurk

S S S S S S
.  

The natural abundance distribution is obtained by multiplying all individual atom n-

nomials (Eq. 8.6) for a molecule together using standard algebraic distribution. The result is a 

long string of terms and each represents a particular isotopologue in the mass spectrometer. 

Following distribution, each isotopologue will have scalar probabilities, ρ exponent

atom , which refer to 

intensity. Numerically evaluating scalar probabilities ρ exponent

atom to the power indicated by the 

exponent and then combining all by multiplication gives the intensity. Each term also has a 

number of ∆exponent

atom parts that behave differently than the scalar probabilities. These exponents 

after distribution are used to convert each part to a mass (as done for carbon in Eq. 8.6). The 

following illustrates a few operations to show how the mass terms work: 

 ( ) ( ) ( )∆ ∆ ∆ = ⋅ + ⋅ + ⋅1 2 3 1 2 3
A B C

atom atom atom atom atom atomA mass B mass C mass  

 +∆ ∆ =∆1 1 1
A B A B

atom atom atom  

 ∆ ∆ = ∆ =∆2
1 1 1 12A A A A

atom atom atom atom  

Just as in polynomial distribution, think of the ρ exponent

atom terms as coefficients and the ∆exponent

atom as 

variables that identify the mass position of the intensity defined by ρ exponent

atom . Any coefficient with 

identical variables can be combined by addition or subtraction as appropriate, ie: 

( ) ( )ρ ρ ρ ρ ∆ ∆ + ∆ ∆ = + ∆ ∆  1 2 1 2 1 2

A A
A B C A B C B C

atom atom atom atom atom atom atom atom atom atom , referring to a peak with 

intensity ( ) ( )ρ ρ+
A A

atom atom
and mass ( ) ( )⋅ + ⋅1 2atom atomB mass C mass . However, unlike the type 

of variable typically encountered, the following, 2
1 2 1 2

A B C A B C

atom atom atom atom atom atomρ ρ∆ ∆ + ∆ ∆ ,  actually 

refers to two different peaks, 1 2
B C

atom atom∆ ∆  and 2
1 2

B C

atom atom∆ ∆ , these ρ exponent

atom parts are not 

combined as in the previous case. 
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The method is computationally bearable for the size of molecules typically encountered 

using the fragmentation-separation HX MS strategy presented in section 4.2, page 50. It is 

included because the form implies that as instrument resolution increases in the future, the 

information to determine the exact deuterium distribution (as opposed to the average 

deuteration of each peptide) could be determined directly from analyzing the intensities of the 

individual isotopologues. One would be able to write an equation for each isotopologue. 

Together, these equations form an over determined non-linear system with respect to the 

unknown site D occupancies. By nonlinear methods, one would be able to solve for site D 

occupancies directly and with high confidence. Overlapping peptides would be required to 

match the site occupancies with their corresponding residues in the protein. 

 

Figure C.3: Another example of non-uniform deuterium distributions (reprinted from reference (6)). The centroid 
value of all three spectra is the same. In each case, the peptide has an average of 5 deuterium. (A) Uniform 
deuteration, all sites have 0.5 deuterium. (B,C) Non-uniform deuteration profiles, see the insets. 

We have recently shown how site deuterium occupancies may be extracted using 

unresolved isotopologues so long as a sufficient number of overlapping peptides are available 

(6). By inspection of the mass spectra in Figure C.3 one notices that the distribution observed 

reflects the degree of non-uniformity in the deuteration pattern. By fitting each site 

independently, a non-uniform site D-occupancy distribution may be determined for each 

peptide. On a per peptide basis, one would need to resolve the individual isotopologues to have 

an over-determined system; however, by virtue of many overlapping peptides reporting 

independent measurements on the same site, globally using all overlapping peptides 

circumvents the issue. 

Overlapping information will be required if the site D occupancies that are theoretically 

determined by the intensities of the individual isotopologues are to be matched to any 
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particular residue in the protein. By resolving individual isotopologues, the number of peaks 

observed in any one spectrum dramatically increases. As the distribution of deuterium 

occupancies influences the all peak intensities in the spectrum, using the polynomial method, 

we may write equations for each peak. Should instrument resolution achieve resolving powers 

in excess of one million, the polynomial approach will be able to achieve site resolution in a 

state sensitive manner. Using the global DFT based analysis at lower resolution is sufficient 

when the spectra contain only a single population per peptide; however, for 2+ populations, the 

system will remain under-determined regardless of the number of overlapping peptides and 

therefore the method unreliable for more than a single population. 
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