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ABSTRACT

STATISTICAL METHODS FOR HIGH DIMENSIONAL COUNT AND COMPOSITIONAL DATA
WITH APPLICATIONS TO MICROBIOME STUDIES

Yuanpei Cao

Hongzhe Li

Next generation sequencing (NGS) technologies make the studies of microbiomes in very large-
scale possible without cultivation in vitro. One approach to sequencing-based microbiome studies
is to sequence specific genes (often the 16S rRNA gene) to produce a profile of diversity of bac-
terial taxa. Alternatively, the NGS-based sequencing strategy, also called shotgun metagenomics,
provides further insights at the molecular level, such as species/strain quantification, gene function
analysis and association studies. Such studies generate large-scale high-dimensional count and

compositional data, which are the focus of this dissertation.

In microbiome studies, the taxa composition is often estimated based on the sparse counts of se-
quencing reads in order to account for the large variability in the total number of reads. The first
part of this thesis deals with the problem of estimating the bacterial composition based on sparse
count data, where a penalized likelihood of a multinomial model is proposed to estimate the compo-
sition by regularizing the nuclear norm of the compositional matrix. Under the assumption that the
observed composition is approximately low rank, a nearly optimal theoretical upper bound of the
estimation error under the Kullback-Leibler divergence and the Frobenius norm is obtained. Simu-
lation studies demonstrate that the penalized likelihood-based estimator outperforms the commonly
used naive estimator in term of the estimation error of the composition matrix and various bacterial

diversity measures. An analysis of a microbiome dataset is used to illustrate the methods.

Understanding the dependence structure among microbial taxa within a community, including co-
occurrence and co-exclusion relationships between microbial taxa, is another important problem in
microbiome research. However, the compositional nature of the data complicates the investigation
of the dependency structure since there are no known multivariate distributions that are flexible
enough to model such a dependency. The second part of the thesis develops a composition-

adjusted thresholding (COAT) method to estimate the sparse covariance matrix of the latent log-



basis components. The method is based on a decomposition of the variation matrix into a rank-2
component and a sparse component. The resulting procedure can be viewed as thresholding the
sample centered log-ratio covariance matrix and hence is scalable to large covariance matrice
estimations based on compositional data. The issue of the identifiability problem of the covariance
parameters is rigorously characterized. In addition, rate of convergence under the spectral norm
is derived and the procedure is shown to have theoretical guarantee on support recovery under
certain assumptions. In the application to gut microbiome data, the COAT method leads to more
stable and biologically more interpretable results when comparing the dependence structures of

lean and obese microbiomes.

The third part of the thesis considers the two-sample testing problem for high-dimensional composi-
tional data and formulates a testable hypothesis of compositional equivalence for the means of two
latent log-basis vectors. A test for such a compositional equivalence through the centered log-ratio
transformation of the compositions is proposed and is shown to have an asymptotic extreme value
of type 1 distribution under the null. The power of the test against sparse alternatives is derived.
Simulations demonstrate that the proposed tests can be significantly more powerful than existing
tests that are applied to the raw and log-transformed compositional data. The usefulness of the
proposed tests is illustrated by applications to test for differences in gut microbiome composition
between lean and obese individuals and changes of gut microbiome between different time points

during treatment in Crohn’s disease patients.
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CHAPTER 1

COMPOSITION ESTIMATION FROM SPARSE COUNT DATA VIA A REGULARIZED

LIKELIHOOD

In microbiome studies, taxa composition is often estimated based on the sequencing read counts
in order to account for the large variability in the total number of observed reads across different
samples. Due to sequencing depth, some rare microbial taxa might not be captured in the metage-
nomic sequencing, which results in many zero read counts. Naive composition estimation using
count normalization therefore lead to many zero proportions, which underestimates the underlying
compositions, especially for the rare taxa. Such an estimate of the composition can further lead
to biased estimate of taxa diversity, and can also cause difficulty in downstream log-ratio based
analysis for compositional data. In this paper, the observed counts are assumed to be sampled
from a multinomial distribution, with the unknown composition being the probability parameter in
a high dimensional positive simplex space. Under the assumption that the composition matrix is
approximately low rank, a nuclear norm regularization-based likelihood estimation is developed
to estimate underlying compositions of the samples. The theoretical upper bounds and the min-
max lower bounds of the estimation errors measured by the Kullback-Leibler divergence and the
Frobenius norm are established. Simulation studies demonstrate that the regularized maximum
likelihood estimator outperforms the commonly used naive estimators. The methods are applied to

an analysis of a human gut microbiome dataset.

1.1. Introduction

The human microbiome is the totality of all microbes at different body sites, whose contribution to
human health and disease has increasingly been recognized. Recent studies have demonstrated
that the microbiome composition varies across individuals due to different health and the environ-
ment status (The Human Microbiome Project Consortium, 2012a), and may be associated with
complex diseases such as obesity, atherosclerosis, and Crohn’s disease (Koeth et al., 2013; Lewis
et al., 2015; Turnbaugh et al., 2009). With the development of next-generation sequencing tech-
nologies, the human microbiome organisms can be quantified by using direct DNA sequencing of

either marker genes or the whole metagenomes. After aligning the sequence reads to the refer-



ence microbial genomes, the observed count data (e.g., 16S rRNA marker gene reads or shotgun
metagenomic reads) depend on the amount of genetic material extracted from the community or
the sequencing depth, and they provide a relative measure of the abundances of community com-
ponents. In a microbiome study, these read counts are typically non-negative and over-dispersed,

and contain a large number of zeros.

In order to account for the large variability in the total number of reads obtained, the taxa compo-
sition is often estimated based on the observed counts of sequencing reads. Due to sequencing
depth, some rare microbial taxa might not be captured in the metagenomic sequencing, which re-
sults in zero read counts assigned to these taxa. Naive estimates of the taxa composition using
count normalization therefore lead to many zeros due to under sampling, especially for rare taxa.
Such a naive estimate of the composition can be biased and can lead to biased estimates of taxa
diversity. It can also cause difficulty in downstream data analysis for compositional data. Since the
pioneering work of Aitchison, (2003), several techniques have been proposed to deal with zeros
(see Martin-Fernandez, Palarea-Albaladejo, and Olea, 2011 for an overview) in count data. One
approach is to replace zero counts through a Bayesian-multiplicative model, followed by normaliz-
ing the count into the composition. Such a Bayesian method involves a Dirichlet prior distribution
as the conjugate distribution of multinomial distribution and a multiplicative modification of the non-
zero counts. The zero replacement results were determined by the parameterizations of the prior
distribution. However, such a prior information cannot be easily obtained, and the subjective selec-
tion of the parameter may yield misleading results. Other approaches normalized the count first and
treated zero compositions as the missing values. The missing part was then recovered by either
non-parametric imputation or EM algorithms. However, the non-parametric imputation lacks theo-
retical guarantees for selecting a reasonable replacement value. The EM algorithm is not feasible
when the number of taxa is very large, or every taxa contains at least one zero across the samples.
In addition, the multivariate additive log-ratio (alr) normality assumption used in these methods is

often violated in microbiome studies.

This paper addresses the problem of estimating the microbial compositions in positive simplex s-
pace from a high-dimensional sparse count dataset. We assume that the observed counts follow
a Poisson-multinomial model where the read counts of the taxa in each individual follow a multino-

mial distribution with the underlying probability parameter given by a positive composition, and the



number of total count is a Poisson random variable. If the compositions across different individuals
are treated as a matrix by combining them together, an approximately low rank structure on this
matrix is indicated by recent observations on co-occurrence pattern (Faust et al., 2012) and various
symbiotic relationships in microbial communities (Chaffron et al., 2010; Horner-Devine et al., 2007;
Woyke et al., 2006). Motivated by much success in solving the matrix completion problem using
nuclear norm minimization (Cao and Xie, 2016; Klopp et al., 2015; Lafond et al., 2014; Lu and Ne-
gahban, 2014; Negahban and Wainwright, 2012), this paper solves the problem of the composition
estimation using a regularized maximum likelihood approach. However, it should be emphasized
that the multinomial likelihood function in this framework has not been studied and the sampling
scheme used in this article is also different from other matrix completion problems. The observed
zero counts are the result of under sampling, rather than the random missingness assumed in the
previous literature. We provide the asymptotic upper and min-max lower bounds of the resulting
regularized estimator and show through simulations that the estimator recovers low-rank composi-

tions accurately.

The rest of the paper is organized as follows. Section 1.2 presents details of the proposed regu-
larized likelihood approach when the underlying composition is approximately low-rank. The imple-
mentation is presented in Section 1.3. The theoretical properties of the estimators are analyzed in
Section 1.4, where the upper bounds for the estimation error measured by average Kullback-Leibler
divergence and Frobenius norm are established. Simulation results are shown in Section 1.5 to in-
vestigate the numerical performance of the proposed methods. A real data application to a human

gut microbiome study is given in Section 1.6.

1.2. Poisson-Multinomial Model for Microbiome Count Data and Penalized Estima-

tion

In this section, we consider a Poisson-multinomial statistical model for composition estimation from
the sparse count data observed in microbiome studies. The proposed procedure for composition
estimation relies on a regularized maximum likelihood. We start by introducing some notation that
will be used throughout the rest of the paper. For any integers N > 0, let [N] = {1,2,--- , N} be
the set of integers ranging from 1 to N. We also denote 1,, = (1,...,1)" € R, e; as the canonical

basis with i-th entry one and others zero. For any vector u € R?, we refer to it as a composition



vector if w > 0 and >_*_, u; = 1. For any two composition vectors u,v € R?, we can define the

Kullback-Leibler (KL) divergence as
p Wi
DKL(u,'U):j;uilogU—i. (1.1)

For any matrix A = (a;;), define its L1, L, spectral, Frobenius, element-wise maximum, and
nuclear norm respectively as ||A|1, [|Alloos [|All2s |All7, |A|lmax. @nd ||A]l.. Specifically, ||All; =
max 3, [aijl, [Alloo = max3; laijl, [Allz = vV Anax(ATA), |Allr = /35 ; afj, | Allwax = max ais|,
and ||A|. = 3", 0:(A), where \,.x(-) denotes the largest eigenvalue and {o;(-)} denotes the set
of singular values. For two matrices A and B, let (A, B) = tr(ATB) = Ei’j a;jbi; be the trace inner
product. Finally, for notational simplicity, we use C1, Cs, . .. as generic symbols for constants whose

values may vary from line to line.

Our starting point is a n x p matrix of counts W with element W;,; representing the observed read
count of taxon j in individual ¢, where i € [n] and j € [p]. For i-th individual, the simplest model
for their count data W; = (W1, Wo, - - -, W,y,) is the multinomial model with its probability function

given as

(Wi, Wig, -+, Wi X5) = (W) HXijW”a
[ j=1
where N; = Y, W;; and X7 = (X}, X%, -+, X},) are underlying bacterial composition with
1;:1 X} =1,X}; > 0. The total taxa count V; is determined by the sequencing depth and can be
treated as a Poisson random variable given by N; ~ Pois(v;), where v; is a positive parameter, but

it is of less interest.

Our goal is to estimate X* = (X;”,X3",--- ,X;")T based on W. The most natural estimate
is obtained by the maximum likelihood estimation. Denote by £y the (normalized) negative log-

likelihood of the observations, ignoring the terms that do not depend on the compositions X*,

Ly (X)=—— Y WylogXj, (1.2)

1<i<n,1<j<p

where N = 37" | N; = 3, W;; is the total number of the observed counts and X* belongs to



positive simplex space S = {X € R"*? | X1, = 1,,, X > 0}. Without further constraints, minimizing

(1.2) leads to the standard maximum likelihood estimate X,

- Wi

Xij=—=r—2—, i€[n], jE]p
! ZZ:1WH€

However, as a consequence of under sampling when N is not sufficiently large, the estimator X will
contain a large number of zeros. These zeros underestimate the composition and cause difficulty in
downstream log-ratio based compositional data analysis (Aitchison, 2003). For an arbitrary matrix
X* in positive simplex space, clearly there is no good way to recover a positive X*. However, in
the metagenomic study, X* could be approximately low-rank in the sense that the singular values
decay gradually towards zero, which provides the possibility to recover X* with high accuracy.
In this paper, we propose a penalized estimator X based on a regularized maximum likelihood

formulation:

~

X:argxeé?irjﬂm)ﬁzv (X) + A1 X]|«, (1.3)

where S(a., 8;) is a bounded simplex space given by

S(ag, By) = {X ER™P | X1, =1,,0a,/p < Xij < Bs/p,V(i,j) € [n] x [p]} .

Here A and «, and 3, are tuning parameters. The constrained element-wise lower bound guaran-
tees the positive sign of the estimator. The element-wise upper bound constraint is only needed in

the theory, while in practice, such a constraint is not required.

1.3. Optimization Algorithm and Tuning Parameter Selection

In this section we consider the implementation of the proposed estimator specified as (1.3). Specif-
ically, we propose to solve the following constrained convex optimization:

X = in  Lx (X)+ AX]|., 1.4

arg Join Ly (X) + AlX]| (1.4)

Stax) ={x e

X1, =1, X5 > ax/p (i) € ] % 1]}



Here S(ax) is a positive simplex space and (A, ax) is a pair of tuning parameters. Particularly, (1.4)
is a nuclear norm minimization problem, which can be solved by either semidefinite programing via
interior-point SDP solver, or first-order method via Templates for First-Order Conic Solvers (TFOC-
S), see Becker, Candés, and Grant, 2011. However, the SDP solver computes the nuclear norm
via a less efficient eigenvalue decomposition which does not scale well with high-dimensions »n and
p. Besides, Nesterov’s scheme used in TFOCS is not monotone in the objective function owing
to the introduction of the momentum term, which often results in oscillations or overshoots along
the trajectory of the iteration. In this article, we propose a more efficient algorithm based on the
generalized accelerated proximal gradient method (Su, Boyd, and Candes, 2014). To adapt to the
bounded simplex constraint S(ax), we develop a non-iterative projection scheme in the proposed

algorithm.
1.3.1. Generalized Accelerated Proximal Gradient Method

Since L () is convex and differentiable over the domain S(«x ) and the nuclear norm is convex, the
accelerated Nesterov’s scheme can be formulated as follows. Given the count matrix W, we first
normalize it into the composition X by X;; = W;;/>-%_, Wi, and initialize Y, = Xy = X_; = X,

then update X, and Y, in the kth iteration as

L _
X, = argmin = || X — Y1 + L 'YL (Y1) |5 + AIX ], (1.5)
XeS(ax)
Ye=X,+ L Xy, — Xp_1) (1.6)
R=Rkt o T Bk k—1) - -

Here we provide the detailed explanation for (1.5) and (1.6).

e [ is the step size in the k-th iteration, which is chosen by line search strategy. Denote by
Fr.(X,Y) the approximation error when approximating £y (X) with its second order Taylor

expansion around Y and using L as the second order coefficient,
L
FLX,Y) = Ly (X) = Ly(Y) = (X =Y, VLn(Y)) = S [IX = Y7

In the kth iteration, given an initial parameter L, = L;_1, we repeated increasing it by Ly =
~vLy, for some scale parameter v > 1 until the function Ly (X},) is dominated by its second

order Taylor expansion around Yy,_1, i.e., Fr, (X, Yi—1) <0.



. kf:;il is the momentum term and r is a friction parameter. In the standard accelerated gradi-
ent method, the friction parameter is set by » = 3, and this scheme exhibits the convergence
rate O(1/k?) as long as the gradient function v £ is Lipschitz continuous with a constant Lip-
schitz coefficient (Nesterov, 1983, 2013). The Nesterov’'s scheme can be further generalized
by setting a high friction rate, for example » > 9/2, and it succeeds in eliminating the over-
shooting and oscillation along the trajectory toward the minimizer and obtaining a O(1/k3)

convergence rate (Su, Boyd, and Candes, 2014).

e The minimization of the objective function (1.5) can be solved by a form of Singular Value

Thresholding (SVT) (Cai, Candés, and Shen, 2010):
X = Ms(ax) (Do (Vo1 = Ly 9LN (Vi) ) -

Here 115, ) (X) is Euclidean projection of X onto the positive simplex space S(ax ) that we
will discuss in Section 1.3.2. If X = UX V7 is the singular value decomposition (SVD), the

soft-thresholding operator D, can be defined as

D, (X)=UD, () VT, D, (T) = diag (max {o; —7,0}).

Combining these steps together, the generalized accelerated proximal gradient method is sum-
marized in Algorithm 1, where k.., is the maximum number of iteration. The complexity of the
algorithm are dominated by O(n?p + p3), which is the cost of singular value decomposition. The
convergence of Algorithm 1 cannot be easily established; however, the following proposition pro-
vides some insight.

Proposition 1. Let X, be the sequencing generated in the iteration of Algorithm 1. Denote by
f(X) = Ly (X) + ||X]|.. Suppose the Euclidean projection onto the simplex space Ils, ) does
not influence the convergence rate, and the step size is always set by L, = nﬁpx Wiip/(axN).

Then, for any friction parameterr > 9/2, we have,

max W3
i Y P X = X*F

min  W;; N? k3 ’
{ijlWij >O}

fXp) - f(X1)<C



where X* is any minimizer of f and C only depends onr and ax.

Since the gradient function VL is Lipschitz continuous with the constant L = max Wiip/(axN)
and the negative likelihood function £y is u—strongly convex with p = {ij|%3?>0} W;;/N on the
constrained simplex space, it is not hard to prove Proposition 1 by applying Theorem 9 in Su, Boyd,
and Candes, 2014. The parameters L and u vary with different observations, as a result, the rate of

convergence shows an interesting dependency on the dimension p and the observation count W

Algorithm 1 Generalized accelerated proximal gradient method

1: Input: Count W and its normalized composition X
2: Initialize: Yo =Xo=X_1 =X, 7>9/2,v>1,L =107%, and kpax € N*
3: for k = 110 knax do

4: X = HS(QX) ('D)\/L (Yk,1 — (1/L)V£N (kal)))
5: if 7 (X, Ygr—1) >0, then

6: L =+~L,goto Step 3

7 end if

8: Update Y. =X+ % (Xk — kal)

9: if ‘fL(Xk,Yk,1)| < 1075 then

10: return X,

11: end if

12: end for

1.3.2. Euclidean Projection onto the Simplex Space

The remaining part is to deal with the Euclidean projection onto the simplex space S(ax) in Algo-
rithm 1. We introduce a non-iterative and efficient algorithm based on the standard KKT condition.

Consider a one-dimensional simplex projection problem given by

P

. 1
Hsax)(y) = min §||X7yH§ s.t. in =1, z;>ax/p. (1.7)
i=1

The following Proposition provides an implicit formulation for the minimizer x* to this optimization
problem (1.7).
Proposition 2. Suppose thaty, > y2 > -+ > y,, then the minimizer x* = (x1,xa,- -+ ,x,)" is given
by

x; = max{y; + u,ay/p}, foranyi € [p|,

where p = p~*(1—ax — > 0_, wi) +ax/p, and p is the number of components in x* that are strictly



larger than a.x /p. We establish the the following formulation for p,

J
p:max{je ] ‘ yi+i (1 —ax =Y ) >0}.
=1

In the multi-dimensional case that Y € R"*P, we generalize the above simplex projection and sum-

marize this non-iterative optimization procedure in Algorithm 2. The scheme is easy to implement

and its complexity is O (nplog(p)).

Algorithm 2 Euclidean projection of a matrix onto the simplex space S(ax).

1: Input: Y € R"*? and S(ax)
2: Sorteachrow of Y into U: Uy > Uja - -+ > Uy, i € [p].

3: Find vector p = (p1,- -+, pn)? such that

pi:max{je [p] ’ O <l—ax—ZUij> >0},i€ [n].

i=1

4: Define vector p = (p1, -, pin) T Oy 15 = pi ! (1 —ax — 257:1 Uij> + ax/p,i € [n].
5: Return X such that X;; = max {Y}; + w;, ax/p}, (4,7) € [n] x [p].

1.3.3. Data Driven Selection of the Tuning Parameters

The proposed nuclear norm minimization involves the tuning parameters A and ax. We propose
the following data-driven method for selecting these tunning parameters with a guaranteed per-

formance. Given a selected parameter ax, we choose A = )\(ax,BR) by plugging ax and the
estimated row probability parameter

P .
P W

Bp=n- max ———9=1 Y
1<i<n Y o S0 Wiy

)\(CKX,/BR) = N \ N

. J 32 (3?2/” + 1V BRP/”)/CVX> plog(n+p)  §(1/ay + Br/(np)/?)nlog(n + p)
This choice of A is motivated by the theoretical results of Theorem 1 in the next Section.

It remains to find the estimated parameter a x, which can be selected using K-fold cross-validation

as follows. Let W be the observed sample and let 7" be a grid of positive real values. For each



teT, set

~

(A ax) = (Aax (t), Br)ax () = (¢ - @x), Br).t - @x),

where
P
~ Wi, j=1""1ij

Ox =p- min ———5——andfr=n- max ———py——-
1<i<n1<G<p > oy Doy Wi 1<i<n Yy gy >0 Wiy

We randomly split the rows of W into two groups of sizes ny ~ @ and ny ~ z for I times. We

used the second group with sample size ny as the testing set. In order to estimate the composition
from the rows in testing set, we further randomly picked 1/K proportion of observed columns in
each row from the second group and combined it with the first group as the training set. Denote
by W' be the selected testing set in the ith split and let X* be its compositions through X}, =
W,/ S2F_, W},. Denote by X~ (ax(t)) the estimator based on the training set. We consider the

Kullback-Leibler divergence to evaluate the prediction error.

I

R(t) = DX, X (ax(t))).
i=1
We select t* = argming R(t) and choose the tuning parameters (A(cx (t*), Br), ax (t*)). If t* is
chosen on the boundary of 7', we expand the range of 7" and repeat the above procedure. With the

chosen tuning parameters, we finally obtain estimate by solving (1.4) based on the full dataset.

1.4. Theoretical Properties

We prove that the proposed estimator X achieves the near optimal rate of convergence over a
class of low-rank compositions. The regularization assumptions we need for theoretical analysis
are formally stated as below.

Condition 1. Let R; = v;/3%_, v; for i € [n], then there exist constants (ar, Br) such that, for any
i € [n],

ar/n < R; < Br/n.

Condition 2. There exist constants (ax, Sx) such that, for any (i, j) € [n] x [p],

ax/p < Xi; < Bx/p.

10



Here R = (R, -+, R,)T represents the probability of observing an element from each row, and
X represents the column probability. Conditions 1 and 2 are analogous to the incoherence con-
ditions that are commonly assumed in the matrix completion literature. The element-wise upper
bounds avoid the overly "spiky” situation that some rows or columns are sampled with very high
probability. The element-wise lower bound on R helps to establish bounds in Frobenius norm, and
the entry-wise bound on X* ensure the gradient function of £ (X) in (1.2) is Lipschitz continuous,
which helps to effectively bound Frobenius norm in terms of Kullback-Leibler (KL) divergence and

guarantee the feasibility of accelerated gradient descent algorithm in practice.
1.4.1. Rate of Convergence

To assess how close the estimator X from (1.3) to the real compositional matrix X*, we use average
Kullback-Leibler divergence D(X*, X) and squared Frobenius norm || X* — )A(H%. Here D(X*, X) is

defined as the sum of Kullback-Leibler (KL) divergence between rows of X* and X,

n n p
D(X*,X) = Dxr(X}, X)) =3 X log
=1

o
ij
i=1 j=1

XL
The following theorem gives an upper bound on the loss of the proposed estimator X* for the
exactly low-rank composition matrix X.

Theorem 1. (Exactly low-rank matrices) Under Conditions 1 and 2, suppose that N > cy(n Vv

p) log(n + p) for some universal constant ¢, > 0, and the tuning parameter is selected as

_ Ci(n,p)plog(n +p) = Ca(n,p)plog(n + p)
A=o <\/ £ v & ) , (1.8

where Cy(n,p) = 8 (B%/n+ (1V Brp/n)/ax) and Ca(n,p) = 4(1/ax + Br/(np)'/?). If the compo-

sition X* has rank at most r, then, with probability at least 1 — 3(n + p)~!, the estimate X in (1.3)

satisfies
Lpx %) <o ((p+”)“°g("+p)) , (1.9)
n N
2I% - X[} < ¢, (LoD, (1.10

for some constants Cy, and C, which only depend on ¢y, ax, Bx,ar and Bg.
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Theorem 1 states the rate of convergence for both KL divergence and Frobenius loss in terms
of probability. With some additional mild assumptions, the same rate of convergence holds in
expectation.

Corollary 1. Under the same conditions mentioned in Theorem 1, if N further satisfies N < ¢;(n+
p)?rlog(n + p), then, there exists some constants C; and C, only depending on cg, ¢1, ax, Bx, ar

and g, such that

-~ 1
EED(X*K) <0 (p+n)r og(n+p)’
n N

N 2
n F N

We also have the corresponding lower bound that shows that the bound in Theorem 1 essentially
cannot be improved.

Theorem 2. Consider the matrix classes
Bo(r,a, B) = {X € R"*P|rank(X) < r, X1, = 1,,a/p < X;; < B/p, forany (i, j) € [n] x [p]} .

If2 <r < p/2, there exists some constants C; and Cy which only depend on ax, Bx, ar, Br, Such

that
1 o~

mf s LED(XSX) > o 2ET

X X*€Bo(rax,Bx) 1 N

ar<R;<fBr

: Prlle <+l (p+n)r
inf sup —EHX—X > Cy————.

% F N

X X*€Bo(r,ox,Bx) T
ar<R;<fBr

In practice, the composition is typically approximately low-rank instead of exactly low-rank. In such

case, we formalize the class of approximately low-rank matrices via the [,-"ball” of matrices by

nAp
Bq (pq): {XER”XZ) Z‘Uz (X*)|q<p(I7}a (111)

i=1

where 0 < ¢ < 1. In general, we obtain the following upper bound result.
Theorem 3. (Approximately low-rank matrix): Under Conditions 1 and 2, suppose that N >

co(n Vv p)log(n + p) for some constant ¢, > 0, and the tuning parameter is selected as (1.8). If

12



the composition X* further belongs to a class of approximately low-rank matrices, Then, with the

probability proceeding 1 — 3(n + p) %, the estimator X in (1.3) satisfies

-4
1-4
ZIR X[ < Capy o)t (LB (1.19)

where constants C, and Cy only depend on ¢y, ax, Bx,ar and Bg.
1.4.2. Estimation of Diversity Index

Various microbial diversity meaures are aften used to quantify the composition of the microbial
communities. Given X € RP? that represents p-bacteria composition across n different individuals,

three widely used measurements of microbial community diversity include

e Shannon’s index Hgn(X;) = —>"_; X;jlog Xij, 1 <i < n;
o Simpson’sindex Hgp(Xi) =" X7, 1 <i<n;

e Bray-Curtis index Hpo(X;, X;) =Y 1_, [Xik — Xjil/2,1 <i,j <n.

Here {Hqn (X))}, and {Hsn(X;)}", are two vectors in which each component measures the
richness and evenness of microbial community in an individual; {Hyc (X, X;)};"/Z; is a matrix with
each entry ranging from [0, 1] that quantifies the dissimilarity between two individuals. Higher value
of Bray-Curtis index indicates that two microbial communities are less likely to share similar taxa.
The penalized likelihood estimator X from (1.3) can be used to estimate Shannon’s, Simpson’s and
Bray-Curtis indices. The following Corollary provides the upper bound of these estimates.

Corollary 2. Under Conditions 1 and 2, suppose that N > c¢y(n V p)log(n + p) for some constant

¢o, and the tuning parameter is selected by (1.8). If the composition X* has rank at most r, then

the estimate X in (1.3) satisfies

((n + p)(logpjz;r log(n + p)) ’

(H(R,) ~ Hg(X0))* = 0, (1 E2 40,

r]l\(])g(n + p)) .

% > (Hpo(Xi,X;) — Hoe(X], X3)? = 0, ((” +p)

1<i<j<n

13



If the composition X* belongs the class of approximately low-rank matrices (1.11), then the estimate

X in (1.3) satisfies

S (Hap (X)) - Han(X)))?

: Op (Pq(logp)Q(p/n)g <("+p) lz‘z[g(”+p)> 2) |
; Z(HS"(&') —Hgp(X}))* = 0, <pqp§—2/ng <(n +p) lﬁfg(n —|—p)> —2> |

-4
0, <pq(p/n)g ((n'f'p)l](z]g(n‘f‘p)) >

|

g

E

%

0

T

=

#
Il

1<i<j<n

1.5. Simulation studies

Simulations studies were performed to evaluate the proposed composition estimator X and to com-
pare the results with the naive estimator X, that replaces zero count with the maximum rounding

error 0.5 (Aitchison, 2003) and transforms the counts into composition.
1.5.1. Simulation settings

Data (X*,R) were generated as follows. The row probability vector {R;}? ; was generated as
the normalization of i.i.d entries {P;}, uniformly drawn from Unif[1,10]: R; = P;/ > ;_, Px. In
order to generate the composition X*, we first generated a rank-r matrix Z by Z = UV”, where
U e R™" and V € RP*". The components in U are the absolute values of i.i.d N(0,1) normal
random variables. V = V; + V5 is a spike matrix, where the diagonal elements of V; are ones
and off-diagonal entries are equal to 1 with the probability 0.3 and equal to 0 with the probability
0.7, and the entries of V, are independent N (0,10~?) normal random variables. This procedure is

repeated until we obtain a strict positive matrix Z. The following two models are considered for r.

e Model 1 (Exactly low rank): r = 20.

e Model 2 (Approximately low rank): r = n A p.

Then X* was obtained through the normalization X}, = Z;;/ > }_, Zi, and count matrix W was
generated as Mult(RX*,ynp), where v € {1,2,3,4,5} was considered. We set the sample size

and dimension as n = p = 50,100, and 150, and repeated 50 simulations for each setting.
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1.5.2. Composition Estimate

We applied the penalized maximum likelihood approach to simulated data in both low rank and
approximately low rank cases. The tuning parameters (A, ax) in each estimator were chosen by
five-fold cross-validation. For comparison, we calculated the naive estimators X, that replaced
zero counts by 0.5 and converted the counts into composition. Losses under squared Frobenius
norm ||X — X*||2, and Kullback-Leibler divergence D(X*, X) were used to measure the estimation

performance.

The simulation results for Model 1 and 2 are summarized in Figures 1.1 and 1.2 respectively. We
observed that the proposed estimator X resulted in uniformly smaller errors thatn those based
on the naive estimator X, in all settings, demonstrating the superiority of the penalized likelihood
estimation. In addition, as expected, the difference in the loss of X and that of X, got smaller as the

total counts increased since the number of zeros decreased as more read counts were observed.

Frobenius Norm Error

0.5

0.4

0.3

0.2

0.1

—— X, p=50
—e— X, p =50
——X, p=100
—e—X,.p = 100
—+—X, p =150

—e—X,p =150

KL divergence

—‘—&, p=50
—— X, p =50
——X, p=100
—e—X,.p =100
—+—X, p =150

—— X, p =150

Figure 1.1: Frobenius norm error and Kullback-Leibler divergence between the estimated and the
true compositions for different numbers of taxa p in Model 1, where X is the proposed estimator
and X is the estimator with simple zero replacement.
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Figure 1.2: Frobenius norm error and Kullback-Leibler divergence between the estimated and the
true compositions for different numbers of taxa p in Model 2, where X is the proposed estimator
and X is the estimator with simple zero replacement.

1.5.3. Diversity Index Estimate

To evaluate the ability to estimate the individual-level diversity and dispersion, we also calculated
vector L, norm losses of the Shannon index and Simpson index, as well as the Frobenius norm
error of Bray-Curtis index. The simulation results for both models are summarized in Figures 1.3
and 1.4. We see that the proposed estimator X uniformly outperformed the naive estimators X, by

a large margin.

Shannon Index x10° Simpson Index Bray-Curtis Index

0.018 he

0018 S

g
,

Mean Squared Error
4,
4.

Figure 1.3: Losses on different diversity indices between the estimated and the true compositions
for different numbers of observed taxa p in Model 1. Left panel: Shannon index; Middle pan-
el:Simpson index; Right panel: Bray-Curtis index
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Figure 1.4: Losses on different diversity indices between the estimated and the true compositions
for different numbers of observed taxa p in Model 2. Left panel: Shannon index; Middle pan-
el:Simpson index; Right panel: Bray-Curtis index

1.6. Gut Microbiome Data Analysis

The gut microbiome plays an important role in regulating metabolic functions and immune home-
ostasis and exerts a profound influence on human health and disease. We applied the proposed
method to a human gut microbiome dataset of a cross-sectional study of 98 healthy volunteers
at the University of Pennsylvania (Wu et al., 2011). DNA from stool samples of these individuals
were analyzed by 454/Roche pyrosequencing of 16S rRNA gene segments and yielded an aver-
age of 9265 reads per sample, with a standard deviation of 386, which led to identification of 3068
operational taxonomic units and 87 bacterial genera that were presented in at least one sample.
Figure 1.5 show the proportions of zeros observed versus the size library sizes, indicating that
many observed zeros are due to under sampling. It is therefore reasonably to assume that the true

compositions of these rare genera are not zero.

Rarest p = 60 Genera, Rarest p = 70 Genera Rarest p = 80 Genera
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Figure 1.5: Proportions of zeros observed versus the size library sizes, indicating that many ob-
served zeros are due to under sampling.
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Figure 1.6: Decay of singular values d;; from the SVD decomposition of X = UDV™.

Figure 1.6 shows the decay of singular values d;; from the SVD decomposition of X = UDV7,
indicating that the approximate low-rank nature of the compositional matrix. We applied the pro-
posed penalized likelihood method to estimate the positive compositions and used five-fold cross-
validation to select the tuning parameters. As a comparison, we also replaced the count zeros by

0.5 to obtain the naive estimator X,.

To illustrate the result, we define M = {(i,j) € [n] x [p] such that W;; = 0} as the set of zero
counts W. The top panel of Figure 2.1 shows the boxplots of the estimated compositions X except
common genera Bacteroides, Blautia and Roseburia that have been observed in all individuals.
Overall, we observed that the observed non-zero compositions had an effects in estimating the
compositions with zeros counts and the estimated compositions in those with zero observations
(M) were almost always smaller than those with non-zero observations (M¢). However, results
from the simple zero replacement (}A(s) gave almost the same estimates for all samples/taxa in M.
The observed non-zero compositions almost had no effects in estimating the compositions with

zero observed counts.
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Figure 1.7: Boxplots of the estimated compositions for each genus for those with zero observations
(M) and those with non-zero observations (M¢). Top panel: proposed estimator X; Bottom panel:
estimator with zero-replacement X.

1.7. Discussion

We have considered the problem of estimating the bacterial compositions based on sequencing
data, particularly for those taxa with zero observed counts, one of the first step in any microbiome
and metagenomic studies. We have developed a penalized likelihood estimation method for esti-

mating the mcirobial abundances for these taxa with observed zero count. The estimate effectively
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utilizes data across different individuals and across different taxa, which is in contrast to most of
the available methods and has the flavor of shrinkage estimate. The estimation procedure makes
two key assumptions. First, it assume that the true microbial compositions are always positive and
the zero counts observed in metagenomic sequencing are due to under sampling. Our empirical
data (Figure 1.5) seems to support this assumption. Second, it assumes that the true composition
matrix has approximately low-rank structure. Under these assumptions, we have proposed a pe-
nalized likelihood estimation with a nuclear norm penalty function in order to obtain better estimate
of the composition matrix. We have obtained the estimation upper bounds and also the min-max
lower bounds and showed that our estimator is almost optimal. We have additionally obtained the
upper bounds for the estimates of various commonly used diversity indices, including Shannon’s
index, Simpson’s index and Brey-Curtis index. The resulting composition estimates can facilitate
other downstream compositional data analysis, such as high dimensional regression analysis (Lin

et al., 2014) and covariance estimation based on the composition data (Cao, Lin, and Li, 2016).

20



CHAPTER 2

LARGE COVARIANCE ESTIMATION FOR COMPOSITIONAL DATA VIA

COMPOSITION-ADJUSTED THRESHOLDING

In this chapter, we address the problem of covariance estimation for high-dimensional composition-
al data, and introduce a composition-adjusted thresholding (COAT) method under the assumption
that the basis covariance matrix is sparse. Our method is based on a decomposition relating the
compositional covariance to the basis covariance, which is approximately identifiable as the di-
mensionality tends to infinity. The resulting procedure can be viewed as thresholding the sample
centered log-ratio covariance matrix and hence is scalable for large covariance matrices. We rig-
orously characterize the identifiability of the covariance parameters, derive rates of convergence
under the spectral norm, and provide theoretical guarantees on support recovery. Simulation s-
tudies demonstrate that the COAT estimator outperforms some naive thresholding estimators that
ignore the unique features of compositional data. We apply the proposed method to the analysis of
a microbiome dataset in order to understand the dependence structure among bacterial taxa in the

human gut.

2.1. Introduction

Compositional data, which represent the proportions or fractions of a whole, arise naturally in a
wide range of applications; examples include geochemical compositions of rocks, household pat-
terns of expenditures, species compositions of biological communities, and topic compositions of
documents, among many others. This article is particularly motivated by the metagenomic analysis
of microbiome data. The human microbiome is the totality of all microbes at various body sites,
whose importance in human health and disease has increasingly been recognized. Recent studies
have revealed that microbiome composition varies based on diet, health, and the environment (The
Human Microbiome Project Consortium, 2012a), and may play a key role in complex diseases such
as obesity, atherosclerosis, and Crohn’s disease (Koeth et al., 2013; Lewis et al., 2015; Turnbaugh

et al., 2009).

With the development of next-generation sequencing technologies, it is now possible to survey
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the microbiome composition using direct DNA sequencing of either marker genes or the whole
metagenomes. After aligning these sequence reads to the reference microbial genomes, one can
quantify the relative abundances of microbial taxa. These sequencing-based microbiome studies,
however, only provide a relative, rather than absolute, measure of the abundances of community
components. The counts comprising these data (e.g., 16S rRNA gene reads or shotgun metage-
nomic reads) are set by the amount of genetic material extracted from the community or the se-
quencing depth, and analysis typically begins by normalizing the observed data by the total number
of counts. The resulting fractions thus fall into a class of high-dimensional compositional data that
we focus in this article. The high dimensionality refers to the fact that the number of taxa may be

comparable to or much larger than the sample size.

An important question in metagenomic studies is to understand the co-occurrence and co-exclusion
relationship between microbial taxa, which would provide valuable insights into the complex ecology
of microbial communities (Faust et al., 2012). Standard correlation analysis from the raw propor-
tions, however, can lead to spurious results due to the unit-sum constraint; the proportions tend to
be correlated even if the absolute abundances are independent. Such undesired effects should be
removed in an analysis in order to make valid inferences about the underlying biological processes.
The compositional effects are further magnified by the low diversity of microbiome data, that is, a

few taxa make up the overwhelming majority of the microbiome (Friedman and Alm, 2012).

Let X = (X1,...,X,)T be a composition of p components (taxa) satisfying the simplex constraint
p
X;>0, j=1,....p, > X;=1
j=1

Owing to the difficulties arising from the simplex constraint, it has been a long-standing question
how to appropriately model, estimate, and interpret the covariance structure of compositional data.
The pioneering work of Aitchison, (1982, 2003) introduced several equivalent matrix specifications
of compositional covariance structures via the log-ratios of components. Statistical methods based
on these covariance models respect the unique features of compositional data and prove useful in
a variety of applications such as geochemical analysis. A potential disadvantage of these models,
however, is that they lack a direct interpretation in the usual sense of covariances and correlations;

as aresult, it is unclear how to impose certain structures such as sparsity in high dimensions, which
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is crucial for our applications to microbiome data analysis.

Covariance matrix estimation is of fundamental importance in high-dimensional data analysis and
has attracted much recent interest. It is well known that the sample covariance matrix performs
poorly in high dimensions and regularization is thus indispensable. Bickel and Levina, (2008) and
El Karoui, (2008) introduced regularized estimators by hard thresholding for large covariance ma-
trices that satisfy certain notions of sparsity. Rothman, Levina, and Zhu, (2009) considered a more
general class of thresholding functions, and Cai and Liu, (2011) proposed adaptive thresholding
that adapts to the variability of individual entries. Exploiting a factor model structure, Fan, Fan,
and Lv, (2008) proposed a factor-based method for high-dimensional covariance matrix estimation.
Fan, Liao, and Mincheva, (2013) extended the work by considering a conditional sparsity structure

and developed a POET method by thresholding principal orthogonal complements.

In this article, we address the problem of covariance estimation for high-dimensional compositional
data. Let W = (W7y,...,W,,)T with W; > 0 for all j be a vector of latent variables, called the basis,
that generate the observed data via the normalization
W,
Xi==55, i=1....p. 2.1

j TN A (2.1)
Estimating the covariance structure of W has traditionally been considered infeasible owing to the
apparent lack of identifiability. By exploring a decomposition relating the compositional covariance
to the basis covariance, we find, however, that the nonidentifiability vanishes asymptotically as
the dimensionality grows under certain sparsity assumptions. More specifically, define the basis
covariance matrix Qo = (wf;)px, by

W)y = Cov(¥;, ;), (2.2)

where Y; = log W;. Then € is approximately identifiable as long as it belongs to a class of large

sparse covariance matrices.

The somewhat surprising “blessing of dimensionality” allows us to develop a simple, two-step
method by first extracting a rank-2 component from the decomposition and then estimating the
sparse component Q, by thresholding the residual matrix. The resulting procedure can equiva-

lently be viewed as thresholding the sample centered log-ratio covariance matrix, and hence is
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optimization-free and scalable for large covariance matrices. We call our method composition-
adjusted thresholding (COAT), which removes the “coat” of compositional effects from the covari-
ance structure. We derive rates of convergence under the spectral norm and provide theoretical
guarantees on support recovery. Simulation studies demonstrate that the COAT estimator out-
performs some naive thresholding estimators that ignore the unique features of compositional data.
We illustrate our method by analyzing a microbiome dataset in order to understand the dependence

structure among bacterial taxa in the human gut.

The covariance relationship, which was due to Aitchison, (2003 sec. 4.11), has recently been ex-
ploited to develop algorithms for inferring correlation networks from metagenomic data (Ban, An,
and Jiang, 2015; Fang et al., 2015; Friedman and Alm, 2012). Our contributions here are to turn
the idea into a principled approach to sparse covariance matrix estimation and provide statistical
insights into the issue of identifiability and the impacts of dimensionality. Our method also bears
some resemblance to the POET method proposed by Fan, Liao, and Mincheva, (2013) in that un-
derlying both methods is a low-rank plus sparse matrix decomposition. The rank-2 component
in our method, however, arises from the covariance structure of compositional data rather than a
factor model assumption. As a result, it can be obtained by simple algebraic operations without

computing the principal components.

The rest of the article is organized as follows. Section 2 reviews a covariance relationship and
addresses the issue of identifiability. Section 3 introduces the COAT methodology. Section 4 inves-
tigates the theoretical properties of the COAT estimator in terms of convergence rates and support
recovery. Simulation studies and an application to human gut microbiome data are presented in
Sections 5 and 6, respectively. We conclude the article with some discussion in Section 7 and

relegate all proofs to the Appendix.

2.2. Identifiability of the Covariance Model

We first introduce some notation. Denote by || - [l1, || - |l2, || - [lF,» @and || « ||max the matrix L;-

norm, spectral norm, Frobenius norm, and entrywise L..-norm, defined for a matrix A = (a;;)

by [[A[l1 = max; 3, [aijl, |All2 = VAmax(ATA), [[Allr = /3, ; aF;, and [|Allmax = max;,; [a;],

where \n.x(-) denotes the largest eigenvalue.
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In the latent variable covariance model (2.1) and (2.2), the basis covariance matrix €2 is the param-
eter of interest. One of the matrix specifications of compositional covariance structures introduced

by Aitchison, (2003) is the variation matrix Ty = (7;};)x, defined by
’7'1-0]- = Var(log(X;/X};)). (2.3)
In view of the relationship (2.1), we can decompose 7% as

7 = Var(log W; — log W)

= Var(Y;) + Var(Y;) — 2 Cov(Y;,Y;)

= w% + wjo»j — Zw?j, (2.4)

or in matrix form,
Ty = wolT + lwg — 2Qy, (2.5)
where wy = (wf,,...,w),)" and 1 = (1,...,1)". Corresponding to the many-to-one relationship

between bases and compositions, the basis covariance matrix 2 is unidentifiable from the de-
composition (2.5), since wol1? + 1wl and Q, are in general not orthogonal to each other (with
respect to the usual Euclidean inner product). In fact, using the centered log-ratio covariance ma-

trix To = (7];)pxp defined by

7i; = Cov{log(X;/9(X)), log(X;/9(X))},

where g(x) = ([T}_, =;)'/? is the geometric mean of a vector x = (z1,...,,)”, we can similarly

write

7y = Var{log(X;/g(X)) — log(X,/g(X))}
= Var{log(X;/g(X))} + Var{log(X;/g(X))} — 2 Cov{log(X;/g(X),log(X;/g(X))}

0., .0 0
=Y TV — 2V

or in matrix form,

Ty = vo1" + 1§ — 2T, (2.6)
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where vy = (49,....79,)" and 1 = (1,...,1)". Unlike (2.5), the following proposition shows that
(2.6) is an orthogonal decomposition and hence the components 4,17 +1~% and 'y are identifiable.
In addition, by comparing the decompositions (2.5) and (2.6), we can bound the difference between
0, and its identifiable counterpart Iy as follows.

Proposition 3. The components v,17 + 141 and T, in the decomposition (2.6) are orthogonal to
each other. Moreover, for the covariance parameters Q2 and Iy in the decompositions (2.5) and
(2.6),

1€20 = Tollmax < 3p~ (192011

Proposition 3 entails that the covariance parameter Qg is approximately identifiable as long as
12]l1 = o(p). In particular, suppose that €2, belongs to a class of sparse covariance matrices

considered by Bickel and Levina, (2008),

P
U(gq, so(p), M) =< Q: Q> 0, maxw;; <M, maxz lwii]? < so(p) ¢, (2.7)
J i
j=1

where 0 < ¢ < 1 and © > 0 denotes that 2 is positive definite. Then
/4 p
1€20]]1 = m?XZ |W?j|1_q‘w?j|q < m?XZ(w?ing)(l_q)/2|%(')j|q < M*'"s0(p),
j=1 j=1

and hence the parameters 2y and I’y are asymptotically indistinguishable when sy(p) = o(p). This
allows us to use I'y as a proxy for ¢ and greatly facilitates the development of new methodology
and associated theory. The intuition behind the approximate identifiability under the sparsity as-
sumption is that the rank-2 component w17 + 1w represents a global effect that spreads across
all rows and columns, while the sparse component € represents a local effect that is confined to

individual entries.

Also of interest is the exact identifiability of €2y over Ly-balls, which has been studied by Fang et al.,
(2015) and Ban, An, and Jiang, (2015). The following result provides a sufficient and necessary

condition for the exact identifiability of €25 by confining it to an Ly-ball.
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Proposition 4. Suppose that Q}y belongs to the Ly-ball

Bo(se(p)) = {Qi > I(wi; #0) < se(p)} ;
(,4): 1<j
where p > 5. Then there exist no two values of Qg that correspond to the same T, in (2.5) if and

only if se(p) < (p—1)/2.

A counterexample is provided in the proof of Proposition 4 to show that the sparsity conditions in
Fang et al., (2015) and Ban, An, and Jiang, (2015), which are both at the order of O(p?), do not
suffice. The identifiability condition in Proposition 4 essentially requires the average degree of the
correlation network to be less than 1, which is too restrictive to be useful in practice. This illustrates

the importance and necessity of introducing the notion of approximate identifiability.

2.3. A Sparse Covariance Estimator for Compositional Data

Suppose that (W, X}), k = 1,...,n, are independent copies of (W, X), where the compositions
Xy = (Xg1,...,Xkp)? are observed and the bases Wy, = (W1, ..., Wy,)T are latent. In Section
3.1, we rely on the decompositions (2.5) and (2.6) and Proposition 3 to develop an estimator of €2,

and in Section 3.2 discuss the selection of the tuning parameter.
2.3.1. Composition-Adjusted Thresholding

In view of Proposition 3, we wish to estimate the covariance parameter Q via the proxy I'y. To
this end, we first construct an empirical estimate of I'y and then apply adaptive thresholding to the

estimate.
There are two equivalent ways to form the estimate of I'y. Motivated by the decomposition (2.6),
one can start with the sample counterpart T = (7ij)pxp Of To defined by

. 1 _
Tij = D (hig = 735),

k=1

where 74;; = log(Xyi/Xx;) and 7;; = n~ ' 3.7, 7. A rank-2 component @17 + 1&" with & =

(@1,...,4,)T can be extracted from the decomposition (2.6) by projecting T onto the subspace
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A= {al” + 1a’: a € R}, which is given by

where 7. = p~ ! Y°F_ #; and 7. = p~2 327 #;. The residual matrix T = —(T — a1” —1a")/2,
with entries

. 1, . . . . .
Fij = =5 (fij = & = &) = =5 (fiy = T = 75 + 7)),

is then an estimate of T'y. Alternatively, T' can be obtained directly as the sample counterpart of T'g

through the expression

. _1¢ _ _
Yii = Z('Yki = %) (Vi — ¥5) (2.8)
k=1

where vi; = log(Xy;/9(Xk)) and 3; = n=1 370, ;.

Now applying adaptive thresholding to T, we define the composition-adjusted thresholding (COAT)
estimator

~

Q = (Wij)pxp With @z = Sy, (%ij), (2.9)
where S, (-) is a general thresholding function and \;; > 0 are entry-dependent thresholds.

In this article, we consider a class of general thresholding functions S, (+) that satisfy the following

conditions:

(i) Sx(z) = 0for |z] < X;
(i) |Sa(z) — 2| < Morall z € R.

These two conditions were assumed by Rothman, Levina, and Zhu, (2009) and Cai and Liu, (2011)
along with another condition that is not required in our analysis. Examples of thresholding functions
belonging to this class include the hard thresholding rule Sy (z) = zI(|z| > A), the soft thresholding

rule S\(z) = sgn(z)(|z| — )+, and the adaptive lasso rule Sx(z) = 2(1 — |A/z|")4 fornp > 1.

The performance of the COAT estimator depends critically on the choice of thresholds. Using entry-

adaptive thresholds may in general improve the performance over applying a universal threshold.
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To derive a data-driven choice of );;, define

0ij = Var{(Yi — pi)(Y; — 1)},

where p1; = EY;. We take \;; to be of the form

Ay = M/, (2.10)

where éij are estimates of ¢;;, and A > 0 is a tuning parameter to be chosen, for example, by
cross-validation. We rewrite (2.8) as 4;; = n=* > 1_, Vkij» Where v = (vei — 7)) (%j — ;). Then

0;; can be estimated by

1
E Z ,Yk?’bj IYZJ

2.3.2. Tuning Parameter Selection

The thresholds defined by (2.10) depend on the tuning parameter A, which can be chosen through

V-fold cross-validation. Denote by ﬁ(_v)

(M) the COAT estimate based on the training data exclud-
ing the vth fold, and T', the residual matrix (or the sample centered log-ratio covariance matrix)
based on the test data including only the vth fold. We choose the optimal value of A that minimizes

the cross-validation error

14
1 (=) ~(0)
SR D DI RNEVES S

v=1
With the optimal A, we then compute the COAT estimate based on the full dataset as our final
estimate. When the positive definiteness of the covariance estimate in finite samples is required
for interpretation, we follow the approach of Fan, Liao, and Mincheva, (2013) and choose X in the

range where the minimum eigenvalue of the COAT estimate is positive.

2.4. Theoretical Properties

In this section, we investigate the asymptotic properties of the COAT estimator. As a distinguishing
feature of our theoretical analysis, we assume neither the exact identifiability of the parameters
nor that the degree of (approximate) identifiability is dominated by the statistical error. Instead, the

degree of identifiability enters our analysis and shows up in the resulting rate of convergence. Such
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theoretical analysis is rare in the literature, but is extremely relevant for latent variable models in
the presence of nonidentifiability and is of theoretical interest in its own right. We introduce our
assumptions in Section 4.1, and present our main results on rates of convergence and support

recovery in Section 4.2.
2.4.1. Assumptions

Recall that Y; = log W;, u; = EYj, and 60;; = Var{(Y; — p;)(Y; — ;) }, and define Yy; = log Wy;.
Without loss of generality, assume p; = 0 for all j throughout this section. We need to impose the
following moment conditions on the log-basis Y = (Y3,...,Y,)7.

Condition 3. There exists a constant o > 0 such that max; Eexp(anz) <2.

Condition 4. The basis covariance matrix €2y belongs to the class (g, so(p), M) defined by (2.7),
where 0 < ¢ < 1, s0(p) = o(p), and log p = o(n'/?).

Condition 5. There exists a constant 7 > 0 such that min; ; 6;; > 7.

Condition 6. There exists a sequence s1(p) = o(p) such that

max < s1(p).

7,

P
> EYiY;YiY,
=1

Conditions 1-3 are similar to those commonly assumed in the covariance estimation literature;
see, for example, Cai and Liu, (2011). Condition 3 requires that the variables Y;s be uniformly sub-
Gaussian; the definition we use here is among several equivalent ways of defining sub-Gaussianity
(Boucheron, Lugosi, and Massart, 2013 sec. 2.3), and is most convenient for our technical analysis.
Condition 4 imposes some restrictions on the dimensionality and sparsity of the basis covariance
matrix Q. It is worth mentioning that the sparsity level condition sy = o(p) is so weak that it suffices
to guarantee only approximate identifiability but allows the degree of nonidentifiability to be large
relative to the statistical error. Condition 5 is essential for methods based on adaptive thresholding.
Condition 6 arises from identifiability considerations in estimating the variances 6;;. In particular, if
Y is multivariate normal, then Condition 6 is implied by the assumptions Q4 € U(q, so(p), M) and

so(p) = o(p) in Condition 4, since from Isserlis’ theorem (Isserlis, 1918) we have

P

I}l]&é( < Ilnjaﬁ( Z (|w?j”wg7n| + ‘W?EHW?m‘ + |w?m,||w?€|) < 3M27q50(p)'
T m=1

p
> EYiY;YiY,
=1
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2.4.2. Main Results

We are now in a position to state our main results. The following theorem gives the rate of conver-
gence under the spectral norm for the COAT estimator.

Theorem 4 (Rate of convergence). Under Conditions 3-6, if the tuning parameter \ in (2.10) is

A=y 82 4 ¢, 50) (2.11)
n p

for sufficiently large C,Cy > 0, then the COAT estimator Q in (2.9) satisfies

1—q
~ lo s
19— 2]l = 0, § s0l0) (x/jp v ;’”)

uniformly onU(q, so(p), M).

chosen to be

The rate of convergence provided by Theorem 4 exhibits an interesting decomposition: the ter-
m so(p){(logp)/n}(1~9/2 represents the estimation error due to estimating Ty, while the term
so(p)(so(p)/p)*t~7 accounts for the approximation error due to using 'y as a proxy for £2¢. In particu-
lar, if the approximation error is dominated by the estimation error, then the COAT estimator attains
the minimax optimal rate under the spectral norm over U(q, so(p), M) (Cai and Zhou, 2012). It is
important to note that the dimensionality p appears in both terms where it plays opposite roles. We
observe a “curse of dimensionality” in the first term, where the growth of dimensionality contributes
a logarithmic factor to the estimation error. In contrast, a “blessing of dimensionality” is reflected by
the second term in that a diverging dimensionality shrinks the approximation error toward zero at a

power rate.

The insights gained from Theorem 4 have important implications for compositional data analysis.
In the analysis of many compositional datasets, the dimensionality often depends on the taxonomic
level to be examined. For example, in metagenomic studies, the dimensionality may range from
only a few taxa at the phylum level to thousands of taxa at the operational taxonomic unit (OTU)
level. Suppose, for simplicity, that the magnitudes of correlation signals are of about the same
order across different taxonomic levels. Then Theorem 4 indicates a tradeoff between an accu-
rate estimation of the covariance structure with low dimensionality and a sensible interpretation in

terms of the basis components with high dimensionality. This tradeoff thus suggests the need to
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analyze compositional data at relatively finer taxonomic levels when a latent variable interpretation

is desired.

The proof of Theorem 4 relies on a series of concentration inequalities that take the approximation
error term into account, which can be found in the Appendix. As a consequence of these inequali-
ties, we obtain the following result regarding the support recovery property of the COAT estimator.
Here the support of Q refers to the set of all indices (7, j) with w?j #0.

Theorem 5 (Support recovery). Under Conditions 3-6, if the tuning parameter \ in (2.10) is chosen

as in (2.11), then the COAT estimator 2 in (2.9) satisfies

P (@i; = 0 for all (i, j) withwy; = 0) — 1. (2.12)

Moreover, if in addition
i 91//0;; > O\ 2.13
<i,jfl5§j 0 |wij|/\/0ij > (2.13)

for some constant C > 3/2, then

P (sgn(w;;) = sgn(w?j) for all (i, j)) — 1. (2.14)

Theorem 5 parallels the support recovery results in Rothman, Levina, and Zhu, (2009) and Cai and
Liu, (2011). However, owing to the extra term sqo(p)/p in the expression of A, the assumption (2.13)
requires in addition that no correlation signals fall below the approximation error. In other words,
exact support recovery will break down if any correlation signal is confounded by the compositional

effect.

2.5. Simulation Studies

We conducted simulation studies to compare the numerical performance of the COAT estimator
Q with that of the oracle thresholding estimator ﬁo, which knew the latent basis components and
applied the thresholding procedure to the sample covariance matrix of the log-basis Y. We also
include in our comparison two naive thresholding estimators €2, and €, which are based on the
sample covariance matrices of the composition X and its logarithm log X, respectively. Note that

Q, is the ideal estimator that the COAT estimator attempts to mimic, whereas both Q.and Q ignore
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the unique features of compositional data and thus are expected to perform poorly.
2.5.1. Simulation Settings

The data (W, Xyk), k =1,...,n, were generated as follows. We first generated Y, in two different

ways:

(i) Yy are independent from the multivariate normal distribution N, (, Q);

(i) Yy = p+ FU,/V/10, where FFT = Q, and the components of U, are independent gamma
variables with shape parameter 10 and scale parameter 1, so that Var(Y) = Q. Here the
matrix F is obtained by computing the singular value decomposition 2o = QSQ” and letting

F = QS'/2.

Then Wy, = (Wy,...,Wy,)T and X, = (Xja,..., Xg,)T were obtained through the transforma-
tions Wy; = e¥% and Xy; = Wi;/Y.0_, Wi, j = 1,...,p. Hence, in Case (i), W;, and X, follow
multivariate log-normal and logistic normal distributions (Aitchison and Shen, 1980), respective-
ly; the distributions of W, and X in Case (ii) can similarly be viewed as a type of multivariate

log-gamma and logistic-gamma distributions.

In both cases, we took the the components of ;. randomly from the uniform distribution on [0, 10],
in order to reflect the fact that compositional data arising from metagenomic studies are often

heterogeneous. The following two models for the covariance matrix €23 were considered:

e Model 1 (Identity covariance): Qo = L,.

e Model 2 (Sparse covariance): Q, = diag(Ai,Az), where A; = B + ¢l,,, Ay = 41,
p1 = [2y/p), p2 = p — p1, and B is a symmetric matrix whose lower triangular entries are
independent from the uniform distribution on [—1, —0.5] U [0.5, 1] with probability 0.2 and equal
to 0 with probability 0.8. We set ¢ = max(—Anin(B),0) + 0.01 to ensure that A, is positive

definite, where A\, (-) denotes the smallest eigenvalue.

Model 1 is an extreme but illustrative case intended for comparing the distributions of spurious
correlations under different transformations. The setting of Model 2 is typical in the covariance
estimation literature and similar to that in Cai and Liu, (2011). We set the sample size n = 100 and

the dimension p = 50, 100, and 200, and repeated 100 simulations for each setting.
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Figure 2.1: Boxplots of sample correlations with simulated data under different transformations in
Model 1.

2.5.2. Spurious Correlations

The boxplots of sample correlations with simulated data under different transformations in Model
1 are shown in Figure 2.1. Clearly, the sample centered log-ratio (clr) correlations are centered
around zero and have a similar distribution to that of the sample correlations of Y; the resemblance
tends to increase as the dimension p grows. This trend is consistent with Proposition 3 and provides
numerical evidence for the validity of the centered log-ratio covariance matrix I'y as a proxy for €.
In fact, from the proof of Proposition 3 we have, when €y = I,,,
1€20 = Lollmax = max wp, + ). =Wl =p7"

In contrast, the phenomenon of spurious correlations is observed on both log X and X. The sample
correlations of log X exhibit a severe upward bias, while the sample correlations of X contain many
outliers that would be detected as signals by a thresholding procedure with threshold level close
to 1. Moreover, the spurious correlations seem to become worse with gamma-related distributions

where the components of the composition have more heterogeneous means.
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2.5.3. Performance Comparisons

We applied the COAT method with hard and soft thresholding rules to simulated data in Model 2.
For comparison, we also applied the thresholding procedure to the sample covariance matrices of
Y, log X, and X, resulting in the estimators Q,, €, and €., respectively. The tuning parameter
A in each thresholding estimator was chosen by tenfold cross-validation. Losses under the matrix
L,-norm, spectral norm, and Frobenius norm were used to measure the estimation performance,
while the true positive rate and false positive rate were employed to assess the quality of support

recovery.

The simulation results for Model 2 with normal- and gamma-related distributions are summarized
in Tables 2.1 and 2.2, respectively. We see that the COAT estimator Q performs almost equally well
as the ideal estimator €2, and outperforms the naive thresholding estimators Q, and Q. by a large
margin. In particular, the estimation losses of €2, are disastrously large in the gamma setting, in
agreement with the severe bias observed in Figure 2.1. The estimation losses of Q. do not change
much across different thresholding rules and distributions, since all entries of the estimate are very
small relative to the true values. Both €, and €. show inferior performance in terms of true and
false positive rates, indicating that they are not model selection consistent. Comparisons between
hard and soft thresholding rules suggest that the former is more conservative in selecting false
positives and results in a more parsimonious model, whereas the latter strikes a balance between

true and false positives due to the shrinkage effect.

To further compare the support recovery performance without selecting a threshold level, we plot
the receiver operating characteristic (ROC) curves for all methods in Figure 2.2. Note that hard
and soft thresholding rules lead to the same ROC curve for each method. We observe that the
ROC curves for © and €, are almost indistinguishable and uniformly dominate those for Q, and
., demonstrating the superiority of the COAT method. Of the two naive thresholding estimators,
Q, tends to outperform 2. when the threshold level is high, since the former is less influenced by

the high spurious correlations as reflected in Figure 2.1.
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Figure 2.2: ROC curves for four methods in Model 2 with normal-related distribution (top panel) and
gamma-related distribution (bottom panel).
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2.6. Gut Microbiome Data Analysis

The gut microbiome plays a critical role in energy extraction from the diet and interacts with the
immune system to exert a profound influence on human health and disease. Despite an emerging
interest in characterizing the ecology of human-associated microbial communities, the complex
interactions among microbial taxa remain poorly understood (Coyte, Schluter, and Foster, 2015).
We now illustrate the proposed method by applying it to a human gut microbiome dataset described
by Wu et al., (2011), which was collected from a cross-sectional study of 98 healthy individuals
at the University of Pennsylvania. DNA from stool samples of these subjects were analyzed by
454/Roche pyrosequencing of 16S rRNA gene segments, resulting in an average of 9265 reads
per sample, with a standard deviation of 3864. Taxonomic assignment yielded 3068 operational
taxonomic units, which were further combined into 87 genera that appeared in at least one sample.
Demographic information, including body mass index (BMI), was also collected from the subjects.
We are interested in identifying and comparing the correlation structures among bacterial genera
between lean and obese subjects. We therefore divided the dataset into a lean group (BMI <
25, n = 63) and an obese group (BMI > 25, n = 35), and focused on the p = 40 bacterial
genera that appeared in at least four samples in each group. The count data were transformed into

compositions after zero counts were replaced by 0.5.

We applied the COAT method with the soft thresholding rule to each group, and used tenfold cross-
validation to select the tuning parameter. The resulting estimate was represented by a correlation
network among the bacterial genera with each edge representing a nonzero correlation. To assess
the stability of support recovery, we further generated 100 bootstrap samples for each group and
repeated the thresholding procedure on each sample. The stability of the correlation network was
measured by the average proportion of edges reproduced by each bootstrap replicate. Finally, we
retained only the edges in the correlation network that were reproduced in at least 80 bootstrap
replicates. The numbers of positive and negative correlations and the stability of correlation net-
works are reported in Table 2.3; the results for the two naive thresholding estimators €, and €. are
also included for comparison. We see that the COAT method achieves the highest stability among
the three methods and has the most edges passing the stability test. The correlation network iden-
tified by Q, has substantially fewer negative correlations than the other two methods, which is likely

due to the severe upward bias observed in Figure 2.1. The correlation network identified by Q. is
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Table 2.3: Numbers of positive and negative correlations and stability of correlation networks for
three methods applied to the gut microbiome data

Lean Obese
Q Q Q. Q Q Q.
Positive correlations 111 108 119 41 34 31
Negative correlations 134 55 95 55 11 43
Network stability 0.83 0.68 0.67 0.87 0.62 0.54

the least stable.

The correlation networks identified by the COAT method for the two groups are displayed in Fig-
ure 2.3. Clearly, the networks for the lean and obese groups show markedly different architecture,
indicating that the obese microbiome is less modular with less complex interactions between the
modules. This phenomenon has been demonstrated by previous studies and is possibly due to
adaptation of the microbiome to low-diversity environments (Greenblum, Turnbaugh, and Boren-
stein, 2012). Table 2.3 and Figure 2.3 also suggest that the gut microbial network tends to contain
more competitive (negative) interactions than cooperative (positive) ones, which seems consistent
with the recent finding that the ecological stability of the gut microbiome can be attributed to the
benefits from limiting positive feedbacks and dampening cooperative networks (Coyte, Schluter,

and Foster, 2015).

A closer inspection of the correlation networks identifies Bacteroides and Prevotella as two key
genera of the gut microbiome. The abundances of these two genera are well known to distin-
guish two gut microbial enterotypes, which are strongly associated with long-term dietary patterns
(Arumugam et al., 2011; Wu et al., 2011). The negative correlations between Bacteroides and
Prevotella (—0.404 in the lean group and —0.296 in the obese group) are well explained by the
diet-dependent enterotypes and the within-body separation of the two genera (Jordan et al., 2015).
Moreover, recent studies have suggested several keystone species belonging to the genus Bac-
teroides, through which the structure of gut microbial communities may be influenced by small
perturbations (Fisher and Mehta, 2014). Also, the Firmicutes-enriched microbiome has been found
to hold greater metabolic potential than the Bacteroidetes-enriched microbiome for more efficient
energy harvest from the diet (Turnbaugh et al., 2006). Figure 2.3 seems to support these findings,

in view of the central position of Bacteroides in the networks and its strong correlations with a few
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Figure 2.3: Correlation networks identified by the COAT method for the lean and obese groups
in the gut microbiome data. Positive and negative correlations are displayed in green and red,
respectively. The thickness of edges indicates the magnitude of correlations.
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genera belonging to the Firmicutes. Such patterns, however, are less clearly seen in the correlation

networks identified by the other two methods.

2.7. Discussion

Understanding the dependence structure among microbial taxa within a community, including co-
occurrence and co-exclusion relationships between microbial taxa, is an important problem in mi-
crobiome research. Such structures provide biological insights into the community dynamics and
factors that change the community structures. To overcome the difficulties arising from the unit-sum
constraint of the observed compositional data, we have developed a COAT method to estimate the
sparse covariance matrix of the latent log-basis components. Our method is based on a decom-
position of the variation matrix into a rank-2 component and a sparse component. The resulting
procedure is equivalent to thresholding the sample centered log-ratio covariance matrix, and thus

is optimization-free and scalable for high-dimensional data.

Our simulation results demonstrate that the COAT method performs almost as well as the ora-
cle thresholding estimator that knew the latent basis components, and outperforms some naive
thresholding estimators by a large margin. These improvements are more pronounced when the
basis components have a skewed distribution, as is often observed in microbiome studies. In the
application to gut microbiome data, the COAT method leads to more stable and biologically more

interpretable results for comparing the dependence structures of lean and obese microbiomes.

We have provided conditions for the approximate and exact identifiability of the covariance param-
eters, and have established rates of convergence and support recovery guarantees for the COAT
estimator. The rate of convergence includes an extra term of O, (so(p)(so(p)/p)'~%) in addition to
the usual minimax optimal rate of convergence for sparse covariance estimation. The extra term
represents an approximation error due to using I'y as a proxy for 2y, which vanishes under mild

assumptions as the dimensionality increases.

The proposed methodology may be extended in several ways. First, it would be possible to develop

a joint optimization procedure based on the decomposition (2.5). For example, one may consider
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the regularized estimator
Dy = argmin{| T — w1’ — 107 +2Q|% + P\ ()},
Q

where w = diag(€2) and P, (-) is a sparsity-inducing penalty function. The COAT estimator can
be viewed as a one-step approximation to ﬁreg with appropriately chosen penalty function and
initial value Q = 0. Solving the full optimization problem is computationally more expensive but
is expected to improve on the performance of the COAT estimator. Another worthwhile extension
would be to deal with zero counts directly. One may, in principle, combine the ideas presented
here with models that account for sampling and structural zeros. The issues of identifiability and

computational feasibility are the major concerns with such extensions.
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CHAPTER 3

TWO-SAMPLE MEAN TESTS FOR HIGH-DIMENSIONAL COMPOSITIONAL DATA

Motivated by microbiome and metagenomic research, in this chapter, we consider a two-sample
testing problem for high-dimensional compositional data and formulate a testable hypothesis of
compositional equivalence for the means of two latent log-basis vectors. We propose a test for
such compositional equivalence through the centered log-ratio transformation of the composition-
s. The asymptotic null distribution of the test statistic is derived and the power of the test against
sparse alternatives is studied. A modified test for paired observations is also developed. Simula-
tions show that the proposed tests can be significantly more powerful than existing tests that are
applied to the raw and log-transformed compositional data. The usefulness of the proposed tests
is illustrated by applications to test for differences in gut microbiome composition between lean and
obese individuals and changes between different time points during treatment in Crohn’s disease

patients.

Compositional data, which belong to the unit simplex sample space, are ubiquitous in many sci-
entific disciplines such as geology, economics, genomics, and machine learning. This paper is
motivated by microbiome and metagenomic research, where the relative abundances of hundreds
to thousands of bacterial taxa on a few tens to hundreds of individuals are available for analysis
(The Human Microbiome Project Consortium, 2012b). Due to varying amounts of DNA generating
materials across different samples, sequencing read counts are often normalized to relative abun-
dances; the resulting data are therefore compositional (Li, 2015). One fundamental problem in mi-
crobiome data analysis is to test whether two populations have the same microbiome composition,
which can be viewed as a two-sample mean testing problem for high-dimensional compositional
data. Owing to the key feature that the components of a composition must sum to one, applying
standard multivariate statistical methods intended for unconstrained data directly to compositional

data may result in inappropriate or misleading inferences (Aitchison, 2003).

Various methods for compositional data analysis have been developed in the literature since the
seminal work of Aitchison, 1982. Most existing methods for the two-sample mean testing problem,

however, deal only with the low-dimensional setting where the dimensionality is fixed or much s-
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maller than the sample size; see, e.g., the generalized likelihood ratio tests discussed in Aitchison,
(2003 §7.5). In this paper, we consider the two-sample mean testing problem for high-dimensional
compositional data, where compositions in the (p — 1)-dimensional unit simplex S?~! are thought of
as arising from latent basis vectors in the p-dimensional positive orthant R”, . In microbiome studies,
the basis components may represent the true abundances of bacterial taxa in a microbial commu-
nity such as the gut of a healthy individual (Li, 2015). To circumvent the nonidentifiability issue
associated with the basis vectors, we formulate a testable hypothesis of compositional equivalence
for the means of two log-basis vectors. We then propose a test for such compositional equivalence
through the centered log-ratio transformation of the compositions. The proposed test thus honors
the principle of scale invariance, which is crucial for compositional data analysis. We emphasize
that we are adopting the extrinsic analysis approach, which leads to biologically meaningful inter-
pretations and is in contrast to intrinsic analysis where no such basis exists and interest focuses on

the composition itself (Aitchison, 1982).

Development of tests for the equality of two population means in high-dimensional settings has
received much attention recently; see, e.g., Bai and Saranadasa, (1996), Srivastava, (2009), S-
rivastava, (2009), Chen and Qin, (2010) and Cai, Liu, and Xia, (2014). These high-dimensional
tests, however, are not directly applicable to compositional data because the required regularity
conditions are generally not met. For example, the covariance matrix of compositional variables
is singular, thereby violating the usual assumptions on the eigenvalues of the covariance matrix
such as Condition 1 in Cai, Liu, and Xia, (2014). Our assumptions are instead made on the latent
log-basis vectors, which are free of the simplex constraint. We show that, under mild conditions, the
centered log-ratio transformed variables satisfy certain desired properties, which in turn guarantee
the validity of the proposed test. The asymptotic null distribution of the test statistic is then derived

and the power of the test against sparse alternatives is investigated.

The proposed test is further extended to the setting with paired observations or repeatedly mea-
sured compositions. Extensive simulations and applications to two microbiome datasets are pro-

vided to illustrate the proposed methodology. All proofs are given in the Appendix.
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3.1. Atestable hypothesis of compositional equivalence

Denote by X® = (x .. X)) the observed n;, x p data matrices for group k (k = 1,2),
where ka) represent compositions that lie in the p — 1-simplex P~ = {(z1,...,2p) 1 2; > 0(j =
1,...,p), Z§:1 x; = 1}, and the two-sample sizes n; and n, are supposed to be comparable, that
is, the ratio ny/n, is always constant. Let n = max(ny,n3). We assume that the compositional
variables arise from a vector of latent variables, which we call the basis. For microbiome data, the
basis components may refer to the true abundances of bacterial taxa in a microbial community.
Denote by W) = (Wf’“), cey W,S’z))T the nj x p matrices of unobserved bases, which generate the

observed compositional data via the normalization
(k) (k) - (k)
X =wy /ZWM (i=1,....n0; 5 =1,...,p; k=1,2),
(=1

where X¥ and W) > 0 are the jth components of X{*) and W), respectively.

Denote by Zi(k) = log WZ.(’“) the log-basis vectors, where the logarithm applies componentwise. Sup-
pose that Zf’“), ce fo,i) are independent and identically distributed from a distribution with mean

1y, and covariance matrix  (k = 1, 2). One might attempt to test the hypotheses
Hy:pp =ps versus Hiy:pg # po. (31)

These hypotheses, however, are not testable through the observed compositional data X*) (k =
1,2). Clearly, a basis is determined by its composition only up to a multiplicative factor, and the set
of bases giving rise to a composition z € SP~! forms the equivalence class W(z) = {(tz1,. .., tz,) :
t > 0} (Aitchison, 2003 p. 32). As an immediate consequence, a log-basis vector is determined
by the resulting composition only up to an additive constant, and the set of log-basis vectors corre-
sponding to x constitutes the equivalence class Z(z) = {(logz1 +¢,...,logz, +¢) : ¢ € R}. We
therefore introduce the following definition.

Definition 1. Two log-basis vectors z; and z; are said to be compositionally equivalent if their

components differ by a constant c € R, i.e., 21 = 22 + c1,, where 1,, is the p-vector of 1s.
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Now, instead of testing the hypotheses in (3.1), we propose to test
Ho:p=pe+cl,forsomeceR versus Hip:py # ps+clyforall c € R, (3.2)

which are testable using only the observed compositional data. Clearly, Hy in (3.1) implies Hj in
(3.2), so that rejecting the latter would lead to rejection of the former. Note, however, that Hj in
(3.2) neither implies nor is implied by E(Xl(l)) = E(Xf)) or E(log Xl(l)) = E(log X1(2)). We do not
consider the latter two hypotheses because they are not scale invariant, whereas we will derive
in the next section an equivalent form of H, in (3.2), from which its scale invariance is obvious.
Moreover, these two hypotheses do not allow us to obtain biological interpretations in terms of the

true underlying abundances.

3.2. The centered log-ratio transformation and a test for compositional equivalence

3.2.1. The centered log-ratio transformation and an equivalent hypothesis

The unit-sum constraint entails that compositional variables must not vary independently, making
many covariance-based multivariate analysis methods inapplicable. Aitchison, 1982 proposed to
relax the constraint by performing statistical analysis through log-ratios. Among various forms of
log-ratio transformations, the centered log-ratio transformation possesses some attractive features
and has been widely used in practice. For the observed compositional data X*) (k = 1,2), the

centered log-ratios are defined by
Y =1og{XP/g(X)} (i=1,...oms j=1,...,p k=1,2), (3.3)

where g(x) = ([]5_, =;)'/? denotes the geometric mean of a vector = = (z1,...,z,)". The relation-

ship (3.3) can be expressed in matrix form as

VO = Glog X (=1, k=12), @4

*) are the centered log-ratio vectors, G = I, — p~'1,17, and I, is the p x p identity matrix.

where Y pips

Let v, = E(Yl(’“)) (k = 1,2). In view of (3.4) and the scale invariance of the centered log-ratios, we
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have
v = B(Glog XM = BE(GlogW®) = GE(logW®) = GE(ZP) = G (k =1,2).

Note that the matrix G has rank p — 1 and hence a null space of dimension 1, N'(G) = {z € R? :
Gz =0} = {cl, : c € R}. Asaresult, 1 = 1, if and only if 1 = po + 1, for some c € R. Therefore,

testing the hypotheses in (3.2) is equivalent to testing
Hy:vi =vy versus Hy:uvg # V. (35)

Despite this equivalence, the hypotheses in (3.2) are meaningful only when the bases exist, which
is the case in microbiome studies. On the other hand, the hypotheses in (3.5) concern only the
compositions through the centered log-ratios, from which its scale invariance and testability using

the observed compositional data are evident.
3.2.2. A test for compositional equivalence

A natural test statistic for testing Hy in (3.5), and hence Hj in (3.2), would be based on the differ-
ences Yj(l) - Yf”, where Yj(’“) =y Yi(jk)/nk. are the sample means of the centered log-ratios.
Moreover, it is well known that tests based on maximum type statistics are generally more powerful
than those based on sum-of-squares type statistics against sparse alternatives (Cai, Liu, and Xia,
2014). Since in microbiome studies we are mainly interested in the sparse setting where only a

small number of taxa may have different mean abundances between the two groups, we consider

the test statistic (1) (2)
v -y
M, = M2 ax (]A—J)v (3-6)
n1 + ng 1<<p Vi

where 7;; = S0, S (Y — ¥)2/(ny + n2) are the pooled sample variances.

The asymptotic behavior of M,, will be investigated in the next section. Specifically, under suitable
conditions on the log-basis variables Zf’;), we will show that the centered log-ratio transformed
variables Ylff) are only weakly dependent and satisfy certain concentration properties. As a result,
the null distribution of M,, — 2logp + loglog p is asymptotically a type | extreme value distribution.
The test defined by ®, = I(M,, > q, + 2logp — loglogp), where q, = —logm — 2loglog(l — a)~!

is the (1 — «)-quantile of the type | extreme value distribution, is then an asymptotic a-level test for
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testing Hy in (3.2) or (3.5).

Although M, is similar to the test statistic M; defined in Cai, Liu, and Xia, 2014, their theoretical
analyses are radically different, since our assumptions are not imposed on the observed variables.
Besides, the test statistic based on a linear transformation by the precision matrix proposed by Cai,
Liu, and Xia, 2014 is not considered here, because the covariance matrix of Yl(k) is singular and its

precision matrix is not well defined.

3.3. Theoretical Results for the cLR Transformation-based Global Test

3.3.1. Covariance and correlation of CLR-transformed compositions

The relationships between the covariance and correlation for the true log of the abundance log Wy
and the log-ratio vectors Yy, (d = 1, 2) are first studied. Let the centered log-ratio covariance matrix
be I' = (v;,5) == cov(y; 4, yj4) for 1 <i < j<pandd=1,2. Then T is related to Q2 via the following

relationship (Aitchison, 2003),
Q—T:T=GQG". (3.7)

In the high dimensional setting when p > 0, G = I, — p~'J, ~ I,,, suggesting that the covariance
and correlation structure of log W, and Y, are similar. Such relationships serve as the basis for
the theoretical validity of the testing procedure. Denote the correlation of log W, and Y; as R and
R e, R = (ri;) = corr(log wy 4,logw? ;) and R = (rih) = corr(y; 4, Y7 4)- The following
assumptions are made on the correlation matrix R.

Condition 1. max;<i<;<p |1i,;| < r1 < 1 for some constant 0 < r < 1.

Condition 2. max,<j<, Y7, r7; < ry < oo for some constant r, > 0.

Condition3. 0 < 1/7 <w,;; <7< o0, foranyi=1,---,p, where 7 > 0 is a constant.

Condition 1 is mild since 2 is non-singular. Both Conditions 2 and 3 are standard assumptions en-
countered in high dimensional settings. Condition 2 guarantees weak correlations among majority
of the variables, which is reasonable in the context of microbiome study as only a small number of
bacterial species in human microbiome may have strong cooperative and competitive relationships.
Condition 3 assumes a uniform variance. Under these conditions, the following properties of the

correlation and covariance matrices hold.
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Proposition 1. Under Condition 2, let 3 := maxi<j<, > -, |r; ], then
p P
= < pl/2. 2 31/2 _ (p1/2).
ra fél?;‘p; rijl <p fél?%p(; ) (/%)

Proposition 2. Under Conditions 1, 2 and 3, from Proposition 1, the difference between Q2 and " is

bounded by
_ < 1, . =
||Q I—‘Hmax — 3p 11’23“<X Wi,i 11?]&2{ Z |’I"7,J| 0
which implies €2 and I" are approximately identical as p — co. Therefore, for sufficiently large p,

>1/(2r). (3.8)

min y;; > min w;; — [|Q =T

1<i<p 1<i<p max

Propositions 1 and 2 bound the difference between R and R°'", which is given in the following
theorem.
Theorem 6. Suppose Conditions 1, 2 and 3 hold respectively for the correlation matrix R and the

covariance matrix §2, as p is sufficiently large,

p p

1R = B[ e = 0(1), max | (r5)* = > ri| =
i=1 3

max 1<j<p

Equations (3.9), combined with Conditions 1 and 2 guarantee that a similar correlation structure
holds for R°.

Corollary 1. Suppose Condition 1, 2 and 3 hold respectively on R and €, then, for sufficiently large
p, there exists some constant r, > 0 and r5 > 0, such that

max rd; <ry <1, and max Z Clr <rs < oo. (3.10)
1<i<j<p 7 1<]<p
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3.3.2. Tail distribution of the CLR-transformed compositions

This section investigates the concentration property the CLR-transformed variable Y, based on the
assumptions for the random vector log . Specifically,

Condition 4. (Sub-Gaussian-type tails). Random vector log W (d = 1,2) follows sub-Gaussian-
type tails (Cai, Liu, and Xia, 2014), if logp = o(n)/*) and there exist some constants 5 > 0 and

K > 0 such that,

E(exp(n(log W}y — p1i.4)* /wii)) < K, for1 <i <p.

Condition 5. (Polynomial-type tails). Random vector log W} (d = 1, 2) follow polynomial-type tails
(Cai, Liu, and Luo, 2011), if, for some constant v, > 0, p = O(n) and for some constants ¢ > 0

and K > 0 such that,

. 1/2 4v0+4+€ .
E|(log W}y — pi,a)/w;’; <K, forl1<i<p.

Conditions 4 and 5 are assumed for log ;. The tail distribution of the CLR-transformed observation
Ya (d = 1, 2) has the following probability inequality, as well as the rate of convergence of its sample
variance.

Theorem 7. Suppose that the correlation/variance structure (Conditions 2 and 3), and tail prob-
ability of its distribution (Condition 4 (or 5)) hold. Then, there exists 7, = o(n/?/(log p)*/2) such
that,

1/2
a—vial [P <) =1 — 0. A1
pr(lgk;};ﬁ%@\ym,d Vial /7" <) — 1, @sng,p — o0 (3.11)

In addition, uniformly in 1 < i < p, the rate of convergence of the pooled sample variance ~; ; is

[¥i,i — viil = Op {(1ogp/n)1/2} Vii- (3.12)
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3.3.3. Asymptotic null distribution of M, and power analysis

The following theorem states that although no assumptions are made directly on Y (d = 1,2),
Conditions 1-5 guarantee that the asymptotic null distribution of A, follows a type | extreme value
distribution and its size is effectively controlled.

Theorem 8. Suppose that equations (3.10), (3.11) and (3.12) hold, which are guaranteed by Con-
ditions 1 — 3 and 4 (or 5). Under the null hypothesis Hy : v1 = s, forany t € R,

pr(M,, —2logp +loglogp < t) — exp {—7771/2 exp(—t/2)} , asni,ng,p — 00. (3.13)

Besides, if the a—level test @, is defined by ®, = I(M,, > q, + 2logp —loglogp), the probability of

type | error is controlled by

pr(Type I error) = pry, (®o = 1) < —log(l —a) +o(1), forany 0 < a < 1. (3.14)

To study the power of the test defined in Theorem (8), consider the alternative hypothesis

Hy:vi—wvp € S(ky)Withk, =p",0<r <1, (3.15)
where the non-zero support is randomly and uniformly drawn from {1,--- ,p} with the magnitude
given by

max |vi1 — vial/vii/? = {2Blogp(1/ny + l/ng)}1/2 , where 5 € (0,1). (3.16)

1<i<p

This hypothesis H; can be rephrased using the parameters for the basis counts. For Ve € S(k,)

with the support index defined as S,

de* € R, st pug1 = pg2 + ¢t X 1pr,
V) —Vp =€ <
VC S R, [LSCJ # MSC,Q +c X ]_p,pr7

where ug 4 and pge ¢ are the sub-vectors of 1 corresponding to the support S and its complement.

Since the observed composition is in high dimensional space, it is reasonably to assume the means
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of the basis count from two groups compositionally differ only in a small number of the coordinates.

In addition, under Conditions 1, 2 and 3, equation (3.16) is equivalent to
* 1/2 1/2
max |uin — pi2 = ¢ Jwi” = {28logp(1/my + 1/n2)} - (1 +o(1)).

The following theorem provides the results on test power under the alternative specified in (3.15).

Theorem 9. Under H, given by (3.15), for some ¢ > 0, we have

lim pry, (®a=1)=1, if3 > (1 —v7)* +e, (3.17)
P—00
lim pry (Po =1) < a, ifB < (1—+/r)> (3.18)
p—o0

3.4. Two-sample Test for Paired Observations

Test of compositional equality for paired observations {(X; 1, X; )}, ,, where X;, and X;, are
two p-dimensional compositional observations on a subject i before and after a treatment, requires
slight modification. Suppose that {(W; 1, W;2)};_, are the corresponding p—variate basis vec-
tors. Let Wi = (Wi, - ,@i,p)T be the element-wise ratio of i*" samples Wi and Wt w; ; =
w; j1/w; 2 forl < j<p, and log W; := log Wii1—logWia. Fori=1--- n,letY; = (@i1, -, %ip)"
be the corresponding CLR-transformed random vector. Through (3.4) and the principle of scale

invariance that G log W; 4 = G'log X; 4, it can be written by the observations X, as

ffi = GlogWi =GlogW, 1 —GlogW, o =Glog X;1 — Glog X, 0, fori=1,--- n.

The compositional equality null hypothesis can be written in term of the mean of the difference of

the centered log-ratio variables,

Hoy:v=0 vs Hy:veS(ky) withk,=p", 0<r <1, (3.19)
where 7 = EY; (¢ = 1,---,n). The non-zero locations in S(k,) are randomly uniformly drawn
from {1,---,p} and the magnitude of support in v is given by (3.16), where v, ; — v;2 and =, ; is
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respectively replaced by v; and 7; ; = var(y,:) (k =1,--- ,n).

The following test statistic is proposed for testing the null (3.19),

=2

M, = max ——,
1<i<p 'y”/n

where y; = n~! > i=19j,i is the sample mean of i*h variable in CLR-transformed observation Y =
Vi, V)T and T = (5.5) = (0" Y0 (i — 9:)(wi; — §;)) is its sample covariance. Let
W be drawn from the distribution of the variable W* = (wf,---,wy)". Suppose Conditions 1,
2 and 3 hold for the correlation matrix R = (7:,5) = corr(logw;,logwy) and covariance matrix
Q= (wi,j) = cov(logw;,logwy). In addition, assume the tail distribution of log W* follows sub-
Gaussian type (Condition 4) or the polynomial type (Condition 5), then the asymptotic distribution
under the null hypothesis and the power of the test can be written out in the same ways as those

for the two-sample case.
3.5. Simulation Studies

3.5.1. Simulation settings and performance evaluation

Simulation studies were conducted to evaluate the numerical performance of the proposed test @,
based on the CLR-transformed data and to compare with the test M; in (Cai, Liu, and Xia, 2014)
when applied to the compositional data X, the logarithm of the compositional data log X, and the
logarithm of the true basis count log W, (d = 1,2). The results based on log W, are considered as

an oracle procedure to test the difference between p; and pus.

To simulate the data, the basis counts and the compositional data were generated as the fol-
lowing. Two n x p data matrices Vy = (Vig, -+, Vi)' = (vija) (d = 1,2) were first gen-
erated from a multivariate normal distribution N, (14, ) or a Gamma multivariate model, where
Via = FUg + pq. Here the matrix F' is generated by calculating the singular value decomposi-
tion Q = QSQT and setting F = QS'/2, and the components of U, are i.i.d standardized Gam-
ma(10,1) random variables. The data (W, X4) were then generated through w; ;4 = exp(v; j.a)
and ; ;.4 = exp(v; j,a)/ > vy exp(vik.a) (d = 1,2). Thus, X, followed a logistic-normal distribution

(Aitchison and Shen, 1980) or a type of logistic-gamma distribution.
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The parameters (uq4,2) were set as follows. In both cases, we picked the components of s ran-
domly from the uniform distribution on [0,10]. Under the null hypothesis, 11 = w2. Under the
alternative hypothesis, 1 = ps + 6, the support set S = {l1,- -+ I : 11 <lo < --- < Iy} of &, with
cardinality m, was randomly and uniformly selected from {1, - -- , p}. For the elements in the support

S, four different magnitudes were considered:

172 with equal probability and m = | 81p].

M1 py, 1 = +(aq logp/n)
M 2: 1 = +(azlog p/n)'/?, with equal probability and m = |p*/2].
M 3: w1, 1 is uniformly drawn from [—(as log p/n)'"?, (aslog p/n)*?], m = | Bap).

M 4: 11, 1 is uniformly drawn from [—(clogp/n)"/?, (aslogp/n) /%], m = [p'/?].

Denote by D = (d, ;) the diagonal matrix with diagonal elements d; ; = unif(1,3), and let Apin ()
be the smallest eigenvalue. Four different covariance structures of the log basis were considered

as follows.
Model 1: (Bandable Q): Q = (w; ;) where w; ; = 0.6/~ for 1 < i, j < p.

Model 2: (Sparse €): Q = diag(Ai1,Az), where A} = B +cl,,, Ay = 41p,, p1 = |\/P), P2 = p — 1,
and B is a symmetric matrix where lower triangular entries are independent from the uniform
distribution on [—1, —0.5] U [0.5, 1] with probability 0.2 and equal to 0 with probability 0.8, and
€ = max(—Amin(B),0) + 0.05.

Model 3: (Sparse Q): ¥ = (0, ;) where o; ; = 0.6/i=7l for 1 < i,j < p. @ = D291 D'/2,

Model 4: (Non-sparse (2): Q* = (w;;) where wy;, = 1, w;; = 0.8 for 2(k — 1) +1 < i # j < 2k,
where k = 1,---,[p/2], and w;; = 0 otherwise, Q& = D'2Q*D'/2 4+ E + 61, with § =
[ Amin(DY/2Q*DY/2 4+ E)| +0.05, where E is a symmetric matrix with the lower triangular com-
ponents generated independently from the uniform distribution on [—0.2, 0.2] with probability

0.3 and equal to 0 with probability 0.7.
3.5.2. Simulation results

The sample size and the dimension were set as (n,p) = (100,50), (100,100) and (100,200) and

the simulations were repeated 1000 times under each setting. The empirical size and power of the
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proposed test &, based on CLRX, log Wy, log X4 and X, (d = 1,2) under the four different models
and various null and alternative mean vectors are summarized in Table 3.1 and 3.2, altogether with

the parameters «; and j; representing the magnitude of the signals and the size of the support.

The results showed that the proposed test @, based on CLR-transformation had similar empirical
size and power to the oracle test based on the true log-count data log W;. The empirical test size
of the proposed test ¢, was close to, and controlled in most settings by the nominal level of 0.05.
However, the test of Cai, Liu, and Xia, 2014, when applied directly to the observed compositional
data X4, was conservative. In addition, the performance of the test of Cai, Liu, and Xia, 2014 when
applied to log X; was not stable. As seen from Table 3.1, the empirical size and power of the test
of Cai, Liu, and Xia, 2014 when applied to log X; was close to our proposed test under the log-
normal distribution setting. However, under the multivariate log-Gamma model as shown in Table
3.2, the power of the proposed test based on CLRX, uniformly outperformed the test based on
log X4. As expected, for both log-normal and log-Gamma distributions, the power of the proposed
test depended on the magnitude of the signal, the size of the support and the dimension p. In
majority of the cases, the empirical power increased when the magnitude of the signal, or the size

of the support increased.
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Table 3.1: Empirical size and power of the tests based on 1000 replications with o = 0.05 and n = 100 for basis generated from log-normal
distributions. Model 1: a; = as = 3, ag = ay = 10, 51 = 52 = 0.05. Model 2: a; = az = 10, az = ag = 20, ﬁl = 0.15, ﬁg = 0.2. Model 3:
a1 = ag = 10, az = ayg = 20, 51 = 0.05, ﬂg = 0.1. Model 4: a1 = as = 10, ag = ay = 20, 61 =0.15, 62 =0.2.

Model 1 Model 2 Model 3 Model 4
p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200
Null
CLRX 0.049 0.051 0.042 0.041 0.047 0.051 0.050 0.051 0.048 0.053 0.047 0.047
logW 0.048 0.047 0.047 0.051 0.043 0.052 0.047 0.052 0.049 0.050 0.046 0.045
logX 0.042 0.055 0.049 0.045 0.043 0.050 0.037 0.060 0.054 0.060 0.040 0.039
X 0.021 0.020 0.019 0.007 0.004 0.000 0.007 0.004 0.001 0.013 0.010 0.002
M1: m = 1p with fixed magnitude
CLRX 0.365 0.698 0.903 0.791 0.974 0.994 0.203 0.527 0.822 0.964 0.994 1.000
logW 0.342 0.669 0.895 0.823 0.970 0.994 0.219 0.556 0.827 0.968 0.997 1.000
logX 0.285 0.647 0.876 0.657 0.929 0.992 0.143 0.415 0.766 0.932 0.993 1.000
X 0.119 0.284 0.457 0.143 0.151 0.067 0.017 0.013 0.047 0.580 0.422 0.301
M2: m = ,/p with fixed magnitude
CLRX 0.797 0.894 0.967 0.811 0.829 0.903 0.551 0.858 0.944 0.873 0.991 0.990
logW 0.753 0.902 0.957 0.840 0.840 0.905 0.589 0.885 0.951 0.871 0.988 0.989
logX 0.731 0.874 0.961 0.652 0.765 0.907 0.468 0.728 0.857 0.810 0.969 0.988
X 0.408 0.453 0.584 0.139 0.034 0.067 0.105 0.062 0.098 0.324 0.284 0.205
M3: m = op with varied magnitude
CLRX 0.265 0.900 0.966 0.538 0.792 0.993 0.753 0.568 0.896 0.888 0.995 1.000
logW 0.264 0.890 0.962 0.586 0.781 0.993 0.753 0.591 0.896 0.901 0.994 1.000
logX 0.219 0.866 0.965 0.425 0.737 0.985 0.655 0.503 0.837 0.818 0.985 1.000
X 0.099 0.459 0.639 0.086 0.045 0.074 0.119 0.028 0.048 0.444 0.379 0.368
M4: m = ,/p with varied magnitude
CLRX 0.992 0.957 1.000 0.520 0.946 0.791 0.624 0.795 0.921 0.467 0.668 0.999
logW 0.992 0.958 1.000 0.554 0.953 0.783 0.632 0.811 0.923 0.491 0.653 1.000
logX 0.985 094 1.000 0.390 0.883 0.747 0.537 0.680 0.862 0.450 0.586 0.994
X 0.843 0.622 0.946 0.027 0.143 0.033 0.131 0.053 0.056 0.248 0.082 0.237
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Table 3.2: Empirical size and power of tests based on 1000 replications with o = 0.05 and n = 100 for basis generated from log-Gamma
models. Model 1: a; = ag = 3, ag = ag = 10, ﬂl = 52 = 0.05. Model 2: a; = ay = 10, ag = ay = 20, 51 = 0.15, /62 = 0.2. Model 3:
a1 = ag = 10, az = ayg = 20, 51 = 0.05, 62 = 0.1. Model 4: a1 = as = 10, ag = ay = 20, 61 =0.15, 62 =0.2.

Model 1 Model 2 Model 3 Model 4
p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200
Null
CLRX 0.044 0.041 0.053 0.048 0.049 0.057 0.048 0.048 0.047 0.040 0.048 0.051
logW 0.040 0.046 0.052 0.049 0.049 0.058 0.050 0.048 0.044 0.041 0.050 0.049
logX 0.043 0.049 0.034 0.041 0.045 0.056 0.038 0.034 0.035 0.034 0.033 0.037
X 0.025 0.025 0.010 0.010 0.003 0.000 0.010 0.000 0.003 0.011 0.004 0.002
M1: m = 1p with fixed magnitude
CLRX 0.335 0.677 0.927 0.778 0.966 0.985 0.217 0.496 0.840 0.964 0.999 1.000
logW 0.326 0.668 0.924 0.816 0.969 0.988 0.237 0.534 0.844 0.972 0.999 1.000
logX 0.215 0.470 0.453 0.489 0.807 0.943 0.094 0.249 0.461 0.913 0.782 0.987
X 0.082 0.158 0.103 0.070 0.092 0.021 0.025 0.003 0.009 0.531 0.105 0.160
M2: m = ,/p with fixed magnitude
CLRX 0.767 0.863 0.969 0.817 0.849 0.885 0.448 0.857 0.846 0.886 0.995 0.990
logW 0.736 0.866 0.956 0.843 0.849 0.888 0.482 0.883 0.843 0.891 0.995 0.986
logX 0.713 0.761 0.548 0.501 0.600 0.801 0.188 0.514 0.384 0.615 0.691 0.369
X 0.418 0.378 0.130 0.058 0.006 0.026 0.008 0.038 0.003 0.089 0.059 0.001
M3: m = op with varied magnitude
CLRX 0.863 0.998 0.993 0.564 0.808 0.986 0.111 0.428 0.998 0.934 1.000 1.000
logW 0.830 0.998 0.994 0.601 0.801 0.989 0.104 0.430 0.998 0.917 1.000 1.000
logX 0560 0.982 0.732 0.037 0.606 0.936 0.065 0.118 0.798 0.727 0.972 0.895
X 0.218 0.726 0.161 0.042 0.01 0.022 0.012 0.006 0.036 0.081 0.219 0.047
M4: m = ,/p with varied magnitude
CLRX 0.934 0.968 1.000 0.862 0.622 0.942 0.207 0.406 0.890 0.490 0.646 1.000
logW 0.923 0.976 1.000 0.877 0.641 0.943 0.220 0.411 0.888 0.513 0.633 0.999
logX 0.811 0.932 0.851 0.509 0.412 0.759 0.065 0.199 0.498 0.251 0.237 0.583
X 0.470 0.572 0.233 0.057 0.006 0.049 0.004 0.012 0.004 0.031 0.010 0.004



3.6. Real Data Analysis

3.6.1. Application to a cross-sectional study of diet

Gut microbiome plays an important role human metabolism in order to maintain human health.
Wu et al., 2011 reported a cross-sectional study to investigate the association between long-term
dietary patterns and gut microbiome composition. The gut microbiome composition data were
collected from 98 healthy individuals at the University of Pennsylvania, together with demographic
data including body mass indexes (BMI). From each healthy subject, DNAs collected from stool
samples were analysed by 454/Roche pyrosequencing of 16S rRNA gene segments from the V1-
V2 region. An average of 9265 reads per sample were yielded, with a standard deviation of 3864,
by denoising the pyrosequences. These reads were further grouped into 87 bacterial genera that
were observed in at least one sample. Since the number of sequencing reads varied greatly across
samples, the count data were converted into compositional data by dividing the total number of

reads, where the maximum rounding error 0.5 was used to replace zero counts Aitchison, 2003.

One important question was to test whether obese and lean individuals had the same gut micro-
biome composition, where obese (n=24) and lean group (n=25) were defined based on whether
the BMI was in the upper or lower quartile. At a nominal level of 0.05, the CLR based test indicat-
ed a significant difference in bacterial genus compositions (p = 0.009). This was consistent with
the previous finding in human and mice gut microbiome studies that obesity was associated with
changes in the relative abundance of bacterial taxa (Backhed et al., 2004). Figure 3.1 presents
the bar plots of the CLR transformation of genus composition, showing that the abundance of Aci-
daminococcus was clearly different between the obese and lean groups. Acidaminococcus is a
genus in the phylum Firmicutes that was found to contribute to the change of energy balance and
subsequent weight gain by holding great metabolic potential for efficient energy harvest from the
diet (Turnbaugh et al., 2006). As a comparison, tests based the compositions X; and the logarithm
of the compositions log X; (d = 1,2) resulted p = 0.542 and p = 0.100, respectively. This may
be due to the fact that the conditions for these tests to be valid did not hold for X; and log X,.
The analysis was also performed for the compositions of 51 relatively commonly genera that were
observed in at least 6 samples in the whole dataset. The p-value from our proposed test and the

test statistics M; when applied to X and log X was 0.007, 0.064 and 0.388, respectively.
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Figure 3.1: Bar plots of CLRX of 51 bacterial genera composition in obese and lean samples.

3.6.2. Application to a microbiome study of Crohn’s disease

Crohn’s disease, characterized by abnormal composition of the intestinal dysbiosis, is one type of
inflammatory bowel disease. The etiology of such a dysbiosis remained unknown. Lewis et al.,
2015 recently reported a study to examine the gut microbiota composition among a cohort of 90
children with Crohn’s disease at the University of Pennsylvania. Of these patients, 47 received an
anti-tumor necrosis factor (anti-TNF) treatment. For each sample, fecal sample was collected at four
time points: baseline, 1, 4, and 8 weeks after the treatment. Compositions of the bacterial genera
were measured using shotgun metagenomic sequencing and the MetaPhlAn program (Segata et
al., 2012). A total of 52 bacterial genera were identified that appeared in more than 5% of the
samples. In addition, zeros were replaced with half of the non-zero minimum composition observed

in the data (Aitchison, 2003).

To assess the effect of anti-TNF on fecal microbiome, testing whether there were significant changes
in the overall microbiome compositions over the four time points during the anti-TNF treatment was
performed using the proposed test for repeated measured data. The p-values of three pairs, includ-
ing baseline v.s. week 1, week 1 v.s. week 4, week 4 v.s. week 8) were 0.0087, 0.493 and 0.449,
respectively. The results indicated a significant change of gut microbiome composition within one
week after the anti-TNF treatment, but were relatively stable during the rest of the treatment. It

was interesting to note that these patients clinically responded to anti-TNF treatment within a week
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after initiation of the treatment (Lewis et al., 2015), indicating that gut microbiome may play a role

in reducing gut inflammation.

3.7. Discussion

This paper has proposed statistical tests for compositional equality of the log basis abundances
based on the observed compositional data in high dimensional settings. The key assumptions of
the test are certain dependency structure and tail distributions of the logarithm of the basis counts.
Different from many existing two-sample mean tests, no sampling assumptions are made directly
on the observed compositional data, rather these assumptions are made on the basis counts that
are not directly observable. This overcomes the difficulty of modeling the compositional data in

simplex.

Since the test statistic (3.6) takes the maximum of the normalized difference of the CLR transformed
data, it is most powerful when the difference of the mean vectors is sparse. These assumptions
are most likely met in analysis of microbiome data. The proposed test using the CLR transformation
is powerful even when the true basis counts do not follow log-normal distributions. Our simulation
results have showed that proposed test can be used to investigate the difference of the basis
abundances and outperformed those naive tests based directly on the compositions or logarithm of

the compositions.
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AAppendices

A.1. Additional Lemmas and Technical Proofs for Chapter 1

A.1.1. Proof of Theorems 1 and 3.

We prove a more general theorem first then move back to the proof of Theorem 1 and 3.

Theorem 10. Under Conditions 1 and 2, suppose that N > cy(n V p) log(n + p) for some constant
co > 0. Consider any solution X to the optimization problem (1.3) using regularization parameter
selected by (1.8). Then, with probability at least 1 — 3(n + p)~!, foreachr € {1,2,--- ,n A p}, the

average KL divergence satisfies

log(n +p) Ca(nVp)rlog(n+p)

1 ~
—D(X*,X) < max {C’l

n N 7 N ’
<C3\/ p(WP)nl]ng(Hp)) i_;fi(x*)}’ (A1)

where constants C1,Cs, and C3 only depend on ¢y, ax, Bx,ar and Bg.
Remark 1. The rate of convergence provided by Theorem 10 exhibits an interesting decomposi-

tion: besides the first term O (\/log(}fﬁp)) the rate O (W) represents the estimation

error corresponding to a rank-r matrix, while the rest term O ((\/”(”V”);j’vg(”m) S oi(X*))

accounts for the approximation error due to using r as a proxy for the rank of X*. When X* is
exactly a rank-r matrix, this approximation error vanishes. When X* is approximately low-rank, the
value of r can be optimally chosen to obtain the sharpest bound, which is presented in the following

corollary.

Proof. ( Proof of Theorem 10 ): Note that, we can rewrite W by

N
W = Z E,, where E, arei.i.d copies of E,
k=1

E = e;e; with probability IT;;, 1<i<n,1<j<p, II=RX*¢cRV*?
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we rewrite the negative log-likelihood function (1.2) as

Z log(X,Ey) = —— Z Zwm log X,;;. (A.2)

7.1]1

Then the estimator X associated with any optimal solution to the convex optimization (1.3) satisfies

Lx(X) + X« < L (XF) + AIX7

R o R R (A.3)
= Ly(X) - Ly(X7) = = D {log X" —log X, Ex) < A (x|, — X ) -
k=1

To derive a lower bound for ijﬂ(log X* —log X, E), we first present the following lemma.

Lemma 1. For all X in the constraint setC(ax, Sx) defined below,

Clax,Bx) = {X € S(ag, B:) | D(X*,X) > nlog(Bx/ax)

512log(n + p)
log(4)a%N

with the probability proceeding 1 — 2 (n+ p)~ ', we have

*

N

1

NZ(logX* log X, Ex,) ZR log— — E(n,p,1),
k=1 Xij

where

E(n,p,r) = 3

2
Br \, B
102482 npr Co(n,p) (T?VTX) Co(n,p)
OéXOtR

Co(n, bn v Bx ik
+16p J o( p)(n Vv p>+00(n7p) Z o (X*).

i=r+1
and Cy(n,p) = 4(3 + 2log(n + p)).

Given Lemma 1, we consider in two cases based on whether X € C(ax,Bx) or not.
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e Case 1: If X ¢ C(ayx, Bx), then

L D(X*,X) < log(fx /ax) 512log(n + p)

n log(4)a%N (A4)

e Case2: IfX ¢ C(ax, Bx), using the assumption min; R; > ar/n and applying Lemma 1, we

obtain, with the probability proceeding 1 — 2(n + p)~1,

*

N

1

N Z(logX* log X, E;) > ZR 1og X — E(n,p,7) (A.5)
k=1

3% D(X*,X) — E(n,p,r). (A.6)

Another important element for establishing the error is to upper bound || X*||. — HXH* in (A.3).
Denote A =X — X*, VLy (X)=—-% Ziv:l(X,EkflEk as the gradient function of £y (X).

By Taylor’s expansion of Ly, there exists £ = (£;;)1<i<n,1<j<p SUch that

_ L

Ly(X) — Ly(X*) = (VLN (XF),A) = N

N
Z a4 Ek . &; is between X;;, X7
=1
Adding (VL (X*), A) on both-hand sides of (A.3) and using Taylor’s expansion, we obtain

N 2
L 3 (A, By)” _ Ln(X) = Ly (X*) — (VLN (XF), A)

~(vLN(X), A) + A (1K) = 1K)
~(VLN(X") + R1,1T, A) + A (IX7). = 1K) )

< VLN (XY + RLAT AL + A (1K)~ IXIL) . (A7)

The third line comes from the identity <R1n1§7A> = (R1,,A1,) = (R1,,0,) = 0 and the
forth inequality is the Holder’s inequality between the nuclear norm and operator norm. To
further upper bound the nuclear norm ||A||., we state three useful technical results.

Lemma 2. With probability at least1 — (n + p)~ ", we have

9L (X°) 4 RI,1T]s < { \/cm,p)pjlvogmw) y cz<n,p>pjlvog<n+p>}7
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where Cy(n,p) = 8 (B%/n+ (1V Brp/n)/ax) and Ca(n,p) = 4(1/ax + Br/(np)'/?).

Based on Lemma 2, with probability proceeding 1 — (n +p)’1, the selected tuning parameter
A satisfies A > 2[|[VLy(X*) + R1,1] ;. As a result, we can use the following lemmas to
upper bound the nuclear norm ||A]|..

Lemma 3. /f(A.7) holds and X > 2||vLy(X*)+R1,1] |2, we have the following upper bound

for the nuclear norm of A:

nAp

IAlL < 4V2r|Allr +4 Y o0 (X7). (A8)

i=r+1

o~

In addition, Frobenius norm || A || r can be effectively bounded in terms of D(X*, X) as follows.

Lemma 4. Under Condition 2, for any estimator X ¢ S(ax,Bx), we have

o

2
X D(X*,X) < )A(—X*2<5—XDX*7)A(. A.9
Bup ( )<l IIFf&Xp ( ) (A.9)

By applying Lemma 3 and 4, we obtain the upper bound of || X*||, — || X]|. as

nAp
X[ = Xl < X = X < 4V20| X" = X|[p +4 ) 0:(X7)
1=r+1
255(’/’ N nAp §
<4/ DX X) +4 ) ai(X). (A.10)
axp i=r+1

Therefore, combining (A.3), (A.5) and (A.10), if X e C(ax, fx), we obtain,

nAp
9 p(x*, X) <4)\< %D(X*,X)—k 3 JZ-(X*)) + E(n,p,r)

2n axp a—
9 2 nAp
< max { 8\ ﬁxr ), 8\ Z 0i(X*) + 2E(n,p,r)
axp 1=r+1

with probability at least 1 — 3(n + p)~!. The above equation yields

1 o 12682 \2nr 4 X
—D(X*,X) < max 525)(7717‘ ZD Z 0i(X*)+ E(n,p,7) | ¢ . (A.11)
n QRrAXP Q- S
, , , Co(n.p) (G VEX)
Note that, in the formulation of E(n, p,r), since log(n+p) > log(2) > 0.6, we have \| ———x5—"= =
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4(342log(n+ —R —X . ;
\/ (32 el p)) A2 AP \/28 Gl 0e(ntp) | In addition, under the assumption that N >

Co(n,p) (B%VB—X)

co(nVp) log(n+p), we have % < j—% 1?5(&;{}). Consequently, we obtain \/ ———y—~+
Golnp) < ¢ I?S(A’S]{’,) with ¢y = \/28(8r V Bx) 2% Therefore, we can further upper bound
E(n,p,r) by
!’ 2 7
102452 \Y 1 + 16 p21 +
E(n,p, T) S 35)(260 . (p TL)T' Og(n p) + Co Og n p Z * (A12)
o N ax (nAp) N S
We complete the proof by combining (A.4), (A.11) and (A.12),
1 S log(n +p) ca\?nr
-D(X*,X) <
" (X", )_max{cl N "
nAp
p?log(n + p) cs(n VvV p)rlog(n + p)
S(X* , A.13
<03A+C4 mAPIN i;lo( )+ N } ( )

where constants (ci, 2, 3, ca, c5) are given by ¢ = log(8x /ax)\/512/log(4)a%, ¢ = 5126% /(ahax),
c3 = 16/ag, ca = 16¢,/ax and ¢5 = 1024,6’XcO (a3-a%). We also observe that, under the assump-

tion N > cp(n V p)log(n + p), the upper bound of selected tuning parameter X is given by

N =2 <\/8 (B/n+ AV BRPJ/\[n)/OéX)plog(n +p) |, 41/ ax + ﬁR/(nj_ff)l/?)plog(n +p)>

88r(axBr+1) 4(axfBr+1) \/p(n V p) log(n + p)
<2 ( ox V; — ) N . (A.14)

Denote by ¢ = 2 ( 88r(axBrtl) \, 4(‘”5’**1)). The proof for Theorem 10 is completed by plug-

ax Vaxco
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ging (A.14) into (A.13):

1 N
—D(X* X
Lo, %)
log(n +p) cacg(nV p)rlog(n + p)
<
_maX{Cl N ) N )
nAp
p(nVp)log(n+p) | « , cs(nVp)rlog(n+p)
g (X
(83(‘6+C4)\/ N i;l O'l( ) + N
< max {c log(n +p) (cac? + 2¢c5)(n V p)rlog(n + p)
1 ) 9
- N N
nAp
p(n V p)log(n + p) .
2(0306 + C4)\/ N /l_zr;’_l O'i(X )}

Proof. Proof of Theorem 1: By applying Theorem 10, when rank(X*) < r, Z?ﬁfﬂ 0;(X*) vanishes

n (A.1), and it yields (1.9). Besides, (1.10) can be obtained by applying Lemma 4 to (1.9).

Proof. Proof of Theorem 3: We first focus on the proof of (1.12). If the composition X* € B, (p,),

we set r = max {z o; (X*) > T} for some fixed thresholding = > 0. By using this choice of r, we

obtain

’I‘Tq<ZJJ ) < pgs

which implies » < 779p,. In addition,

nAp nAp nAp q
* o; X* ag; X* _
S mix=r 3 280 (5 20) crtn,

i=r+1 i=r+1 i=r+1

We substitute the above relations into the upper bound (A.1) in Theorem 10,

~ / —q
lD(X* <max logn+p C’g (nVp)l n+p) pq,
n

(nVp)log(n+ _
03\/13 p) g p) 1qpq}.

Since the rate of dominating terms are O ((”V”) log(ﬁp)ﬂ”") and O (\/ ’WWTl_qPq> , We
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can set 7 = &2 . | /IVRILOE(D) 5 16 obtain the sharpest bound. As a result, we obtain (1.12),

[V

((an)log(n+p))l_g_

1 Lo _
SD(X",X) < €3 Clpy /) -

n

Finally, (1.13) can be obtained by applying Lemma 4 to (1.12).

A.1.2. Proof of Theorem 2.
We discuss the proof for Theorem 2 under two different scenarios.

e |fn > p, we randomly generate M copies of i.i.d. Rademachar random matrices: By, --- ,Bys €

R™*("=1)_ Since (By.;; — By.;)? has the following probability distribution

la r = 47
P ((Brij —Bury)’ =) = ’
%? x = 07
based on Bernstein’s inequality,
n r—1
(HBk—BlHF<n7‘—1 =P Bku B“J —271(7“—1)< n(r—l)
=1 j=1

B 2
<exp ( (n(r 13) /2 ) < exp (ln(r - 1)) .
dn(r —1)+ sn(r—1) 10
Therefore, whenever M < exp(n(r — 1)/20), there is a positive probability that

- > — i
1<k<l<M{HBk BlHF} n T 1) (A 15)

which means we can find such fixed By,...,By; € {—1,1}"*("~1) such that (A.15) holds.
For the rest of proof, we assume By, ..., B, are such fixed matrices while M = |exp(n(r —

1)/20)]. Note that r — 1 < p/2, we consider the following set of random rank-r matrices,

D=
SA
<

I
—_

r—1 p—2r+42

X
4§ VB, —uB, 0 ’

Il
4

D=

S
3
X
S|
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where 0 < v < % A 1‘% is a to-be-determined constant. Then for k # I,

X5, — XI5 = 202 By — By||% > 2v%n(r — 1).

Lemma 4 2 2
D(Xi, X)) = opl| Xy = X7 = 2c07np(r — 1),

where ¢ = 7%-. We also fix R = (%,...,%)T, i.e., the uniform distribution on each row.
X

Suppose P, ~ Mult(N; LX), i.e., the multinomial distribution corresponding to composition

X and R. Based on Lemma 4, we have

Drr(Pyk, P) :NZZ Xzﬂ'j log (Xk w/") < NZZC <Xk ii X711”>

i=1 j=1 i=1 j=1

_CN
p||Bk —By|)% < CvANp(r — 1),

where C' = BX . By generalized Fano’s lemma (Yu, 1997),

. 2
inf sup EHX—XH > vn(r —1) <1—
F

CVv?Np(r—1) + 10g2>
X XC{Xy,- .

log (M)

We further set v? = c¢,n/(Np) for some small constant ¢, > 0 such that (c,Cn(r — 1) +
log(2))/(n(r — 1)/20) < 1/2, then the lower bound above becomes
2 > c,n?(r—1)

inf sup EH)A(—XH ,
X XC{Xy, ,Xum} F 2Np

which implies

-1 L(r—1
inf sup HX XH cyn(r ) =< (r )(n\/p).
X XC{Xy,- XM} n 2N 2N

We can similarly derive that, for some constant ¢/,

,(7“— 1)(71\/}9).

inf sup l D (X, )A() >c N

X XC{Xy, ,Xpu}

Note that if » > 2, r — 1 > r/2, the lower bound result has been finally shown.
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e If n < p, the proof is essentially the same as the case of n > p. Here we construct M copies
of i.i.d. Rademachar random matrices: B, ...,By; € RO—Dx1r/2] and the following set of

random rank-r matrices,

1 1 lp/2]  p/2] p—2lp/2]
r p
X = . + r—1 vBy —vByg 0
1 1 n—r+1 0 0 0
nXxp

We omit the rest of the proof as it is essentially the same as the part for n > p.
A.1.3. Proof of Corollary 2

Using first order Taylor’s expansion on the function f(z) = zlog(z) = zo log(zo)+ (log(€)+1)(z—z0)

for some & between x and zy, we have

n

o 2 (Han(X0) — Han(X0))°
i=1

n

2
1 L * * . .
= WZ ZXU log X;; — Xi; logXij)
i=1 \j=1

1 Uy
= - D | Do losg;
(logp)?n = \ = =
n p
> logé;,

1
:WZ

(logp i=1 \j=1

< T (,Zﬁogfwf) (Z(Xz;- - )?)))

i=1

(log(p/ax))’P 5 ~=p2
< logp)™n X — X
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where §;; is between X;; and X In addition, using the Taylor's expansion on f(z) = 2? =

x3 + 2¢(x — o), we have

2 N 9 N P
p < >|< p v * 2
ZZ(HSP(X) Hsp(X7)) ;Z > X5 - X
i=1 i=1 \j=1
P (v 2
S (S - x
i=1 \ j=1
4 2

i=1

52(}}3 > (X = X5

14pB% < .
< TXHX—X (1.

We further bound the Frobenius norm loss of Bray-Curtis index by

e
Il
—

LY Hee(Ri %)) — Hoo(X], X0)?
1<i<j<n
1 & P ?
422(2 ik — X — | ka}‘M)
=1 j=1 \k=
1 n n P N 2
=T M P AECTPE RN

<,
Il
—

.
Il
_

~ ~ 2
Kb = Xl + [ Kjn = X))

IA
£l
[ V)

\Mﬁ

Il
—_
<
Il
—
=
(1= I
=
S S

<
3

n
p o * o *
Sﬁ Z | Xk — X5 )* + | X — XjkP)
i=1 j=1 k=1
p *
=PI - X3,

where we used the triangle inequalities that |7 — 3| < |7 — 2|+ |z —y| + [ —y| and |z — y| <
|z — z| + |z — y] + |7 — y| in the second inequality, and Cauchy-Schwarz inequality in the third
and forth inequalities. We complete the proof by applying Theorem 1 and Theorem 3 to the above

inequalities.
A.1.4. Proof of Proposition 2

It suffices to show that, u,+j 1 (1—ep—S7_. ;) > 0forany j € [p]and u,;+5 L (1—ep—S7_, u;) < 0
J =1 J i=1

for j > p.
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e Case 1:If j < p,wenotethat u=p~'(1—ep— > ", u;) + ¢ s0 we have

p

J 13
uj—l-j_l(l—ep—Zui):j_l Juj —ep — Zui— Z U;
i=1 i=1

i=j+1
P
=i it —9+ Y (it u—e
i=j+1
Using KKT condition that u; 4y = x; > ¢, we obtain u; + (1 —ep— S27_, u;) > 0 for j € [p].
e Case2:If j = p, itis apparentthatu, + p~'(1—ep— >0 w;) =z, — € > 0.
e Case 3: Otherwise, j > p, then u; + 1 — e < 0. According to similar argument, we obtain
J

J
uj—i—j_l(l—ep—Zui):j_l pluj +p—e€)+ Z(uj—ui) < 0.
i=1 i=p+1

A.1.5. Proof of technical lemmas

Proof of Lemma 1

For notational simplicity, we let v = nlog(8x /ax) %ﬁ%{,’) and Dg (X*,X) = ¥, ; RiX}; log ;J
R ) i

The main lines of this proof are in the same spirit as Lemma 3 in (Negahban and Wainwright, 2012),
but sampling scheme and the constraint set are quite different. We use a standard peeling argu-
ment to prove the probability of the following "bad” event is small

>

B= {HX € C such that Dg (X*,X) — E(n,p, r)} .

N | =

N

1

¥ ) (logX* —log X, E;) — Dg (X*,X)
i=1

We separate the constraint set C into pieces and focus on a sequences of small sets C;,
C={Xes|2"v<D(X*X) <2}, leN*.

As C € UZ,C, X € C implies that X € C; with some [, and Dp(X*,X) > 2& D(X*,X) under
Condition 1, it suffices to estimate the probability of the following events and then apply the union
bound.

N

> (logX* ~log X, E;) - Dr| >
=1

2vag

1
B, = {HX € C; such that N

—E(n,p,r)}, leNT.
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since C; C C (2v) := {X €S ’ Dgr (X*,X) < zlu} that is defined in (A.19), we can establish the
upper bound of the probability of event B by using the union bound and the fact that ¢* > x, and

applying Lemma 7,

IA
™=
@

410%]\7112
= (e nanr)

> __ log(4)aNv?l
<D o ( 512(nlog(ﬁx/ax))2>

log(4)a% Nv?
exp (_ 512(n Iog(ﬁi/ax))2 )

log(4)ag, Nv2 .
1= exp (= sty

512log(n+p)
log(4)a% N *

The proof is completed by plugging v = nlog(8x/ax)

Proof of Lemma 2

LetY; = —(X,E;) 'E;+R1,17, then vLy (X*)4+R1,10 = L SN Y, and EY; = -3, R;‘jffk ejel+

Rlnlg = 0. We note that, under Conditions 1 and 2, using Weyl’s inequality, we have

1Yl = || —(E:, X*)7'E; + R1,17 ]|,

< max | X5 tesef |+ [RL,1T

n 1/2
N DY
’ i=1

< p/ax + (Bzp/n)"/?.

We also observe that

R X} R X}
EY]Y; =Y e Zejel — |R[71,1) and EY;Y] =) e Yeel —pR1, (R1,)".
ij tj ij ij
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Hence, under Conditions 1 and 2, we apply Weyl’'s inequality to EY Y, and EY, Y and obtain

n

R; R; -
IEYT Yl < > Xi;_ejeg“ +[IR|[3 ||1,17]|, = max < +pY R} <p/ax + BEp/n,
ig

1<5<
9 ISP =1 v =1

R; " R, -
IEY: YTl < |[>° creel || + HpRln (Rln)THQ = max 3 ZE+p > R? < Gppaxn) + B/
ij i === g i=1

2

Denote by M = p/ax + (B%p/n)*/? and 02 = Np (8% /n + (1 V Brp/n)/ax), then applying Lemma

5, with any ¢ > 0, we have

P (VLN (X*) +R1,17 ]2 > t)

< () {on s

— ) oo (s )
4p (B%/n + (1V Brp/n)/ax) P\ 20p/ax + (Bap/m)2) ) |

We complete the proof by setting ¢ = {\/8(%/"“1%”%’)/””log(”“’) v 20/ax+Br/ () *)plog(n+p) }

Proof of Lemma 3

We observe that (A.7) is essentially equivalent to (B.2) in Lemma 1 from Negahban and Wainwright,
2011. Therefore, following their results, under the assumption A > 2||vLy(X*)+R1,1] ||, for each
constant » < n A p, there exists an orthogonal decomposition A = A+ A”, where the rank of A’

is less than 2r and A" satisfies
nAp

AT <BJA [ +4 ) 0:(X*) and [|A[F = A + A3
1=r+1

Using the triangle inequality and ||A'||, < v2r||A'[|r < V2r||A||r, we obtain

nAp nAp
AL < A [+ AT S 4|AT L +4 Y 00 (X)) < aV2|Allr+4 ) 0i(X7),
1=r+1 1=r+1

which completes the proof.
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Proof of Lemma 4

Using Taylor expansion on the function f(z) = log(x), we rewrite KL divergence D(X*, )A() as

~

Xi' v * XZ' v * Xl* v *
> YKy =X+ S Xy - X5 =) HH Xy - X5
1] "j ;a4

=y -X;1
1,J

where we use ., X =37, X,; = n in the third equality, and &;; is a quantity between X,; and
. Since both X7, and X” are uniformly bounded by [ax /p, Bx/p] for any (i, j), we complete the

proof by

* XZ* v * ﬂX p X* BXP *
DX* X) = 3" 2 (R, - X5)? < /QZ %, - x5 = X - x5,

07 B ~ (ax/p)
D<x*,x>=2§®j—x* O‘X/p2 ~ X7) —L’;pnx*—XH%
ig fij (Bx/p) Bx

Concentration Inequalities

Lemma 5. LetY,; be independent n x p zero-mean random matrices such that |Y;|ls < M and

define 0% = max {Zfil IEYTY |2, SN, ||IEYZ-Y;-FH2}. For allt > 0, we have

l”ZY |2>t] (n+ p) {exp (~N?t?/(40%)) V exp (= Nt/(2M))} . (A.16)

In addition, the expected spectral norm satisfies

2

1/2
EHi iy,”2 < Co(n,p)o n Co(n,p)M A17)
N i=1 o B N N ’ :

where the dimension constant Cy(n,p) = 4(3 4 2log(n + p)).

Proof. The proof of concentration inequality (A.16) follows, for example, Theorem 1.6 of (Tropp,
2011); see also Theorem 3.2 of (Recht, 2011). The proof of inequality (A.17) follows, for example,
Theorem 1 of (Tropp, 2015).

Lemma 6. Letn x p random matrices {E;}/_, be i.i.d with distribution II on {e;(n)e] (p), (i,j) €
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[n] x [p]} and {&;}, is an i.i.d Rademacher sequence. Under Conditions 1 and 2, we have the

i=1

upper bound

E

%ZE,’Ei < J ( P ) Co(n,p) (A.18)
=1 2

Proof. We establish this bound by applying Lemma 5. Let Y; = ¢;E;, we first calculate the terms

M and o2 involved in Lemma 5. According to the definition of ¢; and E;,

M = max 1Yill2 = R leiEill2 = nax leiexcyejepll = 1.

Also note that,

E[YY;| =E[]ETE;] =) RiX;eje] andE[Y]Y;] =E [e7E;E]] = > R, X} eref.
¥ ¥

We observe that, under Conditions 1 and 2,

n n
1Y RiXijejel |2 = m;lXZRletj <> Ry ‘max Xi; < fx/p,
k,j k=1 k=1 ’

P P
I ZRkXZjekegﬂg = mliixZRkX,:j < ZXI:j -mkaka < Br/n.

k.j j=1 j=1

As aresult, 0> = N (%X Vv %) By applying Jensen’s inequality and inequality (A.17), we obtain

<|E
2

Lemma 7. We define a constraint set C (T') with some constantT > 0,

E

_|_

1 N
N;QE" N N

1 N
- EiE;
N 2 oB

2

2) 1/2 ) $ Co(n,p) (B,—f \ BTX) C’o(n,p)'

C (T) - {X € S(amvﬁm)

D(X*, X) < T}. (A.19)
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And denote by Zr the function on the constraint set C (T')

N
1 X5
Zp = sup |— log X* —log X, E;) R; X};log ,
" xeen) | N ;< Z Xij
where {Ei}fvz 1 Is i.i.d with distribution II = RX* on {ei(n)ejT(p), (i,4) € [n] x [p]}. We suppose
{R;}"_, and X satisfy Condition 1 and 2 respectively. If X further satisfies | X* — X||.. < 4v/2r||X* —
X||p 44307 0 (X*), then

4 r+1
arT OLQRNTZ
P(z;>%R L E < _
(202 5+ m0nn) < 00 (s mane)

where

E(n,p,r) =
( ) ayag

2
R Bx
102482 npr J Co(n,p) (7 v 7) Co(n,p)

Proof. Under Condition 2, sup  ||log X* —log X||oo < log(Bx/ax), we obtain the following
XeS(ax,Bx)
concentration inequality by a version of Hoeffding’s inequality due to Theorem 14.2 of (Buhimann

and Van De Geer, 2011),

(A.20)

2 2
P (ZT —EZr > CVRT/(8n)) < exp (— aRNT )

512(nlog(Bx/ax))?

It remains to upper bound the quantity EZr. By using a standard symmetrization argument, we

obtain

E(Zr)=E sup
Xec(T)

= \

N X
* * ?
; log X* —log X, E;) %:R,»Xij lo ij
N
22 )
N X
; Z (Bi=e; (n)ex(p)T) 108 7; ) ;

7.k

i(log X* — log X, E;)

2 \

<2E| sup
XeC(T)

=2E sup
Xec(T)

2 \
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where {¢;}, is an i.i.d Rademacher sequence. We notice that, for any number i € [N] and any ¢

that satisfies X7, +t > ax/p with V(j, k) € [n] x [p], the function

X*
ax jk
i(f) = — ej(n)e 1
¢:lt) == JEk: (Bi=e(mew(p)™) 18 e Ty

is a contraction with ¢;(0) = 0. Then the contraction principle from Theorem 4.12 in (Ledoux and

Talagrand, 2013), together with Holder’s inequality between nuclear and operator norm, yields

)

1 N
—_— <X* — X, 51E7,>

A

4
E(Zr) < Py < sup

ax Xec(T) p—
< X X|LE iig-E (A.21)
Toax XZ%I()T) " N i=1 o 9 .
We bound E H% PR OF , by applying Lemma 6,
N Co(n,p) (J vV ﬁ;X)

1 0" n p C()(’I’L,p)
=Y B < \l + . (A.22)
N 2 N N

Under the assumption that || X* — X||. < 4v2r|X* — X||r +4 377 | 0; (X*), applying Lemma 4,

we can bound || X* — X||.. by

nAp
sup || X* — X||, < 4v2r P HX* X|rp+4 > o (X¥)
Xec(T) ec(T i=r+1
nAp
2
< sup 4 BXT X)+4 Z o; (X¥)
Xec(T) axp Pt

nAp
g4,/25XTT 1Y 0 (XY). (A.23)
axp i=r+1

Combining inequalities (A.21), (A.22) and (A.23) yields,

a
Y

16p \l CO(n,p) (ﬂTR v %) + CO(nvp) ( M + Tg o; (X*)) .
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Finally, using

Br \, Bx n
ol | 16p JC()(W) (v ) o) ( 23T ff’ . (X*)>

8n ax N * N

8
< arT n 1024/6’§(in Co(n,p) (TR v TX) Co(n,p)
~ dn ayar

and concentration inequality (A.20), we achieve at

apT Q%NT2
P(Zr> —+F < —
(202 5+ m0unn) < 00 (s mne)
with
2
B
En,p.r) = 102433 npr Co(n,p) (TR v TX) N Co(n,p)
= ayar N N
B B n
N @ CO(nyp) (TR Vv %) " Co('fl,p) IZ/%) o (X*)
ax N N — l .

A.2. Additional Lemmas and Technical Proofs for Chapter 2

A.2.1. Proof of Proposition 3

Using the fact that the centered log-ratio covariance matrix I'y is symmetric and has all zero row

sums (Aitchison, 2003 Property 4.6), we have

tr{ (7917 + 178) T} = tr(yITo1) + tr(7,17Ty) = 0,

that is, the components v,17 + 142" and T’ are orthogonal to each other.
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To show the desired inequality, by the identity (4.35) of Aitchison, (2003), we have

0 0 _, 0 0 0 0 0y _ 0 0 0
Wi = Yij = Wiy — (Wi — Wi —wj W) = wp +wi — W

Therefore,
Hﬂo—Fﬂmwéngﬂw%+¢#w+wﬂ)S&fwﬂdh

A.2.2. Proof of Proposition 4

We first claim that if « = (a1,...,a,)T # 0, then the matrix A = al” + 1a’ has at least p — 1
nonzero upper-triangular entries. To prove this, without loss of generality, assume «a; # 0 and
that the last ¢ entries of the first row of A are zero, where 0 < ¢ < p —1; thatis, au + «; # 0 for
1<j<p—gandai+op_qi1 = = a1+a, =0. The latterimplies op—g41 = - = ap = —a1 #0,
which gives rise to (1) = g(q — 1)/2 nonzero entries at positions (i,j) withp — ¢ +1 < i < j < p.
Putting these pieces together, we obtain that the number of nonzero upper-triangular entries in A

is at least

q(q—1)
2

fl)=p—-q-1+ >f)=f2) =p-—2

To show that the lower bound p — 2 is not attainable, note that if there are only p — 2 nonzero upper-
triangular entries, then ¢ = 1 or 2, and we have oy + a;, = -+ = ap_2 + o, = 0, which implies
ay = - = aqp_9 = —p = o1 # 0. Since p > 5, this gives rise to at least one nonzero entry at

positions (4, j) with 2 <1 < j < p — 2, which is a contradiction.

Now suppose s.(p) < (p — 1)/2 and that ©2; and Q5 in By(s.(p)) lead to T, = T5, that is,

(w1 — (.(JQ)].T + 1((.01 — wg)T = 2(91 — Qg)

Note that the right-hand side has fewer than p — 1 nonzero upper-triangular entries. Then it follows

from the above claim that Q; = Q.

We prove the other direction by showing that, if s.(p) > (p — 1)/2, then there exist ©; and 2 in
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Bo(se(p)) with Q1 # Q5 that lead to T; = T5. Indeed, let

14+c¢ clg1 052 1—c¢ 0;1 —01;2
Q=|c, I 0|, 22=] 0, I o |
0, 0 I —cl,, 0 I

where py = [(p—1)/2],p2 =p—1—p1,and 0 < |¢| < 1. Then it is easy to verify that

0 (2—-0o1] (2+0)1],
Ti=Ty=|(2-01, 2(1,1] -1 21,17

(2 + C) 1,, 21172 117;1 2(11’2 117;2 - I)

This completes the proof.

A.2.3. Concentration Inequalities

To prepare for the proofs of Theorems 1 and 2, we first establish some useful concentration in-
equalities. For notational simplicity, the constants C4, Cs, ... below may vary from line to line.

Lemma 8. Under Condition 3, there exist constants Cy,Cs > 0 such that

1 « A
P (max - ZYM > t) < C’lpe*CQ”tz (A.24)
i |n
k=1
and

1 n
P (ma,x = ViV - B | 2 t) < CypPe Ot (A.25)

A Rt

for sufficiently small t > 0. Moreover, iflogp = o(n'/®), then there exists a constant C5 > 0 such

that

n

1

— 5 YiiYij YieYiem — EY;Y;Y Y,
n

k=1

P <_mgx > s> — 0(p~%) (A.26)
1,7,£,m

for every constant ¢ > 0.

Proof. Inequalities (A.24) and (A.25) follow, for example, from Exercise 2.27 of Boucheron, Lugosi,

and Massart, (2013); see also Bickel and Levina, (2008).

To prove (A.26), let Zy;jim = YiiYi;jYieYem and Z;,, = Y;Y;Y,Y,,. Note first that, by Condition 3
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and the sub-Gaussian tail bound, for any K > 0 and 4, j, ¢, m,
P(|Zijim| > K) < 4P(|Y;] > K'/*) < 8emoVE/®,
Hence,

E\Zijlm|l(|Ziﬂm| > K) :/ P(|Zijlm|I(|Zijlm‘ > K) > Z) dz
0
K
o
§8Ke—a\/?/8+/ e VE/8 iz

K

8
= — (oK + 16aVK + 128)e “VE/S,
«

which is less than /4 if we choose K sufficiently large. Then we have

1 n
P (Zf;ﬂ?i(n - Z Zkijim — EZijim| 2 6)
k=1
1 < €
<P (ﬁ%éﬁ‘,’; - ]; ZrigimI(| Znijim| < K) = EZijimI(| Zijim| < K)| > 2)
+P 1zn:Z 1(|Ziijim| > K)| > £

max |— 17lm 17lm = 7

i,j,?,’m n =1 kijl kijl 4
= T1 —|— TQ.

By Hoeffding’s inequality and the union bound,

2
4 ne
T1 < 2p~exp <_8K2) .
Also, by Condition 1 and the sub-Gaussian tail bound,

T, <P <k max | Zyijim| > K) <P <I%&X|ij| > K1/4) < 2npe*°“/f/8.
Ji,3,6m ¥

Combining both terms, choosing K = C?(log p + logn)? with C' > 8/a, and noting log p = o(n'/%),
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we arrive at

P (ZI??DT(n nZkalm Eszlm 5)
ne?
<9 4 _ 2 1—0(1/8
= b exp( 8C4(logp+10gn)4> +2(np)
=0(p~ )

for some C3 > 0. This proves (A.26) and completes the proof.

Lemma 9. Under Conditions 3—6, there exist constants C1, Csy, C3 > 0 such that

P (max 5y — 0] > ) — 0(p) (A27)
]

p 1
P (H}%Xm ~ s 2 02 4 0, ;”) = 0(p~%) (.28)

for every constant e > 0.

and

Proof. We first prove (A.27). Define

1
g Z VkiVkj — '71] )

where 7;; = n= 1 >0 _, ki We then write

O N ) L 1o .
Oij — 0ij = D Awames = i) = WYy — W + 23751 — - > (ki = ig)’
k=1 k=1

3

n n
- _ _ _ 1 _ _ _
> (vwives = 3ig) (=i — Wi¥i + 2%%) + = (=i — Wi%i + 2%7%;)%. (A.29)
k=1

Note that, by definition, yy; = Yi; — i, where Y, = p~' Y°%_, Y};. Define v; = Y; — Y, where
Y = p! p 1 Y;. Since Y; are uniformly sub-Gaussian by Condition 3, v, are also uniformly

sub-Gaussian. Using a truncation argument similar to that for proving (A.26), we can show that

P (max
1,3

> i — Evi| > Cl) =0(p~ )
k=1
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for some C,C5 > 0. The sub-Gaussian tails imply also that E~Z|v;| <

Combining these two pieces yields

(max
1
P <mjaXI"YjI > Oy °§”> = 0(p~%).

The above two inequalities together imply

Z VriVhj

> 1) =0(p~ ).

It follows from Lemma 8 that

n

1
P (max —
5nJ N

k=1

Z VeiVkiTi

n

We can similarly bound the other terms in (A.29) and obtain
5 5 1
P (maxl% — 0| > C4 W) =0(p~ ).
2¥)

Next, write

~ 1 B
Oij =i = > (ki — Fi3)? = Var(V;Y;)
k=1

1 & N
EZ’Y}%H@ EY2Y2 zj (w?j)Q}
k=1

= T1 + TQ.
To bound the term T3, we further write

(Vi — Y3)(Yi; — Yi)}2 — BY?Y?
n J ]
k=1

- Z ViiYej — YiiVi — Vi Vi + Y ) — EY?Y?
k=1
1 n

3(Ev} + EN?)

2
= YZYE - EYAY? + = ZY,WY,U ~Yii Vi — Vi Vi + Y2)

k=1 kl

1 _ _ _
+ E(—YmYk — Y3, Vi + V)2
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= 0(1).
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(A.31)



Consider the event A; on which

Z YiiYieg YieYim — EYiY;Y(Yon

max

<€1.
i,7,,m

n

Then, on A, we have

1 n
- S VAV - EYPYP| <er.

k=1

To bound the next term in T3, we write

1 n ~ 1 n B B B
- Z Y2V Vi = - Z YiYi,; Y — EY2Y,;Y + EY?Y;Y
k=1 k=1

1 <& 1<
> Z (n D Vi Yie - EYZ-QYJ‘YZ> t > EYRY;Y,

Z 1 k=1 {=1

which, on A; and by Condition 6, is bounded by ¢; + s1(p)/p. We can similarly bound the other
terms in 77 and obtain, on A4,

|T1| < 16e1 + 1551 (p) /p- (A.32)

To bound the term T5, note that

- 1 & _ _
Yij — wiy = - > (Vi — Vi) (Vi — Vi) — EY;Y;
k=1

1< 1 - -
== ViV — EY;Y; 4 = ) (—ViiVi — Yi Y + V). (A.33)
n — nkZl

Consider the event A5 on which

max
2,3

1 n
- Z YiiYi; — EYGY
k=1

< es.

To bound the next term in (A.33), we write
= Z Vi Vi, = Z YV — EY;Y 4+ EY;Y

p
Z( Zy,myk7 EYY) %Z W,

]1 k=1

which, on A, and by Condition 4, is bounded by &5 + M ~%s4(p)/p. We can similarly bound the
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other terms in (A.33) and obtain, on A,
5ij — wij| < 4ea +3M ' %so(p) /p. (A.34)
Note also that, on As,
Fij + wl| < i — wli| + 2Jwgs| < deg + 3M 9s0(p)/p + 2M.
Hence, on A,, we have

(T2] = [Fi; — wijll 3 + wij| < (4e2 + 3M' 750 (p) /p)(4e2 + 3M ' ~Is0(p) /p + 2M). (A-35)

Finally, it follows from Lemma 8 that the event A; N A, occurs with probability at least 1 — O(p~©)
for all constants ¢1,e5 > 0 and some constant C3 > 0. Combining (A.31), (A.32), and (A.35) and

noting log p = o(n), so(p) = o(p), and s1(p) = o(p), we arrive at (A.27).

It remains to prove (A.28). We first write

n

. 1 _ _ 1«
Yijg — Yij = n Z(%i = %) (vks — i) — n Z%ﬂkj
k=1 k=1

1 — _ o
= Z(_'Yki'ﬁ — YV + ViV)-

k=1

Using arguments similar to those for proving (A.30), we can show that

p (max > Chy/ 10gp> =0(p™).
1,7 n

We can similarly bound the other two terms and obtain

. N logp _c.
P(H}%}XI%r%;‘I > C1y/ 5 > =0(p~ ).

Taking e; = C1+/(logp)/n in (A.34), we have

1 n
" Zﬁ’kﬁj

k=1

1
P (sl = 01y 4 0200 ) o)
2y
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The above two inequalities together imply

P (ma_x iy - = O[22 1 S";p)) ) (A36)
2,]

From Condition 5 and (A.27) with e, = 7/2, it follows that |6;;| > 7/2 with probability at least

1 — O(p~©s). This, together with (A.36), implies (A.28) and completes the proof.

A.2.4. Proof of Theorem 4

By the triangle inequality, we have

p P
HQ - QOHl < Z |S)\” (w?]) - w?j| + Z |SM‘]’ (:)/L]) - S)\i,j (w?])‘ (A37)
j=1 j=1
Using Conditions (i) and (ii) that define a general thresholding function, the first term above is

bounded by

P P
D LG (Wil < Xig) + D A I(jwi] > Aig)
j=1

j=1

p
— 1—
Joofj 1 Jofs I (i < Xig) + D0 NIl | > Aig)

17

I
NE

j=1 j=1

-

17
< |w?j|q>‘ij <

1

J

On the other hand, the second term in (A.37) is bounded by

p p
2> il (Ail > Xigs wii| < Aig) +2 ) 1w 1] < Nigi [wly] > Aij)
j=1 j=1

p
+ ) 1S, Gig) = Sa, @D (5] > Aigis lwy] > Aij)
j=1

ET1+T2—|—T3.
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To bound the term T}, we write

P
Z —WU\I "ng| > )\237 |W | < )\IJ/Q)

+Z|’YU 1]|I h/lj‘ > AW’)\U/Z < |w2]| < )‘Z] +Z|wlj|j h/l]‘ > )\74]’ |wlj| < )\1])
j=1

ET4—|—T5+T6.

Consider the event B; on which |%;; — w%\ < \i;/2for all 4,5. On By, we have

p
Z |’Yz] ’L]|I h/lj 20]| > )‘1]/2) =0,

p P AN VA
<Z(;) (2) I(1i3] > Xigy A /2 < Jefy] < Ag) <
j=1

p

1—
Z RYRS

and

Ts < Z [ZAY
j=1

Combining these pieces yields

T1<2(

We can similarly bound the terms T, and 73 on By:

p P
1— —
> 3w I <A Wi TAT
j=1

"Yw ?j‘ + |’%J|) (|%J‘ < Aijs |w > )‘U)

<23
P
<2 Z( ) i) < M o> ) <33 Wil

Jj=1 Jj=1

p
Z |'YU_ ?j|+|S>\u('AYiJ) '71J|+|S>\ ( )_w |) (|’Yzj|>)\ua|w ‘>/\w)
Jj=1

p 5 p

1 1—

Z( 20+ 0 ) 1| > Mo > ) < 5 Dby A
Jj=1 Jj=1

Collecting all terms, we obtain, on By,

- 21 & _
192 = Qolls < 5D w172 (A.38)
j=1
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Next, we consider the event By on which |0;; — ;| < 7 for all i, j. From Condition 5 we have, on

By,
Note that, by Condition 3,
2y 2 1 4 4 2
bij < EY;Y[ < §(EY;’ +EY}) < vk (A.40)

Taking A\;; = A\y/6;; with X = C1+/(logp)/n + Caso(p)/p in (A.38) and applying (A.39) and (A.40),

we obtain, on B; N Bs,

_ -
2\ 21 1
12— Qo1 < *E |wis[IAT q() < Zs0(p) (Cq/i ng+0280(m> .
« n p

We conclude the proof by noting that the event B, N B, occurs with probability 1 — O(p~) by

Lemma 9 and that the spectral norm is bounded by the matrix L;-norm.
A.2.5. Proof of Theorem 5

It follows from Condition (i) and (A.28) that

P (@i; # 0,w); = 0 for some i, j) < P (maxhw — wyy| > Au)

) - lo s _
—p <n;e;xm 1/ = 0 [ BL cfj’”) —0(p%),

which proves (2.12).

To prove (2.14), note that, by Condition (ii),
P (sgn(@ij) # sgn(wyy),wy; # 0 for some i, 7) < P (|9:; — wij| > |w;| — Aij for some i, ) .

Also, by taking ¢ = 37/4 in (A.27), we have, with probability 1 — O(p~?),

\/>+\/> \/T+f 2’

0y =051 37/4 VA
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and hence

|w%|—)\ij >C)\\/0ij_>\(\/éij_\/9ij+ 0”>

Z(C—l)/\ﬁ—xg: (O—;)Aﬁ

for all 7, j. Now applying (A.36) yields
P (sgn(djij) #* sgn(w?j), w?j = 0 for some i,j) =0(p~ %),
which, together with (2.12), proves the result.

A.3. Additional Lemmas and Technical Proofs for Chapter 3

A.3.1. Preliminary Lemmas

Suppose log Wy is drawn from the distribution of log W = (logwy 4, - -+ ,logw; ;) with the covari-

ance Q = (wj;) = cov(logw;,,logwy ;). Let Qq = (Wi,5,a) as the sample covariance of log Wy

(d:1a2)!
1 ndg 1 nd 1 ng
Giva=—3 (logwyia— — 3 logwsq)(l a——S logw ).
Wi,j,d n;(ogwk, d nd; og wy,i,a)(log W j,a nd; 0g Wy, j,d)

For notational simplicity, the constants C1, Cs, - - - below may vary from line to line.

Lemma 10. /f the tail distribution of log W follows Condition 4, for any t > 0, we have
pr(max |@; j.a — wi ;| /(wiiw; ;)2 > 1) < Cipexp(—Cangt/2) + p*Cy exp(—Cyngt®/4),  (A.41)
1,

where C1,Cs, C3 and Cy are constants that do not depend on p and ng.

Besides, if tail distribution of log W (d = 1, 2) follows Condition 5. Let
2
0 .= n}%xE {(log wzd — i q)(log wj*-’d — Wjd) — wi’j} /(Wi iw; ;)

which is a bounded constant depending only on v, €, K under the condition 5, then for any M > 0,
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we have

Dr(max B0 = wi| /(@si3 )2 2 {0+ 1) + M)logp/nal'’?) = O(ng * +p7/%). (A42)

Lemma 11. Let M} = ™™ max;<;<, @a-5:2)" ¢ equations (3.10) and (3.11) hold, under the

ni+ng Yi,i

null hypothesis Hy : v1 = s, forany t € R and e% = o(1), we have
pr(M,; < (t+2logp — loglogp)(1 + eg{L(logp)_l)) — exp {—77_1/2 exp(—t/2)} , (A.43)

as ni,nq2,p — oo. We define the corresponding a—level test %, by ¥ = I(M} > (qo + 2logp —

loglog p)(1 + € (log p)~1)), where qq is the 1 — a quantile of the Type | extreme value distribution

function, then
pry, (P =1) < —log(l —a) +o(1). (A.44)

In addition, under Hy : vy — vy € S(k,) withk, =p",0 <r < 1, for some ¢ > 0, we have

lim pry (@, =1)=1.if3>(1- V) +e, (A.45)
p—00
lim pry (®h =1) <a, ifg < (1—+r) (A.46)
p—00

A.3.2. Proof of Theorem 6

Denote w; — = p~' >} _jwir (i = 1,---,p)and w_ _ = p~> 377, wi, which will be used fre-

quently in the following a few sections.
We first observed that

1 wi,j + €1 . .
Z;: 1§Z<]§p7

{(wii + e2)(wsg +e)}/?

where ¢; = —w; - —wj_ +w_ _, € =—2w;_+w__ande3 = —2w, - +w_ _. Under Condition

1, 2 and 3, as a result of Proposition 2, |¢;| < 37r3/p, i = 1,2,3. Therefore, by using this inequality
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and 1/7 <w;; <7, when p is sufficiently large, we have

clr __ wi’j €1 wiaiij
el _ 4 . ( )1/2
Y (Wi )P (Wit e) (Wit ea)}

< (rij +lex| 7)/{(1 — lea] T)(1 — es| 7)}/?

<7 +O(rs/p).

Similarly, we obtain 7't > r; j — O(r3/p). According to Proposition 1, r3 = O(p'/?), thus, uniformly
in1<i<j<p, wehave that [r"¥ —r; ;| = o(1). Using |rf'r —r; ;| < Crs/p and Taylor’s expansion

that (rf'7)? = r2; + 2r; (i —rij) + (rf7 —ri j)?, we have

p p
l
Z((Tzc,ljr)z T12j) SZKT&;) - zg|
i=1 i=1
p
<D @lragllrely = rigl+ rl = i)
1=1
< (2C + C*)r3/p.
As a consequence,
p p p p
G Z O(r3/p), D (r55)* =) ri; = O(ri/p).
=1 =1 =1 =1

The proof of Theorem 6 is completed, as r3 = O(p'/?).
A.3.3. Proof of Theorem 7

Proof of equation (3.11): Note that,

p
ki — Vil = [logwria —p" D> logwyja— (ia—p "D hja)
j=1 j=1

Under Conditions 1, 2 and 3, by using the property (3.8), it follows that, uniformly in 1 < k& < ny
1/2 1/2

Z’L’

(d =1,2). Thus, if logW}

and 1 <i <p, |yk,id— Vil /’y < 2\/§Tmaxk,,» [log wi ;.a —

(d = 1,2) follow Condition 4 (sub-Gaussian-type tails), let 7,, = {87 (M +1)logp + log nd)/n}l/2
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with some constant M > 0, then, as ng,p — oo,
pr(  max |Yk.id — Vi.dl /741/2 >71,) <pr( max [log wg i 4 — 4i.dl /w41/2 > 7,/(2V21))
1<k<ng,1<i<p =7 s T 7 1<k<ng,1<i<p ” ’ bt

< Kndpexp(—nT,%/(STQ)) — 0.

By using p > n and logp = o(n}/*), we can verify that 7, = o(n/?/(log p)3/?). If log W follow

Condition 5 (polynomial-type tails), let 7, = 2v/2rn’/*, then as ng, p — oo,

pr( i = vial /20 2 7)< Knap(ra/(2v/27) =4 S0

max
1<k<ng,1<i<
Under the condition that p = O(n}°), it can be verified that 7,, = o(n(l/2/(10gp)3/2).

Proof of equation (3.12): Without the loss of generality, assume u; = p2 = 0. Denote by 7; ; 4 as the

sample covariance of YZ(;’) Using the notation defined in §A.3.2 and the equation (3.7), we obtain
Fiisd — Yiyil = |(@iyi,0 — 204, —a + 0 —) = (wiys — 2wi - +w_ )| < 4H112}X |00s,5,a — wij| -

Therefore, under Condition 2 and 3, if logW} (d = 1,2) follow Condition 4, as a result of the

inequality (A.41) and (3.8), uniformly in 1 <4 < pforany ¢t > 0,

(@i ja = wiyl  (wiaw; )2
o> < 4 2Js > . s 5
/i > t) < pr( max (@052 min i

> 1)

pr(l%,i,d — Yi,i
. 1/2 2
< Pr(HﬂX 16055, — w5/ (wi,iwj )= > t/(877))

< 2pexp(—Cingt/(167%)) + p?Cy exp(—Csngt? /(25674)).

Since ;i = %=1 + 5P Va2, @nd ny and no are comparable, it yields that, for some con-

stants Cy4, C5 and Cg, we have

pr(Fii — viil/vii > t) < dpexp(—Cunt/77) + Csp® exp(—Cgnt® /7).

Itimplies 7 — 7i,i

=0, {(1og p/n)Y 2} ~i.i. Similarly, under Condition 2 and 3. If log W (d = 1,2)
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follow Condition 5, by use of (A.42), uniformly in 1 <4 < p for any M > 0,

~ 1/2
pr([Fi,i,a — Yisil /v > {6474(9 +1)(5+ M)logp/na} / )

J(wiiw; )Y = {0+ 1)(5 + M) (log p/na)}/?) = O(ng/® + p~M/2).

< pr(max|[W; j.a — wij
2,7

As aresult, [5;: — vii| = O, {(logp/n)l/Q} ~i.i» which completes the proof.
A.3.4. Proof of Theorem 8 & 9

Proof 1. We only prove (3.13), the proofs of (3.14), (3.17) and (3.18) are similar. Proof of (3.13):
In the event {[3;;/vi; — 1| < Ci(logp/n)'/?}, we have |M, — M}| < CoM;}(logp/n)'/2. Since
(logp/n)*/? = o(1/1og p) under Conditions 4 and 5, the proof is completed by applying Theorem 7

and Lemma 11.
A.3.5. Proof of Technical Lemmas

Lemma 12. (Bonferroni Inequality) Let A = | J;_, A;. For any k < [p/2], we have

2k 2k—1

S DB <prA) < Y (<) B,

=1 =1

where E, = Zl§i1<-~<u§p pr(4;, N---NA;).

Lemma 13. Let (Zy,---,Z,)T be a zero-mean multivariate normal random vector with covariance
matrix Q = (w; j)1<i,j<p @and diagonal w; ; = 1 for1 < ¢ < p. Suppose that maxi<;<j<p |w; ;| <r1 <
1 and max; Y7, w?; < ry < 0o, where r, and r, are some constants. For any fixed integer d* > 1,
let the vector Ng» = (Zy,,-- - , Zy,. ) with the index {ki,--- ,kq-}. Then for any e, , = o(1) and any

teR,

> pr(INas i, = (t+2logp —loglogp)'/? + e, (log p) ~'/?)
1<k <ekgs <p

= (x % exp(—t/2))" /a1 (1 + o(1)).
(A.47)
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A.3.6. Proof of Lemma A10

Proof of (A.41): Without loss of generality, we assume iy = y2 =0andw; ; = 1,i=1---,p, then it

suffices to prove that, for d = 1, 2,

1 nd
pr(max |— Zlog w,i,4| > t) < Cipexp(—Cangt?), (A.48)
R R
1 n
pr(max | — Z log wy,i,q log wy j,a — Elogw} jlogw? 4| > t) < p?>Cs exp(—Cyngt?). (A.49)
1, ng ! 7 ) Js
k=1

Proof of inequality (A.48) and (A.49) are the results from Exercise 2.27 in (Boucheron, Lugosi, and
Massart, 2013); Also see (Bickel and Levina, 2008).
Proof of (A.42): See Theorem 1(b) in (Cai, Liu, and Luo, 2011).

A.3.7. Proof of Lemma A1l

Proof of (A.43): Let ¢, = (t + 2log p — loglog p)(1 + e%(log p)~ 1), according to Lemma B12, for any

mezZ0<m<q/2,

2m d _ _ 2
*_ ning (yl 1— Yi 2)
Z (-1)4 ! Z pr(ﬂ Ey;) < pr( max -— = > tp)
oo} I<kicchi<p  j=1 ny + ng 1<i<p Yii
2m—1 d*
<> =T YT () By
dx=1 1<ki<--<kge<p  j=1
_ Yk; 1~ Yk ,2 S 1/2 o « . « .
where Ej; { S| 2 tp } j 1,---,d*. For a fixed d*, define the vectors
(Tla e 7Tn17Tn1+17 T 7Tn1+n2) as
1 — 1 -V
T =(—- Ylky,1 — Vi1 e Yl,kq,1 ka,1 T’ =1, ,ni,
N1\ Ve (1/11 4 1/n2) M\ Vhg ks (1/n1 +1/02)
1 Ylki,2 — Vki,2 1 Ylkg,2 — Vka,2 T
Crl+ :(_7 IS 1 S sRhdy ds , :17.”’,'12.
" n2 /Yy k (1/n1 +1/02) N2\ Ygka(1/n1 + 1/n2)
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Note that we define |a/ = min;<;<4 || for any vector o € R?". Then we obtain

min

d* ni+ns
pr(m Ey;) = pr( Z Ty > tzl)/Q).
Jj=1 k=1 min
Denote the multivariate normal random vector Ny« = (Ny,, -+ , N,. ) with ENg« = 0and cov(Ng) =

nicov(Ty) + nacov(Tp,11) = R. Let A = €h(logp)~1/2d*'/2. Note that under the event that

{maxlgkgnd,lgiﬁp ’(yk,i,d - Vi,d)/%lf < Tn} (d =1,2), we have [Ty ;| < 7,/n'/? forany 1 < k <

n1 + ne, 1 <i < p, then by using Theorem 1 in (Zaitsev, 1987), we have

ni+ng
A 1/2
pr( Z Tk > t;/Q) < Pr(|Nd*\mm > t]19/2 o )\/d*l/Q) + Cld*5/2 eXp(_%
k=1 min Cod* / Tn
(2) 1/2
= pr(|Nge| . > t/2 — @ (log p)=1/2) + C1d*/? exp(— En.pTt .
1% (‘ d |mzn = n,p( gp) ) 1 p( C2d*2(10gp)1/27_n)

Since limy, o0 (log p)3/27, /nt/2 — 0, we set €'7), = MCgd*>(log p)3/?r, /n'/2 which is o(1) for any

constant M > 0, and

€L exp(e— S22 o (A.50)
1 p CQd*Q(logp)1/2Tn - p . .

By Taylor's expansion, we also observed that t,l,/2 = (t + 2logp — loglogp)*/? + Cgeﬁll}(logp)—l/?

Therefore, setting effj%, = 03653,;, — ef} and using equation (3.11) and (A.50), we have

(Jin — ¥i2)?
: . t
pr(lrg%xp Yii(l/m1+1/ng) — »)
2m—1
<> DT YT pr(INasly, = (E+ 2logp — loglogp) /% + €) (log p) ™/2) + o(1).
dr=1 1<kt <---<kg» <p
(A.51)
Similarly, we also obtain
pr( max (i1 — Ui2)?
1<i<pvii(1/ny +1/ng) = 7
2m
>3 =0T ST pr(INaslyy, = (t+2logp — loglogp)'/? + €) (log p) /%) — o(1).
dr=1 1<ki <---<kgs <p
(A.52)
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Combining (A.51) and (A.52) and applying Lemma B13 yields

2m—1 _ _ 2
) 112 N gt < li (Yin — ¥i2) >
dgl( )7 T Fexp(—t/2))7 /"t < | lim | pr( max s (U + 1/m3) »)
2m
< ()T exp(—t/2) " .
d*=1

As p — oo, the proof is completed by letting m — oo on both hand sides.
Proof of (A.44): Follow the same procedure as the proof of (A.43). Let ¢* = 1 in (A.51), by use of

—m~ Y2 exp(—qa/2) = log(1 — «), we finally obtain
pry, (% = 1) = pr(M; > (ga + 2logp — loglog p)(1 + €} (log p) "))
p
Z (IN(0,1)] > (ga + 21ogp — loglog p)'/* — i) (log p) ~'/?) + o(1)

2p exp {*((qa +2logp — loglog p) /2 — &) (10gp)*1/2)2/2}
<

+0o(1)
(2m)L/2 {(qa +2logp — loglog p)1/2 — 51 %,(logp)—l/Q}

—log(l —a)-(1+o0(1))+o(1).

Proof of (A.45) and (A.46): See the proof of Proposition 2 in supplement to (Cai, Liu, and Xia,
2014).

A.3.8. Proof of Lemma 13

See the proof of Lemma 6 in Cai, Liu, and Xia, 2014.
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