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ABSTRACT

STATISTICAL METHODS FOR HIGH DIMENSIONAL COUNT AND COMPOSITIONAL DATA

WITH APPLICATIONS TO MICROBIOME STUDIES

Yuanpei Cao

Hongzhe Li

Next generation sequencing (NGS) technologies make the studies of microbiomes in very large-

scale possible without cultivation in vitro. One approach to sequencing-based microbiome studies

is to sequence specific genes (often the 16S rRNA gene) to produce a profile of diversity of bac-

terial taxa. Alternatively, the NGS-based sequencing strategy, also called shotgun metagenomics,

provides further insights at the molecular level, such as species/strain quantification, gene function

analysis and association studies. Such studies generate large-scale high-dimensional count and

compositional data, which are the focus of this dissertation.

In microbiome studies, the taxa composition is often estimated based on the sparse counts of se-

quencing reads in order to account for the large variability in the total number of reads. The first

part of this thesis deals with the problem of estimating the bacterial composition based on sparse

count data, where a penalized likelihood of a multinomial model is proposed to estimate the compo-

sition by regularizing the nuclear norm of the compositional matrix. Under the assumption that the

observed composition is approximately low rank, a nearly optimal theoretical upper bound of the

estimation error under the Kullback-Leibler divergence and the Frobenius norm is obtained. Simu-

lation studies demonstrate that the penalized likelihood-based estimator outperforms the commonly

used naive estimator in term of the estimation error of the composition matrix and various bacterial

diversity measures. An analysis of a microbiome dataset is used to illustrate the methods.

Understanding the dependence structure among microbial taxa within a community, including co-

occurrence and co-exclusion relationships between microbial taxa, is another important problem in

microbiome research. However, the compositional nature of the data complicates the investigation

of the dependency structure since there are no known multivariate distributions that are flexible

enough to model such a dependency. The second part of the thesis develops a composition-

adjusted thresholding (COAT) method to estimate the sparse covariance matrix of the latent log-
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basis components. The method is based on a decomposition of the variation matrix into a rank-2

component and a sparse component. The resulting procedure can be viewed as thresholding the

sample centered log-ratio covariance matrix and hence is scalable to large covariance matrice

estimations based on compositional data. The issue of the identifiability problem of the covariance

parameters is rigorously characterized. In addition, rate of convergence under the spectral norm

is derived and the procedure is shown to have theoretical guarantee on support recovery under

certain assumptions. In the application to gut microbiome data, the COAT method leads to more

stable and biologically more interpretable results when comparing the dependence structures of

lean and obese microbiomes.

The third part of the thesis considers the two-sample testing problem for high-dimensional composi-

tional data and formulates a testable hypothesis of compositional equivalence for the means of two

latent log-basis vectors. A test for such a compositional equivalence through the centered log-ratio

transformation of the compositions is proposed and is shown to have an asymptotic extreme value

of type 1 distribution under the null. The power of the test against sparse alternatives is derived.

Simulations demonstrate that the proposed tests can be significantly more powerful than existing

tests that are applied to the raw and log-transformed compositional data. The usefulness of the

proposed tests is illustrated by applications to test for differences in gut microbiome composition

between lean and obese individuals and changes of gut microbiome between different time points

during treatment in Crohn’s disease patients.
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CHAPTER 1

COMPOSITION ESTIMATION FROM SPARSE COUNT DATA VIA A REGULARIZED

LIKELIHOOD

In microbiome studies, taxa composition is often estimated based on the sequencing read counts

in order to account for the large variability in the total number of observed reads across different

samples. Due to sequencing depth, some rare microbial taxa might not be captured in the metage-

nomic sequencing, which results in many zero read counts. Naive composition estimation using

count normalization therefore lead to many zero proportions, which underestimates the underlying

compositions, especially for the rare taxa. Such an estimate of the composition can further lead

to biased estimate of taxa diversity, and can also cause difficulty in downstream log-ratio based

analysis for compositional data. In this paper, the observed counts are assumed to be sampled

from a multinomial distribution, with the unknown composition being the probability parameter in

a high dimensional positive simplex space. Under the assumption that the composition matrix is

approximately low rank, a nuclear norm regularization-based likelihood estimation is developed

to estimate underlying compositions of the samples. The theoretical upper bounds and the min-

max lower bounds of the estimation errors measured by the Kullback-Leibler divergence and the

Frobenius norm are established. Simulation studies demonstrate that the regularized maximum

likelihood estimator outperforms the commonly used naive estimators. The methods are applied to

an analysis of a human gut microbiome dataset.

1.1. Introduction

The human microbiome is the totality of all microbes at different body sites, whose contribution to

human health and disease has increasingly been recognized. Recent studies have demonstrated

that the microbiome composition varies across individuals due to different health and the environ-

ment status (The Human Microbiome Project Consortium, 2012a), and may be associated with

complex diseases such as obesity, atherosclerosis, and Crohn’s disease (Koeth et al., 2013; Lewis

et al., 2015; Turnbaugh et al., 2009). With the development of next-generation sequencing tech-

nologies, the human microbiome organisms can be quantified by using direct DNA sequencing of

either marker genes or the whole metagenomes. After aligning the sequence reads to the refer-

1



ence microbial genomes, the observed count data (e.g., 16S rRNA marker gene reads or shotgun

metagenomic reads) depend on the amount of genetic material extracted from the community or

the sequencing depth, and they provide a relative measure of the abundances of community com-

ponents. In a microbiome study, these read counts are typically non-negative and over-dispersed,

and contain a large number of zeros.

In order to account for the large variability in the total number of reads obtained, the taxa compo-

sition is often estimated based on the observed counts of sequencing reads. Due to sequencing

depth, some rare microbial taxa might not be captured in the metagenomic sequencing, which re-

sults in zero read counts assigned to these taxa. Naive estimates of the taxa composition using

count normalization therefore lead to many zeros due to under sampling, especially for rare taxa.

Such a naive estimate of the composition can be biased and can lead to biased estimates of taxa

diversity. It can also cause difficulty in downstream data analysis for compositional data. Since the

pioneering work of Aitchison, (2003), several techniques have been proposed to deal with zeros

(see Martın-Fernandez, Palarea-Albaladejo, and Olea, 2011 for an overview) in count data. One

approach is to replace zero counts through a Bayesian-multiplicative model, followed by normaliz-

ing the count into the composition. Such a Bayesian method involves a Dirichlet prior distribution

as the conjugate distribution of multinomial distribution and a multiplicative modification of the non-

zero counts. The zero replacement results were determined by the parameterizations of the prior

distribution. However, such a prior information cannot be easily obtained, and the subjective selec-

tion of the parameter may yield misleading results. Other approaches normalized the count first and

treated zero compositions as the missing values. The missing part was then recovered by either

non-parametric imputation or EM algorithms. However, the non-parametric imputation lacks theo-

retical guarantees for selecting a reasonable replacement value. The EM algorithm is not feasible

when the number of taxa is very large, or every taxa contains at least one zero across the samples.

In addition, the multivariate additive log-ratio (alr) normality assumption used in these methods is

often violated in microbiome studies.

This paper addresses the problem of estimating the microbial compositions in positive simplex s-

pace from a high-dimensional sparse count dataset. We assume that the observed counts follow

a Poisson-multinomial model where the read counts of the taxa in each individual follow a multino-

mial distribution with the underlying probability parameter given by a positive composition, and the
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number of total count is a Poisson random variable. If the compositions across different individuals

are treated as a matrix by combining them together, an approximately low rank structure on this

matrix is indicated by recent observations on co-occurrence pattern (Faust et al., 2012) and various

symbiotic relationships in microbial communities (Chaffron et al., 2010; Horner-Devine et al., 2007;

Woyke et al., 2006). Motivated by much success in solving the matrix completion problem using

nuclear norm minimization (Cao and Xie, 2016; Klopp et al., 2015; Lafond et al., 2014; Lu and Ne-

gahban, 2014; Negahban and Wainwright, 2012), this paper solves the problem of the composition

estimation using a regularized maximum likelihood approach. However, it should be emphasized

that the multinomial likelihood function in this framework has not been studied and the sampling

scheme used in this article is also different from other matrix completion problems. The observed

zero counts are the result of under sampling, rather than the random missingness assumed in the

previous literature. We provide the asymptotic upper and min-max lower bounds of the resulting

regularized estimator and show through simulations that the estimator recovers low-rank composi-

tions accurately.

The rest of the paper is organized as follows. Section 1.2 presents details of the proposed regu-

larized likelihood approach when the underlying composition is approximately low-rank. The imple-

mentation is presented in Section 1.3. The theoretical properties of the estimators are analyzed in

Section 1.4, where the upper bounds for the estimation error measured by average Kullback-Leibler

divergence and Frobenius norm are established. Simulation results are shown in Section 1.5 to in-

vestigate the numerical performance of the proposed methods. A real data application to a human

gut microbiome study is given in Section 1.6.

1.2. Poisson-Multinomial Model for Microbiome Count Data and Penalized Estima-

tion

In this section, we consider a Poisson-multinomial statistical model for composition estimation from

the sparse count data observed in microbiome studies. The proposed procedure for composition

estimation relies on a regularized maximum likelihood. We start by introducing some notation that

will be used throughout the rest of the paper. For any integers N > 0, let [N ] = {1, 2, · · · , N} be

the set of integers ranging from 1 to N . We also denote 1n = (1, . . . , 1)> ∈ Rn, ei as the canonical

basis with i-th entry one and others zero. For any vector u ∈ Rp, we refer to it as a composition

3



vector if u ≥ 0 and
∑p
i=1 ui = 1. For any two composition vectors u, v ∈ Rp, we can define the

Kullback-Leibler (KL) divergence as

DKL(u, v) =

p∑
j=1

ui log
ui
vi
. (1.1)

For any matrix A = (aij), define its L1, L∞, spectral, Frobenius, element-wise maximum, and

nuclear norm respectively as ‖A‖1, ‖A‖∞, ‖A‖2, ‖A‖F , ‖A‖max, and ‖A‖∗. Specifically, ‖A‖1 =

max
j

∑
i |aij |, ‖A‖∞ = max

i

∑
j |aij |, ‖A‖2 =

√
λmax(ATA), ‖A‖F =

√∑
i,j a

2
ij , ‖A‖max = max

i,j
|aij |,

and ‖A‖∗ =
∑
i σi(A), where λmax(·) denotes the largest eigenvalue and {σi(·)} denotes the set

of singular values. For two matrices A and B, let 〈A,B〉 = tr(ATB) =
∑

i,j aijbij be the trace inner

product. Finally, for notational simplicity, we use C1, C2, . . . as generic symbols for constants whose

values may vary from line to line.

Our starting point is a n × p matrix of counts W with element Wij representing the observed read

count of taxon j in individual i, where i ∈ [n] and j ∈ [p]. For i-th individual, the simplest model

for their count data Wi = (Wi1,Wi2, · · · ,Wip) is the multinomial model with its probability function

given as

fM (Wi1,Wi2, · · · ,Wip; Xi) =

(
Ni
Wi

) p∏
j=1

X∗ij
Wij ,

where Ni =
∑p
j=1Wij and X∗i = (X∗i1, X

∗
i2, · · · , X∗ip) are underlying bacterial composition with∑p

j=1X
∗
ij = 1, X∗ij > 0. The total taxa count Ni is determined by the sequencing depth and can be

treated as a Poisson random variable given by Ni ∼ Pois(νi), where νi is a positive parameter, but

it is of less interest.

Our goal is to estimate X∗ = (X∗1
T ,X∗2

T , · · · ,X∗p
T )T based on W. The most natural estimate

is obtained by the maximum likelihood estimation. Denote by LN the (normalized) negative log-

likelihood of the observations, ignoring the terms that do not depend on the compositions X∗,

LN (X) = − 1

N

∑
1≤i≤n,1≤j≤p

Wij logX∗ij , (1.2)

where N =
∑n
i=1Ni =

∑
ijWij is the total number of the observed counts and X∗ belongs to

4



positive simplex space S = {X ∈ Rn×p
∣∣∣∣ X1p = 1n,X > 0}. Without further constraints, minimizing

(1.2) leads to the standard maximum likelihood estimate X̂,

X̂ij =
Wij∑p
k=1Wik

, i ∈ [n], j ∈ [p].

However, as a consequence of under sampling when N is not sufficiently large, the estimator X̂ will

contain a large number of zeros. These zeros underestimate the composition and cause difficulty in

downstream log-ratio based compositional data analysis (Aitchison, 2003). For an arbitrary matrix

X∗ in positive simplex space, clearly there is no good way to recover a positive X∗. However, in

the metagenomic study, X∗ could be approximately low-rank in the sense that the singular values

decay gradually towards zero, which provides the possibility to recover X∗ with high accuracy.

In this paper, we propose a penalized estimator X̂ based on a regularized maximum likelihood

formulation:

X̂ = arg min
X∈S(αx,βx)

LN (X) + λ‖X‖∗, (1.3)

where S(αx, βx) is a bounded simplex space given by

S(αx, βx) =

{
X ∈ Rn×p

∣∣∣∣ X1p = 1n, αx/p ≤ Xij ≤ βx/p, ∀(i, j) ∈ [n]× [p]

}
.

Here λ and αx and βx are tuning parameters. The constrained element-wise lower bound guaran-

tees the positive sign of the estimator. The element-wise upper bound constraint is only needed in

the theory, while in practice, such a constraint is not required.

1.3. Optimization Algorithm and Tuning Parameter Selection

In this section we consider the implementation of the proposed estimator specified as (1.3). Specif-

ically, we propose to solve the following constrained convex optimization:

X̂ = arg min
X∈S(αX)

LN (X) + λ‖X‖∗, (1.4)

S(αX) =

{
X ∈ Rn×p

∣∣∣∣ X1p = 1n, Xij ≥ αX/p,∀(i, j) ∈ [n]× [p]

}
.
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Here S(αX) is a positive simplex space and (λ, αX) is a pair of tuning parameters. Particularly, (1.4)

is a nuclear norm minimization problem, which can be solved by either semidefinite programing via

interior-point SDP solver, or first-order method via Templates for First-Order Conic Solvers (TFOC-

S), see Becker, Candès, and Grant, 2011. However, the SDP solver computes the nuclear norm

via a less efficient eigenvalue decomposition which does not scale well with high-dimensions n and

p. Besides, Nesterov’s scheme used in TFOCS is not monotone in the objective function owing

to the introduction of the momentum term, which often results in oscillations or overshoots along

the trajectory of the iteration. In this article, we propose a more efficient algorithm based on the

generalized accelerated proximal gradient method (Su, Boyd, and Candes, 2014). To adapt to the

bounded simplex constraint S(αX), we develop a non-iterative projection scheme in the proposed

algorithm.

1.3.1. Generalized Accelerated Proximal Gradient Method

Since LN (·) is convex and differentiable over the domain S(αX) and the nuclear norm is convex, the

accelerated Nesterov’s scheme can be formulated as follows. Given the count matrix W, we first

normalize it into the composition X by Xij = Wij/
∑p
k=1Wik and initialize Y0 = X0 = X−1 = X,

then update Xk and Yk in the kth iteration as

Xk = arg min
X∈S(αX)

Lk
2
‖X−Yk−1 + L−1

k OLN (Yk−1) ‖2F + λ‖X‖∗, (1.5)

Yk = Xk +
k − 1

k + r − 1
(Xk −Xk−1) . (1.6)

Here we provide the detailed explanation for (1.5) and (1.6).

• Lk is the step size in the k-th iteration, which is chosen by line search strategy. Denote by

FL(X,Y) the approximation error when approximating LN (X) with its second order Taylor

expansion around Y and using L as the second order coefficient,

FL(X,Y) = LN (X)− LN (Y)− 〈X−Y,OLN (Y)〉 − L

2
‖X−Y‖2F .

In the kth iteration, given an initial parameter Lk = Lk−1, we repeated increasing it by Lk =

γLk for some scale parameter γ > 1 until the function LN (Xk) is dominated by its second

order Taylor expansion around Yk−1, i.e., FLk(Xk,Yk−1) ≤ 0.
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• k−1
k+r−1 is the momentum term and r is a friction parameter. In the standard accelerated gradi-

ent method, the friction parameter is set by r = 3, and this scheme exhibits the convergence

rate O(1/k2) as long as the gradient function OLN is Lipschitz continuous with a constant Lip-

schitz coefficient (Nesterov, 1983, 2013). The Nesterov’s scheme can be further generalized

by setting a high friction rate, for example r ≥ 9/2, and it succeeds in eliminating the over-

shooting and oscillation along the trajectory toward the minimizer and obtaining a O(1/k3)

convergence rate (Su, Boyd, and Candes, 2014).

• The minimization of the objective function (1.5) can be solved by a form of Singular Value

Thresholding (SVT) (Cai, Candès, and Shen, 2010):

Xk = ΠS(αX)

(
DλL−1

k

(
Yk−1 − L−1

k OLN (Yk−1)
))
.

Here ΠS(αX) (X) is Euclidean projection of X onto the positive simplex space S(αX) that we

will discuss in Section 1.3.2. If X = UΣVT is the singular value decomposition (SVD), the

soft-thresholding operator Dτ can be defined as

Dτ (X) = UDτ (Σ) VT , Dτ (Σ) = diag (max {σi − τ, 0}) .

Combining these steps together, the generalized accelerated proximal gradient method is sum-

marized in Algorithm 1, where kmax is the maximum number of iteration. The complexity of the

algorithm are dominated by O(n2p + p3), which is the cost of singular value decomposition. The

convergence of Algorithm 1 cannot be easily established; however, the following proposition pro-

vides some insight.

Proposition 1. Let Xk be the sequencing generated in the iteration of Algorithm 1. Denote by

f(X) = LN (X) + λ‖X‖∗. Suppose the Euclidean projection onto the simplex space ΠS(αX) does

not influence the convergence rate, and the step size is always set by Lk = max
ij

Wijp/(αXN).

Then, for any friction parameter r ≥ 9/2, we have,

f(Xk)− f(X?) ≤ C

√√√√√ max
ij

W 3
ij

min
{ij|Wij>0}

Wij

p3

N2

‖X0 −X?‖2F
k3

,
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where X? is any minimizer of f and C only depends on r and αX .

Since the gradient function OLN is Lipschitz continuous with the constant L = max
ij

Wijp/(αXN)

and the negative likelihood function LN is µ−strongly convex with µ = min
{ij|Wij>0}

Wij/N on the

constrained simplex space, it is not hard to prove Proposition 1 by applying Theorem 9 in Su, Boyd,

and Candes, 2014. The parameters L and µ vary with different observations, as a result, the rate of

convergence shows an interesting dependency on the dimension p and the observation count W

Algorithm 1 Generalized accelerated proximal gradient method

1: Input: Count W and its normalized composition X
2: Initialize: Y0 = X0 = X−1 = X, r ≥ 9/2, γ > 1, L = 10−4, and kmax ∈ N+

3: for k = 1 to kmax do
4: Xk = ΠS(αX)

(
Dλ/L (Yk−1 − (1/L)OLN (Yk−1))

)
5: if FL(Xk,Yk−1) ≥ 0, then
6: L = γL, go to Step 3
7: end if
8: Update Yk = Xk + k−1

k+r−1 (Xk −Xk−1)

9: if |FL(Xk,Yk−1)| < 10−5 then
10: return Xk

11: end if
12: end for

1.3.2. Euclidean Projection onto the Simplex Space

The remaining part is to deal with the Euclidean projection onto the simplex space S(αX) in Algo-

rithm 1. We introduce a non-iterative and efficient algorithm based on the standard KKT condition.

Consider a one-dimensional simplex projection problem given by

ΠS(αX)(y) = min
x∈Rp

1

2
‖x− y‖22 s.t.

p∑
i=1

xi = 1, xi ≥ αX/p. (1.7)

The following Proposition provides an implicit formulation for the minimizer x? to this optimization

problem (1.7).

Proposition 2. Suppose that y1 ≥ y2 ≥ · · · ≥ yp, then the minimizer x? = (x1, x2, · · · , xp)T is given

by

xi = max{yi + µ, αx/p}, for any i ∈ [p],

where µ = ρ−1(1−αX −
∑ρ
i=1 ui) +αX/p, and ρ is the number of components in x? that are strictly
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larger than αX/p. We establish the the following formulation for ρ,

ρ = max

{
j ∈ [p]

∣∣∣∣ yj + j−1(1− αX −
j∑
i=1

yi) > 0

}
.

In the multi-dimensional case that Y ∈ Rn×p, we generalize the above simplex projection and sum-

marize this non-iterative optimization procedure in Algorithm 2. The scheme is easy to implement

and its complexity is O (np log(p)).

Algorithm 2 Euclidean projection of a matrix onto the simplex space S(αX).

1: Input: Y ∈ Rn×p and S(αX)
2: Sort each row of Y into U: Ui1 ≥ Ui2 · · · ≥ Uip, i ∈ [p].
3: Find vector ρ = (ρ1, · · · , ρn)T such that

ρi = max

{
j ∈ [p]

∣∣∣∣ Uij + j−1

(
1− αX −

j∑
i=1

Uij

)
> 0

}
, i ∈ [n].

4: Define vector µ = (µ1, · · · , µn)T by µi = ρi
−1
(

1− αX −
∑ρi
j=1 Uij

)
+ αX/p, i ∈ [n].

5: Return X such that Xij = max {Yij + µi, αX/p} , (i, j) ∈ [n]× [p].

1.3.3. Data Driven Selection of the Tuning Parameters

The proposed nuclear norm minimization involves the tuning parameters λ and αX . We propose

the following data-driven method for selecting these tunning parameters with a guaranteed per-

formance. Given a selected parameter αX , we choose λ = λ(αX , β̂R) by plugging αX and the

estimated row probability parameter

β̂R = n · max
1≤i≤n

∑p
j=1Wij∑n

k=1

∑p
l=1Wkl

λ(αX , β̂R) =

√√√√32
(
β̂2
R/n+ (1 ∨ β̂Rp/n)/αX

)
p log(n+ p)

N
∨ 8(1/αX + β̂R/(np)

1/2)n log(n+ p)

N
.

This choice of λ is motivated by the theoretical results of Theorem 1 in the next Section.

It remains to find the estimated parameter αX , which can be selected using K-fold cross-validation

as follows. Let W be the observed sample and let T be a grid of positive real values. For each
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t ∈ T , set

(λ, αX) = (λ(αX(t), β̂R), αX(t)) = (λ((t · α̂X), β̂R), t · α̂X),

where

α̂X = p · min
1≤i≤n,1≤j≤p

Wij∑n
k=1

∑p
l=1Wkl

and β̂R = n · max
1≤i≤n

∑p
j=1Wij∑n

k=1

∑p
l=1Wkl

.

We randomly split the rows of W into two groups of sizes n1 ∼ (K−1)n
K and n2 ∼ n

K for I times. We

used the second group with sample size n2 as the testing set. In order to estimate the composition

from the rows in testing set, we further randomly picked 1/K proportion of observed columns in

each row from the second group and combined it with the first group as the training set. Denote

by Wi be the selected testing set in the ith split and let Xi be its compositions through Xi
kl =

W i
kl/
∑p
l=1W

i
kl. Denote by X̂(−i)(αX(t)) the estimator based on the training set. We consider the

Kullback-Leibler divergence to evaluate the prediction error.

R̂(t) =

I∑
i=1

D(Xi, X̂(−i)(αX(t))).

We select t∗ = arg minT R̂(t) and choose the tuning parameters (λ(αX(t∗), β̂R), αX(t∗)). If t∗ is

chosen on the boundary of T , we expand the range of T and repeat the above procedure. With the

chosen tuning parameters, we finally obtain estimate by solving (1.4) based on the full dataset.

1.4. Theoretical Properties

We prove that the proposed estimator X̂ achieves the near optimal rate of convergence over a

class of low-rank compositions. The regularization assumptions we need for theoretical analysis

are formally stated as below.

Condition 1. Let Ri = νi/
∑p
j=1 νj for i ∈ [n], then there exist constants (αR, βR) such that, for any

i ∈ [n],

αR/n ≤ Ri ≤ βR/n.

Condition 2. There exist constants (αX , βX) such that, for any (i, j) ∈ [n]× [p],

αX/p ≤ Xij ≤ βX/p.
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Here R = (R1, · · · , Rn)T represents the probability of observing an element from each row, and

X represents the column probability. Conditions 1 and 2 are analogous to the incoherence con-

ditions that are commonly assumed in the matrix completion literature. The element-wise upper

bounds avoid the overly ”spiky” situation that some rows or columns are sampled with very high

probability. The element-wise lower bound on R helps to establish bounds in Frobenius norm, and

the entry-wise bound on X∗ ensure the gradient function of LN (X) in (1.2) is Lipschitz continuous,

which helps to effectively bound Frobenius norm in terms of Kullback-Leibler (KL) divergence and

guarantee the feasibility of accelerated gradient descent algorithm in practice.

1.4.1. Rate of Convergence

To assess how close the estimator X̂ from (1.3) to the real compositional matrix X∗, we use average

Kullback-Leibler divergence D(X∗, X̂) and squared Frobenius norm ‖X∗ − X̂‖2F . Here D(X∗, X̂) is

defined as the sum of Kullback-Leibler (KL) divergence between rows of X∗ and X̂,

D(X∗, X̂) =

n∑
i=1

DKL(X∗i , X̂i) =

n∑
i=1

p∑
j=1

X∗ij log
X∗ij

X̂ij

.

The following theorem gives an upper bound on the loss of the proposed estimator X∗ for the

exactly low-rank composition matrix X.

Theorem 1. (Exactly low-rank matrices) Under Conditions 1 and 2, suppose that N ≥ c0(n ∨

p) log(n+ p) for some universal constant c0 > 0, and the tuning parameter is selected as

λ = 2

(√
C1(n, p)p log(n+ p)

N
∨ C2(n, p)p log(n+ p)

N

)
, (1.8)

where C1(n, p) = 8
(
β2
R/n+ (1 ∨ βRp/n)/αX

)
and C2(n, p) = 4(1/αX + βR/(np)

1/2). If the compo-

sition X∗ has rank at most r, then, with probability at least 1 − 3(n + p)−1, the estimate X̂ in (1.3)

satisfies

1

n
D(X∗, X̂) ≤ C1

(
(p+ n)r log(n+ p)

N

)
, (1.9)

p

n
‖X̂−X∗‖2F ≤ C2

(
(p+ n)r log(n+ p)

N

)
, (1.10)

for some constants C1 and C2 which only depend on c0, αX , βX , αR and βR.
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Theorem 1 states the rate of convergence for both KL divergence and Frobenius loss in terms

of probability. With some additional mild assumptions, the same rate of convergence holds in

expectation.

Corollary 1. Under the same conditions mentioned in Theorem 1, if N further satisfies N ≤ c1(n+

p)2r log(n + p), then, there exists some constants C1 and C2 only depending on c0, c1, αX , βX , αr

and βR, such that

1

n
ED(X∗, X̂) ≤ C1

(p+ n)r log(n+ p)

N
,

p

n
E
∥∥∥X̂−X∗

∥∥∥2

F
≤ C2

(p+ n)r log(n+ p)

N
.

We also have the corresponding lower bound that shows that the bound in Theorem 1 essentially

cannot be improved.

Theorem 2. Consider the matrix classes

B0(r, α, β) =
{
X ∈ Rn×p

∣∣rank(X) ≤ r,X1p = 1n, α/p ≤ Xij ≤ β/p, for any (i, j) ∈ [n]× [p]
}
.

If 2 ≤ r ≤ p/2, there exists some constants C1 and C2 which only depend on αX , βX , αR, βR, such

that

inf
X̂

sup
X∗∈B0(r,αX ,βX)
αR≤Ri≤βR

1

n
ED(X∗, X̂) ≥ C1

(p+ n)r

N
,

inf
X̂

sup
X∗∈B0(r,αX ,βX)
αR≤Ri≤βR

p

n
E
∥∥∥X̂−X∗

∥∥∥2

F
≥ C2

(p+ n)r

N
.

In practice, the composition is typically approximately low-rank instead of exactly low-rank. In such

case, we formalize the class of approximately low-rank matrices via the lq-”ball” of matrices by

Bq (ρq) =

{
X ∈ Rn×p

∣∣∣∣ n∧p∑
i=1

|σi (X∗)|q ≤ ρq,

}
, (1.11)

where 0 ≤ q ≤ 1. In general, we obtain the following upper bound result.

Theorem 3. (Approximately low-rank matrix): Under Conditions 1 and 2, suppose that N ≥

c0(n ∨ p) log(n + p) for some constant c0 > 0, and the tuning parameter is selected as (1.8). If
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the composition X∗ further belongs to a class of approximately low-rank matrices, Then, with the

probability proceeding 1− 3(n+ p)−1, the estimator X̂ in (1.3) satisfies

1

n
D(X∗, X̂) ≤ C1ρq(p/n)

q
2

(
(n+ p) log(n+ p)

N

)1− q2
, (1.12)

p

n
‖X̂−X∗‖2F ≤ C2ρq(p/n)

q
2

(
(n+ p) log(n+ p)

N

)1− q2
, (1.13)

where constants C1 and C2 only depend on c0, αX , βX , αR and βR.

1.4.2. Estimation of Diversity Index

Various microbial diversity meaures are aften used to quantify the composition of the microbial

communities. Given X ∈ Rp that represents p-bacteria composition across n different individuals,

three widely used measurements of microbial community diversity include

• Shannon’s index Hsh(Xi) = −
∑p
j=1Xij logXij , 1 ≤ i ≤ n;

• Simpson’s index Hsp(Xi) =
∑p
j=1X

2
ij , 1 ≤ i ≤ n;

• Bray-Curtis index Hbc(Xi,Xj) =
∑p
k=1 |Xik −Xjk|/2, 1 ≤ i, j ≤ n.

Here {Hsh(Xi)}ni=1 and {Hsh(Xi)}ni=1 are two vectors in which each component measures the

richness and evenness of microbial community in an individual; {Hbc(Xi,Xj)}n,pi,j=1 is a matrix with

each entry ranging from [0, 1] that quantifies the dissimilarity between two individuals. Higher value

of Bray-Curtis index indicates that two microbial communities are less likely to share similar taxa.

The penalized likelihood estimator X̂ from (1.3) can be used to estimate Shannon’s, Simpson’s and

Bray-Curtis indices. The following Corollary provides the upper bound of these estimates.

Corollary 2. Under Conditions 1 and 2, suppose that N ≥ c0(n ∨ p) log(n + p) for some constant

c0, and the tuning parameter is selected by (1.8). If the composition X∗ has rank at most r, then

the estimate X̂ in (1.3) satisfies

1

n

n∑
i=1

(Hsh(X̂i)−Hsh(X∗i ))
2 = Op

(
(n+ p)(log p)2r log(n+ p)

N

)
,

1

n

n∑
i=1

(Hsp(X̂i)−Hsp(X∗i ))
2 = Op

(
(n+ p)r log(n+ p)

p2N

)
,

1

n2

∑
1≤i<j≤n

(Hbc(X̂i, X̂j)−Hbc(X∗i ,X
∗
j ))

2 = Op

(
(n+ p)r log(n+ p)

N

)
.

13



If the composition X∗ belongs the class of approximately low-rank matrices (1.11), then the estimate

X̂ in (1.3) satisfies

1

n

n∑
i=1

(Hsh(X̂i)−Hsh(X∗i ))
2 = Op

(
ρq(log p)2(p/n)

q
2

(
(n+ p) log(n+ p)

N

)1− q2
)
,

1

n

n∑
i=1

(Hsp(X̂i)−Hsp(X∗i ))
2 = Op

(
ρqp

q
2−2/n

q
2

(
(n+ p) log(n+ p)

N

)1− q2
)
,

1

n2

∑
1≤i<j≤n

(Hbc(X̂i, X̂j)−Hbc(X∗i ,X
∗
j ))

2 = Op

(
ρq(p/n)

q
2

(
(n+ p) log(n+ p)

N

)1− q2
)
.

1.5. Simulation studies

Simulations studies were performed to evaluate the proposed composition estimator X̂ and to com-

pare the results with the naive estimator X̂s that replaces zero count with the maximum rounding

error 0.5 (Aitchison, 2003) and transforms the counts into composition.

1.5.1. Simulation settings

Data (X∗,R) were generated as follows. The row probability vector {Ri}ni=1 was generated as

the normalization of i.i.d entries {Pi}ni=1 uniformly drawn from Unif[1, 10]: Ri = Pi/
∑n
k=1 Pk. In

order to generate the composition X∗, we first generated a rank-r matrix Z by Z = UVT , where

U ∈ Rn×r and V ∈ Rp×r. The components in U are the absolute values of i.i.d N(0, 1) normal

random variables. V = V1 + V2 is a spike matrix, where the diagonal elements of V1 are ones

and off-diagonal entries are equal to 1 with the probability 0.3 and equal to 0 with the probability

0.7, and the entries of V2 are independent N(0, 10−3) normal random variables. This procedure is

repeated until we obtain a strict positive matrix Z. The following two models are considered for r.

• Model 1 (Exactly low rank): r = 20.

• Model 2 (Approximately low rank): r = n ∧ p.

Then X∗ was obtained through the normalization X∗ij = Zij/
∑p
k=1 Zik, and count matrix W was

generated as Mult(RX∗, γnp), where γ ∈ {1, 2, 3, 4, 5} was considered. We set the sample size

and dimension as n = p = 50, 100, and 150, and repeated 50 simulations for each setting.
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1.5.2. Composition Estimate

We applied the penalized maximum likelihood approach to simulated data in both low rank and

approximately low rank cases. The tuning parameters (λ, αX) in each estimator were chosen by

five-fold cross-validation. For comparison, we calculated the naive estimators X̂s that replaced

zero counts by 0.5 and converted the counts into composition. Losses under squared Frobenius

norm ‖X̂−X∗‖2F and Kullback-Leibler divergence D(X∗, X̂) were used to measure the estimation

performance.

The simulation results for Model 1 and 2 are summarized in Figures 1.1 and 1.2 respectively. We

observed that the proposed estimator X̂ resulted in uniformly smaller errors thatn those based

on the naive estimator X̂s in all settings, demonstrating the superiority of the penalized likelihood

estimation. In addition, as expected, the difference in the loss of X̂ and that of X̂s got smaller as the

total counts increased since the number of zeros decreased as more read counts were observed.
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Figure 1.1: Frobenius norm error and Kullback-Leibler divergence between the estimated and the
true compositions for different numbers of taxa p in Model 1, where X̂ is the proposed estimator
and X̂s is the estimator with simple zero replacement.
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Figure 1.2: Frobenius norm error and Kullback-Leibler divergence between the estimated and the
true compositions for different numbers of taxa p in Model 2, where X̂ is the proposed estimator
and X̂s is the estimator with simple zero replacement.

1.5.3. Diversity Index Estimate

To evaluate the ability to estimate the individual-level diversity and dispersion, we also calculated

vector L2 norm losses of the Shannon index and Simpson index, as well as the Frobenius norm

error of Bray-Curtis index. The simulation results for both models are summarized in Figures 1.3

and 1.4. We see that the proposed estimator X̂ uniformly outperformed the naive estimators X̂s by

a large margin.
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Figure 1.3: Losses on different diversity indices between the estimated and the true compositions
for different numbers of observed taxa p in Model 1. Left panel: Shannon index; Middle pan-
el:Simpson index; Right panel: Bray-Curtis index
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Figure 1.4: Losses on different diversity indices between the estimated and the true compositions
for different numbers of observed taxa p in Model 2. Left panel: Shannon index; Middle pan-
el:Simpson index; Right panel: Bray-Curtis index

1.6. Gut Microbiome Data Analysis

The gut microbiome plays an important role in regulating metabolic functions and immune home-

ostasis and exerts a profound influence on human health and disease. We applied the proposed

method to a human gut microbiome dataset of a cross-sectional study of 98 healthy volunteers

at the University of Pennsylvania (Wu et al., 2011). DNA from stool samples of these individuals

were analyzed by 454/Roche pyrosequencing of 16S rRNA gene segments and yielded an aver-

age of 9265 reads per sample, with a standard deviation of 386, which led to identification of 3068

operational taxonomic units and 87 bacterial genera that were presented in at least one sample.

Figure 1.5 show the proportions of zeros observed versus the size library sizes, indicating that

many observed zeros are due to under sampling. It is therefore reasonably to assume that the true

compositions of these rare genera are not zero.
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Figure 1.5: Proportions of zeros observed versus the size library sizes, indicating that many ob-
served zeros are due to under sampling.
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Figure 1.6: Decay of singular values dii from the SVD decomposition of X = UDVT .

Figure 1.6 shows the decay of singular values dii from the SVD decomposition of X = UDVT ,

indicating that the approximate low-rank nature of the compositional matrix. We applied the pro-

posed penalized likelihood method to estimate the positive compositions and used five-fold cross-

validation to select the tuning parameters. As a comparison, we also replaced the count zeros by

0.5 to obtain the naive estimator X̂s.

To illustrate the result, we define M = {(i, j) ∈ [n] × [p] such that Wij = 0} as the set of zero

counts W. The top panel of Figure 2.1 shows the boxplots of the estimated compositions X̂ except

common genera Bacteroides, Blautia and Roseburia that have been observed in all individuals.

Overall, we observed that the observed non-zero compositions had an effects in estimating the

compositions with zeros counts and the estimated compositions in those with zero observations

(M) were almost always smaller than those with non-zero observations (Mc). However, results

from the simple zero replacement (X̂s) gave almost the same estimates for all samples/taxa inM.

The observed non-zero compositions almost had no effects in estimating the compositions with

zero observed counts.
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Figure 1.7: Boxplots of the estimated compositions for each genus for those with zero observations
(M) and those with non-zero observations (Mc). Top panel: proposed estimator X̂; Bottom panel:
estimator with zero-replacement X̂s.

1.7. Discussion

We have considered the problem of estimating the bacterial compositions based on sequencing

data, particularly for those taxa with zero observed counts, one of the first step in any microbiome

and metagenomic studies. We have developed a penalized likelihood estimation method for esti-

mating the mcirobial abundances for these taxa with observed zero count. The estimate effectively
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utilizes data across different individuals and across different taxa, which is in contrast to most of

the available methods and has the flavor of shrinkage estimate. The estimation procedure makes

two key assumptions. First, it assume that the true microbial compositions are always positive and

the zero counts observed in metagenomic sequencing are due to under sampling. Our empirical

data (Figure 1.5) seems to support this assumption. Second, it assumes that the true composition

matrix has approximately low-rank structure. Under these assumptions, we have proposed a pe-

nalized likelihood estimation with a nuclear norm penalty function in order to obtain better estimate

of the composition matrix. We have obtained the estimation upper bounds and also the min-max

lower bounds and showed that our estimator is almost optimal. We have additionally obtained the

upper bounds for the estimates of various commonly used diversity indices, including Shannon’s

index, Simpson’s index and Brey-Curtis index. The resulting composition estimates can facilitate

other downstream compositional data analysis, such as high dimensional regression analysis (Lin

et al., 2014) and covariance estimation based on the composition data (Cao, Lin, and Li, 2016).
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CHAPTER 2

LARGE COVARIANCE ESTIMATION FOR COMPOSITIONAL DATA VIA

COMPOSITION-ADJUSTED THRESHOLDING

In this chapter, we address the problem of covariance estimation for high-dimensional composition-

al data, and introduce a composition-adjusted thresholding (COAT) method under the assumption

that the basis covariance matrix is sparse. Our method is based on a decomposition relating the

compositional covariance to the basis covariance, which is approximately identifiable as the di-

mensionality tends to infinity. The resulting procedure can be viewed as thresholding the sample

centered log-ratio covariance matrix and hence is scalable for large covariance matrices. We rig-

orously characterize the identifiability of the covariance parameters, derive rates of convergence

under the spectral norm, and provide theoretical guarantees on support recovery. Simulation s-

tudies demonstrate that the COAT estimator outperforms some naive thresholding estimators that

ignore the unique features of compositional data. We apply the proposed method to the analysis of

a microbiome dataset in order to understand the dependence structure among bacterial taxa in the

human gut.

2.1. Introduction

Compositional data, which represent the proportions or fractions of a whole, arise naturally in a

wide range of applications; examples include geochemical compositions of rocks, household pat-

terns of expenditures, species compositions of biological communities, and topic compositions of

documents, among many others. This article is particularly motivated by the metagenomic analysis

of microbiome data. The human microbiome is the totality of all microbes at various body sites,

whose importance in human health and disease has increasingly been recognized. Recent studies

have revealed that microbiome composition varies based on diet, health, and the environment (The

Human Microbiome Project Consortium, 2012a), and may play a key role in complex diseases such

as obesity, atherosclerosis, and Crohn’s disease (Koeth et al., 2013; Lewis et al., 2015; Turnbaugh

et al., 2009).

With the development of next-generation sequencing technologies, it is now possible to survey
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the microbiome composition using direct DNA sequencing of either marker genes or the whole

metagenomes. After aligning these sequence reads to the reference microbial genomes, one can

quantify the relative abundances of microbial taxa. These sequencing-based microbiome studies,

however, only provide a relative, rather than absolute, measure of the abundances of community

components. The counts comprising these data (e.g., 16S rRNA gene reads or shotgun metage-

nomic reads) are set by the amount of genetic material extracted from the community or the se-

quencing depth, and analysis typically begins by normalizing the observed data by the total number

of counts. The resulting fractions thus fall into a class of high-dimensional compositional data that

we focus in this article. The high dimensionality refers to the fact that the number of taxa may be

comparable to or much larger than the sample size.

An important question in metagenomic studies is to understand the co-occurrence and co-exclusion

relationship between microbial taxa, which would provide valuable insights into the complex ecology

of microbial communities (Faust et al., 2012). Standard correlation analysis from the raw propor-

tions, however, can lead to spurious results due to the unit-sum constraint; the proportions tend to

be correlated even if the absolute abundances are independent. Such undesired effects should be

removed in an analysis in order to make valid inferences about the underlying biological processes.

The compositional effects are further magnified by the low diversity of microbiome data, that is, a

few taxa make up the overwhelming majority of the microbiome (Friedman and Alm, 2012).

Let X = (X1, . . . , Xp)
T be a composition of p components (taxa) satisfying the simplex constraint

Xj > 0, j = 1, . . . , p,

p∑
j=1

Xj = 1.

Owing to the difficulties arising from the simplex constraint, it has been a long-standing question

how to appropriately model, estimate, and interpret the covariance structure of compositional data.

The pioneering work of Aitchison, (1982, 2003) introduced several equivalent matrix specifications

of compositional covariance structures via the log-ratios of components. Statistical methods based

on these covariance models respect the unique features of compositional data and prove useful in

a variety of applications such as geochemical analysis. A potential disadvantage of these models,

however, is that they lack a direct interpretation in the usual sense of covariances and correlations;

as a result, it is unclear how to impose certain structures such as sparsity in high dimensions, which
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is crucial for our applications to microbiome data analysis.

Covariance matrix estimation is of fundamental importance in high-dimensional data analysis and

has attracted much recent interest. It is well known that the sample covariance matrix performs

poorly in high dimensions and regularization is thus indispensable. Bickel and Levina, (2008) and

El Karoui, (2008) introduced regularized estimators by hard thresholding for large covariance ma-

trices that satisfy certain notions of sparsity. Rothman, Levina, and Zhu, (2009) considered a more

general class of thresholding functions, and Cai and Liu, (2011) proposed adaptive thresholding

that adapts to the variability of individual entries. Exploiting a factor model structure, Fan, Fan,

and Lv, (2008) proposed a factor-based method for high-dimensional covariance matrix estimation.

Fan, Liao, and Mincheva, (2013) extended the work by considering a conditional sparsity structure

and developed a POET method by thresholding principal orthogonal complements.

In this article, we address the problem of covariance estimation for high-dimensional compositional

data. Let W = (W1, . . . ,Wp)
T with Wj > 0 for all j be a vector of latent variables, called the basis,

that generate the observed data via the normalization

Xj =
Wj∑p
i=1Wi

, j = 1, . . . , p. (2.1)

Estimating the covariance structure of W has traditionally been considered infeasible owing to the

apparent lack of identifiability. By exploring a decomposition relating the compositional covariance

to the basis covariance, we find, however, that the nonidentifiability vanishes asymptotically as

the dimensionality grows under certain sparsity assumptions. More specifically, define the basis

covariance matrix Ω0 = (ω0
ij)p×p by

ω0
ij = Cov(Yi, Yj), (2.2)

where Yj = logWj . Then Ω0 is approximately identifiable as long as it belongs to a class of large

sparse covariance matrices.

The somewhat surprising “blessing of dimensionality” allows us to develop a simple, two-step

method by first extracting a rank-2 component from the decomposition and then estimating the

sparse component Ω0 by thresholding the residual matrix. The resulting procedure can equiva-

lently be viewed as thresholding the sample centered log-ratio covariance matrix, and hence is
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optimization-free and scalable for large covariance matrices. We call our method composition-

adjusted thresholding (COAT), which removes the “coat” of compositional effects from the covari-

ance structure. We derive rates of convergence under the spectral norm and provide theoretical

guarantees on support recovery. Simulation studies demonstrate that the COAT estimator out-

performs some naive thresholding estimators that ignore the unique features of compositional data.

We illustrate our method by analyzing a microbiome dataset in order to understand the dependence

structure among bacterial taxa in the human gut.

The covariance relationship, which was due to Aitchison, (2003 sec. 4.11), has recently been ex-

ploited to develop algorithms for inferring correlation networks from metagenomic data (Ban, An,

and Jiang, 2015; Fang et al., 2015; Friedman and Alm, 2012). Our contributions here are to turn

the idea into a principled approach to sparse covariance matrix estimation and provide statistical

insights into the issue of identifiability and the impacts of dimensionality. Our method also bears

some resemblance to the POET method proposed by Fan, Liao, and Mincheva, (2013) in that un-

derlying both methods is a low-rank plus sparse matrix decomposition. The rank-2 component

in our method, however, arises from the covariance structure of compositional data rather than a

factor model assumption. As a result, it can be obtained by simple algebraic operations without

computing the principal components.

The rest of the article is organized as follows. Section 2 reviews a covariance relationship and

addresses the issue of identifiability. Section 3 introduces the COAT methodology. Section 4 inves-

tigates the theoretical properties of the COAT estimator in terms of convergence rates and support

recovery. Simulation studies and an application to human gut microbiome data are presented in

Sections 5 and 6, respectively. We conclude the article with some discussion in Section 7 and

relegate all proofs to the Appendix.

2.2. Identifiability of the Covariance Model

We first introduce some notation. Denote by ‖ · ‖1, ‖ · ‖2, ‖ · ‖F , and ‖ · ‖max the matrix L1-

norm, spectral norm, Frobenius norm, and entrywise L∞-norm, defined for a matrix A = (aij)

by ‖A‖1 = maxj
∑
i |aij |, ‖A‖2 =

√
λmax(ATA), ‖A‖F =

√∑
i,j a

2
ij , and ‖A‖max = maxi,j |aij |,

where λmax(·) denotes the largest eigenvalue.
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In the latent variable covariance model (2.1) and (2.2), the basis covariance matrix Ω0 is the param-

eter of interest. One of the matrix specifications of compositional covariance structures introduced

by Aitchison, (2003) is the variation matrix T0 = (τ0
ij)p×p defined by

τ0
ij = Var(log(Xi/Xj)). (2.3)

In view of the relationship (2.1), we can decompose τ0
ij as

τ0
ij = Var(logWi − logWj)

= Var(Yi) + Var(Yj)− 2 Cov(Yi, Yj)

= ω0
ii + ω0

jj − 2ω0
ij , (2.4)

or in matrix form,

T0 = ω01
T + 1ωT0 − 2Ω0, (2.5)

where ω0 = (ω0
11, . . . , ω

0
pp)

T and 1 = (1, . . . , 1)T . Corresponding to the many-to-one relationship

between bases and compositions, the basis covariance matrix Ω0 is unidentifiable from the de-

composition (2.5), since ω01
T + 1ωT0 and Ω0 are in general not orthogonal to each other (with

respect to the usual Euclidean inner product). In fact, using the centered log-ratio covariance ma-

trix Γ0 = (γ0
ij)p×p defined by

γ0
ij = Cov{log(Xi/g(X)), log(Xj/g(X))},

where g(x) = (
∏p
j=1 xj)

1/p is the geometric mean of a vector x = (x1, . . . , xp)
T , we can similarly

write

τ0
ij = Var{log(Xi/g(X))− log(Xj/g(X))}

= Var{log(Xi/g(X))}+ Var{log(Xj/g(X))} − 2 Cov{log(Xi/g(X), log(Xj/g(X))}

= γ0
ii + γ0

jj − 2γ0
ij ,

or in matrix form,

T0 = γ01
T + 1γT0 − 2Γ0, (2.6)
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where γ0 = (γ0
11, . . . , γ

0
pp)

T and 1 = (1, . . . , 1)T . Unlike (2.5), the following proposition shows that

(2.6) is an orthogonal decomposition and hence the components γ01
T+1γT0 and Γ0 are identifiable.

In addition, by comparing the decompositions (2.5) and (2.6), we can bound the difference between

Ω0 and its identifiable counterpart Γ0 as follows.

Proposition 3. The components γ01
T + 1γT0 and Γ0 in the decomposition (2.6) are orthogonal to

each other. Moreover, for the covariance parameters Ω0 and Γ0 in the decompositions (2.5) and

(2.6),

‖Ω0 − Γ0‖max ≤ 3p−1‖Ω0‖1.

Proposition 3 entails that the covariance parameter Ω0 is approximately identifiable as long as

‖Ω0‖1 = o(p). In particular, suppose that Ω0 belongs to a class of sparse covariance matrices

considered by Bickel and Levina, (2008),

U(q, s0(p),M) ≡

Ω : Ω � 0,max
j
ωjj ≤M,max

i

p∑
j=1

|ωij |q ≤ s0(p)

 , (2.7)

where 0 ≤ q < 1 and Ω � 0 denotes that Ω is positive definite. Then

‖Ω0‖1 = max
i

p∑
j=1

|ω0
ij |1−q|ω0

ij |q ≤ max
i

p∑
j=1

(ω0
iiω

0
jj)

(1−q)/2|ω0
ij |q ≤M1−qs0(p),

and hence the parameters Ω0 and Γ0 are asymptotically indistinguishable when s0(p) = o(p). This

allows us to use Γ0 as a proxy for Ω0 and greatly facilitates the development of new methodology

and associated theory. The intuition behind the approximate identifiability under the sparsity as-

sumption is that the rank-2 component ω01
T + 1ωT0 represents a global effect that spreads across

all rows and columns, while the sparse component Ω0 represents a local effect that is confined to

individual entries.

Also of interest is the exact identifiability of Ω0 over L0-balls, which has been studied by Fang et al.,

(2015) and Ban, An, and Jiang, (2015). The following result provides a sufficient and necessary

condition for the exact identifiability of Ω0 by confining it to an L0-ball.
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Proposition 4. Suppose that Ω0 belongs to the L0-ball

B0(se(p)) ≡

Ω :
∑

(i,j) : i<j

I(ωij 6= 0) ≤ se(p)

 ,

where p ≥ 5. Then there exist no two values of Ω0 that correspond to the same T0 in (2.5) if and

only if se(p) < (p− 1)/2.

A counterexample is provided in the proof of Proposition 4 to show that the sparsity conditions in

Fang et al., (2015) and Ban, An, and Jiang, (2015), which are both at the order of O(p2), do not

suffice. The identifiability condition in Proposition 4 essentially requires the average degree of the

correlation network to be less than 1, which is too restrictive to be useful in practice. This illustrates

the importance and necessity of introducing the notion of approximate identifiability.

2.3. A Sparse Covariance Estimator for Compositional Data

Suppose that (Wk,Xk), k = 1, . . . , n, are independent copies of (W,X), where the compositions

Xk = (Xk1, . . . , Xkp)
T are observed and the bases Wk = (Wk1, . . . ,Wkp)

T are latent. In Section

3.1, we rely on the decompositions (2.5) and (2.6) and Proposition 3 to develop an estimator of Ω0,

and in Section 3.2 discuss the selection of the tuning parameter.

2.3.1. Composition-Adjusted Thresholding

In view of Proposition 3, we wish to estimate the covariance parameter Ω0 via the proxy Γ0. To

this end, we first construct an empirical estimate of Γ0 and then apply adaptive thresholding to the

estimate.

There are two equivalent ways to form the estimate of Γ0. Motivated by the decomposition (2.6),

one can start with the sample counterpart T̂ = (τ̂ij)p×p of T0 defined by

τ̂ij =
1

n

n∑
k=1

(τkij − τ̄ij)2,

where τkij = log(Xki/Xkj) and τ̄ij = n−1
∑n
k=1 τkij . A rank-2 component α̂1T + 1α̂T with α̂ =

(α̂1, . . . , α̂p)
T can be extracted from the decomposition (2.6) by projecting T̂ onto the subspace
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A ≡ {α1T + 1αT : α ∈ Rp}, which is given by

α̂i = τ̂i· −
1

2
τ̂··,

where τ̂i· = p−1
∑p
j=1 τ̂ij and τ̂·· = p−2

∑p
i,j=1 τ̂ij . The residual matrix Γ̂ = −(T̂ − α̂1T − 1α̂T )/2,

with entries

γ̂ij = −1

2
(τ̂ij − α̂i − α̂j) = −1

2
(τ̂ij − τ̂i· − τ̂j· + τ̂··),

is then an estimate of Γ0. Alternatively, Γ̂ can be obtained directly as the sample counterpart of Γ0

through the expression

γ̂ij =
1

n

n∑
k=1

(γki − γ̄i)(γkj − γ̄j), (2.8)

where γkj = log(Xkj/g(Xk)) and γ̄j = n−1
∑n
k=1 γkj .

Now applying adaptive thresholding to Γ̂, we define the composition-adjusted thresholding (COAT)

estimator

Ω̂ = (ω̂ij)p×p with ω̂ij = Sλij (γ̂ij), (2.9)

where Sλ(·) is a general thresholding function and λij > 0 are entry-dependent thresholds.

In this article, we consider a class of general thresholding functions Sλ(·) that satisfy the following

conditions:

(i) Sλ(z) = 0 for |z| ≤ λ;

(ii) |Sλ(z)− z| ≤ λ for all z ∈ R.

These two conditions were assumed by Rothman, Levina, and Zhu, (2009) and Cai and Liu, (2011)

along with another condition that is not required in our analysis. Examples of thresholding functions

belonging to this class include the hard thresholding rule Sλ(z) = zI(|z| ≥ λ), the soft thresholding

rule Sλ(z) = sgn(z)(|z| − λ)+, and the adaptive lasso rule Sλ(z) = z(1− |λ/z|η)+ for η ≥ 1.

The performance of the COAT estimator depends critically on the choice of thresholds. Using entry-

adaptive thresholds may in general improve the performance over applying a universal threshold.
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To derive a data-driven choice of λij , define

θij = Var{(Yi − µi)(Yj − µj)},

where µj = EYj . We take λij to be of the form

λij = λ

√
θ̂ij , (2.10)

where θ̂ij are estimates of θij , and λ > 0 is a tuning parameter to be chosen, for example, by

cross-validation. We rewrite (2.8) as γ̂ij = n−1
∑n
k=1 γkij , where γkij = (γki − γ̄i)(γkj − γ̄j). Then

θij can be estimated by

θ̂ij =
1

n

n∑
k=1

(γkij − γ̂ij)2.

2.3.2. Tuning Parameter Selection

The thresholds defined by (2.10) depend on the tuning parameter λ, which can be chosen through

V -fold cross-validation. Denote by Ω̂
(−v)

(λ) the COAT estimate based on the training data exclud-

ing the vth fold, and Γ̂v the residual matrix (or the sample centered log-ratio covariance matrix)

based on the test data including only the vth fold. We choose the optimal value of λ that minimizes

the cross-validation error

CV(λ) =
1

V

V∑
v=1

‖Ω̂
(−v)

(λ)− Γ̂
(v)
‖2F .

With the optimal λ, we then compute the COAT estimate based on the full dataset as our final

estimate. When the positive definiteness of the covariance estimate in finite samples is required

for interpretation, we follow the approach of Fan, Liao, and Mincheva, (2013) and choose λ in the

range where the minimum eigenvalue of the COAT estimate is positive.

2.4. Theoretical Properties

In this section, we investigate the asymptotic properties of the COAT estimator. As a distinguishing

feature of our theoretical analysis, we assume neither the exact identifiability of the parameters

nor that the degree of (approximate) identifiability is dominated by the statistical error. Instead, the

degree of identifiability enters our analysis and shows up in the resulting rate of convergence. Such
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theoretical analysis is rare in the literature, but is extremely relevant for latent variable models in

the presence of nonidentifiability and is of theoretical interest in its own right. We introduce our

assumptions in Section 4.1, and present our main results on rates of convergence and support

recovery in Section 4.2.

2.4.1. Assumptions

Recall that Yj = logWj , µj = EYj , and θij = Var{(Yi − µi)(Yj − µj)}, and define Ykj = logWkj .

Without loss of generality, assume µj = 0 for all j throughout this section. We need to impose the

following moment conditions on the log-basis Y = (Y1, . . . , Yp)
T .

Condition 3. There exists a constant α > 0 such that maxj E exp(αY 2
j ) ≤ 2.

Condition 4. The basis covariance matrix Ω0 belongs to the class U(q, s0(p),M) defined by (2.7),

where 0 ≤ q < 1, s0(p) = o(p), and log p = o(n1/5).

Condition 5. There exists a constant τ > 0 such that mini,j θij ≥ τ .

Condition 6. There exists a sequence s1(p) = o(p) such that

max
i,j,`

∣∣∣∣∣
p∑

m=1

EYiYjY`Ym

∣∣∣∣∣ ≤ s1(p).

Conditions 1–3 are similar to those commonly assumed in the covariance estimation literature;

see, for example, Cai and Liu, (2011). Condition 3 requires that the variables Yjs be uniformly sub-

Gaussian; the definition we use here is among several equivalent ways of defining sub-Gaussianity

(Boucheron, Lugosi, and Massart, 2013 sec. 2.3), and is most convenient for our technical analysis.

Condition 4 imposes some restrictions on the dimensionality and sparsity of the basis covariance

matrix Ω0. It is worth mentioning that the sparsity level condition s0 = o(p) is so weak that it suffices

to guarantee only approximate identifiability but allows the degree of nonidentifiability to be large

relative to the statistical error. Condition 5 is essential for methods based on adaptive thresholding.

Condition 6 arises from identifiability considerations in estimating the variances θij . In particular, if

Y is multivariate normal, then Condition 6 is implied by the assumptions Ω0 ∈ U(q, s0(p),M) and

s0(p) = o(p) in Condition 4, since from Isserlis’ theorem (Isserlis, 1918) we have

max
i,j,`

∣∣∣∣∣
p∑

m=1

EYiYjY`Ym

∣∣∣∣∣ ≤ max
i,j,`

p∑
m=1

(
|ω0
ij ||ω0

`m|+ |ω0
i`||ω0

jm|+ |ω0
im||ω0

j`|
)
≤ 3M2−qs0(p).
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2.4.2. Main Results

We are now in a position to state our main results. The following theorem gives the rate of conver-

gence under the spectral norm for the COAT estimator.

Theorem 4 (Rate of convergence). Under Conditions 3–6, if the tuning parameter λ in (2.10) is

chosen to be

λ = C1

√
log p

n
+ C2

s0(p)

p
(2.11)

for sufficiently large C1, C2 > 0, then the COAT estimator Ω̂ in (2.9) satisfies

‖Ω̂−Ω0‖2 = Op

s0(p)

(√
log p

n
+
s0(p)

p

)1−q


uniformly on U(q, s0(p),M).

The rate of convergence provided by Theorem 4 exhibits an interesting decomposition: the ter-

m s0(p){(log p)/n}(1−q)/2 represents the estimation error due to estimating Γ0, while the term

s0(p)(s0(p)/p)1−q accounts for the approximation error due to using Γ0 as a proxy for Ω0. In particu-

lar, if the approximation error is dominated by the estimation error, then the COAT estimator attains

the minimax optimal rate under the spectral norm over U(q, s0(p),M) (Cai and Zhou, 2012). It is

important to note that the dimensionality p appears in both terms where it plays opposite roles. We

observe a “curse of dimensionality” in the first term, where the growth of dimensionality contributes

a logarithmic factor to the estimation error. In contrast, a “blessing of dimensionality” is reflected by

the second term in that a diverging dimensionality shrinks the approximation error toward zero at a

power rate.

The insights gained from Theorem 4 have important implications for compositional data analysis.

In the analysis of many compositional datasets, the dimensionality often depends on the taxonomic

level to be examined. For example, in metagenomic studies, the dimensionality may range from

only a few taxa at the phylum level to thousands of taxa at the operational taxonomic unit (OTU)

level. Suppose, for simplicity, that the magnitudes of correlation signals are of about the same

order across different taxonomic levels. Then Theorem 4 indicates a tradeoff between an accu-

rate estimation of the covariance structure with low dimensionality and a sensible interpretation in

terms of the basis components with high dimensionality. This tradeoff thus suggests the need to

31



analyze compositional data at relatively finer taxonomic levels when a latent variable interpretation

is desired.

The proof of Theorem 4 relies on a series of concentration inequalities that take the approximation

error term into account, which can be found in the Appendix. As a consequence of these inequali-

ties, we obtain the following result regarding the support recovery property of the COAT estimator.

Here the support of Ω0 refers to the set of all indices (i, j) with ω0
ij 6= 0.

Theorem 5 (Support recovery). Under Conditions 3–6, if the tuning parameter λ in (2.10) is chosen

as in (2.11), then the COAT estimator Ω̂ in (2.9) satisfies

P
(
ω̂ij = 0 for all (i, j) with ω0

ij = 0
)
→ 1. (2.12)

Moreover, if in addition

min
(i,j) : ω0

ij 6=0
|ω0
ij |/
√
θij ≥ Cλ (2.13)

for some constant C > 3/2, then

P
(
sgn(ω̂ij) = sgn(ω0

ij) for all (i, j)
)
→ 1. (2.14)

Theorem 5 parallels the support recovery results in Rothman, Levina, and Zhu, (2009) and Cai and

Liu, (2011). However, owing to the extra term s0(p)/p in the expression of λ, the assumption (2.13)

requires in addition that no correlation signals fall below the approximation error. In other words,

exact support recovery will break down if any correlation signal is confounded by the compositional

effect.

2.5. Simulation Studies

We conducted simulation studies to compare the numerical performance of the COAT estimator

Ω̂ with that of the oracle thresholding estimator Ω̂o, which knew the latent basis components and

applied the thresholding procedure to the sample covariance matrix of the log-basis Y. We also

include in our comparison two naive thresholding estimators Ω̂c and Ω̂l, which are based on the

sample covariance matrices of the composition X and its logarithm log X, respectively. Note that

Ω̂o is the ideal estimator that the COAT estimator attempts to mimic, whereas both Ω̂c and Ω̂l ignore
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the unique features of compositional data and thus are expected to perform poorly.

2.5.1. Simulation Settings

The data (Wk,Xk), k = 1, . . . , n, were generated as follows. We first generated Yk in two different

ways:

(i) Yk are independent from the multivariate normal distribution Np(µ,Ω0);

(ii) Yk = µ + FUk/
√

10, where FFT = Ω0 and the components of Uk are independent gamma

variables with shape parameter 10 and scale parameter 1, so that Var(Yk) = Ω0. Here the

matrix F is obtained by computing the singular value decomposition Ω0 = QSQT and letting

F = QS1/2.

Then Wk = (Wk1, . . . ,Wkp)
T and Xk = (Xk1, . . . , Xkp)

T were obtained through the transforma-

tions Wkj = eYkj and Xkj = Wkj/
∑p
i=1Wki, j = 1, . . . , p. Hence, in Case (i), Wk and Xk follow

multivariate log-normal and logistic normal distributions (Aitchison and Shen, 1980), respective-

ly; the distributions of Wk and Xk in Case (ii) can similarly be viewed as a type of multivariate

log-gamma and logistic-gamma distributions.

In both cases, we took the the components of µ randomly from the uniform distribution on [0, 10],

in order to reflect the fact that compositional data arising from metagenomic studies are often

heterogeneous. The following two models for the covariance matrix Ω0 were considered:

• Model 1 (Identity covariance): Ω0 = Ip.

• Model 2 (Sparse covariance): Ω0 = diag(A1,A2), where A1 = B + εIp1 , A2 = 4Ip2 ,

p1 = b2√pc, p2 = p − p1, and B is a symmetric matrix whose lower triangular entries are

independent from the uniform distribution on [−1,−0.5]∪ [0.5, 1] with probability 0.2 and equal

to 0 with probability 0.8. We set ε = max(−λmin(B), 0) + 0.01 to ensure that A1 is positive

definite, where λmin(·) denotes the smallest eigenvalue.

Model 1 is an extreme but illustrative case intended for comparing the distributions of spurious

correlations under different transformations. The setting of Model 2 is typical in the covariance

estimation literature and similar to that in Cai and Liu, (2011). We set the sample size n = 100 and

the dimension p = 50, 100, and 200, and repeated 100 simulations for each setting.
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Figure 2.1: Boxplots of sample correlations with simulated data under different transformations in
Model 1.

2.5.2. Spurious Correlations

The boxplots of sample correlations with simulated data under different transformations in Model

1 are shown in Figure 2.1. Clearly, the sample centered log-ratio (clr) correlations are centered

around zero and have a similar distribution to that of the sample correlations of Y; the resemblance

tends to increase as the dimension p grows. This trend is consistent with Proposition 3 and provides

numerical evidence for the validity of the centered log-ratio covariance matrix Γ0 as a proxy for Ω0.

In fact, from the proof of Proposition 3 we have, when Ω0 = Ip,

‖Ω0 − Γ0‖max = max
i,j
|ω0
i· + ω0

j· − ω0
··| = p−1.

In contrast, the phenomenon of spurious correlations is observed on both log X and X. The sample

correlations of log X exhibit a severe upward bias, while the sample correlations of X contain many

outliers that would be detected as signals by a thresholding procedure with threshold level close

to 1. Moreover, the spurious correlations seem to become worse with gamma-related distributions

where the components of the composition have more heterogeneous means.
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2.5.3. Performance Comparisons

We applied the COAT method with hard and soft thresholding rules to simulated data in Model 2.

For comparison, we also applied the thresholding procedure to the sample covariance matrices of

Y, log X, and X, resulting in the estimators Ω̂o, Ω̂l, and Ω̂c, respectively. The tuning parameter

λ in each thresholding estimator was chosen by tenfold cross-validation. Losses under the matrix

L1-norm, spectral norm, and Frobenius norm were used to measure the estimation performance,

while the true positive rate and false positive rate were employed to assess the quality of support

recovery.

The simulation results for Model 2 with normal- and gamma-related distributions are summarized

in Tables 2.1 and 2.2, respectively. We see that the COAT estimator Ω̂ performs almost equally well

as the ideal estimator Ω̂o, and outperforms the naive thresholding estimators Ω̂l and Ω̂c by a large

margin. In particular, the estimation losses of Ω̂l are disastrously large in the gamma setting, in

agreement with the severe bias observed in Figure 2.1. The estimation losses of Ω̂c do not change

much across different thresholding rules and distributions, since all entries of the estimate are very

small relative to the true values. Both Ω̂l and Ω̂c show inferior performance in terms of true and

false positive rates, indicating that they are not model selection consistent. Comparisons between

hard and soft thresholding rules suggest that the former is more conservative in selecting false

positives and results in a more parsimonious model, whereas the latter strikes a balance between

true and false positives due to the shrinkage effect.

To further compare the support recovery performance without selecting a threshold level, we plot

the receiver operating characteristic (ROC) curves for all methods in Figure 2.2. Note that hard

and soft thresholding rules lead to the same ROC curve for each method. We observe that the

ROC curves for Ω̂ and Ω̂o are almost indistinguishable and uniformly dominate those for Ω̂l and

Ω̂c, demonstrating the superiority of the COAT method. Of the two naive thresholding estimators,

Ω̂l tends to outperform Ω̂c when the threshold level is high, since the former is less influenced by

the high spurious correlations as reflected in Figure 2.1.
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Figure 2.2: ROC curves for four methods in Model 2 with normal-related distribution (top panel) and
gamma-related distribution (bottom panel).
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2.6. Gut Microbiome Data Analysis

The gut microbiome plays a critical role in energy extraction from the diet and interacts with the

immune system to exert a profound influence on human health and disease. Despite an emerging

interest in characterizing the ecology of human-associated microbial communities, the complex

interactions among microbial taxa remain poorly understood (Coyte, Schluter, and Foster, 2015).

We now illustrate the proposed method by applying it to a human gut microbiome dataset described

by Wu et al., (2011), which was collected from a cross-sectional study of 98 healthy individuals

at the University of Pennsylvania. DNA from stool samples of these subjects were analyzed by

454/Roche pyrosequencing of 16S rRNA gene segments, resulting in an average of 9265 reads

per sample, with a standard deviation of 3864. Taxonomic assignment yielded 3068 operational

taxonomic units, which were further combined into 87 genera that appeared in at least one sample.

Demographic information, including body mass index (BMI), was also collected from the subjects.

We are interested in identifying and comparing the correlation structures among bacterial genera

between lean and obese subjects. We therefore divided the dataset into a lean group (BMI <

25, n = 63) and an obese group (BMI ≥ 25, n = 35), and focused on the p = 40 bacterial

genera that appeared in at least four samples in each group. The count data were transformed into

compositions after zero counts were replaced by 0.5.

We applied the COAT method with the soft thresholding rule to each group, and used tenfold cross-

validation to select the tuning parameter. The resulting estimate was represented by a correlation

network among the bacterial genera with each edge representing a nonzero correlation. To assess

the stability of support recovery, we further generated 100 bootstrap samples for each group and

repeated the thresholding procedure on each sample. The stability of the correlation network was

measured by the average proportion of edges reproduced by each bootstrap replicate. Finally, we

retained only the edges in the correlation network that were reproduced in at least 80 bootstrap

replicates. The numbers of positive and negative correlations and the stability of correlation net-

works are reported in Table 2.3; the results for the two naive thresholding estimators Ω̂l and Ω̂c are

also included for comparison. We see that the COAT method achieves the highest stability among

the three methods and has the most edges passing the stability test. The correlation network iden-

tified by Ω̂l has substantially fewer negative correlations than the other two methods, which is likely

due to the severe upward bias observed in Figure 2.1. The correlation network identified by Ω̂c is
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Table 2.3: Numbers of positive and negative correlations and stability of correlation networks for
three methods applied to the gut microbiome data

Lean Obese

Ω̂ Ω̂l Ω̂c Ω̂ Ω̂l Ω̂c

Positive correlations 111 108 119 41 34 31
Negative correlations 134 55 95 55 11 43
Network stability 0.83 0.68 0.67 0.87 0.62 0.54

the least stable.

The correlation networks identified by the COAT method for the two groups are displayed in Fig-

ure 2.3. Clearly, the networks for the lean and obese groups show markedly different architecture,

indicating that the obese microbiome is less modular with less complex interactions between the

modules. This phenomenon has been demonstrated by previous studies and is possibly due to

adaptation of the microbiome to low-diversity environments (Greenblum, Turnbaugh, and Boren-

stein, 2012). Table 2.3 and Figure 2.3 also suggest that the gut microbial network tends to contain

more competitive (negative) interactions than cooperative (positive) ones, which seems consistent

with the recent finding that the ecological stability of the gut microbiome can be attributed to the

benefits from limiting positive feedbacks and dampening cooperative networks (Coyte, Schluter,

and Foster, 2015).

A closer inspection of the correlation networks identifies Bacteroides and Prevotella as two key

genera of the gut microbiome. The abundances of these two genera are well known to distin-

guish two gut microbial enterotypes, which are strongly associated with long-term dietary patterns

(Arumugam et al., 2011; Wu et al., 2011). The negative correlations between Bacteroides and

Prevotella (−0.404 in the lean group and −0.296 in the obese group) are well explained by the

diet-dependent enterotypes and the within-body separation of the two genera (Jordán et al., 2015).

Moreover, recent studies have suggested several keystone species belonging to the genus Bac-

teroides, through which the structure of gut microbial communities may be influenced by small

perturbations (Fisher and Mehta, 2014). Also, the Firmicutes-enriched microbiome has been found

to hold greater metabolic potential than the Bacteroidetes-enriched microbiome for more efficient

energy harvest from the diet (Turnbaugh et al., 2006). Figure 2.3 seems to support these findings,

in view of the central position of Bacteroides in the networks and its strong correlations with a few
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Figure 2.3: Correlation networks identified by the COAT method for the lean and obese groups
in the gut microbiome data. Positive and negative correlations are displayed in green and red,
respectively. The thickness of edges indicates the magnitude of correlations.
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genera belonging to the Firmicutes. Such patterns, however, are less clearly seen in the correlation

networks identified by the other two methods.

2.7. Discussion

Understanding the dependence structure among microbial taxa within a community, including co-

occurrence and co-exclusion relationships between microbial taxa, is an important problem in mi-

crobiome research. Such structures provide biological insights into the community dynamics and

factors that change the community structures. To overcome the difficulties arising from the unit-sum

constraint of the observed compositional data, we have developed a COAT method to estimate the

sparse covariance matrix of the latent log-basis components. Our method is based on a decom-

position of the variation matrix into a rank-2 component and a sparse component. The resulting

procedure is equivalent to thresholding the sample centered log-ratio covariance matrix, and thus

is optimization-free and scalable for high-dimensional data.

Our simulation results demonstrate that the COAT method performs almost as well as the ora-

cle thresholding estimator that knew the latent basis components, and outperforms some naive

thresholding estimators by a large margin. These improvements are more pronounced when the

basis components have a skewed distribution, as is often observed in microbiome studies. In the

application to gut microbiome data, the COAT method leads to more stable and biologically more

interpretable results for comparing the dependence structures of lean and obese microbiomes.

We have provided conditions for the approximate and exact identifiability of the covariance param-

eters, and have established rates of convergence and support recovery guarantees for the COAT

estimator. The rate of convergence includes an extra term of Op(s0(p)(s0(p)/p)1−q) in addition to

the usual minimax optimal rate of convergence for sparse covariance estimation. The extra term

represents an approximation error due to using Γ0 as a proxy for Ω0, which vanishes under mild

assumptions as the dimensionality increases.

The proposed methodology may be extended in several ways. First, it would be possible to develop

a joint optimization procedure based on the decomposition (2.5). For example, one may consider
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the regularized estimator

Ω̂reg = arg min
Ω
{‖T̂− ω1T − 1ωT + 2Ω‖2F + Pλ(Ω)},

where ω = diag(Ω) and Pλ(·) is a sparsity-inducing penalty function. The COAT estimator can

be viewed as a one-step approximation to Ω̂reg with appropriately chosen penalty function and

initial value Ω̂ = 0. Solving the full optimization problem is computationally more expensive but

is expected to improve on the performance of the COAT estimator. Another worthwhile extension

would be to deal with zero counts directly. One may, in principle, combine the ideas presented

here with models that account for sampling and structural zeros. The issues of identifiability and

computational feasibility are the major concerns with such extensions.

43



CHAPTER 3

TWO-SAMPLE MEAN TESTS FOR HIGH-DIMENSIONAL COMPOSITIONAL DATA

Motivated by microbiome and metagenomic research, in this chapter, we consider a two-sample

testing problem for high-dimensional compositional data and formulate a testable hypothesis of

compositional equivalence for the means of two latent log-basis vectors. We propose a test for

such compositional equivalence through the centered log-ratio transformation of the composition-

s. The asymptotic null distribution of the test statistic is derived and the power of the test against

sparse alternatives is studied. A modified test for paired observations is also developed. Simula-

tions show that the proposed tests can be significantly more powerful than existing tests that are

applied to the raw and log-transformed compositional data. The usefulness of the proposed tests

is illustrated by applications to test for differences in gut microbiome composition between lean and

obese individuals and changes between different time points during treatment in Crohn’s disease

patients.

Compositional data, which belong to the unit simplex sample space, are ubiquitous in many sci-

entific disciplines such as geology, economics, genomics, and machine learning. This paper is

motivated by microbiome and metagenomic research, where the relative abundances of hundreds

to thousands of bacterial taxa on a few tens to hundreds of individuals are available for analysis

(The Human Microbiome Project Consortium, 2012b). Due to varying amounts of DNA generating

materials across different samples, sequencing read counts are often normalized to relative abun-

dances; the resulting data are therefore compositional (Li, 2015). One fundamental problem in mi-

crobiome data analysis is to test whether two populations have the same microbiome composition,

which can be viewed as a two-sample mean testing problem for high-dimensional compositional

data. Owing to the key feature that the components of a composition must sum to one, applying

standard multivariate statistical methods intended for unconstrained data directly to compositional

data may result in inappropriate or misleading inferences (Aitchison, 2003).

Various methods for compositional data analysis have been developed in the literature since the

seminal work of Aitchison, 1982. Most existing methods for the two-sample mean testing problem,

however, deal only with the low-dimensional setting where the dimensionality is fixed or much s-
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maller than the sample size; see, e.g., the generalized likelihood ratio tests discussed in Aitchison,

(2003 §7.5). In this paper, we consider the two-sample mean testing problem for high-dimensional

compositional data, where compositions in the (p−1)-dimensional unit simplex Sp−1 are thought of

as arising from latent basis vectors in the p-dimensional positive orthant Rp+. In microbiome studies,

the basis components may represent the true abundances of bacterial taxa in a microbial commu-

nity such as the gut of a healthy individual (Li, 2015). To circumvent the nonidentifiability issue

associated with the basis vectors, we formulate a testable hypothesis of compositional equivalence

for the means of two log-basis vectors. We then propose a test for such compositional equivalence

through the centered log-ratio transformation of the compositions. The proposed test thus honors

the principle of scale invariance, which is crucial for compositional data analysis. We emphasize

that we are adopting the extrinsic analysis approach, which leads to biologically meaningful inter-

pretations and is in contrast to intrinsic analysis where no such basis exists and interest focuses on

the composition itself (Aitchison, 1982).

Development of tests for the equality of two population means in high-dimensional settings has

received much attention recently; see, e.g., Bai and Saranadasa, (1996), Srivastava, (2009), S-

rivastava, (2009), Chen and Qin, (2010) and Cai, Liu, and Xia, (2014). These high-dimensional

tests, however, are not directly applicable to compositional data because the required regularity

conditions are generally not met. For example, the covariance matrix of compositional variables

is singular, thereby violating the usual assumptions on the eigenvalues of the covariance matrix

such as Condition 1 in Cai, Liu, and Xia, (2014). Our assumptions are instead made on the latent

log-basis vectors, which are free of the simplex constraint. We show that, under mild conditions, the

centered log-ratio transformed variables satisfy certain desired properties, which in turn guarantee

the validity of the proposed test. The asymptotic null distribution of the test statistic is then derived

and the power of the test against sparse alternatives is investigated.

The proposed test is further extended to the setting with paired observations or repeatedly mea-

sured compositions. Extensive simulations and applications to two microbiome datasets are pro-

vided to illustrate the proposed methodology. All proofs are given in the Appendix.
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3.1. A testable hypothesis of compositional equivalence

Denote by X(k) = (X
(k)
1 , . . . , X

(k)
nk )T the observed nk × p data matrices for group k (k = 1, 2),

where X(k)
i represent compositions that lie in the p − 1-simplex Sp−1 = {(x1, . . . , xp) : xj > 0 (j =

1, . . . , p),
∑p
j=1 xj = 1}, and the two-sample sizes n1 and n2 are supposed to be comparable, that

is, the ratio n1/n2 is always constant. Let n = max(n1, n2). We assume that the compositional

variables arise from a vector of latent variables, which we call the basis. For microbiome data, the

basis components may refer to the true abundances of bacterial taxa in a microbial community.

Denote by W (k) = (W
(k)
1 , . . . ,W

(k)
nk )T the nk× p matrices of unobserved bases, which generate the

observed compositional data via the normalization

X
(k)
ij = W

(k)
ij

/ p∑
`=1

W
(k)
i` (i = 1, . . . , nk; j = 1, . . . , p; k = 1, 2),

where X(k)
ij and W (k)

ij > 0 are the jth components of X(k)
i and W (k)

i , respectively.

Denote by Z(k)
i = logW

(k)
i the log-basis vectors, where the logarithm applies componentwise. Sup-

pose that Z(k)
1 , . . . , Z

(k)
nk are independent and identically distributed from a distribution with mean

µk and covariance matrix Ω (k = 1, 2). One might attempt to test the hypotheses

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (3.1)

These hypotheses, however, are not testable through the observed compositional data X(k) (k =

1, 2). Clearly, a basis is determined by its composition only up to a multiplicative factor, and the set

of bases giving rise to a composition x ∈ Sp−1 forms the equivalence classW(x) = {(tx1, . . . , txp) :

t > 0} (Aitchison, 2003 p. 32). As an immediate consequence, a log-basis vector is determined

by the resulting composition only up to an additive constant, and the set of log-basis vectors corre-

sponding to x constitutes the equivalence class Z(x) = {(log x1 + c, . . . , log xp + c) : c ∈ R}. We

therefore introduce the following definition.

Definition 1. Two log-basis vectors z1 and z2 are said to be compositionally equivalent if their

components differ by a constant c ∈ R, i.e., z1 = z2 + c1p, where 1p is the p-vector of 1s.
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Now, instead of testing the hypotheses in (3.1), we propose to test

H0 : µ1 = µ2 + c1p for some c ∈ R versus H1 : µ1 6= µ2 + c1p for all c ∈ R, (3.2)

which are testable using only the observed compositional data. Clearly, H0 in (3.1) implies H0 in

(3.2), so that rejecting the latter would lead to rejection of the former. Note, however, that H0 in

(3.2) neither implies nor is implied by E(X
(1)
1 ) = E(X

(2)
1 ) or E(logX

(1)
1 ) = E(logX

(2)
1 ). We do not

consider the latter two hypotheses because they are not scale invariant, whereas we will derive

in the next section an equivalent form of H0 in (3.2), from which its scale invariance is obvious.

Moreover, these two hypotheses do not allow us to obtain biological interpretations in terms of the

true underlying abundances.

3.2. The centered log-ratio transformation and a test for compositional equivalence

3.2.1. The centered log-ratio transformation and an equivalent hypothesis

The unit-sum constraint entails that compositional variables must not vary independently, making

many covariance-based multivariate analysis methods inapplicable. Aitchison, 1982 proposed to

relax the constraint by performing statistical analysis through log-ratios. Among various forms of

log-ratio transformations, the centered log-ratio transformation possesses some attractive features

and has been widely used in practice. For the observed compositional data X(k) (k = 1, 2), the

centered log-ratios are defined by

Y
(k)
ij = log{X(k)

ij /g(X
(k)
i )} (i = 1, . . . , nk; j = 1, . . . , p; k = 1, 2), (3.3)

where g(x) = (
∏p
i=1 xi)

1/p denotes the geometric mean of a vector x = (x1, . . . , xp)
T. The relation-

ship (3.3) can be expressed in matrix form as

Y
(k)
i = G logX

(k)
i (i = 1, . . . , nk; k = 1, 2), (3.4)

where Y (k)
i are the centered log-ratio vectors, G = Ip − p−11p1

T
p , and Ip is the p× p identity matrix.

Let νk = E(Y
(k)
1 ) (k = 1, 2). In view of (3.4) and the scale invariance of the centered log-ratios, we
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have

νk = E(G logX
(k)
1 ) = E(G logW

(k)
1 ) = GE(logW

(k)
1 ) = GE(Z

(k)
1 ) = Gµk (k = 1, 2).

Note that the matrix G has rank p − 1 and hence a null space of dimension 1, N (G) ≡ {x ∈ Rp :

Gx = 0} = {c1p : c ∈ R}. As a result, ν1 = ν2 if and only if µ1 = µ2 + c1p for some c ∈ R. Therefore,

testing the hypotheses in (3.2) is equivalent to testing

H0 : ν1 = ν2 versus H1 : ν1 6= ν2. (3.5)

Despite this equivalence, the hypotheses in (3.2) are meaningful only when the bases exist, which

is the case in microbiome studies. On the other hand, the hypotheses in (3.5) concern only the

compositions through the centered log-ratios, from which its scale invariance and testability using

the observed compositional data are evident.

3.2.2. A test for compositional equivalence

A natural test statistic for testing H0 in (3.5), and hence H0 in (3.2), would be based on the differ-

ences Ȳ (1)
j − Ȳ (2)

j , where Ȳ (k)
j =

∑nk
i=1 Y

(k)
ij /nk are the sample means of the centered log-ratios.

Moreover, it is well known that tests based on maximum type statistics are generally more powerful

than those based on sum-of-squares type statistics against sparse alternatives (Cai, Liu, and Xia,

2014). Since in microbiome studies we are mainly interested in the sparse setting where only a

small number of taxa may have different mean abundances between the two groups, we consider

the test statistic

Mn =
n1n2

n1 + n2
max

1≤j≤p

(Ȳ
(1)
j − Ȳ (2)

j )2

γ̂jj
, (3.6)

where γ̂jj =
∑2
k=1

∑nk
i=1(Y

(k)
ij − Ȳ

(k)
j )2/(n1 + n2) are the pooled sample variances.

The asymptotic behavior of Mn will be investigated in the next section. Specifically, under suitable

conditions on the log-basis variables Z
(k)
1j , we will show that the centered log-ratio transformed

variables Y (k)
1j are only weakly dependent and satisfy certain concentration properties. As a result,

the null distribution of Mn − 2 log p + log log p is asymptotically a type I extreme value distribution.

The test defined by Φα = I(Mn ≥ qα + 2 log p − log log p), where qα = − log π − 2 log log(1 − α)−1

is the (1− α)-quantile of the type I extreme value distribution, is then an asymptotic α-level test for
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testing H0 in (3.2) or (3.5).

Although Mn is similar to the test statistic MI defined in Cai, Liu, and Xia, 2014, their theoretical

analyses are radically different, since our assumptions are not imposed on the observed variables.

Besides, the test statistic based on a linear transformation by the precision matrix proposed by Cai,

Liu, and Xia, 2014 is not considered here, because the covariance matrix of Y (k)
1 is singular and its

precision matrix is not well defined.

3.3. Theoretical Results for the CLR Transformation-based Global Test

3.3.1. Covariance and correlation of CLR-transformed compositions

The relationships between the covariance and correlation for the true log of the abundance logWd

and the log-ratio vectors Yd, (d = 1, 2) are first studied. Let the centered log-ratio covariance matrix

be Γ = (γi,j) := cov(y?i,d, y
?
j,d) for 1 ≤ i ≤ j ≤ p and d = 1, 2. Then Γ is related to Ω via the following

relationship (Aitchison, 2003),

Ω→ Γ : Γ = GΩGT. (3.7)

In the high dimensional setting when p � 0, G = Ip − p−1Jp ≈ Ip, suggesting that the covariance

and correlation structure of logWd and Yd are similar. Such relationships serve as the basis for

the theoretical validity of the testing procedure. Denote the correlation of logWd and Yd as R and

Rclr, i.e., R = (ri,j) = corr(logw?i,d, logw?j,d) and Rclr = (rclr
i,j ) = corr(y?i,d, y

?
j,d). The following

assumptions are made on the correlation matrix R.

Condition 1. max1≤i<j≤p |ri,j | ≤ r1 < 1 for some constant 0 < r1 < 1.

Condition 2. max1≤j≤p
∑p
i=1 r

2
i,j ≤ r2 <∞ for some constant r2 > 0.

Condition 3. 0 < 1/τ ≤ ωi,i ≤ τ <∞, for any i = 1, · · · , p, where τ > 0 is a constant.

Condition 1 is mild since Ω is non-singular. Both Conditions 2 and 3 are standard assumptions en-

countered in high dimensional settings. Condition 2 guarantees weak correlations among majority

of the variables, which is reasonable in the context of microbiome study as only a small number of

bacterial species in human microbiome may have strong cooperative and competitive relationships.

Condition 3 assumes a uniform variance. Under these conditions, the following properties of the

correlation and covariance matrices hold.
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Proposition 1. Under Condition 2, let r3 := max1≤j≤p
∑p
i=1 |ri,j |, then

r3 = max
1≤j≤p

p∑
i=1

|ri,j | ≤ p1/2 · max
1≤j≤p

(

p∑
i=1

r2
i,j)

1/2 = O(p1/2).

Proposition 2. Under Conditions 1, 2 and 3, from Proposition 1, the difference between Ω and Γ is

bounded by

‖Ω− Γ‖max ≤ 3p−1 · max
1≤i≤p

ωi,i · max
1≤j≤p

p∑
i=1

|ri,j | = o(1),

which implies Ω and Γ are approximately identical as p→∞. Therefore, for sufficiently large p,

min
1≤i≤p

γi,i ≥ min
1≤i≤p

ωi,i − ‖Ω− Γ‖max ≥ 1/(2τ). (3.8)

Propositions 1 and 2 bound the difference between R and Rclr, which is given in the following

theorem.

Theorem 6. Suppose Conditions 1, 2 and 3 hold respectively for the correlation matrix R and the

covariance matrix Ω, as p is sufficiently large,

∥∥Rclr −R
∥∥

max
= o(1), max

1≤j≤p

∣∣∣∣∣
p∑
i=1

(rclr
i,j )

2 −
p∑
i=1

r2
i,j

∣∣∣∣∣ = O(1). (3.9)

Equations (3.9), combined with Conditions 1 and 2 guarantee that a similar correlation structure

holds for Rclr.

Corollary 1. Suppose Condition 1, 2 and 3 hold respectively on R and Ω, then, for sufficiently large

p, there exists some constant r4 > 0 and r5 > 0, such that

max
1≤i<j≤p

rclr
i,j ≤ r4 < 1, and max

1≤j≤p

p∑
i=1

(rclr
i,j )

2 ≤ r5 <∞. (3.10)
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3.3.2. Tail distribution of the CLR-transformed compositions

This section investigates the concentration property the CLR-transformed variable Yd based on the

assumptions for the random vector logWd. Specifically,

Condition 4. (Sub-Gaussian-type tails). Random vector logW ?
d (d = 1, 2) follows sub-Gaussian-

type tails (Cai, Liu, and Xia, 2014), if log p = o(n
1/4
d ) and there exist some constants η > 0 and

K > 0 such that,

E(exp(η(logW ?
i,d − µi,d)2/ωi,i)) ≤ K, for 1 ≤ i ≤ p.

Condition 5. (Polynomial-type tails). Random vector logW ?
d (d = 1, 2) follow polynomial-type tails

(Cai, Liu, and Luo, 2011), if, for some constant γ0 > 0, p = O(nγ0) and for some constants ε > 0

and K > 0 such that,

E
∣∣∣(logW ?

i,d − µi,d)/ω
1/2
i,i

∣∣∣4γ0+4+ε

≤ K, for 1 ≤ i ≤ p.

Conditions 4 and 5 are assumed for logW ?
d . The tail distribution of the CLR-transformed observation

Yd (d = 1, 2) has the following probability inequality, as well as the rate of convergence of its sample

variance.

Theorem 7. Suppose that the correlation/variance structure (Conditions 2 and 3), and tail prob-

ability of its distribution (Condition 4 (or 5)) hold. Then, there exists τn = o(n
1/2
d /(log p)3/2) such

that,

pr( max
1≤k≤nd,1≤i≤p

|yk,i,d − νi,d| /γ1/2
i,i ≤ τn)→ 1, as nd, p→∞. (3.11)

In addition, uniformly in 1 ≤ i ≤ p, the rate of convergence of the pooled sample variance γi,i is

|γ̂i,i − γi,i| = Op

{
(log p/n)

1/2
}
γi,i. (3.12)
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3.3.3. Asymptotic null distribution of Mn and power analysis

The following theorem states that although no assumptions are made directly on Y ?d (d = 1, 2),

Conditions 1-5 guarantee that the asymptotic null distribution of Mn follows a type I extreme value

distribution and its size is effectively controlled.

Theorem 8. Suppose that equations (3.10), (3.11) and (3.12) hold, which are guaranteed by Con-

ditions 1− 3 and 4 (or 5). Under the null hypothesis H0 : ν1 = ν2, for any t ∈ R,

pr(Mn − 2 log p+ log log p ≤ t)→ exp
{
−π−1/2 exp(−t/2)

}
, as n1, n2, p→∞. (3.13)

Besides, if the α−level test Φα is defined by Φα = I(Mn ≥ qα + 2 log p− log log p), the probability of

type I error is controlled by

pr(Type I error) = prH0
(Φα = 1) ≤ − log(1− α) + o(1), for any 0 < α < 1. (3.14)

To study the power of the test defined in Theorem (8), consider the alternative hypothesis

H1 : ν1 − ν2 ∈ S(kp) with kp = pr, 0 ≤ r < 1, (3.15)

where the non-zero support is randomly and uniformly drawn from {1, · · · , p} with the magnitude

given by

max
1≤i≤p

|νi,1 − νi,2|/γi,i1/2 = {2β log p(1/n1 + 1/n2)}1/2 , where β ∈ (0, 1). (3.16)

This hypothesis H1 can be rephrased using the parameters for the basis counts. For ∀e ∈ S(kp)

with the support index defined as S,

ν1 − ν2 = e ⇐⇒

 ∃c
? ∈ R, s.t. µS,1 = µS,2 + c? × 1pr ,

∀c ∈ R, µSc,1 6= µSc,2 + c× 1p−pr ,

where µS,d and µSc,d are the sub-vectors of µ corresponding to the support S and its complement.

Since the observed composition is in high dimensional space, it is reasonably to assume the means
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of the basis count from two groups compositionally differ only in a small number of the coordinates.

In addition, under Conditions 1, 2 and 3, equation (3.16) is equivalent to

max
i∈S
|µi,1 − µi,2 − c?| /ω1/2

i,i = {2β log p(1/n1 + 1/n2)}1/2 · (1 + o(1)).

The following theorem provides the results on test power under the alternative specified in (3.15).

Theorem 9. Under H1 given by (3.15), for some ε > 0, we have

lim
p→∞

prH1
(Φα = 1) = 1, if β ≥ (1−

√
r)2 + ε, (3.17)

lim
p→∞

prH1
(Φα = 1) ≤ α, if β < (1−

√
r)2. (3.18)

3.4. Two-sample Test for Paired Observations

Test of compositional equality for paired observations {(Xi,1, Xi,2)}ni=1, where Xi,1 and Xi,2 are

two p-dimensional compositional observations on a subject i before and after a treatment, requires

slight modification. Suppose that {(Wi,1,Wi,2)}ni=1 are the corresponding p−variate basis vec-

tors. Let W̃i = (w̃i,1, · · · , w̃i,p)T be the element-wise ratio of ith samples Wi,1 and Wi,2: w̃i,j =

wi,j,1/wi,j,2 for 1 ≤ j ≤ p, and log W̃i := logWi,1− logWi,2. For i = 1 · · · , n, let Ỹi = (ỹi,1, · · · , ỹi,p)T

be the corresponding CLR-transformed random vector. Through (3.4) and the principle of scale

invariance that G logWi,d = G logXi,d, it can be written by the observations Xd as

Ỹi := G log W̃i = G logWi,1 −G logWi,2 = G logXi,1 −G logXi,2, for i = 1, · · · , n.

The compositional equality null hypothesis can be written in term of the mean of the difference of

the centered log-ratio variables,

H0 : ν̃ = 0 vs H1 : ν̃ ∈ S(kp) with kp = pr, 0 ≤ r < 1, (3.19)

where ν̃ = EỸi (i = 1, · · · , n). The non-zero locations in S(kp) are randomly uniformly drawn

from {1, · · · , p} and the magnitude of support in ν̃ is given by (3.16), where νi,1 − νi,2 and γi,i is
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respectively replaced by ν̃i and γ̃i,i = var(ỹk,i) (k = 1, · · · , n).

The following test statistic is proposed for testing the null (3.19),

M̃n = max
1≤i≤p

¯̃y
2
i

γ̂i,i/n
,

where ¯̃yi = n−1
∑n
j=1 ỹj,i is the sample mean of ith variable in CLR-transformed observation Ỹ =

(Ỹ1, · · · , Ỹn)T, and Γ̂ = (γ̂i,j) = (n−1
∑n
l=1(yl,i − ¯̃yi)(yl,j − ¯̃yj)) is its sample covariance. Let

W̃ be drawn from the distribution of the variable W̃ ? = (w̃?1 , · · · , w̃?p)T. Suppose Conditions 1,

2 and 3 hold for the correlation matrix R̃ = (r̃i,j) = corr(log w̃?i , log w̃?j ) and covariance matrix

Ω̃ = (ω̃i,j) = cov(log w̃?i , log w̃?j ). In addition, assume the tail distribution of log W̃ ? follows sub-

Gaussian type (Condition 4) or the polynomial type (Condition 5), then the asymptotic distribution

under the null hypothesis and the power of the test can be written out in the same ways as those

for the two-sample case.

3.5. Simulation Studies

3.5.1. Simulation settings and performance evaluation

Simulation studies were conducted to evaluate the numerical performance of the proposed test Φα

based on the CLR-transformed data and to compare with the test MI in (Cai, Liu, and Xia, 2014)

when applied to the compositional data Xd, the logarithm of the compositional data logXd and the

logarithm of the true basis count logWd (d = 1, 2). The results based on logWd are considered as

an oracle procedure to test the difference between µ1 and µ2.

To simulate the data, the basis counts and the compositional data were generated as the fol-

lowing. Two n × p data matrices Vd = (V1,d, · · · , Vn,d)T = (vi,j,d) (d = 1, 2) were first gen-

erated from a multivariate normal distribution Np(µd,Ω) or a Gamma multivariate model, where

Vi,d = FUd + µd. Here the matrix F is generated by calculating the singular value decomposi-

tion Ω = QSQT and setting F = QS1/2, and the components of Ud are i.i.d standardized Gam-

ma(10,1) random variables. The data (Wd, Xd) were then generated through wi,j,d = exp(vi,j,d)

and xi,j,d = exp(vi,j,d)/
∑p
k=1 exp(vi,k,d) (d = 1, 2). Thus, Xd followed a logistic-normal distribution

(Aitchison and Shen, 1980) or a type of logistic-gamma distribution.
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The parameters (µd,Ω) were set as follows. In both cases, we picked the components of µ2 ran-

domly from the uniform distribution on [0, 10]. Under the null hypothesis, µ1 = µ2. Under the

alternative hypothesis, µ1 = µ2 + δ, the support set S = {l1, · · · , lm : l1 < l2 < · · · < lm} of δ, with

cardinalitym, was randomly and uniformly selected from {1, · · · , p}. For the elements in the support

S, four different magnitudes were considered:

M 1: µ1j ,1 = ±(α1 log p/n)
1/2, with equal probability and m = bβ1pc.

M 2: µ1j ,1 = ±(α2 log p/n)
1/2, with equal probability and m = bp1/2c.

M 3: µ1j ,1 is uniformly drawn from [−(α3 log p/n)
1/2
, (α3 log p/n)

1/2
], m = bβ2pc.

M 4: µ1j ,1 is uniformly drawn from [−(α4 log p/n)
1/2
, (α4 log p/n)

1/2
], m = bp1/2c.

Denote by D = (di,j) the diagonal matrix with diagonal elements di,i = unif(1, 3), and let λmin(·)

be the smallest eigenvalue. Four different covariance structures of the log basis were considered

as follows.

Model 1: (Bandable Ω): Ω = (ωi,j) where ωi,j = 0.6|i−j| for 1 ≤ i, j ≤ p.

Model 2: (Sparse Ω): Ω = diag(A1,A2), where A1 = B + εIp1 , A2 = 4Ip2 , p1 = b√pc, p2 = p− p1,

and B is a symmetric matrix where lower triangular entries are independent from the uniform

distribution on [−1,−0.5] ∪ [0.5, 1] with probability 0.2 and equal to 0 with probability 0.8, and

ε = max(−λmin(B), 0) + 0.05.

Model 3: (Sparse Ω): Σ = (σi,j) where σi,j = 0.6|i−j| for 1 ≤ i, j ≤ p. Ω = D1/2Σ−1D1/2.

Model 4: (Non-sparse Ω): Ω? = (ω?i,j) where ω?i,i = 1, ω?i,j = 0.8 for 2(k − 1) + 1 ≤ i 6= j ≤ 2k,

where k = 1, · · · , bp/2c, and ω?i,j = 0 otherwise, Ω = D1/2Ω?D1/2 + E + δIp with δ =∣∣λmin(D1/2Ω?D1/2 + E)
∣∣+ 0.05, where E is a symmetric matrix with the lower triangular com-

ponents generated independently from the uniform distribution on [−0.2, 0.2] with probability

0.3 and equal to 0 with probability 0.7.

3.5.2. Simulation results

The sample size and the dimension were set as (n, p) = (100, 50), (100, 100) and (100, 200) and

the simulations were repeated 1000 times under each setting. The empirical size and power of the
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proposed test Φα based on CLRXd, logWd, logXd and Xd (d = 1, 2) under the four different models

and various null and alternative mean vectors are summarized in Table 3.1 and 3.2, altogether with

the parameters αi and βj representing the magnitude of the signals and the size of the support.

The results showed that the proposed test Φα based on CLR-transformation had similar empirical

size and power to the oracle test based on the true log-count data logWd. The empirical test size

of the proposed test Φα was close to, and controlled in most settings by the nominal level of 0.05.

However, the test of Cai, Liu, and Xia, 2014, when applied directly to the observed compositional

data Xd, was conservative. In addition, the performance of the test of Cai, Liu, and Xia, 2014 when

applied to logXd was not stable. As seen from Table 3.1, the empirical size and power of the test

of Cai, Liu, and Xia, 2014 when applied to logXd was close to our proposed test under the log-

normal distribution setting. However, under the multivariate log-Gamma model as shown in Table

3.2, the power of the proposed test based on CLRXd uniformly outperformed the test based on

logXd. As expected, for both log-normal and log-Gamma distributions, the power of the proposed

test depended on the magnitude of the signal, the size of the support and the dimension p. In

majority of the cases, the empirical power increased when the magnitude of the signal, or the size

of the support increased.
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Table 3.1: Empirical size and power of the tests based on 1000 replications with α = 0.05 and n = 100 for basis generated from log-normal
distributions. Model 1: α1 = α2 = 3, α3 = α4 = 10, β1 = β2 = 0.05. Model 2: α1 = α2 = 10, α3 = α4 = 20, β1 = 0.15, β2 = 0.2. Model 3:
α1 = α2 = 10, α3 = α4 = 20, β1 = 0.05, β2 = 0.1. Model 4: α1 = α2 = 10, α3 = α4 = 20, β1 = 0.15, β2 = 0.2.

Model 1 Model 2 Model 3 Model 4
p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200

Null
CLRX 0.049 0.051 0.042 0.041 0.047 0.051 0.050 0.051 0.048 0.053 0.047 0.047
logW 0.048 0.047 0.047 0.051 0.043 0.052 0.047 0.052 0.049 0.050 0.046 0.045
logX 0.042 0.055 0.049 0.045 0.043 0.050 0.037 0.060 0.054 0.060 0.040 0.039
X 0.021 0.020 0.019 0.007 0.004 0.000 0.007 0.004 0.001 0.013 0.010 0.002

M1: m = β1p with fixed magnitude
CLRX 0.365 0.698 0.903 0.791 0.974 0.994 0.203 0.527 0.822 0.964 0.994 1.000
logW 0.342 0.669 0.895 0.823 0.970 0.994 0.219 0.556 0.827 0.968 0.997 1.000
logX 0.285 0.647 0.876 0.657 0.929 0.992 0.143 0.415 0.766 0.932 0.993 1.000
X 0.119 0.284 0.457 0.143 0.151 0.067 0.017 0.013 0.047 0.580 0.422 0.301

M2: m =
√
p with fixed magnitude

CLRX 0.797 0.894 0.967 0.811 0.829 0.903 0.551 0.858 0.944 0.873 0.991 0.990
logW 0.753 0.902 0.957 0.840 0.840 0.905 0.589 0.885 0.951 0.871 0.988 0.989
logX 0.731 0.874 0.961 0.652 0.765 0.907 0.468 0.728 0.857 0.810 0.969 0.988
X 0.408 0.453 0.584 0.139 0.034 0.067 0.105 0.062 0.098 0.324 0.284 0.205

M3: m = β2p with varied magnitude
CLRX 0.265 0.900 0.966 0.538 0.792 0.993 0.753 0.568 0.896 0.888 0.995 1.000
logW 0.264 0.890 0.962 0.586 0.781 0.993 0.753 0.591 0.896 0.901 0.994 1.000
logX 0.219 0.866 0.965 0.425 0.737 0.985 0.655 0.503 0.837 0.818 0.985 1.000
X 0.099 0.459 0.639 0.086 0.045 0.074 0.119 0.028 0.048 0.444 0.379 0.368

M4: m =
√
p with varied magnitude

CLRX 0.992 0.957 1.000 0.520 0.946 0.791 0.624 0.795 0.921 0.467 0.668 0.999
logW 0.992 0.958 1.000 0.554 0.953 0.783 0.632 0.811 0.923 0.491 0.653 1.000
logX 0.985 0.94 1.000 0.390 0.883 0.747 0.537 0.680 0.862 0.450 0.586 0.994
X 0.843 0.622 0.946 0.027 0.143 0.033 0.131 0.053 0.056 0.248 0.082 0.237
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Table 3.2: Empirical size and power of tests based on 1000 replications with α = 0.05 and n = 100 for basis generated from log-Gamma
models. Model 1: α1 = α2 = 3, α3 = α4 = 10, β1 = β2 = 0.05. Model 2: α1 = α2 = 10, α3 = α4 = 20, β1 = 0.15, β2 = 0.2. Model 3:
α1 = α2 = 10, α3 = α4 = 20, β1 = 0.05, β2 = 0.1. Model 4: α1 = α2 = 10, α3 = α4 = 20, β1 = 0.15, β2 = 0.2.

Model 1 Model 2 Model 3 Model 4
p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200

Null
CLRX 0.044 0.041 0.053 0.048 0.049 0.057 0.048 0.048 0.047 0.040 0.048 0.051
logW 0.040 0.046 0.052 0.049 0.049 0.058 0.050 0.048 0.044 0.041 0.050 0.049
logX 0.043 0.049 0.034 0.041 0.045 0.056 0.038 0.034 0.035 0.034 0.033 0.037
X 0.025 0.025 0.010 0.010 0.003 0.000 0.010 0.000 0.003 0.011 0.004 0.002

M1: m = β1p with fixed magnitude
CLRX 0.335 0.677 0.927 0.778 0.966 0.985 0.217 0.496 0.840 0.964 0.999 1.000
logW 0.326 0.668 0.924 0.816 0.969 0.988 0.237 0.534 0.844 0.972 0.999 1.000
logX 0.215 0.470 0.453 0.489 0.807 0.943 0.094 0.249 0.461 0.913 0.782 0.987
X 0.082 0.158 0.103 0.070 0.092 0.021 0.025 0.003 0.009 0.531 0.105 0.160

M2: m =
√
p with fixed magnitude

CLRX 0.767 0.863 0.969 0.817 0.849 0.885 0.448 0.857 0.846 0.886 0.995 0.990
logW 0.736 0.866 0.956 0.843 0.849 0.888 0.482 0.883 0.843 0.891 0.995 0.986
logX 0.713 0.761 0.548 0.501 0.600 0.801 0.188 0.514 0.384 0.615 0.691 0.369
X 0.418 0.378 0.130 0.058 0.006 0.026 0.008 0.038 0.003 0.089 0.059 0.001

M3: m = β2p with varied magnitude
CLRX 0.863 0.998 0.993 0.564 0.808 0.986 0.111 0.428 0.998 0.934 1.000 1.000
logW 0.830 0.998 0.994 0.601 0.801 0.989 0.104 0.430 0.998 0.917 1.000 1.000
logX 0.560 0.982 0.732 0.037 0.606 0.936 0.065 0.118 0.798 0.727 0.972 0.895
X 0.218 0.726 0.161 0.042 0.01 0.022 0.012 0.006 0.036 0.081 0.219 0.047

M4: m =
√
p with varied magnitude

CLRX 0.934 0.968 1.000 0.862 0.622 0.942 0.207 0.406 0.890 0.490 0.646 1.000
logW 0.923 0.976 1.000 0.877 0.641 0.943 0.220 0.411 0.888 0.513 0.633 0.999
logX 0.811 0.932 0.851 0.509 0.412 0.759 0.065 0.199 0.498 0.251 0.237 0.583
X 0.470 0.572 0.233 0.057 0.006 0.049 0.004 0.012 0.004 0.031 0.010 0.004
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3.6. Real Data Analysis

3.6.1. Application to a cross-sectional study of diet

Gut microbiome plays an important role human metabolism in order to maintain human health.

Wu et al., 2011 reported a cross-sectional study to investigate the association between long-term

dietary patterns and gut microbiome composition. The gut microbiome composition data were

collected from 98 healthy individuals at the University of Pennsylvania, together with demographic

data including body mass indexes (BMI). From each healthy subject, DNAs collected from stool

samples were analysed by 454/Roche pyrosequencing of 16S rRNA gene segments from the V1-

V2 region. An average of 9265 reads per sample were yielded, with a standard deviation of 3864,

by denoising the pyrosequences. These reads were further grouped into 87 bacterial genera that

were observed in at least one sample. Since the number of sequencing reads varied greatly across

samples, the count data were converted into compositional data by dividing the total number of

reads, where the maximum rounding error 0.5 was used to replace zero counts Aitchison, 2003.

One important question was to test whether obese and lean individuals had the same gut micro-

biome composition, where obese (n=24) and lean group (n=25) were defined based on whether

the BMI was in the upper or lower quartile. At a nominal level of 0.05, the CLR based test indicat-

ed a significant difference in bacterial genus compositions (p = 0.009). This was consistent with

the previous finding in human and mice gut microbiome studies that obesity was associated with

changes in the relative abundance of bacterial taxa (Bäckhed et al., 2004). Figure 3.1 presents

the bar plots of the CLR transformation of genus composition, showing that the abundance of Aci-

daminococcus was clearly different between the obese and lean groups. Acidaminococcus is a

genus in the phylum Firmicutes that was found to contribute to the change of energy balance and

subsequent weight gain by holding great metabolic potential for efficient energy harvest from the

diet (Turnbaugh et al., 2006). As a comparison, tests based the compositions Xd and the logarithm

of the compositions logXd (d = 1, 2) resulted p = 0.542 and p = 0.100, respectively. This may

be due to the fact that the conditions for these tests to be valid did not hold for Xd and logXd.

The analysis was also performed for the compositions of 51 relatively commonly genera that were

observed in at least 6 samples in the whole dataset. The p-value from our proposed test and the

test statistics MI when applied to X and logX was 0.007, 0.064 and 0.388, respectively.
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Figure 3.1: Bar plots of CLRX of 51 bacterial genera composition in obese and lean samples.

3.6.2. Application to a microbiome study of Crohn’s disease

Crohn’s disease, characterized by abnormal composition of the intestinal dysbiosis, is one type of

inflammatory bowel disease. The etiology of such a dysbiosis remained unknown. Lewis et al.,

2015 recently reported a study to examine the gut microbiota composition among a cohort of 90

children with Crohn’s disease at the University of Pennsylvania. Of these patients, 47 received an

anti-tumor necrosis factor (anti-TNF) treatment. For each sample, fecal sample was collected at four

time points: baseline, 1, 4, and 8 weeks after the treatment. Compositions of the bacterial genera

were measured using shotgun metagenomic sequencing and the MetaPhlAn program (Segata et

al., 2012). A total of 52 bacterial genera were identified that appeared in more than 5% of the

samples. In addition, zeros were replaced with half of the non-zero minimum composition observed

in the data (Aitchison, 2003).

To assess the effect of anti-TNF on fecal microbiome, testing whether there were significant changes

in the overall microbiome compositions over the four time points during the anti-TNF treatment was

performed using the proposed test for repeated measured data. The p-values of three pairs, includ-

ing baseline v.s. week 1, week 1 v.s. week 4, week 4 v.s. week 8) were 0.0087, 0.493 and 0.449,

respectively. The results indicated a significant change of gut microbiome composition within one

week after the anti-TNF treatment, but were relatively stable during the rest of the treatment. It

was interesting to note that these patients clinically responded to anti-TNF treatment within a week
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after initiation of the treatment (Lewis et al., 2015), indicating that gut microbiome may play a role

in reducing gut inflammation.

3.7. Discussion

This paper has proposed statistical tests for compositional equality of the log basis abundances

based on the observed compositional data in high dimensional settings. The key assumptions of

the test are certain dependency structure and tail distributions of the logarithm of the basis counts.

Different from many existing two-sample mean tests, no sampling assumptions are made directly

on the observed compositional data, rather these assumptions are made on the basis counts that

are not directly observable. This overcomes the difficulty of modeling the compositional data in

simplex.

Since the test statistic (3.6) takes the maximum of the normalized difference of the CLR transformed

data, it is most powerful when the difference of the mean vectors is sparse. These assumptions

are most likely met in analysis of microbiome data. The proposed test using the CLR transformation

is powerful even when the true basis counts do not follow log-normal distributions. Our simulation

results have showed that proposed test can be used to investigate the difference of the basis

abundances and outperformed those naive tests based directly on the compositions or logarithm of

the compositions.
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AAppendices

A.1. Additional Lemmas and Technical Proofs for Chapter 1

A.1.1. Proof of Theorems 1 and 3.

We prove a more general theorem first then move back to the proof of Theorem 1 and 3.

Theorem 10. Under Conditions 1 and 2, suppose that N ≥ c0(n ∨ p) log(n + p) for some constant

c0 > 0. Consider any solution X̂ to the optimization problem (1.3) using regularization parameter

selected by (1.8). Then, with probability at least 1 − 3(n + p)−1, for each r ∈ {1, 2, · · · , n ∧ p}, the

average KL divergence satisfies

1

n
D(X∗, X̂) ≤ max

{
C1

√
log(n+ p)

N
,
C2(n ∨ p)r log(n+ p)

N
,(

C3

√
p (n ∨ p) log(n+ p)

nN

)
n∧p∑
i=r+1

σi(X
∗)

}
, (A.1)

where constants C1, C2, and C3 only depend on c0, αX , βX , αR and βR.

Remark 1. The rate of convergence provided by Theorem 10 exhibits an interesting decomposi-

tion: besides the first term O

(√
log(n+p)

N

)
, the rate O

(
(n∨p)r log(n+p)

N

)
represents the estimation

error corresponding to a rank-r matrix, while the rest term O

((√
p(n∨p) log(n+p)

nN

)∑n∧p
i=r+1 σi(X

∗)

)
accounts for the approximation error due to using r as a proxy for the rank of X∗. When X∗ is

exactly a rank-r matrix, this approximation error vanishes. When X∗ is approximately low-rank, the

value of r can be optimally chosen to obtain the sharpest bound, which is presented in the following

corollary.

Proof. ( Proof of Theorem 10 ): Note that, we can rewrite W by

W =

N∑
k=1

Ek, where Ek are i.i.d copies of E,

E = eiej with probability Πij , 1 ≤ i ≤ n, 1 ≤ j ≤ p, Π = RX∗ ∈ RN×p,
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we rewrite the negative log-likelihood function (1.2) as

LN (X) = − 1

N

N∑
k=1

log〈X,Ek〉 = − 1

N

n∑
i=1

p∑
j=1

Wij log Xij . (A.2)

Then the estimator X̂ associated with any optimal solution to the convex optimization (1.3) satisfies

LN (X̂) + λ‖X̂‖∗ ≤ LN (X∗) + λ‖X∗‖∗

⇒ LN (X̂)− LN (X∗) =
1

N

N∑
k=1

〈log X∗ − log X̂,Ek〉 ≤ λ
(
‖X∗‖∗ − ‖X̂‖∗

)
.

(A.3)

To derive a lower bound for 1
N

∑N
k=1〈log X∗ − log X̂,Ek〉, we first present the following lemma.

Lemma 1. For all X in the constraint set C(αX , βX) defined below,

C(αX , βX) =

{
X ∈ S(αx, βx)

∣∣∣∣ D(X∗,X) ≥ n log(βX/αX)

√
512 log(n+ p)

log(4)α2
RN

}
,

with the probability proceeding 1− 2 (n+ p)
−1, we have

1

N

N∑
k=1

〈log X∗ − log X,Ek〉 ≥
1

2

∑
i,j

RiX
∗
ij log

X∗ij
Xij
− E(n, p, r),

where

E(n, p, r) =
1024β2

Xnpr

α3
XαR


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N


2

+
16p

αX


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N

 n∧p∑
i=r+1

σi (X∗) .

and C0(n, p) = 4(3 + 2 log(n+ p)).

Given Lemma 1, we consider in two cases based on whether X̂ ∈ C(αX , βX) or not.
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• Case 1: If X̂ /∈ C(αX , βX), then

1

n
D(X∗, X̂) < log(βX/αX)

√
512 log(n+ p)

log(4)α2
RN

. (A.4)

• Case 2: If X̂ ∈ C(αX , βX), using the assumption miniRi ≥ αR/n and applying Lemma 1, we

obtain, with the probability proceeding 1− 2(n+ p)−1,

1

N

N∑
k=1

〈log X∗ − log X̂,Ek〉 ≥
1

2

∑
i,j

RiX
∗
ij log

X∗ij
Xij
− E(n, p, r) (A.5)

≥αR
2n

D(X∗, X̂)− E(n, p, r). (A.6)

Another important element for establishing the error is to upper bound ‖X∗‖∗−‖X̂‖∗ in (A.3).

Denote ∆ = X̂−X∗, OLN (X) = − 1
N

∑N
k=1〈X,Ek〉−1Ek as the gradient function of LN (X).

By Taylor’s expansion of LN , there exists ξ = (ξij)1≤i≤n,1≤j≤p such that

LN (X̂)− LN (X∗)− 〈OLN (X∗),∆〉 =
1

2N

N∑
k=1

〈∆, Ek〉2

〈ξ, Ek〉2
, ξij is between X̂ij ,X

∗
ij .

Adding 〈OLN (X∗),∆〉 on both-hand sides of (A.3) and using Taylor’s expansion, we obtain

1

2N

N∑
k=1

〈∆, Ek〉2

〈ξ, Ek〉2
= LN (X̂)− LN (X∗)− 〈OLN (X∗),∆〉

≤ −〈OLN (X∗),∆〉+ λ
(
‖X∗‖∗ − ‖X̂‖∗

)
= −〈OLN (X∗) + R1n1Tp ,∆〉+ λ

(
‖X∗‖∗ − ‖X̂‖∗

)
≤ ‖OLN (X∗) + R1n1Tp ‖2‖∆‖∗ + λ

(
‖X∗‖∗ − ‖X̂‖∗

)
. (A.7)

The third line comes from the identity 〈R1n1Tp ,∆〉 = 〈R1n,∆1p〉 = 〈R1n,0n〉 = 0 and the

forth inequality is the Hölder’s inequality between the nuclear norm and operator norm. To

further upper bound the nuclear norm ‖∆‖∗, we state three useful technical results.

Lemma 2. With probability at least 1− (n+ p)
−1, we have

‖OLN (X∗) + R1n1Tp ‖2 ≤

{√
C1(n, p)p log(n+ p)

N
∨ C2(n, p)p log(n+ p)

N

}
,
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where C1(n, p) = 8
(
β2
R/n+ (1 ∨ βRp/n)/αX

)
and C2(n, p) = 4(1/αX + βR/(np)

1/2).

Based on Lemma 2, with probability proceeding 1− (n+ p)
−1, the selected tuning parameter

λ satisfies λ ≥ 2‖OLN (X∗) + R1n1Tp ‖2. As a result, we can use the following lemmas to

upper bound the nuclear norm ‖∆‖∗.

Lemma 3. If (A.7) holds and λ ≥ 2‖OLN (X∗)+R1n1Tp ‖2, we have the following upper bound

for the nuclear norm of ∆:

‖∆‖∗ ≤ 4
√

2r‖∆‖F + 4

n∧p∑
i=r+1

σi (X∗) . (A.8)

In addition, Frobenius norm ‖∆‖F can be effectively bounded in terms of D(X∗, X̂) as follows.

Lemma 4. Under Condition 2, for any estimator X̂ ∈ S(αX , βX), we have

α2
X

βXp
D(X∗, X̂) ≤ ‖X̂−X∗‖2F ≤

β2
X

αXp
D(X∗, X̂). (A.9)

By applying Lemma 3 and 4, we obtain the upper bound of ‖X∗‖∗ − ‖X̂‖∗ as

‖X∗‖∗ − ‖X̂‖∗ ≤ ‖X∗ − X̂‖∗ ≤ 4
√

2r‖X∗ − X̂‖F + 4

n∧p∑
i=r+1

σi(X
∗)

≤ 4

√
2β2

Xr

αXp
D(X∗, X̂) + 4

n∧p∑
i=r+1

σi(X
∗). (A.10)

Therefore, combining (A.3), (A.5) and (A.10), if X̂ ∈ C(αX , βX), we obtain,

αR
2n

D(X∗, X̂) ≤ 4λ

√2β2
Xr

αXp
D(X∗,X) +

n∧p∑
i=r+1

σi(X
∗)

+ E(n, p, r)

≤ max

8λ

√
2β2

Xr

αXp
D(X∗,X), 8λ

n∧p∑
i=r+1

σi(X
∗) + 2E(n, p, r)


with probability at least 1− 3(n+ p)−1. The above equation yields

1

n
D(X∗, X̂) ≤ max

{
512β2

Xλ
2nr

α2
RαXp

,
4

αr

(
4λ

n∧p∑
i=r+1

σi(X
∗) + E(n, p, r)

)}
. (A.11)

Note that, in the formulation ofE(n, p, r), since log(n+p) ≥ log(2) > 0.6, we have

√
C0(n,p)

(
βR
n ∨

βX
p

)
N =
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√
4(3+2 log(n+p))

(
βR
n ∨

βX
p

)
N <

√
28(βR∨βX) log(n+p)

(n∧p)N . In addition, under the assumption that N ≥

c0(n∨p) log(n+p), we have C0(n,p)
N < 28√

c0

√
log(n+p)
(n∧p)N . Consequently, we obtain

√
C0(n,p)

(
βR
n ∨

βX
p

)
N +

C0(n,p)
N ≤ c′0

√
log(n+p)
(n∧p)N with c

′

0 =
√

28(βR ∨ βX) + 28√
c0

. Therefore, we can further upper bound

E(n, p, r) by

E(n, p, r) ≤ 1024β2
Xc
′

0

2

α3
Xα

2
R

· (p ∨ n)r log(n+ p)

N
+

16c
′

0

αX

√
p2 log(n+ p)

(n ∧ p)N

n∧p∑
i=r+1

σi(X
∗). (A.12)

We complete the proof by combining (A.4), (A.11) and (A.12),

1

n
D(X∗, X̂) ≤ max

{
c1

√
log(n+ p)

N
,
c2λ

2nr

p
,(

c3λ+ c4

√
p2 log(n+ p)

(n ∧ p)N

)
n∧p∑
i=r+1

σi(X
∗) +

c5(n ∨ p)r log(n+ p)

N

}
, (A.13)

where constants (c1, c2, c3, c4, c5) are given by c1 = log(βX/αX)
√

512/ log(4)α2
R, c2 = 512β2

X/(α
2
RαX),

c3 = 16/αR, c4 = 16c
′

0/αX and c5 = 1024β2
Xc
′

0

2
/(α3

Xα
2
R). We also observe that, under the assump-

tion N ≥ c0(n ∨ p) log(n+ p), the upper bound of selected tuning parameter λ is given by

λ = 2

(√
8 (β2

R/n+ (1 ∨ βRp/n)/αX) p log(n+ p)

N
∨ 4(1/αX + βR/(np)

1/2)p log(n+ p)

N

)

≤ 2

√8βR(αXβR + 1)

αX
∨ 4(αXβR + 1)

√
αXc0

√p(n ∨ p) log(n+ p)

nN
. (A.14)

Denote by c6 = 2

(√
8βR(αXβR+1)

αX
∨ 4(αXβR+1)√

αXc0

)
. The proof for Theorem 10 is completed by plug-
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ging (A.14) into (A.13):

1

n
D(X∗, X̂)

≤max

{
c1

√
log(n+ p)

N
,
c2c

2
6(n ∨ p)r log(n+ p)

N
,

(c3c6 + c4)

√
p(n ∨ p) log(n+ p)

nN

n∧p∑
i=r+1

σi(X
∗) +

c5(n ∨ p)r log(n+ p)

N

}

≤max
{
c1

√
log(n+ p)

N
,

(c2c
2
6 + 2c5)(n ∨ p)r log(n+ p)

N
,

2(c3c6 + c4)

√
p(n ∨ p) log(n+ p)

nN

n∧p∑
i=r+1

σi(X
∗)
}
.

Proof. Proof of Theorem 1: By applying Theorem 10, when rank(X∗) ≤ r,
∑n∧p
i=r+1 σi(X

∗) vanishes

in (A.1), and it yields (1.9). Besides, (1.10) can be obtained by applying Lemma 4 to (1.9).

Proof. Proof of Theorem 3: We first focus on the proof of (1.12). If the composition X∗ ∈ Bq (ρq),

we set r = max

{
i

∣∣∣∣ σi (X∗) > τ

}
for some fixed thresholding τ > 0. By using this choice of r, we

obtain

rτ q ≤
r∑
j=1

σj(X
∗)q ≤ ρq,

which implies r ≤ τ−qρq. In addition,

n∧p∑
i=r+1

σi (X∗) = τ

n∧p∑
i=r+1

σi (X∗)

τ
≤ τ

(
n∧p∑
i=r+1

σi (X∗)

τ

)q
≤ τ1−qρq.

We substitute the above relations into the upper bound (A.1) in Theorem 10,

1

n
D(X∗, X̂) ≤max

{
C1

√
log(n+ p)

N
,
C2(n ∨ p) log(n+ p)τ−qρq

N
,

C3

√
p(n ∨ p) log(n+ p)

nN
τ1−qρq

}
.

Since the rate of dominating terms are O
(

(n∨p) log(n+p)τ−qρq
N

)
and O

(√
p(n∨p) log(n+p)

nN τ1−qρq

)
, we
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can set τ = C2

C3
·
√

(n∨p)n log(n+p)
pN as to obtain the sharpest bound. As a result, we obtain (1.12),

1

n
D(X∗, X̂) ≤ C1−q

2 Cq3ρq(p/n)
q
2

(
(n ∨ p) log(n+ p)

N

)1− q2
.

Finally, (1.13) can be obtained by applying Lemma 4 to (1.12).

A.1.2. Proof of Theorem 2.

We discuss the proof for Theorem 2 under two different scenarios.

• If n ≥ p, we randomly generateM copies of i.i.d. Rademachar random matrices: B1, · · · ,BM ∈

Rn×(r−1). Since (Bk,ij −Bl,ij)
2 has the following probability distribution

P
(
(Bk,ij −Bl,ij)

2 = x
)

=


1
2 , x = 4,

1
2 , x = 0,

based on Bernstein’s inequality,

P
(
‖Bk −Bl‖2F ≤ n(r − 1)

)
= P

 n∑
i=1

r−1∑
j=1

(Bk,ij −Bl,ij)
2 − 2n(r − 1) ≤ −n(r − 1)


≤ exp

(
− (n(r − 1))2/2

4n(r − 1) + 2
3n(r − 1)

)
≤ exp

(
− 1

10
n(r − 1)

)
.

Therefore, whenever M ≤ exp(n(r − 1)/20), there is a positive probability that

min
1≤k<l≤M

{
‖Bk −Bl‖2F

}
≥ n(r − 1), (A.15)

which means we can find such fixed B1, . . . ,BM ∈ {−1, 1}n×(r−1) such that (A.15) holds.

For the rest of proof, we assume B1, . . . ,BM are such fixed matrices while M = bexp(n(r −

1)/20)c. Note that r − 1 ≤ p/2, we consider the following set of random rank-r matrices,

Xk =


1
p · · · 1

p

...
...

1
p · · · 1

p


n×p

+

r − 1 r − 1 p− 2r + 2[ ]
νBk −νBk 0

,
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where 0 < ν < βX−1
p ∧ 1−αX

p is a to-be-determined constant. Then for k 6= l,

‖Xk −Xl‖2F = 2ν2‖Bk −Bl‖2F ≥ 2ν2n(r − 1).

D(Xk,Xl)
Lemma 4
≥ cp‖Xk −Xl‖2F ≥ 2cν2np(r − 1),

where c = αX
2β2
X

. We also fix R =
(

1
n , . . . ,

1
n

)>, i.e., the uniform distribution on each row.

Suppose Pk ∼ Mult(N ; 1
nXk), i.e., the multinomial distribution corresponding to composition

Xk and R. Based on Lemma 4, we have

DKL(Pk, Pl) =N

n∑
i=1

p∑
j=1

Xk,ij

n
log

(
Xk,ij/n

Xl,ij/n

)
≤ N

n∑
i=1

p∑
j=1

Cnp

(
Xk,ij

n
− Xl,ij

n

)2

≤CNp
n
‖Bk −Bl‖2F ≤ Cν2Np(r − 1),

where C = βX
2α2
X

. By generalized Fano’s lemma (Yu, 1997),

inf
X̂

sup
X⊆{X1,··· ,XM}

E
∥∥∥X̂−X

∥∥∥2

F
≥ ν2n(r − 1)

(
1− Cν2Np(r − 1) + log 2

log(M)

)
.

We further set ν2 = cνn/(Np) for some small constant cν > 0 such that (cνCn(r − 1) +

log(2))/(n(r − 1)/20) < 1/2, then the lower bound above becomes

inf
X̂

sup
X⊆{X1,··· ,XM}

E
∥∥∥X̂−X

∥∥∥2

F
≥ cνn

2(r − 1)

2Np
,

which implies

inf
X̂

sup
X⊆{X1,··· ,XM}

p

n
E
∥∥∥X̂−X

∥∥∥2

F
≥ cνn(r − 1)

2N
=
cν(r − 1)(n ∨ p)

2N
.

We can similarly derive that, for some constant c′,

inf
X̂

sup
X⊆{X1,··· ,XM}

1

n
D
(
X, X̂

)
≥ c′ (r − 1)(n ∨ p)

N
.

Note that if r ≥ 2, r − 1 ≥ r/2, the lower bound result has been finally shown.
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• If n < p, the proof is essentially the same as the case of n ≥ p. Here we construct M copies

of i.i.d. Rademachar random matrices: B1, . . . ,BM ∈ R(r−1)×bp/2c, and the following set of

random rank-r matrices,

Xk =


1
p · · · 1

p

...
...

1
p · · · 1

p


n×p

+

bp/2c bp/2c p− 2bp/2c r − 1 νBk −νBk 0

n− r + 1 0 0 0

.

We omit the rest of the proof as it is essentially the same as the part for n ≥ p.

A.1.3. Proof of Corollary 2

Using first order Taylor’s expansion on the function f(x) = x log(x) = x0 log(x0)+(log(ξ)+1)(x−x0)

for some ξ between x and x0, we have

1

(log p)2n

n∑
i=1

(Hsh(X̂i)−Hsh(X∗i ))
2

=
1

(log p)2n

n∑
i=1

 p∑
j=1

X∗ij logX∗ij − X̂ij log X̂ij

2

=
1

(log p)2n

n∑
i=1

 p∑
j=1

log ξij(X
∗
ij − X̂ij) +

p∑
j=1

(X∗ij − X̂ij)

2

=
1

(log p)2n

n∑
i=1

 p∑
j=1

log ξij(X
∗
ij − X̂ij)

2

≤ 1

(log p)2n

n∑
i=1

 p∑
j=1

(log ξij)
2

 p∑
j=1

(X∗ij − X̂ij)
2


≤ (log(p/αX))2p

(log p)2n
‖X̂−X∗‖2F ,
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where ξij is between X∗ij and X̂ij . In addition, using the Taylor’s expansion on f(x) = x2 =

x2
0 + 2ξ(x− x0), we have

p2

n

n∑
i=1

(Hsp(X̂i)−Hsp(X∗i ))
2 =

p2

n

n∑
i=1

 p∑
j=1

X̂2
ij −X∗ij

2

2

=
p2

n

n∑
i=1

 p∑
j=1

2ξij(X̂ij −X∗ij)

2

≤ 4p2

n

n∑
i=1

 p∑
j=1

ξ2
ij

 p∑
j=1

(X̂ij −X∗ij)2


≤ 4pβ2

X

n
‖X̂−X∗‖2F .

We further bound the Frobenius norm loss of Bray-Curtis index by

1

n2

∑
1≤i<j≤n

(Hbc(X̂i, X̂j)−Hbc(X∗i ,X
∗
j ))

2

=
1

4n2

n∑
i=1

n∑
j=1

(
p∑
k=1

|X̂ik − X̂jk| − |X∗ik −X∗jk|

)2

≤ 1

4n2

n∑
i=1

n∑
j=1

(
p∑
k=1

|X̂ik −X∗ik|+ |X̂jk −X∗jk|

)2

≤ p

4n2

n∑
i=1

n∑
j=1

p∑
k=1

(
|X̂ik −X∗ik|+ |X̂jk −X∗jk|

)2

≤ p

2n2

n∑
i=1

n∑
j=1

p∑
k=1

(
|X̂ik −X∗ik|2 + |X̂jk −X∗jk|2

)
=
p

n
‖X̂−X∗‖2F ,

where we used the triangle inequalities that |x̂ − ŷ| ≤ |x̂ − x| + |x − y| + |ŷ − y| and |x − y| ≤

|x̂ − x| + |x̂ − ŷ| + |ŷ − y| in the second inequality, and Cauchy-Schwarz inequality in the third

and forth inequalities. We complete the proof by applying Theorem 1 and Theorem 3 to the above

inequalities.

A.1.4. Proof of Proposition 2

It suffices to show that, uj+j−1(1−εp−
∑j
i=1 ui) > 0 for any j ∈ [ρ] and uj+j−1(1−εp−

∑j
i=1 ui) ≤ 0

for j > ρ.
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• Case 1: If j < ρ, we note that µ = ρ−1(1− εp−
∑ρ
i=1 ui) + ε, so we have

uj + j−1(1− εp−
j∑
i=1

ui) = j−1

juj − εp−
 ρ∑
i=1

ui −
ρ∑

i=j+1

ui


= j−1

j(uj + µ− ε) +

ρ∑
i=j+1

(ui + µ− ε)

 .

Using KKT condition that ui +µ = xi > ε, we obtain uj + j−1(1− εp−
∑j
i=1 ui) > 0 for j ∈ [ρ].

• Case 2: If j = ρ, it is apparent that uρ + ρ−1(1− εp−
∑ρ
i=1 ui) = xρ − ε > 0.

• Case 3: Otherwise, j > ρ, then uj + µ− ε < 0. According to similar argument, we obtain

uj + j−1(1− εp−
j∑
i=1

ui) = j−1

ρ(uj + µ− ε) +

j∑
i=ρ+1

(uj − ui)

 < 0.

A.1.5. Proof of technical lemmas

Proof of Lemma 1

For notational simplicity, we let ν = n log(βX/αX)
√

512 log(n+p)
log(4)α2

RN
and DR (X∗,X) =

∑
i,j RiX

∗
ij log

X∗ij
Xij

.

The main lines of this proof are in the same spirit as Lemma 3 in (Negahban and Wainwright, 2012),

but sampling scheme and the constraint set are quite different. We use a standard peeling argu-

ment to prove the probability of the following ”bad” event is small

B =

{
∃X ∈ C such that

∣∣∣∣∣ 1

N

N∑
i=1

〈log X∗ − log X,Ei〉 −DR (X∗,X)

∣∣∣∣∣ ≥ 1

2
DR (X∗,X)− E(n, p, r)

}
.

We separate the constraint set C into pieces and focus on a sequences of small sets Cl,

Cl =
{
X ∈ S

∣∣2l−1ν ≤ D(X∗,X) ≤ 2lν
}
, l ∈ N+.

As C ∈
⋃∞
l=1 Cl, X ∈ C implies that X ∈ Cl with some l, and DR(X∗,X) ≥ αR

n D(X∗,X) under

Condition 1, it suffices to estimate the probability of the following events and then apply the union

bound.

Bl =

{
∃X ∈ Cl such that

∣∣∣∣∣ 1

N

N∑
i=1

〈log X∗ − log X,Ei〉 −DR

∣∣∣∣∣ ≥ 2lναR
4n

− E(n, p, r)

}
, l ∈ N+.
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since Cl ⊆ C
(
2lν
)

:=

{
X ∈ S

∣∣∣∣ DR (X∗,X) ≤ 2lν

}
that is defined in (A.19), we can establish the

upper bound of the probability of event B by using the union bound and the fact that ex ≥ x, and

applying Lemma 7,

P (B) ≤
k∑
l=1

P (Bl)

≤
k∑
l=1

exp

(
− 4lα2

RNv
2

512(n log(βX/αX))2

)

≤
∞∑
l=1

exp

(
− log(4)α2

RNv
2l

512(n log(βX/αX))2

)

=
exp

(
− log(4)α2

RNv
2

512(n log(βX/αX))2

)
1− exp

(
− log(4)α2

RNv
2

512(n log(βX/αX))2

) .
The proof is completed by plugging ν = n log(βX/αX)

√
512 log(n+p)
log(4)α2

RN
.

Proof of Lemma 2

Let Yi = −〈X,Ei〉−1Ei+R1n1Tp , then OLN (X∗)+R1n1Tp = 1
N

∑N
i=1 Yi and EYi = −

∑
jk

RjX
∗
jk

X∗jk
eje

T
k +

R1n1Tp = 0. We note that, under Conditions 1 and 2, using Weyl’s inequality, we have

‖Yi‖2 =
∥∥−〈Ei,X

∗〉−1Ei + R1n1Tp
∥∥

2

≤ max
j,k

∥∥∥X∗jk−1eje
T
k

∥∥∥
2

+
∥∥R1n1Tp

∥∥
2

≤ max
j,k

X∗jk
−1 +

(
p

n∑
i=1

R2
i

)1/2

≤ p/αX + (β2
Rp/n)1/2.

We also observe that

EYT
i Yi =

∑
ij

RiX
∗
ij

X∗ij
2 eje

T
j − ‖R‖2F1p1

T
p and EYiY

T
i =

∑
ij

RiX
∗
ij

X∗ij
2 eie

T
i − pR1n (R1n)

T
.
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Hence, under Conditions 1 and 2, we apply Weyl’s inequality to EYT
i Yi and EYiY

T
i and obtain

‖EYT
i Yi‖2 ≤

∥∥∥∥∥∥
∑
ij

Ri
X∗ij

eje
T
j

∥∥∥∥∥∥
2

+ ‖R‖2F
∥∥1p1Tp ∥∥2

= max
1≤j≤p

n∑
i=1

Ri
X∗ij

+ p

n∑
i=1

R2
i ≤ p/αX + β2

Rp/n,

‖EYiY
T
i ‖2 ≤

∥∥∥∥∥∥
∑
ij

Ri
X∗ij

eie
T
i

∥∥∥∥∥∥
2

+
∥∥∥pR1n (R1n)

T
∥∥∥

2
= max

1≤i≤n

p∑
j=1

Ri
X∗ij

+ p

n∑
i=1

R2
i ≤ βRp2/(αXn) + β2

Rp/n.

Denote by M = p/αX + (β2
Rp/n)1/2 and σ2 = Np

(
β2
R/n+ (1 ∨ βRp/n)/αX

)
, then applying Lemma

5, with any t > 0, we have

P
(
‖OLN (X∗) + R1n1Tp ‖2 ≥ t

)
≤ (n+ p)

{
exp

(
− Nt2

4p (β2
R/n+ (1 ∨ βRp/n)/αX)

)
∨ exp

(
− Nt

2(p/αX + (β2
Rp/n)1/2)

)}
.

We complete the proof by setting t =

{√
8(β2

R/n+(1∨βRp/n)/αX)p log(n+p)

N ∨ 4(1/αX+βR/(np)
1/2)p log(n+p)

N

}
.

Proof of Lemma 3

We observe that (A.7) is essentially equivalent to (B.2) in Lemma 1 from Negahban and Wainwright,

2011. Therefore, following their results, under the assumption λ ≥ 2‖OLN (X∗)+R1n1Tp ‖2, for each

constant r ≤ n ∧ p, there exists an orthogonal decomposition ∆ = ∆
′
+ ∆

′′
, where the rank of ∆

′

is less than 2r and ∆
′′

satisfies

‖∆
′′
‖? ≤ 3‖∆

′
‖? + 4

n∧p∑
i=r+1

σi (X?) and ‖∆‖2F = ‖∆
′
‖2F + ‖∆

′′
‖2F .

Using the triangle inequality and ‖∆
′
‖∗ ≤

√
2r‖∆

′
‖F ≤

√
2r‖∆‖F , we obtain

‖∆‖∗ ≤ ‖∆
′
‖∗ + ‖∆

′′
‖∗ ≤ 4‖∆

′
‖∗ + 4

n∧p∑
i=r+1

σi (X∗) ≤ 4
√

2r‖∆‖F + 4

n∧p∑
i=r+1

σi (X∗) ,

which completes the proof.
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Proof of Lemma 4

Using Taylor expansion on the function f(x) = log(x), we rewrite KL divergence D(X∗, X̂) as

D(X∗, X̂) =
∑
i,j

−X∗ij log
X̂ij

X∗ij
=
∑
i,j

−(X̂ij −X∗ij) +
X∗ij
ξ2
ij

(X̂ij −X∗ij)2 =
∑
i,j

X∗ij
ξ2
ij

(X̂ij −X∗ij)2,

where we use
∑
ij X

∗
ij =

∑
ij X̂ij = n in the third equality, and ξij is a quantity between X̂ij and

X∗ij . Since both X∗ij and X̂ij are uniformly bounded by [αX/p, βX/p] for any (i, j), we complete the

proof by

D(X∗,X) =
∑
i,j

X∗ij
ξ2
ij

(X̂ij −X∗ij)2 ≤ βX/p

(αX/p)2

∑
i,j

(X̂ij −X∗ij)2 =
βXp

α2
X

‖X∗ −X‖2F ,

D(X∗,X) =
∑
i,j

X∗ij
ξ2
ij

(X̂ij −X∗ij)2 ≥ αX/p

(βX/p)2

∑
i,j

(X̂ij −X∗ij)2 =
αXp

β2
X

‖X∗ −X‖2F .

Concentration Inequalities

Lemma 5. Let Yi be independent n × p zero-mean random matrices such that ‖Yi‖2 ≤ M and

define σ2 = max
{∑N

i=1 ‖EYT
i Yi‖2,

∑N
i=1 ‖EYiY

T
i ‖2

}
. For all t > 0, we have

P

[
‖ 1

N

N∑
i=1

Yi‖2 ≥ t

]
≤ (n+ p)

{
exp

(
−N2t2/(4σ2)

)
∨ exp (−Nt/(2M))

}
. (A.16)

In addition, the expected spectral norm satisfies

(
E‖ 1

N

N∑
i=1

Yi‖22

)1/2

≤
√
C0(n, p)σ2

N
+
C0(n, p)M

N
, (A.17)

where the dimension constant C0(n, p) = 4(3 + 2 log(n+ p)).

Proof. The proof of concentration inequality (A.16) follows, for example, Theorem 1.6 of (Tropp,

2011); see also Theorem 3.2 of (Recht, 2011). The proof of inequality (A.17) follows, for example,

Theorem 1 of (Tropp, 2015).

Lemma 6. Let n × p random matrices {Ei}Ni=1 be i.i.d with distribution Π on {ei(n)eTj (p), (i, j) ∈
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[n] × [p]} and {εi}Ni=1 is an i.i.d Rademacher sequence. Under Conditions 1 and 2, we have the

upper bound

E

∥∥∥∥∥ 1

N

N∑
i=1

εiEi

∥∥∥∥∥
2

≤

√√√√C0(n, p)
(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N
. (A.18)

Proof. We establish this bound by applying Lemma 5. Let Yi = εiEi, we first calculate the terms

M and σ2 involved in Lemma 5. According to the definition of εi and Ei,

M = max
1≤i≤N

‖Yi‖2 = max
1≤i≤N

‖εiEi‖2 = max
1≤i≤N

‖εiek(i)e
T
j(i)‖2 = 1.

Also note that,

E
[
YT
i Yi

]
= E

[
ε2
iE

T
i Ei

]
=
∑
k,j

RkX
∗
kjeje

T
j and E

[
YT
i Yi

]
= E

[
ε2
iEiE

T
i

]
=
∑
k,j

RkX
∗
kjeke

T
k .

We observe that, under Conditions 1 and 2,

‖
∑
k,j

RkX
∗
kjeje

T
j ‖2 = max

j

n∑
k=1

RkX
∗
kj ≤

n∑
k=1

Rk ·max
k,j

X∗kj ≤ βX/p,

‖
∑
k,j

RkX
∗
kjeke

T
k ‖2 = max

k

p∑
j=1

RkX
∗
kj ≤

p∑
j=1

X∗kj ·max
k

Rk ≤ βR/n.

As a result, σ2 = N
(
βX
p ∨

βR
n

)
. By applying Jensen’s inequality and inequality (A.17), we obtain

E

∥∥∥∥∥ 1

N

N∑
i=1

εiEi

∥∥∥∥∥
2

≤

E

∥∥∥∥∥ 1

N

N∑
i=1

εiEi

∥∥∥∥∥
2

2

1/2

≤

√√√√C0(n, p)
(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N
.

Lemma 7. We define a constraint set C (T ) with some constant T > 0,

C (T ) =

{
X ∈ S(αx, βx)

∣∣∣∣ D(X∗, X̂) ≤ T
}
. (A.19)
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And denote by ZT the function on the constraint set C (T )

ZT = sup
X∈C(T )

∣∣∣∣∣∣ 1

N

N∑
i=1

〈log X∗ − log X,Ei〉 −
∑
ij

RiX
∗
ij log

X∗ij
Xij

∣∣∣∣∣∣ ,
where {Ei}Ni=1 is i.i.d with distribution Π = RX∗ on {ei(n)eTj (p), (i, j) ∈ [n] × [p]}. We suppose

{Ri}ni=1 and X satisfy Condition 1 and 2 respectively. If X further satisfies ‖X∗−X‖∗ ≤ 4
√

2r‖X∗−

X‖F + 4
∑n∧p
i=r+1 σi (X∗), then

P
(
ZT ≥

αRT

4n
+ E(n, p, r)

)
≤ exp

(
− α2

RNT
2

512(n log(βX/αX))2

)
,

where

E(n, p, r) =
1024β2

Xnpr

α3
XαR


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N


2

+
16p

αX


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N

 n∧p∑
i=r+1

σi (X∗) .

Proof. Under Condition 2, sup
X∈S(αX ,βX)

‖ logX∗ − logX‖∞ ≤ log(βX/αX), we obtain the following

concentration inequality by a version of Hoeffding’s inequality due to Theorem 14.2 of (Bühlmann

and Van De Geer, 2011),

P (ZT − EZT ≥ αRT/(8n)) ≤ exp

(
− α2

RNT
2

512(n log(βX/αX))2

)
. (A.20)

It remains to upper bound the quantity EZT . By using a standard symmetrization argument, we

obtain

E (ZT ) = E sup
X∈C(T )

∣∣∣∣∣∣ 1

N

N∑
i=1

〈log X∗ − log X,Ei〉 −
∑
ij

RiX
∗
ij log

X∗ij
Xij

∣∣∣∣∣∣
≤ 2E

(
sup

X∈C(T )

∣∣∣∣∣ 1

N

N∑
i=1

εi〈log X∗ − log X,Ei〉

∣∣∣∣∣
)

= 2E

 sup
X∈C(T )

∣∣∣∣∣∣ 1

N

N∑
i=1

εi
∑
j,k

I(Ei=ej(n)ek(p)T ) log
X∗jk
Xjk

∣∣∣∣∣∣
 ,
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where {εi}Ni=1 is an i.i.d Rademacher sequence. We notice that, for any number i ∈ [N ] and any t

that satisfies X∗jk + t ≥ αX/p with ∀(j, k) ∈ [n]× [p], the function

φi(t) =
αX
p

∑
j,k

I(Ei=ej(n)ek(p)T ) log
X∗jk

X∗jk + t

is a contraction with φi(0) = 0. Then the contraction principle from Theorem 4.12 in (Ledoux and

Talagrand, 2013), together with Hölder’s inequality between nuclear and operator norm, yields

E(ZT ) ≤ 4p

αX
E

(
sup

X∈C(T )

∣∣∣∣∣ 1

N

N∑
i=1

〈X∗ −X, εiEi〉

∣∣∣∣∣
)

≤ 4p

αX
sup

X∈C(T )

‖X∗ −X‖∗E

∥∥∥∥∥ 1

N

N∑
i=1

εiEi

∥∥∥∥∥
2

. (A.21)

We bound E
∥∥∥ 1
N

∑N
i=1 εiEi

∥∥∥
2

by applying Lemma 6,

E

∥∥∥∥∥ 1

N

N∑
i=1

εiEi

∥∥∥∥∥
2

≤

√√√√C0(n, p)
(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N
. (A.22)

Under the assumption that ‖X∗ −X‖∗ ≤ 4
√

2r‖X∗ −X‖F + 4
∑n∧p
i=r+1 σi (X∗), applying Lemma 4,

we can bound ‖X∗ −X‖∗ by

sup
X∈C(T )

‖X∗ −X‖∗ ≤ 4
√

2r sup
X∈C(T )

‖X∗ −X‖F + 4

n∧p∑
i=r+1

σi (X∗)

≤ sup
X∈C(T )

4

√
2β2

Xr

αXp
D(X∗,X) + 4

n∧p∑
i=r+1

σi (X∗)

≤ 4

√
2β2

XrT

αXp
+ 4

n∧p∑
i=r+1

σi (X∗) . (A.23)

Combining inequalities (A.21), (A.22) and (A.23) yields,

E(ZT ) ≤ 16p

αX


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N


√2β2

XrT

αXp
+

n∧p∑
i=r+1

σi (X∗)

 .

78



Finally, using

αRT

8n
+

16p

αX


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N


√2β2

XrT

αXp
+

n∧p∑
i=r+1

σi (X∗)



≤ αRT

4n
+

1024β2
Xnpr

α3
XαR


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N


2

+
16p

αX


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N

 n∧p∑
i=r+1

σi (X∗)

and concentration inequality (A.20), we achieve at

P
(
ZT ≥

αRT

4n
+ E(n, p, r)

)
≤ exp

(
− α2

RNT
2

512(n log(βX/αX))2

)
,

with

E(n, p, r) =
1024β2

Xnpr

α3
XαR


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N


2

+
16p

αX


√√√√C0(n, p)

(
βR
n ∨

βX
p

)
N

+
C0(n, p)

N

 n∧p∑
i=r+1

σi (X∗) .

A.2. Additional Lemmas and Technical Proofs for Chapter 2

A.2.1. Proof of Proposition 3

Using the fact that the centered log-ratio covariance matrix Γ0 is symmetric and has all zero row

sums (Aitchison, 2003 Property 4.6), we have

tr{(γ01
T + 1γT0 )TΓ0} = tr(γT0 Γ01) + tr(γ01

TΓ0) = 0,

that is, the components γ01
T + 1γT0 and Γ0 are orthogonal to each other.
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To show the desired inequality, by the identity (4.35) of Aitchison, (2003), we have

ω0
ij − γ0

ij = ω0
ij − (ω0

ij − ω0
i· − ω0

j· + ω0
··) = ω0

i· + ω0
j· − ω0

··.

Therefore,

‖Ω0 − Γ0‖max ≤ max
i,j

(|ω0
i·|+ |ω0

j·|+ |ω0
··|) ≤ 3p−1‖Ω0‖1.

A.2.2. Proof of Proposition 4

We first claim that if α = (α1, . . . , αp)
T 6= 0, then the matrix A ≡ α1T + 1αT has at least p − 1

nonzero upper-triangular entries. To prove this, without loss of generality, assume α1 6= 0 and

that the last q entries of the first row of A are zero, where 0 ≤ q ≤ p − 1; that is, α1 + αj 6= 0 for

1 ≤ j ≤ p−q, and α1+αp−q+1 = · · · = α1+αp = 0. The latter implies αp−q+1 = · · · = αp = −α1 6= 0,

which gives rise to
(
q
2

)
= q(q − 1)/2 nonzero entries at positions (i, j) with p − q + 1 ≤ i < j ≤ p.

Putting these pieces together, we obtain that the number of nonzero upper-triangular entries in A

is at least

f(q) ≡ p− q − 1 +
q(q − 1)

2
≥ f(1) = f(2) = p− 2.

To show that the lower bound p− 2 is not attainable, note that if there are only p− 2 nonzero upper-

triangular entries, then q = 1 or 2, and we have α2 + αp = · · · = αp−2 + αp = 0, which implies

α2 = · · · = αp−2 = −αp = α1 6= 0. Since p ≥ 5, this gives rise to at least one nonzero entry at

positions (i, j) with 2 ≤ i < j ≤ p− 2, which is a contradiction.

Now suppose se(p) < (p− 1)/2 and that Ω1 and Ω2 in B0(se(p)) lead to T1 = T2, that is,

(ω1 − ω2)1T + 1(ω1 − ω2)T = 2(Ω1 −Ω2).

Note that the right-hand side has fewer than p− 1 nonzero upper-triangular entries. Then it follows

from the above claim that Ω1 = Ω2.

We prove the other direction by showing that, if se(p) ≥ (p − 1)/2, then there exist Ω1 and Ω2 in
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B0(se(p)) with Ω1 6= Ω2 that lead to T1 = T2. Indeed, let

Ω1 =


1 + c c1Tp1 0Tp2

c1p1 I 0

0p2 0 I

 , Ω2 =


1− c 0Tp1 −c1Tp2
0p1 I 0

−c1p2 0 I

 ,

where p1 = b(p− 1)/2c, p2 = p− 1− p1, and 0 < |c| < 1. Then it is easy to verify that

T1 = T2 =


0 (2− c)1Tp1 (2 + c)1Tp2

(2− c)1p1 2(1p11
T
p1 − I) 21p11

T
p2

(2 + c)1p2 21p21
T
p1 2(1p21

T
p2 − I)

 .

This completes the proof.

A.2.3. Concentration Inequalities

To prepare for the proofs of Theorems 1 and 2, we first establish some useful concentration in-

equalities. For notational simplicity, the constants C1, C2, . . . below may vary from line to line.

Lemma 8. Under Condition 3, there exist constants C1, C2 > 0 such that

P

(
max
j

∣∣∣∣∣ 1n
n∑
k=1

Ykj

∣∣∣∣∣ ≥ t
)
≤ C1pe

−C2nt
2

(A.24)

and

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

YkiYkj − EYiYj

∣∣∣∣∣ ≥ t
)
≤ C1p

2e−C2nt
2

(A.25)

for sufficiently small t > 0. Moreover, if log p = o(n1/5), then there exists a constant C3 > 0 such

that

P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

YkiYkjYk`Ykm − EYiYjY`Ym

∣∣∣∣∣ ≥ ε
)

= O(p−C3) (A.26)

for every constant ε > 0.

Proof. Inequalities (A.24) and (A.25) follow, for example, from Exercise 2.27 of Boucheron, Lugosi,

and Massart, (2013); see also Bickel and Levina, (2008).

To prove (A.26), let Zkijlm = YkiYkjYk`Ykm and Zijlm = YiYjY`Ym. Note first that, by Condition 3
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and the sub-Gaussian tail bound, for any K > 0 and i, j, `,m,

P (|Zijlm| > K) ≤ 4P (|Yj | > K1/4) ≤ 8e−α
√
K/8.

Hence,

E|Zijlm|I(|Zijlm| > K) =

∫ ∞
0

P (|Zijlm|I(|Zijlm| > K) > z) dz

= KP (|Zijlm| > K) +

∫ ∞
K

P (|Zijlm| > z) dz

≤ 8Ke−α
√
K/8 +

∫ ∞
K

8e−α
√
z/8 dz

=
8

α2
(α2K + 16α

√
K + 128)e−α

√
K/8,

which is less than ε/4 if we choose K sufficiently large. Then we have

P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

Zkijlm − EZijlm

∣∣∣∣∣ ≥ ε
)

≤ P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

ZkijlmI(|Zkijlm| ≤ K)− EZijlmI(|Zijlm| ≤ K)

∣∣∣∣∣ ≥ ε

2

)

+ P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

ZkijlmI(|Zkijlm| > K)

∣∣∣∣∣ ≥ ε

4

)

≡ T1 + T2.

By Hoeffding’s inequality and the union bound,

T1 ≤ 2p4 exp

(
− nε2

8K2

)
.

Also, by Condition 1 and the sub-Gaussian tail bound,

T2 ≤ P
(

max
k,i,j,`,m

|Zkijlm| > K

)
≤ P

(
max
k,j
|Ykj | > K1/4

)
≤ 2npe−α

√
K/8.

Combining both terms, choosing K = C2(log p + log n)2 with C > 8/α, and noting log p = o(n1/5),
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we arrive at

P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

Zkijlm − EZijlm

∣∣∣∣∣ ≥ ε
)

≤ 2p4 exp

(
− nε2

8C4(log p+ log n)4

)
+ 2(np)1−Cα/8

= O(p−C3)

for some C3 > 0. This proves (A.26) and completes the proof.

Lemma 9. Under Conditions 3–6, there exist constants C1, C2, C3 > 0 such that

P

(
max
i,j
|θ̂ij − θij | ≥ ε

)
= O(p−C3) (A.27)

and

P

(
max
i,j
|γ̂ij − ω0

ij |/
√
θ̂ij ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3) (A.28)

for every constant ε > 0.

Proof. We first prove (A.27). Define

θ̃ij =
1

n

n∑
k=1

(γkiγkj − γ̃ij)2,

where γ̃ij = n−1
∑n
k=1 γkiγkj . We then write

θ̂ij − θ̃ij =
1

n

n∑
k=1

{(γkiγkj − γ̃ij)− γkiγ̄j − γkj γ̄i + 2γ̄iγ̄j}2 −
1

n

n∑
k=1

(γkiγkj − γ̃ij)2

=
2

n

n∑
k=1

(γkiγkj − γ̃ij)(−γkiγ̄j − γkj γ̄i + 2γ̄iγ̄j) +
1

n

n∑
k=1

(−γkiγ̄j − γkj γ̄i + 2γ̄iγ̄j)
2. (A.29)

Note that, by definition, γkj = Ykj − Ȳk, where Ȳk = p−1
∑p
j=1 Ykj . Define γj = Yj − Ȳ , where

Ȳ = p−1
∑p
j=1 Yj . Since Yj are uniformly sub-Gaussian by Condition 3, γj are also uniformly

sub-Gaussian. Using a truncation argument similar to that for proving (A.26), we can show that

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γ2
kiγkj − Eγ2

i γj

∣∣∣∣∣ ≥ C1

)
= O(p−C3)
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for some C1, C3 > 0. The sub-Gaussian tails imply also that Eγ2
i |γj | ≤ 1

2 (Eγ4
i + Eγ2

j ) = O(1).

Combining these two pieces yields

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γ2
kiγkj

∣∣∣∣∣ ≥ C1

)
= O(p−C3).

It follows from Lemma 8 that

P

(
max
j
|γ̄j | ≥ C1

√
log p

n

)
= O(p−C3).

The above two inequalities together imply

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γ2
kiγkj γ̄j

∣∣∣∣∣ ≥ C1

√
log p

n

)
= O(p−C3). (A.30)

We can similarly bound the other terms in (A.29) and obtain

P

(
max
i,j
|θ̂ij − θ̃ij | ≥ C1

√
log p

n

)
= O(p−C3). (A.31)

Next, write

θ̃ij − θij =
1

n

n∑
k=1

(γkiγkj − γ̃ij)2 −Var(YiYj)

=
1

n

n∑
k=1

γ2
kiγ

2
kj − EY 2

i Y
2
j − {γ̃2

ij − (ω0
ij)

2}

≡ T1 + T2.

To bound the term T1, we further write

T1 =
1

n

n∑
k=1

{(Yki − Ȳk)(Ykj − Ȳk)}2 − EY 2
i Y

2
j

=
1

n

n∑
k=1

(
YkiYkj − YkiȲk − Ykj Ȳk + Ȳ 2

k

)2 − EY 2
i Y

2
j

=
1

n

n∑
k=1

Y 2
kiY

2
kj − EY 2

i Y
2
j +

2

n

n∑
k=1

YkiYkj(−YkiȲk − Ykj Ȳk + Ȳ 2
k )

+
1

n
(−YkiȲk − Ykj Ȳk + Ȳ 2

k )2.
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Consider the event A1 on which

max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

YkiYkjYk`Ykm − EYiYjY`Ym

∣∣∣∣∣ ≤ ε1.

Then, on A1, we have ∣∣∣∣∣ 1n
n∑
k=1

Y 2
kiY

2
kj − EY 2

i Y
2
j

∣∣∣∣∣ ≤ ε1.

To bound the next term in T1, we write

1

n

n∑
k=1

Y 2
kiYkj Ȳk =

1

n

n∑
k=1

Y 2
kiYkj Ȳk − EY 2

i Yj Ȳ + EY 2
i Yj Ȳ

=
1

p

p∑
`=1

(
1

n

n∑
k=1

Y 2
kiYkjYk` − EY 2

i YjY`

)
+

1

p

p∑
`=1

EY 2
i YjY`,

which, on A1 and by Condition 6, is bounded by ε1 + s1(p)/p. We can similarly bound the other

terms in T1 and obtain, on A1,

|T1| ≤ 16ε1 + 15s1(p)/p. (A.32)

To bound the term T2, note that

γ̃ij − ω0
ij =

1

n

n∑
k=1

(Yki − Ȳk)(Ykj − Ȳk)− EYiYj

=
1

n

n∑
k=1

YkiYkj − EYiYj +
1

n

n∑
k=1

(−YkiȲk − Ykj Ȳk + Ȳ 2
k ). (A.33)

Consider the event A2 on which

max
i,j

∣∣∣∣∣ 1n
n∑
k=1

YkiYkj − EYiYj

∣∣∣∣∣ ≤ ε2.

To bound the next term in (A.33), we write

1

n

n∑
k=1

YkiȲk =
1

n

n∑
k=1

YkiȲk − EYiȲ + EYiȲ

=
1

p

p∑
j=1

(
1

n

n∑
k=1

YkiYkj − EYiYj

)
+

1

p

p∑
j=1

ω0
ij ,

which, on A2 and by Condition 4, is bounded by ε2 + M1−qs0(p)/p. We can similarly bound the
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other terms in (A.33) and obtain, on A2,

|γ̃ij − ω0
ij | ≤ 4ε2 + 3M1−qs0(p)/p. (A.34)

Note also that, on A2,

|γ̃ij + ω0
ij | ≤ |γ̃ij − ω0

ij |+ 2|ω0
ij | ≤ 4ε2 + 3M1−qs0(p)/p+ 2M.

Hence, on A2, we have

|T2| = |γ̃ij − ω0
ij ||γ̃ij + ω0

ij | ≤ (4ε2 + 3M1−qs0(p)/p)(4ε2 + 3M1−qs0(p)/p+ 2M). (A.35)

Finally, it follows from Lemma 8 that the event A1 ∩ A2 occurs with probability at least 1−O(p−C3)

for all constants ε1, ε2 > 0 and some constant C3 > 0. Combining (A.31), (A.32), and (A.35) and

noting log p = o(n), s0(p) = o(p), and s1(p) = o(p), we arrive at (A.27).

It remains to prove (A.28). We first write

γ̂ij − γ̃ij =
1

n

n∑
k=1

(γki − γ̄i)(γkj − γ̄j)−
1

n

n∑
k=1

γkiγkj

=
1

n

n∑
k=1

(−γkiγ̄i − γkj γ̄j + γ̄iγ̄j).

Using arguments similar to those for proving (A.30), we can show that

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γkiγ̄j

∣∣∣∣∣ ≥ C1

√
log p

n

)
= O(p−C3).

We can similarly bound the other two terms and obtain

P

(
max
i,j
|γ̂ij − γ̃ij | ≥ C1

√
log p

n

)
= O(p−C3).

Taking ε2 = C1

√
(log p)/n in (A.34), we have

P

(
max
i,j
|γ̃ij − ω0

ij | ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3).
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The above two inequalities together imply

P

(
max
i,j
|γ̂ij − ω0

ij | ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3). (A.36)

From Condition 5 and (A.27) with ε2 = τ/2, it follows that |θ̂ij | ≥ τ/2 with probability at least

1−O(p−C3). This, together with (A.36), implies (A.28) and completes the proof.

A.2.4. Proof of Theorem 4

By the triangle inequality, we have

‖Ω̂−Ω0‖1 ≤
p∑
j=1

|Sλij (ω0
ij)− ω0

ij |+
p∑
j=1

|Sλij (γ̂ij)− Sλij (ω0
ij)|. (A.37)

Using Conditions (i) and (ii) that define a general thresholding function, the first term above is

bounded by

p∑
j=1

|ω0
ij |I(|ω0

ij | ≤ λij) +

p∑
j=1

λijI(|ω0
ij | > λij)

=

p∑
j=1

|ω0
ij |q|ω0

ij |1−qI(|ω0
ij | ≤ λij) +

p∑
j=1

λqijλ
1−q
ij I(|ω0

ij | > λij)

≤
p∑
j=1

|ω0
ij |qλ

1−q
ij .

On the other hand, the second term in (A.37) is bounded by

2

p∑
j=1

|γ̂ij |I(|γ̂ij | > λij , |ω0
ij | ≤ λij) + 2

p∑
j=1

|ω0
ij |I(|γ̂ij | ≤ λij , |ω0

ij | > λij)

+

p∑
j=1

|Sλij (γ̂ij)− Sλij (ω0
ij)|I(|γ̂ij | > λij , |ω0

ij | > λij)

≡ T1 + T2 + T3.
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To bound the term T1, we write

T1

2
≤

p∑
j=1

|γ̂ij − ω0
ij |I(|γ̂ij | > λij , |ω0

ij | ≤ λij/2)

+

p∑
j=1

|γ̂ij − ω0
ij |I(|γ̂ij | > λij , λij/2 < |ω0

ij | ≤ λij) +

p∑
j=1

|ω0
ij |I(|γ̂ij | > λij , |ω0

ij | ≤ λij)

≡ T4 + T5 + T6.

Consider the event B1 on which |γ̂ij − ω0
ij | ≤ λij/2 for all i, j. On B1, we have

T4 ≤
p∑
j=1

|γ̂ij − ω0
ij |I(|γ̂ij − ω0

ij | > λij/2) = 0,

T5 ≤
p∑
j=1

(
λij
2

)q (
λij
2

)1−q

I(|γ̂ij | > λij , λij/2 < |ω0
ij | ≤ λij) ≤

1

21−q

p∑
j=1

|ω0
ij |qλ

1−q
ij ,

and

T6 ≤
p∑
j=1

|ω0
ij |qλ

1−q
ij .

Combining these pieces yields

T1 ≤ 2

(
1 +

1

21−q

) p∑
j=1

|ω0
ij |qλ

1−q
ij ≤ 4

p∑
j=1

|ω0
ij |qλ

1−q
ij .

We can similarly bound the terms T2 and T3 on B1:

T2 ≤ 2

p∑
j=1

(
|γ̂ij − ω0

ij |+ |γ̂ij |
)
I(|γ̂ij | ≤ λij , |ω0

ij | > λij)

≤ 2

p∑
j=1

(
λij
2

+ λij

)
I(|γ̂ij | ≤ λij , |ω0

ij | > λij) ≤ 3

p∑
j=1

|ω0
ij |qλ

1−q
ij ,

T3 ≤
p∑
j=1

(
|γ̂ij − ω0

ij |+ |Sλij (γ̂ij)− γ̂ij |+ |Sλij (ω0
ij)− ω0

ij |
)
I(|γ̂ij | > λij , |ω0

ij | > λij)

≤
p∑
j=1

(
λij
2

+ λij + λij

)
I(|γ̂ij | > λij , |ω0

ij | > λij) ≤
5

2

p∑
j=1

|ω0
ij |qλ

1−q
ij .

Collecting all terms, we obtain, on B1,

‖Ω̂−Ω0‖1 ≤
21

2

p∑
j=1

|ω0
ij |qλ

1−q
ij . (A.38)
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Next, we consider the event B2 on which |θ̂ij − θij | ≤ τ for all i, j. From Condition 5 we have, on

B2,

θ̂ij ≤ |θ̂ij − θij |+ θij ≤ τ + θij ≤ 2θij . (A.39)

Note that, by Condition 3,

θij ≤ EY 2
i Y

2
j ≤

1

2
(EY 4

i + EY 4
j ) ≤ 2

α2
. (A.40)

Taking λij = λ
√
θ̂ij with λ = C1

√
(log p)/n + C2s0(p)/p in (A.38) and applying (A.39) and (A.40),

we obtain, on B1 ∩B2,

‖Ω̂−Ω0‖1 ≤
21

2

p∑
j=1

|ω0
ij |qλ1−q

(
2

α

)1−q

≤ 21

α
s0(p)

(
C1

√
log p

n
+ C2

s0(p)

p

)1−q

.

We conclude the proof by noting that the event B1 ∩ B2 occurs with probability 1 − O(p−C3) by

Lemma 9 and that the spectral norm is bounded by the matrix L1-norm.

A.2.5. Proof of Theorem 5

It follows from Condition (i) and (A.28) that

P
(
ω̂ij 6= 0, ω0

ij = 0 for some i, j
)
≤ P

(
max
i,j
|γ̂ij − ω0

ij | ≥ λij
)

= P

(
max
i,j
|γ̂ij − ω0

ij |/
√
θ̂ij ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3),

which proves (2.12).

To prove (2.14), note that, by Condition (ii),

P
(
sgn(ω̂ij) 6= sgn(ω0

ij), ω
0
ij 6= 0 for some i, j

)
≤ P

(
|γ̂ij − ω0

ij | ≥ |ω0
ij | − λij for some i, j

)
.

Also, by taking ε = 3τ/4 in (A.27), we have, with probability 1−O(p−C3),

∣∣∣∣√θ̂ij −√θij∣∣∣∣ =
|θ̂ij − θij |√
θ̂ij +

√
θij

≤ 3τ/4√
τ/4 +

√
τ

=

√
τ

2
,
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and hence

|ω0
ij | − λij ≥ Cλ

√
θij − λ

(√
θ̂ij −

√
θij +

√
θij

)
≥ (C − 1)λ

√
τ − λ

√
τ

2
=

(
C − 3

2

)
λ
√
τ

for all i, j. Now applying (A.36) yields

P
(
sgn(ω̂ij) 6= sgn(ω0

ij), ω
0
ij 6= 0 for some i, j

)
= O(p−C3),

which, together with (2.12), proves the result.

A.3. Additional Lemmas and Technical Proofs for Chapter 3

A.3.1. Preliminary Lemmas

Suppose logWd is drawn from the distribution of logW ?
d = (logw?1,d, · · · , logw?p,d) with the covari-

ance Ω = (ωi,j) = cov(logw?i,d, logw?j,d). Let Ω̂d = (ω̂i,j,d) as the sample covariance of logWd

(d = 1, 2),

ω̂i,j,d =
1

n

nd∑
k=1

(logwk,i,d −
1

nd

nd∑
l=1

logwl,i,d)(logwk,j,d −
1

nd

nd∑
l=1

logwl,j,d).

For notational simplicity, the constants C1, C2, · · · below may vary from line to line.

Lemma 10. If the tail distribution of logW ?
d follows Condition 4, for any t > 0, we have

pr(max
i,j
|ω̂i,j,d − ωi,j | /(ωi,iωj,j)1/2 ≥ t) ≤ C1p exp(−C2ndt/2) + p2C3 exp(−C4ndt

2/4), (A.41)

where C1, C2, C3 and C4 are constants that do not depend on p and nd.

Besides, if tail distribution of logW ?
d (d = 1, 2) follows Condition 5. Let

θ := max
i,j

E
{

(logw?i,d − µi,d)(logw?j,d − µj,d)− ωi,j
}2
/(ωi,iωj,j)

which is a bounded constant depending only on γ0, ε,K under the condition 5, then for any M > 0,
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we have

pr(max
i,j
|ω̂i,j,d − ωi,j | /(ωi,iωj,j)1/2 ≥ {(θ + 1)(5 +M) log p/nd}1/2) = O(n

−ε/8
d + p−M/2). (A.42)

Lemma 11. Let M?
n = n1n2

n1+n2
max1≤i≤p

(ȳi,1−ȳi,2)2

γi,i
. If equations (3.10) and (3.11) hold, under the

null hypothesis H0 : ν1 = ν2, for any t ∈ R and ε(1)
n,p = o(1), we have

pr(M?
n ≤ (t+ 2 log p− log log p)(1 + ε(1)

n,p(log p)−1))→ exp
{
−π−1/2 exp(−t/2)

}
, (A.43)

as n1, n2, p → ∞. We define the corresponding α−level test Φ?α by Φ?α = I(M?
n ≥ (qα + 2 log p −

log log p)(1 + ε
(1)
n,p(log p)−1)), where qα is the 1− α quantile of the Type I extreme value distribution

function, then

prH0
(Φα = 1) ≤ − log(1− α) + o(1). (A.44)

In addition, under H1 : ν1 − ν2 ∈ S(kp) with kp = pr, 0 ≤ r < 1, for some ε > 0, we have

lim
p→∞

prH1
(Φ?α = 1) = 1. if β ≥ (1−

√
r)2 + ε, (A.45)

lim
p→∞

prH1
(Φ?α = 1) ≤ α, if β < (1−

√
r)2. (A.46)

A.3.2. Proof of Theorem 6

Denote ωi,− = p−1
∑p
k=1 ωi,k (i = 1, · · · , p) and ω−,− = p−2

∑p
k,l=1 ωk,l, which will be used fre-

quently in the following a few sections.

We first observed that

rclr
i,j =

ωi,j + ε1

{(ωi,i + ε2)(ωj,j + ε3)}1/2
, 1 ≤ i < j ≤ p,

where ε1 = −ωi,− − ωj,− + ω−,−, ε2 = −2ωi,− + ω−,− and ε3 = −2ωj,− + ω−,−. Under Condition

1, 2 and 3, as a result of Proposition 2, |εi| ≤ 3τr3/p, i = 1, 2, 3. Therefore, by using this inequality
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and 1/τ ≤ ωi,i ≤ τ , when p is sufficiently large, we have

rclr
i,j =

ωi,j + ε1
(ωi,iωj,j)1/2

· (ωi,iωj,j)
1/2

{(ωi,i + ε2)(ωj,j + ε3)}1/2

≤ (ri,j + |ε1| τ)/ {(1− |ε2| τ)(1− |ε3| τ)}1/2

≤ ri,j +O(r3/p).

Similarly, we obtain rclr
i,j ≥ ri,j − O(r3/p). According to Proposition 1, r3 = O(p1/2), thus, uniformly

in 1 ≤ i < j ≤ p, we have that
∣∣rclr
i,j − ri,j

∣∣ = o(1). Using |rclri,j − ri,j | ≤ Cr3/p and Taylor’s expansion

that (rclri,j )2 = r2
i,j + 2ri,j(r

clr
i,j − ri,j) + (rclri,j − ri,j)2, we have

∣∣∣∣∣
p∑
i=1

((rclri,j )2 − r2
i,j)

∣∣∣∣∣ ≤
p∑
i=1

∣∣(rclri,j )2 − r2
i,j

∣∣
≤

p∑
i=1

(2|ri,j ||rclri,j − ri,j |+ |rclri,j − ri,j |2)

≤ (2C + C2)r2
3/p.

As a consequence,

p∑
i=1

(rclr
i,j )

2 ≤
p∑
i=1

r2
i,j +O(r2

3/p),

p∑
i=1

(rclr
i,j )

2 ≥
p∑
i=1

r2
i,j −O(r2

3/p).

The proof of Theorem 6 is completed, as r3 = O(p1/2).

A.3.3. Proof of Theorem 7

Proof of equation (3.11): Note that,

|yk,i,d − νi,d| =

∣∣∣∣∣∣logwk,i,d − p−1

p∑
j=1

logwk,j,d − (µi,d − p−1

p∑
j=1

µj,d)

∣∣∣∣∣∣ .
Under Conditions 1, 2 and 3, by using the property (3.8), it follows that, uniformly in 1 ≤ k ≤ nd

and 1 ≤ i ≤ p, |yk,i,d − νi,d| /γ1/2
i,i ≤ 2

√
2τ maxk,i |logwk,i,d − µi,d| /ω1/2

i,i , (d = 1, 2). Thus, if logW ?
d

(d = 1, 2) follow Condition 4 (sub-Gaussian-type tails), let τn =
{

8τ2((M + 1) log p+ log nd)/η
}1/2
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with some constant M > 0, then, as nd, p→∞,

pr( max
1≤k≤nd,1≤i≤p

|yk,i,d − νi,d| /γ1/2
i,i ≥ τn) ≤ pr( max

1≤k≤nd,1≤i≤p
|logwk,i,d − µi,d| /ω1/2

i,i ≥ τn/(2
√

2τ))

≤ Kndp exp(−ητ2
n/(8τ

2))→ 0.

By using p � n and log p = o(n
1/4
d ), we can verify that τn = o(n

1/2
d /(log p)3/2). If logW ?

d follow

Condition 5 (polynomial-type tails), let τn = 2
√

2τn
1/4
d , then as nd, p→∞,

pr( max
1≤k≤nd,1≤i≤p

|yk,i,d − νi,d| /γ1/2
i,i ≥ τn) ≤ Kndp(τn/(2

√
2τ))−4γ0−4−ε → 0.

Under the condition that p = O(nγ0d ), it can be verified that τn = o(n
1/2
d /(log p)3/2).

Proof of equation (3.12): Without the loss of generality, assume µ1 = µ2 = 0. Denote by γ̂i,i,d as the

sample covariance of Y (d)
i,i . Using the notation defined in §A.3.2 and the equation (3.7), we obtain

|γ̂i,i,d − γi,i| = |(ω̂i,i,d − 2ω̂i,−,d + ω̂−,−)− (ωi,i − 2ωi,− + ω−,−)| ≤ 4 max
i,j
|ω̂i,j,d − ωi,j | .

Therefore, under Condition 2 and 3, if logW ?
d (d = 1, 2) follow Condition 4, as a result of the

inequality (A.41) and (3.8), uniformly in 1 ≤ i ≤ p for any t > 0,

pr(|γ̂i,i,d − γi,i|/γi,i ≥ t) ≤ pr(4 max
i,j

|ω̂i,j,d − ωi,j |
(ωi,iωj,j)1/2

· (ωi,iωj,j)
1/2

min
k
γk,k

≥ t)

≤ pr(max
i,j
|ω̂i,j,d − ωi,j |/(ωi,iωj,j)1/2 ≥ t/(8τ2))

≤ 2p exp(−C1ndt/(16τ2)) + p2C2 exp(−C3ndt
2/(256τ4)).

Since γ̂i,i = n1

n1+n2
γ̂i,i,1 + n2

n1+n2
γ̂i,i,2, and n1 and n2 are comparable, it yields that, for some con-

stants C4, C5 and C6, we have

pr(|γ̂i,i − γi,i|/γi,i ≥ t) ≤ 4p exp(−C4nt/τ
2) + C5p

2 exp(−C6nt
2/τ4).

It implies |γ̂i,i − γi,i| = Op

{
(log p/n)

1/2
}
γi,i. Similarly, under Condition 2 and 3. If logW ?

d (d = 1, 2)
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follow Condition 5, by use of (A.42), uniformly in 1 ≤ i ≤ p for any M > 0,

pr(|γ̂i,i,d − γi,i|/γi,i ≥
{

64τ4(θ + 1)(5 +M) log p/nd
}1/2

)

≤ pr(max
i,j
|ω̂i,j,d − ωi,j |/(ωi,iωj,j)1/2 ≥ {(θ + 1)(5 +M)(log p/nd)}1/2) = O(n

−ε/8
d + p−M/2).

As a result, |γ̂i,i − γi,i| = Op

{
(log p/n)

1/2
}
γi,i, which completes the proof.

A.3.4. Proof of Theorem 8 & 9

Proof 1. We only prove (3.13), the proofs of (3.14), (3.17) and (3.18) are similar. Proof of (3.13):

In the event
{
|γ̂i,i/γi,i − 1| ≤ C1(log p/n)1/2

}
, we have |Mn −M?

n| ≤ C2M
?
n(log p/n)1/2. Since

(log p/n)1/2 = o(1/ log p) under Conditions 4 and 5, the proof is completed by applying Theorem 7

and Lemma 11.

A.3.5. Proof of Technical Lemmas

Lemma 12. (Bonferroni Inequality) Let A =
⋃p
l=1Al. For any k < [p/2], we have

2k∑
l=1

(−1)l−1El ≤ pr(A) ≤
2k−1∑
l=1

(−1)l−1El,

where Et =
∑

1≤i1<···<il≤p pr(Ai1 ∩ · · · ∩Ail).

Lemma 13. Let (Z1, · · · , Zp)T be a zero-mean multivariate normal random vector with covariance

matrix Ω = (ωi,j)1≤i,j≤p and diagonal ωi,i = 1 for 1 ≤ i ≤ p. Suppose that max1≤i<j≤p |ωi,j | ≤ r1 <

1 and maxj
∑p
i=1 ω

2
i,j ≤ r2 <∞, where r1 and r2 are some constants. For any fixed integer d? ≥ 1,

let the vector Nd? = (Zk1 , · · · , Zkd? ) with the index {k1, · · · , kd?}. Then for any εn,p = o(1) and any

t ∈ R,

∑
1≤k1<···<kd?≤p

pr(|Nd? |min ≥ (t+ 2 log p− log log p)1/2 ± εn,p(log p)−1/2)

= (π−1/2 exp(−t/2))d
?

/d?! · (1 + o(1)).

(A.47)
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A.3.6. Proof of Lemma A10

Proof of (A.41): Without loss of generality, we assume µ1 = µ2 = 0 and ωi,i = 1, i = 1 · · · , p, then it

suffices to prove that, for d = 1, 2,

pr(max
i

∣∣∣∣∣ 1

nd

nd∑
k=1

logwk,i,d

∣∣∣∣∣ ≥ t) ≤ C1p exp(−C2ndt
2), (A.48)

pr(max
i,j

∣∣∣∣∣ 1

nd

n∑
k=1

logwk,i,d logwk,j,d − E logw?i,d logw?j,d

∣∣∣∣∣ ≥ t) ≤ p2C3 exp(−C4ndt
2). (A.49)

Proof of inequality (A.48) and (A.49) are the results from Exercise 2.27 in (Boucheron, Lugosi, and

Massart, 2013); Also see (Bickel and Levina, 2008).

Proof of (A.42): See Theorem 1(b) in (Cai, Liu, and Luo, 2011).

A.3.7. Proof of Lemma A11

Proof of (A.43): Let tp = (t+ 2 log p− log log p)(1 + ε
(1)
n,p(log p)−1), according to Lemma B12, for any

m ∈ Z, 0 < m < q/2,

2m∑
d?=1

(−1)d
?−1

∑
1≤k1<···<k?d≤p

pr(

d⋂
j=1

Ekj ) ≤ pr(
n1n2

n1 + n2
max

1≤i≤p

(ȳi,1 − ȳi,2)2

γi,i
≥ tp)

≤
2m−1∑
d?=1

(−1)d
?−1

∑
1≤k1<···<kd?≤p

pr(

d?⋂
j=1

Ekj ),

where Ekj =

{∣∣∣∣ ȳkj,1−ȳkj,2√
γkj,kj (1/n1+1/n2)

∣∣∣∣ ≥ t1/2p

}
, j = 1, · · · , d?. For a fixed d?, define the vectors

(T1, · · · , Tn1
, Tn1+1, · · · , Tn1+n2

) as

Tl = (
1

n1
· yl,k1,1 − νk1,1√

γk1,k1(1/n1 + 1/n2)
, · · · , 1

n1
· yl,kd,1 − νkd,1√

γkd,kd(1/n1 + 1/n2)
)T, l = 1, · · · , n1,

Tl+n1 = (− 1

n2
· yl,k1,2 − νk1,2√

γk1,k1(1/n1 + 1/n2)
, · · · ,− 1

n2
· yl,kd,2 − νkd,2√

γkd,kd(1/n1 + 1/n2)
)T, l = 1, · · · , n2.
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Note that we define |α|min = min1≤i≤d |αi| for any vector α ∈ Rd? . Then we obtain

pr(

d?⋂
j=1

Ekj ) = pr(

∣∣∣∣∣
n1+n2∑
k=1

Tk

∣∣∣∣∣
min

≥ t1/2p ).

Denote the multivariate normal random vectorNd? = (Nk1 , · · · , Nkd? ) withENd? = 0 and cov(Nd?) =

n1cov(T1) + n2cov(Tn1+1) = R. Let λ = ε
(2)
n,p(log p)−1/2d?1/2. Note that under the event that{

max1≤k≤nd,1≤i≤p

∣∣∣(yk,i,d − νi,d)/γ1/2
i,i

∣∣∣ ≤ τn} (d = 1, 2), we have |Tk,i| ≤ τn/n
1/2 for any 1 ≤ k ≤

n1 + n2, 1 ≤ i ≤ p, then by using Theorem 1 in (Zaitsev, 1987), we have

pr(

∣∣∣∣∣
n1+n2∑
k=1

Tk

∣∣∣∣∣
min

≥ t1/2p ) ≤ pr(|Nd? |min ≥ t
1/2
p − λ/d?1/2) + C1d

?5/2 exp(− λn1/2

C2d?
5/2τn

)

= pr(|Nd? |min ≥ t
1/2
p − ε(2)

n,p(log p)−1/2) + C1d
?5/2 exp(− ε

(2)
n,pn1/2

C2d?
2(log p)1/2τn

).

Since limn,p→∞ (log p)3/2τn/n
1/2 → 0, we set ε(2)

n,p = MC6d
?2(log p)3/2τn/n

1/2 which is o(1) for any

constant M > 0, and

C1d
?5/2 exp(− ε

(2)
n,pn1/2

C2d?
2(log p)1/2τn

) = O(p−M ). (A.50)

By Taylor’s expansion, we also observed that t1/2p = (t + 2 log p − log log p)1/2 + C3ε
(1)
n,p(log p)−1/2.

Therefore, setting ε(3)
n,p = C3ε

(1)
n,p − ε(2)

n,p and using equation (3.11) and (A.50), we have

pr( max
1≤i≤p

(ȳi,1 − ȳi,2)2

γi,i(1/n1 + 1/n2)
≥ tp)

≤
2m−1∑
d?=1

(−1)d
?−1

∑
1≤k1<···<kd?≤p

pr(|Nd? |min ≥ (t+ 2 log p− log log p)1/2 + ε(3)
n,p(log p)−1/2) + o(1).

(A.51)

Similarly, we also obtain

pr( max
1≤i≤p

(ȳi,1 − ȳi,2)2

γi,i(1/n1 + 1/n2)
≥ tp)

≥
2m∑
d?=1

(−1)d
?−1

∑
1≤k1<···<kd?≤p

pr(|Nd? |min ≥ (t+ 2 log p− log log p)1/2 + ε(3)
n,p(log p)−1/2)− o(1).

(A.52)
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Combining (A.51) and (A.52) and applying Lemma B13 yields

2m−1∑
d?=1

(−1)d
?−1(π−1/2 exp(−t/2))d

?

/d?! ≤ lim
n1,n2,p→∞

pr( max
1≤i≤p

(ȳi,1 − ȳi,2)2

γi,i(1/n1 + 1/n2)
≥ tp)

≤
2m∑
d?=1

(−1)d
?−1(π−1/2 exp(−t/2))d

?

/d?!.

As p→∞, the proof is completed by letting m→∞ on both hand sides.

Proof of (A.44): Follow the same procedure as the proof of (A.43). Let d? = 1 in (A.51), by use of

−π−1/2 exp(−qα/2) = log(1− α), we finally obtain

prH0
(Φ?α = 1) = pr(M?

n ≥ (qα + 2 log p− log log p)(1 + ε(1)
n,p(log p)−1))

≤
p∑
i=1

pr(|N(0, 1)| ≥ (qα + 2 log p− log log p)1/2 − ε(3)
n,p(log p)−1/2) + o(1)

≤
2p exp

{
−((qα + 2 log p− log log p)1/2 − ε(3)

n,p(log p)−1/2)2/2
}

(2π)1/2
{

(qα + 2 log p− log log p)1/2 − ε(3)
n,p(log p)−1/2

} + o(1)

= − log(1− α) · (1 + o(1)) + o(1).

Proof of (A.45) and (A.46): See the proof of Proposition 2 in supplement to (Cai, Liu, and Xia,

2014).

A.3.8. Proof of Lemma 13

See the proof of Lemma 6 in Cai, Liu, and Xia, 2014.
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