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ABSTRACT 
 

TECHNIQUES FOR END-TO-END TCP PERFORMANCE ENHANCEMENT OVER WIRELESS 

NETWORKS 

 

Bong Ho Kim  

Insup Lee 

 

Today’s wireless network complexity and the new applications from various user devices call for 

an in-depth understanding of the mutual performance impact of networks and applications. It 

includes understanding of the application traffic and network layer protocols to enable end-to-end 

application performance enhancements over wireless networks. Although Transport Control 

Protocol (TCP) behavior  over wireless networks is well known,  it remains as one of the main 

drivers which may significantly impact the user experience through application performance as 

well as the network resource utilization, since more than 90% of the internet traffic uses TCP in 

both wireless and wire-line networks. In this dissertation, we employ application traffic 

measurement and packet analysis over a commercial Long Term Evolution (LTE) network 

combined with an in-depth LTE protocol simulation to identify three critical problems that may 

negatively affect the application performance and wireless network resource utilization: (i)  impact 

of the wireless MAC protocol on the TCP throughput performance, (ii) impact of applications on 

network resource utilization, and (iii) impact of TCP on throughput performance over wireless 

networks. We further propose four novel mechanisms to improve the end-to-end application and 

wireless system performance: (i) an enhanced LTE uplink resource allocation mechanism to 

reduce network delay and help prevent a TCP timeout, (ii) a new TCP snooping mechanism, 

which according to our experiments, can save about 20% of system resources  by  preventing  

unnecessary video packet transmission through the air interface, and (iii) two Split-TCP protocols: 

an Enhanced Split-TCP (ES-TCP) and an Advanced Split-TCP (AS-TCP), which significantly 
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improve the application throughput without breaking the end-to-end TCP semantics.  

Experimental results show that the proposed ES-TCP and AS-TCP protocols can boost the TCP 

throughput by more than 60% in average, when exercised over a 4G LTE network. Furthermore, 

the TCP throughput performance improvement may be even superior to 200%, depending on 

network and usage conditions. We expect that these proposed Split-TCP protocol enhancements, 

together with the new uplink resource allocation enhancement and the new TCP snooping 

mechanism may provide even greater performance gains when more advanced radio 

technologies, such as 5G, are deployed. Thanks to their superior resource utilization efficiency, 

such advanced radio technologies will put to greater use the techniques and protocol 

enhancements disclosed through this dissertation. 
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CHAPTER 1 

Introduction 
 

Mobile wireless systems are in rapid evolution due to the continuous increase in user’s demands 

for seamless connectivity, high throughput, and stringent quality of service (QoS) requirements to 

match the experience of broadband fixed networks. In order to provide the necessary 

performance and system capacity, standardization activities for a next generation wireless 

technology (i.e. 5G) have already begun [52]. The global mobile traffic growth forecast estimates 

that traffic will increase nearly ten times by 2020, and more than 50% of the total mobile traffic will 

be from 4G wireless network by 2016 [21]. In addition to the human users, objects and machines 

are also becoming increasingly connected. Machine-to-Machine (M2M) communications, for 

example in the Internet of Things (IoT) and sensor-based networks are additional drivers for 

wireless network traffic growth. The Future Internet drivers are all kinds of services and 

applications that require a wide range of throughput rates, a wide range of latency values, and 

are running on a variety of devices. The new data services and applications are key success 

factors for the wide deployment of the mobile broadband networks. Hence, the demands for 

supporting the evolving mobile applications and for improving application and network 

performance become increasingly critical to end users and to network operators as well. There 

are various technical areas to support and enhance the application performance. 

The structured nature of network protocol layers, such as application, transport, network, MAC, 

and PHY layer, allow for each protocol layer to be updated and enhanced independently. 

Particularly, the performance of the TCP protocol is critical to the end-to-end application 

performance, since more than a decade of internet traffic analysis consistently shows that more 

than 90% of the internet traffic uses TCP in the network [27][29]. The internet traffic analysis 

results in [16] and [37] show that the amount of TCP traffic is even more than 95% of the total 



2 
 

internet traffic. As a higher layer protocol, TCP traffic flows across both wired and wireless 

networks. It is why with the wireless traffic volume growing exponentially, the optimization of the 

TCP performance over the wireless network is of critical importance.  

Because of the wide range of usage and popularity of the current internet protocol (TCP/IP), it is 

very likely that it will be used even more in the future, as the Internet Engineering Task Force 

(IETF) standardization community continues to improve the TCP protocol. For example, one of 

the activities in the TCP research community for the past several years has been targeting a 

Multipath TCP (MPTCP) solution [28] that establishes multiple parallel TCP connections with 

multiple addresses, instead of a single TCP connection. This requires the TCP protocol stack to 

be modified, but it still runs over the traditional TCP protocol, since each of the TCP sub-flows is 

operated as a traditional TCP connection. Thus, the TCP performance improvement with a single 

TCP connection is still critical for the end-to-end application performance enhancement. 

As the fourth generation LTE [1] high data rate wireless networks are widely deployed, and the 

LTE-Advanced and 5G wireless technology with even higher wireless data rates are being 

expected in the near future, optimizing the TCP performance over these advanced wireless 

networks will have an even more significant impact on application and network performance.  

In fact, TCP is known to have a poor performance over unreliable wireless network where packet 

losses due to air-link transmission errors are significantly higher than the packet losses due to the 

network congestion. Many research materials that try to improve TCP performance over wireless 

networks may be found in the research communities for the past two decades. 

 

1.1 Challenges 

The cross-layer network protocol interactions introduce a high degree of complexity in terms of 

understanding and enhancing the performance of various applications and the utilization of 

wireless networks. Having as main objective to improve the performance of applications and 
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network utilization, possible enhancements in TCP performance may contribute significantly to 

this goal, but they should be carried out considering the cross protocol layer behaviors because 

of the mutual interactions.TCP performance in particular could be significantly affected by other 

network layer behaviors under various wireless network conditions. The network research 

communities are not under-estimating a potential performance impact caused by the cross layer 

protocol interactions, but it is generally more common to target isolated parts of the network 

protocol stack.   

Consequently, this dissertation has identified the following three critical problems that may 

negatively affect the application performance and wireless network resource utilization. 

• Impact of the wireless MAC protocol on the TCP throughput performance: From the 

analysis of the MAC scheduling protocols in LTE, we found out that the LTE uplink 

bandwidth scheduling may be stalled temporarily and cannot allocate uplink resources to 

a User Equipment (UE) until a timer is expired. Consequently, the uplink packet delivery 

could be delayed from hundreds of milliseconds to above 10 seconds. This interruption 

could trigger a TCP Retransmission Timeout (RTO) which would significantly degrade the 

application performance. 

• Impact of applications on wireless network resource utilization: From the analysis of 

HTTP-based video streaming traffic, we found out that a significant volume of video data 

that is downloaded over the air-interface ends up being discarded by the end device, 

which results in an inefficient use of wireless network resources. This problem can be 

mitigated using the TCP header information. 

• Impact of TCP on throughput performance over wireless network: The poor TCP 

performance over wireless networks is a known problem, and the Split-TCP mechanism 

is a good candidate for enhancing TCP performance. However, this mechanism breaks 

the end-to-end semantics of TCP, and this may impact the fundamental behavior of the 

protocol.  
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1.2 Objectives 

This dissertation is focused on designing an enhancement in the LTE uplink resource scheduling 

protocol, a new TCP snooping mechanism, and two novel Split-TCP mechanisms, the ES-TCP 

and the AS-TCP. These contributions are listed below:  

• An enhancement LTE uplink resource scheduling protocol: It reduces the uplink 

packet delay and reduces the volume of control signals. This helps prevent the TCP to 

time out, hence eliminating events which may be cause for throughput degradation. 

• A new TCP snooping mechanism: This consists in monitoring the TCP 

Acknowledgement (ACK) packets and prevents unnecessary video content transmission 

over air-interface which may end up not be consumed by the end user. The proposed 

mechanism brings various advantages as well, such as: (i) causing no interruption on the 

end-to-end connections between client and server, (ii) improving the air-link bandwidth 

utilization for both uplink and downlink, including for uplink signaling control resources, (iii) 

not requiring modifications on the existing TCP or application layer, and (iv) allows for 

easy integration in the existing base stations,  since it may be implemented as an 

independent module with little interaction with the other system modules. 

• Two novel Split-TCP protocols, the ES-TCP and the AS-TCP: The ES-TCP and AS-

TCP solutions  maintain the end-to-end protocol semantics without losing the 

performance gain attributed to the Split-TCP. To evaluate the TCP throughput 

performance gain using ES-TCP and AS-TCP, we implememented them on top of the 

end-to-end LTE network simulation platform [14] that can estimate the application 

performance reflecting various protocol interactions and network congestion conditions, 

including air-link impairments. 
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1.3 Outline of Dissertation 

The previous section has presented three well-defined objectives, and. the work performed 

towards each objective is described in corresponding chapters. The outline of this dissertation is 

as follows: 

Chapter 2 contains the background of the TCP protocol and sources of the challenges for 

improving application and network performance. We firstly describe the fundamental 

characteristics of the TCP protocol and congestion control, followed by an example of cross-layer 

protocol interactions that negatively impact the application performance, by analyzing network 

packet traces over a commercial CDMA-1XRTT network [40]. Secondly, we describe some 

issues with the TCP protocol over wireless networks. Lastly, several existing TCP performance 

enhancements are described.  

In Chapter 3, we analyze the performance of the LTE MAC layer packet transmission protocol. 

We show that the uplink bandwidth scheduling may be temporarily stalled and cannot allocate 

uplink resources to a UE until a timer is expired. Consequently, this uplink resource allocation 

interruption could trigger a TCP Retransmission Timeout (RTO) which would significantly reduce 

the transmission rate at the traffic source. To prevent this problem, we propose a LTE link layer 

protocol enhancement that reduces the uplink packet transmission interruption time [14][39].  

Chapter 4 provides a mechanism that improves the wireless network resource utilization using a 

Snoop TCP mechanism. We have analyzed a few popular HTTP-based video streaming services 

over 3G, 4G-LTE and Wi-Fi networks. We found that the online video traffic behavior depends on 

various factors, such as the type of mobile device (iOS and Android), multimedia applications 

running on the devices, and wireless network (3G, 4G-LTE, and Wi-Fi) conditions. Furthermore, 

we found out that a significant volume of video content downloaded through a busy network may 

end up being discarded by the end device. This results in an inefficient use of wireless network 

resources. We propose a mechanism to prevent an eNB transmitting the video traffic that will be 
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discarded by the user device [42][43]. This enhancement is effective not only for the video traffic, 

but also effective for any type of applications with similar traffic behavior. 

In Chapter 5, we propose two Split-TCP enhancement mechanisms, the ES-TCP and the AS-

TCP, which maintain the end-to-end protocol semantics without losing the performance gain 

attributed to the Split-TCP. To evaluate the TCP throughput performance gain using ES-TCP and 

AS-TCP, we implemented them on top of the end-to-end LTE network simulation platform [14] 

that can estimate the application performance, reflecting various protocol interactions and 

network congestion conditions, including air-link impairments.  

Finally, Chapter 6 states the main conclusions drawn through this research dissertation. 

 

1.4 Publications 

The work developed during this dissertation made possible the publications to the following 

journal and conferences. We also filed patents for a part of the proposed solutions in this 

dissertation. 

Publications 

[1] D. Calin and B. Kim, “LTE Application and Congestion Performance” Bell Labs Technical 
Journal, vol. 18, no 1, June 2013, pp. 5-25. 

[2] H. Nam, B. Kim, D. Calin, and H. Schulzrinne, “Mobile Video is Inefficient: A Traffic Analysis,” 
December, in the Proc, of IEEE GlobeCom Control Techniques for Efficient Multimedia 
Delivery Workshop 2013, pp. 512 - 517, Atlanta, GA, December 9 – 13, 2013. 

[3] H. Nam, K.H Kim, B. Kim, D. Calin, and H. Schulzrinne, Towards A Dynamic QoS-aware 
Over-The-Top Video Streaming in LTE, in the Proc, of IEEE International Symposium on a 
World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2014, Sydney, Australia, 
June 16 – 19, 2014. 

 

Submitted papers 

[1] B. Kim and D. Calin, “On the Split-TCP Performance over Real 4G LTE and 3G Wireless 
Networks,” submitted to IEEE Communications Magazine, 2016 
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[2] B. Kim, D. Calin, and I. Lee, “Enhanced Split TCP with End-to-End Protocol Semantics over 
Wireless Networks,” submitted to IEEE GlobeCom Mobile and Wireless Networks 
Symposium, 2016. 

[3] B. Kim, D. Calin, I. Lee, “Advanced Split TCP with End-to-End Protocol Semantics over LTE 
Wireless Network,” submitted to IEEE GlobeCom Communication QoS, Reliability and 
Modelling Symposium, 2016. 

 

 

Patents 

[1] B. Kim and D. Calin, “Method and Apparatus for Controlling Buffer Status Report 
Messaging,” US Patent 8,630,202, January 14, 2014 (granted). 

[2] B. Kim and D. Calin, “Method And Apparatus For Preserving End To End Semantics And 
Performance Enhancement Of Split-TCP Protocols,” US Patent filed 14/943128, November, 
17, 2015 
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CHAPTER 2 

Background 
 

This section contains following sub-sections, TCP overview, congestion control mechanism, 

challenges of TCP over wireless network, related works to overcome these challenges, and in the 

last sub-subsection we provides the comparison of these TCP performance enhancement 

mechanisms. The fundamental TCP protocol and congestion mechanism show how those 

challenging wireless network environment would degrade the TCP throughput performance, and 

the comparison section highlights a weakness from the existing TCP enhancement mechanism 

that should be strengthened. 

2.1 TCP Overview 

The purpose of TCP is to provide a reliable, connection oriented service to the application layer. 

Therefore, its end-to-end reliability between a host and a data network is an important design 

criterion. TCP was originally designed for wired links, where the packet error rate is typically low 

and packet losses are due to congestion in the network. Every data byte that a TCP sender 

transmits has a logically associated with a sequence number starting from a randomly selected 

number. When a TCP endpoint receives a packet containing data, it sends back an 

acknowledgment (ACK) with a sequence number that is 1 byte larger than the last received 

sequence number indicating the next expected sequence number. When a sender receives an 

acknowledgment for data in its window, it can remove that data from the transmission buffer, 

since it has been successfully delivered to the receiver. This is the most important property of 

TCP, the end to end semantics of TCP.  Since either the packet or its ACK packet could be lost in 

the network, a sender starts a timer, which is a function of the estimated round-trip time (RTT) 

when it transmits a packet. If the timer expires before an ACK packet is received, then the sender 

retransmits the outstanding packets assuming that the packet had been lost. This is called a 
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retransmission timeout (RTO), which is estimated each time that a new round-trip time is 

measured. The round-trip time (RTT) is based on the time difference between a data packet 

transmission and ACK packet corresponding to the data packet. RFC 6298 [51] suggests that the 

initial RTO before any RTT measurement should be set either at 1 or 3 seconds and how RTO 

should be estimated.  

In the late 1980's a congestion control mechanism (RFC 2581 [4] and RFC 2914 [24]) was added 

to the TCP and, since then, a number of optimizations to this mechanism, such as TCP NewReno 

(RFC 3782 [25]) and TCP SACK (RFC 2018 [45] and RFC 2883 [26]) have been proposed and 

standardized.  The TCP congestion control mechanism is to improve the performance when there 

is network congestion indicated by a packet loss. This became a main limitation of the classic 

TCP's congestion control mechanism when a packet loss is not directly caused by the network 

congestion. 

2.1.1 TCP Congestion Control Algorithms 

The congestion control algorithm implemented in TCP is divided in two major parts: a “slow start” 

region and a “congestion avoidance” region. These two regions are governed by independent 

algorithms and follow different objectives. They are based on a congestion window (cwnd) 

parameter at the TCP sender, which is used to adapt the sender transmission rate to the 

congestion status of the link. Another important parameter is a slow start threshold (ssthresh), 

which  separates the slow start phase from the congestion avoidance phase: the former allows 

the cwnd size to grow exponentially, while the latter limits it to a linear increase.  

Figure 1 illustrates how a typical TCP (i.e. NewReno) flow control works and reacts to a packet 

loss. The x-axis captures the time dimension and each tick indicates a Round Trip Time (RTT) 

value. The y-axis indicates the number of TCP segments transmitted by the TCP transmitter as a 

function of the RTT, which is referred as the congestion window (cwnd) value. The TCP maintains 

an estimate of how much unacknowledged data is in-transit in the network, without causing 
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congestion. The actual amount of in-transit data is limited by the minimum cwnd size at the 

transmitter and by the receiver’s advertised window (rwin) size [20][22][57]. When a TCP 

connection is established, it starts conservativelly with a very low transmission speed because it 

does not know the network condition yet. That is why the beginning phase is called “Slow Start”. 

In this diagram in Figure 1 the the initial cwnd is set to 1. Each time an ACK is returned from the 

targeted destination, the sender increases its cwnd by 1 during the slow start phase. This actually 

increases the cwnd size exponentially until it hits the ssthresh. Some implementations set the 

initial ssthresh value to the receiver window size, which is controlled by a TCP receiver, while 

some implementation uses infinite. If infinite is used for the initial ssthresh value, then the slow 

start will continue until a packet loss occurs. In this example diagram, the ssthresh is set to 32. 

Once the cwnd reaches ssthresh, the congestion avoidance phase starts. The difference between 

the slow start phase and the congestion avoidance phase is the rate of the cwnd size growth. 

Instead of doubling the cwnd size per RTT, it increases only 1 segment per RTT. Whenever a 

receiver receives a packet after a missing packet, it sends an ACK packet with the same 

expected sequence number as included in the immidiatly prior ACK packet. This is called a 

duplicate ACK, and when three duplicate ACKs are received at the sender, it immediately 

retransmits the potentially missing packet without waiting for Round Trip Timeout (RTO) to be 

expired. This is called “fast retransmission.” In Figure 1, the cwnd size increase is stopped after 

seeing three duplicate ACKs that indicates a segment was not acknowledged (at RTT = 6). After 

seeing three duplicate ACKs, the sender immediately sets the ssthresh to half of the current 

cwnd; this effectively halves the transmission rate and starts the congestion 
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Figure 1: TCP flow control mechanism 

 

avoidance phase instead of entirely closing the cwnd to one, and sets the cwnd size to ssthresh  

plus the number of duplicate ACKs. The reason of adding "number of duplicate ACKs" is that the 

transmitter has received 3 duplicate ACKs, which indicates that at least 3 segments have been 

transferred successfully, thus allowing the increase of cwnd. This is indicated as "inflating cwnd" 

at the 10th RTT. The cwnd increased by one when another ACK is received for all packets 

transmitted in that window and a packet loss was observed. After all packets in that window are 

acknowledged, cwnd is deflated to the ssthresh, which was set at the time of fast retransmission 

start. This is indicated as "deflating cwnd" at the 11th RTT. This mechanisms are called fast 

retransmission (for "inflating cwnd”) and fast recovery (for “deflating cwnd”), respectively. 

The retransmission scheme relies on a RTO timer to expire before a lost segment is 

retransmitted. However, the fast retransmit algorithm avoids this problem and the fast recovery 

algorithm prevents the cwnd to entirely collapse after a single retransmission. This algorithm is 
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able to recover from one lost segment within one RTT. as a second lost segment cannot be 

detected due to the lack of corresponding duplicate ACKs. If a second segment is lost within one 

RTT, the RTO timer will expire and the cwnd will collapse to one segment. However, if the packet 

loss was not detected by three duplicated ACKs, and instead by the RTO timer expiry, the cwnd 

size is set to one and starts with a slow start phase and a congestion avoidance afterwards [4] 

[56]. If the RTO timer expires again, the RTO value increases exponentially until it reaches 64 

seconds. The RTO timeout event is observed at the 19th RTT in Figure 1. One can notice that in  

case of a packet loss event over the air caused by poor airlink conditions, the TCP  sender 

reduces its transmission rate by 50% and increases the transmission rate very slowly. Hence, the 

TCP interprets the packet errors over wireless channels as network congestion, which may 

trigger frequent bandwidth underutilization events, in particular when the wireless propagation 

conditions are challenging. 

2.1.2 TCP Packet Trace Analysis 

Figure 2 and Figure 3 shows the detailed behavior of TCP and how the transmission rate is 

dynamically adjusted to the network condition during the lifetime of a connection over the LTE 

network. In Figure 2, the X-axis represents the time of packet capture, the Y-axis represents the 

TCP sequence number, and the slope of the graph gives the TCP throughput over time. Figure 3 

shows the data transmission rate via outstanding data in bytes during the TCP session. The 

outstanding data is the amount of the unacknowledged data that can be used to estimate the 

congestion window at the sender.  
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Figure 2: TCP trace over LTE network: TCP sequence number (server to UE) 

 

 

Figure 3: TCP trace over LTE network:  outstanding data bytes (estimated cwnd) 
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• The Red Line represents instantaneous outstanding data bytes during the lifetime of the 

connection. 

• The Blue Line tracks the average outstanding data up to that point. The average 

outstanding unacknowledged data (in bytes) calculated from the sum of all the 

outstanding data (in bytes) divided by the total number of samples. 

• The Green Line tracks the time weighted average outstanding unacknowledged data up 

to that point. 

• The Yellow Line tracks the window advertised by the opposite end-point i.e., the receive 

window. 

 

Several important factors are marked in the dialog box with an index in Figure 2 and Figure 3 

• Dialog Box (0): The TCP transmits a burst of data when the packet transmission 

opportunity opens in a short period of time as shown in the dialog box (0). When the 

cwnd size is increased, the burstiness may also increase and eventually may lead a long 

network queuing delay, a packet drop from a network or many duplicate ACKs if there 

was a packet loss in the network. 

• Dialog Box (1): This burstiness may increase and may eventually lead a long network 

queuing delay, a packet drop from a network or many duplicate ACKs if there was a 

packet loss in the network. Two packet retransmissions caused by the three duplicate 

ACKs and a long RTT is observed. The combinations of these events seem to cut down 

the slow start threshold (ssthresh) value and trigger the slow start phase which would set 

the cwnd to one. 

• Dialog Box (2): Shows that the amount of data transmission per RTT is very small (small 

cwnd) and is gradually growing. 

• Dialog Box (3): Another packet retransmission is observed in Figure 2 and Figure 3 which 

shows that the cwnd size is reduced to half of the previous cwnd size. 



15 
 

• Dialog Box (4): Soon after the 3rd packet retransmission, the 4th packet retransmission is 

observed, which shows that the cwnd size is reduced to half of the previous cwnd size 

again. 

• Dialog Box (5): The continuous packet loss reduced the slow start threshold (ssthresh) 

value to very low and started a congestion avoidance phase with a very low cwnd value 

which would reduce the cwnd growth rate. Figure 3 clearly shows that the cwnd value 

stays very low until the TCP connection is terminated. 

2.1.3 Problems of TCP over Wireless Network 

The TCP provides connection oriented, reliable service to the application layer. It is intended for 

use as a highly reliable end-to-end protocol between hosts in a data network. It was originally 

designed for the wired links where the error rate is low and assumes that packet losses are due 

to congestion in the network. However, hosts in wireless networks move frequently while 

communicating and as they share the media for communication they experience a lot of 

interference from the environment [10]. The wireless systems suffer from different environmental 

properties like radio signals related with fading, shadowing, interference, mobility, handovers and 

variable bandwidth, which dramatically affect the TCP performance. Following are the four types 

of the typical problems associated with wireless networks and TCP protocol. 

• High bit error rate and loss:  The error behaviors of wireless links suffer from multi-path 

fading due to terrestrial obstructions. Mobility constantly changes the fading and 

interference characteristics of the link. The interference caused by external sources 

increases their error rates significantly and introduces unpredictability in their 

performance.   Unfortunately, when packets are lost in networks for reasons other than 

congestion, these measures result in an unnecessary reduction in end-to-end TCP 

throughput, since it is misinterpreted by a TCP sender as congestion. TCP regards all 

data loss as a notification of network congestion and lowers its sending rate accordingly.  
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• Long end-to-end delay and delay variation:  In general, a typical Radio Access 

Network (RAN) adds a longer network delay compare to the WAN. A part of the 

additional delay is in order to improve the performance of the wireless link, and it is from 

the link layer that applies to the ARQ and FEC. In general, the link layer ARQ and FEC 

can provide an almost error free packet service to the upper layer traffic. However, the 

retransmission by ARQ introduces latency and jitter to the link layer flow. Typical RAN 

delay in 3G is about 100 ms and 4G LTE is about 30 ms to 60 ms. It is, however, not rare 

to observe a longer than 100s ms RAN delay in the LTE network as well. This extended 

RTT itself significantly degrades the TCP performance.  

• Packet transmission Interruption:  The TCP performance over wireless network suffers 

from significant throughput degradation and very high interactive delays [12] caused by 

intermittent connectivity due to a handover as an example. The handover procedure for 

instance often results in a variation in packet delays or in packet losses that can lead to 

disconnections lasting from a few tens of milliseconds to a lot longer than a few seconds.. 

If the status of the moving TCP connection has a large cwnd prior to handover and the 

bandwidth allocation from the new wireless connection is narrow, then this may lead to a 

long packet delay for the packets already in-flight. This may shutdown the cwnd to one if 

RTO occurs. The TCP interprets these disconnections as network congestion and 

invokes a congestion control mechanism, which is unnecessary [9]. This results in the 

TCP timeout and lowering its congestion window, thus reducing the efficiency of the 

transmission.  

• Wireless Link Rate Variability:  To maintain the transmission quality under various air-

link conditions, channel condition based scheduling is used in the wireless network. This 

means that the transmission bandwidth over the air is not fixed but dynamically fluctuates. 

While channel condition based scheduling improves overall throughput, it also increases 

the rate variability. While link layer retransmission protocol improves TCP throughput and 
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channel state based scheduling algorithms improves a cell throughput, this improvement 

comes at the expense of increased delay and rate variability. 

The common factors that significantly affecting TCP throughput performance over the wireless 

network from these four types of the typical problems are the network RTT delay and the packet 

loss rate. Since the TCP transmitter requires receiving acknowledgements from the receiver for 

every window of data packets sent, a standard TCP throughput is inversely proportional to the 

end-to-end Round Trip Time (RTTe2e) and the square root of end-to-end packet error rate (Pe2e) 

as shown in (1) [49]. Thus, the distance and the packet error rate between the server and the end 

user becomes a true bottleneck factor of the TCP throughput and hard to overcome unless the 

server is relatively close to the end user. 

               (1) 

2.2 Related Works 

In this Section we briefly discuss a set of selected works related to the topic focused in this 

dissertation, including a cross layer interaction research that affect the application performance 

and three different categories of TCP performance enhancement strategies. 

2.2.1 Cross Layer Interaction Affecting Application Performance 

The research [40] identifies that the interaction between the application traffic behavior and the 

wireless MAC scheduler causes application performance degradation. It also indicates the 

importance of considering the interaction with an application traffic behavior on designing the 

wireless MAC scheduling algorithm.  The authors of [40] analyzed the application traffic over 

CDMA-1XRTT and dialup network using some of typical applications (i.e. Web, FTP, and Outlook 

Email). The network measurement results show that the CDMA-1XRTT system provides a 

throughput of 81 kbps on the average for FTP, and 53 kbps throughput for the Web browsing, 
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which are 3.3 times and 2.5 times respectively higher than the Dialup connection. Email 

application throughput result, however, shows only 1.5 times higher than the dialup connection. 

The critical issue resulting in this unequal application throughput is because the CDMA-1XRTT 

MAC scheduler is designed to select link rate dynamically depending on the application packets 

buffered in the MAC layer. Thus, if an application (i.e. outlook email in this case) has a certain 

packet transmission pattern and if it is not aligned with the MAC scheduler well then this 

application may experience performance degradation regardless of the network resource 

availability. The proposed MAC scheduler, that considers the application traffic pattern, 

selectively improves the application throughput. The application experienced the worst throughput 

improves the most with the adaptive MAC scheduler proposed in [40]. 

2.2.2 TCP Protocol Enhancement Solutions 

The effort improving TCP can be categorized into three groups: (i) End-to-end TCP solutions with 

various TCP flavors and Explicit Loss Notification (ELN), (ii) Link layer solutions, such as link 

layer ARQ and Snoop TCP, and (iii) Split-TCP that divides a TCP connection in to multiple TCP 

connections. 

A. End-to-End TCP Solutions 
 

Some of the TCP performance enhancement mechanisms do require TCP protocol stack 

modification and the changes to the TCP protocol is on the sender and receiver sides to 

distinguish wireless losses from the network congestion. One of three main strategies for the end-

to-end TCP solution is to optimize the TCP cwnd size or enhance the congestion control 

algorithms.  They are often referred to as "TCP flavors". The other strategy is to enhance the 

congestion control enhancement further. It can be improved with additional information called 

“Explicit Loss Notification”, which explicitly let the sender know it is a wireless loss. Using ELN 

information, TCP can provide a targeted congestion control for the wired and wireless network 

differently.  It prevents the sender from reducing the congestion window size when it is a wireless 
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loss. The last strategy is using the Selective Acknowledgement (SACK), which allows the sender 

to recover from multiply packet losses without timeouts. Both ELN and SACK can be used 

together with one of the TCP flavors to increase the TCP performance over the wireless network. 

TCP Flavors 

Optimizations preferably are placed at the end-hosts to avoid adding complexity to the network. 

The intermediate node need not be TCP-aware.  Some of the TCP variations listed below are 

certainly not exhaustive: Vanilla TCP, Tahoe, TCP Reno/New Reno, TCP SACK, Freeze TCP 

[31][32], TCP Westwood [15][44], CUBIC [33], and Multi-path TCP (MPTCP) [28]. TCP Reno is 

the most widely deployed version of TCP while TCP SACK is becoming deployed increasingly 

with the global spread of the wireless network. MPTCP is one of the latest TCP enhancements 

that utilize multiple network connections at the same time as most of the mobile devices have the 

capability of maintaining multiple network connections; those network environments are growing 

in the market with the wide spread use of Wi-Fi hot spots.  These common TCP flavors are briefly 

described in this Section since most of the TCP enhancements are on top of these fundamental 

TCP protocols. 

• Vanilla TCP: This is a standard TCP flavor that implements slow start and congestion 

avoidance, which is thus compliant to RFC 793 [55]. 

• TCP Reno/New Reno:  The TCP "Reno" uses fast retransmits as defined in RFC 2001 

once the node receives the nth duplicate acknowledgement and then it enters the fast 

recovery phase. After receiving the lost packet, the receiver quickly recovers the 

congestion window (fast recovery algorithm). This enhancement allows recovering from 

one lost segment within one RTT [57].  

• Freeze-TCP: This uses the Zero Window Acknowledgement (ZWA) and the Zero Window 

Probe (ZWP). A ZWA packet sets the rwin size to zero to pause the TCP sender from 

transmitting packets and A ZWP packet probes the TCP receiver to check if the rwin size 

is increased [31][32]. 
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• TCP Westwood: TCP Westwood is a sender-side modification of the TCP congestion 

window algorithm. The improvement is most significant in wireless networks with lossy 

links, since TCP Westwood relies on end to end bandwidth estimations to discriminate 

the cause of packet loss. TCP Westwood performs poorly when random packet loss rates 

exceeds a few percent [15][44]. 

• CUBIC: TCP CUBIC uses a modified congestion control algorithm for high bandwidth 

networks with high latency as known as Long Fat Networks (LFN). It uses a unique 

congestion window (cwnd) algorithm. This algorithm tries to find the maximum where to 

keep the window at for a long period of time.  It does not rely on the receipt of ACK 

packet to increase the window size. CUBIC's cwnd size is dependent only on the last 

congestion event, and the growth function is defined in real-time so that its growth will be 

independent of RTT [33].  

• MPTCP: Multipath TCP (RFC 6824) provides the ability to simultaneously use multiple 

paths between sender and receiver, unlike the current TCP that restricts it to a single 

path per connection [28]. Nowadays, most of the mobile devices have the capability of 

maintaining multiple network connections and those network environments are growing in 

the market with the wide spread of Wi-Fi hot spots. Each TCP sub-flows use unmodified 

TCP stacks and multiple TCP sub-flows are aggregated at the MPTCP layer. 

Explicit Loss Notification 

 The Explicit Loss Notification (ELN) mechanism is to inform the exact cause of packet loss to the 

TCP sender and prevents unnecessary congestion control actions using a bit in the TCP header 

[8][53]. The ELN requires TCP-snoop capability in the wireless network.  Another mechanism 

under same category of ELN is Early Error Notification (EEN) [11]. The EEN mechanism is 

implemented in between wireless MAC layer and TCP layer. It notifies a packet loss to the TCP 

layer if a packet loss over the wireless link is determined even after the recovery process (i.e. 

ARQ) in the MAC layer so that the TCP layer can retransmit the lost packet instead of slowing 
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down the transmission rate. It focuses only on the uplink TCP connection over wireless network, 

and this also requires TCP-snoop capability.   

 Selective ACK  

Selective acknowledgments (SACKs) allow the sender to more efficiently retransmit lost or 

delayed packets. During the fast retransmission phase, the sender first retransmits all suspected 

lost packets only before sending new ones. This allows recovery from several lost segments 

within one RTT [45]. 

B. Link Layer Solutions 
 

Link Layer protocols are another alternative for improving the poor performance of TCP over the 

wireless link. In those methods, usually automatic repeat request (ARQ), TCP snooping, and 

forward error correction (FEC) methods are used to improve the performance. TCP is an end-to-

end protocol that deals with global congestion problems, and as the problem of high bit error rate 

is a wireless link problem, this is a reasonable solution to localize the problem by providing faster 

local retransmission without informing the TCP layer [59].  This means that the TCP is not 

involved in handling wireless losses and the errors over wireless links, which are instead 

recovered by the link layer mechanisms.  

Link Layer ARQ 

In the majority of the current wireless system, the use of Automatic Repeat Request (ARQ) 

scheme in a Radio Link Protocol (RLP) layer allows recovery from wireless link errors and 

provides relatively reliable transfer of packets to the upper layers.  The ARQ and forward error 

correction schemes are used at the link layer to obtain local data reliability and make the wireless 

link appear to TCP as a reliable link, although with a longer and variable delay [7][19][60][38]. 

This approach has the advantage of acting independently of TCP and not requiring any 

modification to the TCP implementation. On the other hand, the TCP sender cannot be 

completely shielded from the wireless link, because of both the interactions between the TCP and 
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the ARQ timers [10] and the reordering of the TCP segments performed by the link layer at the 

receiver. The interaction between the MAC ARQ and TCP may result in poor performance due to 

spurious retransmissions. The incompatible values for timers from TCP and ARQ can lead to 

competing retransmissions and therefore to poor performance. Moreover, ARQ has no support 

when link disconnection event occurs, that is to say that this solution can do little to prevent TCP 

from a timeout when an ACK packet does not arrive on time. The independent timer reaction at 

the link layer and transport layer may result in unnecessary retransmissions, and large RTT 

variations, which are considered as major problems with the link layer approaches. The extensive 

local retransmission may also increase the network delay variation, and the air-link condition 

based scheduling may also increase the link rate variability by dynamically changing the link data 

rate. This rate and delay variability introduces bursty ACK packet arrivals, which is also called 

ACK compression at the TCP sender 

Snoop-TCP 

The fundamental concept of Snoop-TCP mechanism is to read the TCP headers and take an 

appropriate action locally without TCP layer involvement. With the Snoop-TCP mechanism, the 

end-to-end semantics of TCP is maintained, but the problem is that it needs to read the TCP 

header of the packets at the network element (i.e. base station) so it cannot be applied to 

encrypted traffic such as IPSEC traffic that is readable only at the final destination or outside of 

the secure tunnel. 

The Snoop protocol in [10]  and the Rate-adaptive Snoop in [46] are a cache-based local 

recovery mechanism. These enhancement mechanisms are located in a base station to observe 

and cache TCP packets going out to the mobile host as well as acknowledgments coming back. 

The snoop agent determines what packets are lost on the wireless link and schedule a local link 

layer retransmission. Another Snoop-TCP based enhancement mechanism is “ACK Regulator” in 

[18]. It is designed for improving the downlink TCP performance in the presence of bandwidth and 
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delay variation. It mitigates the link rate variation to reduce the ACK compression problem that 

can be caused by the link variation. 

C. Split TCP Solutions 
 

As aforementioned, a standard TCP throughput is inversely proportional to the end-to-end Round 

Trip Time (RTTe2e) and the square root of the end-to-end packet error rate (Pe2e) as shown in (2) 

and in Figure 4 [49]. Thus, the distance and the packet error rate between the server and the end 

user becomes bottleneck factors for the TCP throughput and are hard to overcome, unless the 

server is relatively close to the end user. The Split-TCP is one of mechanisms that may 

significantly improve the TCP throughput performance under challenging network conditions, by 

segmenting the RTTe2e across different network segments and by isolating the packet error 

events to those network segments which are the root cause for problems, if there are multiple 

network segments that have different network characteristics. The conceptual Split-TCP diagram 

is illustrated in Figure 4, where the TCPRAN is the connection between a Mobile Host (MH) and a 

Split-TCP Host (SH), and the TCPWAN is the connection between a Far Host (FH) and the SH.  

Split-TCP divides an end-to-end TCPe2e connection characterized by the delay RTTe2e and   

packet error rate Pe2e into two independent TCP connections: a TCPRAN for the Radio Access 

Network (RAN) with corresponding delay (RTTRAN) and packet error rate (PRAN) and a TCPWAN for 

the Wide Area Network (WAN) with corresponding delay (RTTWAN) and packet error rate (PWAN), 

as depicted in Figure 4 and represented in equation (2). This has the effect of isolating the packet 

errors to the network segment that is responsible for errors occurrence. Hence, the effective end-

to-end TCP throughput is the minimum throughput across the individual TCP connections 

resulted from splitting the link, and the improvement is expressed in equation (3). One should 

remark, however, that the TCP throughput gain depends on the split point in the network, which is 

defined by the RTTe2e split ratio and by the packet error rates in the TCPRAN and TCPWAN 

segments. 
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Figure 4 Conceptual diagram of Split-TCP 

                    (2) 

 

           (3) 

However, its major drawback is that acknowledgments received by the sender do not mean that 

all the packets have been received by the actual intended destination. When the MH moves away 

to another cell, or in the event that the SH crashes, some data packets may not be successfully 

delivered to the MH. If this is the case, the sender may well be informed that all data packets 

were delivered over the TCPWAN segment, but in reality, some of them may not be delivered to 

the MH over the TCPRAN segment. Since the end-to-end protocol semantics is violated, the data 

transmission is not reliable. This is damaging the layering structure of the internet protocols. 

There are various types of Split-TCP mechanisms, including Indirect-TCP (I-TCP) [7], Aggregate 

TCP (ATCP) [17], TCP for Mobile Cellular Networks (M-TCP) [13], M-TCP+ [48], and Pre-

Acknowledgement Mode Split-TCP (PAM Split-TCP) [5]. Among these Split-TCP mechanisms, M-

TCP and M-TCP+ are the only options that maintain the end-to-end protocol semantics. The M-

TCP and M-TCP+, which is a modified M-TCP, aim at improving the TCP efficiency while the 

wireless link suffers disconnections by preventing the sender from closing down the congestion 

window (cwnd) to the minimum. The SH using the M-TCP and M-TCP+ mechanism freezes the 

packet transmission from the FH when an air-link disconnection is detected [13][48]. The PAM 
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Split-TCP is also a modified M-TCP mechanism. It pre-acknowledges TCP packets to prevent 

packet transmissions from the FH when a long air-link delay is detected, but it does not maintain 

the end-to-end semantics [5]. 

The common goal of these three mechanisms is to handle the wireless link disconnection issues 

that may arise through a handover process or due to air-link failures. They don’t address 

problems related to high packet error rate links or to significant RTTe2e delays in the network [5][6].  

While the M-TCP and M-TCP+ mechanisms maintain the end-to-end protocol semantics and 

isolate the disconnection issue in the wireless network, they present a few significant drawbacks. 

These mechanisms still propagate the packet losses on the wireless network segment into the 

wired network, since the ACK packets from a MH are rather forwarded to the FH.  Holding on an 

acknowledgement from SH to FH until a data packet arrives at the destination, obviously 

maintains the end-to-end protocol semantics, but at the same time one looses the main benefit of 

the Split-TCP, which is shortening the RTT delay for TCP. Shortening RTT by itself could 

increase the TCP throughput performance significantly, even without link condition changes. 

Because of this pitfall, the performance improvement, if any, of these protocols would be limited. 

 

2.3 Comparison of the TCP Performance Enhancement Mechanisms 
 

Table 1 summarizes the capabilities of the various TCP enhancement mechanisms, which is 

intended to solve the TCP problems over the wireless network environment, and it is self 

explanatory. The comparison criteria that have been adopted are the capability of preserving end-

to-end protocol semantics, the resiliency of handling long disconnection, the resiliency of handling 

high bit error rate, isolating packet error, splitting RTTe2e, etc.  Table 1 show that some of these 

mechanisms are complementary solutions, so the combination of the solutions would probably be 

an interesting way to improve the TCP over the wireless networks. 
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The M-TCP, M-TCP+ and PAM out of the split-TCP based solutions do not isolate or distinguish 

the wireless network from a wired network and do not split the RTTe2e which is one of the key 

barrier for the TCP performance. The RLP, Snoop, and ELN mechanisms out of the non-split 

TCP based solutions neither have the capability of splitting the RTTe2e. I-TCP solution has 

capability for these key items but it does not maintain the end-to-end protocol semantics which 

we address as a critical problem that needs to be resolved.  
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Table 1: Comparison of TCP performance enhancement mechanisms 

 
Non-split TCP 

Solution Split TCP Solution 
RLP Snoop ELN I-TCP M-TCP M-TCP+ PAM 

Maintain End-To-End 
Protocol Semantics Yes Yes Yes No Yes Yes No 

Require TCP Modification No No Yes Yes Yes Yes No 
Isolate/Distinguish 
Wireless Network No Yes Yes Yes No No No 

Split Long Network Delay 
(Split RTT) No No No Yes No No No 

Resilient to Lengthy 
Disconnection(Handoff) No Yes Yes Yes Yes Yes Yes 

Capable of Data Pre-fetch No No No Yes No Yes No 
Resilient to High BER Yes Yes Yes Yes No No No 
Resilient to High Delay 

Variation No Yes No Yes No No No 

Resilient to Link Rate 
Variation No No No Yes No No No 

Aware Of TCP No Yes Yes Yes Yes Yes Yes 
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CHAPTER 3 

Link Layer Enhancement via Resource Allocation Protocol 
 

As [40] presented, the interaction between application traffic and the wireless MAC layer behavior 

may lead to an unexpected application performance and wireless network resource utilization. 

We have analyzed the performance of LTE MAC layer packet transmission protocols and 

identified that the LTE uplink bandwidth scheduling could be temporarily stalled and cannot 

allocate the uplink resources to user equipment (UE) until a timer associated with the resource 

scheduler is expired. Consequently, the uplink packet transmission could be delayed from 

hundreds of milliseconds to 10.24 seconds for some configurations and application traffic 

behaviors. This LTE uplink resource allocation interruption could trigger a TCP Retransmission 

Timeout (RTO) which significantly drops the TCP transmission rate at the traffic source. To 

prevent this problem, we have proposed a uplink resource allocation protocol enhancement that 

reduces the uplink packet transmission interruption time over LTE network [14][39]. This is done 

by removing an unnecessary interruption condition in the resource allocation process without 

introducing additional control traffic overhead.  

3.1 Analysis of the Default LTE Uplink Resource Allocation Protocol 

In dealing with applications, a conventional LTE network makes use of Buffer Status Report (BSR) 

messages. The Buffer Status reporting procedure is used to provide the serving eNB with 

information about the amount of data available for transmission in the uplink (UL) buffers of the 

UE. Radio Resource Control (RRC) controls BSR reporting by configuring two timers: 

• A periodic BSR timer (e.g., “periodicBSR-Timer” and also called as “BSR periodic_timer”), 

which indicates the periodic timing of a BSR message. 
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• A retransmit BSR timer (e.g., “retxBSR-Timer” also called as “BSR retx_timer”), which 

indicates a retransmission wait period for retransmission of a BSR message upon 

transmission of the BSR message.   

Figure 5 represents an example flowchart illustrating the default LTE protocol for sending BSR 

messages from a UE. At step 1 the UE is known to have an empty buffer. An empty buffer 

indicates that there is no data available for transmission in the UL buffers of the UE. At step 2, 

after packet arrival from the upper layer (i.e., application layer), the UE sends a regular BSR 

message which indicates the total buffer size to an eNB. The UE also starts the periodic BSR 

timer and the retransmit BSR timer. The UE then proceeds to wait for a grant message at step 3. 

While waiting for the grant, if the retransmit BSR timer times out before the receipt of the grant, 

the UE loops back to step 2 and again sends a regular BSR message, and restarts the periodic 

BSR timer and the retransmit BSR timer. While waiting for the grant, if the grant is received 

before the retransmit BSR timer times out, the UE proceeds to step 4, where it determines 

whether the UE buffer size is greater than the grant size.   

If the buffer size is not greater than the grant size, at step 5, the UE transmits data with the data 

size equal to the buffer size, and terminates the periodic BSR timer and the retransmit BSR timer. 

After these activities, the UE loops back to step 1, at which point the buffer is once again known 

to be empty. If the buffer size is greater than the grant size, the UE determines whether the 

periodic BSR timer has expired at step 6. The value of the periodic BSR timer indicates a period 

of time to wait between transmissions of BSR messages. If the periodic BSR timer has not 

expired, the UE transmits a data message with a data size equivalent to the grant size at step 7, 

and then returns to step 3 to await another grant so as to be permitted to transmit additional 

portion(s) of the data remaining in the UL buffers at the UE. If the periodic BSR timer has expired, 

at step 8, the UE prepares a periodic BSR message to report the buffer size as the buffer size 

minus the difference of the grant size plus the BSR message size, transmits a data message with 

data equivalent to the grant size minus the BSR message size, and restarts the periodic BSR 
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timer and the retransmit BSR timer. The UE then returns to step 3 to await a grant to be able to 

transmit additional portion(s) of the data remaining in the UL buffer(s) at the UE. 

Additional description for the BSR is found in the 3GPP document TS 36.321 [2] and the potential 

values for a periodic BSR timer (e.g., "periodicBSR-Timer") and a retransmit BSR timer (e.g., 

"retxBSR-Timer") are provided in the RRC document, namely 3GPP TS 36.331 [3].  The “MAC-

Main Config” topic of Section 6.3.2 in 3GPP TS 36.331 lists those values for both timers. Some 

default values are suggested in Section 9.2.2 of the same document. The periodic BSR timer 

"periodicBSR-Timer" (default = infinity) is optional and the values are sf5, sf10, sf16, sf20, sf32, 

sf40, sf64, sf80, sf128, sf160, sf320, sf640, sf1280, sf2560, and infinity. For example, "sf5" 

means subframe 5 and it is equivalent to 5 msec; "sf10" means subframe 10 and it is equivalent 

to 10 msec, and so on. The retransmit BSR timer "retxBSR-Timer" (default = sf2560) values are 

sf320, sf640, sf1280, sf2560, sf5120, and sf10240. 

When utilizing BSR messaging according to LTE standards, we noticed that performance 

degradation may occur prior to the expiration of the periodic BSR timer if the total grant size is 

equal to or greater than the reported size of the last BSR message sent. In such cases, it is very 

possible to encounter scenarios where the UE buffer continues to increase due to new packets 

created by applications on the UE (e.g., video, picture, document, etc.) but, the UE is unable to 

send another BSR message until the BSR retransmission timer expires. As a result, the eNB has 

no knowledge of the most recent UE buffer conditions and does not allocate any resources until it 

receives a new BSR request.  Eventually, resources will be allocated after the BSR 

retransmission timer expires and a BSR message is forwarded by the UE to the eNB. However, 

the delay until expiration of the BSR retransmission timer may result in increased access delay 

and jitter beyond what can be tolerated per application. For instance, the VoIP packet can only 

tolerate a delay budget which is typically 200 ms to 250 ms end-to-end; beyond this delay  
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Figure 5: Default LTE protocol sending BSR messages 

threshold VoIP packets may be dropped resulting in a reduced quality of service or quality of 

experience. In addition to the imminent delay problem, it may cause the TCP to timeout. 

If the resource allocation is interrupted longer than the TCP Retransmission timeout (RTO), then 

the TCP will start retransmission and perform a slow start phase. This will significantly reduce the 

TCP transmission rate and the transmission rate may experience a very slow increase because 

of the reduced TCP slow start threshold (ssthresh) value. 

Example Packet Flow: Uplink Resource Allocation Interruption with Default Protocol 

Figure 6 is an example of communication flow illustrating packet transmissions between UE and 

eNB with packet delay performance degradation caused according to the default protocol for 
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sending BSR messages detailed in Figure 5.  In the illustrated example of Figure 6, the periodic 

BSR timer is set to 10 subframes and the retransmit BSR timer is set to 2560 subframes. Time, 

denoted by times instances numbered T99, T100… T2669 runs from the top to bottom of Figure 6. 

While both the periodic BSR timer and the retransmit BSR timer are utilized, activity associated 

with the expiration of the retransmit BSR timer is in action/invoked in the illustrated example. 

Referring to Figure 6, at time T99, 1500 bytes are placed in the UL buffer(s) of the UE. At time 

T100, a regular BSR message is transmitted from the UE to the eNB. The BSR message is 

characterized as regular since it is the initial BSR message. The BSR message indicates that 

there are 1500 bytes in the buffer of the UE. At time T102, an additional 300 bytes are placed in 

the UE’s UL buffers, so that there are now 1800 bytes available for transmission. At time T104, 

the eNB transmits a first grant to the UE; the UE receives the first grant of 1500 bytes from the 

eNB. Since the buffer size is greater than the grant size and the periodic BSR timer not yet 

having expired (Figure 5: step 4, step 6), at time T108, the UE transmits a first data message of 

1500 bytes (Figure 5: step 7).   

Thereafter, the periodic BSR timer expires at T110 and the UE is ready to prepare a periodic BSR 

message (P_BSR). At this time, 300 bytes remain in the UE buffer. However, the UE has to wait 

(Figure 5: step 3) until the retransmit BSR timer expires before transmitting any additional data. At 

this point, the UE cannot send any BSR messages specifically because the eNB has already 

granted the 1500 bytes requested by the UE. Even though the periodic BSR timer has expired 

and the UE is ready to send a periodic BSR message for the remaining 300 bytes, the UE has to 

wait until it is granted permission to send another BSR message. A regular BSR message cannot 

be sent because the retransmit BSR timer is still running and must first expire before a regular 

BSR message can again be sent. During this interval until the retransmit BSR timer expires, 

packet delay and jitter performance degradation occurs. 
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Regular BSR(1500 Bytes)
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Figure 6: An example for packet delay and jitter performance degradation scenario with the default buffer 
management protocol. Periodic BSR is not in action and retx_timer is in action. 

 

At time T2660, the retransmit BSR timer expires and accordingly, at time T2661 a regular BSR 

message is transmitted from the UE to the eNB to indicate that there are 300 bytes in the UE’s 

UL buffer(s). At time T2665, the eNB transmits a second grant to the UE; and the UE receives the 

second grant for 300 bytes from the eNB. The buffer size is not greater than the grant size 

(Figure 5: step 4), so at time T2669, the UE transmits a data message of 300 bytes (Figure 5: 

step 5).   
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Note that a periodic BSR message (i.e., P_BSR) cannot be inserted in the resource granted and 

received before the periodic BSR timer expired. A P_BSR cannot follow a grant message which is 

received before the periodic BSR timer expires and the uplink data PDU was already prepared 

before a BSR trigger. This is because when the grant is received, a MAC Protocol Data Unit 

(MPDU) packet was already created for the transmission without considering insertion of periodic 

BSR message since the corresponding timer has not yet expired.  

 

3.2 Known Approaches to Minimize the Problem 

One remedy for the problem of packet delay performance degradation as described above is to 

set the BSR transmission and BSR retransmission timers such that the packet delay problem is 

minimized. The periodic BSR timer (e.g., "periodicBSR-Timer") can be set to a very small value 

so that the UE will inform the network in a timelier manner regarding the UE’s current status. This 

action would alter the network to a potential UE data backlog, which would allow appropriate 

actions to be taken when possible. However, one drawback with a solution based on a small 

periodic timer value is that, the UE will generate far many more periodic BSR transmit requests, 

which in turn will result in an increase in signaling overhead. Since the control channels are the 

bottleneck for thin applications, increasing the signaling overhead further is not a desirable 

solution. Furthermore, the periodic BSR transmission interacts with the bandwidth grant message, 

but not the actual time, unlike how it is named. 

Example Packet Flow: Uplink Resource Allocation Signaling Overhead Increase 
 

Figure 7 is an example communication flow illustrating UE to eNB packet transmissions with 

signaling overhead increase according to the default protocol for sending BSR messages detailed 

in Figure 5, when the periodic BSR timer value is decreased. In the illustrated example of Figure 

7, the periodic BSR timer is set to 5 subframes and the retransmit BSR timer is set to 2560 

subframes. Time, denoted by times instances numbered T99, T100 … T120 runs from the top to 
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the bottom of Figure 7. While both the periodic BSR timer and the retransmit BSR timer are 

utilized, activity associated with the expiration of the retransmit BSR timer is not in action or 

invoked in the illustrated example. 

At time T99, 10000 bytes are now in the buffer of the UE. At time T100, a regular BSR message 

is transmitted from the UE to the eNB. The BSR message is characterized as regular since it is 

the initial BSR message. The BSR message indicates that there are 10000 bytes in the buffer of 

the UE (i.e., 10000 bytes available for transmission in the UL buffer(s) of the UE). At time T101, 

an additional 1000 bytes are placed in the UL buffers of the UE by the application, so that there 

are now 11000 bytes available for transmission. At time T102, the eNB transmits a first grant to 

the UE, and the UE receives the first grant for 1000 bytes from the eNB. Since the buffer size is 

greater than the grant size and the periodic BSR timer has not yet expired (Figure 5: step 4, step 

6), at time T106, the UE transmits a first data message of 1000 bytes (Figure 5: step 7).  At time 

T105, the periodic BSR timer expires and the UE is ready to prepare a periodic BSR message. 

At time T107, the UE receives a second grant for 1000 bytes from the eNB. The buffer size is 

now 10000 bytes (10000 initially + 1000 added – 1000 transmitted = 10000). Since the buffer size 

is greater than the grant size and the periodic BSR timer has expired (Figure 5: step 4, step 6), at 

time T111, the UE prepares and transmits a periodic BSR message and a second data message. 

The periodic BSR message transmitted reports the buffer size as 9010 bytes, which is the buffer 

size (10000 bytes) minus the grant size (1000 bytes) plus the BSR message size (e.g. 10 bytes). 

The transmitted data message has a data size equal to 990 bytes, which is a size equivalent to 

the grant size (1000 bytes) minus the BSR message size (10 bytes). 

At time T116, the eNB transmits a third grant to the UE; the UE receives the third grant for 1000 

bytes from the eNB. Since the buffer size is greater than the grant size and the periodic BSR 

timer has expired (Figure 5: step 4, step 6), at time T120, the UE transmits a third data message. 
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Figure 7: An example of signaling overhead increase for a normal scenario with the default protocol. 
Periodic BSR is in action and retx_timer is not in action. 

 

The buffer size is now 9010 bytes; since the buffer size is greater than the grant size and the 

periodic BSR timer has expired, at time T120, the UE prepares and transmits a periodic BSR 

message and a third data message. The periodic BSR message transmitted reports the buffer 

size as 8020 bytes, which is the buffer size (9010 bytes) minus the grant size (1000 bytes) plus 

the BSR message size (e.g., 10 bytes). The transmitted data message has a data size equal to 

990 bytes, which is a size equivalent to the grant size (1000 bytes) minus the BSR message size 

(10 bytes). Note that when the periodic BSR timer is expired and the resource is granted, a 

periodic BSR message is transmitted. The periodic BSR messages are transmitted with 
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increasing frequency as the value for the periodic BSR timer is decreased, and these results in an 

increased signaling overhead.   

In addition to the increase in signaling overhead, the remedy of decreasing the time value for the 

periodic BSR timer may still fail to overcome the packet delay and jitter performance degradation 

since the scenario described in Figure 6 may still occur even with the smallest periodic BSR timer 

(i.e., 5 ms) specified in the 3GPP document (TS 36.331).  Furthermore, setting the retransmit 

BSR timer (e.g., "retxBSR-Timer") to the minimum value specified by the 3GPP will not solve the 

problem either, since the inter-packet delay access can still be higher than 320 ms, which is not 

acceptable for all applications. Moreover, choosing any set of timer values for the periodic BSR 

timer and the retransmit BSR timer fails to optimize the access delay for all applications.  For the 

commercial LTE product point of view the periodicBSR-Timer may not be implemented because it 

is an optional feature in the standard. Even if it is implemented in the system, it is very unlikely to 

set to the smaller value because of the signaling overhead increase. For this reason the default 

timer value for the periodicBSR-Timer in the standard is set to infinity. 

3.3 Uplink Resource Allocation Protocol Enhancement 

We designed a mechanism that would allow packets to exit the waiting process as soon as the 

buffer size reported in the last BSR message is satisfied. We did so by tracking the total grant 

size since the last BSR transmission (see Figure 8). This responds to the very specific needs of 

all applications. As such, the packet access delay and jitter could be minimized regardless of the 

application type. As soon as the total grant size is equal to or greater than the reported buffer size, 

the UE is able to send a regular BSR without waiting for the BSR retransmission timer to expire. 

Figure 8 represents an example flowchart illustrating an enhanced protocol for sending Buffer 

Status Report (BSR) messages from a UE. At step 1, the UE is known to have an empty buffer. 

At step 2, after the packet arrival from the upper layer (e.g., application layer), the UE sends a 

regular BSR message to an eNB which indicates the total buffer size, starts the periodic BSR 
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timer and starts the retransmit BSR timer. The UE then proceeds to wait for a grant message at 

step 3.   

While waiting for a grant message, if the retransmit BSR timer expires before the grant is 

received, the UE loops back to step 2 and again sends a regular BSR message and restarts the 

periodic BSR timer and the retransmit BSR timer. Thus, the enhanced procedure will wait for a 

grant message for up to a period of time equivalent to the value of the retransmit BSR timer 

before resending a regular BSR message. While waiting for a grant message, if the grant is 

received before the retransmit BSR timer expires, the UE proceeds to step 4 where it is 

determined whether the buffer size is greater than the grant size. That is, it determines whether 

the amount of data available for transmission in the UL buffers of the UE is larger than the grant 

size.   

If the buffer size is not greater than the grant size, at step 5, the UE transmits data with the data 

size equal to the buffer size, and terminates the periodic BSR timer and the retransmit BSR timer. 

After these activities, the UE loops back to step 1, at which point the buffer is once again known 

to be empty. If the buffer size is greater than the grant size, the UE determines whether the 

periodic BSR timer has expired at step 6. The value of the periodic BSR timer indicates a period 

of time to wait between transmissions of BSR messages. If the periodic BSR timer has not 

expired, the UE prepares to transmit a data message with a data size equivalent to the grant size 

at step 7 and proceeds to step 9 to determine whether the total grant size since the last BSR is 

greater than or equal to the last BSR size. 

If the total grant size since the last BSR is not greater than or equal to the last BSR size then the 

prepared data message is transmitted and the process proceeds to step 3 to await another grant 

of permission to transmit additional portion(s) of the data remaining in the UL buffer at the UE.  
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Figure 8: Enhanced UE packet transmission protocol 

 

 

If  the total grant size since the last BSR is greater than or equal to the last BSR size, then the 

process proceeds to step 2 to send a regular BSR message indicating the buffer size and restarts 

the periodic BSR timer and the retransmit BSR timer. Adjustment in the size of the prepared data 

message is also made to account for the transmission of a BSR message within this same grant.    

Returning to step 6, if the periodic BSR timer has expired, at step 8, the UE prepares a periodic 

BSR message to report the buffer size as the buffer size minus the difference of the grant size 

plus the BSR message size, transmits a data message with data equivalent to the grant size 
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minus the BSR message size, and restarts the periodic BSR timer and the retransmit BSR timer. 

Thus, after receiving a grant that is not larger than the buffer size (i.e., the amount of data 

available for transmission in the UL buffers of the UE) or the expiration of the periodic BSR timer, 

the illustrated procedure sends a periodic BSR message and a portion of the data in the UL 

buffers of the UE to the eNB. The UE then returns to step 3 to await a grant to be able to transmit 

additional portion(s) of the data remaining in the UL buffers at the UE. 

Thus, as soon as the total grant size is equal to or more than the reported buffer size, a UE 

according to the methodology herein is able to send a regular BSR message without waiting for 

the retransmit BSR timer to expire.  This robust mechanism enables the reduction of congestion 

in wireless networks and increases the user quality of experience (in particular by reducing 

application access and jitter) without greatly increasing signaling overhead as comparing to prior 

solutions for reducing congestion caused by BSR messaging. 

 

Example Packet Flow: Uplink Resource Allocation with Proposed Enhancement 

Figure 9 is an example communication flow illustrating UE to eNB packet transmissions according 

to the enhanced protocol for sending BSR messages detailed in Figure 8 In the illustrated 

example of Figure 9, the periodic BSR timer is set to 10 subframes and the retransmit BSR timer 

is set to 2560 subframes. Time, denoted by times instances numbered T99, T100… T119 runs 

from the top to bottom of Figure 9. While both a periodic BSR timer and a retransmit BSR timer 

are utilized, activity associated with the expiration of the retransmit BSR timer is not in 

action/invoked in the illustrated example. At time T99, 1500 bytes are now in the buffer of the UE. 

At time T100, a regular BSR message is transmitted from the UE to the eNB. The BSR message 

is characterized as regular since it is the initial BSR message. The BSR message indicates that 

there are 1500 bytes in the buffer of the UE.  
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Figure 9: Example in Figure 8 with proposed solution (packet delay performance degradation has been 
eliminated). 

 

At time T102, an additional 300 bytes are placed in the UL buffers of the UE. At time T104, the 

eNB transmits a first grant message to the UE and the UE receives the first grant for 1000 bytes 

from the eNB. Since the buffer size is greater than the grant size and the periodic BSR timer not 

yet expired (Figure 8: step 4, step 6), at time T108, the UE transmits a first data message of 1000 

bytes (Figure 8: step 7). At this point in time, the total grant size since the last BSR (1000 bytes) 

is not greater than or equal to the last BSR size (1500 bytes) so the UE waits for the next grant 

(Figure 8: step 9, step 3). At time T109, the eNB transmits a second grant to the UE and the UE 

receives the second grant for 500 bytes from the eNB.   
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At this point, the total transmitted size including the latest grant size since the last BSR (1500 

bytes) is greater than or equal to the size of last BSR (1500 bytes).  Therefore, a regular BSR can 

be sent (Figure 8: step 9, step 2). 

A regular BSR message can be sent without waiting for retransmission timer expiration so that 

the performance degradation is minimized and/or avoided.  The size of the prepared data 

message is adjusted (Figure 8: step 7) to account for the transmission of a BSR message within 

this same grant.  Accordingly, the size of the data message transmitted at T113 is adjusted for 

the size of the BSR message transmission (Data message = grant size (500 bytes) - BSR 

message size (10 bytes) = 490 bytes) and the BSR message reflects the remaining size of the UL 

buffers (390 bytes = UL buffer size (800 bytes) – data message size (490 bytes)).  

At time T115, the eNB transmits a third grant to the UE and the UE receives the third grant for 

310 bytes from the eNB.  Since the buffer size is not greater than the grant size (Figure 8: step 4), 

at time T119, the UE transmits a third data message with a data size equivalent to the grant of 

310 bytes (Figure 8: step 5). 

 

3.4 Machine-to-Machine Traffic Performance Analysis over LTE 

To further analyze the protocol parameters analyzed in the previous section, Machine-to-Machine 

(M2M) telemetry was used in the simulation. Each M2M application session is consist of one 50 

bytes downlink packet and one 1000 bytes uplink packet via TCP connection. Each UE runs one 

telemetry session. The total traffic load is varied from two UEs up to 200 UEs per eNodeB. The 

M2M sessions start simultaneously and operate under error-free conditions over the wireless 

channels to create stress-test conditions on the protocol’s performance. The BSR periodic timer 

is set to one of the values 5, 20, or 320 sub-frames. The BSR retx_timer is set to one of the 

values 640 or 2560 sub-frames.  
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Impact of BSR Periodic_Timer and Retx_Timer: 

The issue of the conventional mechanism is visible further in the Cumulative Distribution Function 

(CDF) of the packet delay in Figure 10 and Figure 11, which shows the strong dependency of the 

LTE layer packet delay for uplink traffic (UE to eNB) on the periodic timer (higher delays with 320 

ms compared to the 5 ms setting) and BSR retx_timer (higher delays with 2560 ms compared to 

the 640 ms setting). 

The only difference in configuration between Figure 10 (a) and Figure 10 (b) consists of the value 

of the BSR periodic_timer. 50, 100, and 150 UEs were considered in both settings. The BSR 

retx_timer is set to 2560 ms in both cases. With the BSR periodic_timer set to 5 ms (Figure 10.a), 

the application upload response time is under 150 ms in all cases. Increasing the BSR 

periodic_timer from 5 ms to 320 ms (Figure 10.b) dramatically increases the application upload 

response time to beyond the value of the BSR retx_timer. These findings are consistent with the 

UE buffer management described in the protocol analysis sections above (fix later). 

Figure 11 illustrates the strong dependency between the BSR retx_timer (higher delays at 2560 

ms compared to the 640 ms setting) and LTE layer packet delay for uplink traffic. The application 

response time is noticeably impacted by the BSR retx_timer, and a longer response time is 

observed with higher values of the BSR retx_timer. This is due to protocol behavior, and it can be 

improved only by understanding and tweaking the protocol parameters. These findings are 

consistent with the UE buffer management analysis described in the protocol analysis sections. 

With the proposed enhancement mechanism the delay spike cause by the BSR retx_timer can be 

removed and does not require to shortening those timer values that increases the signaling traffic 

and only mitigates the occurrence of the timeout instead of removing them.  
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(a)                                                                           (b) 

Figure 10: CDF of application upload response time (sec): (a) BSR timer (periodic = 5 ms, retx = 2560 ms), 
and (b) BSR timer (periodic = 320 ms, retx = 2560 ms) 

 

 

 

Figure 11: CDF of uplink LTE packet delay (UE to eNB).  BSR timer (periodic = 20 ms, retx = 640 and 2560 
ms) 
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Physical Downlink Control Channel Utilization during M2M Traffic Sessions: 

Figure 12 illustrates Physical Downlink Control Channel (PDCCH) utilization under different 

protocol settings with number of UEs from two to 190 (only selective curves are shown for 

readability). The BSR periodic_timer was set to 5 ms and the BSR retx_timer was set to 2560 ms. 

The probability of low PDCCH utilization (i.e., less than one percent) decreases when the number 

of UEs increases to 120 (Figure 12.b). This indicates that the system can still absorb additional 

incoming traffic up to a given threshold (e.g., 120 UEs). At higher loads, the probability of low 

PDCCH utilization (i.e., less than one percent) begins to increase approaching the value for the 

50 UE scenario, and remains quite flat with the load increase as specified in these tests (Figure 

12.b). This behavior can be explained by the rapidly increasing application response time when 

the number of UEs is higher than 120 (Figure 12.d and Figure 12.e). The higher the ratio of the 

increase in response time means lower traffic activity per subframe, which leads to lower PDCCH 

usage. What is more, the increase in application response time is deeply rooted in the interaction 

with the upper layer protocols such as TCP, which are modeled within the LTE application 

platform in conjunction with the LTE lower layer protocols and buffer management protocols. 

Transmission Control Protocol (TCP) flow control prevents a linear increase in system load along 

with the increase in traffic. Figure 12 (c) provides details on utilization of PDCCH resources on a 

percentage basis, and shows that there is quite a sudden increase as the load increases from 40 

UEs to 50 UEs. It appears possible to push the number of highly utilized PDCCH resources up to 

a certain limit: for example, with 90 UEs, PDCCH is 100 percent occupied 45 percent of the time. 

Pushing the load further does nothing to increase PDCCH usage, which indicates that the system 

is congested, and that TCP flow control is regulating access. 

 

 

 



46 
 

 

(a) PDCCH utilization during traffic session (CDF), BSR timer (periodic=5 ms, retx=2560ms). 

 

(b) % of less than 1% PDCCH utilization. BSR timer (periodic=5ms, retx=2560ms). 

 

(c) % of less than 100% PDCCH utilization. BSR timer (periodic=5ms, retx=2560ms). 
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(d) Downlink response time statistics 
 
 

 
 

(e) Uplink response time statistics 
 

Figure 12: PDCCH utilization for various BSR settings.  Number of UE= {2 through 190}, BSR timer 
(periodic=5ms, retx=2560ms) 

 
 

3.5 Conclusion 

We analyzed and reported the impact on the applications performance cause by the packet 

transmission protocols on the LTE network. We further propose an enhanced buffer management 

protocol [39], which enables the reduction of congestion which may cause a TCP timeout in 
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wireless networks and increases the user quality of experience (in particular by reducing 

application access and jitter) without greatly increasing signaling overhead as compared to prior 

solutions for reducing congestion caused by BSR messaging. Through the M2M performance 

analysis, we were able to validate the insights we offered into the UE buffer management. In 

particular, the upper layer protocols, such as the TCP, may slow down the traffic activity because 

of the increased packet delay caused by the PDCCH channel congestion. This causes the 

application response time to increase and it lowers the air resource utilization.  

The PDCCH channel congestion may interfere with the BSR message exchange, so that the 

uplink resource allocation may be deferred beyond the BSR retransmission timer, which may 

cause a larger application response time. A shorter BSR periodic timer and a BSR retransmission 

timer could be used to mitigate the performance degradation. Such settings (within the limit 

permitted by the standard) would allow the network to be aware of the potential UE data backlog 

and to take appropriate actions when possible. However, a recognizable drawback is that with 

small BSR timer values, the UE may generate far many more periodic BSR transmit requests, 

which in turn may result in signaling overhead increase. Since the control channels are the 

bottleneck for thin applications, increasing the signaling overhead further is not a desirable 

solution. Moreover, choosing any set of timer values for the periodic BSR timer and the retransmit 

BSR timer fails to optimize the access delay of all applications. 

The proposed protocol enables escape from a waiting state as soon as the reported buffer size in 

the last BSR message is satisfied, by tracking the total grant size since the last BSR transmission.  

As soon as the total grant size is equal to or more than the reported buffer size, a UE, according 

to the proposed methodology, is able to send a regular BSR message without waiting for the 

retransmit BSR timer to expire.    



49 
 

CHAPTER 4 

Wireless Link Bandwidth Saving via Snoop-TCP 
 

Due to the explosive growth of the increasing video demands, online video streaming services 

have been receiving more attention than ever. The growth of video streaming is on the rise. 

Global mobile data traffic has increased by 74% in 2015, and mobile video traffic increased to 55% 

of a total mobile network traffic in 2015 and 75 % of the world’s mobile data traffic will be video by 

2020 [21]. Especially the video streaming traffic is transmitted via TCP protocol.  

We analyzed the network traffic behaviors of the two most popular HTTP-based video streaming 

services: YouTube and Netflix over Wi-Fi, 3G and LTE networks. We found that the video traffic 

behaviors rely on various environments, such as the types of user devices, multimedia 

applications running on the devices and network conditions. Unlike prior studies that focused 

more on analyzing video streaming usage patterns, popularity, duration of videos, file sizes, 

network traffic pattern per user device capabilities, and how clients access the video contents,[23], 

[30], [34], [35], [41], [54], and [63], we focus on the video packet drops at the user device. 

As a result, we found that a large amount of video data is being discarded after being 

downloaded over the air-link. Some of the measurements show that the amount of discarded 

video traffic could exceed 20% of the total video content.  

 

4.1 Mobile Video Traffic Measurement over Wireless Networks 

 
For the video streaming and mobile application traffic analysis, we setup a  test-bed to capture 

the live network traffic over various wireless access networks (i.e. Wi-Fi, 3G and LTE) using real 

user devices such as an iPhone, Android Phone, iPad and Android Tablet, as shown in Figure 13. 
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Figure 13: Testbed for the video traffic measurement 

 
 
To analyze a various types of video contents, we selected twenty one diverse video titles from the 

most popular video content providers, in terms of genre, length and video quality. We measured 

and analyzed HTTP and TCP packets, while displaying the videos on the iPhone, Android and 

Tablets over wired and wireless networks. This was done by using a client application installed in 

the user device. Table 2 shows the list of the sample video titles from YouTube. 

 

4.2 Detection of the Wasteful Video Traffic 
 

Figure 14 is a simplified video traffic flow from one of the video streaming traffic traces. When a 

subscriber connects to a video streaming server, the client sends an HTTP GET message 

(packet flow #1). The text/html file includes a unique id of the requested video, user-agent 

information (OS and application types running on the device) and cookie information (i.e., recently 

watched video list stored on the device). 
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Table 2 Test video titles from YouTube 

No. Length Title on YouTube Type 
1 7:19 E3: FarCry 3 - Demo Game play Walkthrough (HQ 360p) Game Demo1: Action 

2 10:43 Ghostbusters - First 10 Min HD HQ GeForce GTS 250 Game Demo2: Action 

3 10:27 Wheelman - First 10 Min HD HQ - GF9800GT Game Demo3: Action 

4 10:53 This Corrosion (Extended 10 min) -Sisters of Mercy [HQ] Music video 

5 10:13 Minions Banana Song Animation 

6 9:10 Judas Priest - Rapid Fire (With Technical Problems) Live Concert 

7 10:24 Manchester United vs Hangzhou Greentown HQ Sports 

8 10:08 Vince Mcmahon You're fired 10 min (HQ) WWE Show 

9 10:00 The Fireplace Video - Widescreen HD Download Available! General recording 1 

10 8:11 Saturn V Launch Views - High Speed Cams 480p General recording 2 

11 1:59:00 Reign of Assassin Action 

HD 1 1:00:19 Those relaxing sounds of waves - full hd film 1080p 1h long video Nature 

HD 2 20:34 Planet Earth seen from space Full HD 1080p Original Nature 

HD 3 8:23 Power of mother nature 1080p HD Nature 

HD 4 10:29 Beautiful nature scenery(1080p HD) Nature 

HD 5 4:54 Toshiba Camelio H20 HD(1080) Nature Close-up Nature 

HD 6 6:54 Full HD 1080p nature wallpapers-Download these wallpapers ~ Nature 

HD 7 13:29 Planet Earth amazing nature scenery 1080p HD Nature 

HD 8 9:59 Planet Yosemite HD 1080 Nature 

HD 9 8:14 Beautiful nature scenery 2 (1080p HD) Nature 

HD 10 Not avail. Nature 1080p HD Nature 
 

Then, the server responds back to the client with the list of the Content Distribution (CDN) servers 

which contain the video file and image servers where the client will download background images 

from (packet flow #2). The client transmits a set of HTTP GET messages in parallel to 

downloading background images. The images mostly consist of Web-page images and the snap 

shots of the requested video content (packet flow #3 and #4). When the client clicks the play 

button on the application, it starts downloading the video data from one of the CDN servers by 

sending HTTP GET messages (packet flow #7, TCP port 5000). Based on our measurements, 

the client for the targeted video provider under the study requests the entire video at once. 

However, the client frequently terminates the TCP connection and establishes another TCP 

connection, followed by another HTTP GET message to continue receiving the video content 
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(packet flow #11, TCP port 5001). The frequency of this behavior varies with a different OS in the 

user device and the network conditions. Transmitting several HTTP GET messages via new TCP 

connections is even noticeable when the network is busy.  

Based on our analysis, we found that a significant amount of video content that had been already 

delivered to the mobile device through the precious air-link was discarded between the HTTP 

GET messages that were requested through a new TCP connection. This behavior can be found 

in Figure 14 between packet flow #7 and #15. The packet flows #8, #9 and #10 are 

acknowledged by the client and before receiving packet flow #12, the client transmitted another 

HTTP GET message via a new TCP connection with a port number 5001 (packet flow #11). 

Establishing a new TCP connection for the video content means that the client decided not to use 

the previous TCP connection anymore. Thus, the client sends a TCP reset (RST) packet to the 

server every time it receives a video packet via the previous TCP connection. The TCP RST 

packet is used to stop the server from further sending the video data through the closed TCP port 

and prevents the server from being left in the wait state, awaiting further transmissions. During 

this process, the client may still receive the video packets through the terminated TCP connection 

if the server already had transmitted before it noticed that the client had terminated the 

connection. These packets are not accepted by the client application since the TCP connection 

had been already terminated. In other words, the video data are simply thrown away without even 

being played. As a result of this behavior the packet flow #12, #13, #14, #19, #20, and #21 would 

be discarded by the client.  

In addition to the wasted air-link bandwidth for the downlink traffic, there is unnecessary uplink 

TCP ACK packets and multiple uplink resource allocation related control traffics which would 

have not occurred if there was no wasteful downlink traffic. This uplink control traffic would 

consume the uplink air-link signaling resources which could cause the wireless system 

performance bottleneck while the wireless bandwidth for user data is still available, as described 

in Chapter 3. 
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Figure 14: Video traffic flows without the TCP RST tracker mechanism
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4.3 Video Traffic Analysis 
 

4.3.1 YouTube Video Traffic Analysis 

Figure 15 shows the TCP receive window size with the iPhone and Android phone. The maximum 

receive window size is 130 Kbytes for the iPhone and 82 Kbytes for the Android.  As shown in 

Figure 15, the iPhone utilizes a higher maximum receive window size and mostly stays above 60 

Kbytes. However, the receive window size trace from the Android is significantly different from the 

iPhone. It uses a lower maximum receive window size, and also repeatedly drops to 0 bytes. The 

consequence of this behavior would be from controlling the data transmission by the server.   

As shown in Figure 16, we also measured the amount of in-flight traffic by analyzing the sender’s 

TCP header packets. Similarly, the amount of in-flight traffic also indicates that the link utilization 

of the YouTube application on the iPhone is higher than the one on the Android. 

For further analysis, we performed measurements over 3G and Wi-Fi access networks using the 

iPhone and Android phone.  Figure 17,Figure 18, Figure 19, and Figure 20 show the TCP 

throughputs and TCP sequence number graphs using the iPhone and the Android Phone over 3G 

and Wi-Fi networks. The measurements clearly show the distinctive behavior between iPhone 

and Android. The distinction is even noticeable with a Wi-Fi network. Figure 17 and Figure 19 

show that the video server pushes data to the iPhone device as long as the network bandwidth is 

allowed on the link without pausing transmission. On the other hand, the data transmission to the 

Android device periodically halts and resumes as shown in Figure 18 and Figure 20.    
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Figure 15: Receive window size (bytes) trace with the iPhone and Android phone 

 

 

 

Figure 16: In-flight traffic with iPhone and Android phone 

 

 

 

 



 

56 
 

 

The YouTube client on the Android device tends to use only one TCP connection for the entire 

video streaming, unlike the behavior on the iPhone. Hence, the YouTube client on the Android 

device is actively controlling the video traffic transmission from the server by controlling the data 

consumption from the TCP receiver buffer. The buffer size at the application layer may be 

different or dynamically adjusted by the application, depending on the link condition or the 

capability of the Android device. As an example, Figure 20 shows traffic surges (represented as 

vertical lines in the graph) about every 50 seconds, and not much traffic activity is noticed in 

between these traffic surges. The client receives about 4.5 Mbytes of video content as quickly as 

possible by updating the receive buffer size, so that the video server can send data. Once so 

much data is received, the client reduces the receive buffer size to zero, so that the server stops 

sending data. While the client maintains the receive buffer size to zero byte, the server 

periodically sends TCP keep-alive messages to check if the connection is still alive. There are 

small amounts of data transmission within the 60 seconds interval (maximum window size 

multiply by three bytes) and another 4.5 Mbytes of transmission occurs.  

This is a different way of controlling content transmission to reduce the unnecessary transmission 

and system resource consumption, just in case a client decided to stop playing a video. 

• Netflix: A client requests video content piece by piece every 10 seconds (see Section 

4.3.2). 

• YouTube with Android device: A client requests the entire video content normally, but the 

TCP transmission is controlled with the TCP rwin size report.  

• YouTube with iPhone: The video traffic tends to be transmitted as fast as it can. 
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(a)                                                                                 (b) 

Figure 17: (a) TCP throughput and (b) TCP sequence number trace using iPhone over 3G 

 

 

 

(a)                                                                                 (b) 

 

Figure 18: (a) TCP throughput and (b) TCP sequence number trace using Android over 3G 
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(a)                                                                                 (b) 

Figure 19: (a) TCP throughput and (b) TCP sequence number trace using iPhone over Wi-Fi 

 

 

 

 

(a)                                                                                 (b) 

Figure 20: (a) TCP throughput and (b) TCP sequence number trace using Android over Wi-Fi 
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(a)                                                                                 (b) 

Figure 21: (a) TCP throughput and (b) TCP sequence number trace using iPhone over LTE (Netflix) 

 

4.3.2 Netflix Video Traffic Analysis 

The TCP packet trace in Figure 21 was captured using the Netflix server and an iPhone over the 

LTE network. Since the Netflix content is encrypted and the traffic pattern with the Netflix server is 

rather simple compared to the YouTube, an extensive traffic analysis has not been performed. 

The TCP sequence number graph in Figure 21 (a) shows that traffic bursts every 10 seconds. 

The TCP throughput graph also shows a 10 second interval clearly. The measurement also 

clearly shows that the Netflix client application use only one TCP connection for the entire video 

session, regardless of the device type or network conditions, unlike the YouTube as described in 

the Section 4.3.1. 
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4.3.3 HTTP GET Message Analysis 

Figure 22 shows the number of HTTP GET messages in 500 second duration of video traffic 

using iPhone over the 3G network. We analyzed 9 different video titles from HD1 to HD4 and 

HD6 to HD10 that are listed in Table 2. Figure 23 represents the duration of the HTTP GET 

messages on average. The average duration of the HTTP GET session was as little as around 

2.5 seconds up to as high as about 30 seconds. Figure 22 and Figure 23 show a different traffic 

behavior per video content. However, this could be caused by the network condition changes at 

the time of the measurements, since the measurements were not under a fully controlled test 

environment, but instead a public network was used. Figure 24  and Figure 25 show the CDF of 

the total amount of traffic delivered to the client per HTTP GET segment and the CDF of the 

amount of the discarded traffic by the receiver per HTTP GET segment. It shows that the amount 

of video traffic delivered per HTTP GET segment is about 320 Kbytes on average and about 52 

Kbytes of them are discarded by the receiver (i.e. client device) on average.  

Table 3 shows that iOS devices experience a much higher discard ratio compared to the Android 

devices. That is mainly because the YouTube video player on the iOS device sends more HTTP 

GET messages through new TCP connections than the video player on the Android device. 

These results in the higher discard ratio compared to the case with an Android device. The 

discard ratio seems to be also affected by the hardware capabilities, such as memory size and 

display resolution, of the client device. The highest average discard ratio out of the tested client 

devices was observed from the iPhone 3G, and it exceeds 13% on average with a standard 

deviation of about 9%. 
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Table 3 Average and STD of discard Ratio (%) for YouTube video over LTE, 3G and Wi-Fi networks 

Devices Avg. (STD) Discard Ratio (%) 
iPad 3 11.77% (1.23) 

iPhone 4S 11.25% (1.22) 
iPhone 3G 13.01% (9.02) 
Nexus 7 1.79% (0.45) 

Nexus S 4G 9.23% (1.81) 
 

 

 

Figure 22: Number of HTTP GET messages and TCP connections in 500 sec using 3G-iPhone 4S 

 

 

Figure 23: Average HTTP GET message inter-arrival time (sec) 
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Figure 24: CDF of total bytes received per HTTP GET transaction 

 

 

 

 

 

 

 

 

 

 

Figure 25: CDF of discarded traffic bytes per HTTP GET transaction 
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4.4 Known Approaches to Minimize the Problems 
 
The best remedy for this problem is to not even generate wasteful traffic from the beginning. To 

accomplish this goal, the video application may establish a persistent TCP connection for the 

video traffic instead of establishing a sequence of TCP connections during a single video 

streaming session. This mechanism exists for the non-progressive video streaming, and it has 

even worse disadvantages in terms of the possibility of wasting video traffic, because the entire 

video content may be delivered to the client as fast as possible and it may be wasted when a user 

stops watching the video.  

The progressive and HTTP Adaptive Streaming (HAS) methods, which are very common 

nowadays, segmentize the video files and are controlled by the application layer to support the 

"progressive video functionality", and to prevent transmitting excessive amounts of video traffic 

too early before the play time, since a user may stop playing the video and waste the early 

downloaded video content. Hence, even though a single TCP connection is used, the application 

layer may still interact with the TCP layer for the transmission. Indeed, some video content 

providers use a single TCP connection with an application level flow control in addition to the TCP 

layer flow control, to avoid generating wasteful traffic. However, the highest concern for some 

content providers and end users may be the application performance and convenience of the 

application usage, not the increased network utilization. In fact, the most popular video content 

providers use video traffic transmission mechanisms that generate wasteful traffic. This is 

completely up to the content provider's decision and there is no standard or regulation to prevent 

it. The important fact here is that those entities who create the issue (i.e. content providers) and 

those who have a keen interest to resolve it (i.e. wireless network providers & equipment vendors) 

are different. Those content providers may not have a concern about the network traffic being 

wasted; however preserving the scarce wireless network resource is a top concern for the 

wireless network providers.  
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4.5 TCP Reset Tracker 
 
We propose a TCP Snoop based solution called TCP Reset Tracker (TCP RST Tracker) to 

prevent transmitting the wasteful network traffic. The proposed solution is to monitor the TCP 

reset (RST) message originated from the client and discard the buffered and incoming packets 

from the network that have the same 5-tuple TCP flow (i.e. source and destination IP addresses, 

source and destination port numbers, and protocol number) at the base station (see Figure 26). 

When a base station receives a MAC Protocol Data Unit (PDU) from a mobile station, it checks 

the 5-tuple information in the received packet. This is important because if the first MAC PDU has 

enough information to identify the TCP session and the TCP reset information, then the system 

does not need to wait until the entire MAC Service Data Unit (SDU) is reassembled so that can 

be more efficient in terms of the operational delay. If the MAC PDU is a segment of a MAC SDU 

and does not have all the information to identify the 5-tuple information, then the MAC PDU 

should be stored until the segment is reassembled as a MAC SDU to extract the TCP information. 

Once the 5-tuple information is identified, the system checks if the received segment includes the 

TCP reset information.  If it is not a TCP acknowledgement packet, then no action is needed by 

the proposed “TCP RST Tracker” which monitors a TCP reset message.  If a packet includes 

TCP Reset information, then the TCP RST Tracker searches the downlink buffer for the specific 

mobile station. All packets that belong to the same TCP session will be discarded from the buffer. 

This monitoring may continue for a few seconds because some packets may still be coming to 

the base station, and to ensure that subsequent packets will not be transmitted over the air. The 

duration of the packet searching process should be configurable with a timer since the amount of 

in-flight packets varies depending on the network condition, TCP configuration parameters, etc.  

The video content packet flow #12 in the packet flow diagram, Figure 27, arrives at the mobile 

station after transmitting a new HTTP GET message via a new TCP connection. Thus, the mobile 

station sends a TCP Reset message to the content server notifying that the previous TCP 
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connection has been aborted. As soon as the first TCP Reset message is detected by the base 

station, the base station actively monitors and discards the packets arriving from the network  
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Figure 26: TCP RST tracker at the base station 

 

through the aborted TCP connection.  So the video traffic #13' and #14' will be discarded by the 

base station before being transmitted to the mobile station. As a consequence of this action, the 

mobile station does not need to respond to the discarded video traffic, and the packet flows in 

blue in the diagram will not be generated using the proposed mechanism, TCP RST tracker. 
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Figure 27: With TCP optimization at the base station using TCP reset message 
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4.6 Analysis on TCP Reset Tracker 
 

The proposed mechanism describes a simple, yet robust mechanism to eliminate wasteful video 

content traffic without transmitting it over the precious air-link. The estimated amount of air-link 

bandwidth saving could be up to 35% and about 10% on average of the video traffic over the air-

link based on the mobile video traffic usage information from the market. The proposed 

mechanism is handled at the base station, not at the user device. Thus, the enhancement is 

achievable without affecting the existing TCP or application layer. The air-link bandwidth saving 

would also be reflected to the billing system; hence this mechanism would be beneficial to the 

mobile subscribers as well, in terms of monthly data usage.  The proposed solution should work 

for all applications which use the TCP protocol with the similar application behavior, not only for 

the video application. 

We expect to have the following advantages with the proposed mechanism. 

1. No interruption on the end-to-end connections between clients and server: The solution 

does not manipulate any HTTP connection originated from the client and does not 

generate any new messages to clients and servers in order to deal with the data.  

2. Improve efficiency of bandwidth usage on air interface for both downlink and uplink:  by 

discarding the wasteful traffic from the server to the mobile station, the proposed 

mechanism can also eliminate the TCP RST packet that would have been sent by the 

mobile station to the server. The elimination of unnecessary packets in the uplink has 

further benefits on top of the uplink bandwidth saving, since transmitting uplink traffic 

involves more control message exchanges with the base station.   

3. Not affecting the application behavior: It does not change any behavior of the application. 

The application does not send any TCP RST message for the downloaded content, 

unless it receives video content from a closed TCP connection. With this solution, the 

number of TCP RST messages is expected to be significantly reduced.  
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4. This mechanism can be integrated in the existing base stations without disruption, since it 

could be implemented as an independent module with a little interaction with the other 

modules, such as mirroring the TCP information from the received packet before and 

after the reassembly buffer at the base station. Also there would not be any side effect on 

the performance since the enhancement module does not hold any part of the packet 

flows in the system.  

 

4.7 Conclusion 
 
This chapter explored and analyzed the two most popular HTTP-based video streaming services 

in terms of video traffic behavior in the network, while displaying the videos on mobile devices 

(iOS and Android) over the wireless networks (Wi-Fi, 3G and LTE). In the experiments, we 

identified that the network traffic behavior of watching videos on-line depend on hardware 

performance, software running on the devices and network conditions. The measurements show 

that when a client requests a video, the resolution is selected based on the device types, 

regardless of the OSs on the devices or access networks. We observed that a noticeable amount 

of video content is being discarded after the successful delivery to the client device. The content 

discarding occurs when a TCP connection is repeatedly terminated and established. In such 

cases, the video packets that arrived at the client through the terminated TCP connection are 

discarded. The measurements indicate that the video packet loss may exceed 35% of its 

complete content. This causes the misuse of the limited network resources. Considering the 

increasing tendency of video traffic download by the mobile users and the scarcity of the network 

bandwidth, understanding the application traffic behavior is crucial in order to develop an effective 

video delivery mechanism. 
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CHAPTER 5 

Split TCP with End-to-End Protocol Semantics  
 

5.1 Problems of Split-TCP Solution 
 
As described in the TCP overview Section in Chapter 2, the performance enhancement for the 

applications that uses TCP protocol is even more seriously considered by the network operators 

and content distribution networking service providers. One of the main reasons for this is the poor 

TCP performance over the wireless network while wireless data rates are rapidly increasing. The 

TCP over the wireless network frequently underutilizes the available network link bandwidth. 

Because the TCP requires receiver acknowledgements for every window of data packets sent, 

throughput (when using a standard TCP) is inversely related to network latency or round trip time 

(RTT). Thus, the distance between the server and the end user becomes the true bottleneck 

factor in download throughput and hard to overcome, unless the server is relatively close by to 

the end user.  

The Split-TCP proxies are already deployed in an operational world-wide network by the cloud 

service operators and Content Distribution Networks (CDNs), operators such as Google and 

Akamai [47][50][58]. A study indicates that a vanilla TCP splitting solution deployed at the satellite 

DCs reduces the 95th percentile of latency by as much as 43% when compared to serving 

queries directly from the mega DCs [50].  In addition to the cloud service and CDN operators, 

some of the major wireless network operators are also deploying Split-TCP mechanisms in their 

latest wireless network to enhance the user perspective download time. It is clear that the Split-

TCP mechanism is being implemented and deployed in a commercial networks and must be 

enhanced to resolve the critical drawback, lack of the end-to-end semantics [62][36]. 
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5.2 Known Approaches to Minimize the Problems 
 
There are various types of Split-TCP mechanisms including Indirect-TCP (I-TCP) [7], Aggregate 

TCP (ATCP) [17], Mobile TCP (M-TCP) [13], M-TCP+ [48], and Pre-Acknowledgement Mode 

Split-TCP (PAM Split-TCP) [5]. Among these variations I-TCP, ATCP and PAM Split-TCP do not 

maintain the end-to-end semantics even though it improves TCP throughput performance. On the 

other hand M-TCP and M-TCP+ overcomes the drawback of the vanilla split-TCP, the lack of 

end-to-end semantics. M-TCP and M-TCP+ mechanisms, however, lost some fundamental 

benefit of Split-TCP because this mechanism does not shorten the round trip time (RTT) while it 

improves the TCP efficiency from the wireless link disconnection problem. Because of this pitfall, 

the performance improvement would be limited or does not have any improvement if the wireless 

network is stable. 

 

5.3 On the Split-TCP Performance Over Real 4G LTE and 3G Wireless 
Networks 

 

5.3.1 Wireless Network Environment and Measurement Scenarios 

We deployed a Split-TCP system in commercial 4G LTE and 3G networks in the North American 

market, in order to evaluate the end-to-end TCP throughput performance and the perceived end 

user experience. The network is characterized by seven independent geographical regions (i.e. 

R1 through R7), as listed in Table 4, and separate Split-TCP systems are deployed in each of the 

seven regions; this table summarizes the combination of the measurement scenarios considered 

for this analysis. Since the network delay (RTTe2e) observed during file downloads depends on 

the relative location of servers and clients, we have selected two extreme locations for the 

servers. The two servers, identified as S1 and S2, are more than 2000 miles apart from each 

other. As for the location of clients, we identified one cell site per region and collected 

measurements while the number of connected clients is representative for a typical use in a 

moderately loaded cell. For example, the peak number of connected subscribers is about or 
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below 100 during the measurement in the selected cell site.  Furthermore, we have selected three 

client locations within the tested cell sites, which are referred as Near-Cell (NC) for good radio 

conditions, Mid-Cell (MC) for average radio conditions and Far-Cell (FC) for poor radio conditions. 

The guidelines for selecting these three locations are specified in Table 4 with respect to 

Received Signal Reference Power (RSRP) zone thresholds. The motivation for these placements 

is to account for the fact that the maximum available bandwidth depends on the client’s radio 

conditions and to get a fair sampling of the perceived performance within a cell. Furthermore, we 

employed five different file sizes through these experiments:  0.5MB, 1MB, 5MB, 10MB and 

20MB. With these conditions, we collected TCP packet traces at the network interface in the Split-

TCP system toward the RAN by repeating 20 independent file download experiments for each file 

size, with and without TCP optimization (i.e. Split-TCP) in order to allow performance comparison. 

All test scenarios were executed over both 3G and 4G LTE networks. 

A massive volume of packet traces has been collected from the field using the Wireshark packet 

capture tool, and it was followed by an in-depth analysis. Prior analysis, we first corrected some 

of the packet fields in the Wireshark captured files because we frequently observed that the TCP 

traces included invalid frame sizes and duplicate TCP port numbers, which caused tangling of 

multiple TCP test sessions into a single TCP session. We have developed an automated TCP 

PCAP analysis tool to handle the massive number of TCP sessions. The complete data process 

is illustrated in Figure 28: it separates out each TCP session from the input PCAP file and 

classifies each TCP session per radio technology, per region, per test client sites, and per file 

size. The detailed TCP packet information is stored in a database for further analysis and for 

displaying various TCP graphs.  
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Table 4: Measurement criteria 

Two server locations S1 and S2 (>2000 miles apart) 

Seven cell sites R1, R2, R3, R4, R5, R6, R7 

Three client locations 
per cell site 

Near Cell(NC): RSRP > -80 dBm 
Mid Cell(MC): -100dBm < RSRP < -80dBm 

Far Cell(FC): RSRP < -100 dBm 

File sizes for 4G LTE 0.5MB, 1MB, 5MB, 10MB, 20MB 

File sizes for 3G 0.5MB, 1MB 
 

 

 

 

 

Figure 28: TCP Packet Trace Analysis Process 

 

 

5.3.2 Measurement Results and Analysis 

We extracted various information from the TCP packet traces including download time, download 

throughput, the ratio of retransmitted data bytes, RTT measurement, duplicate ACK packet ratio, 

number of out-or-order packets, and amount of in-flight bytes. In this paper we show the TCP 

throughput gain and the ratio of retransmitted data bytes. We have noticed that the throughput 
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results for the baseline (i.e. without TCP optimization) vary widely for some test sites, and in 

particular for the FC locations. This variability is likely caused by the fluctuation in the network 

condition. Since the measurements were done over an uncontrolled live network, some of the 

performance gain comparisons may not be sufficiently reliable with a small number of 

measurements.   

Figure 29 shows the TCP throughput performance gain over the LTE network, contrasting the 

performance with and without TCP optimization. The percentage values in the associated tables 

are obtained from averaging across 20 repetitive measurements performed per measurement 

scenario according to Table 1.  The seven measurement regions are indexed from R1 through R7 

and the test client locations (i.e. NC, MC, and FC) are clustered together. Figure 29 (a) shows the 

measurement results using server S1 and Figure 29 (b) shows the results using server S2. The 

throughput gain range is widely spread and it was as high as 228%,which means that the TCP 

optimization provides throughputs that are more than three times faster over the baseline 

performance (with no TCP optimization). Because of the wide range of performance gains, we set 

two criteria to calculate an aggregated weighted throughput gain per measurement region: 

• Weighted contributions per file size: 45% (file sizes <= 1 MB), 30% (5 MB file size), and 

25% (file sizes >= 10MB) 

• Weighted contributions per RF conditions: 25% (NC), 30% (MC), and 45%(FC)  

The weighted average graphs in Figure 29 (a) are based on these weighted average criteria. 

These graphs show the average throughput gains for the seven regions over both 4G LTE and 

3G networks, even though the detailed measurement results over 3G network are not shown in 

this paper. Referring to the server S1, the region R3 shows about 120% of throughput gain, while 

the overall weighted average throughput gain across all the seven regions is about 72% over the 

LTE network and about 6% over the 3G network. Similar information is displayed   in Figure 29 (b) 

for the server S2: the overall weighted average throughput gain across all the seven regions is 

about 43% over the 4G LTE network and about 3% over the 3G network. One of the reasons for 
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the performance gain difference between these two server locations is the relative distance 

between servers and clients. Five out of the total seven measurement regions are closer to the 

server S2 comparing to the server S1. This is described in more details later in this section. 

Figure 30 (a) and (b) show the percentage of retransmitted bytes per measurement scenario 

using (a) server S1 and (b) server S2 over the 4G LTE network. Overall, the packet 

retransmission ratio is noticeably low; even 0% packet retransmission has been observed quite 

often, and most of the time it is below 0.5% and seldom gets larger than 1%. These results are 

collected from the end-to-end TCP connections which span across both wireless and wire-line 

networks. 

Figure 31 (a) represent the TCP sequence number graphs obtained from all individual TCP traces 

that are collected from the NC locations (good radio conditions) in one of the test regions while 

downloading a 10 MB file from the server S1 over the 4G LTE network. The group of TCP 

sequence graphs in the upper part of Figure 31 (a) is collected without TCP optimization while the 

group of TCP sequence graphs in the lower part of Figure 31 (a) is collected with TCP 

optimization. This indicates that the retransmission rate is zero percent, otherwise there would be 

red dot(s) indicating packet retransmissions and duplicate ACK packets. Furthermore, the 

throughput gain for this scenario is around 200%, which means that the TCP optimization renders 

the download speeds three times faster over the baseline.  

On the other hand, the TCP traces in Figure 31 (b) corresponds to a scenario with about 0.8% of 

packet retransmission; in additions about 10% of ACK packets are duplicate ACKs, and are 

illustrated as red dots. The throughput gain for this scenario is about 33%, which is noticeably 

lower compared to the measurements shown in Figure 31 (a). One of the reasons for the lower 

performance gain is the frequent RTO expiration with and without TCP optimization. 
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(a)  4G LTE Throughput Gain(%): TCP_Opt_OFF vs. TCP_Opt_ON (Server S1) 

 

 

 
 

(b) 4G LTE Throughput Gain(%): TCP_Opt_OFF vs. TCP_Opt_ON (Server S2) 

 

Figure 29: 4G LTE throughput gain(%) comparison  
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(a) Retransmitted bytes (%): TCP_Opt_OFF v.s. TCP_Opt_ON (Server S1) 
 
 

 

(b) Retransmitted bytes (%): TCP_Opt_OFF v.s. TCP_Opt_ON (Server S2) 

 

Figure 30: Retransmissino bytes ratio(%) over LTE network (a) Server S1 and (b) Server S2 
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(a)                                                                                                           (b) 

 

Figure 31: TCP sequence number graph with (a) 0% retransmission and duplicate ACKs,  and (b) 0.8% 
retransmission and 10% duplicate ACKs 

 

Figure 32 illustrates the distinctive performance gain differences between the server S1 and the 

server S2. These measurements have been collected from one of the regions that is very close to 

the server S2. Noticeably, the measurements taken with reference to the server S1 show high 

performance gains, while the measurements with reference to the server S2 show smaller gains. 

This is because the TCP performance gains depend on the available bandwidth in the network 

and network delays. If the network bandwidth is underutilized, higher TCP optimization gains are 

expected; on the other hand, if the network bandwidth is already saturated, there is no much 

room for gains through TCP optimization. 

Before taking TCP throughput measurements in Figure 32, we tested the end-to-end network 

delays and the maximum available bandwidth using speed tests taken in the proximity of the 

clients, presumably for measuring the available air-link bandwidth. The average PING delay from 

a client to the server S2 is about 40 ms and to the server S1 is about 130 ms on average. The 

three speed test results identify the approximate bandwidth limits perceived at the locations 

labeled as NC (i.e. 25 Mbps), MC (i.e. 20 Mbps) and FC (i.e. 14 Mbps). Hence, these 

measurements point out to the reference upper bounds per test site, and are marked as 
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horizontal floor lines in Figure 32 (a). The speed test tool is available in [61], and it gauges how 

much inbound traffic can be handled consistently through a connection, determining its Maximum 

Sustainable Throughput (MST). In other words, it provides a reference to benchmark how mobile 

carriers perform at specific test locations. If the TCP throughput for the baseline configuration 

(without optimization) is lower than the reference benchmark, one gets a clear indication that the 

link is underutilized and hence there is room  for TCP throughput gains, as enabled through TCP 

optimization. Referring to Figure 32 (b), a 10MB file size download at a NC location results in an 

approximate 117% throughput gain resulting from TCP optimization with respect to file downloads 

from server S1 (which is further away from client), while the gains are capped to 19% with respect 

to file downloads from the server S2 (which is closer to the client). This is because for the 

baseline configuration (in absence of TCP optimization), the actual TCP throughput measured 

through file downloads from the server S1 was limited to 9 Mbps, which is significantly lower than 

25 Mbps measured via speed tests, while the TCP throughput measured through file downloads 

from the server S2 was 21 Mbps, which is much closer to the 25 Mbps benchmark. Post TCP 

optimization, the TCP throughput with the server S1 has increased from 9 Mbps to 21 Mbps, 

which translated into the 117% gain since the reference baseline for the server S1 was 

significantly lower in comparison to the server S2. 
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(a) Throughput comparison: Server S1 vs. S2                      

 

 

(b) Throughput gain comparison per cell sites 

Figure 32: (a) Throughput comparison: server S1 v.s S2 per test site: (b) Throughput gain (%) comparison per cell site 

 

The Split TCP mechanism clearly shows a significant TCP throughput improvement over a 

commercial 4G LTE network. On the other hand, 3G networks operate at lower data rates 

compared to 4G LTE networks, and hence the gains through TCP optimization are expected to 
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be modest. Two server locations were considered with respect to reference clients during file 

download operations: a far distance server and a much closer one. Regardless, the overall 

throughput gains enabled via TCP optimization for both server locations were about 60% in 

average for the 4G LTE network and about 4% in average for the 3G network. Significantly larger 

throughput gains (e.g. in excess of 200%) that are attributed to the TCP optimization were noticed 

through individual measurements. These field experiments indicate that the performance gains 

enabled through a Split-TCP optimization may be maximized when the RTTe2e between a client 

and a server is large and when the network bandwidth is not saturated. Thus, we expect that the 

throughput gains enabled via TCP optimization may be even greater when advanced radio 

technologies, such as 5G, are deployed. For these reasons, Split-TCP has the potential to be 

widely deployed in both current and next generation networks 

 

5.4 Enhanced Split TCP with End-to-end Protocol Semantics  
 
It is challenging to find solutions that can all benefit from Split-TCP and maintain the end-to-end 

semantics at the same time. We propose a novel-mechanism, Enhanced Split-TCP (ES-TCP) 

that can be used with the current TCP implementation without modification. 

The Enhanced Split-TCP (ES-TCP) host (EH) is located along the path between a mobile host 

(MH) and a far host (FH), and the location should be a single point where all TCP packets must 

pass through to reach the MH and FH. In case of an LTE network, PGW would be a sufficient 

candidate. The TCP protocol at the FH or MH does not need to be modified to use ES-TCP. Thus, 

the description for the ES-TCP mechanism in this Section is focused on the EH only and for the 

simplicity download from the FS to MH through the EH is assumed.  EH consists of the EH 

receiver, which receives packets from the FH sender on behalf of the MH and the EH sender, 

which transmits the received packets to the MH on behalf of the FH as depicted in Figure 33. 
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Figure 33: ES-TCP and AS-TCP host location 

5.4.1 ES-TCP Operation 

ES-TCP Host (EH) which operates with the ES-TCP sends a TCP ACK packet to the sender (FH) 

as a typical TCP does, but with the following rules: 

• The sequence number in the ACK packet is K bytes less than a typical ACK sequence 

number calculation (i.e. ACK_seq_num = seqNumber + data length – K bytes). The byte 

count (K) for reservation should be at least 2 bytes to work properly. So, K=2 is assumed 

throughout this document. 

• 1 byte out of the reserved K (= 2) bytes is to freeze or unfreeze the FH TCP  

• The last 1 byte out of the reserved 2 bytes is to maintain the end-to-end semantics 

between the FH and the MH. The last byte is acknowledged back to the FH after it is 

received by the MH. 

• When the buffer of the EH is empty and the last ACK packet is received by the EH from 

MH, the final ACK_seq_num is transmitted to the FH so that the FH may terminate the 

TCP connection. 

• The cwnd for the WAN side TCP connection (between the FH and the EH) can grow 

independent of the RAN side TCP connection. 

The received data bytes from the FH are transmitted by the EH transmitter to an MH as a typical 

TCP does. Since a TCPRAN connection (between the EH and MH) is independent to the TCPWAN, 
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the air-link issue in the TCPRAN connection is isolated in the RAN and does not propagate to the 

TCPWAN connection. 

  

Figure 34 depicts a high level operational flow diagram for ES-TCP at the EH, which is different 

from a typical TCP protocol. The ES-TCPWAN part is responsible for communicating with the FH, 

and the ES-TCPRAN part is responsible for communicating with the MH. Since the TCP protocol is 

not modified at either the FH or at the MH, the FH and MH components are not shown in this 

diagram. 

The ES_Rx_0 in The ES_Rx_0 is a main state that receives a packet from the FH and is 

triggered by the EH_Tx when it receives an ACK packet from the MH. The only explicit 

communication between the ES-TCPWAN and the ES-TCPRAN is when an ACK packet is received 

from the MH. When a data packet is received by the EH_Rx from the FH, it is stored in a buffer 

which is shared with the EH_Tx, as depicted in the slide window diagram in Figure 35). 

After both TCP sessions (FH to EH and EH to MH) are established, the FH starts transmitting 

packets to the MH via the EH. There are five key operations which are described below:  

1. When new data bytes (i.e. packet) are received from FH, EH_Rx checks the length of the 

new data bytes. If the sum of this new data length and the reserved ACK bytes which were 

received earlier but not yet acknowledged is smaller than 3 bytes, then it simply stores the 

received data in a buffer without send an ACK packet to FH. The small packets will be 

acknowledged by MH. This means that the ES-TCP optimization will not be applied for the 

continuous small packets (smaller than 3 bytes data length) transmission because the main 

purpose of small TCP packet transmissions is not to achieve high transmission throughputs. 

2. If the sum of the new data length and the reserved ACK bytes which were received earlier but 

not yet acknowledged is larger than or equal to 3 bytes, then send an acknowledgement with 

a sequence number that is 2 byte less than the actual expected next sequence number. This 
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is to purposely not acknowledge the last 2 bytes for later use. This is indicated as "Received 

but not yet Acknowledged (2 bytes)" in Figure 35. One of the main reasons is to preserve the 

end-to-end semantics by not acknowledging all the received data until MH receives all data 

bytes. When an ACK packet is to be sent to FH, rwin size should be included as a typical 

TCP would do. Depending on the rwin size, a certain operation is selected for the next step. 

3. If rwin >0, then estimate TCP retransmission timeout (RTO) for the reserved ACK bytes 

which FH TCP would be ticking for retransmission if acknowledgement for the reserved ACK 

sequence number is not received before RTO is expired. RTO expiration may occur if there is 

not a new packet from FH and MH is not sending acknowledgement for the reserved ACK 

sequence number during the timer activity. If RTO expires at FH, then FH will retransmit for 

the reserved ACK sequence number which was already received by EH. To prevent the 

unnecessary retransmissions, EH runs an estimated RTO for FH which should be smaller 

than the actual RTO at FH. If estimated RTO expires before receiving retransmission from FH, 

then EH sends an acknowledgement packet that acknowledges 1 byte out of the reserved 2 

bytes with rwin size equal to 0. This acknowledgement packet freezes FH to prevent 

retransmission. If, however, a retransmission is received from FH, then EH immediately 

sends an acknowledgement packet that acknowledges 1 byte out the reserved 2 bytes with 

rwin size equal to 0. This acknowledgement packet freezes FH to prevent further 

retransmissions. Since the last 1 byte is not acknowledged yet, the end-to-end semantics is 

still maintained. 

4. If rwin = 0, then an ACK will be sent and it freezes FH and stop transmission until EH 

unfreezes with window update. When EH receive buffer becomes available the EH sends an 

acknowledgement packet that acknowledges 1 byte out of the reserved 2 bytes with the 

updated rwin size. This acknowledgement packet with window update information unfreezes 

FH to resume packet transmission. Since the last 1 byte is not acknowledged yet, the end-to-

end semantics is still maintained. 
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Figure 34: Operation flow diagram for ES-TCP receiver and ES-TCP sender 

 

5. At anytime an ACK from MH is received, EH checks if the ACK confirms that the last byte is 

received by MH and there is no pending data bytes to be transmitted to MH, then EH needs 

to send ACK for the last reserved ACK byte to FH, which let the FH know that all data bytes 

have been received by MH. 

Figure 35 illustrates a conceptual diagram of the sliding window for both the congestion window 

and receive window that is using as a shared buffer at EH. The packets from FH are added to the 

left side of the diagram and transmitted packets to MH are illustrated on the right side of the 

diagram. The values in the buffer space represent sequence numbers.  

For data being transmitted to MH, there are four transmit categories, as described from the right 

most diagrams (see Figure 35): 
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1. Transmit Category #1: Sent And Acknowledged from MH (i.e., byte range: 0 to 19) 

2. Transmit Category #2: Sent But Not Yet Acknowledged from MH (i.e., byte range: 20-29) 

3. Transmit Category #3: Not Yet Sent but Recipient Is Ready. This represents the rwin size at 

MH (i.e., byte range: 30 to 34) 

4. Transmit Category #4: Not Yet Sent and Recipient Is Not Ready. This falls outside of the 

available RWIN space at MH (i.e., byte range: 35 to 41)  

For data being received from FH, there are also four receive categories. 

1. Receive Category #1: Received from FH and Acknowledged to FH. Some bytes may or may 

not have been transmitted to MH (i.e., byte range: 20 to 41 in Figure 35). 

2. Receive Category #2: Received from FH but not yet acknowledged to FH. Up to 2 bytes are 

reserved (i.e., byte range: 42 to 43 in Figure 35). The second last byte reserved is to Freeze 

or Unfreeze and the last byte reserved is to maintain the end-to-end semantics. 

3. Receive Category #3: Bytes Not Yet Received but Transmitter (FH) is permitted to transmit 

(i.e., byte range: 44 to 50 in Figure 35).  

4. Receive Category #4: Bytes Not Yet Received but Transmitter (FH) is not permitted to 

transmit (i.e., byte range: from 51 to onward in Figure 35). 

Immediately after the two TCP connections are established the "Right edge of Send window" and 

the "Right edge of Receive window" are aligned, and if the transmission from FH to EH is faster 

than the transmission from EH to MH then the "Right edge of Receive window" would be slide to 

the left direction, away from the "Right edge of Send window." At some point if these two edges 

are aligned again, then this indicates that all bytes from FH have been transmitted to MH. Further, 

if the "Receive Next Pointer" is also aligned with these two edges, then it indicates that all bytes 

have been delivered to MH and acknowledged to FH as well.
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Figure 35: Sliding window diagram for send and receive window at ES-TCP host (EH)
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5.4.2 ES-TCP Packet Flow Example 

Figure 36, Figure 37, and Figure 38 show step by step ES-TCP operation through packet 

exchanges between a FH and a EH, and assume a total data transmission of 3000 from a FH to a 

MH.  Figure 36 shows packet transmission sequences with an event of zero window messages 

from the EH to the FH that freezes FH, and the detailed description per packet flow is as following. 

The packet flow from 1 through 11 in between the FH and the EH occurs in parallel with the 

packet flow from 1' to 9' in between the EH and the MH, except for the packet #8 on the FH side 

TCP connection and the packet #6’ in the MH side TCP connection.  

1. Packet #1: The FH transmits 1000 bytes length packet to EH. 

2. Packet #2: The EH sends an ACK packet corresponding to the packet #1 with 

acknowledgement sequence number equals to 998.  The last 2 bytes received are not 

acknowledged yet. 

3. Packet #3: Before receiving the ACK packet (packet #2), FH transmits another 1000 bytes 

length packet to the EH starting from sequence number equals to 1000. 

4. Packet #4: The EH sends an ACK packet corresponding to the packet #3 with 

acknowledgement sequence number equal to 1998.  The previously reserved 2 bytes are 

now acknowledged as a part of this ACK packet, but again the last 2 bytes received are not 

acknowledged yet. One difference between the previous ACK packet, packet #2, and this 

ACK packet (packet #4) is the rwin size. Packet #4 sets rwin to zero and it freezes the FH 

since the receive buffer at the EH is not available for now. 

5. Packet #5: When receive buffer becomes available, the EH sends a window update packet 

with 1 byte increased acknowledge sequence number (=1999) from the unacknowledged 2 

bytes that were reserved. This will unfreeze the FH and continue transmission. 

6. Packet #6: The FH transmits the last 1000 bytes. 
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7. Packet #7: The EH sends ACK packet with ACK sequence number equal to 2998 which is 

again 2 bytes less than the received data bytes.  Since the FH has transmitted all 3000 bytes, 

it waits for acknowledgement of the last two bytes after receiving this ACK packet. 

8. Packet #8: When the EH receives acknowledgement for the last byte from MH (packet # 6’), it 

sends an acknowledgement (ACK=3000) for all received data to the FH. If the packet #6’ is 

not received from the MH for any reason, the packet #8 cannot be transmitted from the EH to 

the FH. 

9. Packet #9: After receiving an ACK packet for the last data byte from EH, the FH sends a FIN 

packet to terminate the TCP connection. 

10. Packet #10: The EH sends FIN_ACK to FH. 

11. Packet  #11:  The FH sends the last ACK packet to the EH and complete the three way 

handshake for terminating the TCP connection 

The step 8 is a key procedure that maintains the end-to-end semantics. It prevents the EH from 

sending the final ACK packet to the FH until confirming that the last data byte is successfully 

received by the MH. The diagram in Figure 37 is the same as Figure 36, except for the packet 

sequence number 8 in Figure 37.  After sending the ACK packet (#7), the EH runs an estimated 

RTO timer for the unacknowledged 2 bytes to prevent retransmission from the FH if an 

acknowledgement from the MH or a new packet from the FH is not received before the estimated 

RTO timer expires. If this timer expires, then the EH sends a zero window message to the FH 

with 1 byte acknowledgement to freeze the FH.  When the EH receives acknowledgement for the 

last byte (packet #6’) from the MH, it sends an acknowledgement (ACK=3000) for all received 

data to FH (packet #9) and continue process described in Figure 36. The diagram Figure 38 is 

the same as in Figure 37, except for the packet sequence numbers 8 and 9 in Figure 38.  After 

sending the ACK packet (#7), the EH runs an estimated RTO timer for the unacknowledged 2 

bytes to prevent retransmission from the FH if an acknowledgement from the MH or a new packet 

from the FH are not received before the timer expires. The FH, however, retransmits (packet #8), 

the unacknowledged data byte before the estimated RTO timer at the EH is expired, then the EH 
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immediately sends a zero window message (packet #9) to the FH with 1 byte acknowledgement 

to freeze the FH.  When the EH receives acknowledgement for the last byte (packet #6’) from the 

MH it sends an acknowledgement (ACK=3000) for all received data to the FH (packet #10) and 

continues the process described in Figure 37. 
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Figure 36: ES-TCP packet flow diagram:  normal operation 
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Figure 37: ES-TCP packet flow diagram: freeze FH to prevent retransmission 
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Figure 38: ES-TCP packet flow diagram: freeze FH_Sender after receiving retransmit packet for reserved 
bytes 
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5.5 Advanced Split TCP with End-to-end Protocol Semantics  

 
The Advanced Split-TCP (AS-TCP) designed in this section complements the ES-TCP with the 

added goal to preserve the end-to-end TCP protocol semantics down to the byte level. As 

opposed to the ES-TCP, AS-TCP does require a TCP protocol extension. The ES-TCP and AS-

TCP work independently of each other. It is further contemplated that depending on the capability 

of the FH, one may enable either ES-TCP or AS-TCP. 

The "Advanced" mode (AS-TCP) designed in this paper requires to use a TCP header extension, 

as detailed below. This proposed TCP header requires 6 additional header size for the following 

three fields: 

• Option-Kind: One byte length; it is the only mandatory field, which indicates the option 

kind. 

• Option Length: One byte length; it is an optional field, which specifies the length of the 

option field. 

• Option Data: 4 bytes length; it carries acknowledgement sequence number from MH that 

notifies successful data delivery to the destination. 

The TCP receiver at the Advanced Split-TCP Host (AH) includes an acknowledgement number in 

the acknowledgement sequence number field, as the regular TCP does. The congestion window 

sliding at the FH is based on the said ACK sequence number found in the main TCP header. The 

sender (FH), however, empties the TCP transmit buffer based on the MH acknowledgment 

sequence number (MH_ack) inserted in the TCP Option field (see Figure 39). The byte by byte 

level of end-to-end semantics is preserved, even if an application uses multiple transactions per 

TCP connection. It relies on the TCP buffer status for a message delivery confirmation because 

the TCP transmit buffer at the sender entity (FH) is emptied only after a successful delivery to the 

final destination (MH). 



 

93 
 

  

Figure 39: TCP extension field for the AS-TCP enhancement 

 

The TCP receiver at the AS-TCP Host (AH) places an ACK sequence number received from a 

MH (MH_ack) in the MH Acknowledgement sequence number field of the TCP optional header, 

as shown in Figure 39. Subsequently, the FH empties it’s transmit buffer based on the said 

MH_ack, since it was notified that the said MH has received data up to the said MH 

acknowledged sequence number (MH_ack). Note that the ACK sequence number received from 

the said MH must be mapped to a corresponding ACK sequence number used by the TCP 

connection between FH and AH because the initial sequence number of the TCPWAN and TCPRAN 

connections could be different. The congestion window sliding, however, at the FH is based on 

the ACK sequence number retrieved from the regular TCP header field. Once the MH_ack 

number is equal to the last byte transmitted, the FH recognizes that all transmitted bytes have 

been received by the destination (MH). This ensures preserving the end-to-end semantics down 

to the byte level. 
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5.5.1 AS-TCP Operation 

The AS-TCP in the AH operates in exactly the same way as a conventional TCP, except for the 

fact that when an ACK packet is received from the MH. The AH forwards an acknowledgement 

sequence number from the MH to the FH using the proposed TCP option header. The TCP option 

header is not included if no ACK packet has been received from the MH since the latest "MH 

Acknowledgement sequence number" transmission, or if there has been a duplicate ACK packet 

received from the MH. 

Figure 40 depicts a high level operational flow diagram for the AS-TCP at the AH and the FH, 

which is different from the conventional TCP protocol. The AS-TCPWAN part is responsible for 

communicating with the FH, while the AS-TCPRAN part is responsible for communicating with the 

MH. The MH is not shown in the diagram, since the traditional TCP protocol is used at the MH. 

We assume a file download from a FH to a MH to describe the operation depicted in Figure 40 . 

The steps below describe three key operations: 

1. When data packets are received at the receiver entity at the AH (AH_Rx) from the FH, 

the received data bytes are buffered and ACK packets are transmitted to the FH, similarly 

to a conventional TCP. This ACK packet is called AH_ack, and is independent of the 

ACK packet from the MH. Therefore, the FH is allowed to continue transmitting new data, 

as it receives ACK packets from the AH. The AH_ack packets are delivered to the FH via 

the "Acknowledgement number” field in the regular TCP header.  

2. The AH_Rx_0 is the main state in the AS-TCP-WAN that is triggered by the AH_Tx when 

the AH_Tx receives an ACK packet (MH_ack) from the MH. This is the only explicit 

communication between the AS-TCP-WAN and AS-TCP-RAN entities. Further, the AH 

delivers the MH_ack to the FH via the "MH acknowledgement number" field found in the 

TCP option header. Whenever the AH receives a non-duplicate ACK packet from the MH, 

the AH constructs a MH_ack and sends it to the FH to convey the sequence number of 

the data bytes received by the MH. This allows the FH to immediately clear its 
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transmission buffer up to the sequence number indicated through the MH_ack just 

received. For the sake of reducing the number ACK packets from the AH to the FH, the 

MH_ack may be simply piggybacked to a regular ACK packet for the TCPWAN connection, 

providing that a regular ACK packet is available within a specified timer value. 

3. The AH_Tx may self-freeze by setting the rwin size to zero each time there is a link 

interruption (e.g., link disconnection). Freezing the state of the AH_Tx preserves the TCP 

status. Hence, when the transmission resumes, the TCP transmission rate from the AH to 

MH corresponds to the rate stored in the freezing state of the AH_Tx.  

The left side diagram (FH-AS-TCP) in Figure 40 runs at the FH supporting the AS-TCP and 

communicates with AH_Rx at the AH. The two main differences with respect to a conventional 

TCP protocol are the following: 

1. The acknowledgement sequence number in the main TCP header received at the FH 

from the AH is used to slide the TCP send window, just as through a conventional TCP 

operation. A departure from a conventional TCP consists in the fact that the FH-AS-TCP 

does not delete the acknowledged data bytes from the FH transmission buffer because 

the acknowledgement sequence number only indicates the data bytes received by the 

AH, but not by the MH. On the other hand, if a MH_ack is included in a TCP option 

header received at the FH from the AH, the data bytes in the FH transmission buffer may 

be removed up to the MH_ack sequence number, since this notifies that those data bytes 

were successfully received by the MH.  

2. Since there are two types of acknowledgement in a TCP ACK packet and either one or 

both may be present, one needs a procedure for identifying a duplicate ACK at the FH. 

FH-AS-TCP considers that an ACK packet is duplicated only if both the 

acknowledgement in the main TCP header and the MH_ack in the TCP option header 

have the same value as the previously received ACK packet. Otherwise the TCP ACK 

packet is not a duplicate packet. Furthermore, the TCP ACK packet is not a duplicate if 
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the rwin value in the ACK packet is larger than 0 and the FH state is frozen. Such a TCP 

ACK packet is considered as a "window update" request packet. 

Figure 41 illustrates a slide window buffer that is used at both receiver (AH_Rx) and transmitter 

(AH_Tx) using a shared buffer at the AH. The packets from the FH are buffered to the left side of 

the diagram, while the packets to be transmitted to the MH are shown on the right side of the 

diagram. The values in the buffer space represent packet sequence number. 

For data being transmitted to the MH, there are four transmit categories, which are described 

starting from the right side of the diagram: 

1. Transmit Category #1:  "Sent And Acknowledged" from the MH (i.e. byte range: 0 to 19) 

2. Transmit Category #2:  "Sent But Not Yet Acknowledged" from the MH (i.e. byte range: 

20 to 29) 

3. Transmit Category #3:  "Not Sent, Recipient Is Ready To Receive". This represents the 

rwin size at the MH (i.e. byte range: 30 to 34) 

4. Transmit Category #4:  "Not Yet Sent and Recipient Is Not Ready". This indicates the 

content outside of the available rwin space at the MH (i.e. byte range: 35 to 41) 

For data being received from the FH, there are four receive categories: 

1. Receive Category #1: "Received from the FH and Acknowledged to the FH”. Some bytes 

may or may not have been transmitted to the MH (i.e. byte range: 20 to 41) 

2. Receive Category #2: “Received from the FH but not yet acknowledged to the FH”. The 

number of deferred acknowledgement bytes depends on the conventional TCP dynamics. 

This category is not shown in Figure 41. 

3. Receive Category #3: "Bytes Not Yet Received but the Transmitter (FH) is permitted to 

transmit” (i.e. byte range: 42 to 50)  

4. Receive Category #4: "Bytes Not Yet Received and the Transmitter (FH) is not permitted 

to transmit” (i.e. byte range: from 51 onwards) 
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Immediately after the TCP connection is established, the "Right edge of the Send window" and 

the "Right edge of the Receive window" are aligned. If the transmission from the FH to the AH is 

faster than the transmission from the AH to the MH, the "Right edge of the Receive window" 

would be slide to the left, away from the "Right edge of the Send window." At some point, if these 

two edges are aligned again, it means that all the data from the FH has been transmitted to the 

MH. Further, if the "Receive Next Point" is also aligned with these two edges, it means that all the 

data has been delivered to the MH and acknowledged to the FH as well. 

Figure 42 illustrates a conceptual diagram of the transmission sliding window at the FH. The 

packets from the FH are transmitted to the AH in order, as illustrated from right side of the 

diagram. The values in the buffer space represent packet sequence numbers and are aligned 

with the sequence numbers in Figure 41. 

For data being transmitted from the FH to the AH, there are five transmit categories: 

1. Transmit Category #1: “Sent and Acknowledged by the AH” (i.e. byte range: 20 to 41)  

2. Transmit Category #2: “Sent but Not Yet Acknowledged by the AH”. Since this diagram 

assumes all data bytes have been acknowledged, this category is not shown. 

3. Transmit Category #3: “Not Yet Sent but Recipient Is Ready”. This represents the rwin 

size at the AH (i.e. byte range: 42 to 50). 

4. Transmit Category #4: “Not Yet Sent and Recipient Is Not Ready”. This indicates the 

content outside of the available rwin size at the AH (i.e. byte range: 51 to onward).
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Figure 40: Operation flow diagram for AS-TCP at AH and FH 
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5. Transmit Category #5: “Acknowledged by the MH”. This indicates that the data bytes 

delivered to the MH (i.e. byte range: 0 to 19). Thus, the buffer up to the sequence number 

19 can be cleared at the FH. 

The transmit category #5 is the main addition to the AS-TCP for preserving the end-to-end 

semantics at byte level. The FH does not delete the data bytes from the 20th byte to the 41st byte, 

even though they have been successfully delivered to the AH. The send window, however, is still 

able to slide and hence, it allows to transmit new data bytes, regardless of the acknowledgement 

status from the MH, as long as the AH permits the transmission. 
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Figure 41: Sliding window diagram for send and receive window at AS-TCP host (AH). 

 

 

 

 

Figure 42: Sliding window diagram for send window at FH supporting AS-TCP.
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5.5.2 AS-TCP Packet Flow Examples 

Figure 43 and Figure 44 show step by step AS-TCP operations through packet exchange 

between the FH, AH and MH entities. Figure 43 also shows the interaction between the 

AH_Sender and the AH_Receiver. It assumes a total data transmission of 3000 bytes from the 

FH to the MH. 

Figure 43 shows packet transmission sequences with an event of ZWA from the AH to the FH 

that freezes the FH, and a detailed description per packet flow is as following. 

1. Packet #1" and #1:  The MH sends a TCP Sync packet to the FH to establish a TCP 

connection. In the middle of the network, however, a AH intercepts the TCP sync packet 

and requests a TCP connection to the FH on behalf of the MH with an “AS-TCP option” 

request. 

2. Packet #2 and #2": The FH recognizes that this TCP Sync packet is from an AS-TCP 

host and responds with an “AS-TCP option” capability (#2). The AH sends a TCP Sync 

ACK to the MH once it receives the TCP Sync ACK from the FH. Now there are two TCP 

connection established: a TCPWAN connection between the AH and the FH and another 

conventional TCPRAN connection between the AH and the MH. 

3. Packet #3: The FH transmits a 1000 bytes length packet to the AH, starting from the 

sequence number equal to zero. 

4. Packet #4 and #3": The AH sends an ACK packet corresponding to the packet #3 with 

the acknowledgement sequence number equal to 1000 (packet #4). The AH also sends 

the received 1000 bytes data packet to the MH (packet #3”). 

5. Packet #5: Before receiving an ACK packet (packet #4), the FH transmits another 1000 

bytes length packet to the AH, starting from the sequence number equal to 1000. This is 

possible because the current congestion window size (cwnd) is 4000 bytes. 

6. Packet #6: The AH sends an ACK packet corresponding to the packet #5 with the 

acknowledgement sequence number equal to 2000. The rwin size value in this ACK 
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packet is zero. This packet #6 carries a ZWA from the AH, and it freezes the FH 

transmission since the receive buffer at the AH is not available for now. 

7. Packet #4": A MH_ack packet is received at the AH from the MH and it triggers an ACK 

packet from the AH to the FH, indicating that the first 1000 bytes of data have been 

successfully received by the MH. 

8. Packet #7: A new ACK packet is received at the FH from the AH; it is triggered by the 

ACK packet (ACK=1000) received from the MH. The acknowledgement sequence 

number from the MH is sent to the FH through the MH_ack in the TCP option header. 

Other fields, such as the ACK sequence number in the main TCP header and the rwin 

size are the same as for the previous packet #6. The TCP at the FH may now remove the 

data bytes up to the sequence number 1000 from the transmit buffer. 

9. Packet #8: When the receive_buffer_status becomes available at the AH, the AH sends a 

window update packet. This unfreezes the FH and it allows the FH to resume the 

transmission. 

10. Packet #9: The FH transmits the last 1000 bytes. 

11. Packet #6": The MH sends a MH_ack indicating that up to the first 2000 bytes have been 

received at the MH after receiving the packet #5”. 

12. Packet #10: AH sends an ACK packet with the ACK sequence number equal to 3000. 

This ACK packet also includes the MH_ack sequence number (=2000) received from the 

MH. Since the FH has transmitted all the 3000 bytes, it awaits for the acknowledgement 

of the last 1000 bytes from the MH after receiving this ACK packet #10. The TCP at the 

FH may now remove the data bytes up to the sequence number 2000 from its transmit 

buffer. Even though all 3000 bytes transmitted have been acknowledged by the AH, the 

FH knows that the delivery of the last 1000 bytes has not been confirmed by the MH yet. 

13. Packet #7" and #8": The MH sends a MH_ack indicating that the total of 3000 bytes has 

been received (#8") after receiving the third segment of 1000 bytes from the AH (#7") 



 

103 
 

14. Packet #11: When the AH receives the packet #8” from the MH, it sends an 

acknowledgement (MH_ack=3000) for all received data to the FH. The TCP at the FH 

now received all the ACK sequence numbers, indicating that all data has been 

transmitted successfully to the MH. FH may now remove all data from the transmit buffer. 

15. Packet #12: After receiving an ACK packet for the last data bytes delivered to the MH, it 

sends a FIN packet to terminate the TCP connection. 

16. Packet #13: Send a FIN_ACK from the AH to the FH. 

17. Packet #14:  Complete the three way handshake for terminating the TCP connection. 

18. Packet #9", #10", and #11": Perform TCP termination between the AH and the MH. Either 

one of these two TCP connections may initiate the TCP termination.  

The data transmission scenario depicted in Figure 44 diagram is the same as the scenario 

described in Figure 43, except that there are multiple AS-TCP hosts between the FH and the MH. 

The diagram in Figure 44 assumes two AS-TCP hosts and shows three TCP connections: a first 

one between the FH and the AS-TCP host #1, a second one between the AS-TCP host #1 and 

the AS-TCP host #2, and a third one between the AS-TCP host #2 and the MH. Regardless of the 

number of AS-TCP hosts, all TCP connections behave similarly to a conventional TCP protocol, 

except from supporting the MH_ack delivery through the TCP option header. 
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Figure 43: AS-TCP packet flow diagram with a single AS-TCP host. 
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Figure 44: AS-TCP packet flow diagram with multiple AS-TCP hosts 
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5.6 Performance Evaluation: ES-TCP and AS-TCP 
 

5.6.1 End-to-end Application Performance Simulation Platform 

This section we validate the proposed solutions and evaluate the TCP throughput gains achieved 

through ES-TCP and AS-TCP. Since the application performance is critically dependent on the 

mutual interaction across the network protocol layers (PHY, MAC, and higher protocol layers), the 

actual performance estimation would be significantly different if done in isolation, without 

considering such cross layer interactions. In particular, the dynamic nature of the TCP protocol 

makes it difficult to estimate and analyze the performance of applications that rely on TCP as a  

transport layer over wireless networks. To tackle this complexity, we implemented the ES-TCP 

and the AS-TCP on top of a unique  end-to-end LTE network and application performance 

simulation platform [14], which allows assessing the mutual impact of lower layer protocols and 

higher layer protocols , along with wireless link characteristics and network delay/congestion 

effects on the TCP performance (see Figure 45). This simulation platform provides a flexibility to 

change the network topology and network configurations so that the simulations under various 

network scenarios can be performed. Figure 46 depicts the protocol stacks implemented in the 

MH, EH/AH, and FH. Other network elements in the simulation platform are built similar way as 

depicted in Figure 46. The MH and FH include application layer, transport layer, IP layer, link 

layer (i.e. LTE MAC layer for the MH and Ethernet MAC layer for the FH), and abstraction of the 

LTE physical layer for the MH. The EH/AH is a key component of the proposed ES-TCP and AS-

TCP enhancements. When a file download request arrives at the Split-TCP host from the MH, it 

forwards the application request to the FH on behalf of the MH and creates two TCP legs; one for 

TCPRAN and the other one for TCPWAN. The TCP adaptation layer in the EH/AH inter-connects 

these two TCP connections so that the packet from the TCPWAN receive buffer is forwarded to the 

TCPRAN transmit buffer and the ACK sequence number received by the TCPRAN  is used by the 

TCPWAN entity in EH/AH. 
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Figure 45: LTE application performance simulation platform(simulation network architecture and 
configuration) with ES-TCP/AS-TCP 

 

 

 

Figure 46:  Protocol stacks in the host device models 
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5.6.2 Simulation Scenarios 

We perform a file download from a FH to a MH via the Split-TCP host (i.e. EH for ES-TCP, and 

AH for AS-TCP), with various combinations of parameters listed in Table 5. For each scenario, 

each data point was recorded by averaging the results over 100 simulation runs. The packet error 

rate ranges are selected based on internal measurement evaluation from a commercial LTE 

network. The same test scenarios are repeated per Split-TCP enhancement mechanism: ES-TCP 

or AS-TCP. 

5.6.3 Results and Analysis 

Prior to the efficiency of the proposed Split-TCP based enhancements, we validates three key 

expected capabilities from both ES-TCP and AS-TCP enhancements: 1) the TCP session end-to-

end semantics is maintained, (2) the long network delay is split across the TCPWAN and TCPRAN 

segments, and (3) network impairments such as packet losses over a network segment are 

isolated and handled by the corresponding TCP connection. 

A. ES-TCP Enhancement 

Figure 47 (a) illustrates the three TCP sequence number graphs while downloading a 3 Mbytes 

file size: a green curve from FH to MH (TCPe2e) when the ES-TCP is disabled, a red curve from 

FH to EH (TCPWAN) and a blue curve from EH to MH (TCPRAN) when the ES-TCP is enabled. 

Figure 47 (b) shows the three TCP cwnd size curves for each of the TCP connections from the 

same simulation. It indicates that the download time without ES-TCP is 7 sec, and it is reduced to 

3 sec when our proposed ES-TCP is enabled. During this simulation experiment, multiple packet 

drops were enforced in the RAN segment of the network around the 121st sec of the simulation 

time, in order to emulate stress test conditions for TCP. Such conditions may often happen in 

operational wireless networks, and these simulation results emphasize the importance of 

designing resilient network protocols. 
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Table 5: Simulation parameters 

End-to-End Delay 120 ms 

Location of EH and AH 
(35 ms:85 ms), (60 ms:60 ms), and (85ms:35ms) 

Note: Parameters in the parentheses indicate (RTT for TCPRAN, 
RTT for TCPWAN) 

Packet Error Rate RAN 0.01%, 0.05%, 0.1%, 0.5%, 1.0% 
WAN 0% 

File Size (Mbytes) 0.5MB, 1MB,5MB,10MB,20MB 

LTE Parameters 

Frequency Bandwidth 10 MHz 
MIMO Transmission Technique Transmit Diversity 
Modulation Coding Scheme(MCS) 5, 10, 15, 20, 25 
HARQ Error Rate 10% 
Max HARQ Retransmission Count 4 

TCP Parameters 

TCP Flavor New Reno 
Receiver Buffer Size(Bytes) 64KB, 128KB, 512KB 
Delayed ACK Count 2 
Max ACK Delay 200 ms 

 

The TCP sequence graphs correspond to the TCP packet retransmission: the green curve is 

between the FH and the MH without ES-TCP and the blue curve is between the EH and the MH 

with ES-TCP. One can see that the TCPWAN sequence graph (the red curve) has not been 

affected by the packet loss occurred in the RAN segment, as intended by the ES-TCP. 

Furthermore, the cwnd graph (Figure 47.b) clearly shows that the cwnd size of the TCPWAN (the 

red curve) is increasing continuously, while the cwnd size of TCPRAN (the blue curve) was halved 

first and was further reduced later to the initial cwnd size. The enlarged graph (block-A) in Figure 

47 (b) also illustrates that the FH stopped transmitting during the packet transmission interruption 

in the TCPRAN segment and maintains the cwnd size of TCPWAN as intended. The enlarged block-

A in Figure 47 (a) indicates that the TCPWAN closes the TCP connection after all data bytes are 

delivered to the MH because the EH holds the last acknowledgement byte until the last 

acknowledgement packet is received by the EH from the MH after the MH receiving the last data 

byte. This validates that with ES-TCP: (1) the TCP session end-to-end semantics is maintained, 

(2) the long network delay is split across the TCPWAN and TCPRAN segments, and (3) network 

impairments such as packet losses over a network segment are isolated and handled by the 

corresponding TCP connection. Because of the space limitation, only selected data points  
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 (a)                                                        (b) 

Figure 47: Comparison of (a) TCP sequence number sent and (b) cwnd size 

 

that represent overall trend out of more than 12000 data points are presented in this dissertation. 

Figure 48 shows the amount of in-flight bytes in TCPWAN and TCPRAN when ES-TCP is enabled 

and compares to the in-flight bytes in TCPe2e without ES-TCP enhancement. For this experiment, 

10 Mbytes file download was performed with 0% packet error in the wired network and both 

RTTWAN and RTTRAN are set to 60 ms.  

The 10 Mbytes file download without ES-TCP takes about 7 sec and the in-flight bytes in the 

TCPe2e connection is about 512 Kbytes (see green curve in Figure 48), which is same as the 

maximum rwin size at the destination (i.e. MH). This indicates that one of the throughput 

bottleneck reasons could be the maximum rwin size. However, the download time with ES-TCP 

enhancement is reduced from 7 sec to 4.5 sec. The TCP throughput gain is about 56%. The in-

flight byte in TCPWAN and TCPRAN is about 450 Kbytes on average for the duration of the TCP 

sessions. Since these two TCP connections run in parallel, the total end-to-end in-flight byte with 

ES-TCP is 900 Kbytes. Thus the throughput performance gain could be achieved. 
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We also measured the amount of the buffer occupancy in the Split-TCP host if a buffer starvation 

may occur. The buffer occupancy in Figure 49 is measured from the same experiment for the 

information in Figure 48. The maximum buffer size configuration at the Split-TCP host was set to 

1 Mbytes which includes the maximum rwin size for the TCPWAN connection. The graph indicates 

that there is no buffer starvation and the buffer occupancy is consistently maintained at about 600 

Kbytes level. The maximum buffer size allocation in the Split-TCP host should be as small as 

possible to save the system resource because patching more data with a larger buffer would not 

increase the throughput performance gain as long as the buffer starvation does not occur.  

Figure 50 shows the TCP throughput performance gain with various file sizes and radio 

conditions when the RTTe2e is split into (RTTRAN: RTTWAN) according to the following scenarios: 

(35ms:85ms), (60ms:60ms) and (85ms:35ms). The rwin is set to 128 Kbytes and the packet loss 

rate in the RAN is set to 0.01% in all these experiments.  

Comparing the performance of the proposed ES-TCP against regular TCP for all these scenarios, 

the highest throughput performance gain in favor of ES-TCP is 94%, and corresponds to the 

scenario with the TCP Split configuration (60ms:60ms), 20 Mbytes file size, and best radio 

conditions assumed here (MCS=25); this is illustrated in Figure 50 (b). The performance gain, 

however, varies significantly over a wider range of file sizes and radio conditions. Figure 50 (a) 

corresponding to the TCP Split configuration (35ms:85ms) shows performance gains in the order 

of 20% to 50%, and Figure 50 (c) corresponds to the TCP Split configuration (85ms:35ms) and 

shows more limited performance gains in the order of 20% to 40%. These are more modest gains 

in comparison to the previous two configurations. This is due to the fact that the RAN delay is 

dominant and the RTTe2e splitting point is relatively closer to the traffic source (FH). Figure 50 (d) 

is a comparison of the scenarios (a) and (b) by overlapping these two graphs together. 
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Figure 48: In-flight data size (bytes) in TCPe2e, TCPRAN and TCPWAN 

 

 

 

Figure 49: Buffer occupancy in the Split-TCP host (bytes) 
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      (a)                                                                                    (b) 

  

 

     
 

(c)                                                                                    (d) 

Figure 50: ES-TCP:  Throughput gain as a function of radio conditions, file sizes and TCP Split configuration: 
(a) (35ms:85ms), (b) (60ms;60ms), (c) (85ms:35ms), (d) comparison of scenarios (a) and (b) 
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B. AS-TCP Enhancement 

The main difference between the AS-TCP and the ES-TCP mechanisms is the way of maintaining 

the end-to-end semantics, and separating TCPe2e in to TCPWAN and TCPRAN are same as the ES-

TCP. The AS-TCP host forwards a part of the acknowledgement information from MH to FH to 

maintain the end-to-end protocol semantics instead of holding a few byte from the 

acknowledgement sequence number.  

Figure 51 (a) illustrates the three TCP cwnd size graphs while downloading a 2 Mbytes file size: a 

green curve from FH to MH (TCPe2e) when the AS-TCP is disabled, a red curve from FH to AH 

(TCPWAN) and a blue curve from AH to MH (TCPRAN) when the AS-TCP is enabled. To evaluate if 

the proposed mechanism clearly isolates the packet losses within the TCP segment which 

caused the errors, we induced multiple packet losses in the TCPRAN connection around the 121st 

sec of the simulation time. One can see that the TCPWAN cwnd size (the red curve) has not been 

affected by the packet losses occurred in the RAN segment and continues to grow, as intended 

by the AS-TCP, but the cwnd size of the TCPRAN (the blue curve) is halved  and further reduced 

down to the initial cwnd size. Figure 51 (a) also depicts that the TCPWAN connection is maintained 

until the all data bytes are successfully delivered to the MH. The point P1 indicates that the FH 

has completed the transmission to the AH at round 121.6th sec of the simulation time, but the red 

curve is extended to the point P2 that is aligned with the point P3, which in turn indicates the 

completion of all data bytes delivery from the AH to the MH. 

Figure 51 (b) shows the TCP ACK sequence number reported from the MH to the AH (the blue 

curve), along with both types of ACK sequence numbers from the AH to the FH (the green and 

the red curves) while downloading a 2 Mbytes file size. The ACK sequence number on the green 

curve and on the red curve, as pointed by the arrow headed line ‘A’, are delivered in a single ACK 

packet from the AH to the FH: one in a regular TCP header and the other one in a TCP option 

header. The ACK sequence number in a regular TCP header is used for the TCPWAN congestion  
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(a)                                                                            (b) 

Figure 51: TCP ACK sequence number and MH ACK sequence number in the TCP option header from AS-
TCP Host 

 

control, while the ACK sequence in the TCP option header is to maintain the byte level end-to-

end protocol semantics. The ACK sequence number from the MH is inserted in to the ACK 

packets belong to the TCPWAN when available. This means that not all ACK sequence number 

from MH may be forwarded to the FH. If there was no ACK packet to be transmitted from AH to 

FH, then a timer based transmission is used. The ACK sequence number on the top flat green 

curve, where the vertical arrow headed line ‘B’ is pointing in Figure 51 (b), indicates that the AH 

uses the same ACK sequence number, while the MH_ack sequence number (the red curve) in 

the TCP option header may change. This is because while all data bytes have been delivered to 

the AH from the FH, the MH may still receive data from the AH. This notifies the FH to maintain 

the status of the byte level of data delivery to the MH, even after finishing all data transmission to 

the AH.  

Figure 52 shows the TCP throughput performance gain with various file sizes and radio 

conditions when the RTTe2e is split into (RTTRAN: RTTWAN) according to the following scenarios: 

(35ms:85ms), (60ms:60ms) and (85ms:35ms). The rwin is set to 128 Kbytes and the packet loss 
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rate in the RAN is set to 0.01% in all these experiments. This is exactly same scenarios used for 

the ES-TCP evaluation in the previous section. 

As expected, these results in Figure 52 are very similar to the results with the ES-TCP 

mechanism as depicted in Figure 50, because the only difference between the ES-TCP and the 

AS-TCP mechanism proposed in this dissertation is the solution for preserving the end-to-end 

protocol semantics.   

Comparing the throughput gains of the proposed AS-TCP against regular TCP, Figure 52 (a) 

corresponding to the TCP Split configuration (35ms:85ms) shows performance gains in the order 

of 20% to 55%. The highest throughput performance gain in favor of AS-TCP is 93%, and it is 

observed in Figure 52 (b) which is under the scenario with the TCP Split configuration 

(60ms:60ms), 20 Mbytes file size, and best radio conditions (MCS=25). The performance gain, 

however, varies significantly over a wider range of file sizes and radio conditions. Figure 52 (c) 

corresponds to the TCP Split configuration (85ms:35ms) and shows more limited performance 

gains in the order of 20% to 40%. This modest gain in Figure 52 (c) is due to the fact that the 

RAN delay is dominant and the RTTe2e splitting point is relatively closer to the traffic source (FH). 

Figure 52 (d) is a comparison of the scenarios (a) and (b) by overlapping these two graphs 

together similar to Figure 50 (d). 
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      (a)                                                                                    (b) 

 

     

(c)                                                                                    (d) 

 

Figure 52: AS-TCP: Throughput gain as a function of radio conditions, file sizes and TCP Split configuration: 
(a) (35ms:85ms), (b) (60ms;60ms), (c) (85ms:35ms), (d) comparison of scenarios (a) and (b) 
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C. Throughput gain over wide range of network conditions 

Figure 53 shows the throughput gain as a function of the packet loss rate in the RAN segment 

(0.01%, 0.05%, 0.1%, 0.5%, and 1.0%) and the three TCP Split configurations with ES-TCP 

enhancement. The result with AS-TCP is expected to be very similar. The throughput gain 

increases with the increase of packet loss rate in the RAN segment up to 0.5%, and then it gets 

decreased for the 1% case. The TCP packet traces indicate that higher packet error rates cause 

the TCP to time out in the TCPRAN, which stalls the TCP transmission. As the stall duration 

becomes dominant with the higher packet error rate, the TCP throughput gain is reduced. The 

largest gain is achieved under the following configurations: (i) the TCP Split configuration 

(35ms:85ms), which indicates the preference for a RTTe2e splitting point that is closer to the eNB, 

(ii) rwin size of 512 Kbytes, which indicates the preference for a larger rwin size, and (iii) MCS=25, 

which indicates the preference for the best radio conditions. The gain is visibly reduced when the 

RTTe2e splitting point is closer to the FH. 

This analysis clearly indicates that the TCP performance gains are dependent on several 

variables which may change in real-time (e.g., as a function of user location), such as user 

specific radio conditions and RTTe2e split ratio. Thus, it is critical to select a robust TCP 

enhancement mechanism that provides solid gains over various network conditions. The 

proposed Split-TCP based enhancement mechanism provides at least 40% throughput gain, 

regardless of the network and usage conditions, as long as the RTTe2e splitting point is not too 

close to the traffic source (FH). Furthermore, throughput gains larger than 200% can be achieved 

in the presence of larger packet error rate conditions in the TCPRAN segment unless the RTO 

events stall the TCP connection. 
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(a) 

 

 
(b) 

 

Figure 53: ES-TCP: Throughput gain as a function of packet loss rates and TCP Split configuration: (a) MCS 
= 5 and rwin = 64 Kbytes, (b) MCS = 25 and rwin = 512 KBytes 
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5.7 Comparison of TCP Enhancement Mechanisms 
 

Table 6 compares the ten key capabilities or requirements of the various TCP performance 

enhancement mechanisms. It is separated in two categories: non-split TCP based solution and 

split-TCP based solution. This Table 6 is same as Table 1 but comes with the two proposed split-

TCP based solution in the last two columns: ES-TCP and AS-TCP.  The Table 6 is self 

explanatory, but we highlight a few key differences of our proposed solutions from the existing 

enhancement solutions. 

The M-TCP, M-TCP+ and PAM out of the split-TCP based solutions do not isolate or distinguish 

the wireless network from a wired network and do not split the RTTe2e which is one of the key 

barrier for the TCP performance. This incapability is represented as incapability of supporting 

resiliency of high BER, high delay variation and dynamic link rate variation. The RLP, Snoop, and 

ELN mechanisms out of the non-split TCP based solutions neither have the capability of splitting 

the RTTe2e. I-TCP solution has capability for these key items but it does not maintain the end-to-

end protocol semantics which we address as a critical problem that needs to be resolved. On the 

other hand, the proposed solutions, ES-CTP and AS-TCP does maintain the end-to-end protocol 

semantics and it also effectively split the TCPe2e in to two TCPWAN and TCPRAN so it can achieve 

the true performance gain from the Split-TCP mechanism.  

In terms of comparison between these two proposed solutions, they are different in the following 

two aspects: (1) ES-TCP maintains the end-to-end protocol semantics at the TCP session level 

while the AS-TCP does it at the data byte level which is the same level as a regular TCP does, 

and (2) while ES-TCP solution does not require to modify the regular TCP implementation, the 

AS-TCP requires to extend the TCP to accommodate a TCP option to carry ACK sequence 

number from the MH to the FH.  
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Table 6: Comparison of TCP performance enhancement mechanisms including the proposed solutions 

 
Non-split TCP Solution Split TCP Solution 
RLP Snoop ELN I-TCP M-TCP M-TCP+ PAM ES-TCP AS-TCP 

Maintain End-To-End 
Protocol Semantics Yes+ Yes+ Yes+ No Yes+ Yes+ No Yes* Yes+ 

Require TCP Modification No No Yes Yes Yes Yes No No Yes 
Isolate/Distinguish 
Wireless Network No Yes Yes Yes No No No Yes Yes 

Split Long Network Delay 
(Split RTT) No No No Yes No No No Yes Yes 

Resilient to Lengthy 
Disconnection(Handoff) No Yes Yes Yes Yes Yes Yes Yes Yes 

Capable of Data Pre-fetch No No No Yes No Yes No Yes Yes 
Resilient to High BER Yes Yes Yes Yes No No No Yes Yes 
Resilient to High Delay 

Variation No Yes No Yes No No No Yes Yes 

Resilient to Link Rate 
Variation No No No Yes No No No Yes Yes 

Aware Of TCP No Yes Yes Yes Yes Yes Yes Yes Yes 
 

                      *: Maintain end-to-end protocol semantics at the TCP session level 

                     +: Maintain end-to-end protocol semantics at the TCP data byte level 
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5.8 Conclusion 

In this section we provided two Split-TCP based solutions, named ES-TCP and AS-TCP to 

resolve all three issues aforementioned: maintain the end-to-end semantics, isolate the link error 

in the wireless network, and split the long network delay.  The ES-TCP maintains the end-to-end 

protocol semantics at the TCP session level but not at the every byte level which is done by the 

regular TCP. Thus, to maintain the end-to-end semantics flawlessly, we further proposed the AS-

TCP that has more functions over the ES-TCP. We also quantified the TCP throughput 

performance improvement with the proposed TCP enhancements using the end-to-end 

application performance simulation platform for the LTE network.  

 Both of the proposed enhancements, significantly increase the TCP throughput while maintaining 

the end-to-end protocol semantics, unlike other solutions that either break the end-to-end 

semantics while improving throughput performance or degrade throughput performance while 

maintaining the end-to-end semantics.  

Simulation results show that the throughput performance gain could be over 200% compare to 

the baseline TCP, depending on the network conditions and usage scenarios. It indicates that the 

throughput gain is increasing with the increase of packet loss rate in the RAN segment. However, 

the throughput gain significance start reducing when the packet loss rate is high because the high 

packet error rate may cause a TCP timeout in the TCPRAN, and it stalls the TCP transmission. As 

the stall duration becomes dominant with the high packet error rate, the throughput gain starts 

reducing.  The simulation also shows that the smaller throughput gain is expected under poor 

radio conditions because there may be no much unused bandwidth to improve on. Thus it is 

important maintaining the packet loss below a certain level to not to cause a significant TCP 

timeout event and utilizing network bandwidth efficiently so that can maximize the performance 

improvement using the ES-TCP and AS-TCP enhancement mechanisms. 
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CHAPTER 6 

Conclusion 
 

In this dissertation, we identified three critical problems that may negatively affect the application 

performance and wireless network resource utilization via application traffic measurement and 

packet analysis over a commercial LTE network and via LTE network simulation: (i) impact of the 

wireless MAC protocol on the TCP throughput performance, (ii) impact of applications on network 

resource utilization, and (iii) impact of TCP on throughput performance over wireless networks.  

We further proposed four enhancement mechanisms which improve the end-to-end application 

and wireless system performance. The work was carried out considering cross-layer protocols 

behaviors, due to the mutual impact of network protocol layers. To evaluate and quantify the TCP 

throughput performance gains using ES-TCP and AS-TCP, we implemented them on top of an 

end-to-end LTE network simulation platform that can estimate the application performance 

reflecting various protocol interactions and network congestion conditions, including air-link 

impairments.   

The two novel Split-TCP mechanisms, the ES-TCP and the AS-TCP, improve significantly the 

TCP throughput without breaking the end-to-end TCP semantics.  Experimental results show that 

the proposed ES-TCP and AS-TCP can boost the TCP throughput by more than 60% in average 

when exercised over a commercial 4G LTE network. Furthermore, the TCP throughput 

performance improvement may be even over 200%, depending on network and usage conditions. 

The simulation results show that the performance enhancement with the proposed solutions is 

significant and the improvement is noticeable even with a higher air-link data rate available. While 

some prior solutions maintain the end-to-end semantics and isolate the connectivity issue in the 

wireless network, they present a few significant drawbacks: the packet loss on wireless network is 

propagated into the wired network instead of isolating the problem to the wireless network 

segment; most of all, those solutions lost the critical benefit of Split-TCP, which consists in 



 

124 
 

shortening the round trip time for TCP connections. Shortening the RTT by itself improves the 

TCP throughput performance significantly, even without link condition changes.  

The advantage of the proposed ES-TCP and AS-TCP consists in the fact that one does not lose 

any performance benefits which are inherent to the Split-TCP mechanism, while preserving the 

end-to-end protocol semantics. Therefore, they make the Split-TCP mechanism reliable over 

wireless media. However, we also identified two important conditions to maximize the 

performance improvement using the ES-TCP and AS-TCP enhancement mechanisms: (1) 

maintaining a low TCP timeout event and (2) utilizing network bandwidth efficiently. 

The proposed LTE uplink resource allocation mechanism in chapter 3 could reduce network delay 

and potentially prevent TCP timeout events, while the novel TCP snooping mechanism proposed 

in Chapter 4 could save about 20% of wireless network resources by preventing unnecessary 

packet transmission through air interface, taking as reference video traffic downloads. 

Considering the amount of video traffic over wireless network (i.e. about 60% of total wireless 

traffic), the overall bandwidth saved in downlink is about 12%. The saved air-link bandwidth may 

be utilized through the performance enhancements attributed to ES-TCP and AS-TCP. We 

expect that these proposed Split-TCP enhancement mechanisms, together with the novel uplink 

resource allocation enhancement and the novel TCP snooping mechanism may provide even 

greater performance gains when advanced radio technologies, such as 5G, are deployed. 
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