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ABSTRACT

ESSAYS IN TWO-SIDED MARKETS WITH INTERMEDIARIES

Jing Xu

Rakesh V. Vohra

In this thesis, I study the two-sided marketplaces with intermediaries that can facilitate

matching, search and trades.

The first chapter considers the welfare and distributional consequences of introducing the

student-proposing deferred acceptance mechanism in a model where schools have exogenous

qualities and the benefit from attending a school is supermodular in school quality and

student type. Unlike neighborhood assignment, deferred acceptance induces non-positive

assortative matching where higher-type students do not necessarily choose neighborhoods

with better schools. Student types are more heterogeneous within neighborhoods under

deferred acceptance. Assuming an elastic housing supply, deferred acceptance benefits resi-

dents in lower-quality neighborhoods with more access to higher quality schools. Moreover,

more parents will ‘vote with their feet’ for deferred acceptance, other things equal, than for

neighborhood assignment.

The second chapter studies a search platform in a setting where buyers search for sellers

directly or through a platform with lower search costs, and the platform charges both

sides for the transactions it facilitates. While many intermediaries attract as many users

as possible by lowering search cost, potential buyers also care about how attractive the

sellers available via the intermediary are, not just the number. A search platform’s strategy

is determined by the coexisting positive and negative cross-group externalities: (i) while

buyers appreciate more choices of sellers available on the platform, (ii) increasing the number

of available sellers makes the search for low-priced and high-value sellers harder due to an

unfavorable price dispersion. A platform optimally adopts a threshold strategy of targeting
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sellers with lower costs to balance the competing externalities.

The third chapter studies intermediation in a buyer-seller network with sequential bargain-

ing. An intermediary matches traders connected in a network to bargain over the price

of heterogeneous goods and has the freedom to charge each side commission. A profit-

maximizing middleman can help eliminate trading delays but limits trade executed that are

not surplus maximizing. When the middleman competes with the buyers and sellers being

matched through an exogenous search process, she matches buyer and seller pairs that are

selected less often by the exogenous search process.
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PREFACE

The thesis is centered on pricing and matching in the two-sided marketplaces with inter-

mediaries. Chapter 1 focuses on school choice, an active research area that studies the

problem of how to assign students to public schools, which has led to application in major

cities in the US like New York, Chicago, San Francisco, etc. The effectiveness of school

choice mechanisms is a different issue in practice. As parents can ‘vote with their feet’,

housing markets and student assignment to public schools are all profoundly influenced by

introducing school choice mechanisms. The question on whether school choice is effective

in improving the student assignment in practice can be fundamental to the design of school

choice.

Chapter 2 &3 focuse on the decentralized two-sided markets with intermediaries, such as

e-commerce platforms, labor markets, search platforms, dating websites, advertisement ex-

change platforms where intermediaries can create values primarily by facilitating search

and matching between two or more distinct types of customers. These marketplaces focus

on a different design problem. To internalize the network externalities and the surpluses

from bilateral transactions, the intermediaries must choose the right prices and the right

matching in a two-sided network.
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CHAPTER 1 : Housing Choices, Sorting and the Distribution of Educational

Benefits under Deferred Acceptance

1.1. Introduction

In many U.S. school districts, students are assigned to schools within the neighborhood they

reside in. This is called neighborhood assignment. As the qualities of schools vary, this is

reflected in home prices. Black (1999), for example, finds that on average, households are

willing to pay an extra $3948 for a 5% increase in the average elementary school test score.

Since affluent families can afford houses in more expensive locations with higher quality

schools and poorer families can not, critics of neighborhood assignment are concerned about

the inequitable distribution of access to high quality schools.

In response, there has been a move to delink student assignment from residential location

so that students have the opportunity to attend schools outside their neighborhoods. This

is called school choice and it is widely advocated as providing more equitable access to high

quality schools, especially for disadvantaged families. In this paper I examine the effect of

school choice on residential choices and the redistribution of educational benefits. I study

the impact not just within the community that adopts school choice but on neighboring

communities that don’t.

I model school choice as being implemented by one of the most widely adopted school

choice mechanisms: the student-proposing deferred acceptance. It assigns students to pub-

lic schools based on submitted preferences subject to neighborhood priorities. Student-

proposing deferred acceptance was introduced by Abdulkadiroğlu and Sönmez (2003) and

has been adopted in Boston, Chicago, Denver, New York City (NYC), and Washington

DC. In practice, neighborhood priorities appear in various versions: home-address-based

choice lists,1 50-50 seat split (BPS), attendance zone priority (NYC) etc. I abstract away

1For instance, Boston Public Schools (BPS) gives priority to students who live within one mile of an
elementary school, within 1.5 miles of a middle school, and within two miles of a high school in attending
those schools.
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from these specific forms and assume that neighborhood priority refers to resident students

enjoying higher priorities at their neighborhood schools than non-residents.

The model is inspired by Avery and Pathak (2015) which examines residential choices

when one of two towns switches from neighborhood assignment to school choice. Assuming

students care only about other students with whom they attend school (pure peer effect), all

schools and neighborhoods are identical under school choice. What underlies these results

in Avery and Pathak (2015) is the equalization of peer group qualities under school choice.

Unlike them I assume: school qualities are exogenously given, and students have preferences

for school quality. While peer effects in schooling are important, the recent literature has

found little evidence on the direct causal effects of average peer group qualities on students’

academic achievements (Greenwald et al., 1996; Burke and Sass, 2013; Lavy et al., 2009;

Imberman et al., 2009; Abdulkadiroğlu et al., 2014).2 Moreover, there is mounting empirical

evidence that schools and teachers have significant impact on student achievement (Rivkin

et al., 2005; Barrow and Rouse, 2005; Rockoff, 2004; Jackson, 2010). Rivkin et al. (2005), for

example, demonstrate the causal effects of pure teacher qualities on student achievement in

primary schools in Texas and find significant and systematic differences between schools and

teachers in their abilities to raise student achievement. Schools have exogenous qualities

that influence parental decisions on which schools to select (Hoxby, 2003; MacLeod and

Urquiola, 2009; Hatfield et al., 2015; Barseghyan et al., 2014; McMillan, 2005) and this is

what motivates this paper.

Consider a town where each family has one child of school age that differs in student type.

The benefit of attending a school is supermodular in student type and school quality. One

can interpret the student type as the ability of the child or the wealth of the family or

a combination of the two. Households interested in enrolling in one of the town’s public

2 Abdulkadiroğlu et al. (2014) for example, find evidence against the importance of peer effects and racial
composition in the education production function of the students from 6 public exam high schools in New
York and Boston. In particular, they develop an empirical analysis that embeds deferred acceptance, the
school choice mechanism of interest in this paper.
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schools have to own a house in the town. In the student-proposing deferred acceptance,

students submit their preferences over schools to the central planner and are assigned to

one of the public schools subject to neighborhood priority. Students are not required to

attend a school in the town and they have a payoff from an outside option that is monotone

in student type. Those unassigned or unwilling to accept the assigned schools can also opt

for their outside option, which can include private or home schooling.

As a benchmark, consider a multi-district town that adopts deferred acceptance. Under

neighborhood assignment, with supermodular utility that provides incentives for Positive

Assortative Matching (PAM), households self-select themselves into quality-ranked neigh-

borhoods, while residents within each neighborhood share similar types. If the town adopts

deferred acceptance with neighborhood priority, its residential distribution differs dramati-

cally.

1. Deferred acceptance can generate a non-PAM residential pattern: students of higher

types do not necessarily live in better school districts.

2. There is greater heterogeneity in student type distribution within neighborhood: stu-

dent types within the same neighborhood are more diverse and spread out.

3. Deferred acceptance increases access to higher quality schools for students living in

lower-quality school districts.

Even if deferred acceptance admits neighborhood priority, the residential pattern can still

be non-PAM because of uncertainty about what schools children are assigned to under

deferred acceptance. A top-quality school district may have more residents than its school

capacity, thus students are rationed via neighborhood priorities and random lotteries. In

this case, some students may choose a lower quality district with less rationing. This paper

is, to the best of my knowledge, the first to characterize non-PAM in residential choices

under deferred acceptance with priority when students value school quality and the benefit

3



of attending a school is supermodular in student type and school quality.3

Next, unlike neighborhood assignment under which students living in the same neighbor-

hood share similar types (Hoxby, 2003; Calsamiglia et al., 2015), under deferred acceptance,

student types within the same neighborhood are more spread out and heterogeneous. In Ex-

ample 1.2.2, neighborhood T2 under deferred acceptance accommodates students of types

from both the lowest 20 percent quantile and the highest 20 percent quantile, whereas

students with ‘in-between’ types opt for a different neighborhood. It turns out that par-

ents’ risk attitudes lead to this residential pattern. If families share the same risk attitude

towards uncertainty about student assignment, those of similar types self-select into the

same neighborhood under deferred acceptance. Otherwise if their risk attitudes vary, the

heterogeneity in student type within neighborhoods arises.

What drive the non-PAM across neighborhoods and increasing heterogeneity within each

neighborhood under deferred acceptance are the conflicts between limited school capacity

and over-demanded high-quality schools, a key issue school choice mechanisms try to resolve.

In my model this conflict arises because the supply of housing is elastic but not school

capacity. While school capacity is elastic, it changes much more slowly than housing supply.

For example, in the Greater Center City area of Philadelphia, the population has increased

19% and over 20,000 housing units have been added since 2000. About half of the schools

exceed their rated capacity, and the remainder have seen double digit growth.4 Yet, the

most recent master plan of the Philadelphia School district (2011) has focused on reducing

school capacity!5 At least two reasons account for why school capacity fails to adjust

quickly enough to changes in enrollment: some districts are chronically underfunded; and

3Calsamiglia et al. (2015) show student assignment is non-PAM under school choice with no priorities, i.e.,
higher-type students are not necessarily assigned to better schools, yet student assignment and residential
choices are always PAM under school choice with priority in their paper.

4http://www.centercityphila.org/uploads/attachments/ciz8shha90i339eqdeyw4c63n-ccr17-

housing.pdf;
http://www.openinfophilly.com/blog-1/2016/2/1/center-city-schools-may-soon-collapse-due-

to-their-own-success
5http://thenotebook.org/sites/default/files/FMP_summary_of_recommendations.pdf
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many conduct capacity plans on a very long time scale.6

Even with limited school capacity, deferred acceptance still generates more equitable access

to better schools. I find that among districts that adopt deferred acceptance, living in a

lower quality school district provides a higher chance of attending a school better than its

neighborhood school. When the residential pattern is PAM, this implies that the lowest-

type students in the town can benefit the most from the highest opportunities of attending

a public school better than their neighborhood school.

The discussion above considers a situation where there is a switch to deferred acceptance

in a single town. In reality, a student can choose to live in a town that operates deferred

acceptance or neighborhood assignment. Consider two multi-district towns with public

schooling. One town adopts deferred acceptance with neighborhood priority while the other

still implements neighborhood assignment. As households’ preferences and risk attitudes

towards uncertainty may vary, they can ‘vote with their feet’ for one town over the other.

Results 1-3 under the one town model still hold for the town that adopts deferred acceptance.

In addition, deferred acceptance impacts the town implementing neighborhood assignment

in the following ways:

4. There is more heterogeneity in student type within neighborhoods that implements

neighborhood assignment.

5. For two towns implementing different assignment rules, everything equal (distribu-

tion of school qualities and school capacities), the town adopting deferred acceptance

attracts more residents than the one implementing neighborhood assignment.

6Consider Clarksville and surrounding Montgomery County which is one of the fastest growing regions
in the state of Tennessee. Under its twenty-year enrollment and capacity analysis, capacities of public
middle schools and high schools in most of the 5 zoning regions will see a one-time capacity adjustment for
the following 20 years. See https://www.cmcss.net/documents/operations/10yearplan.pdf for further
details

5
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1.1.1. Previous Literature

My work builds on the inter-district student assignment models of Epple et al. (2001) and

Epple and Romano (2003) and is close to Avery and Pathak (2015). However it differs from

prior work in the following ways.

1. Exogenous school quality.

Avery and Pathak (2015), Calsamiglia et al. (2015) assume that the quality of a

school is purely a function of the students who attend it. Assuming students only

care about other students with whom they attend school (pure peer effect), all schools

are identical under school choice without residential priority. This paper studies the

polar opposite case with empirical evidence on the importance of exogenous school

qualities (Rivkin et al., 2005; Barrow and Rouse, 2005; Rockoff, 2004; Jackson, 2010).

2. Priorities.

Unlike Epple and Romano (2003), Barseghyan et al. (2014), Avery and Pathak (2015),

I incorporate school priorities in the school choice mechanism. Without priority, all

districts are equalized and all households are indifferent to living in those districts (Ep-

ple and Romano, 2003; Avery and Pathak, 2015). As emphasized by Abdulkadiroğlu

and Sönmez (2003), student assignment mechanisms should be flexible enough to give

students different priorities at different schools and neighborhood priority is among 7

factors that student assignment decisions should be based on, especially when a town

considers shifting from neighborhood assignment to deferred acceptance.

3. More general outside option.

Calsamiglia et al. (2015) model how the availability of a private school can alter the

outcome of school choice. They assume a private school with quality yp and price

of admission p is available after students get their assignment decisions under school

choice. In other papers, the outside option is modeled as being 0 (Abdulkadiroğlu

et al., 2015), He et al. (2012), negative infinity (Pathak and Shi, 2013; Miralles, 2009;

6



Epple and Romano, 2003) or a set of schools of all possible qualities (Avery and

Pathak, 2015). I require only that the payoff from the outside option be monotone in

student type.

4. Elastic housing supply.

Calsamiglia et al. (2015) also have a model examining the effects of deferred acceptance

with capacity constraints and priorities in a three-district single town model, but the

supply of housing is inelastic, and equal to the inelastic school capacity in each district.

In my model, the supply of housing is elastic.

5. Costless choice.

Barseghyan et al. (2014) assume a cost of exercising choice if attending an inter-district

school and the benefit of attending a school is linear in student type and school quality

in a two-district model. This paper assumes that all students are perfectly mobile with

the cost of exercising choice being zero as in Avery and Pathak (2015), and increasing

marginal utility as in most of the school choice literature (Epple and Romano, 2003;

Avery and Pathak, 2015; Hoxby, 2003).

The second strand of literature related to this paper is empirical. Black (1999), Reback

(2005), Brunner et al. (2012) explore appreciation of home values by households and the

significant effects of switching to school choice on housing values and population density.

My work also demonstrates how access to good schools are rationed by home prices under

deferred acceptance with neighborhood priority.

The sorting effect across neighborhoods and schools have been tested in a number of papers

such as Epple and Sieg (1999), Epple et al. (2001), Rothstein (2006), Bayer et al. (2007).

They find strong sorting effects in student type across neighborhoods. Calsamiglia et al.

(2015) define the concept of partial sorting where the distribution of student types in one

school first-order stochastically dominates that in another. In their model the partial sorting

appears in the school composition instead of residential choices. My paper focuses on the

7



households’ differentiation in their residential choices, and the ensuing diversity in school

composition as a consequence of residential priorities.

The paper is organized as follows. Section 2 introduces the definition of equilibrium under

deferred acceptance with neighborhood priority and proves its existence. To characterize

equilibrium outcomes, I introduce the 2 examples that help distinguish deferred accep-

tance from neighborhood assignment. Section 3 describes the model where students choose

between one town adopting deferred acceptance and the other running neighborhood as-

signment. I formalize the analysis of PAM and heterogeneity within neighborhoods under

deferred acceptance in this section and also discuss on home prices and distribution of

educational benefits. Section 4 discusses the implications and extensions of this paper.

1.2. One Town Model

1.2.1. Setting

A town is divided into D districts. Each district has one school that offers tuition-free

education. A unit mass of households each with one school-aged child are interested in

public schools in the town. Households are distinguished by a one-dimensional type x,

which could be interpreted either as wealth of the family or ability of their child or some

combination of the two. µ is the non-atomic measure of types with support X = [x, x̄].

µ(X) = 1. Assume a unitary actor for each household, so I can refer interchangeably to

households and students as decision makers.

Each student applying to the public schools must own a house in the town. Suppose the

housing price in district d is pd. A student of type x living in district d and enrolled in a

school of quality y, receives a utility of,

u(x, y, pd) = v(x, y)− pd.

For a child of type x who does not get a seat under school choice, an outside option is

8



available with payoff denoted by π : X → R. One can interpret π(x) as the outside option

for type x if she attends a private school or home education. Assume that π(x) is continuous

and non-decreasing in type x.

The following are some major assumptions that hold throughout the paper.

Assumption 1 (A1) The school in district d is of quality yd. Then school qualities are

strictly ordered: y1 < y2 < . . . < yD.

Assumption 2 (A2) v(x, y) is twice differentiable, strictly increasing in both arguments

and ∂2v
∂x∂y > 0 for all (x, y) ∈ X × [y1, yD].

(A1) assumes that schools have exogenously given qualities. (A2) requires that the utility is

supermodular in student type x and school quality y so that households with higher types

are willing to pay more for an increase in school quality.

Assume that the school capacity in district d is kd.

Housing supply is derived from profit maximization by price-taking builders, who choose

the optimal density of labor, construction cost, and quantity of houses built, subject to

certain constraints. In particular, this paper assumes the following specific form for the

elastic housing supply,

HA(ld, p) = ldp
r,

as in Epple et al. (2001), Calabrese et al. (2011), Epple and Zelenitz (1981).7 Here ld is the

land capacity of district d, p is the home price in district d, r > 0 is the price elasticity of

supply. Here I make the assumption that building densities or the persons per square mile

for school constructions are proportional to that of residential housing, therefore the land

capacity for public schools is proportional to the land use for residential constructions,8 i.e.,

ld = αkd for some α > 0.

7For example, Epple et al. (2001) assume for price-taking firms, the optimum of maximizing a constant
return-to-scale production function without local constraints is H(lj , pj , tj) = lj(

pj
1+tj

)r with tj the tax rate.
8See http://www.devon.gov.uk/education-section-106-policy-jan-2013.pdf for how land acquisi-

tion is determined for school construction.
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Denote by the tuple (y,k, µ) the economy for the one town model.

1.2.2. Deferred Acceptance Equilibrium

The timing of the model is described below.

Stage 1 Households as price takers, first choose which district to live in.

Stage 2 Students submit preferences over schools. Each school ranks its all applicants

by priority: residents from the district where the school is located are ranked higher

than applicants outside the district. Within each priority class, break ties at random.9

Apply deferred acceptance to assigning students to schools.

We implement school choice as deferred acceptance first introduced by Gale and Shapley

(1962). Abdulkadiroğlu and Sönmez (2003) describe the mechanism with students proposing

to schools as follows,

Step 1 Each student proposes to her first choice. Each school tentatively assigns its seats

to its proposers one at a time following their priority order. Any remaining proposers

are rejected.

Step k Each student rejected in the previous step proposes to her next favorite choice. Each

school considers the students it has been holding together with its new proposers and

tentatively assigns its seats to these students following their priority order. Remaining

proposers are rejected.

School priority in this paper follows Abdulkadiroğlu and Sönmez (2003): resident students

share the same higher priority of admission to their neighborhood school, while non-resident

students share the same lower priority of admission. A student’s expected utility is therefore

9In previous papers, the coarse priority with tie breaking is implemented as follows. For each x, denote
by lx = (lx1 , l

x
2 , . . . , l

x
D) the scores for type x at all D schools. lx ∈ [0, 1]D is i.i.d. drawn from a distribution

F for each x. Each school d ranks students by exd = lxd +1hd(x)=1: the higher exd is, the higher the priority is.
Here hd(x) = 1 if and only if type x lives in district d. Obviously, resident students from the district enjoy
higher priorities than non-residents. The two most common tie-breaking rules are single tie-breaking (STB)
and multiple tie-breaking (MTB). My results do not depend on which one of STB and MTB is implemented.
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determined by: (1) housing prices, (2) her residential choice and submitted preference over

schools and (3) others’ residential choices and submitted preference profile. We use subgame

perfect equilibrium as the solution concept. Then deferred acceptance ensures the following.

Lemma 1.2.1. In the subgame of Stage 2, truth-telling is a dominant strategy for any

student.

From now on, we assume every applicant reports truthfully in the second stage and restrict

attention to their residential strategies only.

Let h be the mapping from student type x to her choice of districts. Each entry hd(x) is

equal to the probability that a student of type x assigns to living in district d. Given h the

residential strategies of all households, the demand for houses in district d is,

m(hd) =

∫
hd(x)dµ.

Let U(x, ed; p,h) be the expected payoff of a student of type x living in district d given

prices p and the residential choices of others h. Here ed is the vector with a 1 in the dth

coordinator and 0’s elsewhere. Then,

U(x, ed; p,h) =
∑
s≥jx

Pr(s|d,h)v(x, ys) +
(
1−

∑
s≥jx

Pr(s|d,h)
)
π(x)− pd,

where Pr(s|d,h) is the probability of being assigned to school s conditional on living in

district d and the strategy profile h. If v(x, yD) ≥ π(x), denote by

jx = min{1 ≤ j ≤ D : v(x, yj) ≥ π(x)},

the least favorite school that is acceptable to type x compared to her outside option. Oth-

erwise, let jx = D + 1. Then 1 −
∑

s≥jx Pr(s|d,h) is the probability of opting out (being

unassigned by the mechanism or unwilling to attend due to more attractive outside op-

tions). Under truthful reporting, Pr(s|d,h) can be determined explicitly by h (See A.2.2
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for detailed expression).

When a student of type x plays mixed strategy φ, her expected payoff is,

U(x, φ; p,h) =
∑
d

φd · U(x, ed; p,h).

Then the deferred acceptance equilibrium is defined as follows,

Definition 1. Given (y,k, µ), a deferred acceptance equilibrium in a town of D dis-

tricts is (p,h), where p is the vector of home prices in all districts and h is the mapping

from student types to residential strategies such that,

1. for each student of type x ∈ X,

U(x,h(x); p,h) = max
1≤d≤D

U(x, ed; p,h),

2. housing supply should match demand in each district,

HA(ld, pd) = m(hd).

Condition (1) is the incentive compatibility constraint: each household is maximizing ex-

pected utility when deciding where to live. Condition (2) is the housing market clearing

condition for each district. Based on Schmeidler (1973), I show the existence of a pure

residential strategy equilibrium.

Theorem 1.2.2. For each (y,k, µ), there always exists a pure strategy deferred acceptance

equilibrium that admits truth-telling in the second stage.

To capture the idea of what a deferred acceptance equilibrium looks like, one must under-

stand first how home prices are affected by deferred acceptance.

Proposition 1.2.3. In any deferred acceptance equilibrium (p,h), housing prices ascend

with school quality, i.e., p1 ≤ p2 ≤ . . . ≤ pD−1 ≤ pD.
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It is interesting to note that, under elastic housing supply, Proposition 1.2.3 does not imply

that better school districts have larger housing supply, since the housing supply is also

restricted by its limited land capacity, specially in those richest ones (partly due to restricted

building density).

The ensuing question is whether h, the households’ residential choices, are monotone in x,

i.e., the higher the student type is, the better school district she lives in. In neighborhood

assignment, supermodularity in student’s payoff often implies monotone residential choices

and perfect stratification across neighborhoods. Under deferred acceptance with rationing,

supermodularity can be offset by uncertainty about the student assignment outcomes, there-

fore non-monotonicity may arise. Below is an example illustrating this difference between

deferred acceptance and neighborhood assignment.

Example 1.2.1. There are 3 school districts with qualities y1 = 0.4, y2 = 2.5y1, y3 =

13.192101y1. School capacities are k1 = 0.6399921, k2 = 0.2842510, k3 = 0.07575686. Hous-

ing prices are p1 = 0.1, p2 = 1, p3 = 3.06. The elastic housing supply is H(kd, pd) = kdp
2
d.

Student types are uniformly distributed on [0, 0.5] with unit mass. The benefit of attending

schools is v(x, y) = (x + y)2 + 4. Assume all public schools are acceptable. Below is a

deferred acceptance equilibrium.

0 x1 x2 0.5

T1 T3 T2

h(x):

Figure 1: Example of Non-monotone Residential Pattern

In the equilibrium, students of type [0, x1] live in district 1, while [x1, x2] live in district

3, and students of the highest types live in district 2 as shown in Figure 1, where x1 =

0.0032, x2 = 0.3579. The numbers of residents in each district are m(h1) = 0.01k1, m(h2) =
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k2, m(h3) = 9.3636k3 with equilibrium payoffs,

U(x, e3; p,h) =
1

9.3636
(x+ y3)2 + (1− 1

9.3636
)(x+ y1)2 + 4− 3.06,

U(x, e2; p,h) = (x+ y2)2 + 4− 1,

U(x, e1; p,h) = (x+ y1)2 + 4− 0.1.

Figure 2: U(x, e3; p,h) − U(x, e2; p,h) for
the non-PAM matching example

Figure 3: U(x, e2; p,h) − U(x, e1; p,h) for
the non-PAM matching example

Figure 4: U(x, e3; p,h) − U(x, e1; p,h) for
the non-PAM matching example

Figure 5: U(x, ei; p,h) for x ∈ [0, 0.06], i =
1, 2, 3 for the non-PAM matching example

Figures 2, 3, 4 show how residential preferences change as student types vary and Figure 5

zooms in the equilibrium payoffs near x1. For example in Figure 2, ∆U(x) = U(x, e3; p,h)−

U(x, e2; p,h) is decreasing in student type x. When x < 0.3579,∆U(x) > 0 implies students

of type x receive higher payoff living in district 3. As x grows, living in district 2 generates

higher utility for higher types.

Obviously, living in district 3 is risky: with probability 1 − 1
9.3636 residents may end up in
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the worst school in the town. Yet the marginal benefit of taking the risky option is not

large enough, therefore students of highest type would rather opt for neighborhood 2 with

less rationing. On the other side, Students of type x ∈ [x1, x2] benefit from the high school

quality y3 the most thus they are willing to pay more.

In Example 1.2.1, high-risk school district 3 can drive away high-type households unwilling

to bear the risk of being unassigned to its neighborhood school. Suppose however that

v(x, y) = x2 +y2 + 4 + 100xy, one could verify that the non-monotonicity result in Example

1.2.1 no longer holds. The underlying difference between the two payoff functions is the

stronger supermodularity condition in the last term xy which offsets parents’ risk aversion to

living in an over-subscribed school district with good neighborhood school. The following

Proposition 1.2.4 extends this idea of stronger supermodualiry condition under deferred

acceptance. First let ∂+ be the operator of right derivative with respect to x.

Condition 1. ∂+(max{v(x, yd)− π(x), 0}) ≥ 0 for all d.

Condition 1 implies that, if a student of type x prefers the school in district d to her outside

option, then so does any student with higher type x′ > x. In other words, the set of

acceptable schools grows larger as type increases. In previous literature, (i) π(x) = 0, (ii)

π(x) = −M for M sufficiently large, (iii) π(x) = v(x, x) in Avery and Pathak (2015), and

(iv) π(x) = u(x− pd) + h(x, yp) for private schools with p the price of admission and yp the

school quality in Calsamiglia et al. (2015) under their Assumption 1, are all examples of

Condition 1.

Denote by Td = {x : hd(x) = 1} the set of student types that live in district d given a pure

strategy deferred acceptance equilibrium.

Proposition 1.2.4. Assuming Condition 1, if for all x, d,

kd ·
∂v

∂x
(x, yd) ≥

∂v

∂x
(x, yd−1), (1.1)
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then for each deferred acceptance equilibrium, there exists d∗ ≥ 1 and xd∗ ≤ xd∗+1 ≤ . . . ≤

xD, s.t.,

1. for all d ≥ d∗ + 1, Td = [xd−1, xd],

2. for all d ≤ d∗, Td ⊆ [x, xd∗ ], and pd = min{pj : 1 ≤ j ≤ D}.

Proposition 1.2.4 is a relaxed Positive Assortative Matching (PAM) result under deferred

acceptance with the presence of outside options. There are three ways of interpreting the

inequality (1.1): (a) when capacities kd in high-quality schools are large enough, top quality

schools have enough capacities to accommodate all their resident students. (b) For all x, d,

∂2v
∂x∂y (x, yd) ≥ M for some M large enough, that is if student type and school quality are

strong welfare complements, households increasingly prefer higher quality district regardless

of how small the chances of admission are. (c) School qualities are more spread out: yd �

yd−1. All these imply under deferred acceptance, higher-type students will choose better

quality school districts.

The following captures another residential pattern appeared in previous papers (Hoxby,

2003; Epple and Romano, 2003; Avery and Pathak, 2015; Calsamiglia et al., 2015). In these

papers, neighborhoods are a stratified partition of the student type space where different

intervals represent distinct neighborhoods.

Definition 2. (Connectedness) Neighborhood Td is connected in type if it is a single

interval. A town is connected if all its neighborhoods are connected.

In a connected town, neighborhoods are partitions of student type space where each interval

corresponds to a distinct neighborhood and only households of similar types live in the

same neighborhood. On the other hand, if a neighborhood is disconnected, student types

are more heterogeneous and spread out within the neighborhood. Example 1.2.2 illustrates

a disconnected neighborhood in a deferred acceptance equilibrium.

Example 1.2.2. (Disconnected Equilibrium) There are 3 school districts. y1 = 0.4,

y2 = 2y1, y3 = 3y1. School capacities are k1 = 0.452, k2 = 0.3255, k3 = 0.2225. Housing

16



prices are p1 = 0.2926, p2 = 1, p3 = 1.6903. The elastic housing supply is H(kd, pd) = kdp
2
d.

Student types are uniformly distributed on [0, 1], with benefit of attending schools v(x, y) =

(8xy + y2)2 + 5. Assume that all schools are acceptable to any student. Below is a deferred

acceptance equilibrium.

0 x1 x2 x3 1

T1 T2 T3 T2

h(x):

Figure 6: Example of a Disconnected Neighborhood T2

Here x1 = 0.0387, x2 = 0.2071, x3 = 0.8431. In equilibrium, households of types [0, x1]

live in district 1, while [x1, x2] ∪ [x3, 1] live in district 2, and [x2, x3] live in district 3.

The numbers of residents in each district are respectively, m(h1) = 0.0856k1,m(h2) =

k2,m(h3) = 2.8571k3. In this example, district 2 is disconnected.

Figure 7: U(x, e3; p,h) − U(x, e2; p,h) for
the disconnected neighborhood example

Figure 8: U(x, e3; p,h) − U(x, e1; p,h) for
the disconnected neighborhood example

Figure 9: U(x, e2; p,h) − U(x, e1; p,h) for
the disconnected neighborhood example

Figure 10: U(x, ei; p,h) for x ∈ [0, 0.1] for
the disconnected neighborhood example

Figures 7, 8, 9 indicate how residential preferences change as types vary and Figure 10 zooms
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in details on equilibrium payoffs near x1. The reason for neighborhood 2 being disconnected

is shown in Figure 7. The lowest-type students prefer district 2 to 3 because of lower price.

As student types increase, risk-seeking households increasingly favor district 3 because of

supermodularity in student type and high school quality. However, as district 3 is indeed a

risky option for the highest-type students compared to the safer choice of district 2, those of

the highest types eventually choose to reside in district 2 with a guarantee to enroll in its

neighborhood school.

Notice that neighborhood T2 has widely dispersed student type distribution: half of its

student types lie below the lower 20% quantile, while the other half fall in the top 20%

quantile. Figure 7 in Example 1.2.2 captures how households make tradeoff between less

risky and lower-cost option (T2) and the risky option with higher marginal benefit from

better schools (T3), and how their residential choices vary because of that. In the next

section I will point out how heterogeneity in parents’ risk attitudes in this example leads to

disconnectedness.

1.3. Two Town Model

The one-town model paves the way for a two-town model where one town adopts deferred

acceptance and the other still runs neighborhood assignment. In the two-town model,

the outside options of one town consist of exogenous options with payoff π(x)10 and the

other town that adopts a distinct student assignment rule. Parents can choose which town

and which assignment rule they prefer. How will they decide between school choice and

neighborhood assignment in equilibrium? Who benefits from school choice? To answer

these questions, one must understand how housing prices in both towns will be affected by

introducing school choice.

10This allows for opting out from schools in both towns when outside options are more attractive than
existing public schooling. It could be that private schools spring up when capacity is constrained.
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1.3.1. Setup

The model is similar to Avery and Pathak (2015) with major differences. Two towns A and

B each has D districts, with one public school in each district. Town A adopts deferred

acceptance while town B adopts neighborhood assignment to assign students. District d in

town t is denoted as dt, d = 1, 2, . . . , D, t = A,B. And the school in district d has exogenous

given quality yd and capacity kdt . Assume that kdt ≥ 0 and y1 < y2 < . . . < yD.11

Student of type x with partisanship for town t is denoted by xt. Partisanship denotes

households’ special (geographic) preferences to living in the town. Households with such

special preferences are ‘partisans’ of the town. The distribution of all partisans of town

t is given by a non-atomic measure µt (t = A,B) with compact support on Xt = [x, x̄].

Normalize the total mass of all partisans from both towns to be one.

As in the one town case, if a student of type x and a partisan to town t, pays the home

price pdt′ of district dt′ and enrolls in a school in down t′ of quality y, she receives a utility

of,

u(xt, y, pdt′ ) = v(x, y) + θ · 1t=t′ − pdt′ .

If the student chooses to live in the town she prefers as a partisan, she receives a bonus

benefit of θ. The larger θ is, the more favorable it is, other things equal, to live in the town

one is a partisan of.

If a student is unassigned by the school choice mechanism, she can certainly opt for outside

options. Let π : [x, x]→ R be the utility of her outside options.12 Assume π(x) is continuous

and non-decreasing in type x.

11Instead of assigning ydt to each district dt, I assume that ydA = ydB = yd. Otherwise, if there is a unique
quality ydt , one could add a dummy school in the other town t′ with the same quality ydt and 0 capacity.

12 One could also assume πt(x) the payoff of outside option that depends on town t, which does not alter
the main results of this paper.
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Similar to the one town case, the housing supply under deferred acceptance is

HA(ldA , pdA) = ldAp
r
dA
.

For town B that implements neighborhood assignment, I assume that housing supply is

in addition, subject to a local (zoning) constraint to ensure that all resident students are

guaranteed seats in their neighborhood schools,

HB(ldB , pdB ) = min{kdB , ldp
r
dB
}.

See previous literature for similar zoning constraints.13 Moreover, the main results in this

section on sorting do not depend on the housing supply functional assumption in town B as

long as it guarantees that in each neighborhood, enough slots in its neighborhood school are

reserved for the resident students. Similarly, assume that the school capacity is proportional

to the land capacity ldt = αkdt for some α > 0.

Denote the economy by (y,k, µA, µB). The timing of the two-town model is similar to the

one-town model.

Stage 1 Given housing prices, households simultaneously choose which town and which

district to live in.

Stage 2 (Town A running deferred acceptance) Students submit preferences over schools in

town A. Each school ranks all applicants by priority: residents from the district where

the school is located are ranked higher than applicants outside the district. Within

each priority class, break ties at random.14 Apply deferred acceptance to assigning

students to all schools.

13 Avery and Pathak (2015), Calsamiglia et al. (2015) model housing supply the same as school capacity
kd. Fischel (1999) explains the relationship between housing supply and local municipal constraints. In
Bunten (2015), firms maximize profits at each location subject to a local zoning constraint that restricts the
number of houses produced complying to local amenities, i.e., min{kd, H(l, p, t)} with kd the local zoning
constraints and H(l, p, t) the production function for a profit maximizer.

14 Same tie-breaking rule as in the one-town model.
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(Town B running neighborhood assignment) Assign applicants to their neighbor-

hood schools.

Applying Lemma 1.2.1 to the two-town case, one could assume that truth-telling is a Nash

equilibrium in the subgame of Stage 2.

Let h map a partisan of town t with type x to her mixed strategy h(xt) ∈ R2D. Entry

hdt′ (xt) is the probability that she assigns to living in district d in town t′. Given h the

residential choices of all households, the housing demand in district dt is,

m(hdt) =

∫
hdt(xA)dµA +

∫
hdt(xB)dµB.

Denote by U(xt, edt′ ; p,h) the expected payoff for a student of type x with partisanship of

town t to live in district dt′ , where edt′ is the 2D-dimensional vector with a 1 in the dt′th

coordinator and 0’s elsewhere. Then,

U(xt, edA ; p,h) =
∑
s≥jx

Pr(s|dA,h)v(x, ys) +
(
1−

∑
s≥jx

Pr(s|dA,h)
)
π(x) + θ · 1t=A − pdA ,

where Pr(s|dA,h) is the probability of being assigned to school s in town A conditional

on living in district dA. 1−
∑

s≥jx Pr(s|dA,h) is the probability of opting out (unassigned

under school choice or unwilling to attend the assigned school). jx is the same as in the

one-town model.

Student xt applies to her neighborhood school in town B if and only if attending her

neighborhood school yields higher benefit than her outside option, i.e.,

U(xt, edB ; p,h) = max{v(x, yd), π(x)}+ θ · 1t=B − pdB .

If student xt plays mixed residential strategy φ and submits truthful preference in the school
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choice process, her expected payoff is,

U(xt, φ; p,h) =
∑
dt′

φdt′ (xt) · U(xt, edt′ ; p,h).

Definition 3. A two-town school choice equilibrium consists of (p,h), where p is the

vector of housing prices of all district dt, h is the mapping from student type and partisanship

to her residential strategy, such that,

(1) for each student of type xt,

U(xt,h(xt); p,h) = max
dt′

U(xt, edt′ ; p,h),

(2) housing supply should match demand in each district,

m(hdt) = Ht(ldt , pdt), for all dt.

Condition (1) is the incentive compatibility constraint. In the two town model, the outside

options of each town include: the exogenous option π(x) and the endogenous option of

living in the other town implementing a different student assignment rule. Condition (2) is

the housing market clearing condition.

Theorem 1.3.1. For any (y,k, µA, µB), there exists a pure strategy two-town school choice

equilibrium that admits truth-telling.

1.3.2. Residential Pattern under School Choice

Now we only focus on pure strategy two-town school choice equilibria that admit truth-

telling. Let Td = {xt ∈ XA ∪XB|hdT (xt) = 1} the set of households that live in district dT

in the two-town school choice equilibrium with strategy profile h.

To understand how households redistribute themselves in equilibrium, one must understand
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equilibrium home prices in both towns.

Proposition 1.3.2. (Home Prices) In any two-town school choice equilibrium, housing

prices in each town increase in school quality, i.e. for t = A,B, p1t ≤ p2t ≤ . . . ≤ pDt .

The following definition of positive assortative matching (PAM) extends the sorting results

in Proposition 1.2.4 to a two-town case.

Definition 4. (PAM) Given town T, let d̃ = max{d : pdT = p1T }. Then town T is PAM

in residential pattern if the following two conditions hold,

1. For d1 > d2 > d̃, x′t′ ∈ Td1 , xt ∈ Td2 ⇒ x′ ≥ x.

2. For d1 > d̃ ≥ d2, x′t′ ∈ Td1 , xt ∈ Td2 ⇒ x′ ≥ x.

Definition 4 implies that students of higher types live in more expensive neighborhoods.

In particular, student type space can be partitioned into 2 groups: one subset corresponds

to those of lowest types that live in the cheapest school districts Td where d ≤ d̃, and a

subset of higher-type households in Td where d > d̃ that match assortatively with districts

of increasing school qualities. This is a generalization of PAM between student types and

school districts in the presence of outside options. Moreover, the monotonicity of residential

choices does not depend on partisanship (t is not necessarily equal to t′ in the statement of

the definition).

Proposition 1.3.3. Assuming Condition 1, town B is PAM in any two-town school choice

equilibrium. Moreover, if for any x, d,

kdA ·
∂v

∂x
(x, yd) >

∂v

∂x
(x, yd−1),

then town A is also PAM in any two-town school choice equilibrium.

Notice that PAM may not hold in general (see Example 1.2.1, 1.2.2 from the previous

section) except for some strong complementarity condition such as those in Proposition

1.3.3. In non-PAM equilibria, neighborhoods are less stratified by student type. Medium-
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type students opt for a top quality school district while the highest types choose a medium-

quality school district. As a consequence of neighborhood priority, the composition of

student body at each school is less stratified as well.

The following is the second characterization of the residential patterns after adopting school

choice, analogous to Definition 2 in the one-town case.

Definition 5. (Connected Neighborhood) Given (p,h) a pure strategy two-town school

choice equilibrium, neighborhood Td is connected if each of Td
⋂
XA, Td

⋂
XB is a single

interval. A town t is connected if all its neighborhoods are connected.

The definition of connected neighborhoods attempts to capture the homogeneity of a neigh-

borhood: students of similar types live in the same neighborhood. Notice that in any

equilibrium, the set of non-partisan student types x who live in Td is a subset of its parti-

san student types in Td. Therefore, the partisans and non-partisans who live in the same

neighborhood must share similar types in a connected neighborhood based on Definition 5.

The connectedness property is a major difference distinguishing deferred acceptance from

neighborhood assignment. Unlike neighborhood assignment where seats are guaranteed

to resident students, students are subject to randomized assignments under school choice.

Therefore, attitude towards risk and uncertainty about student assignment matters. The

following proposition shows that if students share the same risk attitudes, neighborhoods

are always connected under school choice.

Proposition 1.3.4. If households’ preferences satisfy,

(i) there exists some g(x), c(x), q(y) ≥ 0,s.t. v(x, y) = g(x)q(y) + c(x).

(ii) π(x) = Ev(x, Y ), for some random variable Y,

then in any two-town school choice equilibrium (p,h), U(xt, ed′
t′

; p,h)−U(xt, ed′′
t′′

; p,h), the

difference in equlibrium payoffs between any pair of residential choices d′t′ and d′′t′′, crosses

each type space Xt at most once.
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Condition (i) in Proposition 1.3.4 is equivalent to the fact that the Arrow-Pratt measure of

absolute risk aversion r(x, y) =
− ∂

2v
∂y2

(x,y)

∂v
∂y

(x,y)
= r(y) is constant in x, i.e., all households share

the same absolute risk aversion. Cobb-Douglas utility function in Epple and Romano (2003)

is an example of condition (i). Condition (ii) implies that students also share the same jx = j

for all xt, that is, their least acceptable local school is the same, which also implies that

their risk aversion to being unassigned by the school choice mechanism is the same. Under

those assumptions, Proposition 1.3.4 states that U(xt, edt ; p,h) satisfies a single crossing

condition, which ensures that all neighborhoods to be connected except for some indifferent

cases where two districts generate identical expected payoffs for all households.

Suppose however that households are increasingly absolute risk averse towards uncertainty

about student assignment, the following result guarantees that town A is connected in any

two-town school choice equilibrium.

Denote by CE(x, P ) : X ×∆2D−1 → R the certainty equivalent of any random variable Y

with CDF P , i.e., v(x,CE(x, P )) = EP [v(x, Y )].

Proposition 1.3.5. Assuming Condition 1, if θ > 0, and

(i) kdA
∂v
∂x(x, yd) >

∂v
∂x(x, yd−1) for all d,

(ii) ∂2v
∂y2

< 0, ∂3v
∂x2∂y

< 0, and certainty equivalent CE(x, P ) is a decreasing and concave

function of x for all P ,

then in any two-town school choice equilibrium, all neighborhoods in town A are connected

except for those with the lowest home price in town A. When θ = 0, Condition 1 and (i)-(ii)

guarantee that all neighborhoods in town A are connected except for those with the lowest

price, and neighborhood d for which pdB = pdA.

Proposition 1.3.5 investigates the case where households are increasingly absolute risk

averse. Condition 1 states that the set of acceptable schools is expanding as student type

increases, which suggests that students of higher types are increasingly risk averse to being
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unassigned. Condition (i) can be interpreted as strong complements of student type and

school quality or widely dispersed school qualities in town A, thus students of higher types

are more risk averse to be assigned to schools of low qualities.

Condition (ii) eliminates the scenario where two extreme types prefer risky options in town

A, but the ‘in-between’ types favor safer choices in town B, thus implying connectedness

in town A. Consider some risky option in town A implementing deferred acceptance with

an attractive school quality equivalent CE(x, P ). Non-increasing CE(x, P ) implies that for

students with higher types, the school quality equivalent becomes less attractive. Moreover,

∂
∂x [ ∂2

∂x∂yv(x, y)] ≤ 0 suggests that the supermodularity between student type and school

quality is diminishing. Under these assumptions, switching to a riskier choice with higher

CE(x, P ) which is monotone decreasing in x generates decreasing surplus for higher types.

Therefore, if some student type gains higher payoffs from the safer choice under neighbor-

hood assignment in town B than from some risky option under deferred acceptance in town,

so does anyone with higher student type. The concavity of certainty equivalent CE implies

convexity of absolute risk aversion (Gollier and Pratt, 1996), an indicator of how their risk

aversion varies as student type increases.

One class of utility functions satisfying conditions in Proposition 1.3.5 is v(x, y) = w(y+xy)

where,

(i) w′(z) > 0, w′′(z) < 0,

(ii) w′(z) + zw′′(z) > κ,

(iii) w′′′(z) ≤ (zw′′(z)−w′(z))w′′(z)
zw′(z) .

For example, w(z) = z1−η−1
1−η for some η < 1 satisfies conditions (i)-(iii). This utility

functional is derived from McElroy (2007).15

15Let MU (x) = U−1[EU(z̃1 + xz̃2)] for all discrete-valued random variables z̃1 and z̃2 where z̃1 is non-
negative. When U ′ > 0 and U ′′ < 0, MU (x) is concave for all z̃1 and z̃2 if and only if U ′/U ′′ is convex. Here
we take z̃1 = z̃2 = Y .
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Suppose households are increasingly risk seeking.

Condition 2 ∂+(max{π(x)− v(x, yd), 0}) ≥ 0 for all d.

Condition 2 implies the following preference structure: if a student of type x prefers her

outside option to the school in district d, so does any student with higher type x′ > x. In

other words, the set of acceptable schools is narrowing down as type increases. Notice that

Condition 2 is the opposite of Condition 1. Then Proposition 1.3.6 states that under risk

seeking environment, town B can be connected.

Proposition 1.3.6. Assuming Condition 2, if θ > 0, and

(i) ∂2v
∂y2

> 0, ∂3v
∂x2∂y

< 0 and certainty equivalent CE(x, P ) is an increasing and convex

function of x for all P ,

(ii) for each d, d2

dx2
[π(x)− v(x, yd)] ≥ 0 at x ∈ {x|π(x) > v(x, yd)},

then in any two-town school choice equilibrium, all neighborhoods in town B are connected

except for those with the lowest home price. When θ = 0, Condition 2 and (i)-(ii) ensure all

neighborhoods in town B are connected except for those with the lowest price, and district

dB for which pdB = pdA.

For risk seeking households, one can interpret Condition 2 as students being increasingly

open to outside options. Condition (ii) in Proposition 1.3.6 on the convexity of the difference

π(x)− v(x, yd) also implies that ‘risk seeking’ households are increasingly willing to opt for

outside options. A non-decreasing certainty equivalent CE(x, P ) implies that when switch-

ing to a potentially safer choices, the increment in school quality equivalent is decreasing

as student type increases, and so is the increment in expected payoff if ∂
∂x [ ∂2

∂x∂yv(x, y)] ≤ 0

holds. Hence for risk seeking households, conditions (i) and (ii) combined imply that risk

seeking households with higher types prefer riskier options from school choice assignment

in town A to deterministic yet less attractive options in town B.

Notice that in both cases ∂3v
∂x2∂y

(x, y) ≤ 0, which suggests that although students increas-
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ingly favor higher quality schools ( ∂2v
∂x∂y > 0), the supermodularity in student type and

school quality has negative impact on the local homogeneity within each neighborhood,

and restricting the growth of supermodularity (i.e., ∂3v
∂x2∂y

(x, y) ≤ 0) can generate a more

locally ‘connected’ neighborhood. Notice that in Example 1.2.2 where T2 is disconnected,

this third-order condition fails.

To sum up, all neighborhoods are sorted not just by type but risk attitude. This paper

introduces the notion of disconnected neighborhood to characterize heterogeneity within

neighborhood, a major distinction from many previous papers that focus solely on cross-

neighborhood sorting and heterogeneity. When school choice and outside options are in-

troduced, districts in the town implementing neighborhood assignment may no longer be

connected. Recall that in Example 1.2.2, student types are more diversified and spread out

in a disconnected neighborhood. Moreover, the heterogeneity within each neighborhood

contributes to the heterogeneous student composition in each public school under deferred

acceptance as well as under neighborhood assignment implemented by the neighboring town,

a sorting effect not only across and within neighborhoods but across and within schools in

both towns.

1.3.3. Home Price and Distribution of Educational Benefits

The redistribution of residential patterns influences the redistribution of educational bene-

fits, in a good way.

Proposition 1.3.7. In the town that is implementing deferred acceptance, students living

in the lower-quality school district have higher opportunities of enrolling in schools better

than their neighborhood schools, i.e.,
∑

s>d Pr(s|d, h) are decreasing in d in any equilibrium.

∑
s>d Pr(s|d, h) is the probability of being admitted to a school better than their neighbor-

hood school by deferred acceptance. A similar assertion can be found in a field report by

the Chicago Tribune,16

16The report is available from http://www.chicagotribune.com/news/ct-chicago-schools-choice-

neighborhood-enrollment-met-20160108-story.html
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. . . that belies a common assumption that poor kids in low-performing schools

are trapped in those schools. In fact, students who live within the boundaries of

the city’s worst schools have the highest rate of going elsewhere.

One could also prove that
∑

s≥d Pr(s|d, h) the probability of being admitted to a school

at least as good as her neighborhood schools is also decreasing in d. Indeed as advocated,

deferred acceptance provides more equitable opportunities for students living in the low-

quality school districts. When equilibrium is PAM, this implies more equitable opportunities

for low-type students since the probability of going to a school better than neighborhood

schools under neighborhood assignment is alway 0.

The following results aim to compare parental choices over the two towns and the two

assignment rules.

Proposition 1.3.8. (Home Prices) For any (y,k, µA, µB), housing prices in each town

ascend. Moreover, if θ = 0, there exists d∗, s.t. for all d > d∗, pdB ≥ pdA; pd∗B = pd∗A; and

for all d < d∗, pdB ≤ pdA.

Proposition 1.3.8 echoes Avery and Pathak (2015), who argue that introducing school choice

inflates the home prices of low-quality school districts, while deflates housing prices of high-

quality ones, thus producing incentives for types at both extremes to opt for neighborhood

assignment in town B. Nevertheless, unlike Avery and Pathak (2015) where the town im-

plementing school choice drives away low and high types and attracts only those with types

in between, in this paper, town A implementing deferred acceptance also attracts those of

low and high types, if not the very extreme ones, because of differentiated school qualities.

Next, suppose the two towns share the same school capacities and distribution of school

qualities, but adopt distinct student assignment rules, which town will the parents choose?

Proposition 1.3.9. Suppose kdA = kdB , θ = 0, that is everything equal except for distinct

assignment rules, then in any equilibrium (p,h), the numbers of residents satisfy,

m(hdA) ≥ m(hdB ), ∀d.
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To rephrase, under the same educational resources and economic environment, more house-

holds will ‘vote with their feet’ for deferred acceptance over neighborhood assignment not

just in total but in every single school district. 17

1.4. Discussion

1. Probabilistic serial and random priority mechanisms.

This paper studies deferred acceptance with neighborhood priorities. We can also

apply Probabilistic Serial (PS) to student assignment with neighborhood priorities

(Che and Kojima, 2010). Since PS is strategy-proof in the large market (Azevedo

and Budish, 2013) and by the asymptotic equivalence between PS and RP (Che and

Kojima, 2010), we can apply similar argument to both RP and PS to analyze an

approximately truth-telling school choice equilibrium. For school priority, associate

PS (or RP) with {gc(t)}, where each gc : [0, 1]→ R is the eating speed of priority class

c. When gc(t) is uniform distributed, it is equivalent to PS with no residential priority;

for some specific gc(t), it is equivalent to deferred acceptance with neighborhood

priority.

2. Boston mechanism and deferred acceptance

Boston Mechanism is undeniably one of the most popular school choice mechanisms.

Calsamiglia et al. (2015) study a model of 3 school districts each has a neighborhood

school in a single town, with inelastic housing supplies equal to the school capacities.

They find that both Boston Mechanism and deferred acceptance yield the same unique

PAM equilibrium where student types are stratified into 3 groups and all students get

assigned to their neighborhood schools. The results are driven by the fact that there

are sufficient seats for resident students in every single neighborhood and no risk

of uncertainty about student assignment to bear. Results can differ when there is

potential gain from gaming the Boston Mechanism. However, Boston Mechanism is

17Proposition 1.3.9 does not imply that every school in town A is over-subscribed since not all schools in
town B are fully enrolled, which is often the case in many school districts that run neighborhood assignment.
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known not strategyproof in the large (Azevedo and Budish, 2017) which complicates

the analysis of parental reports of their preferences.

3. Combination of exogenous school quality and peer effects.

This paper considers the polar opposite case of exogenous school qualities. If students

value qualities as well as peer effects, school choice equilibrium can be imperfectly-

assortative matching as in my paper, or PAM depending on how much a student values

school quality relative to peer effects and how strong the supermodularity between

student type and school quality is. Some techniques in this paper such as proving

the existence of pure strategy Nash equilibria can be adapted to the combination of

exogenous quality and peer effects, which is of future interest.

1.5. Conclusion

School choice is designed to offer more equitable access to high quality schools. As house-

holds value quality schools, I assume schools do have qualities that drive most of the results

in this paper. Compared to neighborhood assignment, deferred acceptance can provide

more equitable access to higher quality schools for low-type students.

This paper also finds how deferred acceptance reshapes neighborhoods in a PAM or a non-

PAM manner and a connected or a disconnected manner, due to households’ risk attitudes.

When equilibrium is non-PAM, there is less stratification across neighborhoods. When

neighborhoods are disconnected, student distribution within each neighborhood is more

diverse. Moreover, the heterogeneity in households’ preferences and risk aversion attitudes

redistribute the neighborhoods not just in the town that adopts deferred acceptance but

also the neighboring town that still implement neighborhood assignment.
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CHAPTER 2 : Price Dispersion in a Buyer-Seller Search Platform

2.1. Introduction

Many marketplaces, such as online platforms (eBay, Amazon), dating websites (eHar-

mony.com) and video game platforms (Nitendo) feature facilitating search and matching

for agents that would otherwise have difficulty finding each other. A common practice for

such platforms is to lower the cost of search and offer convenience in transactions to attract

as many subscribers as possible. This is driven by (positive) cross-group externalities in

multi-sided platforms, see Rochet and Tirole (2003, 2006); Armstrong (2006): as the num-

ber of users on one side increases, users on the other side are more willing to join, thus

increasing the value of the platform.

However, many platforms limit participation due to two types of negative externalities: (1)

congestion effects that arise when sellers have limited capacity and users on the other side

must compete for a match partner, and (2) cross-side negative consumption externalities

such as browsers’ aversion to advertisements. Arnosti et al. (2015), for example, identify the

negative congestion externality in dating websites: while a male applicant feels he is more

likely to find an attractive match when more female candidates participating in the dating

website, he may be less likely to be accepted by his chosen match because females also have

a larger pool to choose from and profit from a higher premium. This congestion externality

incentivizes dating websites such as eHarmony.com to limit the set of candidate choices

while its customers are willing to pay a premium of 25%.1 To resolve negative consumption

externalities in advertising markets where the audience dislikes advertisements, Gomes and

Pavan (2016) show that intermediaries such as newspapers or TV stations limit participation

by matching subsets of advertisers with eyeballs.

Interestingly, limiting participation can be found in other marketplaces where both con-

gestion and cross-group negative consumption externalities are absent. One such case is a

1See Piskorski et al. (2008) for details on eHarmony.com .
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buyer-seller platform where each seller sets the prices according to its demand curve on the

platform. Dinerstein et al. (2014) investigated eBay’s redesign of limiting consideration sets

in 2011. Prior to the redesign, consumers entering a search query were shown a substantial

number of potential matches. The redesign of the search algorithm after 2011 directs buyers

to a specific match (for example, ”Space Grey iPhone 6 32GB (AT&T) ” instead of anything

relevant to ”iPhone”) and a smaller fraction of offers from low-priced and top-rated sellers.

While Dinerstein et al. (2014) estimate the effects of limiting choices on firms’ decreasing

retail prices, markup, and consumers’ browsing behavior, the reason for such a redesign is

unclear from the platform’s perspective.

The main question of the paper is the following: is it optimal for a buyer-seller search

platform to include as many buyers and sellers as possible? If not, is it better to strategically

limit choices and target participation to a smaller subset? To answer this question, one must

understand the nature of cross-group externalities in buyer-seller platforms, and that the

value of a platform not only results from the number of users but the mix of users available

on the platform.

Consider a two-sided market where buyers search for sellers directly or through a middleman

(i.e. platform). Firms with unlimited capacity decide on whether to join the platform and

set prices for both on-platform and off-platform transactions. Buyers decide whether to

subscribe to the platform and search for the optimal products through platform or directly.

Each search reveals the price and value of a firm’s product but at some cost to the buyer.

After each search, a buyer must decide whether to proceed with another search, or to stop

and purchase the best alternative observed so far, or switch to an off-platform transaction.

As a middleman who facilitates search, the platform lowers search costs for the buyers but

can charge both sides for the transactions it facilitates.

In the two-sided marketplace, absent congestion and negative consumption externalities,

this paper proposes a novel explanation for platforms to limit choices: to balance two com-

peting positive and negative cross-group externalities. Intuitively, attracting more sellers on
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the platform generates positive externalities (choice effect): buyers have more choices and

therefore, higher transaction values when the search cost is low on the platform. On the

other hand, increasing the number of subscribed sellers may impose negative externalities

on the buyers: search for low-priced and high-value sellers can be more difficult because of

the increased price dispersion, offsetting the positive externalities from having a variety of

sellers.

To formalize the idea of the negative externalities under price dispersion, I model firms as

selling horizontally differentiated goods and differing in their marginal costs, which produces

price dispersion similar to Reinganum (1979). The existence of search frictions explains

how retailers selling identical goods can enjoy positive mark-ups and why price dispersion

is ubiquitous even on online platforms.2 In the presence of price dispersion, firms with

heterogeneous marginal costs differ in the profits gained from subscribing to the platform.

I find that the optimal membership fees set by the platform satisfy a threshold structure:

only firms with marginal costs lower than a threshold are willing to join the platform.

Lowering the membership fee on the sellers’ side attracts sellers with higher posted prices,

subsequently making search for low-priced sellers less efficient. In this sense, a platform

acts as a price gatekeeper and decides on not only how many sellers but which sellers to

target, to maximize its profits.

The horizontal differentiation in buyers’ valuation for sellers, contributes to the positive

network externalities due to more sellers. In this setting where the search cost on the

platform is relatively low compared to searching directly, buyers search until they settle

on optimal alternatives using a reservation strategy introduced by Weitzman (1979); Kohn

and Shavell (1974). With horizontal differentiation for each seller’s product, there is an

incentive for buyers to search more frequently on the platform for high-value low-priced

sellers and for the platform to attract a larger variety of sellers.

2 Brynjolfsson and Smith (2000) found that the variation across retailers selling books and CDs online
are significant, up to 30% of the average price. Baye et al. (2004) also found similarly large posted price
variation for consumer electronics in data obtained from a price search engine.
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The major contribution of the paper is to identify the coexistence of positive and negative

cross-group externalities due to the number of sellers subscribed, distinct from the linear

approximation of cross-group network externalities in the previous literature (Rochet and

Tirole, 2003, 2006; Armstrong, 2006; Weyl, 2010). Moreover, I show that whether positive or

negative externalities dominate depends on the distribution of buyers’ valuation for sellers.

One could interpret the distribution of buyer’s valuation as related to the price elasticity of

demand. Under some conditions when the negative externalities from attracting additional

sellers always outweigh the choice benefit, the platform gains more profits targeting sellers

with lower marginal costs.

Another economic insight the paper offers, is the impact of lowering search costs on social

welfare. The search platform can promote efficiency in two ways. The first, which is

standard, is the lower costs of search for buyers to find satisfying deals. The second is that

when the search platform acts as a gatekeeper who restricts the set of sellers available on the

platform to those with low marginal costs, the surpluses from trades increase as demands

accrue to the firms with low production costs.

2.2. Literature Review

This paper studies the network externalities and pricing theory for a buyer-seller search

platform. As such it relates to three strands of literature: price theory of multi-sided

platforms, the theory of search and the ensuing price dispersion.

1. Pricing theory of multi-sided platform.

The model of search platforms belongs to a recent strand of two-sided markets with inter-

mediaries, pioneered by Rochet and Tirole (2003, 2006); Armstrong (2006); Caillaud and

Jullien (2003); Weyl (2010). Assuming a linear approximation of network externalities and

exogenous valuation over the other side, Rochet and Tirole (2003, 2006); Armstrong (2006)

derived a cross-subsidy pricing structure for platforms to attract as many users as possi-

ble and internalize the cross-group network effects. Weyl (2010) relaxed the assumptions
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of Rochet and Tirole (2006) and introduced a model of linear externalities but heteroge-

neous users. He derived platform’s imperfect internalization over heterogeneous agents in

two-sided markets. I study the coexistence of both positive and negative network effects:

buyers care about the variety of sellers; however, the price dispersion endogenized by the

size of the buyer-seller network on the platform can cause inefficient results of searching

and congestions. Gomes and Pavan (2016) studied a platform that match eyeballs with

advertisements, and intrinsic to the negative network effect in their paper is the negative

consumption externalities from eyeballs averse to too many ads. The paper closest to mine

is Wang and Wright (2016) which study a search platform with identical marginal cost

across all sellers. In this paper, the law of one price breaks down because of heterogenous

production costs.

2. Costly search and price dispersion.

This paper focuses on a particular type of platform that facilitates buyers’ search for best

products. While abundant papers have advanced the theory of price dispersion (Stigler,

1961; Reinganum, 1979), recent literature focuses on this topic in the context of e-commerce

and platforms where search cost is reduced (Bar-Isaac et al., 2012; Baye and Morgan, 2001;

Ellison and Ellison, 2009; Levin, 2011; Ellison and Wolitzky, 2012; Ellison and Ellison,

2018). Without the role of a platform, Bar-Isaac et al. (2012) studied the effect of reducing

search costs on product design and the ensuing price dispersion of firms. In Baye and

Morgan (2001), the platform can offer transparent information on low prices therefore the

cost of search is zero on the platform. Other papers focuses on platform’s techniques not

considered in this paper, such as search obfuscation (Ellison and Ellison, 2009), ordered

search engine. Rather I look into the pricing strategies of a platform and how the results

in pricing, price dispersion and efficiency differ from that of the benchmark case with no

intermediary. Finally, recent literature has drawn attention to a platform’s strategic play

of limiting choice to eliminate search friction, due to congestion and negative consumption

externalities in matching markets (Casadesus-Masanell and Ha laburda, 2014; Halaburda
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et al., 2017; Kanoria and Saban, 2017). Unlike them, this paper studies a buyer-seller search

platform where buyers have unit demand and sellers post prices, and negative consumption

externalities are negligible.

3. Search strategy for optimal alternative.

Starting with Stigler (1961); Weitzman (1979); Kohn and Shavell (1974); Rothschild (1978),

the theory of search has extended to a wide collection of problems such as sampling, switch

point, adaptive belief update etc. I model buyer-seller search as a Pandora model in Weitz-

man (1979), rather than to take at most n samples and then stop. Sequential search for

price quotes has been studied in Burdett and Judd (1983); Athey and Ellison (2011), es-

pecially when buyers can search more frequently and adaptively update their prior belief

about price distribution with low search cost. As an simplified extension, I consider the case

of non-adaptive beliefs endogenized by the price-setting firms subscribed to the platform.

2.3. Model

There is a continuum of buyers and sellers (firms) on each side with mass B and S. Each

firm j produces a horizontally differentiated product at a marginal cost of mj . For now I

assume the supply is unlimited. Suppose the marginal costs of all firms are i.i.d distributed

according to the cdf F with compact support [m,m] and pdf f . Each firm posts a sale price

for its product and can price discriminate by posting different prices for different transaction

channels.

A buyer visits each firm and decides whether or not to buy from the firm or keep looking.

Each buyer i has different values for products sold by different firms and the valuation vij

are i.i.d. distributed according to cdf G with compact support [v, v]3.

Consumer search. In the benchmark model without any intermediary, firms are ex ante

identical before buyers’ search and buyers share common belief over the value and price

3Bounded valuation is not necessary
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distribution of products sold in the marketplace. All participating buyers search sequentially

for firms and receive a price quote pj and value assessment vij each time she visits a firm

j, at a search cost of cD > 0. After each search she decides whether to proceed with search

or stop to trade with some firm she has visited so far. Assume there is no discounting on

values and consumers can perfectly recall prices they have observed as in opening Pandora’s

Box model in Weitzman (1979). If consumer i decides to purchase from firm j at a posted

price of pDj after k direct searches, she receives a utility of

vij − pDj − kcD,

i.e., the consumer surplus vij − pDj less the total search costs kcD.

A platform can facilitate search by lowering search cost to cD > cL > 0.4 A buyer i not

subscribed to the platform can reach any seller directly with search cost cD, regardless of

whether the seller is available on the platform or not (that is, sellers can multi-home). For

buyer i subscribed to the platform, each time after sampling firm j on the platform and

observing vij and the posted price pLj for transaction through the platform, and pDj for an

off-platform transaction, the consumer has to decide whether to switch to an offline purchase

and incurs a switching cost of wj . One can interpret wj as transportation costs that depends

on each individual seller. The flexibility of transactions with or without the platform reflects

the non-exclusiveness policy of the platform. If a subscribed buyer i searches k times on

the platform until she purchases from firm j, she enjoys a payoff,

Vb + vij −min{pLj , pDj + wj} − kcL − Pb,

where Vb is the fixed subscription benefit as in Weyl (2010), and Pb the membership fee set

by the platform. min{pLj , pDj + wj} is the transaction cost spent on firm j, and kcL is the

aggregate search costs on the platform.

4I do not assume cL = 0 since it is still reasonable to assume that consumers need to spend time and
some effort in investigating the quality and price of each products. For the case of cL = 0, refer to Baye and
Morgan (2001).
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Firms post prices. Any firm j not on the platform can still trade with any buyer who reach

them directly at the posted price pDj for off-line transactions. The firm’s profit from all off-

line transactions is (pDj −mj)X
D
j with XD

j being the total demand for off-line transactions.

On the other hand, any seller j available on the platform can accept transactions both on

and off the platform at different posted prices: pDj for off-line transactions and pLj for on-line

transaction. A seller j with numbers of transactions XD
j off the platform and XL

j on the

platform, enjoys a profit of

Vs + (pLj −mj)X
L
j + (pDj −mj)X

D
j − Ps,

where Vb is the fixed subscription benefit as in Weyl (2010) and Ps is the membership fee

charged by the platform if the firm decides to register.

Platform. A platform facilitates search but incurs costs for the convenience and service

it provides. Assume that C(b, s) is the fixed cost of lowering the search costs between a

measure of b buyers and s sellers subscribed on the platform. C(b, s) is non-decreasing in

b, s. Moreover assume that VbBL ≥ C(0, BL), VsSL ≥ C(SL, 0), i.e., the platform cannot

profit by attracting only one side of the market.

The profit of the platform with BL subscribed buyers and SL subscribed sellers is

π0 = PsSL + PbBL − C(BL, SL).

For now we only consider charging subscription fees on both sides.

The following assumption holds throughout.

Assumption 1. G is twice differentiable with pdf g, and 1−G(v)
g(v) is non-increasing.

Assumption 1 is a standard monotone hazard rate condition, which ensures that the equi-

librium prices posted by the firms are uniquely determined by a first-order condition.
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Below is the timing of the search game.

Timing

Step 1 The platform announces membership fees (Pb, Ps).

Step 2 Sellers and buyers simultaneously decide whether to join the platform. Firms sub-

scribed to the platform pay the subscription fee Ps in advance while for buyers the

membership fee is Pb.

Each firm j joining the platform posts price pLj for purchases on the platform and pDj

for transactions off the platform. Firms subscribed to the platform pay the subscrip-

tion fee Ps in advance.

Any firm j not on the platform posts one price pDj for transactions off the platform.

Step 3 Each buyer subscribed to the platform searches sequentially for the optimal deal.

During each search, after the posted prices pLj , p
D
j and switch cost wj of the firm j

visited are observed, the buyer has to decide whether to proceed with another search

or stop and purchase from some seller visited so far. The transaction with a seller can

happen either on or off the platform. If the trade occurs on the platform, the buyer

pays pLj to the firm, and pDj otherwise, in addition to the switch cost wj .

Consumers who search directly also conduct sequential search until they stop and

make purchases with some seller j at price pDj . While the switch from on-the-platform

to off-the-platform transactions are available to any subscribers of the platform, I

assume that the reverse isn’t true. In other words, non-subscribers can not switch to

transactions on the platform.

If a platform makes zero or negative profit whatever membership fees it adopts, then, we

assume that it does not operate in the first place. The solution concept is Bayesian Nash

Equilibrium and all sellers and buyers are risk neutral.
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Denote by tIj the virtual price spent on firm j through channel I, then,

tLj = min{pDj + wj , p
L
j },

for each seller j on the platform and tDj = pDj for those off the platform. Since posted

prices and switching costs of each individual firm are unobservable to buyers unless they

search, sellers are assumed ex ante homogenous before the search and buyers are assumed to

hold common beliefs F̃L over the virtual prices tLj on the platform, as in Wang and Wright

(2016). We consider the case where beliefs are unadaptive as buyers search on the platform.

Similarly, buyers who search directly also hold some common belief F̃D over posted pDj off

the platform before prices are observed.

The following lemma by Weitzman (1979) characterizes the optimal sequential searching

strategies of buyers: setting a reservation price as stopping rule.

Lemma 2.3.1 (Weitzman (1979)). Each buyer choose a value zI , if zI ≥ 0 consumers starts

searching via I (I = L if search on the platform, and I = D if search directly), and stop if

the surplus vij − tj from trading with firm j exceeds zI , and continue searching otherwise.

Moreover, zI satisfies,

cI =

∫ ∫
v≥t+zI

(v − t− zI)dG(v)dF̃I(t), I = L,D.

zI is the reservation price for sequential search via I = L,D .

I consider the symmetric Bayesian Nash Equilibrium where agents of the same type adopt

the same strategies on pricing, search and entry. In this model, buyers share the same

searching strategies because of their common ex ante valuations of the product sold in each

firm and common belief over the price distribution on and off the platform. The focus is on

the seller side. After each search and inspection, the subscribed buyer i learns the value,

prices and switching cost of firm j, and decide to continue searching if vij − tj < zI or stop

and purchase from firm j.
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If the firm set prices (pLj , p
D
j ) respectively for transactions on and off the platform, its total

demand via the platform is,

XL(pLj , p
D
j ) =

BL
SL(1− ρL)

Pr(v ≥ tLj + zL), (2.1)

where BL is the measure of buyers searching on the platform, SL is the number of registered

sellers, i.e., her competing peers, on the platform. Here ρL = Pr(v − t < zL) denotes

the probability that the search on the platform terminates at each time period, i.e., with

probability 1− ρL a consumer stop searching after the current search. Notice that if pLj ≤

pDj + wj , all demands from the subscribed buyers are completed on the platform.

Similarly, the demand from unsubscribed buyers who search directly is

XD(pDj ) =
BD

SD(1− ρD)
Pr(v − pDj ≥ zD),

where BD are those who only search directly off the platform and ρD the probability of an

unsuccessful transaction from a direct search. Hence if firm j does not enter the platform,

its expected profit is

πd(p
D
j ;mj) = (pDj −mj)XD(pDj ).

If firm j decides to participate on the platform, his expected profit is

πL(pLj , p
D
j ;mj) =


(pLj −mj)XL(pDj , p

L
j ) + (pDj −mj)XD(pDj ) if pLj ≤ pDj + wj

(pDj −mj)XL(pDj , p
L
j ) + (pDj −mj)XD(pDj ) if pLj > pDj + wj

(2.2)

Then firm j is willing to join the platform if the benefit from subscribing exceeds that from

not, i.e.,

max
pD,pL

πL(pL, pD;mj) + Vs − Ps ≥ max
pD

πD(pD;mj). (2.3)
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For buyers, the expected benefit of searching on the platform is:

E[gain from the platform] =
∑
k

E[ gain from kth search]− Pb

=
∑
k

E[(v − t)1(v − t ≥ zL)](ρL)k−1 − cL

1− ρL
+ Vb − Pb

=

∫ ∫
v−t≥zL(v − t)dGdF̃L − cL

1− ρL
+ Vb − Pb

=

∫ ∫
v−t≥zL zLdGdF̃L

1− ρL
+ Vb − Pb

= zL + Vb − Pb

(2.4)

Similarly, the expected benefit of searching off the platform is zD. Hence a buyer is willing

to pay the membership fee and search on the platform if,

zL + Vb − Pb ≥ zD.

2.4. Equilibrium Targeting Strategy

The equilibrium of the search model is defined as follows.

Definition 6 (Search Equilibrium). For a buyer-seller search model with platform facili-

tating search, given (Ps, Pb) the membership fee announced by the platform, a search equi-

librium is (pL, pD, zL, zD), where pL : [m,m]→ R∪{∞} is a mapping from firms’ marginal

costs to its posted prices on the platform, and pD : [m,m] → R ∪ {∞} a mapping from

firm’s marginal costs to its posted prices off the platform,5 such that

(i) Each firm with marginal production cost m who is subscribed to the platform, posts

the optimal prices to maximize its aggregate profit from transaction on and off the

platform,

(pL(m), pD(m)) = arg max
p1,p2

πL(p1, p2;mj).

5pLj =∞ if firm j is not subscribed to the platform
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For those not subscribed to the platform, the optimal prices are selected to maximize

profit from direct search, i.e.,

pD(mj) = arg max
p
πD(p;mj),

(ii) Firm j joins the platform if

max
p1,p2

πL(p1, p2;mj) + Vs − Ps ≥ max
p
πD(p;mj).

(iii) Buyers join the platform if

zL + Vb − Pb ≥ zD.

and adopt the optimal stopping rule stated in Lemma 2.3.1

One incentive for buyers to search online is lower prices. The following result confirms that

on the buyer-seller search platform, prices charged are lower than prices through direct

search, thus eliminating the showroom issues in Wang and Wright (2016) where buyers

search for sellers on the platform but complete their transaction off the platform.

Lemma 2.4.1. In any search equilibrium when the platform operates, pL(m) ≤ pD(m), ∀m.

Based on the proof of Lemma 2.4.1, in any equilibrium when the platform operates, the

equilibrium prices pDj , p
L
j posted by firm j satisfy:

pDj = mj +
1−G(pDj + zD)

g(pDj + zD)
,

pLj = mj +
1−G(pLj + zL)

g(pLj + zL)
.

with demand from on the off the platform being:

XD(pDj ) =
BD

SD(1− ρD)
(1−G(pDj + zD)),
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XD(pLj , p
D
j ) =

BL
SL(1− ρL)

(1−G(pLj + zL)).

Therefore, the profits for firm j from transaction on or off the platform are respectively,

πL(pLj , p
D
j ;mj) =

(1−G(pLj + zL))2

g(p+ zL)

BL
SL(1− ρL)

+
(1−G(pDj + zD))2

g(p+ zD)

BD
S(1− ρD)

πD(pDj ;mj) =
(1−G(pDj + zD))2

g(p+ zD)

BD
S(1− ρD)

The incentive condition for firms’ entry thus depends on:

Bl
SL(1− ρL)

(1−G(pLj + zL))2

g(pLj + zL)
+ Vs ≥ Ps (2.5)

Since (1−G(p+z))2

g(p+z) is non-increasing in p, the lemma above yields an upper bound for posted

prices on the platform for given Vs, Ps. The equilibrium strategy profile exhibits the follow-

ing threshold structures in any search equilibrium.

Theorem 2.4.2 (Threshold Strategy). In any buyer-seller search equilibrium,

(i) the equilibrium prices for firms with marginal costs m is pL(m) = p(m, zL), pD(m) =

p(m, zD), where p(m, z) satisfies,

p(m, z) = m+
1−G(p(m, z) + z)

g(p(m, z) + z)

(ii) there exists mL, s.t., any firms with production cost m < mL join the platform while

those with higher production cost m > mL choose to stay off the platform. Moreover,

BL
SL(1− ρL)

(1−G(p(mL, zL) + zL))2

g(p(mL, zL) + zL)
+ Vs = Ps.

(iii) SL = S · F (mL)
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(iv) zL satisfies,

cL =
1

F (mL)

∫ mL

m

∫
v≥p(m,zL)+zL

(v − p− zL)dG(v)dF (m).

The success of the platform is determined by the amount of membership fees Ps, Pb charged

on both side, which in term are determined by the optimal threshold mL. By including more

sellers with high threshold mL, buyers enjoy positive externalities of the variety of choices

and higher values of trades vij in equilibrium. On the other hand, the price dispersion on

the platform can be detrimental for the success of the platform, as buyers have to search

extensively to find sellers with low prices pLj . Therefore, it is not obvious that the middleman

should attract all sellers to the platform in equilibrium.

The following theorem characterizes the platform’s optimal choice of thresholds mL by

limiting the set of sellers available on the platform.

Theorem 2.4.3. Suppose

(i) f(m) is non-increasing in m,

(ii) ∂C
∂s (BL, SL) ≥ Vs,

then the profit of the platform is a non-decreasing function of the threshold mL, i.e., ∂π0
∂mL

≤

0.

Condition (i) states that the density of sellers is a monotone function of its production

costs. In particular, more sellers are equipped with production technologies with lower

marginal costs. Condition (ii) implies that the cost of serving one more seller is at least

that of the subscription benefit the seller received after joining the platform. For example,

it can be satisfied if ∂C
∂s (b, s) = Vs. What is non-standard is that under the two conditions,

the middleman can profit more by targeting fewer sellers. In other words, the middleman

profits by acting as a gatekeeper that only attract the set of sellers with low marginal costs.
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2.5. Welfare Analysis

In this section, we study how limiting choice can affect the welfare of search under the

intermediary. Denote by WL(cL) the welfare from search and trade on the platform.

WL(cL) = E[welfare from the platform] =

∫ ∫
v−t≥zL v −mdGdF̃L

1− ρL
− cL

1− ρL

=

∫ ∫
v−t≥zL t−mdGdF̃L

1− ρL
+ zL

(2.6)

WL(cL) consists of the transaction surpluses, less the total search costs, a function of cL in

any search equilibrium. Denote by m∗L the optimal threshold selected by the platform such

that

m∗L = arg maxπ0(mL).

Then m∗L is a function of cL. The following theorem analyzes the social welfare results

under the intermediation of a search platform.

Theorem 2.5.1. Suppose that

∂m∗L
cL
≥ 0, (2.7)

then ∂WL

∂cL
≤ 0.

Inequality (2.7) states that the optimal threshold strategy m∗L is non-increasing in cL, that

is the lower the search cost a platform offers, the fewer firms it attracts to the platform

in its optimal strategy. Theorem 2.5.1 then implies the social welfare generated by the

middleman increases with lower search costs it provides to the buyer. The middleman can

promotes efficiency in two ways. The first, which is standard, is to lower the costs of search

on the platform. The second, which is less trivial, is to accrue demands from all buyers to

the subscribed sellers with low production costs. Therefore, the surpluses from transactions

increase as the middleman acts as a gatekeeper that restricts the set of available sellers to

those more efficient ones.
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2.6. Conclusion

This paper studies the search platform that facilitates search between buyers and sellers by

lowering search costs. The price dispersion is intrinsic to the platform’s threshold strategy

that by setting membership fees, limits the set of available firms subscribed to the platform.

Buyers can then search more efficiently with fewer searches and the price competition be-

tween those low-cost sellers is more fierce, which adds the benefit of lower prices to buyers

subscribed to the platform. Moreover, the search platform can also promote social welfare

by lowering buyers’ search costs and accrues demands to sellers with lower production costs.
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CHAPTER 3 : Intermediated Bargaining In Networks with a Matchmaker

3.1. Introduction

Many goods and services (real estate, automobiles, jobs, etc) are traded in decentralized

markets where traders search or wait for their counterparties and prices are determined via

bargaining. Trading opportunities are largely restricted by social relationships, geographic

dispersion, information opportunities, technical compatibilities, etc, which can generate

considerable search costs. Traders often rely on intermediaries (brokers) to reduce the

search costs. In the U.S. labor market for example, more than 90% of companies and 40%

of employees looking for their first job (or those reentering the job market) use staffing

agencies, generating annual revenues of $129.6 billion in 2014 according to the American

Staffing Association.

Matchmaking middlemen also offer their professional expertise in proposing high-quality

matches. Wine brokerage, a poorly known yet quite regulated activity, accounts for about

60% of bulk table and local wine transactions and for about 80% of the AOC exchanges in

France. Wine is not a standardized product. A wine broker will regularly visit growers he is

in contact with to taste and collect samples and once the sample fits the needs1 of the wine

buyer who hires him, the broker will bring together the grower and the buyer for negotiation.

A broker’s expertise is based on his specialization in a specific wine production area and on

knowledge of their customers. On average, a broker maintains more or less strong ties with

158 buyers and 49 growers, according to a survey conducted on Languedoc-Roussillon wine

brokers (Baritaux et al., 2006).

In other businesses, matchmaking middlemen such as talent agents intermediate most trans-

actions. In the U.S. in 2010, 664 out of 1728 NFL professional players were represented by

top 7 sports agents in the field. Moreover, the concentration of the matchmaking business

in those fields endows the matchmaking intermediaries with significant market power. For

1Such as quality, flavor and geographic regions. In France, depending on the region where they are
situated, wine buyers don’t have the same trade practices.
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example, the distribution of footballer representations are highly skewed between interme-

diaries. In five major European championships, half of over 2400 football players from the

main European leagues are managed by 83 agents or agencies and a quarter are represented

by just 24 of them (Poli and Rossi, 2012).

Common to the examples above is an intermediary whose business is to match buyers and

sellers who subsequently negotiate the price. Unlike intermediaries in other settings, these

• do not hold inventories or set transaction prices. They profit from facilitating a match

between buyers and sellers. The sale price is determined by negotiation between the

buyer and the seller.

• They do not act as marketmakers who set bid and ask prices at which traders can

buy and sell for their own account.

In contrast to the extensive literature on intermediated bargaining or trading models where

middlemen act as traders or marketmakers, there has been little discussion on the role

of a matchmaking middleman in a decentralized bargaining setting. This paper is, to my

knowledge, the first to introduce a finite model of matchmaking middleman in a buyer-seller

bargaining network after Yavaş (1994, 1992a,b), which discuss a one-buyer-one-seller search

model with a middleman facilitating search.

Given the prevalence of networks in modeling bilateral bargaining, I consider a bipartie

graph that determines which pairs of buyer and seller can bargain over the prices of het-

erogeneous goods. Each seller has a single unit of an indivisible good to trade and each

buyer has unit demand. Feasible trading opportunities are represented by links. Associ-

ated with each link is a probability that corresponds to the chances of that buyer-seller

pair finding each other without an intermediary. In each time period a feasible buyer-seller

pair is selected at random (referred to as being matched by nature) or they are matched

by a middleman to negotiate a deal. Among them, one trader is designated to make a

take-it-or-leave-it offer. If the offer is accepted, the pair exit the market with the share
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agreed, less commission fees paid to the middleman if matched by the middleman. If the

offer is rejected, the pair remain in the market for the next period without any payments

to anyone including the middleman. Moreover, a feasible buyer-seller pair can always walk

away from the middlemen’s match, and wait for trading opportunities to arrive at random.

Before the start of the next time period, the exiting pair are replaced by their clones at

the exact same positions of the network or they are never replaced in the following periods.

The two extremes are referred to as the with-replacement assumption (Manea, 2011) and

no-replacement assumption (Abreu and Manea, 2012a,b) in prior literature. This paper

generalizes both cases by allowing exiting players to be replaced by clones with positive

probability.

As is well known from prior work, bargaining outcomes largely depend on network structure

and the matching process associated with it: how many suppliers with higher quality ma-

terials are accessible to the buyer, how often an impatient landlord receive a purchase offer,

etc. In my setting with a strategic matchmaking middleman, the following questions arise:

which pairs will the middleman select and what is the impact on the surplus of buyers and

sellers; how would intermediation in network affect the efficiency of bargaining outcomes?

To answer these, one must understand what commission fees the middleman posts to both

sides and what matching processes the middleman selects under the chosen commission.

Similar to the two-sided platform literature (Rochet and Tirole, 2003, 2006; Armstrong,

2006), which side should pay and how much should be paid to the middleman determine

the middlemen’s success. The mainbody of the paper assumes that the middleman has

the freedom to charge a percentage of the transaction price on both sides. That is, both

buyer and seller pay a percentage of the sale price. In labor markets, headhunters are paid a

percentage of employee’s salary by the employer (buyers) and job seekers (sellers) get access

to the recruiters’ services free of charge. In real estate, depending on whom the brokers

represent, a percentage of the sale price is paid mostly by the sellers but sometimes by

buyers if they sign a buyer broker agreement containing clauses that will compensate the
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brokerage for the fee it is due less the amount paid by the seller. In the professional sports,

payment rules to the intermediaries vary a lot (Brocard et al., 2016). For example, the

players associations in the North-American closed sport leagues have introduced Collective

Bargarining Agreements that prohibit payments from clubs to sport agents (Shropshire

et al., 2016). Thus, sport agents are paid by their principals - the players in the North

American professional leagues, such as NBA and NFL. On the other hand, a study by

the European Commission in 2009 shows that the existing mechanisms for sports agents

are fairly heterogeneous (agents paid by the player, agents paid by the club, or a mixed

commission payment)2. To sum up, a commission appears to be the most popular scheme

employed by an intermediary and it can take one of two forms.

1. “α+ β” commission fees: Charge α of the sales price to the seller and β to the buyer

for each successful transaction, denoted by “α+ β”. This includes α = 0, or β = 0 as

a special case.

2. “α or β” commission fees: Whoever makes an offer that is accepted, pays the mid-

dleman’s commission. If the seller, the commission is α of the price, if the buyer it is

β of the price.

The “α+β” pricing where middleman charges on one or both sides of the market regardless

of who makes the accepted offers are more commonly seen in pratice compared to “α or β”.

This paper focuses on the discussion of “α + β”, and compares the two pricing models at

the end.

The other critical design problem for the intermediary is which buyer-seller pairs to match.

I assume that buyer-seller links are given and not created by the intermediary. Rather, by

selecting which pair of buyers and sellers to match, a middleman can determine how quickly

or often a buyer (seller) can meet specific counter-parties. Prior work assumes exogenously

specified matching probabilities(Abreu and Manea, 2012a), or endogenously determined by

2 ”Study on sports agents in the European Union”. A study commissioned by the European Commission
(Directorate-General for Education and Culture), November 2009.
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the mass of traders of the same type (Diamond and Maskin, 1979; Gale, 1987; Nöldeke and

Tröger, 2009). In this paper, agents can choose between an exogenously specified matching

process (nature) or matches determined by an intermediary.

The analysis of bargaining games under intermediation relies on Markov Perfect Equilibria

(MPEs) introduced by Fudenberg and Tirole (1991); Maskin and Tirole (2001), where the

strategy profile is a function of the Markov states of the game. The state in this model is

the network structure, along with the selection of a link and a proposer, and in my context,

the commission. Despite a multiplicity of MPEs under commission rates α, β, this paper

characterizes the unique MPE revenue of a monopoly matchmaking middleman with the

optimal choice of commission.

The first economic insight the paper offers is how a middlemen affects the efficiency through

redistributing the trading opportunities across agents. The efficiency of trade is the total

discounted sum of surpluses. If vbs is buyer b’s value for seller s’s good and cs the oppor-

tunity cost of s, the surplus from trade will be vbs − cs. In the benchmark case without

middlemen, efficiency is compromised by adverse selection and trading delays (Abreu and

Manea, 2012a,b). In my model the presence of a middleman reduces trading delays relative

to nature. Moreover, when exiting players are replaced with clones, the middleman always

selects the links with the highest surplus in any equilibrium without the competition from

nature. This fails to be true when the middleman competes with nature.

Relative to a middleman focused on maximizing efficiency, the profit-maximizing middle-

man distorts trades in two ways under the no-replacement setting. The first is to restrict

trading opportunities by never selecting feasible buyer-seller pairs whose “value-to-cost”

ratio vbs
cs

is too small. The second, is among the feasible pairs with sufficiently large vbs
cs

,

favoring those buyer-seller pairs whose vbs is large. Thus, the profit-maximizing middleman

does not necessarily favor pairs for which the gains from trade, vbs − cs, are large. The

intermediation inefficiency stems from imperfect price discrimination of the matchmaking

middleman. Under the with-replacement assumption, the monopoly middleman can per-
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fectly price discriminate by calculating the efficient links and the commission rates α, β

accordingly in order to extract all the surpluses from trade, and she is able to do so be-

cause the equilibria are stationary and the network structure remains unchanged forever.

Under the no-replacement assumption however, the middleman matches sequentially until

the market clears and charges the same percentages of sales prices to all matched pairs.

Because of her lack of ability to perfectly price discriminate, the middleman cannot extract

all surpluses from trade and can deviate from inefficient matchings to the profit-maximizing

ones.

The interplay between efficiency, matching and competition with nature is novel to the

literature on intermediation in networks. Blume et al. (2009) show the efficiency of in-

termediaries that announce bid prices for sellers and ask prices for buyers simultaneously.

Choi et al. (2017) prove the existence of efficient equilibria in a network where all nodes

along the path of intermediaries post prices simultaneously, in addition to showing exam-

ples of inefficient equilibria where trade does not occur. Polanski (2007) studies a model

in which a maximum number of pairs of connected players are selected to bargain every

period. As a consequence, efficiency is not an issue in Polanski’s model and in equilibria,

all matched pairs reach agreement immediately. In another recent paper on intermediation

in networks, Manea (2015) characterizes the intermediation inefficiency that stems from

hold-ups created by competition between layers and paths of the network where middlemen

form chains of traders. Unlike them, intrinsic to the inefficiency results of my model is the

matching technology endogenized by the profit-maximizing middleman and the imperfect

price discrimination toward the commission the middleman must commit to for all trades

before bargaining starts.

This paper also characterizes the impact of intermediation on players’ surpluses from trade.

Under the “α + β” pricing, assuming that traders have no outside options but to search

and trade through the middleman, the expected surplus of all buyers is zero in all networks.

Thus, all of the gains of trade accrue to either the middleman and the sellers. This is
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true even if supply exceeds demand or if buyers are more patient than sellers. Under the

“α or β” pricing, depending on the underlying network structures, buyers can enjoy positive

gains from intermediated bargaining.

3.1.1. Literature Reviews

My work builds on the intersection between bargaining models (Rubinstein and Wolinsky,

1985; Gale, 1987; Binmore and Herrero, 1988; Abreu and Manea, 2012b; Manea, 2015) and

two-sided marketplaces with intermediaries (Rochet and Tirole, 2003, 2006). It differs from

prior work in the following ways.

1. Matchmaking middlemen

The literature on decentralized trade in networks has focused on the exchange of goods

without intermediation (Abreu and Manea, 2012a,b; Manea, 2011; Corominas-Bosch, 2004;

Kranton and Minehart, 2001; Polanski, 2007). In particular, the two-sided versions of

Abreu and Manea (2012a,b); Manea (2011) are special cases of my paper under the with-

replacement and no-placement assumption.

Moreover, most of the literature on intermediation in networks investigates intermediaries

as traders or resellers in the network consisting of paths where sellers are linked to buyers

directly, or indirectly via a chain of intermediaries (Manea, 2015; Kotowski and Leister,

2018; Manea, 2017a, 2015; Choi et al., 2017; Nguyen et al., 2016).

Brocard et al. (2016) study a sports agent facilitating the negotiation between a buyer (club)

and a seller (professional athelete) with fixed bargaining payoffs, whereas in my setting, the

middleman can facilitate searches across a network of buyers and sellers and the outcomes

of bargaining are endogenized by matching and competition with nature.

2. Matching technologies

Abreu and Manea (2012a,b) assume exogenously specified matching probabilities pij(G
′) for
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any subnetwork G′ ⊆ G with full support. In particular, the two-sided versions of Abreu

and Manea (2012a,b) are special cases of this paper when the middleman is entitled with

zero influence over the matching. Shimer and Smith (2000); Manea (2017b); Nöldeke and

Tröger (2009); Diamond and Maskin (1979); Gale (1987) assume the probability of player i

meeting a type j is given by the proportion of traders j in the market. In non-cooperative

group bargaining models, Nguyen (2015) assumes that the probability of a coalition S being

selected at random with i being the proposer is Pr(S, i) = αi · P (S).

Abreu and Manea (2012a) also introduces an alternative matching technology where each

individual is endowed with a bargaining opportunity and then proceed to contact a partner

to negotiate over a deal. In reality, the set of neighbors visible to each trader subject to

manipulation by the middleman (such as eBay, headhunters, wine brokers), which is closer

to the setting discussed in this paper.

3. Steady state and new entry

As shown in the paper, the efficiency results are profoundly different under the with-

replacement and the no-replacement assumptions. The replacement assumption is ubiq-

uitous in matching and bargaining models to main the steady states of the network struc-

ture (Rubinstein and Wolinsky, 1985; Diamond and Maskin, 1979; Shimer and Smith,

2000; Duffie et al., 2005; Atakan, 2006; Satterthwaite and Shneyerov, 2007; Manea, 2011;

Lauermann, 2013; Lauermann and Nöldeke, 2015). Among those, some assume players are

repalced by clones at the exact same position of networks (Manea, 2011), while some assume

an inflow of new players with costly entry (Manea, 2017b), or costless entry and the prob-

ability of being matched with counterparties is proportional to the size of her peers with

the same type (Shimer and Smith, 2000). Abreu and Manea (2012a) study the bargaining

networked game under the no-replacement assumption.

4. Heterogenous goods.

Prior worksAbreu and Manea (2012a,b); Manea (2011); Corominas-Bosch (2004) study the

56



exchange of goods with unit surplus and focus on the impact of network structure on the

efficiency of bargaining (the maximum cardinality of matchings in the network) as agents

become patient. The distinguishing feature of this paper is the endogenous matching tech-

nology and distorted equilibrium matchings selected by the profit-maximizing middleman

who favors trades with higher values.

3.2. Model

3.2.1. Setup

Let B denote the set of buyers and S the set of sellers. Each seller s has a single unit of

indivisible good for sale, with opportunity cost cs ≥ 0. Each buyer b has unit demand and

her value for the good sold by seller s is vbs. If buyer b pays a price p to seller s, the payoffs

are vbs − p for the buyer and p− cs for the seller.

Buyers and sellers are linked by a network G0 = (V,E) with the set of vertices V ⊆ B ∪ S

and the set of edges (or links) E ⊆ {(b, s)|b ∈ B, s ∈ S} such that (b, s) ∈ E whenever

(s, b) ∈ E. A link (b, s) is interpreted as the feasible pair for trade. A network G′ = (V ′, E′)

is induced by V ′ if E′ = E ∩ (V ′ × V ′). We write G	 V ′′ for the subnetwork of G induced

by the vertices V \ V ′′.

Exogenous matching technologies in the benchmark. In the benchmark case, every

network has an associated probability distribution over links (pij(G)), ∀(i, j) ∈ E. Given G,

pij(G) is the probability that player i in the network G meets with one of her neighboring

traders j and propose a division over the surplus vij − cj (if i is a buyer, or vji − ci if i is a

seller) to j. The random matching technologies can be arbitrary, for example, the uniform

distribution over all links pij(G) = 1
2|E| .

Matching process with middleman. A long-lived middleman can match buyers

and sellers that would otherwise have difficulty finding each other. Consider the following

dynamic matching process. Each period t = 1, 2, . . ., with probability λ, the middleman
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selects a buyer-seller pair from the current network Gt at time t and assigns one of them to

make a take-it-or-leave-it offer to the other trader; with probability 1−λ, a buyer-seller pair

is selected at random according {pij(Gt)}ij∈Et . λ can be interpreted the market power of a

middleman: λ of matching and bargaining opportunities are brought by the matchmaking

middleman while 1 − λ of them are by chance. λ = 0 corresponds to the the benchmark

case without the middleman in prior literature.

Commission fees. Both the buyer and the seller matched by the middleman pay a per-

centage of the sale price to the middleman upon reaching an agreement. α is the commission

rate on the seller side and β on the buyer side, announced before any bargaining game starts.

Moreover, no one gains from no trade, including the middleman.

Replacement assumption. In prior work, two polar cases are studied: either exiting

players are replaced by clones at the exact same positions of the network, or they exit

the market without any replacement. This paper makes the following extension: with

probability 0 ≤ γ ≤ 1 the exiting pair who have reached an agreement are replaced at the

end of this period, by a new pair at the same positions in the network. Otherwise, they

are never replaced by any clones in the following periods. Abreu and Manea (2012b) is a

special case of γ = 0 and Manea (2011) a special case of γ = 1.

Assume all sellers share a common discount factor 0 < δs < 1, while all buyers share a

common 0 < δb < 1. The middleman’s discount factor is 0 < δM < 1.

3.2.2. Timing

We consider the following infinite horizon bargaining game generated by the network and

the middleman’s choice of commission and matchings. Denote this pricing model by “α+β”

commission.

Stage 1 At time t = 0, the middleman announces a non-discriminating percentage commis-

sion rates α, β ≥ 0.
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Stage 2 At time t = 1, 2, . . ., if no feasible pairs exist, the game ends. Otherwise,

(i) Matching a buyer-seller pair: With probability λ, the middleman selects a feasi-

ble pair b, s and assigns one of them to make a take-it-or-leave-it offer. Otherwise,

a single link is selected at random according to {pij(Gt)}ij∈Et .

(ii) Bargaining: The matched pair (b, s) meet, with one of them proposing to the

other player (the responder) specifying a transfer (or price) p. If the offer is

accepted, they trade and exit the game with buyer’s payoff being vbs − (1 + β)p

and the seller’s being (1−α)p− cs if matched by the middleman. If matched by

nature, buyer b gets vbs − p and the seller p− cs.

(iii) When the pair exit the market with an agreement, with probability γ they are

replaced by clones at the same positions in the network and there are no clones

otherwise. If the offer is rejected, the matched pair dissolves and the two traders

return in the next period.

Under the “α+β” commission pricing, the middleman commits to non-discriminating com-

mission rates α, β on both sides. This includes special cases where the commission rate on

one side is set to 0: eBay charges a 3% of sale prices on seller side and 0% on buyer side; the

real estate broker mostly charges a 6.5% of the sale prices on seller side and 0% on buyer

side. For headhunters, regardless of who makes the take-it-or-leave-it offer, the commission

fee is always charged on the buyer side (the employers).

3.2.3. Markov Perfect Equilibrium

There are three types of histories for any t ≥ 2. Denote by ht a complete history of the

game up to (not including) time t, which includes: the choice of commission α and β, a

sequence of t− 1 pairs of proposers and responders in G with corresponding proposals and
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responses, payment to the middleman if applicable and whether the pair exiting the market

are replaced with clones. The history ht uniquely determines the set of buyers and sellers

V (ht) still present at time t. Denote by G(ht) the subnetwork of G0 induced by V (ht).

Let H be the set of any possible complete histories and G the set of subnetworks of G0

induced by any complete histories, i.e., G = ∪h∈H G(h). The history (ht;1M ) denotes the

history ht followed by the identity of the matching maker ( 1M = 1 if it is the middleman’s

turn to select the pair at time t and 0 otherwise). The history (ht;1M ; i → j) consists of

ht followed by nature or the middleman selecting i to propose to j, and (ht;1M ; i → j;x)

includes additionally the proposed transfer x ∈ R made by i to j.

The equilibrium analysis is restricted to Markov Perfect Equilibria (MPEs) in Stage 2. A

strategy σi for player i specifies, for all histories (ht;1M ; i→ j) the offer σi(ht;1M ; i→ j) i

makes to j conditional on the history (ht;1M ; i→ j), and the response σi(ht;1M ; j → i;x)

that i gives to j conditional on (ht;1M ; i→ j) and the offer x proposed by j. A matching

strategy σM for the middleman specifies the pair to select for bargaining given the histories

(ht;1M = 1). A Markov strategy is defined on the payoff relevant Markov states: the

subnetwork of players who did not reach agreement by that time, and announced commission

α, β, the matchmaker’s identity (nature or the middleman), the selection of a link and

the proposer as well as the offer made by the proposer. In particular, for all complete

histories ht, and (i, j) ∈ E(ht), σi(ht;1M ; i → j) only depends on the network G(ht), the

identity of the proposer i and responder j, and the identity of the matchmaker 1M , and i’s

response σi(ht;1M ; j → i;x) depends additionally on the offer x made by the proposer j. A

Markov perfect equilibrium (MPE) is a subgame perfect equilibrium in stationary Markov

strategies3. We first establish the existence of MPEs.

Denote by Γα+β(G) the Stage 2 bargaining and matching games under the choice of “α+β”

commission.

Theorem 3.2.1. For any α, β ≥ 0, there exists a Markov perfect equilibrium for both the

3For t, t′ = 1, 2, . . . , N , σi|ht = σi|h′
t′

if G(ht) = G(h′t′).
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bargaining and matching game Γα+β(G).

Since the two-sided version of Abreu and Manea (2012b) can be seen as a special case of

mine when λ = 0, MPE payoffs might not be unique and can be sensitive to the network

structure, the discount factors etc. The following proposition however, characterizes the

uniqueness of buyers’ payoffs under certain conditions.

Proposition 3.2.2. For any α+ β > 0, if

(1− λ)pbs(G) = 0,∀G ⊆ G0,

then the expected payoff of any buyer b is zero in any MPEs of Γα+β(G). In particular, if

one of the following two conditions is satisfied,

1. λ = 1, that is middleman M is the monopoly matchmaker;

2. pbs(G) = 0 for any buyers in any subnetwork of G0.

buyers gain zero surplus in any MPEs.

Proposition 3.2.2 describes a scenario when all surpluses from trades accrue to either the

middleman and the sellers: if buyers have no bargaining power under nature, neither would

they under the perfect intermediation by the middleman. This is true even if the buyers are

sufficiently patient with δb approximating 1 or buyers are on the short side of the market.

What underlies the result is the difference between prices proposed by buyers and sellers:

the ask-prices proposed by the sellers are often higher than the purchase-prices offered by

the buyers. Therefore, the middleman treats buyer and seller asymmetrically when deciding

on assigning which side to make a take-it-or-leave-it offer. Before jumping to the proof of

Proposition 3.2.2, we first present a description of the MPE strategy profile under λ = 1,

in particular the equilibrium transfers proposed by both sides.

Lemma 3.2.3. Given the network G, in any subgames with the initial network G, there

exist ub, us ≥ 0,∀b, s ∈ G, s.t. the MPE strategy profile is in the form of the following:
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• Buyer b offers a bid-price p = min{ cs+δsus1−α , vbs−δbub1+β } whenever chosen by the middle-

man to propose to seller s.

• Seller s proposes an ask-price p = max{ cs+δsus1−α , vbs−δbub1+β } whenever chosen by the

middleman to propose to buyer b.

• When buyer b responds to the offer p from seller s: she accepts any ask-price p <

vbs−δbub
1+β , rejects any p > vbs−δbub

1+β , and is indifferent between accepting and rejecting a

price of p = vbs−δbub
1+β .

• Similarly, when seller s responds to the purchase offer p from buyer b: he accepts any

offer s.t., p > cs+δsus
1−α , rejects any p < cs+δsus

1−α , and is indifferent between accepting

and rejecting an offer p = cs+δsus
1−α .

Following Lemma 3.2.3, it is straight forward to notice that within any buyer-seller pair

(b, s), the ask-price proposed by seller s is at least the amount offered by buyer b, even

if there is less demand than supply or sellers are much more anxious to close the trade.

Moreover, no matter who is assigned as the proposer, the necessary condition for trade

between buyer b and seller s to occur is the same:

vbs − δbub ≥
1 + β

1− α
(cs + δsus), (3.1)

i.e., the value vbs is sufficiently large. Here ub, us are the expected payoffs for buyer and

seller given the network. Therefore, within any pair that can potentially reach an agreement,

assigning the seller to be the proposer generates at least the same profit to the middleman

as choosing the buyer side. Proposition 3.2.2 implies buyers gain no additional bargaining

power from the intermediary except that some of them might be selected to bargain more

often with the middleman than without. Still, their payoffs are 0 as any positive gains from

bilateral bargaining result from the ability to make a take-it-or-leave-it offer.4

4 If a trader can only respond to a offer but is unable to make one, any equilibrium offer indifferent
between accepting and rejecting it, will eventually amount to 0 when the discount factor is strictly positive.
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3.3. Inefficiency of MPEs

This section focuses on the optimal choice of α, β at time 0 and the resulting equilibrium

matching and bargaining outcomes. Moreover, what is the impact of intermediation by a

profit-maximizing middleman on the social welfare especially when the middleman acts as

a matchmaker ?

Eficiency is defined as the optimal matching created by a welfare-maximizing central planner

who in each time period, selects the pair that maximizes the expected total discounted sum

of surpluses from trades with some discount factor δ > 0. If γ = 0 where exiting players

are never replaced by clones, the set of efficient matchings in the bargaining game is any

maximum weight matching on the entire network G0, with the weight of each link being the

transaction surplus vbs − cs (Abreu and Manea, 2012a,b; Polanski, 2007). Assuming γ = 1,

the MPEs are stationary and the efficiency of the intermediated bargaining game is defined

as the selection of efficient links with highest surplus vbs − cs (Manea, 2011).

Theorem 3.3.1. Suppose λ = 1.

1. If γ = 0 (no-replacement assumption),

• The highest possible revenue the middleman can achieve is,

max
α,β

α+ β

1 + β
Π(Gα,β),

where Gα,β = (V,Eα,β) is the subnetwork of G0 with Eα,β = {(b, s) : vbs ≥
1+β
1−αcs}. Π(Gα,β) is the maximum total discounted sum of buyers’ values vbs of

any feasible matchings in network Gα,β.

• For any ε > 0, the middleman can choose α∗, β∗ at time 0, s.t., her revenue is

at least ε-close to the maximum possible revenue the middleman could possibly

attain, i.e.,

πα
∗+β∗(G0) ≥ max

α,β

α+ β

1 + β
Π(Gα,β)− ε.
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The middleman’s matching outcomes are the maximum weight bipartite matching

of Gα,β with weight of each link being vbs rather than vbs − cs.

2. If γ = 1 (with-replacement assumption), then for any ε > 0, the middleman can choose

α∗, β∗ at time 0, s.t., her revenue in any MPEs of Stage 2 satisfies

πα
∗+β∗(G0) ≥ max

b,s
(vbs − cs)− ε,

with the optimal matched pairs always being the most efficient links (the highest vbs−

cs). The optimal choice of α∗, β∗ satisfies vbs − cs = α+β
1+β vbs where (b, s) is the most

efficient link.

Moreover, there are no trading delays along the equilibrium paths in both scenarios.

Under the with-replacement assumption, Theorem 3.3.1 shows that for the optimal choice

of α∗, β∗, middleman promotes efficiency by selecting links with the highest surplus. This

efficiency result holds for any δM , δb, δs ∈ (0, 1), a sharp constrast to the prior work (Abreu

and Manea, 2012a,b) where efficiency of MPEs is either unattainable, or can be attained by

a modification of punishment regimes adopted by the traders. What drives the efficiency

result under the with-replacement assumption is perfect price discrimination. In the sta-

tionary world where only efficient links matters rather than the entire network structures,

the middleman can always select links with the highest surplus under the “customized”

commission rates α, β such that trade always occurs and the surplus from trade can be fully

extracted by the middleman.

When γ = 0, the middleman distorts trade in two ways. First, the middleman only targets

matchings on a subnetwork with higher “value-over-cost” ratio vbs
cs

. vbs ≥ 1+β
1−αcs is implied

by Inequality (3.1): for trades to occur under intermediation, the ratio must be high enough

for both sides to afford the two-sided “tariffs” posed by the middleman. Unlike the station-

ary network structures under the with-replacement assumption γ = 0, the network evolves

and the value of matchings feasible under the commission rates determines the success of
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the middleman. If matching pairs with large surplus vbs − cs yet small ratio vbs
cs

(this is

possible when the production cost cs is also large), for the efficient trade to be feasible

under intermediation, the commission rates must be restrained from setting too high. As

α, β are uniform for all trades, the middleman can potentially generate less revenue from

matching pairs with lower surplus vbs − cs but high ratio vbs
cs

than she could have earned

by setting higher commission rates α, β. Sometimes targeting fewer feasible pairs under

higher commission rates can be more profitable than enabling more trades (including the

more efficient ones) to occur under a low commission (see Example 3.3.2). What underlies

targeting a subnetwork is the inability to perfectly extract all surplus from trades. Example

3.3.2 illustrates the targeting strategy in a two-buyer-two-seller network where in equilib-

rium, only one link is selected with all of its surplus extracted by the profit-maximizing

middleman. Secondly, the middleman selects the matchings on the subnetwork with high

buyers’ values vbs rather than the transaction surplus vbs − cs. This is implicitly derived

from the fact that in MPEs with a monopoly matchmaker, the transfer of each trade is

proportional to the value vbs. Therefore among all feasible trades under intermediation,

the middleman favors those with higher transfers, i.e., higher values vbs. The ε error in the

statement of Theorem 3.3.1 is due to the fact that, by sacrificing a small ε in revenue, the

middleman can avoid any possible trading delays where the responder is indifferent between

accepting and rejecting an offer.

The following two examples illustrate how distorted matchings can deviate from the efficient

ones when matching pairs with higher values vbs in Example 3.3.1 and when restricting

trades in Example 3.3.2.

Example 3.3.1 (Ineffiency induced by middleman). Consider the bargaining game with

λ = 1, γ = 0 in the following two-buyer-three-seller network. The values associated with

each link are vb1s1 = 5, vb1s2 = 6, vb2s2 = 7, vb2s3 = 15. Sellers’ productions costs are

respectively cs1 = 3, cs2 = 5, cs3 = 12.5.
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s1

3

s2

5

s3

12.5

b1 b2

6 7 155

There are 3 candidates 6
5 ,

7
5 ,

5
3 for setting 1+β

1−α . For any subnetwork with {(b, s) : vbs ≥
6
5cs} = E, α+β

1+β Π(G) = 1
6(6 + 15) = 3.5. With {(b, s) : vbs ≥ 7

5cs} = {(b1, s1), (b2, s2)}, the

surplus from its maximum weight matching is α+β
1+β Π(G) = 2

7(5 + 7) ≈ 3.4. Among {(b, s) :

vbs ≥ 5
3cs} = {(b1, s1)}, the surplus from its maximum weight matching is α+β

1+β Π(G) =

2
5(5) ≈ 2. In any profit-maximizing equilibrium outcome, (b1, s2), (b2, s3) are matched by

the middleman. However, the most efficient matching is (b1, s1), (b2, s3).

Example 3.3.2 (Ineffiency induced by middleman). Consider the bargaining game with

λ = 1, γ = 0 in the following two-buyer-two-seller network. The values associated with each

link is vb1s1 = 3, vb1s2 = 7, vb2s2 = 5. Sellers’ productions costs are respectively cs1 = 0, cs2 =

3.

s1

0

s2

3

b1 b2

7 53

There are three threshold 5
3 ,

7
3 ,∞( or α = 1). For any subnetwork with {(b, s) : vbs ≥

5
3cs} = E, α+β

1+β Π(G) = 2
5(3 + 5) = 3.2. If however {(b, s) : vbs ≥ 7

3cs} = {(b1, s1), (b2, s2)},

and the maximum surplus extract by the middleman is α+β
1+β Π(G) = 4

7(7) = 4. If setting

α = 1, the maximum surplus extract from (b1, s1) is 3. In any profit-maximizing equilibrium

outcome, (b1, s2) is matched by the middleman. However, the most efficient matching is

(b1, s1), (b2, s2). In this case, there is a tradeoff between low commission rates α, β and high

total sum of values vbs. While the aggregate buyers’ valuation of the matching (b1, s1), (b2, s2)
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is larger than that of (b1, s2), for trades in the former to occur, the middleman must commit

to lower commission rates that those necessary for trade to occur in the latter. Moreover,

setting lower commission rates does not necessarily yields higher revenue for the middleman.

Examples 3.3.1 and 3.3.2 illustrate two sources of mismatch a monopoly matchmaking mid-

dleman can introduce by intermediation under the no-replacement assumption. In contrast,

under the with-replacement assumption, a link with the highest surplus vbs− cs in the net-

work is always selected by the monopoly middleman in each time period. However, this no

longer holds when the middleman competes with nature when 0 < λ < 1. The following

example illustrates an alternative distortion the middleman introduces to matchings on a

star network when competing with nature.

Example 3.3.3 (Star-n Network). Consider a one-buyer-n-selller network. Each seller

s’s production cost is cs and buyer b values the product sold by seller s at vbs ≥ cs > 0,

with at least one pair generating positive surplus. Suppose pbs = 0,∀s, i.e., under nature

the seller proposes to the middleman and the probability of seller s meeting with buyer b is

psb. Assuming γ = 1, that is any exiting players are replaced with clones. The middleman

announces the commission rates α, β to be charged on both sides.

In the following, we will show that, the optimal choice of α, β and the stationary matching

strategy adopted by the middleman in the MPE is to select the pair (b, s∗) such that,

s∗ = arg max
1− δs

1− δs + (1− λ)δspsb
(vbs − cs).

The middleman’s profit-maximization problem is to solve:

πM (G) = λmax{max
b,s

qbs
α+ β

1− α
(δsus + cs),max

b,s
qsb
α+ β

1 + β
(vbs − δbub)}

= λmax
b,s

qsb
α+ β

1 + β
(vbs − δbub),

where qbs is the probability of buyer b and seller s reaching an agreement under the inter-

mediaton. Let wbs be the probability of matching s and b and assigning b to be the proposer
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by the middleman. For each pair of (b, s), if vbs − 1+β
1−α(δsus + cs) > δbub, the difference ∆

between selecting b proposing to s (b→ s) and selecting s→ b is,

∆ =qbs[
α+ β

1− α
(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G)

− qsb[
α+ β

1 + β
(vbs − δbub) + (1− γ)δMπM (G	 {b, s})]−

(
qsbγ + 1− qsb

)
δMπM (G)

=
α+ β

1− α
(δsus + cs)−

α+ β

1 + β
(vbs − δbub)

<0

Hence wbs = 0. If vbs− 1+β
1−α(δsus+cs) < δbub, no trades are feasible thus qbs = 0. Therefore,

in all cases we have

wbsqbs(vbs − δbub −
1 + β

1− α
(δsus + cs)) = 0.

It can be calculated that buyers’ and sellers’ equilibrium payoffs ub, us and the middleman’s

revenue satisfy:

(
1− δb

)
ub =

∑
s

λwbsqbs(vbs − δbub −
1 + β

1− α
(δsus + cs))

+
∑
s

(1− λ)pbs max(vbs − δbub − (δsus + cs), 0)

=(1− λ)
∑
s

pbs max(vbs − δbub − (δsus + cs), 0)

=0,

(
1− δs

)
us =λ

∑
b

wsbqsb(
1− α
1 + β

(vbs − δbub)− cs − δsus)

+
∑
b

(1− λ)psb max(vbs − δbub − cs − δsus, 0),

πM (G) =λmax
b,s

α+ β

1 + β
(vbs − δbub) = λmax

b,s

α+ β

1 + β
vbs.
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Moreover, for any s such that wsb = 0,

us =
(1− λ)psb(vbs − cs − δbub)+

1− δs + (1− λ)psbδs
.

For s s.t. wsb > 0,

us =
λwsb(

1−α
1+β (vbs − δbub)− cs) + (1− λ)psb(vbs − cs − δbub)

1− δs + (1− λ)psbδs + λwsbδs
.

And one can verify that for both cases,

1− α
1 + β

(vbs − δbub)− cs − δsus ≥ 0 ⇐⇒ 1− δs
1− δs + (1− λ)δspsb

(vbs − cs) ≥
α+ β

1 + β
vbs,

which implies the middleman’s revenues in any MPEs are bounded πM (G) ≤ 1−δs
1−δs+(1−λ)δspsb

(vbs−

cs). We show that the upper bound can be arbitrarily approximated by the choice of α, β.

Let

s∗ = arg max
s

1− δs
1− δs + (1− λ)δspsb

(vbs − cs)

For any ε > 0, let α, β satisfy

1− δs
1− δs + (1− λ)δsps∗b∗

(vb∗s∗ − cs∗)− ε =
α+ β

1 + β
vb∗s∗

Then from middleman’s perspective, given the choice of α, β, the optimal seller to select is:

s′ = arg max
s
qsbvbs

s.t.
1− δs

1− δs + (1− λ)δspsb
(vbs − cs) ≥

α+ β

1 + β
vbs

And

1− δs
1− δs + (1− λ)δsps∗b∗

(vb∗s∗−cs∗) ≥
1− δs

1− δs + (1− λ)δsps′b
(vbs′−cs′) ≥

1−δs
1−δs+(1−λ)δsps∗b∗

(vb∗s∗ − cs∗)− ε
vb∗s∗

vbs′
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hence

vbs′

vbs∗
≤ 1 +

ε
1−δs

1−δs+(1−λ)δsps∗b∗
(vb∗s∗ − cs∗)− ε

,

thus for sufficiently small ε > 0, we have s′ = s∗.

As shown in Theorem 3.3.1 and Example 3.3.1, the middleman can effectively eliminate

trading delays but not necessarily select the most efficient matchings. As nature comes

into play with λ < 1 and competes with the middleman, the middleman has to take into

account the random matching technology psb implemented by nature when selecting which

pair to match more often. As shown in Example 3.3.3 of the star-n network, the matched

pair (b, s∗) is the one with the highest distorted welfare contaminated by nature’s random

matching psb,

s∗ = arg max
1− δs

1− δs + (1− λ)δspsb
(vbs − cs).

When vbs = v for all s, the middleman selects the link with the smallest probability psb of

being matched under nature. In other words, the middleman profits most from matching the

disadvantageous seller in the homogenous case. When vbs is heterogenous, middleman does

not necessarily select the pair with highest vbs− cs. The distortion vanishes as middleman’s

market power λ → 1. In particular, one can prove that in the Example 3.3.3, there exists

λ∗, such that, for any λ > λ∗, i.e.,

arg max
s

1− δs
1− δs + (1− λ)δspsb

(vbs − cs) = arg max
s
vbs − cs.

For small λ however, the middleman can deviate from the inefficient matching.

The following corollary shows that under the “α + β” pricing, the revenues from charging

on both sides can be realized by charging on only one side of the market.

Corollary 3.3.2. Suppose λ = 1, γ = 0. Given ε in Theorem 3.3.1. Let

θ = arg max θΠ(Gθ)− ε
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where Gθ = (V,Eθ), Eθ = {(b, s) : vbs ≥ 1
1−θ cs}. Then for any α, β combination such that

θ = α+β
1+β , the revenue in MPEs under α, β is ε-close to the maximum revenue a middleman

could attain.

Corollary 3.3.2 can be derived directly from Theorem 3.3.1 by letting θ = α+β
1+β . Moreover,

it implies that, given the maximizer θ = arg max θΠ(Gθ) − ε, setting α = θ, β = 0 or

α′ = 0, β′ = θ
1−θ generate the same revenue for the middleman. In particular, α < β′, which

means, if deciding to charge on one side of market, the commission rate for buyer is alway

larger than the seller side. Suppose however that the middleman would announce the same

commission rate charged on either side of the market. Each buyer, in addition to paying

the price to the seller, is subject to a commission fee paid to the middleman. Therefore the

buyers are less willing to pay a higher price than he would have offered under 0 commission

rate, which in term implies that the middleman can extract lower surplus from trade.

3.4. “α or β” Pricing Model

The “α+β” pricing is implemented by many intermediaries where the commission is charged

on one or both sides of the market, regardless of who proposes the offer. In real estate,

sellers are responsible for paying the commission even though buyers submit purchase offers.

In Airbnb the accommodation sharing platform, both customers and hosts are charged com-

mission fees, at 6− 12% and 3− 5% respectively despite the fact that only sellers proposes

the accommodation prices. During salary negotiations, whenever the compensation pack-

ages are proposed by either the employers or the candidates, headhunters are paid solely

by the employers. In this model where the middleman can assign one side of the matched

pair to make a take-it-or-leave-it offer, in the following I propose an alternative commission

pricing “α or β” where the middleman only charges the proposers she assigns. It is less

commonly seen in practice and to the best of my knowledge, some sports agents in Europe

are paid by whoever they are representing and proposing the offer.

Below is the timing of the “α or β” pricing model.
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Choice 2. α or β Commission Pricing

Stage 1 At time t = 0, the middleman announces non-discriminating percentage commis-

sion rates α, β ≥ 0.

Stage 2 At time t = 1, 2, . . ., if no feasible matches exist in the currently network Gt, the

game ends. Otherwise,

(i) Matching a buyer-seller pair: With probability λ, the middleman selects a feasi-

ble pair b, s and assigns one of them to make a take-it-or-leave-it offer. Otherwise,

a single link is selected at random according to {pij(Gt)}ij∈Et .

(ii) Bargaining: The matched pair (b, s) meet, with one of them proposing to the

other player (the responder) specifying a transfer (or price).

If buyer b offers a bid-price p and s accepts, they trade and exit the game with

payoffs vbs − (1 + β)p, p − cs respectively if matched by the middleman and

vbs − p, p − cs if matched by nature. Here βp is the commission fee paid to the

middleman by buyer b.

If seller s proposes an ask-price p and b accepts, they trade and exit the game

with payoffs vbs− p, (1−α)p− cs respectively if matched by the middleman and

vbs − p, p− cs if matched by nature. Here αp is the commission fee paid to the

middleman by seller s.

(iii) When the pair exit the market with an agreement, with probability γ they are

replaced by clones at the same positions in the network and there are no clones

otherwise. If the offer is rejected, the matched pair dissolves and the two traders

return in the next period.

Denote by Γα/β(G) the game under the choice of “α or β” commission fees.

Theorem 3.4.1. For any α, β ≥ 0, there exists a Markov perfect equilibrium for both the
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bargaining and matching games Γα/β(G).

Unlike the “α + β choice where buyers gain 0 in any MPEs under the monopoly match-

making middleman, the “α or β” payment scheme allows for more positive gains for the

buyers even if the middleman is the monopoly matchmaker. The following example illus-

trates a MPE where buyers earns positive gains from trade.

Example 3.4.1 (Γα/β(G) ). Consider the following lefthand-side, a one-buyer-two-seller

network with values vb1s1 , vb1s2 and production costs c1 > c2 > 0. vb1s1 − c1 > vb1s2 − c2.

Consider the case where γ = 0, λ = 1. The middleman sets α = 0, that is, he is always

representing the buyer and charges him β of the sale price.

b1

s1

s2

b1

b2

s1

s2

For any β <
vb1s1−c1

c1
, the only MPE is to match (b1, s1) with revenue πM = βc1, and buyer

1’s equilibrium payoff is,

ub1 = vb1s1 − (1 + β)c1 > 0

Suppose now there is a new coming buyer b2 (in the righthand-side network), with vb2s1 > c1,

vb2s2 = 0. Then under the same β, the middleman’s revenue is still βc1. However, the MPE

payoffs for buyer 1 and 2 change:

ub1 =
wb1s1(vb1s1 − (1 + β)c1)

1− δb + δbwb1s1
,
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ub2 =
wb2s1(vb2s1 − (1 + β)c1)

1− δb + δbwb2s1
,

here wb1s1 + wb2s1 = 1, and 0 ≤ wb1s1 ≤ 1. In particular, buyer 1’s payoff has decreased

with the presence of buyer 2.

As shown in Example 3.4.1, the buyers’ payoffs are more sensitive to the network structures

under Γα/β(G) compared to Γα+β(G). In the lefthand-side network in Example 3.4.1, buyer

b1 is the monopoly buyer with positive gains from trade, whereas in the righthand-side,

buyer b1 has a competing peer b2, therefore less profit earned from bargaining under the

same commission rate. This is in sharp contrast to Proposition 3.2.2 for which regardless of

the network structure, buyers earn 0 from intermediated bargaining when the middleman

takes full control of the matchmaking (λ = 1).

Although the choice of “α+β” is most commonly adopted by the middleman, the following

Proposition 3.4.2 shows the choices of “α or β” is dominated by the choice “α+β” in terms

of revenue.

Proposition 3.4.2. For any choices of 1 > α ≥ 0, β ≥ 0, let α′ = α+β
1+β , β

′ = α+β
1−α , then the

middleman’s revenue from Γα
′/β′(G) is at least that from Γα+β(G).

In particular, Proposition 3.4.2 implies that the maximum revenue attained by “α or β”

pricing is at least that from “α+ β” pricing model.

3.5. Discussion

1. Matching technology: sequential matching.

This paper studies a decentralized sequential bargaining game where each time only one link

is chosen for bargaining. The one-match-per-period assumption is standard in decentralized

markets(Rubinstein and Wolinsky, 1985; Gale, 1987; Abreu and Manea, 2012a,b; Manea,

2011). A rationale is that, important economic transactions such as buying houses, trading

over-the-counter assets, and hiring employees are decentralized, in the sense that they typi-

cally involve extensive bilateral negotiations. Moreover, it also costs the middleman efforts
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and time to intermediate the negotiation, thus multiple agreements are not reached at the

same instant.

Kranton and Minehart (2001) adopt an ascending-bid auction, analogous to the fictional

Walrasian auctioneer in the buyer-seller network setting that determines unique equilibrium

payoffs. Polanski (2007) implements the simultaneous matching technology in which a

maximum number of pairs of connected players are selected to bargain every period. The

analysis in the paper can be extended to the settings where more than one link is chosen

for bargaining at each time.

2. Membership fees:

In this paper, the middleman adopts the variable fees charged upon agreement and any

traders can walk away from the intermediation without any payment to the middleman

and wait for nature to match. Some intermediaries also charge fixed membership fees upon

registration beforehand. The techniques applied in this paper can be viewed as the first

step of computing the expected payoffs from intermediated bargaining given the entry of

all the members. In particular, given the zero payoff on the buyer side when middleman is

the monopoly matchmaker, it can be inferred that the membership charges on the buyer

side should also be 0 unless other modification of the setting is made.

3.6. Conclusion

This paper investigates how intermediation through matchmaking in a bargaining network

can affect the efficiency of the matching and bargaining outcomes. We show 3 novel ways of

distortion a profit-maximizing middleman introduces to the matching: to restrain matchings

on a subnetwork; to select the maximum weight matching weighted by the buyers’ values;

and to match pairs selected less often by nature. As one of the first few attempts to

characterize the matchmaking intermediaries on a networked model, I introduce a general

framework based on a number of flexible settings such as (1) the exchange of heterogenous

goods, (2) arbitrary network structures, (3) impatient traders with arbitrary discount factor
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smaller than 1, (4) exogenous matching technology by nature with arbitrary probabilistic

distribution. Intermediated bargaining still contributes to an active area of research and

in the future, one can restrict the attention to more specific settings and derive further

interplay between the network structure and the intermediation
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APPENDIX TO CHAPTER 1

A.1. Neighborhood Assignment

A paramount difference between neighborhood assignment and school choice is the strict

zoning constraint on student enrollment: whether outsiders of neighborhoods are allowed

to attend the neighborhood schools. Zoning and land use regulations are ubiquitous in

the United States. Many local governments will seek to limit housing development for

otherwise they must raise taxes to fund schools and other needed public services (Schill,

2005).1 Therefore in this paper, I assume that housing supply is also subject to a local

(zoning) constraint when the town runs neighborhood assignment to ensure that there are

enough slots in each neighborhood school for its resident students,

HB(ld, p) = min{kd, ldpr}.

A.1.1. Neighborhood Assignment Equilibrium

Under the neighborhood assignment rule, students are assigned to schools in the districts

they live in. Given the vector p of equilibrium prices for all school districts, student of type

x applies to her neighborhood school in district d if and only if it yields higher surplus than

her outside option. In other words, the payoff for student of type x to live in district d is,

U(x, d; p) = max{v(x, yd), π(x)} − pd.

Definition 7 (Neighborhood Assignment Equilibrium). Given (y,k, µ), a neighborhood

assignment equilibrium is (p, {Td}), where p is the vector of equilibrium home prices,

Td ⊆ X is the set of student types that live in district d, such that,

1For example, according to the school impact fee study by Lee County in January 2012 (see https://www.
leegov.com/dcd/Documents/Studies_Reports/ImpactFees/SchoolImpactFee2012.pdf), the average total
capital cost per student of opening a new school is $25, 184, among which, $302 is covered by state funding
credit and $11, 442 by discounted future tax revenues within the next 20 years. Therefore, the net capital
cost per student would be $13, 440 on average, which will possibly be passed on to the residents.
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1. for each x ∈ Td, residential choice is optimal,

U(x, d; p) = max
1≤d′≤D

U(x, d′; p),

2. housing supply should match demand in each district,

HB(ld, pd) = µ(Td).

Condition (1) is an incentive compatibility condition, that each student is maximizing her

payoff given equilibrium prices. Condition (2) is a market clearing condition for the housing

market. µ(Td) is the measure of resident students in district d.

The supermodularity assumption on v(x, y) implies the marginal benefit for taking a higher

school quality y increases with higher student type x. When students are price takers,

households of higher types are willing to pay more on the margin for increases in school

quality. Therefore, equilibrium residential choices are assortative as a consequence of Topkis’

Monotonicity Theorem.

Lemma A.1.1. (Topkis’ Monotonicity Theorem) For any pair of lattices (Y,�) and (T,�),

let f : Y ×T → R be a supermodular function (with coordinate-wise order). For each t ∈ T ,

let γ(t) = arg maxγ∈Γ(t) f(γ, t), where Γ(t) ⊆ Y . If t′ ≥ t and Γ(t′) ⊇ Γ(t), then γ(t′) ≥ γ(t).

Let Y = {(yd, pd)}d, T = [x, x̄]. It is easy to verify U(y, x) is supermodular on (Y, T ). Let

the choice set Γ(t) = Y for all t ∈ T . Then Topkis’ Monotonicity Theorem implies the

following result appeared in a number of previous papers on neighborhood assignment.

Corollary A.1.2. Suppose π(x) = −∞ for all x, then each Td is in the form of [xd, xd], s.t.,

x1 ≤ x1 ≤ x2 ≤ x2 ≤ . . . ≤ xD ≤ xD, that is, in any neighborhood assignment equilibrium,

higher-type students live in higher-quality school districts.

This strict stratification result may not hold, however, for arbitrary π(x) when the surplus
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between attending a local school and opting for the outside option does not satisfy some

single-crossing condition.

Proposition A.1.3. If Condition 1 holds, then for any (one-town) neighborhood assign-

ment equilibrium, there exists d∗ and xd∗ ≤ xd∗+1 ≤ . . . ≤ xD, s.t.

1. for all d ≥ d∗ + 1, Td = [xd−1, xd] ,

2. for all d ≤ d∗, Td ⊆ [x, xd∗ ], and pd = min{pj : 1 ≤ j ≤ D}.

Proposition A.1.3 shows a relaxed stratification result under neighborhood assignment with

outside options. Condition 1 implies that the set of acceptable schools is expanding with

higher type, which is exactly the assumption Γ(t′) ⊇ Γ(t), ∀t′ ≥ t in Topkis’ Monotonicity

Theorem ( Γ(t) is the choice set type t is optimizing over). Therefore, the optimal residential

choice is monotone in student type. The second statement in Proposition A.1.3 takes care of

the extreme cases when some local schools are unfavorable compared to the outside option.

Students are thus indifferent to any of these districts as they can always opt out.

As indicated above, neighborhood assignment is criticized for quality-ordered stratification

across neighborhoods and schools. Only students of high types live in top quality school

districts, and subsequently attend top quality schools. To offer more equitable access to

good schools, school choice is introduced.

79



A.2. Mathematical Appendix

A.2.1. Proof of Proposition 1.2.1

The argument applies to deferred acceptance with any tie breaking rule independent of

students’ reports and types. A continuum of students are matched to a finite set of schools

S = {1, 2, . . . , D}. In school choice, a student t differs in her profile (ut, et), where ut is the

vector of utilities of attending public schools and et ∈ [0, 2]D describe the school priorities

of student t, with sth entry ets indicating student t’s score at school s. ets > et
′
s if t has

higher priority than t′ at school s. Let Rt be a corresponding strict preference of student t.

Denote by R the set of strict preferences. The deferred acceptance mechanism is a stable

matching mechanism , and can be described using cutoffs P = (P1, P2, . . . , PD) ∈ [0, 2]D

such that, student t is admitted to school s if

D(Rt,et)
s (P) = 1{ets ≥ Ps, sRt∅}

∏
s′Rts

1{ets′ < Ps′} = 1,

and let η is measure over R× [0, 2]D. Then the aggregate demand for school s is Ds(P |η) =

η({t : D
(Rt,et)
s (P ) = 1}), satisfies Ds(P |η) ≤ ks for all s. Next we need to specify η.

Denote by H the set of {0, 1}D, each with only one non-zero entry. For ht ∈ H, htd = 1

if student t lives in district d. Denote by σ : X × H → ∆(R) households’ strategy of

preference submission. Each entry σR(t, h) is the probability of student of type t with her

choice of residence h reporting R. For each (R,h) ∈ R × H, mσ(R,h) =
∫
X σR(t,h)dµ.

Since R × H is finite, and mσ is a discrete measure over student preference and priority

profiles. Each school s assigns a lottery number lts ∈ [0, 1] to student t. L is the measure on

{lts}t,s. More specifically, consider L to be the product measure on s independent Markov

processes {ls(t) : t ∈ T} with initial continuous and bounded distribution π and transition

probabilities the same as π. Under deferred acceptance with neighborhood priority, the
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assigned priority scores for student t is et = ht + lt. Then,

Ds(P |η) = η({t : D(Rt,et)
s (P ) = 1})

= (mσ × L)({(Rt, ht, lt) : hts + lts ≥ Ps, and hts′ + lts′ < Ps′ for s′Rts}).

Suppose student of type t misreports. Denote by σ′ the new strategy profile. Then, µ({t :

σ′(t, ht) 6= σ(t, ht)}) = 0, and mσ = mσ′ . Hence the market clearing thresholds P under

σ and the market clearing threshold P̂ under σ′ must satisfy: P̂ = P . Then for any fixed

et and for any R ∈ R, D
(Rt,et)
s (P ) · ut ≥ D

(R,et)
s (P ) · ut, by definition of D

(Rt,et)
s (P ). Since

P = P̂ , we have,

D(Rt,et)
s (P ) · ut ≥ D(R,et)

s (P̂ ) · ut.

Therefore the expected utility of reporting Rt satisfies, for any R ∈ R,

Eπ[D(Rt,et)
s (P ) · ut] ≥ Eπ[D(R,et)

s (P̂ ) · ut].

Thus we prove that truthful reporting is a Nash Equilibrium.

A.2.2. Expression and its Proof of Pr(s|d, h)

When everyone reports her preference truthfully in the second stage and admission is ra-

tioned by neighborhood priority, Pr(s|d,h) can be determined by the aggregate information

of applicants in each district, i.e.,

Pr(s|d,h) =


min{1−

∑
j>d

Pr(j|d,h), kdm̃d }, if s = d,

ks−Pr(s|s,h)m̃s
as−Pr(s|s,h)m̃s

(1−
∑
j>s

Pr(j|d,h)), if s 6= d,

where m̃d is the number of residents in district d that find their neighborhood school d

acceptable. as is the aggregate number of applicants applying to school s who have been

rejected in the previous rounds. The expression incorporates two facts about deferred

acceptance: schools first assign seats to previously rejected resident students up to the school
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capacity; if there are slots left over, non-resident students are admitted up to the school

capacity. Applicants from the same priority class are equally treated by the assignment rule

regardless of their types.

Denote by Xs = {x ∈ X : v(x, ys) ≥ π(x) > v(x, ys−1)}, then the measure of residents in

district d with school s being the least favored acceptable is ms
d =

∫
Xs hd(x)dµ. Denote

by Pr(s|d, h) the probability of enrolling in school s conditional on living in district d.

Pr(D|D,h) = min{ kD∑
s≤D

msD
, 1}, Pr(D|d, h) =

kD−
∑
j≤D

msD Pr(D|D,h)∑
d,s≤D

msd−
∑
s≤D

msD
, ∀d < D. For d < D,

Pr(s|s, h) = Pr(admitted to s| rejected by all j > s, s, h) · Pr(rejected by all j > s| s, h)

= min{1, ks(
1−

∑
j>s

Pr(j|s, h)
)
m̃s
} · (1−

∑
j>s

Pr(j|s, h))

= min{1−
∑
j>s

Pr(j|s, h),
ks
m̃s
}.

Here m̃s =
∑

r≤sm
r
s the measure of residents living in district s who also finds their neigh-

borhood school acceptable. The third equality is due to the fact that, the conditional prob-

ability of x being rejected to r > s depends on the event that x has lower priority scores

than those previously admitted, while the conditional probability of x being admitted to d

depends on her relative rank among those previously rejected. Here (1 −
∑
j>s

Pr(j|s, h))m̃s

is the number of applicants rejected from previous rounds. Similarly for d 6= s,

Pr(s|d, h) = Pr(admitted to s| rejected by all j > s, d, h) · Pr(rejected by all j > s| d, h)

=
ks − Pr(s|s, h)m̃s

as − Pr(s|s, h)m̃s
(1−

∑
r>s

Pr(r|d, h)).

Here as =
∑

b≤D,j≤s
mj
b(1−

∑
k>s

Pr(k|b, h)) the number of applicants to school s.
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A.2.3. Proof of Theorem 1.2.2

Suppose households are truth-telling in the second stage. To apply Theorem 2 from Schmei-

dler (1973), we need to modify some of the definitions.

1. X = [x, x̄] is set of student types with non-atomic measure µ.

2. h : X → {(σsd)s,d :
∑

s,d σ
s
d = 1}. Each entry hsd(x) is the probability of type x

choosing district d to live in and reporting preferences as if x ∈ Xs. H is set of all

Lebesgue integrable h with L1 weak topology.

3. p = (p1, p2, . . . , pD) : H → R
D
+ vector of housing prices. pd(h) = (

∫ ∑
s h

s
d(x)dµ

αkd
)
1
r .

4. û : X ×H → RD2
, ûsd(x,h) =

∑
j≥s

Pr(j|d,h)v(x, yj) +
(
1−

∑
j≥s

Pr(j|d,h)
)
π(x)− pd.

Then h is an equilibrium strategy if and only if, for all x and σ,h(x) · û(x,h) ≥ σ · û(x,h).

First by truth-telling of deferred acceptance, we restrict the attention to such equilibrium

strategy h that, for any x ∈ Xs, h
j
d(x) = 0, for j 6= s, and for any d. Theorem 1.2.2 then

is a direct corollary of Theorem 2 in Schmeidler (1973). To be more specific, it’s easy to

verify that (i) for all x ∈ X, û(x, ·) is continuous on H , (ii) for h ∈ H and i, j, k,m, the

set {x ∈ X|ûij(x,h) > ûjk(x,h)} is measurable, (iii) û(x,h) depends on p and Pr(s|d,h)

through ms
d =

∫
X h

s
d(x)dµ. Therefore by Theorem 2 in Schmeidler (1973), a pure strategy

NE exists.

A.2.4. Proof of Proposition 1.2.3

Let md =
∫
X hd(x)dµ be the number of residents in district d, ms

d =
∫
Xs
hd(x)dµ be the

number of residents in district d with least favored acceptable school j.

Claim 1. If md ≤ kd, then ∀d′ < d, md′ ≤ kd′ , moreover
md′
kd′
≤ md

kd
.

Proof of Claim 1: Proof by contradiction. Suppose ∃d′ < d, md′ > kd′ . Then pd′ > pd,
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and for any x s.t. jx ≤ d,

U(x, ed; p,h)− U(x, ed′ ; p,h) =
(
1−

∑
r>d

Pr(r|d, h)
)
v(x, yd)−

∑
d≥r≥jx

Pr(r|d′, h)v(x, yr)

−
(
1−

∑
r≥jx

Pr(r|d′, h)
)
π(x) + pd′ − pd

>0.

For jx > d, U(x, ed; p,h) − U(x, ed′ ; p,h) = pd′ − pd > 0. Hence md′ = 0, contradicting

with md′ > kd′ . Moreover, the argument above proves that pd ≥ pd′ , i.e.,
md′
kd′
≤ md

kd
.

Letpmin = min1≤j≤D{pj} the lowest home price. m̃d =
∑

j≤dm
j
d.

Claim 2. If pd 6= pmin, then ms
d = 0 for all s > d.

This is obvious since for type x, the benefit of living in any district d′ < jx is the same and

she would prefer the one with the lowest home price.

Claim 3. Let d = max{1 ≤ j ≤ D : pj = pmin}, then pd′ = pmin, ∀d′ ≤ d.

Proof of Claim 3: By the definition of d, for any d′ > d, pd′ > pmin, thus md′ = m̃′d by

Claim 2. If kd ≥ m̃d, then ∀d′ < d and x s.t. jx ≤ d, U(x, ed; p,h) > U(x, ed′ ; p,h). Hence

mj
d′ = 0, for all j ≤ d. By Claim 2, pd′ = pmin. If kd < m̃d, suppose pd−1 > pmin. Then

by Claim 2, m̃d−1 = md−1 > kd−1. For x s.t. jx ≥ d, U(x, ed; p,h) − U(x, ed−1; p,h) ≥

pd−1 − pd > 0. For x s.t. jx ≤ d− 1, since kd′ < md′ = m̃d′ ,

U(x, ed; p,h)− U(x, ed−1; p,h) =
kd
m̃d

(v(x, yd)− w(x))− pd −
kd−1

md−1
(v(x, yd−1)− w(x))

+ pd−1

>
kd
md

[v(x, yd)− w(x)]− kd−1

md−1
[v(x, yd−1)− w(x)]

>0.

Here w(x) =
∑

d−2≥r≥jx

kr−Pr(r|r,h)m̃r
ar−Pr(r|r,h)m̃r

v(x, yr)+
(
1−

∑
d−2≥r≥jx

kr−Pr(r|r,h)m̃r
ar−Pr(r|r,h)m̃r

)
π(x). Hencemd−1 =

0, contradicting with pd−1 > pmin. Apply the same argument above to show pd−2 = pd−3 =

. . . p1 = pmin, thus conclude the induction. We are ready to prove the theorem.
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Case 1. There exists d∗ = max{1 ≤ d ≤ D : md ≤ kd}.

By Claim 1, for all d ≤ d∗, md ≤ kd. For d′ < d ≤ d∗, U(x, ed; p,h) − U(x, ed′ ; p,h) ≥

pd′ − pd. Hence pd ≥ pd′ otherwise leading to a contradiction. For any d > d∗, md = m̃d,

U(x, ed+1; p,h)− U(x, ed; p,h)

=
kd+1

md+1
[v(x, yd+1)− w(x)]− pd+1 −

kd
md

[v(x, yd)− w(x)] + pd,
(A.1)

where w(x) =
∑

d∗≥r≥jx

kr−Pr(r|r,h)m̃r
ar−Pr(r|r,h)m̃r

v(x, yr) +
(
1 −

∑
d∗≥r≥jx

kr−Pr(r|r,h)m̃r
ar−Pr(r|r,h)m̃r

)
π(x). Suppose

kd+1

md+1
≥ kd

md
, then U(x, ed+1; p,h)− U(x, ed; p,h) > 0 for all jx ≤ d, which implies md = 0,

a contradiction. Hence pd+1 > pd for all d > d∗. And pd∗+1 > pd∗ .

Case 2. md > kd for all d.

By Claim 3, there exists d∗ = max{1 ≤ d ≤ D : pd = pmin}, s.t. pd = pmin, ∀d < d∗. For

all d′ > d > d∗, by similar argument as in Eqn. (A.1), pd′ > pd. Therefore housing prices

ascend in quality under Case 1 and Case 2.

A.2.5. Proof of Theorem 1.3.1

Let P j = {x ∈ [x, x̄] : v(x, yj) ≥ π(x) > v(x, yj−1)}. J = |{j : Pj 6= ∅}|. M is the simplex

in RD×J . m = (m1,m2, . . . ,mD) ∈ M , s.t. md = (mj
d)j∈[J ], where mj

d is the number of

residents with x ∈ P j that live in district dA .

Let ei be the 2D-dimensional unit vector with ith non-zero entry. Let V (xt, ei,m) be the

expected benefit of living in district i given m. A price vector p ∈ RD specifies housing

prices for each district in town B. The expected utility of living in district d in town A given

m is,

U(xt, edA ; m,p) = V (xt, edA ,m)− (

∑
jm

j
d

αkd
)1/r,

and the expected utility of living in district d in town B given p,

U(xt, edB ; m,p) = V (xt, edB ,m)− pd.
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Define student xt’s demand correspondence D(xt, p,m) as the set of all mixed strategies that

are best responses to p,m, i.e., D(xt,m,p) = arg maxφ∈Φ U(xt, φ; m,p). Define the aggre-

gate demand correspondence D : M×RD →→M×RD. D is a correspondence that maps a

price vector p and m the pre-assumed numbers of residents in each district of town A to num-

ber of residents who choose each district as best response. D(m,p) = {({Dj
dA
}, {DdB}) :

h ∈H ,h(xt) ∈ D(xt,m,p), Dj
dA

(m,p) =
∫
x∈P j hd(xA)dµA+

∫
x∈P j hd(xB)dµB, DdB (m,p) =∫

XA
hd(xA)dµA +

∫
XB

hd(xB)dµB.}. It is a correspondence since people may be indifferent

between different districts. For simplicity, for each h ∈H , denote by the vector

∫
hdµ =

(
(

∫
x∈P j

hdA(x)dµA +

∫
x∈P j

hdA(x)dµB)jd, (

∫
hdB (x)dµA +

∫
hdA(x)dµB)d

)
.

Define the tatonnement correspondence T : M ×RD →→M ×RD.

T (m,p) = (DA(m,p),gr(m,p)), where DA(m,p) is the vector of house demand in town

B specifically among x ∈ Pj , r is the price elasticity of supply, gr = (gr1, g
r
2, . . . , g

r
D) :

M ×RD → R
D, s.t., if 0 < r < 1,

grd(m,p) =

 pd +DdB (m,p)−min{ldBprd, kdB}, if pd ≥ 0,

−pd
2 +DdB (m, (|pd|,p−d)), if pd < 0.

If r ≥ 1,

grd(m,p) = pd +
DdB (m, (pd,p−d))−min{ldBprd, kdB}

N
.

N is a constant to be specified later. DB(m,p) is the vector of house demand in town B,

kB the vector of capacity in town B. When p ≥ 0, p + DB(m,p) − min{lB · pr,kB} is

precisely the tatonnement process. It’s easy to verify that g is continuous function of p for

any fixed m.

Claim 1. each T (m,p) is non-empty and convex.

The set of D(m,p) is nonempty since each xt has at least one optimal district. Therefore,

there exists at least one satisfying h. To show T (m,p) is convex, it suffices to show D(m,p)
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is convex. For z, z′ ∈ D(m,p), there exists h,h′ s.t. z =
∫

hdµ and h(x) ∈ D(x,m,p) for

all x. Similarly z =
∫

h′dµ and h′(x) ∈ D(x,m,p). For any α ∈ (0, 1), since D(x,m,p)

is convex, we have αh(x) + (1 − α)h′(x) ∈ D(x,m,p) for all x. Hence αz + (1 − α)z′ =∫
αh(x) + (1− α)h′(x)dµ ∈ D(m,p).

Claim 2.1 For 0 < r < 1, there exists K > 0 such that T maps M × [−K,K]D to itself.

Pick K > 1 so that for all 1 ≤ d ≤ D, v(x, yd) − K + θ < kdBv(x, yd) − ( 1
αkdA

)1/r, and

αKr ≥ 1. If 0 ≤ pd ≤ K, pd − kdB ≤ grd(m,p) ≤ pd + 1 ≤ K + 1. If K ≤ pd ≤ K + 1,

pd − kdB ≤ grd(m,p) ≤ pd − kdB . If −K ≤ pd ≤ 0, −p/2 ≤ grd(m,p) ≤ −p/2 + 1 Pick K + 1

is the bound for the domain of T .

Claim 2.2 For r ≥ 1,there exists K > 0 such that T maps M × [0,K]D to itself.

Pick the same K as Claim 2.1, then N s.t. α(K + 1)r−1 < N . If 0 ≤ pd ≤ K, grd(m,p) ≤

pd + 1 ≤ K + 1/N . If K ≤ pd ≤ K + 1, grd(m,p) ≤ pd − kdB/N . And for all p, grd(m,p) ≥

pd −
αkdB p

r
d

N = pd(1−
αkdB p

r−1
d

N ) ≥ 0. Therefore K is the upper bound for the domain.

Claim 3: T (·, ·) has a closed graph.

Consider a sequence (mn,pn, zn) with zn ∈ D(mn,pn) and (mn,pn, zn) → (m,p, z) as

n → ∞. (m,p) ∈ M × RD. Need to show z ∈ D(m,p). Suppose not, we want to prove

a contradiction. Since zn ∈ D(mn,pn), there exists hn ∈ H such that zn =
∫

hndµ and

hn(x) ∈ D(x,mn,pn). Since the set of all allocation function H is compact w.r.t. L1 norm

(Azevedo et al., 2013), {hn} has a convergent subsequence in L1 norm. Without loss of

generality, suppose that hn → h in L1 norm. h ∈H is the limit. By dominant convergence

theorem, ∫
hdµ =

∫
lim
n

hndµ = lim
n

∫
hndµ = lim

n
zn = z.

Now that z 6∈ D(m,p), µ({x ∈ X : h(x) 6∈ D(x,m,p)}) > 0. In particular, there exists
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h′ ∈H and ε0 > 0, such that

∫
V (x,h′,m)− (p̃(m),p) · h′dµ ≥

∫
V (x,h,m)− (p̃(m),p) · hdµ+ ε0. (A.2)

where p̃ : M → R
D s.t. p̃d(m) = (

∑
j m

j
d

αkd
)1/r. Define for each n, wn(x) ≡ mn, w(x) ≡ m.

wn → w a.e. therefore wn → w in L1 since X is compact. Then the vectors of function

(id,hn,wn) → (id,h,w) in L1, where id is identity map from X to X. Denote by fn =

(id,hn,wn), f = (id,h,w).

Since V is continuous and compactly supported, it’s uniformly continuous. the composition

V ◦ f is a continuous mapping from L1(R)2D+1 to L1(R)2D+1 by boundedness of f and

Markov inequality, i.e. for any ε > 0, there exists δ > 0, s.t., for all ‖f − f ′‖1 < δ,

‖V ◦ f − V ◦ f ′‖1 < ε. Hence, there exists N1 s.t. ∀n > N1,

∫
|V (x,h,m)− V (x,hn,mn)|dµ < ε,∫
|V (x,h′,m)− V (x,h′,mn)|dµ < ε,

and since p̃ is continuous in m, there exists N2 s.t. ∀n > N2,

∫
|(p̃(m),p) · h− (p̃(mn), pn) · hn|dµ < ε,∫
|(p̃(m),p) · h′ − (p̃(mn),pn) · h′|dµ < ε,

From (A.2), the following must holds ∀n > max{N1, N2},

∫
V (x,h′,mn)− (p̃(mn),pn) · h′dµ ≥

∫
V (x,hn,mn)− (p̃(mn),pn) · hndµ+ ε0 − 4ε.

In particular, ∃x ∈ X s.t.

V (x,h′,mn)− (p̃(mn),pn) · h′(x) > V (x,hn,mn)− (p̃(mn),pn) · hn(x),
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contradicting with hn(x) ∈ D(x,pn,mn). By Kakutani’s fixed point theorem, there exists a

fixed point (m∗,p∗) ∈ T (m∗,p∗), in particular it must satisfy, (i) p∗ ≥ 0, (ii) DA(m∗,p∗) =

m∗, (iii) DdB (m∗,p∗) = min{kdB , αkdB (p∗d)
r} for all d. The first is due to the fact that

when 0 < r < 1, negative pd can’t be in the fixed point entry since pd = −pd/2 +DdB (p,m)

will yield 0 > pd = 2
3DdB (p,m) ≥ 0 a contradiction. For r ≥ 1 any fixed point must consist

of non-negative price vector by the domain of gr. Fix the equilibrium price p∗, and the

same argument of purification in Schmeidler (1973) Theorem 2 proves the existence of pure

strategy equilibrium.

A.2.6. Proof of Proposition 1.3.3

For town B, proof by contradiction. Suppose there exists x′ < x, x′ ∈ Bd′ , x ∈ Bd, s.t.

d′ > d. Since pd′B > p1B , j′ = jx′ ≤ d′ and by Condition 1, jx = j ≤ j′ ≤ d′. If j ≤ j′ ≤ d,

by supermodularity of v(x, y), d ≤ d′ a contradiction. If j ≤ d < j′ ≤ d′, v(x′, yd′) −

π(x′) ≥ pd′ − pd ≥ v(x, yd′) − v(x, yd), implies v(x′, yd′) − v(x′, yd) > v(x, yd′) − v(x, yd), a

contradiction. If d < j ≤ j′ ≤ d′, by monotonicity of v(x, yd′)− π(x), it’s a contradiction.

For town A, we discuss by case. Let ∆V1 = V (x′, ed′A ; p,h) − V (x′, edA ; p,h), ∆V2 =

V (x, ed′A ; p,h)− V (x, edA ; p,h). qr = Pr(r|1A,h).

Case 1. There exists d∗ = max{1 ≤ d ≤ D : mdA ≤ kdA}

Proof by contradiction. Suppose there exists x ∈ Ad, x
′ ∈ Ad′ , s.t. d′ > d and x′ < x.

Denote by j = jx, j
′ = jx′ , then j′ ≥ j by Condition 1.

(i) d > d∗. By Claim 2 of Proposition 1.2.3, j ≤ d, j′ ≤ d′.

∆V2 =
kd′

md′
v(x, yd′)−

kd
md

v(x, yd) + (
kd
md
− kd′

md′
)[
∑
r≥j

qrv(x, yr) + (1−
∑
r≥j

qr)π(x)].

∆V1 =
kd′

md′
v(x′, yd′)−

kd
md

max{v(x′, yd), π(x′)}

+ (
kd
md
− kd′

md′
)[
∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′)]

≤ kd′

md′
v(x′, yd′)−

kd
md

v(x′, yd) + (
kd
md
− kd′

md′
)[
∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′)],
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since
kd′
md′

∂v
∂x(x, y′d) ≥

∂v
∂x(x, yd),

kd′
md′

v(x, yd′)− kd
md
v(x, yd) >

kd′
md′

v(x′, yd′)− kd
md
v(x′, yd).

Claim 5.
∑
r≥j

qrv(x, yr) + (1−
∑
r≥j

qr)π(x) ≥
∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′).

Proof of Claim 5: LHS−RHS ≥
∑

r≥j′ qr[v(x, yr)−v(x′, yr)]+(1−
∑

r≥j′ qr)[π(x)−π(x′)] >

0, therefore ∆V2 > ∆V1, which implies x prefers d′A to dA, a contradiction.

(ii) d ≤ d∗ < d′. By Claim 2 of Proposition 1.2.3, j ≤ j′ ≤ d′.

(a) j ≤ j′ ≤ d.

∆V (z) =
kd′

md′
v(z, yd′)+(1− kd′

md′
)
( ∑
r≥jz

qrv(z, yr)+(1−
∑
r≥jz

qr)π(z)
)
−
∑
r>d

qrv(z, yr)−(1−
∑
r>d

qr)v(z, yd),

since d
dz [

kd′
md′

v(z, yd′)−
∑
r>d

qrv(z, yr)− (1−
∑
r>d

qr)v(z, yd)] > 0, ∀z ≥ x′. ∆V (x) > ∆V (x′).

(b) j ≤ d < j′ ≤ d′.

∆V2 =
kd′

md′
v(x, yd′) + (1− kd′

md′
)
(∑
r≥j

qrv(x, yr) + (1−
∑
r≥j

qr)π(x)
)
−
∑
r>d

qrv(x, yr)

− (1−
∑
r>d

qr)v(x, yd),

∆V1 =
kd′

md′
v(x′, yd′) + (1− kd′

md′
)
(∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′)
)

−
∑
r≥j′

qrv(x′, yr)− (1−
∑
r≥j′

qr)π(x′)

<
kd′

md′
v(x′, yd′) + (1− kd′

md′
)
(∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′)
)
−
∑
r>d

qrv(x′, yr)

− (1−
∑
r>d

qr)v(x′, yd),

By part (a) of (ii), ∆V2 > ∆V1.

(c) d < j ≤ j′ ≤ d′.
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V (z, ed′ ; p,h)− V (z, ed; p,h) =
kd′
md′

[v(z, yd′)−
∑
r≥jz

qrv(z, yr)− (1−
∑
r≥jz

qr)π(z)],

∆V2 −∆V1 =
kd′

md′
[v(x, yd′)−

∑
r≥j

qrv(x, yr)− (1−
∑
r≥j

qr)π(x)

− v(x′, yd′) +
∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′)]

>
kd′

md′
[v(x′, yd′)−

∑
r≥j

qrv(x′, yr)− (1−
∑
r≥j

qr)π(x′)− v(x′, yd′)

+
∑
r≥j′

qrv(x′, yr) + (1−
∑
r≥j′

qr)π(x′)],

since d
dz [v(z, yd′)−

∑
r≥j

qrv(z, yr)− (1−
∑
r≥j

qr)π(z)] ≥ 0, ∀z ≥ x′.

(iii) d < d′ ≤ d∗.

(a) pd′ ≥ pd > pmin. By Claim 2 of Proposition 1.2.3, j ≤ d, j ≤ j′ ≤ d′.

If j ≤ j′ ≤ d < d′,

∆V2 −∆V1 =
∑
r>d′

qrv(x, yr) + (1−
∑
r>d′

qr)v(x, yd′)−
∑
r>d

qrv(x, yr)− (1−
∑
r>d

qr)v(x, yd)

−
∑
r>d′

qrv(x′, yr)− (1−
∑
r>d′

qr)v(x′, yd′)

+
∑
r>d

qrv(x′, yr) + (1−
∑
r>d

qr)v(x′, yd)

=(1−
∑
r>d′

qr)v(x, yd′)−
∑

d′≥r>d
qrv(x, yr)− (1−

∑
r>d

qr)v(x, yd)

− (1−
∑
r>d′

qr)v(x′, yd′) +
∑

d′≥r>d
qrv(x′, yr) + (1−

∑
r>d

qr)v(x′, yd).

Since d
dz (1−

∑
r>d′

qr)v(z, yd′)−
∑

d′≥r>d
qrv(z, yr)− (1−

∑
r>d

qr)v(z, yd) > 0, ∆V2−∆V1 > 0. If
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j ≤ d < j′ ≤ d′,

∆V2 −∆V1 =(1−
∑
r>d′

qr)v(x, yd′)−
∑

d′≥r>d
qrv(x, yr)− (1−

∑
r>d

qr)v(x, yd)

− (1−
∑
r>d′

qr)v(x′, yd′) +
∑

d′≥r≥j′
qrv(x′, yr) + (1−

∑
r≥j′

qr)π(x′)

≥(1−
∑
r≥j′

qr)π(x′)−
∑

j′>r>d

qrv(x′, yr)− (1−
∑
r>d

qr)v(x′, yd)

(b) pd′ > pd = pmin. By Claim 2 of Proposition 1.2.3, j ≤ j′ ≤ d′.

If j ≤ j′ ≤ d or j ≤ d < j′ ≤ d′, similar argument of part (a) in (iii) applies.

If d < j ≤ j′ ≤ d′,

∆V2 −∆V1 =(1−
∑

r≥d′+1

qr)v(x, yd′)−
∑

d′≥r≥j
qrv(x, yr)− (1−

∑
r≥j

qr)π(x)

− (1−
∑

r≥d′+1

qr)v(x′, yd′) +
∑

d′≥r≥j′
qrv(x′, yr) + (1−

∑
r≥j′

qr)π(x′)

>
∑

j′>r≥j
qr[π(x′)− v(x′, yr)],

since d
dx [v(z, yd′)− π(z)] ≥ 0, ∀z ≥ x′.We have proved ∀d′ > d, pd′ > pmin in Case 1.

Case 2 ∀d, kd < md. Let d∗ = max{d : pd = pmin}, d̃ = max{d : m̃d ≤ kd}.

(i) d∗ < d < d′: similar argument as (i) in Case 1.

(ii) d̃ < d ≤ d∗ < d′: by Claim 2, j′ ≤ d′.If j ≤ d, apply similar argument in (i) of Case 1.

If d < j ≤ j′ ≤ d′. ∆V2 −∆V1 =
kd′
md′

(v(x, yd′)− π(x))− kd′
md′

(v(x′, yd′)− π(x′)) > 0.

(iii) d ≤ d̃ ≤ d∗ < d′: by Claim 2, j′ ≤ d′. We can prove each scenario j ≤ j′ ≤ d,

j ≤ d < j′ ≤ d′, d < j ≤ j′ ≤ d′ by similar argument as (a) - (c) of (ii).

Therefore we have proved for ∀d′ > d, s.t. pd′ > pmin in Case 2.
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A.2.7. Proof of Proposition 1.3.4

First need to show that
∂2v
∂y2

(x,y)

∂v
∂y

(x,y)
= r(y) if and only if v(x, y) = g(x)w(y) + c(x), for some

continuous function g, w, c.

∂

∂y
[log

∂v

∂y
(x, y)] =r(y),

∂v

∂y
(x, y) = exp[

∫
r(z)dz + C(x)],

v(x, y) =

∫
exp(

∫
r(z)dz) exp[C(x)] + c(x).

For any district dA, the benefit of living is

V (x, edA ; p,h) = g(x)
(∑
r≥j

Pr(r|d, h)w(yd) + (1−
∑
d≥j

Pr(r|d, h)
)
E[w(Y )]

)
+ c(x),

where j is identical for all x by the assumption on π(x). d
dx [V (xt, edA ; p,h)−V (xt, ed′A ; p,h)]

has the identical sign for all x, therefore V (xt, edA ; p,h) − V (xt, ed′A ; p,h) satisfies single

crossing condition.

A.2.8. Proof of Proposition 1.3.6

Neighborhood Bd′ can be possibly disconnected by Ad as in Figure (11), where students of

x0 x1 x2 x3

Bd′ Ad Bd′
Preference �x:

Figure 11: Disconnected neighborhood Bd′

types [x0, x1] ∪ [x2, x3] prefers Bd′ to Ad, students of types [x1, x2] prefers Ad to Bd′ . Since
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pd′B > pmin, jx ≤ d′ for all x ∈ [x0, x3].

D(x) =U(x, edA ; p,h)− U(x, ed′B ; p,h)

=
∑
r≥jx

Pr(r|d,h)v(x, yr) +
(
1−

∑
r≥jx

Pr(r|d,h)
)
v(x, yjx−1)− v(x, yd′)

+
(
1−

∑
r≥jx

Pr(r|d,h)
)(
π(x)− v(x, yjx−1)

)
+ ∆p

=v(x,CE(x))− v(x, yd′) +
(
1−

∑
r≥jx

Pr(r|d,h)
)
(π(x)− v(x, yjx−1)) + ∆p,

where ∆p = ±θ + pd′B − pdA , and CE(x) is the certainty equivalent s.t.,

v(x,CE(x)) =
∑
r≥jx

Pr(r|d,h)v(x, yr) +
(
1−

∑
r≥jx

Pr(r|d,h)
)
v(x, yjx−1).

Need to show (i) CE(x) is non-decreasing function of x, (ii) CE(x) ≤ yd′ , for all x ≤

x2, (iii) ∂+D(x) is non-decreasing. Take D(x) as a piecewise twice differentiable func-

tion. Let X = X1 ∪ X2 ∪ . . . ∪ XD ∪ XD+1, where Xr = {x ∈ X : v(x, yr) ≥ π(x) >

v(x, yr−1)}. In the interior of Xr, CE
′(x) ≥ 0; at the boundeferred acceptancery ∂Xr =

{x : v(x, yr) = π(x)}, CE(x) is non-decreasing by Condition 2. For (ii), prove by contradic-

tion. If CE(x2) > yd′ , ∂+D(x2) = ∂v
∂x(x2, CE(x2))− ∂v

∂x(x2, y
′
d) + ∂v

∂y (x,CE(x2))CE′(x2) +(
1 −

∑
r≥jx

Pr(r|d,h)
)
(π′(x2) − ∂v

∂x(x2, yjx2−1)), thus ∂+D(x2) > 0 a contradiction. Hence

CE(x2) ≤ yd′ . For (iii), in the interior of each Xr where D(x) is differentiable, and for all
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x ≤ x2,

D′(x) =
∂v

∂x
(x,CE) +

∂v

∂y
(x,CE)CE′(x)− ∂v

∂x
(x, yd′)

+
(
1−

∑
r≥jx

Pr(r|d)
)
(π′(x)− ∂v

∂x
(x, yjx−1)),

D′′(x) =
∂2v

∂x2
(x,CE(x)) + 2

∂2v

∂x∂y
(x,CE(x))CE′(x) +

∂2v

∂y2
(x,CE(x))[CE′(x)]2

+
∂v

∂y
(x,CE(x))CE′′(x)− ∂2v

∂x2
(x, yd′) +

(
1−

∑
r≥jx

Pr(r|d)
)
(π′′(x)− ∂2v

∂x2
(x, yjx−1))

>
∂2v

∂x2
(x,CE(x))− ∂2v

∂x2
(x, yd′)

≥ 0.

On the boundeferred acceptancery, ∂+D(x)− ∂−D(x) = Pr(j|d,h)
(
π′(x)− ∂v

∂x(x, yj)
)
≥ 0.

Hence ∂+D(x) is non-decreasing and ∂+D(x2) > ∂+D(x1) ≥ 0, a contradiction.

Second, Bd′ can be possibly disconnected by Bd, d ≤ d∗ = max{d : pdB = p1B}.

x0 x1 x2 x3

Bd′ Bd Bd′
Preference �x:

Figure 12: Disconnected neighborhood Bd′

By Condition 2, j3 ≤ d′. Denote by D(x) = v(x, yd′)−max{v(x, yd), π(x)}. In the interior

of each Xr, s.t. r ≤ d, D′′(x) = ∂2v
∂x2

(x, yd′)− ∂2v
∂x2

(x, yd) < 0. In the interior of each Xr, s.t.

r > d, D′′(x) = [ ∂
2v
∂x2

(x, yd′) − ∂2v
∂x2

v(x, yd)] − [π′′(x) − ∂2v
∂x2

(x, yd)] ≤ 0. At the discontinuous

point, ∂+D(x) − ∂−D(x) = ∂v
∂x(x, yd) − π′(x) ≤ 0. Therefore ∂+D(x2) < ∂+D(x1) ≤ 0, a

contradiction.

A.2.9. Proof of Proposition 1.3.5

Prove by contradiction. Suppose indifference curve crosses the type space at least twice, as

illustrated in Figure 13.
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x0 x1 x2 x3

Ad Bd′ Ad
Preference �x

Figure 13: Disconnected Neighborhood Ad

Students of types [x0, x1] ∪ [x2, x3] prefers Ad to Bd′ , while students of types in [x2, x3]

prefers Bd′ to Ad. d
∗ = max{d : kdA ≥ mdA}.

(i) d > d∗.

Since mdA = m̃dA , assume without loss of generality [x0, x1]
⋃

[x2, x3] ⊆
⋃
r≤dXr.

D(x) =
kdA
mdA

v(x, yd)+(1− kdA
mdA

)
( ∑
r≥jx

qrv(x, yr)+(1−
∑
r≥jx

qr)π(x)
)
−max{v(x, yd′), π(x)}+∆p.

If d′ < d, then for all x < x2, either ∂+D(x) >
kdA
mdA

∂v
∂x(x, yd)− ∂v

∂x(x, yd′) ≥ 0, or ∂+D(x) =

kdA
mdA

( ∂v∂x(x, yd) − π′(x)) + (1 − kdA
mdA

)
(∑

r≥jx qr
∂v
∂x(x, yr) − π′(x)

)
. By assumption of the

proposition, ∂+D(x) ≥ 0 for all x ≤ x2 and at least one non-zero right derivative. Since

D(x1) = 0, D(x) > 0 for all x > x1, a contradiction. If d′ ≥ d, then j ≤ d ≤ d′, and

−∂+D(x) > (1− kdA
mdA

)[
∑
r≥jx

qr
(∂v
∂x

(x, yd′)−
∂v

∂x
(x, yr)

)
+(1−

∑
r≥jx

qr)
(∂v
∂x

(x, yd′)−π′(x)] ≥ 0,

contradicting with ∂+D(x2) ≥ 0.

(ii) d ≤ d∗.

Consider d, s.t. pdA > p1A , then mdA = m̃dA . Without loss of generality, assume jx0 ≤ d,

hence jx ≤ d for all x ≥ x0 by Condition 1.

D(x) =U(x, edA ; p,h)− U(x, ed′B ; p,h)

=
∑
r≥d+1

qrv(x, yr) + (1−
∑
r≥d+1

qr)v(x, yd)−max{v(x, yd′), π(x)}+ ∆p

=v(x,CE(x))−max{v(x, yd′), π(x)}+ ∆p,
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If d > d′, ∂+D(x) > 0. Suppose d ≤ d′, by similar argument we can show that (i) CE(x) ≥

yd′ , for all x ≤ x2, (ii) D′′(x) ≤ 0.

D′(x) =
∂v

∂x
(x,CE(x)) +

∂v

∂y
(x,CE(x))CE′(x)− ∂v

∂x
(x, yd′),

D′′(x) =
∂2v

∂x2
(x,CE(x)) + 2

∂2v

∂x∂y
(x,CE(x))CE′(x) +

∂2v

∂y2
(x,CE(x))[CE′(x)]2

+
∂v

∂y
(x,CE(x))CE′′(x)− ∂2v

∂x2
(x, yd′)

≤ ∂2v

∂x2
(x,CE(x))− ∂2v

∂x2
(x, yd′) +

∂v

∂y
(x,CE(x))CE′′(x).

Therefore D′′(x) ≤ 0,∂+D(x1) ≥ ∂+D(x2) ≥ 0 and ∂+D(x1) = 0 if and only if CE(x) = yd′

for all x ≤ x2.

A.2.10. Proof of Proposition 1.3.7

Case 1. There exists d∗ = max{1 ≤ d ≤ D : md ≤ kd}.

For d > d∗, if jx > d, U(x, ed; p,h) = π(x)− pd. If jx ≤ d,

U(x, ed; p,h)+pd =
kd
m̃d

v(x, yd)+(1− kd
m̃d

)[
∑

d∗≥r≥jx

Pr(r|1, h)v(x, yr)+(1−
∑

d∗≥r≥jx

Pr(r|1, h))π(x)].

For d ≤ d∗,

U(x, ed; p,h) =


∑

d∗≥r≥jx
Pr(r|1, h)v(x, yr) + (1−

∑
d∗≥r≥jx

Pr(r|1, h))π(x)− pd, if jx > d,∑
d∗≥r>d

Pr(r|1, h)v(x, yr) + (1−
∑

d∗≥r>d
Pr(r|1, h))v(x, yd)− pd, if jx ≤ d.

Case 2. md > kd for all d.

Let pmin = min pd, d
∗ = max{1 ≤ d ≤ D, pd = pmin}.

Claim 4. If kd ≥ m̃d for some d ≤ d∗, then kd′ > m̃d′ , for all d′ < d.

Proof of Claim 4: Suppose not and there exists some d′ < d, kd′ > m̃d′ . For any jx ≤ d,

U(x, ed; p,h) > U(x, ed′ ; p,h). Therefore m̃d′ =
∑

j≤d′m
j
d′ = 0, which is a contradiction.

Let d̃ = max{1 ≤ r ≤ D : m̃d ≤ kd}. d̃ ≤ d∗, and by Claim 4, ∀d′ < d̃, m̃d′ = 0. Consider
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d ≥ d̃, if jx > d, U(x, edA ; p, h) = π(x)− pdA . If jx ≤ d,

U(x, ed; p,h) =
kd
m̃d

v(x, yd) + (1− kd
m̃d

)[
∑

d̃≥r≥jx

qrv(x, yr) + (1−
∑

d̃≥r≥jx

qr)π(x)]− pd.

For d < d̃,

U(x, ed; p,h) =


∑

d̃>r≥jx
Pr(r|1, h)v(x, yr) + (1−

∑
d̃>r≥jx

Pr(r|1, h))π(x)− pd, if jx > d,

∑
d̃>r>d

Pr(r|1, h)v(x, yr) + (1−
∑

d̃>r>d

Pr(r|1, h))v(x, yd)− pd, if jx ≤ d.

And pd = pmin for each d ≤ d∗.

A.2.11. Proof of Proposition 1.3.9

Only consider Case 1, since in Case 2, mdA > kdA ≥ mdB . For d > d∗, mdA > kd ≥

mdB . Suppose d ≤ d∗, for jx ≤ d, U(x, edA ; p,h) − U(x, edB ; p,h) ≥ pdB − pdA ; for

jx > d, U(x, edA ; p,h) − U(x, edB ; p,h) ≥ pdB − pdA . Hence pdB ≤ pdA , i.e.,
mdA
αkd
≥ prdB ≥

min{prdB ,
1
α} =

mdB
αkd

. Hence mdA ≥ mdB .
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APPENDIX TO CHAPTER 2

B.1. Proof of Eqn (2.1)

To easily understand, consider the discrete case with infinitely many shops. Suppose there

are SL registered sellers in the platform and BL subscribed buyers. Consider the probability

of purchasing from firm j for a fixed buyer i,

Pr( a buyer purchases from firm j in kth search )

=
(k − 1)!

(
SL−1
k−1

)
k!
(
SL
k

) (Pr(v − t < zL))k−1 Pr(v − tj ≥ zL)

=
1

SL
ρk−1
L Ḡ(tj + zL)

where ρL = Pr(v − t < zL) is the probability of an unsuccessful shopping experience and

Ḡ(x) = 1−G(x). Hence the expected demand from BL consumers, by posting pDj , p
L
j is,

XL(pDj , p
L
j ) = BL[

∑
k

1

SL
ρk−1
L Ḡ(tj + zL)]

=
BL

SL(1− ρL)
Ḡ(tj + zL)

(B.1)

B.2. Proof of Lemma 2.4.1

Notice that if zL < zD, then subscribed buyers never search online thus SLPs = 0. In this

case, the platform does not operate in the first place.

Consider the case zL ≥ zD and will later confirm that it is an equilibrium. For firm j with

marginal cost mj ,
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Case 1 pLj ≤ pDj + wj . Then

(pLj , p
D
j ) = arg max

p1≤p2+wj

[
(p1 −mj)(1−G(p1 + zL))

BL
SL(1− ρL)

+ (p2 −mj)(1−G(p2 + zD))
BD

S(1− ρD)

]
= arg max

p1

[
(p1 −mj)(1−G(p1 + zL))

BL
SL(1− ρL)

]
+ arg max

p2

[
(p2 −mj)(1−G(p2 + zD))

Bd
S(1− ρD)

]
=(p(mj ; zL), p(mj ; zD))

The second equation is due to first-order condition,

d

dp
[(p−m)(1−G(p+ z)] = 1−G(p+ z)− g(p+ z)(p−m),

the right-hand side monotone in p, hence the unique global maximizer p = p(m, z) satisfies,

p = m+
1−G(p+ z)

g(p+ z)
,

and p(m; z) is non-increasing function of z due to Assumption 11. Hence p(mj , zL) ≤

p(mj , zD) and this holds for ∀mj .

1 ∂
∂m

p(m; z) = 1

1− ∂
∂x

(
1−G(x)
g(x)

)
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Case 2 pLj > pDj + wj .

πL(pLj , p
D
j ;mj) = max

p

[
(p−mj)(1−G(p+ zL + wj))

Bl
Sl(1− ρl)

+ (p−mj)(1−G(p+ zD))
BD

S(1− ρD)

]
≤max

p
(p−mj)(1−G(p+ zL + wj))

Bl
Sl(1− ρl)

+ max
p

(p−mj)(1−G(p+ zD))
BD

S(1− ρD)

≤max
p

(p−mj)(1−G(p+ zL))
Bl

Sl(1− ρl)

+ max
p

(p−mj)(1−G(p+ zd))
Bd

S(1− ρD)

=πL(p(mj ; zL), p(mj ; zD);mj),

which is not incentive compatible. Hence (pLj , p
D
j ) = (p(mj ; zL), p(mj ; zD)).

B.3. Proof of Theorem 2.4.3

Now let pL = p(mL, zL), p = p(m, zL). Some facts :

∂pL
∂mL

=
1 + ∂

∂t
1−G
g

∂zL
∂mL

1− ∂
∂t

1−G
g

∂pL
∂mL

+
∂zL
mL

=
1 + ∂zL

∂mL

1− ∂
∂t

1−G
g

∂p

∂mL
=

∂
∂t

1−G
g ·

∂zL
∂mL

1− ∂
∂t

1−G
g

∂p

mL
+

∂zL
∂mL

=

∂zL
∂mL

1− ∂
∂t

1−G
g
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The platform’s revenue is given by,

π0 =PsSL + PbBL − C(BL, SL)

=(
BL

SL(1− ρL)

(1−G(pL + zL))2

g(pL + zL)
+ Vs)SL + (zL − zD + Vb)BL − C(SL, BL)

=BL[
(1−G(pL + zL))2

(1− ρL)g(pL + zL)
+ zL − zD + Vb] + VsSL − C(BL, SL)

=BLπ01 + VsSF (mL)− C(BL, SF (mL)).

Denote by

π01 =
(1−G(pL + zL))2

(1− ρL)g(pL + zL)
+ zL − zD + Vb

=
(1−G(pL + zL))2

Pr(v − t ≥ zL)g(pL + zL)
+ zL − zD + Vb

=
F (mL)∫mL

m 1−G(p(m, zL) + zL)f(m)dm

(1−G(pL + zL))2

g(pL + zL)
+ zL − zD + Vb.
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Then the partial derivative is,

∂π01

∂mL

=
f(mL)∫mL

m 1−G(p(m, zL) + zL)dF

(1−G(pL + zL))2

g(pL + zL)

− F (mL)

[
∫mL
m 1−G(p(m, zL) + zL)dF ]2

(1−G(pL + zL))2

g(pL + zL)
[(1−G(pL + zL))f(mL)

−
∫ mL

m
g(p(m, zL) + zL)(

∂

∂mL
p(m, zL) +

∂zL
∂mL

)f(m)dm]

+
F (mL)∫mL

m 1−G(p(m, zL) + zL)f(m)dm

( ∂
∂x

[
1−G
g

(x)]

· (1−G(x))− 1−G(x)

g(x)
g(x)

)
|x=pL+zL(

∂pL
∂mL

+
∂zL
∂mL

) +
∂zL
∂mL

=
f(mL)(1−G(pL + zL))2

g(pL + zL)
∫mL
m 1−G(p+ zL)dF

− (1−G(pL + zL))3F (mL)f(mL)

g(pL + zL)(
∫mL
m 1−G(p(m, zL) + zL)dF )2

+
(1−G(pL + zL))2F (mL)

g(pL + zL)(
∫mL
m 1−G(p+ zL)dF )2

·
∫ mL

m
g(p+ zL)

1

1− ∂
∂x(1−G

g )|x=p+zL

dF
∂zL
∂mL

− F (mL)(1−G(pL + zL))∫mL
m 1−G(p+ zL)dF

(1 +
∂zL
∂mL

) +
∂zL
∂mL

=I1 + I2 ·
∂zL
∂mL

,

where

I1 =
f(mL)(1−G(pL + zL))2

g(pL + zL)
∫mL
m 1−G(p+ zL)dF

∫mL
m G(pL + zL)−G(p+ zL)dF∫mL

m 1−G(p+ zL)dF

− F (mL)(1−G(pL + zL))∫mL
m 1−G(p+ zL)dF

,

I2 =1 +

(1−G(pL + zL))2F (mL)
∫mL
m g(p+ zL) f(m)

1− ∂
∂x

( 1−G
g

)|x=p+zL
dm

g(pL + zL)(
∫mL
m 1−G(p+ zL)dF )2

− F (mL)(1−G(pL + zL))∫mL
m 1−G(p+ zL)dF

.
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From

cL =
1

F (mL)

∫ mL

m

∫ v̄

p(m,zL)+zL

(v − p− zL)dG(v)dF (m),

we can calculate its derivative with respect to mL,

cLf(mL) =f(mL)

∫ v̄

pL+zL

(v − pL − zL)dG(v)

+

∫ mL

m

∫ v̄

p(m,zL)+zL

−(
∂p(m, zL)

∂mL
+

∂zL
∂mL

)dG(v)dF (m)

=f(mL)

∫ v̄

pL+zL

(v − pL − zL)dG

−
∫ mL

m

∫ v̄

p(m,zL)+zL

1

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

dG(v)dF (m) · ∂zL
∂mL

=f(mL)

∫ v̄

pL+zL

(v − pL − zL)dG−
∫ mL

m

1−G(p+ zL)

1− ∂
∂t(

1−G
g )|t=p+zL

dF · ∂zL
∂mL

.

The second equality is due to, ∂p(m,zL)
∂mL

= ∂
∂t(

1−G
g )|t=p(m,zL)+zL(∂p(m,zL)

∂mL
+ ∂zL

∂mL
). Hence,

∂p(m, zL)

∂mL
+

∂zL
∂mL

=
1

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

∂zL
∂mL

.

To calculate the partial derivative of the second term:

∂zL
∂mL

=
f(mL)(cL −

∫ v̄
pL+zL

(v − pL − zL)dG)

−
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

=

f(mL)
F (mL) [

∫mL
m

∫ v̄
p(m,zL)+zL

(v − p− zL)dGdF −
∫mL
m

∫ v̄
pL+zL

(v − pL − zL)dGdF ]

−
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

=

f(mL)
F (mL) [

∫mL
m

∫ v̄
pL+zL

pL − p(m, zL)dGdF +
∫mL
m

∫ pL
p(m,zL)

(x− p)dG(x)dF ]

−
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

=
f(mL)[

∫mL
m

pL − p(m, zL)dF · (1−G(pL + zL)) +
∫mL
m

∫ pL
p(m,zL)

(x− p)dGdF ]

−F (mL)
∫mL
m

1−G(p+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

=−
f(mL)[

∫mL
m

F (m)

1− ∂
∂x ( 1−G

g )|x=p+zL
dm · (1−G(pL + zL))]

F (mL)
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

−
f(mL)

∫mL
m

∫ pL
p(m,zL)

(x− p(m, zL))dG(x)dF ]

F (mL)
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF
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the last equality is due to

∫ mL

m
p(mL, zL)− p(m, zL)dF =

∫ mL

m

∫ mL

m

f(m)

1− ∂
∂x(1−G

g )|x=p(t,zL)+zL

dtdm

=

∫ mL

m

∫ t

m

f(m)

1− ∂
∂x(1−G

g )|x=p(t,zL)+zL

dmdt

=

∫ mL

m

F (m)

1− ∂
∂x(1−G

g )|x=p(m,zL)+zL

dm

And

∫ mL

m
G(p(mL, zL) + zL)−G(p+ zL)dF =

∫ mL

m

g(p(m, zL) + zL)F (m)

1− ∂
∂x(1−G

g )|x=p(m,zL)+zL

dm.

Therefore

∂π0

∂mL
= BL(I1 + I2

∂zL
∂mL

) + VsSf(mL)− ∂C

∂y
(BL, SL)Sf(mL),

and

I1 + I2
∂zL
∂mL

=
f(mL)(1−G(pL + zL))2

∫mL
m

g(p(m,zL)+zL)F (m)

1− ∂
∂x ( 1−G

g )|x=p(m,zL)+zL

dm

g(p(mL, zL) + zL)[
∫mL
m

1−G(p(m, zL) + zL)f(m)dm]2
− F (mL)(1−G(p(mL, zL) + zL))∫mL

m
1−G(p(m, zL) + zL)dF

− [
f(mL)(1−G(pL + zL))

∫mL
m

F (m)

1− ∂
∂x ( 1−G

g )|x=p(m,zL)+zL

dm

F (mL)
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

+
f(mL)

∫mL
m

∫ pL
p(m,zL)

(x− p)dG(x)dF

F (mL)
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF (m)
]

· [
(1−G(pL + zL))2F (mL)

∫mL
m

g(p(m,zL)+zL)f(m)

1− ∂
∂x ( 1−G

g )|x=p+zL
dm

g(p(mL, zL) + zL)(
∫mL
m

1−G(p(m, zL) + zL)dF )2
+ 1− F (mL)(1−G(pL + zL))∫mL

m
1−G(p(m, zL) + zL)dF

]

≤
f(mL)(1−G(pL + zL))2

∫mL
m

g(p(m,zL)+zL)F (m)

1− ∂
∂x ( 1−G

g )|x=p(m,zL)+zL

dm

g(pL + zL)[
∫mL
m

1−G(p(m, zL) + zL)f(m)dm]2
− F (mL)(1−G(pL + zL))∫mL

m
1−G(p(m, zL) + zL)dF

−
f(mL)(1−G(pL + zL))

∫mL
m

F (m)

1− ∂
∂x ( 1−G

g )|x=p(m,zL)+zL

dm

F (mL)
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t ( 1−G

g )|t=p(m,zL)+zL

dF

· [
(1−G(pL + zL))2F (mL)

∫mL
m

g(p(m,zL)+zL)f(m)

1− ∂
∂x ( 1−G

g )|x=p+zL
dm

g(pL + zL)(
∫mL
m

1−G(p(m, zL) + zL)dF )2
+

∫mL
m

g(p(m,zL)+zL)F (m)

1− ∂
∂x ( 1−G

g )|x=p(m,zL)+zL

dm∫mL
m

1−G(p(m, zL) + zL)dF
]
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where pL = p(mL, zL). The second inequality is due to

1− F (mL)(1−G(pL + zL))∫mL
m 1−G(p(m, zL) + zL)dF

=

∫mL
m G(pL + zL)−G(p(m, zL) + zL)dF∫mL

m 1−G(p(m, zL) + zL)dF
≥ 0

Need to show that I1 + I2
∂zL
∂mL

, which suffices to show that

(1−G(pL + zL))
∫mL
m

g(p(m,zL)+zL)F (m)

1− ∂
∂x

( 1−G
g

)|x=p+zL
dm

g(pL + zL)
∫mL
m 1−G(p+ zL)f(m)dm

≤F (mL)

f(mL)
+

(1−G(pL + zL))2
∫mL
m

F (m)

1− ∂
∂x

( 1−G
g

)|x=p+zL
dm
∫mL
m

g(p+zL)f(m)

1− ∂
∂x

( 1−G
g

)|x=p+zL
dm

g(pL + zL)
∫mL
m

1−G(p+zL)

1− ∂
∂t

( 1−G
g

)|t=p+zL
dF
∫mL
m 1−G(p+ zL)dF

+

∫mL
m

F (m)

1− ∂
∂x

( 1−G
g

)|x=p(m,zL)+zL

dm
∫mL
m

g(p(m,zL)+zL)F (m)

1− ∂
∂x

( 1−G
g

)|x=p+zL
dm

F (mL)
∫mL
m

1−G(p(m,zL)+zL)

1− ∂
∂t

( 1−G
g

)|t=p(m,zL)+zL

dF

which is equivalent to

1−G(pL + zL)

g(pL + zL)

∫ mL

m

g(p+ zL)F (m)

1− ∂
∂x(1−G

g )|x=p(m,zL)+zL

dm

∫ mL

m

1−G(p+ zL)

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

dF

≤F (mL)

f(mL)

∫ mL

m

1−G(p) + zL)

1− ∂
∂t(

1−G
g )|t=p+zL

dF

∫ mL

m
1−G(p+ zL)dF

+
(1−G(pL + zL))2

g(pL + zL)

∫ mL

m

F (m)

1− ∂
∂x(1−G

g )|x=p+zL

dm

∫ mL

m

g(p(m, zL) + zL)

1− ∂
∂x(1−G

g )|x=p+zL

dF

+
1

F (mL)

∫ mL

m

F (m)

1− ∂
∂x(1−G

g )|x=p+zL

dm

·
∫ mL

m

g(p(m, zL) + zL)F (m)

1− ∂
∂x(1−G

g )|x=p+zL

dm

∫ mL

m
1−G(p+ zL)dF

106



Notice under the condition f ′(m) ≤ 0, we have

1−G(pL + zL)

g(pL + zL)

∫ mL

m

g(p+ zL)F (m)

1− ∂
∂x(1−G

g )|x=p+zL

dm

∫ mL

m

1−G(p+ zL)

1− ∂
∂t(

1−G
g )|t=p+zL

dF

≤F (mL)

∫ mL

m

1−G(p+ zL)

1− ∂
∂x(1−G

g )|x=p+zL

dm

∫ mL

m

1−G(p(m, zL) + zL)

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

dF

≤F (mL)

f(mL)

∫ mL

m

(1−G(p(m, zL) + zL))f(m)

1− ∂
∂x(1−G

g )|x=p+zL

dm

∫ mL

m

1−G(p+ zL)

1− ∂
∂t(

1−G
g )|t=p+zL

dF

≤F (mL)

f(mL)

∫ mL

m
(1−G(p(m, zL) + zL))dF

∫ mL

m

1−G(p(m, zL) + zL)

1− ∂
∂t(

1−G
g )|t=p+zL

dF

Hence I1 + I2
∂zL
∂mL

≤ 0 Therefore

∂π0

∂mL
= BL(I1 + I2

∂zL
∂mL

) + Sf(mL)(Vs −
∂C

∂y
(BL, SL)) ≤ 0.

B.4. Proof of Theorem 2.5.1

WL(cL) =

∫ ∫
v−t≥zL v −mdGdF̃L

1− ρL
− cL

1− ρL

=

∫ ∫
v−t≥zL t−mdGdF̃L

1− ρL
+ zL

=

∫ 1−G(p+zL))2

g(p+zL) dF̃L

1− ρL
+ zL

(B.2)

Suppose that m∗L is the optimal threshold strategy selected by the platform such that

m∗L = arg maxπ0(mL).
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Then m∗L is a function of cL, and

∂p

∂cL
=

∂
∂t(

1−G
g )|t=p(m,zL)+zL ·

∂zL
∂cL

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

∂p

∂cL
+
∂zL
∂cL

=

∂zL
∂cL

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

∂pL
∂cL

+
∂zL
∂cL

=

∂m∗L
∂cL

+ ∂zL
∂cL

1− ∂
∂t(

1−G
g )|t=pL+zL

From

cLF (m∗L) =

∫ m∗L

m

∫ v̄

p(m,zL)+zL

(v − p− zL)dG(v)dF (m),

we can calculate its derivative with respect to cL,

cLf(m∗L)
∂m∗L
cL

+ F (m∗L) =

∫ m∗L

m

∫ v̄

p(m,zL)+zL

−(
∂p

∂cL

+
∂zL
∂cL

)dGdF +

∫ v̄

pL+zL

(v − pL − zL)dG · f(m∗L)
∂m∗L
∂cL

=

∫ m∗L

m

∫ v̄

p(m,zL)+zL

−
∂zL
∂cL

1− ∂
∂t(

1−G
g )|t=p(m,zL)+zL

dGdF

+

∫ v̄

pL+zL

(v − pL − zL)dG · f(m∗L)
∂m∗L
∂cL

=

∫ m∗L

m
− 1−G(x)

1− ∂
∂x(1−G

g )
|x=p(m,zL)+zLdF ·

∂zL
∂cL

+

∫ v̄

pL+zL

(v − pL − zL)dG · f(m∗L)
∂m∗L
∂cL

.

Hence

∂zL
∂cL

=
(
∫ v̄
pL+zL

(v − pL − zL)dG− cL)f(m∗L)
∂m∗L
∂cL
− F (m∗L)∫m∗L

m
1−G(x)

1− ∂
∂t

( 1−G
g

)
|x=p(m,zL)+zLdF

=−
∂m∗L
∂cL

f(m∗L)

F (m∗L) [(1−G(pL + zL))
∫m∗L
m (pL − p)dF +

∫m∗L
m

∫ pL
p (v − p)dGdF ] + F (m∗L)∫m∗L

m
1−G(x)

1− ∂
∂x

( 1−G
g

)
|x=p(m,zL)+zLdF
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For seller registered on the platform

∂WL

∂cL
=
∂zL
∂cL

+

(1−G(pL+zL))2

g(pL+zL) f(m∗L)∫m∗L
m

1−G(p+ zL)dF

∂m∗L
∂cL

+

∫
∂
∂x [ (1−G(x))2

g(x) ]|x=p+zL · (
∂p
∂cL

+ ∂zL
∂cL

)dF∫m∗L
m

1−G(p+ zL)dF

−

∫ (1−G(p+zL))2

g(p+zL) dF

(
∫m∗L
m

1−G(p+ zL)dF )2
[(1−G(pL + zL))f(m∗L)

∂m∗L
∂cL

−
∫ m∗L

m

g(p+ zL)(
∂p

∂cL
+
∂zL
∂cL

)dF ]

=
∂m∗L
∂cL

[

(1−G(pL+zL))2

g(pL+zL) f(m∗L)∫m∗L
m

1−G(p+ zL)dF
−

∫ (1−G(p+zL))2

g(p+zL) dF

(
∫m∗L
m

1−G(p+ zL)dF )2
(1−G(pL + zL))f(m∗L)]

+
∂zL
∂cL

[

∫
∂
∂x [ (1−G(x))2

g(x) ]|x=p+zL
1

1− ∂
∂t ( 1−G

g )|x=p+zL
dF∫m∗L

m
1−G(p+ zL)dF

+

∫ (1−G(p+zL))2

g(p+zL) dF

(
∫m∗L
m

1−G(p+ zL)dF )2

∫ m∗L

m

g(p+ zL)

1− ∂
∂t (

1−G
g )|x=p+zL

dF + 1]

=
∂m∗L
∂cL

(1−G(pL + zL))f(m∗L)

(
∫m∗L
m

1−G(p+ zL)dF )2
[
1−G(pL + zL)

g(pL + zL)

∫ m∗L

m

1−G(p+ zL)dF

−
∫

(1−G(p+ zL))2

g(p+ zL)
dF ]

+
∂zL
∂cL

[

∫ (1−G(p+zL))2

g(p+zL) dF

(
∫m∗L
m

1−G(p+ zL)dF )2

∫ m∗L

m

g(p+ zL)

1− ∂
∂t (

1−G
g )|x=p+zL

dF ]

Here, ∫ (1−G(p+zL))2

g(p+zL) dF

(
∫m∗L
m 1−G(p+ zL)dF )2

∫ m∗L

m

g(p+ zL)

1− ∂
∂t(

1−G
g )|x=p+zL

dF > 0.

Moreover by monotonicity of 1−G(x)
g(x) ,

1−G(pL + zL)

g(pL + zL)

∫ m∗L

m
1−G(p+ zL)dF −

∫
(1−G(p+ zL))2

g(p+ zL)
dF ≤ 0.

If
∂m∗L
∂cL
≥ 0, we have ∂zL

∂cL
< 0, therefore

∂WL

∂cL
≤ 0.
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APPENDIX TO CHAPTER 3

C.1. Proof of Theorem 3.2.1 under the choice “α + β”

Under α+ β commission fees:

b propose to s : (vbs − (1 + β)p, (1− α)p− cs)

s proposes to b: (vbs − (1 + β)p, (1− α)p− cs).

I provide a characterization of MPE payoffs and strategies. Suppose agent of type i has

discounting factor δi ∈ (0, 1). The Markov state in this model is the network induced by

players who did not reach agreement, and the commission fees, the matchmaker’s identity

and the selection of a link and a proposer.

Denote by ht a complete history of the game up to (not including) time t, which is the

choice of payment schemes, a sequence of t− 1 pairs of proposers and responders in G with

corresponding proposals and responses, payment to the middleman if possible and whether

the matched pair exiting the market with an agreement are replaced by an exactly new pair

of traders at the same position. The history ht uniquely determines the set of players V (ht)

still active at time t. Denote by G(ht) the subnetwork of G induced by V (ht). Denote by H

the set of any possible complete histories at t ≥ 1 and G the set of subnetworks of G induced

by any complete histories, i.e., G = ∪h∈H G(h). The history (ht;1M ) denotes the history ht

followed by the matching maker being middleman M or nature ( 1M = 1 if it’s middleman

who selects the pair at time t and 0 otherwise). The history (ht;1M ; i → j) consists of ht

followed by nature/middleman selecting i to propose to j, and (ht;1M ; i→ j;x) consists of

additionally the proposed transfer x ∈ R made by i to j.

A strategy profile {σ} is a Markov (stationary) strategy profile if for any 1 ≤ i ≤ N ,

any ht, h
′
t′ ∈H s.t. G(ht) = G(h′t′),

σα+β
i (ht;1M ; i→ j) = σα+β

i (h′t′ ;1M ; i→ j),
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σα+β
i (ht;1M ; j → i;x) = σα+β

i (h′t′ ;1M ; j → i;x)

σα+β
M (ht;1M ) = σα+β

M (h′t′ ;1M )

A Markov strategy σ is Markov Perfect Equilibrium if it is Markov (stationary) strategy

and subgame perfect.

Given a set of network G , a collection of Markov strategy profile σ for the respective game

Γα+β(G) is subgame consistent if for any pair of networks G,G′ ∈ G , the Markov strategy

profiles σα+β(G) and σα+β(G′), conditional the initial state G and α+ β, induce the same

behavior in any pair of identical subgames of Γα+β(G′) and Γα+β(G). Formally, subgame

consistency of (Γα+β(G))G∈G if for any pair of networks G,G′ ∈ G , and any ht, h
′
t′ ∈ H ,

s.t., G(ht) = G′(h′t′),

σi(G)(ht;1M ; i→ j) = σi(G
′)(h′t′ ;1M ; i→ j),

σi(G)(ht;1M ; j → i;x) = σi(G
′)(h′t′ ;1M ; j → i;x)

σM (G)(ht;1M ) = σM (G′)(h′t′ ;1M )

I use a fixed point argument to give an non-constructive proof of the existence of MPEs.

Denote u the vector of equilibrium payoff induced by an Markov strategy profile σ of the

game Γα+β(G). By definition, any MPE σ∗ must belong to a subgame consistent collection

of MPEs σ|G′ of the respective subgames G′ ∈ G . In particular, when Γα+β(G) is played

according to MPE σ∗(G), every player i ∈ B ∪ S has ex ante payoffs ui(G, σ
∗) before any

pairs are selected, and uk(G	{i, j}, σ∗) at the beginning of any subgame before which only

i and j reached an agreement (k 6= i, j).

Fix a history ht along which no agreement has been reached, that is G(ht) = G0. Suppose

now that it is middleman’s turn to select a bargaining pair e ∈ E. After the matched pair is

realized, suppose is (b, s), with b being the proposer, in the subgame following (ht; b→ s, x),
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it must be that the strategy σs(ht; b → s, x) specifies that player s accepts any offer s.t.

(1 − α)p − cs > δsus, and reject any offer s.t. (1 − α)p − cs < δsus, and may accept with

positive probability the offer p = cs+δsus
1−α . Then by subgame perfection, player b does not

offer to pay a price more than cs+δsus
1−α . On the other hand, the offer p proposed by b must

satisfy vbs − (1 + β)p ≥ δbus, i.e., p ≤ vbs−δbub
1+β .

Let qbs be the probability ( conditional on (ht;1M = 1; b → s)) of the joint event that b

offers min{ cs+δsus1−α , vbs−δbub1+β } to s and the offer is accepted. The payoff of player k 6= b, s at

the beginning of the next period conditional on (ht;1M = 1; b→ s)) is qbs(1− γ)δkuk(G0	

{b, s}) + [qbsγ + (1− qbs)]δkuk(G0).

Case 1. vbs − 1+β
1−α(δsus + cs) > δbub.

Conditional on (ht; b → s), it must be that qbs = 1 . To see this, if q̃bs < 1, then b’s

expected payoff conditional on offering p = cs+δsus
1−α is qbs(vbs − 1+β

1−α(δsus + cs)) + (1 −

qbs)δbus < vbs − 1+β
1−α(δsus + cs), while it is more profitable to offer p = cs+δsus

1−α + ε with

payoff vbs − 1+β
1−α(δsus + cs) − ε(1 + β), for sufficiently small ε > 0. And it’s obvious that

offers p smaller than cs+δsus
1−α are not optimal for i since they are rejected with certainty

and yields cs+δsus
1−α < vbs − 1+β

1−α(δsus + cs). Hence s has no best response to b’s equilibrium

strategy when qij < 1, a contradiction. Hence qbs = 1. Moreover Pr(‘Y es′|(ht;1M = 1; b→

s; p)) = qbs = 1, for p = cs+δsus
1−α .

Case 2. vbs − 1+β
1−α(δsus + cs) < δbub.

By a similar fashion, one could show that qbs = 0 = Pr(‘Y es′|(ht; b → s; p)) since b’s offer

is no more than vbs−δbub
1+β < cs+δsus

1−α .

Case 3. vbs − 1+β
1−α(δsus + cs) = δbub.

When b is chosen to propose a bid-price to s, whether they reach an agreement or not, the

payoff for both agents are respectively δbub and δsvs, i.e., any value qbs ∈ [0, 1] support the

(ht;1M = 1; b→ s; p). Since b and s are indifferent between any p ≤ cs+δsus
1−α ,WOLG assume
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that qbs = Pr(‘Yes’|(ht;1M = 1; b→ s; p)).

Similarly, suppose now that it is middleman’s turn to pick a bargaining pair e ∈ E. After

the matched pair is realized, suppose is (s, b), with s being the proposer, in the subgame

following (ht;1M = 1; s → b; p), it must be that the strategy σs(G0)(ht;1M = 1; b → s; p)

specifies that player b accepts any price p s.t. vbs−(1+β)p > δbub, and reject any price p s.t.

vbs− (1 + β)p < δbub, and may accept with some probability the offer p = vbs−δbub
1+β . Similar

argument can be applied to the induction of qsb, with Pr(‘Y es′|(ht;1M = 1; b→ s; p)) = qsb

where p = max{ cs+δsus1−α , vbs−δbub1+β }.

Hence for any mixed matching strategy w by the middleman M over matched pair E, the

continuation payoff {ui(G0)} satisfy,

ub =
∑
s

λwbsqbs(vbs −
1 + β

1− α
(δsus + cs)) + (1− λ)pbsq̃bs(vbs − (δsus + cs))

+
∑
s

(
(λwbs(1− qbs) + (1− λ)pbs(1− q̃bs)

)
δbub

+
∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

(C.1)

us =
∑
b

λwsbqsb(
1− α
1 + β

(vbs − δbub)− cs) + (1− λ)psbq̃sb(vbs − δbub − cs)

+
∑
b

(
(λwsb(1− qsb) + (1− λ)psb(1− q̃sb)

)
δsus

+
∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=s

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]

(C.2)
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where

qbs =



1 if vbs −
1 + β

1− α
(δsus + cs) > δbub

[0, 1] if vbs −
1 + β

1− α
(δsus + cs) = δbub,

0 if vbs −
1 + β

1− α
(δsus + cs) < δbub.

(C.3)

And

qsb =



1 if
1− α
1 + β

(vbs − δbub)− cs > δsus

[0, 1] if
1− α
1 + β

(vbs − δbub)− cs = δsus,

0 if
1− α
1 + β

(vbs − δbub)− cs < δsus.

(C.4)

Notice that

vbs −
1 + β

1− α
(δsus + cs) > δbub ⇐⇒

1− α
1 + β

(vbs − δbub)− cs > δsus}.

Denote by q̃ij = Pr(‘Y es′|(ht;1M = 0; i → j; p)) where p = min{cs + δsus, vbs − δbub} if

i ∈ B and p = max{cs + δsus, vbs − δbub} if i ∈ S, then by similar arguments,

q̃sb =


1 if vb − cs > δbub + δsus

[0, 1] if vb − cs = δbub + δsus,

0 if vb − cs < δbub + δsus.

(C.5)

q̃bs =


1 if vb − cs > δbub + δsus,

[0, 1] if vb − cs = δbub + δsus,

0 if vb − cs < δbub + δsus.

(C.6)

Since the middleman is maximizing her discounted aggregate profit when deciding which
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link to pick from G,

πM (G)

=(1− δM )λmax
b,s

max{qbs[
α+ β

1− α
(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G),

qsb[
α+ β

1 + β
(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] +

(
qsbγ + 1− qsb

)
δMπM (G)}

+ (1− δM )(1− λ)
∑

i,j∈B∪S
pij [q̃ij(1− γ)δMπM (G	 {i, j}) + (q̃ijγ + 1− q̃ij)δMπM (G)],

where

wbs + wsb > 0⇒ πM (G)

=(1− δM )λmax{qbs[
α+ β

1− α (δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G),

qsb[
α+ β

1 + β
(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] +

(
qsbγ + 1− qsb

)
δMπM (G)}

+ (1− δM )(1− λ)
∑

i,j∈B∪S

pij [q̃ij(1− γ)δMπM (G	 {i, j}) + (q̃ijγ + 1− q̃ij)δMπM (G)].

This yields:

πM (G)/(1− δM )

= max{max
b,s

λqbs[
α+β
1−α (δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (1− λ)

∑
i,j∈B∪S

pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qbs)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

. . . ,max
b,s

λqsb[
α+β
1+β

(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qsb)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

}

Let gij(u) = α+β
1−α (δjuj + cj) if i ∈ B, j ∈ S, and gij(u) = α+β

1+β (vij − δjuj) if i ∈ S, j ∈ B.

115



f(u,q, q̃)

={(u′,q′, q̃′)|q̃′bs = q̃′sb = 1(0) if vbs − cs > (<)δbub + δsus,

and q̃′sb, q̃
′
bs ∈ [0, 1] if vbs − cs = δbub + δsus,

q′sb = q′bs = 1(0) if vbs −
1 + β

1− α
(δsus + cs) > (<)δbub, and q′sb, q

′
bs ∈ [0, 1] otherwise ;

∃w ∈ ∆, s.t.
∑

i,j∈B∪S
wij ≤ 1, and

{ij|wij > 0}

⊆
λqij [gij(u) + (1− γ)δMπM (G	 {i, j})] + (1− λ)

∑
i,j∈B∪S

pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qijγ + 1− qij)− (1− λ)δM
∑

k,l∈B∪S
pkl(q̃klγ + 1− q̃kl)

;

u′b =
∑
s

λwbsqbs max{vb −
1 + β

1− α
(δsus + cs), δbub}+ (1− λ)pbsq̃bs max{vb − (δsus + cs), δbub}

+
∑
s

(
(λwbs(1− qbs) + (1− λ)pbs(1− q̃bs)

)
δbub

+
∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

(λwkjqkj + (1− λ)pkj q̃kj)δbub(G0 	 {j, k}) + (λwkj(1− qkj) + (1− λ)pkj(1− q̃kj))δbub

u′s =
∑
b

λwsbqsb max{1− α
1 + β

(vb − δbub)− cs, δsus}+ (1− λ)psbq̃sb max{vb − δbub − cs, δsus}

+
∑
b

(
(λwsb(1− qsb) + (1− λ)psb(1− q̃sb)

)
δsus

+
∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=s

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]}

First need to show that f has fixed point. Let v̄ = maxb,s(vbs − cs).

Lemma C.1.1. f : [0, v̄]B∪S × [0, 1]E × [0, 1]E → [0, v̄]B∪S × [0, 1]E × [0, 1]E has a fixed

point.

Proof.

Claim 1. ∀q, q̃,u, f(u,q, q̃) is non-empty and convex.
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Proof of Claim 1: It’s easy to see that f(u,q, q̃) is non-empty.

∀u,q, q̃, and (u′,q′, q̃′), (u′′,q′′, q̃′′) ∈ f(u,q, q̃), η ∈ [0, 1],

ηq̃′bs + (1− η)q̃′′bs = ηq̃′sb + (1− η)q̃′′sb = 1(0) if vbs > (<)δbub + δsus.

ηq′sb + (1 − η)q′′sb = ηq′bs + (1 − η)q′′bs = 1(0) if vbs − 1+β
1−α(δsus + cs) > (<)δbub, and ηq′sb +

(1− η)q′′sb, ηq
′
bs + (1− η)q′′bs ∈ [0, 1] otherwise.

Suppose w′,w′′ are corresponding ws in the mapping that maps to u′,u′′,

then supp(w′), supp(w′′) all belong to

arg max
i,j

λqij [gij(u) + (1− γ)δMπM (G	 {i, j})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qijγ + 1− qij)− (1− λ)δM
∑

k,l∈B∪S
pkl(q̃klγ + 1− q̃kl)

,

hence {ij|ηw′ij + (1− η)w′′ij > 0} belong to the set

arg max
i,j

λqij [gij(u) + (1− γ)δMπM (G	 {i, j})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qijγ + 1− qij)− (1− λ)δM
∑

k,l∈B∪S
pkl(q̃klγ + 1− q̃kl)

.

Therefore (ηu′ + (1− η)u′′, ηq′ + (1− η)q′′, ηq̃′ + (1− η)q̃′′) ∈ Γ(u,q, q̃)

Claim 2. f has closed graph.

Proof of Claim 2: For any (xn,yn, zn) ∈ f(un,qn, q̃n), where

(un,qn, q̃n)→ (u,q, q̃), (xn,yn, zn)→ (x,y, z).

If vbs − cs > δbub + δsus, there exists some n1 > 0, s.t.

vbs − cs > δsu
n
s + δbu

n
b , ∀n > n1

thus znsb = znbs = 1, ∀n > n1,and zbs = zsb = 1.

If vbs − cs < δbub + δsusj, there exists some n2 > 0, s.t.

vbs − cs < δbu
n
b + δsu

n
s , ∀n > n2,
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and znbs = znsb = 0, ∀n > n2, thus zbs = zsb = 0.

If vbs − cs = δbub + δsus, zbs, zsb ∈ [0, 1] is trivial. Similarly, we can prove that

ysb = ybs = 1(0) if vbs − 1+β
1−α(δsus + cs) > (<)δbub, and ysb, ybs ∈ [0, 1] otherwise .

Next let

ζij(u,q, q̃) =

λqij [gij(u) + (1− γ)δMπM (G	 {i, j})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qijγ + 1− qij)− (1− λ)δM
∑

k,l∈B∪S
pkl(q̃klγ + 1− q̃kl)

.

It’s obvious that for each (un,qn, q̃n), the corresponding wn satisfies the following

wnij( max
i,j∈B∪S

ζij(u
n,qn, q̃n)− ζij(un,qn, q̃n)) = 0,∀n, i, j ∈ B ∪ S.

Suppose that a subsequence wnk converges to w. Since max ζij(·), ζij(·) are all continuous,

let k →∞, we have

wij( max
i,j∈B∪S

ζij(u,q, q̃)− ζij(u,q, q̃)) = 0, ∀i, j ∈ B ∪ S.

Thus {ij|wij > 0} ⊆

arg max
ij

λqij [gij(u) + (1− γ)δMπM (G	 {i, j})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qijγ + 1− qij)− (1− λ)δM
∑

k,l∈B∪S
pkl(q̃klγ + 1− q̃kl)

.

Notice that xn is a continuous function of (un,qn, q̃n,wn), hence (x,y, z) ∈ f(u,q, q̃).

Claim 3. Γ maps the compact set [0, v̄]B∪S × [0, 1]E × [0, 1]E to itself ( given that ∀i, j,

ui(G	 i, j) ∈ [0, v̄])

Therefore by Kakutatni’s fixed point theorem, f has a fixed point

(u,q, q̃) ∈ f(u,q, q̃).
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At the begining of the subgame ht when no one has reached an agreement, given u the

players’ expected payoff starting at t, f computes agents’ best response q, q̃ to u and

middleman’s best response w to agents’ strategies q, and the corresponding new expected

payoff u′ since they depend on the strategy of the middleman. Formally,

Lemma C.1.2. u∗ is a Markov Perfect equilibrium payoff vector if there exists a collection

of subgame consistent MPE of the game {Γα+β(G)}G⊂G0 with payoffs {u∗(G)}G⊂G0 and

q, q̃∗, such that (u∗,q∗, q̃∗) ∈ f(u∗,q∗, q̃∗).

Proof. Suppose that the collection of subgame consistent MPE of the game {Γα+β(G)}G⊂G0

has payoffs {u∗(G)}G⊂G0 . If (u∗,q∗, q̃∗) ∈ f(u∗,q∗, q̃∗), then there exists w∗, s.t.

(i) q, q̃ satisfies Eq(C.3), (C.4), (C.5), (C.6).

(ii) w is middleman’s best response to q, q̃, proposals and responses. given σ∗(G),∀G ⊂

G0.

(iii) u satisfies Eq(C.1), (C.2) , that is, u are the corresponding continuation payoffs (ex

ante payoffs for network G0).

Then we construct the following strategy profile and prove it is an MPE with corresponding

MPE payoff u∗. First define the strategies for histories ht along which no agreement has

occurred. Recall that G(ht) denotes the network induced by the players remaining after

the ex post history ht. Construct time-t strategy of each player according to the time-

0 behavior specified by σ∗(G0).1 For histories along which no agreement has occurred,

σ∗(G(ht)) specifies that

• Middleman choose matching pair (i, j) with probability w∗ij .

• For buyer b, when chosen by the middleman to propose to seller s, he offers a bid-

price p = min{ cs+δsus1−α , vbs−δbub1+β }. If chosen by nature to propose to seller s, he offers

1Formally, (σ(G))i(ht; i → j) = (σ(G))i(h0; i → j), (σ(G))j(ht; i → j, x) = (σ(G))i(h0; i → j, x), where
h0 = ∅, G = G(ht).
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p = min{cs + δsus, vbs − δbub}.

• Similarly, for seller s, when chosen by the middleman to propose to buyer b, he offers

an ask-price p = max{ cs+δsus1−α , vbs−δbub1+β }. If chosen by nature to propose to seller s, he

offers p = max{cs + δsus, vbs − δbub}.

• When buyer b responds to the offer p from seller s: if intermediated by the middleman,

he accepts any offer s.t., p < vbs−δbub
1+β , and rejects any p > vbs−δbub

1+β , and accept an offer

of p = vbs−δbub
1+β with probability q∗sb; if intermediated by nature, he accepts any offer

s.t., p < vbs − δbub, and rejects any p > vbs − δbub, and accept an offer of p = vbs − δbub

with probability q̃∗sb.

• Similarly, when seller s responds to the purchase offer p from buyer b: if intermediated

by the middleman, he accepts any offer s.t., p > cs+δsus
1−α , and rejects any p < cs+δsus

1−α ,

and accept an offer of p = cs+δsus
1−α with probability q∗bs; if intermediated by nature, he

accepts any offer s.t., p > cs + δsus, and rejects any p < cs + δsus, and accept an offer

of p = cs + δsus with probability q̃∗bs.

Given the collection of subgame consistency guarantees that under (σ∗(G))G⊂G0 the ex-

pected payoffs of any subgames are u(G).

Lemma C.1.3 (Mailath & Samuelson (2006) Proposition 5.7.1). A strategy profile is sub-

game perfect in a dynamic game if and only if there are no profitable one-shot deviations.

Based on the definition of f , everyone is best responding at period t: there is no profitable

deviation for all players in this stage game. It’s then easy to verify that u∗ are indeed the

equilibrium payoff by the strategy profile conditional on ht.

We now need to show that Lemma C.1.2 implies the existence of MPEs. We prove a sub-

game consistent collection of MPEs for the game {Γα+β(G)}G⊆G (n), where G (n) denotes the

subset of subnetworks in G with at most n vertices. The proof proceed by induction on n.

For n = 0, 1 it’s trivial. Suppose we proved the statement for all values smaller than n, and
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proceed to proving the case n. By induction hypothesis, there exists a subgame consistent

collection of MPEs (σ∗(G′))G′∈G (n−1) of the corresponding games {Γα+β(G)}G⊆G (n−1). Fix

a network G ∈ G (n) \ G (n − 1), S(G) = {G′ : G′ ⊂ G} ⊆ G (n − 1). Therefore there exist

MPEs (σ∗(G′))G′∈S(G) for the games {Γα+β(G)}G′∈S(G) that are subgame consistent, hence

we can use their MPE payoffs to define f . Suppose now that f has a fixed point (u∗,q∗, q̃∗),

with induced σ∗(G) of the game Γα+β(G) so that (σ∗(G′))G′∈G (n−1)∪{G} is subgame con-

sistent. If we append all MPE σ∗(G) of G ∈ G (n) \ G (n − 1) to (σ∗(G′))G′∈G (n−1), the

resulting collection of MPEs (σ∗(G′))G′∈G (n) is also subgame consistent. The the collection

of subgame consistent Markovian strategy profile are a MPE of the game Γα+β(G).

C.2. Proof of Theorem 3.4.1 under the choice “α or β”

This time:

b propose to s: (vbs − (1 + β)p, p− cs)

s proposes to b: (vbs − p, (1− α)p− cs).

ub =
∑
s

λwbsqbs(vb − (1 + β)(cs + δsus)) + (1− λ)pbsq̃bs(vb − (δsus + cs))

+
∑
s

(
(λwbs(1− qbs) + (1− λ)pbs(1− q̃bs)

)
δbub

+
∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

(C.7)
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us =
∑
b

λwsbqsb((1− α)(vb − δbub)− cs) + (1− λ)psbq̃sb(vb − δbub − cs)

+
∑
b

(
(λwsb(1− qsb) + (1− λ)psb(1− q̃sb)

)
δsus

+
∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]

(C.8)

and

qbs =


1 if vbs − (1 + β)(cs + δsus) > δbub

[0, 1] if vbs − (1 + β)(cs + δsus) = δbub,

0 if vbs − (1 + β)(cs + δsus) < δbub.

(C.9)

And qbs = Pr(‘Y es′|(ht;1M = 1; b→ s; p)) where p = min{cs+ δsus,
vbs−δbub

1+β }. Similarly we

have,

qsb =


1 if (1− α)(vb − δbub)− cs > δsus

[0, 1] if (1− α)(vb − δbub)− cs = δsus,

0 if (1− α)(vb − δbub)− cs < δsus.

(C.10)

where qsb = Pr(‘Y es′|(ht;1M = 1; s → b; p)) where p = max{ cs+δsus1−α , vbs − δbub}. When

nature selects bargaining pair,

q̃sb =


1 if vb − cs > δbub + δsus

[0, 1] if vb − cs = δbub + δsus,

0 if vb − cs < δbub + δsus.

(C.11)

q̃bs =


1 if vb − cs > δbub + δsus,

[0, 1] if vb − cs = δbub + δsus,

0 if vb − cs < δbub + δsus.

(C.12)

122



From the middle man’s perspective: the middleman must maximize its total discounted

payoff: that is

πM (G)

=(1− δM )λmax
b,s

max{qbs[β(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G),

qsb[α(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] +
(
qsbγ + 1− qsb

)
δMπM (G)}

+ (1− δM )(1− λ)
∑

i,j∈B∪S
pij [q̃ij(1− γ)δMπM (G	 {i, j}) + (q̃ijγ + 1− q̃ij)δMπM (G)],

And

wbs > 0⇒ πM (G) =λqbs[β(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + λ(qbsγ + 1− qbs)δMπM (G)

+ (1− λ)
∑

i,j∈B∪S
pij [q̃ij(1− γ)δMπM (G	 {i, j}) + (q̃ijγ + 1− q̃ij)δMπM (G)]

wsb > 0⇒ πM (G) =λqsb[α(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] + λ(qsbγ + 1− qsb)δMπM (G)

+ (1− λ)
∑

i,j∈B∪S
pij [q̃ij(1− γ)δMπM (G	 {i, j}) + (q̃ijγ + 1− q̃ij)δMπM (G)]

This yields:

πM (G)/(1− δM )

= max{max
b,s

λqbs[β(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qbs)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

. . . ,max
b,s

λqsb[α(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qsb)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

}
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Let gij(u) = β(δjuj + cj) if i ∈ B, j ∈ S, and gij(u) = α(vij − δjuj) if i ∈ S, j ∈ B.

f(u,q, q̃)

={(u′,q′, q̃′)|q̃′bs = q̃′sb = 1(0) if vbs − cs > (<)δbub + δsus,

and q̃′sb, q̃
′
bs ∈ [0, 1] if vbs − cs = δbub + δsus,

q′bs = 1(0) if vbs − (1 + β)(δsus + cs) > (<)δbub, and q′bs ∈ [0, 1] otherwise ;

q′sb = 1(0) if (1− α)(vbs − δbub) > (<)δsus + cs, and q′bs ∈ [0, 1] otherwise ;

∃w ∈ ∆, s.t.
∑

i,j∈B∪S

wij ≤ 1, and

{ij|wij > 0} ⊆

λqij [gij(u) + (1− γ)δMπM (G	 {i, j})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qijγ + 1− qij)− (1− λ)δM
∑

k,l∈B∪S
pkl(q̃klγ + 1− q̃kl)

;

and u′b =
∑
s

λwbsqbs max{vb − (1 + β)(δsus + cs), δbub}+ (1− λ)pbsq̃bs max{vb − (δsus + cs), δbub}

+
∑
s

(
(λwbs(1− qbs) + (1− λ)pbs(1− q̃bs)

)
δbub +

∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

(λwkjqkj + (1− λ)pkj q̃kj)δbub(G0 	 {j, k}) + (λwkj(1− qkj) + (1− λ)pkj(1− q̃kj))δbub

u′s =
∑
b

λwsbqsb max{(1− α)(vb − δbub)− cs, δsus}+ (1− λ)psbq̃sb max{vb − δbub − cs, δsus}

+
∑
b

(
(λwsb(1− qsb) + (1− λ)psb(1− q̃sb)

)
δsus +

∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=s

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]}

By similar argument, one can show that

Lemma C.2.1. f : [0, v̄]B∪S × [0, 1]E × [0, 1]E → [0, v̄]B∪S × [0, 1]E × [0, 1]E has a fixed

point (u,q, q̃) ∈ f(u,q, q̃).

By the definition of Γ, there exists w, s.t.

1. q, q̃ satisfies Eq (C.9), (C.10), (C.11), (C.12).

2. w is middleman’s best response to q, q̃ and proposals.

3. u satisfies Eq(C.15), (C.16) , that is, u is the corresponding continuation payoff vector.
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C.3. Proof of Proposition 3.2.2

Since the middleman is maximizing her discounted aggregate profit when deciding which

link to pick from G,

πM (G)

=(1− δM )λmax{qbs[
α+ β

1− α
(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G),

qsb[
α+ β

1 + β
(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] +

(
qsbγ + 1− qsb

)
δMπM (G)}

+ (1− δM )(1− λ)
∑

i,j∈B∪S
pij [q̃ij(1− γ)δMπM (G	 {i, j}) + (q̃ijγ + 1− q̃ij)δMπM (G)].

For each pair of (b, s), if vbs − 1+β
1−α(δsus + cs) > δbub, the difference ∆ between selecting

b→ s and selecting s→ b is,

∆ =qbs[
α+ β

1− α
(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G)

− qsb[
α+ β

1 + β
(vbs − δbub) + (1− γ)δMπM (G	 {b, s})]−

(
qsbγ + 1− qsb

)
δMπM (G)

=
α+ β

1− α
(δsus + cs)−

α+ β

1 + β
(vbs − δbub)

<0

If vbs − 1+β
1−α(δsus + cs) = δbub, ∆ = (qbs − qsb)[α+β

1−α (δsus + cs) + (1− γ)δMπM (G	 {b, s})−

(1− γ)δMπM (G)].

If vbs − 1+β
1−α(δsus + cs) < δbub, ∆ = 0, qbs = 0

In any of the situations, we have

wbsqbs(vbs − δbub −
1 + β

1− α
(δsus + cs)) = 0.
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Therefore

ub =
∑
s

λwbsqbs(vbs −
1 + β

1− α
(δsus + cs)) + (1− λ)pbsq̃bs(vbs − (δsus + cs))

+
∑
s

(
(λwbs(1− qbs) + (1− λ)pbs(1− q̃bs)

)
δbub +

∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

=
∑
s

λwbsqbs(vbs − δbub −
1 + β

1− α
(δsus + cs)) + (1− λ)pbsq̃bs(vbs − δbub − (δsus + cs))

+
∑
s

(λwbs + (1− λ)pbs
)
δbub +

∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

=
∑
s

(1− λ)pbsq̃bs(vbs − δbub − (δsus + cs))

+
∑
s

(λwbs + (1− λ)pbs
)
δbub +

∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

(C.13)

Now suppose (1 − λ)pbs(G) = 0, ∀s,G ⊆ G0. We prove by induction on n the number of

vertices of the subnetwork that

ub(G) = 0, ∀G ⊆ G0, s.t. b ∈ G.

For any subnetworks G ⊆ G0 of n ≤ 3, ub(G 	 {j, k}) = 0, ∀j, k 6= b. Suppose ub(G) =
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0,∀G ⊆ G0 with at most n− 1 vertices. For n, by Eq(C.13), we have

(1− . . .)ub =
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k}) = 0,

where 1− . . . ≥ 1− δb. Therefore, ub(G) = 0.

C.4. Proof of Theorem 3.3.1

Suppose that λ = 1 and by Proposition 3.2.2, ub = 0, let

N1 = {(b, s) : vbs −
1 + β

1− α
(δsus + cs) > 0},

N2 = {(b, s) : vbs −
1 + β

1− α
(δsus + cs) = 0},

N3 = {(b, s) : vbs −
1 + β

1− α
(δsus + cs) < 0}.

From the previous argument in Proof of Proposition 3.2.2,

∀(b, s) ∈ N1, qbs = qsb = 1, wbs = 0.

∀(b, s) ∈ N1, qbs, qsb ∈ [0, 1].

∀(b, s) ∈ N3, qbs = qsb = 0.

Hence, each time middleman is selecting the pair (b, s) such that,

πM (G)

=(1− δM ) max{qbs[
α+ β

1− α
(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (qbsγ + 1− qbs)δMπM (G),

qsb[
α+ β

1 + β
(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] +

(
qsbγ + 1− qsb

)
δMπM (G)}

=(1− δM ) max{
max(b,s)∈N1

[α+β
1+β vbs + (1− γ)δMπM (G	 {b, s})]

1− γδM
,

max
(b,s)∈N2

max(qbs, qsb)(
α+β
1+β vbs + (1− γ)δMπM (G	 {b, s}))

1− δM + (1− γ)δM max(qbs, qsb)
}
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The last inequality is due to ∂
∂q [

q(α+β
1+β

vbs+(1−γ)δMπM (G	{b,s}))
1−δM+(1−γ)δM q

] > 0 as long as vbs > 0, δM < 1.

us =
∑
b

wsbqsb(
1− α
1 + β

vbs − cs − δsus) +
∑
j,k 6=s

wkjqkj(1− γ)δsus(G0 	 {j, k})

+ [
∑
b

(
wsb + wbs) +

∑
j,k 6=s

(
wkjqkjγ + wkj(1− qkj)

)
]δsus

(C.14)

Assume γ = 1:

(1− δs)us =
∑
b

wsb|
1− α
1 + β

vbs − cs − δsus|

πM (G) =
α+ β

1 + β
max( max

(b,s)∈N1

vbs, max
(b,s)∈N2

max(qbs, qsb)vbs),

where

N1(s) = {b ∈ N(s) : vbs −
1 + β

1− α
(δsus + cs) > 0},

N2(s) = {b ∈ N(s) : vbs −
1 + β

1− α
(δsus + cs) = 0},

N3(s) = {b ∈ N(s) : vbs −
1 + β

1− α
(δsus + cs) < 0}.

Notice that, if vbs ≤ 1+β
1−αcs,∀b ∈ N(s), we have N1(s) = ∅. Moreover,

N1(s) = ∅ ⇒ us = 0⇒ vbs ≤
1 + β

1− α
cs,∀b ∈ N(s).

If N1(s) 6= ∅, maxb∈N(s) vbs = maxb∈N1(s) vbs, and

[1− δs(1−
∑

b∈N1(s)

wsb)]us =
∑

b∈N1(s)

wsb(
1− α
1 + β

vbs − cs) = (
∑

b∈N1(s)

wsb)(
1− α
1 + β

max
b∈N(s)

vbs − cs)

Let

N1 = {s : ∃b ∈ N(s), s.t. vbs >
1 + β

1− α
cs},
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N2 = {s : vbs ≤
1 + β

1− α
cs, ∀b ∈ N(s), and ∃b ∈ N(s) s.t. “=” holds}

Hence,

πM (G) =
α+ β

1 + β
max
s

( max
b∈N1(s)

vbs, max
b∈N2(s)

max(qbs, qsb)vbs)

=
α+ β

1 + β
max(max

s∈N2

(
max
b∈N(s)

(qbs, qsb)vbs
)
,max
s∈N1

max
b∈N(s)

vbs)

Notice that, in any MPEs where qbs, qsb ∈ {0, 1}, in particular, qbs = qsb = 1, ∀s ∈ N2, b ∈

N2(s) we have

πM (G) =
α+ β

1 + β
max

vbs≥ 1+β
1−α cs

vbs

= max
vbs−cs≥α+β1+β

vbs

α+ β

1 + β
vbs

= max
b,s

vbs − cs

Assume that

max
b,s

vbs − cs = vb∗s∗ − cs∗ .

Then, for sufficiently small ε > 0, we can find α, β, s.t., vb∗s∗ − cs∗ − ε = α+β
1+β vb∗s∗ , and one

can easily verify that

vbs −
1 + β

1− α
(δsus + cs) > 0 ⇐⇒ vbs −

1 + β

1− α
cs > 0,

hence qb∗s∗ = qb∗s∗ = 1 and give such choice of α, β,

vb∗s∗ − cs∗ ≥ πM (G) ≥ vb∗s∗ − cs∗ − ε
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Assume γ = 0:

πM (G) =(1− δM ) max{ max
(b,s)∈N1

[
α+ β

1 + β
vbs + δMπM (G	 {b, s})],

max
(b,s)∈N2

max(qbs, qsb)(
α+β
1+β vbs + δMπM (G	 {b, s}))

1− δM + δM max(qbs, qsb)
}

us =
∑
b

wsbqsb(
1− α
1 + β

vbs − cs − δsus) +
∑
j,k 6=s

wkjqkjδsus(G0 	 {j, k})

+ [
∑
b

wsb +
∑
j,k 6=s

wkj(1− qkj)]δsus

Hence,

(
1−(

∑
b

wsb(1−qsb)+
∑
j,k 6=s

wkj(1−qkj))δs
)
us =

∑
b

wsbqsb(
1− α
1 + β

vbs−cs)+
∑
j,k 6=s

wkjqkjδsus(G0	{j, k})

1− α
1 + β

vbs − cs − δsus

=
1− α
1 + β

vbs − cs −
δs
∑

bwsbqsb(
1−α
1+β vbs − cs) + δs

∑
j,k 6=swkjqkjδsus(G0 	 {j, k})

1− (
∑

bwsb(1− qsb) +
∑

j,k 6=swkj(1− qkj))δs

=
(1− δs + δs

∑
j,k 6=swkjqkj)(

1−α
1+β vbs − cs)− δs

∑
j,k 6=swkjqkjδsus(G0 	 {j, k})

1− (
∑

bwsb(1− qsb) +
∑

j,k 6=swkj(1− qkj))δs

=
(1− δs)(1−α

1+β vbs − cs) + (δs
∑

j,k 6=swkjqkj)(
1−α
1+β vbs − cs − δsus(G0 	 {j, k}))

1− (
∑

bwsb(1− qsb) +
∑

j,k 6=swkj(1− qkj))δs

Denote by MB,S be the collection of possible matching outcomes, i.e.,

MB,S = { a sequence of buyer-seller pairs: (b1s1, b2s2, . . . , bT sT ) s.t., vbtst − cst ≥ 0, ∀t },

Π : G → R is the mapping from a bipartie subnetwork G to its maximum discounted

surplus,

Π(G) = (1− δM )
∑

δtMvbtst

For each (b, s) pair, one can show by induction that if any subnetwork G′ ⊂ G, δsus(G
′) ≤
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1−α
1+β vbs − cs, then δsus(G) ≤ 1−α

1+β vbs − cs. And for the initial state G′, either us(G
′) = 0,

or {(j, k) : j, k 6= s} = ∅, which yields us(G
′) =

∑
bwsbqsb(

1−α
1+β vbs − cs − δsus(G

′)) +∑
bwsbδsus(G

′). Hence δsus(G
′) ≤ 1−α

1+β vbs − cs ⇐⇒ 0 ≤ 1−α
1+β vbs − cs, and in any MPEs

where qbs, qsb ∈ {0, 1}, in particular, qbs = qsb = 1,∀s ∈ N2, b ∈ N2(s).

πM (G) =(1− δM ) max
vbs≥ 1+β

1−α cs

[
α+ β

1 + β
vbs + δMπM (G	 {b, s})]

=
α+ β

1 + β
Π(Gα,β)

where Gα,β is a subnetwork of G0 where the set of links Eα,β = {(b, s) : vbs ≥ 1+β
1−αcs}.

Assume that

α∗, β∗ = arg max
α+ β

1 + β
Π(Gα,β).

By a similar ε argument, one can show that even if qbs = qsb < 1, ∀s ∈ N2, b ∈ N2(s), one

could find α′, β′, s.t., {(b, s) : vbs ≥ 1+β∗

1−α∗ cs} = {(b, s) : vbs ≥ 1+β′

1−α′ cs + ε}. Therefore for

some bounded C > 0

πM (G0) ≥ α′ + β′

1 + β′
Π(Gα′,β′) ≥

α∗ + β∗

1 + β∗
Π(Gα∗,β∗)− Cε,

which concludes the proof.

C.5. Proof of Proposition 3.4.2

ub =
∑
s

λwbsqbs(vb − (1 + β)(cs + δsus)) + (1− λ)pbsq̃bs(vb − (δsus + cs))

+
∑
s

(
(λwbs(1− qbs) + (1− λ)pbs(1− q̃bs)

)
δbub

+
∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

(C.15)
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us =
∑
b

λwsbqsb((1− α)(vb − δbub)− cs) + (1− λ)psbq̃sb(vb − δbub − cs)

+
∑
b

(
(λwsb(1− qsb) + (1− λ)psb(1− q̃sb)

)
δsus

+
∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]

(C.16)

πM (G)/(1− δM )

= max{max
b,s

λqbs[β(δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qbs)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

. . . ,max
b,s

λqsb[α(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qsbγ + 1− qsb)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

}

For λ = 1:

ub =
∑
s

wbsqbs(vb − (1 + β)(cs + δsus)) +
∑
s

wbs(1− qbs)δbub +
∑
s

wsbδbub

+
∑
j,k 6=b

[wkjqkj(1− γ)δbub(G0 	 {j, k}) +
(
wkjqkjγ + wkj(1− qkj)

)
δbub]

us =
∑
b

wsbqsb((1− α)(vb − δbub)− cs) +
∑
b

wsb(1− qsb)δsus +
∑
b

wbsδsus

+
∑
j,k 6=b

[wkjqkj(1− γ)δsus(G0 	 {j, k}) +
(
wkjqkjγ + wkj(1− qkj)

)
δsus]

πM (G) =(1− δM ) max{max
b,s

qbs[β(δsus + cs) + (1− γ)δMπM (G	 {b, s})]
1− δM (qbsγ + 1− qbs)

,

max
b,s

qsb[α(vbs − δbub) + (1− γ)δMπM (G	 {b, s})]
1− δM (qsbγ + 1− qsb)

}

For γ = 1,
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(1− δb)ub =λ
∑
s

wbsqbs(vbs − (1 + β)(cs + δsus)− δbub) + (1− λ)pbsq̃bs(vbs − δbub − δsus − cs)

(1− δs)us =λ
∑
b

wsbqsb((1− α)(vbs − δbub)− cs − δsus) + (1− λ)psbq̃sb(vbs − δbub − cs − δsus)

πM (G) =λmax{max
b,s

qbsβ(δsus + cs),max
b,s

qsbα(vbs − δbub)}

If β
1+β < α, which is β

α < 1 + β < 1
1−α , then for any pair (b, s),

β(δsus+cs) ≥ α(vbs−δbub) ⇐⇒ vbs−δbub ≤
β

α
(δsus+cs) < min((1+β),

1

1− α
)(δsus+cs),

thus qbs = qsb = 0. Thus β
1+β ≥ α, which is equivalent to β

α ≥ 1 + β ≥ 1
1−α . Let:

B1 = {b ∈ B : ∃s ∈ N(b), s.t. wbs > 0}

B2 = {b ∈ B : ∀s ∈ N(b), s.t. wbs = 0}

S1 = {s ∈ S : ∃b ∈ N(s), s.t. wsb > 0}

S2 = {s ∈ S : ∀b ∈ N(s), s.t. wsb = 0}

For any b ∈ B2, s ∈ S2, ub = 0, us = 0, and

∀b ∈ B1, ub =

∑
swbs(vbs − (1 + β)(cs + δsus))+

1− δb + δb
∑

swbs
=

∑
swbs(vb −

1+β
β πM )+

1− δb + δb
∑

swbs

∀s ∈ S1, us =

∑
bwsb((1− α)(vbs − δbub)− cs)+

1− δs + δs
∑

bwsb
=

∑
bwsb(

1−α
α πM − cs)+

1− δs + δs
∑

bwsb

∀s ∈ S1, δsus + cs =
δs
∑

bwsb
1−α
α πM + (1− δs)cs

1− δs + δs
∑

bwsb
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∀b ∈ B1, vbs − δbub =
δb
∑

swbs
1+β
β πM + (1− δb)vb

1− δb + δb
∑

swbs

Claim: For any optimal choices of α, β under Γα+β(G), let α′ = α+β
1+β , β

′ = α+β
1−α , choose

α or β instead, then the middleman can achieve as much as the revenue from Γα+β(G).

Under Γα+β(G),

ub =
∑
s

λwbsqbs(vbs −
1 + β

1− α
(δsus + cs)− δbub) + (1− λ)pbsq̃bs(vbs − (δsus + cs)− δbub)

+
∑
s

(
(λwbs + (1− λ)pbs

)
δbub +

∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

us =
∑
b

λwsbqsb(
1− α
1 + β

(vbs − δbub)− cs − δsus) + (1− λ)psbq̃sb(vbs − δbub − cs − δsus)

+
∑
b

(
(λwsb + (1− λ)psb

)
δsus +

∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=s

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]

πM (G)/(1− δM )

= max{max
b,s

λqbs[
α+β
1−α (δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (1− λ)

∑
i,j∈B∪S

pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qbs)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

. . . ,max
b,s

λqsb[
α+β
1+β

(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qsb)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

}
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Let

1 + β

1− α
= 1 + β′,

1− α
1 + β

= 1− α′.

Then under the choice of α′, β′ and in the Γα/β(G) game,

ub =
∑
s

λwbsqbs(vb −
1 + β

1− α
(cs + δsus)− δbub) + (1− λ)pbsq̃bs(vb − (δsus + cs)− δbub)

+
∑
s

(
(λwbs + (1− λ)pbs

)
δbub +

∑
s

(λwsb + (1− λ)psb)δbub

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δbub(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δbub]

us =
∑
b

λwsbqsb(
1− α
1 + β

(vb − δbub)− cs − δsus) + (1− λ)psbq̃sb(vb − δbub − cs − δsus)

+
∑
b

(
(λwsb + (1− λ)psb

)
δsus +

∑
b

(λwbs + (1− λ)pbs)δsus

+
∑
j,k 6=b

[(λwkjqkj + (1− λ)pkj q̃kj)(1− γ)δsus(G0 	 {j, k})

+
(
(λwkjqkj + (1− λ)pkj q̃kj)γ + λwkj(1− qkj) + (1− λ)pkj(1− q̃kj)

)
δsus]

π′M (G)/(1− δM )

= max{max
b,s

λqbs[
α+β
1−α (δsus + cs) + (1− γ)δMπM (G	 {b, s})] + (1− λ)

∑
i,j∈B∪S

pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qbsγ + 1− qbs)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

. . . ,max
b,s

λqsb[
α+β
1+β

(vbs − δbub) + (1− γ)δMπM (G	 {b, s})] + (1− λ)
∑

i,j∈B∪S
pij q̃ij(1− γ)δMπM (G	 {i, j})

1− λδM (qsbγ + 1− qsb)− (1− λ)δM
∑

i,j∈B∪S
pij(q̃ijγ + 1− q̃ij)

}

Therefore π′M (G) ≥ πM (G).
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C.6. Proof of the existence of MPEs under fixed commission fee

I provide a characterization of MPE payoffs and strategies. Suppose agent of type i has

discounting factor δi ∈ (0, 1).

We use a fixed point argument to (implicitly) prove the existence of MPEs σ∗ of Π(δ, v,G).

Denote v(G, σ) the vector of equilibrium payoff induced by an Markov strategy profile σ of

the game Π(δ,v, G). By definition, any MPE σ∗ of Π(δ, v,G) must belong to a subgame

consistent collection of MPEs σ|G′ of the respective games (Π(δ, v,G′))G′∈G . In particular,

when Π(δ,v, G) is played according to MPE σ∗(G), every player 1 ≤ i ≤ N has ex ante

payoffs vi(G, σ
∗(G)) before any pairs are selected, and vk(G 	 {i, j}, σ∗(G 	 {i, j}) at the

beginning of any subgame before which only i and j reached an agreement (k 6= i, j).

Fix a history ht along which no agreement has been reached, that is G(ht) = G0. In the

subgame with active middleman, middleman M first picks a bargaining pair e ∈ E. After

the matched pair is realized, suppose is (i, j), with i being the proposer, in the subgame

following (ht; i → j, x), it must be that the strategy (σ(G0))j(ht; i → j, x) specifies that

player j accepts any offer x > δjvj(G0, σ
∗(G0)), and reject any offer x < δjvj(G0, σ

∗(G0)),

and may accept with positive probability offers of δjvj(G0, σ
∗(G0)). Then by subgame

perfection, player i does not offer more than δjvj(G0, σ
∗(G0)), i.e., (σ∗(G0))i(ht, i → j) ≤

δjvj(G0, σ
∗(G0)).

Let qij be the probability ( conditional on (ht, i → j)) of the joint event that i offers

δjvj(G0, σ
∗(G0)) to j and the offer is accepted. The payoff of player k 6= i, j at the beginning

of the next period conditional on (ht; i → j) is qijδkvk(G0 	 {i, j}, σ∗(G0 	 {i, j})) + (1 −

qij)δkvk(G0, σ
∗(G0)).

Case 1. δivi(G0, σ
∗(G0)) + δjvj(G0, σ

∗(G0)) < vij − β.

Conditional on (ht; i → j), it must be that in any equilibrium, qij = 1 . To see this, if

qij < 1, then i’s expected payoff conditional on offering x = δjvj(G0, σ
∗(G0)) is qij(vij −
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β − x) + (1 − qij)δivi(G0, σ
∗(G0)) < (vij − β − x), while it is more profitable to offer

x = δjvj(G0, σ
∗(G)) + η(η > 0) with payoff vij − β − δjvj(G0, σ

∗(G0)))− η, for sufficiently

small η > 0. And it’s obvious that offers smaller than δjvj(G0, σ
∗(G0)) are not optimal for i

since they are rejected with certainty and yields δivi(G0, σ
∗(G0) < vij−β−δjvj(G0, σ

∗(G0)).

Hence i has no best response to j’s equilibrium strategy when qij < 1, a contradiction. Hence

qij = 1. Moreover Pr(‘Y es?|(ht; i→ j) = qij = 1.

Case 2. δivi(G0, σ
∗(G0)) + δjvj(G0, σ

∗(G0))) > vij − β.

By the similar fashion, one could show that qij = 0 = Pr(‘Y es′|(ht; i→ j)) since i’s offer is

no more than vij − β − δivi(G0, σ
∗(G0)) < δjvj(G0, σ

∗(G0)).

Case 3. δivi(G0, σ
∗(G0)) + δjvj(G0, σ

∗(G0))) = vij − β.

When i is chosen to propose to j, whether the bargain reach an agreement or not, the

payoff for both agents are δivi(G0, σ
∗(G0)) and δjvj(G0, σ

∗(G0)). The subgame perfection

conditional on (ht, i→ j) allows any value qij ∈ [0, 1]. Since i and j are indifferent between

any x ≤ δjv∗j (G0, σ
∗),WOLG assume that qij = Pr(‘Yes’|(ht; i→ j)).

Hence given any probability distribution w over matched pair Am, the continuation payoff

{vi(G0, σ
∗(G0))} satisfy,

vi =
∑
j

(λwijqij(vij − β − δjvj) + (1− λ)pijqij(vij − δjvj) + (λwij + (1− λ)pij)(1− qij)δivi]

+
∑
j

(λwji + (1− λ)pji)δivi

+
∑
j,k 6=i

(λwjk + (1− λ)pjk)[qjkδivi(G0 	 {j, k}, σ∗(G0 	 {j, k})) + (1− qjk)δivi]

(C.17)

Since the continuation payoff does not depends on the current matchmaking state (whether

matched by the middleman or nature), so one can assume that the agent behaves the same
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under both cases. However, it’s worth notice that, when varying λ, the threshold would

change, so agents have different expectations for their continuation payoff. and

qij =


1 if δivi + δjvj < vij − β

[0, 1] if δivi + δjvj = vij − β,

0 if δivi + δjvj > vij − β.

(C.18)

And qij = Pr(‘Y es′|(ht; i→ j)).

From the middle man’s perspective: its ex ante payoff at subnetwork G is,

π0(G) =λ
∑
ij

wij [qij(β + δ0π0(G	 {i, j})) + (1− qij)δ0π0(G)]

+ (1− λ)
∑
ij

pij [qijδ0π0(G	 {i, j}) + (1− qij)δ0π0(G)]

Since the middleman is maximizing it’s discounted profit when deciding which link to pick,

π0(G) =λmax
ij

[qij(β + δ0π0(G	 {i, j})) + (1− qij)δ0π0(G)]

+ (1− λ)
∑
ij

pij [qijδ0π0(G	 {i, j}) + (1− qij)δ0π0(G)],

where

wij > 0⇒

qij(β + δ0π0(G	 {i, j})) + (1− qij)δ0π0(G) = max
k,s

qks(β + δ0π0(G	 {i, j})) + (1− qks)δ0π0(G)

This yields:

π0(G) = max
i,j

λqijβ + δ0

(
λqijπ(G	 {i, j}) + (1− λ)

∑
k,s pksqksπ(G	 {k, s})

)
1− δ0

(
λ(1− qij) + (1− λ)

∑
k,s pks(1− qks)

)
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Define the following mapping Γ(v,q). Γ : [0, v̄]|V | × [0, 1]2|E| → [0, v̄]|V | × [0, 1]2|E|.

Γ(v,q) ={(v′,q′)|q′ij = 1(0) if vij − β > (<)δivi + δjvj ,

and q′ij ∈ [0, 1] if vij − β = δivi + δjvj ,

∃w ∈ ∆, s.t.{ij|wij > 0}

⊆ arg max
ij

λqijβ + δ0

(
λqijπ(G	 {i, j}) + (1− λ)

∑
k,s pksqksπ(G	 {k, s})

)
1− δ0

(
λ(1− qij) + (1− λ)

∑
k,s pks(1− qks)

) ,

and v′i =
∑
j

[λwijqij max{vij − β − δjvj , δivi}+ (1− λ)pijqij max{vij − δjvj , δivi}

+ (λwij + (1− λ)pij)(1− qij)δivi]

+
∑
j

(λwji + (1− λ)pji)δivi

+
∑
j,k 6=i

(λwjk + (1− λ)pjk)[qjkδivi(G0 	 {j, k}, σ∗(G0 	 {j, k})) + (1− qjk)δivi]

First need to show that Γ has fixed point.

Lemma C.6.1. Γ : [0, v̄]N × [0, 1]E → [0, v̄]N × [0, 1]E has a fixed point.

Proof. Claim 1. ∀q,v,Γ(v,q) is non-empty and convex.

Proof: It’s easy to see that Γ(v,q) is non-empty. ∀v,q, and (v′,q′), (v′′,q′′) ∈ Γ(v,q),

η ∈ [0, 1], ηq′ij + (1 − η)q′′ij = 1(0) if vij − β > (<)δivi + δjvj , and ηq′ij + (1 − η)q′′ij ∈ [0, 1]

for any pair of (i, j). Suppose p′,p′′ are corresponding ws in the mapping, then p′,p′′ have

the same support, hence

ηp′+(1−η)p′′ ∈ arg max
λqijβ + δ0

(
λqijπ(G	 {i, j}) + (1− λ)

∑
k,s pksqksπ(G	 {k, s})

)
1− δ0

(
λ(1− qij) + (1− λ)

∑
k,s pks(1− qks)

) .

Thus (ηv′ + (1− η)v′′, ηq′ + (1− η)q′′) ∈ Γ(v,q)

Claim 2. Γ has closed graph.
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Proof: For any (xn,yn) ∈ Γ(vn,qn), where

(vn,qn)→ (v,q), (xn,yn)→ (x,y).

If vij − β > δivi + δjvj , there exists some n1 > 0, s.t.

vij − β > δiv
n
i + δjv

n
j , ∀n > n1,

and ynij = 1, thus yij = 1.

If vij − β < δivi + δjvj , there exists some n2 > 0, s.t.

vij − β < δiv
n
i + δjv

n
j , ∀n > n2,

and ynij = 0, thus yij = 0.

If vij − β = δivi + δjvj , yij ∈ [0, 1] is trivial.

Next let

γij(q) =
λqijβ + δ0

(
λqijπ(G	 {i, j}) + (1− λ)

∑
k,s pksqksπ(G	 {k, s})

)
1− δ0

(
λ(1− qij) + (1− λ)

∑
k,s pks(1− qks)

) .

It’s obvious that for each (vn,qn), the corresponding wn satisfies the following

pnij(max
ij

γij(q
n)− γij(qn)) = 0

Suppose that a subsequence wnk converges to w. Since max γij(·), γij(·) are all continuous,

let nk →∞, we have

wij(max
ij

γij(q)− γij(q)) = 0.

Thus

{ij|wij > 0} ⊆ arg max
λqijβ + δ0

(
λqijπ(G	 {i, j}) + (1− λ)

∑
k,s pksqksπ(G	 {k, s})

)
1− δ0

(
λ(1− qij) + (1− λ)

∑
k,s pks(1− qks)

) .
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Notice that xn = g(vn,qn,wn) where g is a continuous function of (w,q). Hence

x = lim xnk = lim g(vnk ,qnk ,wnk) = g(v,q,w)

Hence

(x,y) ∈ Γ(v,q).

Claim 3. Γ maps the compact set [0, v̄]|V | × [0, 1]2|E| to itself.

Therefore by Kakutatni’s fixed point theorem, Γ has a fixed point

(v,q) ∈ Γ(v,q).

By the definition of Γ, there exists w, s.t.

1. q satisfies Eq(C.18).

2. w is middleman’s best response to q.

3. v satisfies Eq(C.17), that is, v is the corresponding continuation payoff.

At the begining of the subgame ht when no one has reached an agreement, given v the

players’ expected payoff starting at t, Γ compute agent’s best response q to v, along with

the payoff v′ induced by q, and middleman’s best response w to agents’ strategies q, and the

corresponding new expected payoff v′ since they depend on the strategy of the middleman.

Formally,

Lemma C.6.2. v∗ is a Markov Perfect equilibrium payoff, if there exists a collection of

subgame consistent MPE of the game {Γ(δ,v, G)}G⊂G0 with payoffs {v∗(G)}G⊂G0 and p∗,

such that (v∗,q∗) ∈ Γ(v∗,q∗).
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Proof. Suppose that the collection of subgame consistent MPE of the game {(δ,v, G)}G⊂G0

has payoffs {v∗(G, σ∗(G))}G⊂G0 . If (w∗,v∗) ∈ Γ(w∗,v∗), then there exists q∗, s.t.

(i) q∗ satisfies (C.18).

(ii) w is best response to q given σ∗(G), for any G ⊂ G0.

(iii) v∗ is the corresponding ex ante payoff for network G0.

Then we construct the following strategy profile and prove it is an MPE with corresponding

MPE payoff v∗. First define the strategies for histories ht along which no agreement has

occurred. Recall that G(ht) denotes the network induced by the players remaining after

the ex post history ht. Construct time-t strategy of each player according to the time-

0 behavior specified by σ∗(G0).2 For histories along which no agreement has occurred,

σ∗(G(ht)) specifies that

• Middleman choose matching pair (i, j) with probability p∗ij .

• when i is chosen to propose to j, he offers min(vij − β − δiv∗i , δjv∗j ).

• when i responds to the offer x, he accepts any offer x > δiv
∗
i , and rejects any x < δiv

∗
i ,

and accept an offer of δiv
∗
i with probability q∗ij .

Given the collection of subgame consistency guarantees that under (σ∗(G))G⊂G0 the ex-

pected payoffs of any subgames are v(G, σ(G)).

Lemma C.6.3 (Mailath & Samuelson (2006) Proposition 5.7.1). A strategy profile is sub-

game perfect in a dynamic game if and only if there are no profitable one-shot deviations.

Based on the definition of Γ, everyone is best responding at period t no profitable deviation

for all players in this stage game. It’s then easy to verify that v∗ are indeed the equilibrium

payoff by the strategy profile conditional on ht.

2Formally, (σ(G))i(ht; i → j) = (σ(G))i(h0; i → j), (σ(G))j(ht; i → j, x) = (σ(G))i(h0; i → j, x), where
h0 = ∅, G = G(ht).
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We now need to show that Lemma C.1.2 implies the existence of MPEs. We prove a subgame

consistent collection of MPEs for the game (δ, v,G)G⊆G (n), where G (n) denotes the subset

of subnetworks in G with at most n vertices. The proof proceed by induction on n. For

n = 0, 1 it’s trivial. Suppose we proved the statement for all values smaller than n,and

proceed to proving the case n. By induction hypothesis, there exists a subgame consistent

collection of MPEs (σ∗(G′))G′∈G (n−1) of the corresponding games (Π(δ, v,G′))G′∈G (n−1). Fix

a network G ∈ G (n) \ G (n − 1), S(G) = {G′ : G′ ⊂ G} ⊆ G (n − 1). Therefore there exist

MPEs (σ∗(G′))G′∈S(G) for the games (Γ(δ, v,G′))G′∈S(G) that are subgame consistent, hence

we can use their MPE payoffs to define Γ. Suppose now that Γ has a fixed point p∗,v∗, with

induced σ∗(G) of the game Π(δ, v,G) so that (σ∗(G′))G′∈G (n−1)∪{G} is subgame consistent.

If we append all MPE σ∗(G) of G ∈ G (n) \ G (n − 1) to (σ∗(G′))G′∈G (n−1), the resulting

collection of MPEs (σ∗(G′))G′∈G (n) is also subgame consistent.
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