
FAST LINEAR ALGORITHMS FOR MACHINE LEARNING

Yichao Lu

A DISSERTATION

in

Applied Mathematics and Computational Science

Presented to the Faculties of the University of Pennsylvania in Partial Ful-
fillment of the Requirements for the Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Dean P. Foster, Professor of Statistics

Graduate Group Chairperson

Charles L. Epstein, Thomas A. Scott Professor of Mathematics

Dissertation Committee:
Dean P. Foster, Professor of Statistics
Lyle H. Ungar, Professor of Computer and Information Science
Zongming Ma, Assistant Professor of Statistics

Acknowledgments

First and Foremost, I would like to express my sincere gratitude to my Advisor Dean

Foster for his support during my PhD study. His broad knowledge, sharp intuition, patient

guidance and passion about problems in statistics and machine learning providing me

with an excellent atmosphere for doing research.

I am deeply grateful to Professor Lyle Ungar, Zonging Ma and Robert Stine for many

stimulating ideas and valuable discussions at the StatNLP reading group and when I’m

preparing for my thesis. I would like to thank Professor Charles Epstein for providing

me the wonderful opportunity to study in the AMCS program and his kind support at the

beginning of my PhD career.

I would like to thank my fellow PhD students Paramveer Dhillon, Jordan Rodu, Pe-

ichao Peng, Zhuang Ma, Joao Sedoc, Wei Han, Fan Yang, Anru Zhang, Fan Zhao, Pengfei

Zheng, Shi Gu, Muzhi Yang, Yuanpei Cao and Ke Zeng. It’s a great honor for me to spend

my Phd years studying and having fun with a group of smart and interesting friends.

Last but not the least, I want to thank my family for their support, encouragement,

and love.

ii

ABSTRACT

FAST LINEAR ALGORITHMS FOR MACHINE LEARNING

Yichao Lu

Dean P. Foster, Advisor

Nowadays linear methods like Regression, Principal Component Analysis and Canoni-

cal Correlation Analysis are well understood and widely used by the machine learning

community for predictive modeling and feature generation. Generally speaking, all these

methods aim at capturing interesting subspaces in the original high dimensional feature

space. Due to the simple linear structures, these methods all have a closed form so-

lution which makes computation and theoretical analysis very easy for small datasets.

However, in modern machine learning problems it’s very common for a dataset to have

millions or billions of features and samples. In these cases, pursuing the closed form

solution for these linear methods can be extremely slow since it requires multiplying two

huge matrices and computing inverse, inverse square root, QR decomposition or Singular

Value Decomposition (SVD) of huge matrices. In this thesis, we consider three fast al-

gorithms for computing Regression and Canonical Correlation Analysis approximate for

huge datasets.

For linear regression, we consider a combination of two well known algorithms, Prin-

cipal Component Regression (PCR) and Gradient Descent(GD). Since the feature matri-

iii

ces in our problems are huge, we use the fast randomized SVD algorithm proposed by

Halko et al. for computing the top principal components. We show that a this com-

bination will provide an approximate regression solution which is both fast and robust.

Theoretical analysis and empirical results about the convergence speed and statistical ac-

curacy of our algorithm are provided in Chapter 2.

For Canonical Correlation Analysis (CCA), we consider two different approaches.

In the first approach, we reduce the CCA problem to a sequence of iterative regression

problems. Plug in the fast regression algorithm into this framework generates our first

fast CCA algorithm. A detailed analysis about the convergence speed and empirical per-

formance of this algorithm is provide in Chapter 3. In the second approach, we regard

CCA as a constrained optimization problem and solve it by a gradient style algorithm.

The benefit of the second approach over the first approach is in the second approach, the

gradient style updates allows the CCA subspace estimator to improve after every itera-

tion while in the first approach the CCA subspace estimator can only be improved when

a reasonably accurate regression is performed. Based on this observation a stochastic

version of the second CCA approach is proposed which is very fast if aim at moderate

accuracy. In Chapter 4 we discuss the second CCA approach in detail.

iv

Contents

1 Introduction 1

2 Fast Ridge Regression Algorithm 6

2.1 Introduction . 6

2.2 The Algorithm . 8

2.2.1 Description of the Algorithm . 8

2.2.2 Computational Cost . 13

2.3 Theorems . 15

2.3.1 The Fixed Design Model . 16

2.4 Experiments . 19

2.4.1 Simulated Data . 20

2.4.2 Real Data . 25

2.5 summary . 29

3 Large Scale Canonical Correlation Analysis with Iterative Least Squares 30

3.1 Introduction . 30

v

3.2 Background: Canonical Correlation Analysis 33

3.2.1 Definition . 33

3.2.2 CCA and SVD . 33

3.3 Compute CCA by Iterative Least Squares 34

3.3.1 A Special Case . 36

3.3.2 General Case . 36

3.4 Algorithm . 37

3.4.1 LING: a Gradient Based Least Square Algorithm 37

3.4.2 Fast Algorithm for CCA . 40

3.4.3 Error Analysis of L-CCA . 41

3.5 Experiments . 42

3.5.1 Penn Tree Bank Word Co-ocurrence 46

3.5.2 URL Features . 48

3.6 Conclusion and Future Work . 50

4 Augmented Approximate Gradient Algorithm for Large Scale Canonical Cor-

relation Analysis 51

4.1 Introduction . 51

4.1.1 Background . 51

4.1.2 Related Work . 54

4.1.3 Main Contribution . 55

4.2 Algorithm . 56

vi

4.2.1 An Optimization Perspective . 56

4.2.2 AppGrad Scheme . 60

4.2.3 General Rank-k Case . 64

4.2.4 Kernelization . 66

4.3 Stochastic AppGrad . 67

4.4 Experiments . 69

4.4.1 Details of Datasets . 70

4.4.2 Implementations . 71

4.4.3 Summary of Results . 73

4.5 Conclusions and Future Work . 76

Appendices 78

A Appendix for Chapter 3 79

A.1 Proof of Theorem 3.3.1 . 79

A.2 Randomized Algorithm for Finding Top Singular Vectors 80

A.3 Gradient Descent with Optimal Step Size 81

A.4 Error Analysis of LING . 83

A.4.1 Proof of Theorem 3.4.2 . 86

A.5 Error Analysis of L-CCA . 87

vii

Chapter 1

Introduction

Linear methods like Regression, Principal Component Analysis and Canonical Correla-

tion Analysis are well understood and widely used by the machine learning community

for predictive modeling and feature generation. Generally speaking, all these methods

aim at capturing interesting subspaces in the original high dimensional feature space.

Due to the simple linear structures, these methods all have a closed form solution. For

small datasets, one can implement these methods in R, Matlab, Python or other platforms

as long as the computational tools can perform some basic linear algebra operations like

matrix multiplication, matrix inversion, singular value decomposition, QR decomposi-

tion. However, in modern machine learning problems it’s very common for a dataset

to have millions or billions of features and samples. For example, in Natural Language

Processing (NLP), using only unigram model will generate a feature space the dimension

of which is the vocabulary size which can easily reach tens of thousands for corpora of

1

moderate size and can get much larger for huge corpora. Moreover, it’s very common

to use bigram (or trigram) model for NLP tasks which make the feature dimension vo-

cabulary size squared (or cubed). Another example is in collaborative filtering where

the algorithms often need to handle an input matrix with size number of products times

number of customers which can easily reach millions. In these cases, pursuing the closed

form solution for these linear methods can be extremely slow since it requires multiply-

ing two huge matrices and computing inverse, inverse square root, QR decomposition or

Singular Value Decomposition (SVD) of huge matrices. In this thesis, we consider three

fast algorithms for computing these linear methods approximately on huge datasets.

Fast Principal Component Analysis algorithms has been well studied in the past few

years. One well known approach is the randomized SVD algorithm proposed by [28, 30]

which is extremely fast if one is only interested in computing the top few principal com-

ponents (singular vectors). In the randomized SVD algorithm, first a random projection

is performed to generate an estimator of the subspace spanned by the top few left sin-

gular vectors. Then this subspace is used to project the original huge data matrix down

to a much smaller size and it suffices to compute the SVD of the small matrix. Detailed

theoretical analysis of this algorithm is available in [28] and a brief introduction of the

algorithm will be provided in chapter 2 and appendix since we are going to use it as a

building block of our fast Regression and CCA algorithms.

2

Fast Regression (or Least Squares) has also been well studied and a lot of algorithms

have been proposed based on the idea of random projection or subsampling. When the

number of observations is much larger than the number of features, [21, 6, 47] use dif-

ferent kinds of fast random projections that approximately preserve inner products in the

Euclidian space to reduce the actual sample size of the problem and then solve the least

squares problem on reduced dataset. Random projection with such properties are some-

times called fast Johnson-Lindenstrauss transforms. Different random projections with

this property are introduced in [2, 48, 54] with concentration bounds on how well the

inner product is preserved. These techniques are applied in a fast ridge regression algo-

rithm by [39] when the number of features are much larger than the number of samples.

Another slightly different idea is to subsample the observations from some non-uniform

distribution determined by the statistical leverage as discussed in [20, 44]. The statistical

accuracy of the above algorithms are discussed by [42, 16] in which they also proposed

some improvements based on the statistical analysis.

However, the main draw back for the fast regression algorithms is that they are still

very slow for problems with a huge amount of features. In fact, the acceleration of these

algorithms comes from a fast approximation of the matrix multiplication X>X where

X ∈ n × p is a data matrix with n samples and p features. On the other hand, these al-

gorithms still need to invert a p× p square matrix which is very slow when p is large. To

obtain a fast regression solution in this case, one can either compute the top few principal

3

components by the randomized SVD algorithm and then regress only on the top princi-

pal components (i.e. run a principal component regression or PCR) or regard regression

as a quadratic minimization problem and approximate the solution by gradient descent

(GD). Both algorithms are trading accuracy for speed. For PCR, if only a few principal

component are selected, then the algorithm will be extremely fast but will probably miss

interesting signals on the bottom principal components. If a relatively large amount of

principal components are selected (but not overfit), more signals will be captured but the

algorithm will slow down. For GD, every gradient iteration is super fast and as the num-

ber of iterations increases, the solution gets more accurate but the algorithm takes more

time. In our fast algorithm [58], we combine PCR and GD together to get a new fast

regression algorithm which archives a better tradeoff between accuracy and speed. As

shown in the experiments, to achieve a certain accuracy, the number of principal compo-

nents and gradient iterations in our algorithm is significantly less than running PCR or

GD alone.

Fast Canonical Correlation Analysis (CCA) algorithm is a relatively new topic. Fol-

lowing the same idea in regression, [5] applied fast Johnson-Lindenstrauss transform to

reduce the sample size of the data matrices and then compute CCA on the reduced data.

Same as regression, this algorithm only works for dataset with a large sample size but

not with a large amount of features. In this thesis we propose two fast CCA algorithms

(the second is an improvement of the first) which provide fast approximations of the

4

CCA subspace given to huge data matrices. Our algorithms can handle the case where

the number of features is extremely large and works well with sparse data matrices. In

the first approach [40], we reduce the CCA algorithm to several regression problems and

apply fast regression algorithms to obtain a fast CCA algorithm. In the second approach,

we view CCA as a constrained optimization problem and propose a gradient style itera-

tive algorithm which will converge to the true CCA subspace. It’s non trivial since the

optimization problem for CCA is not convex. Moreover, our second algorithm can also

be interpreted as a improvement of our first algorithm since it’s essentially replacing a

fast regression in the first algorithm with a simple gradient step. It’s easy to generalize

our second algorithm to an online (stochastic) setting due to its gradient nature. In fact,

as shown by the experiments, a stochastic version of the second algorithm can be even

faster than the batch version if we aim at moderate accuracy.

The thesis is organized as follows: in Chapter 2, we introduce the fast regression

algorithm which is a combination of two classical algorithms PCR and GD. In Chapter

3, we discuss the regression formulation of CCA and apply the fast regression algorithm

from Chapter 2 to get our first fast CCA algorithm. In Chapter 4, we introduce both the

batch and stochastic version of our second fast CCA algorithm. The thesis is organized in

a way that chapter 2,3,4 can be read separately as three independent papers. Each chapter

will include some simple theorem proofs, but the long and complicated proofs will be

deferred to the appendix.

5

Chapter 2

Fast Ridge Regression Algorithm

2.1 Introduction

Ridge Regression (RR) is one of the most widely applied penalized regression algorithms

in machine learning problems. Suppose X is the n× p design matrix and Y is the n× 1

response vector, ridge regression tries to solve the problem

β̂ = arg min
β∈Rp

‖Xβ −Y‖2 + nλ‖β‖2 (2.1.1)

which has an explicit solution

β̂ = (X>X + nλ)−1X>Y (2.1.2)

However, for modern problems with huge design matrix X, computing (2.1.2) costs

O(np2) FLOPS. When p > n� 1 one can consider the dual formulation of (2.1.1) which

also has an explicit solution as mentioned in [39, 49] and the cost is O(n2p) FLOPS. In

6

summary, trying to solve (2.1.1) exactly costs O(npmin {n, p}) FLOPS which can be

very slow.

There are faster ways to approximate (2.1.2) when computational cost is the concern.

One can view RR as an optimization problem and use Gradient Descent (GD) which

takes O(np) FLOPS in every iteration. However, the convergence speed for GD depends

on the spectrum of X and the magnitude of λ. When X is ill conditioned and λ is small,

GD requires a huge number of iterations to converge which makes it very slow. For huge

datasets, one can also apply stochastic gradient descent (SGD) [59, 34, 11], a powerful

tool for solving large scale optimization problems.

Another alternative for regression on huge datasets is Principal Component Regression

(PCR) as mentioned in [4, 35], which runs regression only on the top k1 principal compo-

nents (PCs) of the X matrix. PCA for huge X can be computed efficiently by randomized

algorithms like [29, 30]. The cost for computing top k1 PCs of X is O(npk1) FLOPS.

The connection between RR and PCR is well studied by [18]. The problem of PCR is that

when a large proportion of signal sits on the bottom PCs, it has to regress on a lot of PCs

which makes it both slow and inaccurate (see later sections for detailed explanations).

In this paper, we propose a two stage algorithm LING1 which is a faster way of comput-

ing the RR solution (2.1.2). A detailed description of the algorithm is given in section

2.2. In section 2.3, we prove that LING has the same risk as RR under the fixed design

setting. In section 2.4, we compare the performance of PCR, GD, SGD and LING in

1LING is the Chinese of ridge

7

terms of prediction accuracy and computational efficiency on both simulated and real

data sets.

2.2 The Algorithm

2.2.1 Description of the Algorithm

LING is a two stage algorithm. The intuition of LING is quite straight forward. We start

with the observation that regressing Y on X (OLS) is equivalent to projecting Y onto the

span of X. Let U1 denote the top k2 PCs (left singular vectors) of X and let U2 denote

the remaining PCs. The projection of Y onto the span of X can be decomposed into two

orthogonal parts, the projection onto U1 and the projection onto U2. In the first stage, we

pick a k2 � p and the projection onto U1 can be computed directly by Ŷ1 = U1U
>
1 Y

which is exactly the same as running a PCR on top k2 PCs. For huge X, computing

the top k2 PCs exactly is very slow, so we use a faster randomized SVD algorithm for

computing U1 which is proposed by [28] and described below. In the second stage, we

first compute Yr = Y − Ŷ1 and Xr = X − U1U
>
1 X which are the residuals of Y

and X after projecting onto U1. Then we compute the projection of Y onto the span

of U2 by solving the optimization problem minγ̂2∈Rp ‖Xrγ̂2 −Yr‖2 + nλ‖γ̂2‖ with GD

(Algorithm 3). Finally, since RR shrinks the projection of Y onto X (the OLS solution)

via regularization, we also shrink the projections in both stages accordingly. Shrinkage in

the first stage is performed directly on the estimated regression coefficients and shrinkage

8

Algorithm 1 LING
Input : Data matrix X ,Y. U1, an orthonormal matrix consists of top k2 PCs of X.

d1, d2, ...dk2 , top k2 singular values of X. Regularization parameter λ, an initial vector

γ̂2,0 and number of iterations n2 for GD .

Output : γ̂1,s, γ̂2, the regression coefficients.

1.Regress Y on U1, let γ̂1 = U>1 Y.

2.Compute the residual of previous regression problem. Let Yr = Y −U1γ̂1.

3.Compute the residual of X regressing on U1. Use Xr = X−U1U
>
1 X to denote the

residual of X.

4.Use gradient descent with optimal step size with initial value γ̂2,0 (see algorithm 3)

to solve the RR problem minγ̂2∈Rp ‖Xrγ̂2 −Yr‖2 + nλ‖γ̂2‖2.

5. Compute a shrinkage version of γ̂1 by (γ̂1,s)i =
d2i

d2i +nλ
(γ̂1)i

6.The final estimator is Ŷ = U1γ̂1,s + Xrγ̂2.

in the second stage is performed by adding a regularization term to the optimization

problem mentioned above. Detailed description of LING is shown in Algorithm 1.

Remark 2.2.1. LING can be regarded as a combination of PCR and GD. The first stage

of LING is a crude estimation of the projection of Y onto X and the second stage adds

a correction to the first stage estimator. Since we do not need a very accurate estimator

in the first stage it suffices to pick a very small k2 in contrast with the k1 PCs needed

for PCR. In the second stage, the design matrix Xr is a much better conditioned matrix

than the original X since the directions with largest singular values are removed. As

9

Algorithm 2 Random SVD
Input : design matrix X, target dimension k2, number of power iterations i.

Output : U1 ∈ n × k2, the matrix of top k2 left singular vectors of X, d1, d2, ...dk2 ,

the top k2 singular values of X.

1.Generate random matrix R1 ∈ p× k2 with i.i.d standard Gaussian entries.

2.Estimate the span of top k2 left singular vectors of X by A1 = (XX>)iXR1.

3.Use QR decomposition to compute Q1 which is an orthonormal basis of the column

space of A1.

4.Compute SVD of the reduced matrix Q>1 X = U0D0V
>
0 .

5.U1 = Q1U0 gives the top k2 singular vectors of X and the diagonal elements of D0

gives the singular values.

introduced in section 2.2, Algorithm 3 converges much faster with a better conditioned

matrix. Hence GD in the second stage of LING converges faster than directly applying

GD for solving (2.1.1). The above property guarantees that LING is both fast and accu-

rate compared with PCR and GD. More details about on the computational cost will be

discussed in section 2.2.2.

Remark 2.2.2. Algorithm 2 is essentially approximating the subspace of top left singular

vectors by random projection. It provides a fast approximation of the top singular val-

ues and vectors for large X when computing the exact SVD is very slow. Theoretical

guarantees and more detailed explanations can be found in [28]. Empirically we find in

the experiments, Algorithm 2 may occasionally generate a bad subspace estimator due to

10

Algorithm 3 Gradient Descent with Optimal Step Size (GD)
Goal : Solve the ridge problem minγ̂∈Rp ‖Xγ̂ −Y‖2 + nλ‖γ̂‖2.

Input : Data matrix X, Y, regularization parameter λ, number of iterations n2, an

initial vector γ̂0

Output : γ̂

for t = 0 to n2 − 1 do

Q = 2X>X + 2nλI

wt = 2X>Y −Qγ̂t

st =
w>t wt

w>t Qwt
. st is the step size which makes the target function decrease the most in

direction wt.

γ̂t+1 = γ̂t + st · wt.

end for

11

randomness which makes PCR perform badly. On the other hand, LING is much more

robust since in the second stage it compensates for the signal that was missed in the first

stage. In all the experiments, we set i = 1.

The shrinkage step (step 5) in Algorithm 1 is only necessary for theoretical purposes

since the goal is to approximate Ridge Regression which shrinks the Least Squares es-

timator over all directions. In practice shrinkage over the top k2 PCs is not necessary.

Usually the number of PCs selected (k2) is very small. From the bias variance trade off

perspective, the variance reduction gained from the shrinkage over top k2 PCs is at most

O(k2
n

) under the fixed design setting [18] which is a tiny number. Moreover, since the

top singular values of X>X are usually very large compared with nλ in most real prob-

lems, the shrinkage factor d2i
d2i +nλ

will be pretty close to 1 for top singular values. We use

shrinkage in Algorithm 1 because the risk of the shrinkage version of LING is exactly

the same as RR as proved in section 2.3.

Algorithm 2 can be further simplified if we skip the shrinkage step mentioned in previous

paragraph. Instead of computing the top k2 PCs, the only thing we need to know is the

subspace spanned by these PCs since the first stage is essentially projecting Y onto this

subspace. In other words, we can replace U1 in step 1, 2, 3 of Algorithm 1 with Q1

obtained in step 3 of Algorithm 2 and directly let Ŷ = Q1γ̂1 + Xrγ̂2. In the experiments

of section 4 we use this simplified version.

12

2.2.2 Computational Cost

We claim that the cost of LING is O
(
np(k2 + n2)

)
where k2 is the number of PCs used

in the first stage and n2 is the number of iterations of GD in the second stage. According

to [28], the dominating step in Algorithm 2 is computing (XX>)iXR1 and Q>1 X which

costs O(npk2) FLOPS. Computing γ̂1 and Yr costs less than O(npk2). Computing Xr

costs O(npk2). So the computational cost before the GD step is O(npk2). For the GD

stage, note that in every iteration Q never needs to be constructed explicitly. While com-

puting wt and st, always multiplying matrix and vector first gives a cost of O(np) for

every iteration. So the cost for GD stage is O(n2np). Add all pieces together the cost of

LING is O
(
np(k2 + n2)

)
FLOPS.

Let n1 be the number of iterations required for solving (2.1.1) directly by GD and k1

be the number of PCs used for PCR. It’s easy to check that the cost for GD is O(n1np)

FLOPS and the cost for PCR is O(npk1). As mentioned in remark 2.2.1, the advantage

of LING over GD and PCR is that k1 and n1 might have to be really large to achieve high

accuracy but much smaller values of the pair (k2, n2) will work for LING.

In the remaining part of the chapter we use ”signal on certain PCs” to refer to the projec-

tion of Y onto certain principal components of X. Consider the case when the signal is

widely spread among all PCs (i.e. the projection of Y onto the bottom PCs of X is not

very small) instead of concentrating on the top ones, k1 needs to be large to make PCR

perform well since the signal on bottom PCs are discarded by PCR. But LING does not

need to include all the signal in the first stage regression since the signal left over will be

13

estimated in the second GD stage. Therefore LING is able to recover most of the signal

even with a small k2.

In order to understand the connection between accuracy and number of iterations in Al-

gorithm 3 , we state the following theorem in [1]:

Theorem 2.2.3. Let g(z) = 1
2
z>Mz + q>z be a quadratic function where M is a PSD

matrix. Suppose g(z) achieves minimum at z∗. Apply Algorithm 3 to solve the minimiza-

tion problem. Let zt be the z value after t iterations, then the gap between g(zt) and

g(z∗), the minimum of the objective function satisfies

g(zt+1)− g(z∗)

g(zt)− g(z∗)
≤ C =

(
A− a
A+ a

)2

(2.2.1)

where A, a are the largest and smallest eigenvalue of the M matrix.

Theorem 2.2.3 shows that the sub optimality of the target function decays exponen-

tially as the number of iterations increases and the speed of decay depends on the largest

and smallest singular value of the PSD matrix that defines the quadratic objective func-

tion. If we directly apply GD to solve (2.1.1), Let f1(β) = ‖Xβ − Y‖2 + nλ‖β‖2.

Assume f1 reaches its minimum at β̂. Let β̂t be the coefficient after t iterations and let di

denote the ith singular value of X. Applying theorem 2.2.3, we have

f1(β̂t+1)− f1(β̂)

f1(β̂t)− f1(β̂)
≤ C =

(
d2

1 − d2
p

d2
1 + d2

p + 2nλ

)2

(2.2.2)

Similarly for the second stage of LING, Let f2(γ2) = ‖Xrγ2−Yr‖2 +nλ‖γ2‖2. Assume

f2 reaches its minimal at γ̂2. We have

f2(γ̂2,t+1)− f2(γ̂2)

f2(γ̂2,t)− f2(γ̂2)
≤ C =

(
d2
k2+1

d2
k2+1 + 2nλ

)2

(2.2.3)

14

In most real problems, the top few singular values of X>X are much larger than the other

singular values and nλ. Therefore the constant C obtained in (2.2.2) can be very close

to 1 which implies that the GD algorithm converges very slowly. On the other hand,

removing the top few PCs will make C in (2.2.3) significantly smaller than 1. In other

words, GD may take a lot of iterations to converge when solving (2.1.1) directly while

the second stage of LING takes much less iterations to converge. This can also be seen

in the experiments of section 2.4.

2.3 Theorems

In this section we compute the risk of LING estimator (explained below) under the fixed

design setting. For simplicity, assume U1,D0 generated by Algorithm 2 give exactly the

top k2 left singular vectors and singular values of X and GD in step 4 of Algorithm 1 con-

verges to the optimal solution. Let X = UDV> be the SVD of X where U = (U1,U2)

and V = (V1,V2). Here U1,V1 are top k2 singular vectors and U2,V2 are bottom

p − k2 singular vectors. Let D = diag(D1,D2) where D1 ∈ k2 × k2 contains top k2

singular values denoted by d1 ≥ d2 ≥ ... ≥ dk2 and D2 ∈ p − k2 × p − k2 contains

bottom p− k2 singular values. Let D3 = diag(0,D2) (replace D1 in D by a zero matrix

of the same size).

15

2.3.1 The Fixed Design Model

Assume X, Y comes from the fixed design model Y = Xβ + ε where ε ∈ n× 1 are i.i.d

noise with mean 0 and variance σ2. Here X is fixed and the randomness of Y only comes

from ε. Note that X = U1D1V
>
1 + Xr, the fixed design model can also be written as

Y = (U1D1V
>
1 + Xr)β + ε = U1γ1 + Xrγ2 + ε

where γ1 = D1V
>
1 β and γ2 = β. We use the l2 distance between E(Y|X) (the best

possible prediction given X under l2 loss) and Ŷ = U1γ̂1,s + Xrγ̂2 (the prediction by

LING) as the loss function, which is called risk in the following discussions. Actually

E(Y|X) = Xβ is linear in X under fixed design model. The risk of LING can be written

as

1

n
E‖E(Y|X)−U1γ̂1,s −Xrγ̂2‖2

=
1

n
E‖U1γ1 + Xrγ2 −U1γ̂1,s −Xrγ̂2‖2

We can further decompose the risk into two terms:

1

n
E‖U1γ1 + Xrγ2 −U1γ̂1,s −Xrγ̂2‖2 =

1

n
E‖U1γ1 −U1γ̂1,s‖2 +

1

n
E‖Xrγ2 −Xrγ̂2‖2

(2.3.1)

because U>1 Xr = 0. Note that here the expectation is taken with respect to ε.

Let’s calculate the two terms in (2.3.1) separately. For the first term we have:

Lemma 2.3.1.

1

n
E‖U1γ1 −U1γ̂1,s‖2 =

1

n

k2∑
j=1

d4
jσ

2 + γ2
1,jn

2λ2

(d2
j + nλ)2

(2.3.2)

Here γ1,j is the jth element of γ1.

16

Proof. Let S ∈ k2 × k2 be the diagonal matrix with Sj,j =
d2j

d2j+nλ
. So we have γ̂1,s =

SU>1 Y = Sγ1 + SU>1 ε, E(γ̂1,s) = Sγ1.

1

n
E‖U1γ1 −U1γ̂1,s‖2

=
1

n
E‖U1E(γ̂1,s)−U1γ̂1,s‖2

+
1

n
‖U1γ1 −U1E(γ̂1,s)‖2

=
1

n
E‖U1SU>1 ε‖2 +

1

n
‖γ1 − Sγ1‖2

=
1

n
ETr(U1S

2U>1 εε
>) +

1

n
‖γ1 − Sγ1‖2

=
1

n
ETr(S2)σ2 +

1

n
‖γ1 − Sγ1‖2

=
1

n

k2∑
j=1

d4
jσ

2 + γ2
1,jn

2λ2

(d2
j + nλ)2

Now consider the second term in (2.3.1).

Note that

Xr = UD3V
>

The residual Yr after the first stage can be represented by

Yr = Y −U1γ̂1 = (I −U1U
>
1)Y = Xrγ2 + (I −U1U

>
1)ε

and the optimal coefficient obtained in the second GD stage is

γ̂2 = (X>r Xr + nλI)−1X>r Yr

For simplicity, let ε2 = (I −U1U
>
1)ε.

17

Lemma 2.3.2.

E‖Xrγ2 −Xrγ̂2‖2 =

p∑
i=k2+1

1

(d2
i + nλ)2

(d4
iσ

2 + nλ2d2
iα

2
i) (2.3.3)

where αi is the ith element of α = V>γ2

Proof. First define

Xλ = X>r Xr + nλI

Dλ = D2
3 + nλI

E‖Xrγ2 −Xrγ̂2‖2 = ‖Xrγ2 −XrE(γ̂2)‖2 (2.3.4)

+ E‖XrE(γ̂2)−Xrγ̂2‖2 (2.3.5)

Consider (2.3.4) and (2.3.5) separately.

(2.3.4) = ‖XrX
−1
λ X>r Xrγ2 −Xrγ2‖2

= ‖UD3D
−1
λ D2

3V
>γ2 −UD3V

>γ2‖2

= ‖D3D
−1
λ D2

3α−D3α‖2

=

p∑
i=k2+1

α2
i d

2
i (

nλ

d2
i + nλ

)2

(2.3.5) = Eε2‖XrX
−1
λ X>r ε2‖2

= Eε2Tr
(
XrX

−1
λ X>r XrX

−1
λ X>r ε2ε

>
2

)
= Eε2Tr

(
D3D

−1
λ D2

3D
−1
λ D3U

>ε2ε
>
2 U
)

= Tr
(
D3D

−1
λ D2

3D
−1
λ D3Eε2 [U>ε2ε>2 U]

)
18

Note that

Eε2 [U>ε2ε>2 U] = diag(0, Ip−k2)σ
2

(diag(0, Ip−k2)replace the top k2 × k2 block of the identity matrix with 0),

(2.3.5) =

p∑
i=k2+1

d4
i

(d2
i + nλ)2

σ2 (2.3.6)

Add the two terms together finishes the proof.

Plug (2.3.2) (2.3.3) into (2.3.1) we have

Theorem 2.3.3. The risk of LING algorithm under fixed design setting is

1

n

k2∑
j=1

d4
jσ

2 + γ2
1,jn

2λ2

(d2
j + nλ)2

+
1

n

p∑
i=k2+1

d4
iσ

2 + n2λ2d2
iα

2
i

(d2
i + nλ)2

(2.3.7)

Remark 2.3.4. This risk is the same as the risk of ridge regression provided by Lemma 1

in [18]. Actually, LING gets exactly the same prediction as RR on the training dataset.

This is very intuitive since on the training set LING is essentially decomposing the RR

solution into the first stage shrinkage PCR predictor on top k2 PCs and the second stage

GD predictor over the residual spaces as explained in section 2.2.

2.4 Experiments

In this section we compare the accuracy and computational cost (evaluated in terms of

FLOPS) of 3 different algorithms for solving Ridge Regression: Gradient Descent with

Optimal step size (GD), Stochastic Variance Reduction Gradient (SVRG) [34] and LING.

19

Here SVRG is an improved version of stochastic gradient descent which achieves ex-

ponential convergence with constant step size. We also consider Principal Component

Regression (PCR) [4, 35] which is another common way for running large scale regres-

sion. Experiments are performed on 3 simulated models and 2 real datasets. In general,

LING performs well on all 3 simulated datasets while GD, SVRG and PCR fails in some

cases. For two real datasets, all algorithms give reasonable performance while SVRG

and LING are the best. Moreover, both stages of LING require only a moderate amount

of matrix multiplications each cost O(np), much faster to run on matlab compared with

SVRG which contains a lot of loops.

2.4.1 Simulated Data

Three different datasets are constructed based on the fixed design model Y = Xβ + ε

where X is of size 2000×1500. In the three experiments X and β are generated randomly

in different ways (more details in following sections) and i.i.d Gaussian noise is added

to Xβ to get Y. Then GD, SVRG, PCR and LING are performed on the dataset. For

GD, we try different number of iterations n1. For SVRG, we vary the number of passes

through data denoted by nSVRG. The numbers of iterations SVRG takes equals the number

of passes through data times sample size and each iteration takes O(p) FLOPS. The step

size of SVRG is chosen by cross validation but this cost is not considered when evaluating

the total computational cost. Note that one advantage of GD and LING is that due to the

simple quadratic form of the target function, their step size can be computed directly

20

Table 2.1: parameter setup for simulated data

MODEL 1 MODEL 2 MODEL 3

k1

21,22,23,26

30,50,100

20,30,50

100,150,400

20,30,50,100

150,400

n1

10,20,30

50,80,100

150,200

2,4,6,8,10

15,20,30

6,10,15,20

30,50,80

120,180,250

k2 20 20 20

n2

1,2,3,5

8,13,20

2,4,6,8,10

15,20,30

2,4,6,8,10

15,30

nSVRG

30,50,80

120,150

5,10,20

30,50

5,10,15,25

40,60,90

from the data without cross validation which introduces extra cost. For PCR we pick

different number of PCs (k1). For LING we pick top k2 PCs in the first stage and try

different number of iterations n2 in the second stage. The computational cost and the risk

of the four algorithms are computed. The above procedure is repeated over 20 random

generations of X, β and Y. The risk and computational cost of the traditional RR solution

(2.1.2) for every dataset is also computed as a benchmark.

The parameter set up for the three datasets are listed in table 2.1.

21

Model 1

In this model the design matrix X has a steep spectrum. The top 30 singular values of X

decay exponentially as 1.3i where i = 40, 39, 38..., 11. The spectrum of X is shown in

figure 2.4. To generate X, we fix the diagonal matrix De with the designed spectrum and

construct X by X = UeDeV
>
e where Ue, Ve are two random orthonormal matrices. The

elements of β are sampled uniformly from interval [−2.5, 2.5]. Under this set up, most of

the energy of the X matrix lies in top PCs since the top singular values are much larger

than the remaining ones so PCR works well. But as indicated by (2.2.2), the convergence

of GD is very slow.

The computational cost and average risk of the four algorithms and also the RR solution

(2.1.2) over 20 repeats are shown in figure 2.1. As shown in figure 2.1 both PCR and

LING work well by achieving risk close to RR at less computational cost. SVRG is

worse than PCR and LING but much better than GD.

Model 2

In this model the design matrix X has a flat spectrum. The singular values of X are

sampled uniformly from [
√

2000
2

,
√

2000]. The spectrum of X is shown in figure 2.5. To

generate X, we fix the diagonal matrix De with the designed spectrum and construct X

by X = UeDeV
>
e where Ue, Ve are two random orthonormal matrices. The elements

of β are sampled uniformly from interval [−2.5, 2.5]. Under this set up, the signal is

widely spread among all PCs since the spectrum of X is relatively flat. PCR breaks down

22

5e+08 1e+09 2e+09 5e+09 1e+10

20

40

60

80

100

120

140

160

3000
10000
30000

FLOPS in log10 scale

R
is

k

Steep Spectral Case

LING
PCR
GD
RR
SVRG

Figure 2.1: Model 1, Risk VS. Computational Cost plot. PCR and LING approaches the

RR risk very fast. SVRG also approaches RR risk but cost more than the previous two.

GD is very slow and inaccurate.

because it fails to catch the signal on bottom PCs. As indicated by (2.2.2), GD converges

relatively fast due to the flat spectrum of X.

The computational cost and average risk of the four algorithms and also the RR solution

(2.1.2) over 20 repeats are shown in figure 2.2. As shown by the figure GD works best

since it approaches the risk of RR at the the lowest computational cost. LING and SVRG

also work by achieving reasonably low risk with less computational cost. PCR works

poorly as explained before.

Model 3

This model presented a special case where both PCR and GD will break down. The

singular values of X ∈ 2000 × 1500 are constructed by first uniformly sample from

[
√

2000
2

,
√

2000]. The top 15 sampled values are then multiplied by 10. The top 100

23

5e+07 1e+08 2e+08 5e+08 1e+09 2e+09 5e+09 1e+10

10

20

30

40

50

1200

1400

1600

1800

FLOPS in log10 scale

R
is

k

Flat Spectral Case

LING
PCR
GD
RR
SVRG

Figure 2.2: Model 2, Risk VS. Computational Cost plot. GD approaches the RR risk very

fast. SVRG and LING are slower than GD but still achieves risk close to RR at less cost.

PCR is slow and has huge risk.

singular values of X are shown in figure 2.6. To generate X, we fix the diagonal matrix

De with the designed spectrum and construct X by X = UeDe where Ue is a random

orthonormal matrix. The first 15 and last 1000 elements of the coefficient vector β ∈

1500×1 are sampled uniformly from interval [−2.5, 2.5] and other elements of β remains

0. In this set up, X has orthogonal columns which are the PCs, and the signal lies only on

the top 15 and bottom 1000 PCs. PCR won’t work since a large proportion of signal lies

on the bottom PCs. On the other hand, GD won’t work as well since the top few singular

values are too large compared with other singular values, which makes GD converges

very slowly.

The computational cost and risk of the four algorithms and also the RR solution (2.1.2)

over 20 repeats are shown in figure 2.3. As shown by the figure LING works best in this

set up. SVRG is slightly worse than LING but still approaching RR with less cost. In

24

this case, GD converges slowly and PCR is completely off target as explained before.

5e+08 1e+09 2e+09 5e+09 1e+10
0

20

40

60

80

100

120

FLOPS in log10 scale

R
is

k

Extreme Case

LING
PCR
GD
RR
SVRG

Figure 2.3: Model 3, Risk VS. Computational Cost plot. LING approaches RR risk the

fastest. SVRG is slightly slower than LING. GD also approaches RR risk but cost more

than LING. PCR has a huge risk no matter how many PCs are selected.

2.4.2 Real Data

In this section we compare PCR, GD, SVRG and LING with the RR solution (2.1.2) on

two real datasets.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104 Spectrum of X

si
ng

ul
ar

 v
al

ue
s

index

Figure 2.4: Top 100 singular values of X in Model 1

25

0 500 1000 1500
20

25

30

35

40

45
Spectrum of X

si
ng

ul
ar

 v
al

ue
s

index

Figure 2.5: Singular values of X in

Model 2

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450
Spectrum of X

si
ng

ul
ar

 v
al

ue
s

index

Figure 2.6: Top 100 singular values of

X in Model 3

Gisette Dataset

The first is the gisette data set [27] from the UCI repository which is a bi-class classifi-

cation task. Every row of the design matrix X ∈ 6000 × 5000 consists of pixel features

of a single digit ”4” or ”9” and Y gives the class label. Among the 6000 samples, we use

5000 for training and 1000 for testing. The classification error rate for RR solution (2.1.2)

is 0.019. Since the goal is to compare different algorithms for regression, we don’t care

about achieving the state of the art accuracy for this dataset as long as regression works

reasonably well. When running PCR, we pick top k1 = 10, 20, 40, 80, 150, 300, 400 PCs

and in GD we iterate n1 = 2, 5, 10, 15, 20, 30, 50, 100, 150 times. For SVRG we try

nSVRG = 1, 2, 3, 5, 10, 20, 40, 80 passes through the data. For LING we pick k2 = 5, 15

PCs in the first stage and try n2 = 1, 2, 4, 8, 10, 15, 20, 30, 50 iterations in the second

stage. The computational cost and average classification error of the four algorithms and

also the RR solution (2.1.2) on test set over 6 different train test splits are shown in figure

2.7. The top 150 singular values of X are shown in figure 2.9. As shown in the figure,

SVRG gets close to the RR error very fast. The two curves of LING with k2 = 5, 15 are

26

slower than SVRG since some initial FLOPS are spent on computing top PCs but after

that they approach RR error very fast. GD also converges to RR but cost more than the

previous two algorithms. PCR performs worst in terms of error and computational cost.

3e+08 1e+09 3e+09 1e+10 3e+10 1e+11 3e+11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FLOPS in log10 scale

Er
ro

r R
at

e

Gisette

LING15
LING5
PCR
GD
SVRG
RR

Figure 2.7: Gisette, Error Rate VS. Computational Cost plot. SVRG achieves small error

rate fastest. Two LING lines with different n2 spent some FLOPS on computing top

PCs first, but then converges very fast to a lower error rate. GD and PCR also provide

reasonably small error rate and are faster than RR, but suboptimal compared with SVRG

and LING.

Buzz in Social Media

The second dataset is the UCI buzz in social media dataset which is a regression task.

The goal is to predict popularity (evaluated by the mean number of active discussions)

of a certain topic on Twitter over a period. The original feature matrix contains some

statistics about this topic over that period like number of discussions created and new

authors interacting on the topic. The original feature dimension is 77. We add quadratic

27

interactions to make it 3080. To save time, we only used a subset of 8000 samples.

The samples are split into 6000 train and 2000 test. We use MSE on the test data set

as the error measure. For PCR we pick k1 = 10, 20, 30, 50, 100, 150 PCs and in GD

we iterate n1 = 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 100 times. For SVRG we try nSVRG =

1, 2, 3, 5, 10, 15, 20, 40, 80 passes through the dataset and for LING we pick k2 = 5, 15

in the first stage and n2 = 0, 1, 2, 4, 6, 8, 10, 15, 20, 25 iterations in the second stage. The

computational cost and average MSE on test set over 5 different train test splits are shown

in figure 2.8. The top 150 singular values of X are shown in figure 2.10. As shown in

the figure, SVRG approaches MSE of RR very fast. LING spent some initial FLOPS for

computing top PCs but after that converges fast. GD and PCR also achieves reasonable

performance but suboptimal compared with SVRG and LING. The MSE of PCR first

decays when we add more PCs into regression but finally goes up due to overfit.

3e+08 1e+09 3e+09 1e+10 3e+10 1e+11 3e+11
4000

4500

5000

5500

6000

6500

7000

7500

8000

FLOPS in log10 scale

M
SE

Buzz

LING15
LING5
PCR
GD
RR
SVRG

Figure 2.8: Buzz, MSE VS. Computational Cost plot. SVRG and two LING lines with

different n2 achieves small MSE fast. GD is slower than LING and SVRG. PCR reaches

its smallest MSE at k1 = 50 then overfits.

28

0 50 100 150
0

1

2

3

4

5

6

7

8

9

10
x 105 spectrum of X

index

si
ng

ul
ar

 v
al

ue
s

Figure 2.9: Top 150 singular values of

X in Gisette Dataset

0 50 100 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Spectrum of X

si
ng

ul
ar

 v
al

ue
s

index

Figure 2.10: Top 150 singular values of

X in Social Media Buzz Dataset

2.5 Summary

In this paper we present a two stage algorithm LING for computing large scale Ridge

Regression which is both fast and robust in contrast to the well known approaches GD

and PCR. We show that under the fixed design setting LING actually has the same risk

as Ridge Regression assuming convergence. In the experiments, LING achieves good

performances on all datasets when compare with three other large scale regression algo-

rithms.

We conjecture that same strategy can be also used to accelerate the convergence of

stochastic gradient descent when solving Ridge Regression since the first stage in LING

essentially removes the high variance directions of X, which will lead to variance reduc-

tion for the random gradient direction generated by SGD.

29

Chapter 3

Large Scale Canonical Correlation

Analysis with Iterative Least Squares

3.1 Introduction

Canonical Correlation Analysis (CCA) is a widely used spectrum method for finding cor-

relation structures in multi-view datasets introduced by [33]. Recently, [7, 22, 36] proved

that CCA is able to find the right latent structure under certain hidden state model. For

modern machine learning problems, CCA has already been successfully used as a dimen-

sionality reduction technique for the multi-view setting. For example, A CCA between

the text description and image of the same object will find common structures between

the two different views, which generates a natural vector representation of the object. In

[22], CCA is performed on a large unlabeled dataset in order to generate low dimensional

30

features to a regression problem where the size of labeled dataset is small. In [17, 19] a

CCA between words and its context is implemented on several large corpora to generate

low dimensional vector representations of words which captures useful semantic features.

When the data matrices are small, the classical algorithm for computing CCA in-

volves first a QR decomposition of the data matrices which pre whitens the data and then

a Singular Value Decomposition (SVD) of the whitened covariance matrix as introduced

in [25]. This is exactly how Matlab computes CCA. But for huge datasets this proce-

dure becomes extremely slow. For data matrices with huge sample size [5] proposed a

fast CCA approach based on a fast inner product preserving random projection called

Subsampled Randomized Hadamard Transform but it’s still slow for datasets with a huge

number of features. In this paper we introduce a fast algorithm for finding the top kcca

canonical variables from huge sparse data matrices (a single multiplication with these

sparse matrices is very fast) X ∈ n × p1 and Y ∈ n × p2 the rows of which are i.i.d

samples from a pair of random vectors. Here n� p1, p2 � 1 and kcca is relatively small

number like 50 since the primary goal of CCA is to generate low dimensional features.

Under this set up, QR decomposition of a n × p matrix cost O(np2) which is extremely

slow even if the matrix is sparse. On the other hand since the data matrices are sparse,

X>X and Y>Y can be computed very fast. So another whitening strategy is to com-

pute (X>X)−
1
2 , (Y>Y)−

1
2 . But when p1, p2 are large this takes O(max{p3

1, p
3
2}) which

is both slow and numerically unstable.

31

The main contribution of this paper is a fast iterative algorithm L-CCA consists of

only QR decomposition of relatively small matrices and a couple of matrix multiplica-

tions which only involves huge sparse matrices or small dense matrices. This is achieved

by reducing the computation of CCA to a sequence of fast Least Square iterations. It is

proved that L-CCA asymptotically converges to the exact CCA solution and error anal-

ysis for finite iterations is also provided. As shown by the experiments, L-CCA also has

favorable performance on real datasets when compared with other CCA approximations

given a fixed CPU time.

It’s worth pointing out that approximating CCA is much more challenging than SVD

(or PCA). As suggested by [28, 30], to approximate the top singular vectors of X, it suf-

fices to randomly sample a small subspace in the span of X and some power iteration

with this small subspace will automatically converge to the directions with top singular

values. On the other hand CCA has to search through the whole X Y span in order

to capture directions with large correlation. For example, when the most correlated di-

rections happen to live in the bottom singular vectors of the data matrices, the random

sample scheme will miss them completely. On the other hand, what L-CCA algorithm

doing intuitively is running an exact search of correlation structures on the top singular

vectors and an fast gradient based approximation on the remaining directions.

32

3.2 Background: Canonical Correlation Analysis

3.2.1 Definition

Canonical Correlation Analysis (CCA) can be defined in many different ways. Here

we use the definition in [22, 36] since this version naturally connects CCA with the

Singular Value Decomposition (SVD) of the whitened covariance matrix, which is the

key to understanding our algorithm.

Definition 3.2.1. Let X ∈ n× p1 and Y ∈ n× p2 where the rows are i.i.d samples from

a pair of random vectors. Let Φx ∈ p1× p1,Φy ∈ p2× p2 and use φx,i, φy,j to denote the

columns of Φx,Φy respectively. Xφx,i,Yφy,j are called canonical variables if

φ>x,iX
>Yφy,j =


di if i = j

0 if i 6= j

φ>x,iX
>Xφx,j =


1 if i = j

0 if i 6= j

φ>y,iY
>Yφy,j =


1 if i = j

0 if i 6= j

Xφx,i,Yφy,i is the ith pair of canonical variables and di is the ith canonical correlation.

3.2.2 CCA and SVD

First introduce some notation. Let

Cxx = X>X Cyy = Y>Y Cxy = X>Y

33

For simplicity assume Cxx and Cyy are full rank and Let

C̃xy = C
− 1

2
xx CxyC

− 1
2

yy

The following lemma provides a way to compute the canonical variables by SVD.

Lemma 3.2.2. Let C̃xy = UDV> be the SVD of C̃xy where ui, vj denote the left, right

singular vectors and di denotes the singular values. Then XC
− 1

2
xx ui, YC

− 1
2

yy vj are the

canonical variables of the X, Y space respectively.

Proof. Plug XC
− 1

2
xx ui, YC

− 1
2

yy vj into the equations in Definition 3.2.1 directly proves

lemma 3.2.2

As mentioned before, we are interested in computing the top kcca canonical variables

where kcca � p1, p2. Use U1,V1 to denote the first kcca columns of U,V respectively and

use U2,V2 for the remaining columns. By lemma 3.2.2, the top kcca canonical variables

can be represented by XC
− 1

2
xx U1 and YC

− 1
2

yy V1.

3.3 Compute CCA by Iterative Least Squares

Since the top canonical variables are connected with the top singular vectors of C̃xy which

can be compute with orthogonal iteration [24] (it’s called simultaneous iteration in [53]),

we can also compute CCA iteratively. A detailed algorithm is presented in Algorithm4:

The convergence result of Algorithm 4 is stated in the following theorem:

Theorem 3.3.1. Assume |d1| > |d2| > |d3|... > |dkcca+1| and U>1 C
1
2
xxG is non singular

(this will hold with probability 1 if the elements of G are i.i.d Gaussian). The columns of

34

Algorithm 4 CCA via Iterative LS
Input : Data matrix X ∈ n × p1 ,Y ∈ n × p2. A target dimension kcca. Number of

orthogonal iterations t1

Output : Xkcca ∈ n × kcca, Ykcca ∈ n × kcca consist of top kcca canonical variables of

X and Y.

1.Generate a p1×kcca dimensional random matrix G with i.i.d standard normal entries.

2.Let X0 = XG

3.

for t = 1 to t1 do

Yt = HYXt−1 where HY = Y(Y>Y)−1Y>

Xt = HXYt where HX = X(X>X)−1X>

end for

4.Xkcca = QR(Xt1),Ykcca = QR(Yt1)

Function QR(Xt) extract an orthonormal basis of the column space of Xt with QR

decomposition

Xkcca and Ykcca will converge to the top kcca canonical variables of X and Y respectively

if t1 →∞.

Theorem 3.3.1 is proved by showing it’s essentially an orthogonal iteration [24, 53]

for computing the top kcca eigenvectors of A = C̃xyC̃
>
xy. A detailed proof is provided in

the appendix.

35

3.3.1 A Special Case

When X Y are sparse and Cxx,Cyy are diagonal (like the Penn Tree Bank dataset in

the experiments), Algorithm 4 can be implemented extremely fast since we only need to

multiply with sparse matrices or inverting huge but diagonal matrices in every iteration.

QR decomposition is performed not only in the end but after every iteration for numerical

stability issues (here we only need to QR with matrices much smaller than X,Y). We

call this fast version D-CCA in the following discussions.

When Cxx,Cyy aren’t diagonal, computing matrix inverse becomes very slow. But

we can still run D-CCA by approximating (X>X)−1, (Y>Y)−1 with (diag(X>X))−1,

(diag(Y>Y))−1 in algorithm 4 when speed is a concern. But this leads to poor per-

formance when Cxx,Cyy are far from diagonal as shown by the URL dataset in the

experiments.

3.3.2 General Case

Algorithm 4 reduces the problem of CCA to a sequence of iterative least square prob-

lems. When X,Y are huge, solving LS exactly is still slow since it consists inverting a

huge matrix but fast LS methods are relatively well studied. There are many ways to ap-

proximate the LS solution by optimization based methods like Gradient Descent [1, 58],

Stochastic Gradient Descent [34, 12] or by random projection and subsampling based

methods like [21, 16]. A fast approximation to the top kcca canonical variables can be

obtained by replacing the exact LS solution in every iteration of Algorithm 4 with a fast

36

approximation. Here we choose LING [58] which works well for large sparse design

matrices for solving the LS problem in every CCA iteration.

The connection between CCA and LS has been developed under different setups for

different purposes. [52] shows that CCA in multi label classification setting can be for-

mulated as an LS problem. [55] also formulates CCA as a recursive LS problem and

builds an online version based on this observation. The benefit we take from this itera-

tive LS formulation is that running a fast LS approximation in every iteration will give

us a fast CCA approximation with both provable theoretical guarantees and favorable

experimental performance.

3.4 Algorithm

In this section we introduce L-CCA which is a fast CCA algorithm based on Algorithm

4.

3.4.1 LING: a Gradient Based Least Square Algorithm

First we need to introduce the fast LS algorithm LING as mentioned in section 3.3.2

which is used in every orthogonal iteration of L-CCA .

Remark 3.4.1. The version of LING introduced here is very similar to LING in Chapter

2. We modify some implementation details to make it work better with the dataset we

run CCA on, but the mathematical content of LING algorithm in Chapter 2 and here are

37

exactly the same. The introduction of LING here is self explanatory and the readers will

be able to get a complete idea of the LING without referring to Chapter 2.

Consider the LS problem:

β∗ = arg min
β∈Rp
{‖Xβ − Y ‖2}

for X ∈ n × p and Y ∈ n × 1. For simplicity assume X is full rank. Xβ∗ =

X(X>X)−1X>Y is the projection of Y onto the column space of X . In this section

we introduce a fast algorithm LING to approximately compute Xβ∗ without formulating

(X>X)−1 explicitly which is slow for large p. The intuition of LING is as follows. Let

U1 ∈ n× kpc (kpc � p) be the top kpc left singular vectors of X and U2 ∈ n× (p− kpc)

be the remaining singular vectors. In LING we decompose Xβ∗ into two orthogonal

components,

Xβ∗ = U1U
>
1 Y + U2U

>
2 Y

the projection of Y onto the span of U1 and the projection onto the span of U2. The

first term can be computed fast given U1 since kpc is small. U1 can also be computed

fast approximately with the randomized SVD algorithm introduced in [28] which only

requires a few fast matrix multiplication and a QR decomposition of n × kpc matrix.

The details for finding U1 are illustrated in the appendix. Let Yr = Y − U1U
>
1 Y be the

residual of Y after projecting onto U1. For the second term, we compute it by solving the

optimization problem

min
βr∈Rp

{‖Xβr − Yr‖2}

38

Algorithm 5 LING
Input : X ∈ n × p ,Y ∈ n × 1. kpc, number of top left singular vectors selected. t2,

number of iterations in Gradient Descent.

Output : Ŷ ∈ n× 1, which is an approximation to X(X>X)−1X>Y

1. Compute U1 ∈ n × kpc, top kpc left singular vector of X by randomized SVD (See

appendix for detailed description).

2. Y1 = U1U
>
1 X .

3.Compute the residual. Yr = Y − Y1

4.Use gradient descent initial at the 0 vector (see appendix for detailed description) to

approximately solve the LS problem minβr∈Rp ‖Xβr − Yr‖2. Use βr,t2 to denote the

solution after t2 gradient iterations.

5. Ŷ = Y1 +Xβr,t2 .

with Gradient Descent (GD) which is also described in detail in the appendix. A detailed

description of LING are presented in Algorithm 5.

In the above discussion Y is a column vector. It is straightforward to generalize LING

to fit into Algorithm 4 where Y have multiple columns by applying Algorithm 5 to every

column of Y .

In the following discussions, we use LING (Y,X, kpc, t2) to denote the LING output with

corresponding inputs which is an approximation to X(X>X)−1X>Y .

The following theorem gives error bound of LING .

39

Theorem 3.4.2. Use λi to denote the ith singular value of X . Consider the LS problem

min
β∈Rp
{‖Xβ − Y ‖2}

for X ∈ n× p and Y ∈ n× 1. Let Y ∗ = X(X>X)−1X>Y be the projection of Y onto

the column space of X and Ŷt2 = LING (Y,X, kpc, t2). Then

‖Y ∗ − Ŷt2‖2 ≤ Cr2t2 (3.4.1)

for some constant C > 0 and r =
λ2kpc+1−λ

2
p

λ2kpc+1+λ2p
< 1

The proof is in the appendix.

Remark 3.4.3. Theorem 3.4.2 gives some intuition of why LING decompose the pro-

jection into two components. In an extreme case if we set kpc = 0 (i.e. don’t remove

projection on the top principle components and directly apply GD to the LS problem), r

in equation 3.4.1 becomes λ21−λ2p
λ21+λ2p

. Usually λ1 is much larger than λp, so r is very close to

1 which makes the error decays slowly. Removing projections on kpc top singular vector

will accelerate error decay by making r smaller. The benefit of this trick is easily seen in

the experiment section.

3.4.2 Fast Algorithm for CCA

Our fast CCA algorithm L-CCA are summarized in Algorithm 6:

There are two main differences between Algorithm 4 and 6. We use LING to solve

Least squares approximately for the sake of speed. We also apply QR decomposition on

every LING output for numerical stability issues mentioned in [53].

40

Algorithm 6 L-CCA
Input : X ∈ n× p1 ,Y ∈ n× p2: Data matrices.

kcca: Number of top canonical variables we want to extract.

t1: Number of orthogonal iterations.

kpc: Number of top singular vectors for LING

t2: Number of GD iterations for LING

Output : Xkcca ∈ n× kcca, Ykcca ∈ n× kcca: Top kcca canonical variables of X and Y.

1.Generate a p1×kcca dimensional random matrix G with i.i.d standard normal entries.

2.Let X0 = XG, X̂0 = QR(X0)

3.

for t = 1 to t1 do

Yt = LING(X̂t−1,Y, kpc, t2), Ŷt = QR(Yt)

Xt = LING(Ŷt,X, kpc, t2), X̂t = QR(Xt)

end for

4.Xkcca = X̂t1 ,Ykcca = Ŷt1

3.4.3 Error Analysis of L-CCA

This section provides mathematical results on how well the output of L-CCA algorithm

approximates the subspace spanned by the top kcca true canonical variables for finite t1

and t2. Note that the asymptotic convergence property of L-CCA when t1, t2 → ∞

has already been stated by theorem 3.3.1. First we need to define the distances between

subspaces as introduced in section 2.6.3 of [24]:

41

Definition 3.4.4. Assume the matrices are full rank. The distance between the column

space of matrix W1 ∈ n× k and Z1 ∈ n× k is defined by

dist(W1,Z1) = ‖HW1 −HZ1‖2

where HW1 = W1(W>
1 W1)−1W>

1 , HZ1 = Z1(Z>1 Z1)−1Z>1 are projection matrices.

Here the matrix norm is the spectrum norm. Easy to see dist(W1,Z1) = dist(W1R1,Z1R2)

for any invertible k × k matrix R1,R2.

We continue to use the notation defined in section 3.2. Recall that XC
− 1

2
xx U1 gives the

top kcca canonical variables from X. The following theorem bounds the distance between

the truth XC
− 1

2
xx U1 and X̂t1 , the L-CCA output after finite iterations.

Theorem 3.4.5. The distance between subspaces spanned top kcca canonical variables

of X and the subspace returned by L-CCA is bounded by

dist(X̂t1 ,XC
− 1

2
xx U1) ≤ C1

(
dkcca+1

dkcca

)2t1

+ C2

d2
kcca

d2
kcca
− d2

kcca+1

r2t2

where C1, C2 are constants. 0 < r < 1 is introduced in theorem 3.4.2. t1 is the number of

power iterations in L-CCA and t2 is the number of gradient iterations for solving every

LS problem.

The proof of theorem 3.4.5 is deferred to the appendix.

3.5 Experiments

In this section we compare several fast algorithms for computing CCA on large datasets.

First let’s introduce the algorithms we compared in the experiments.

42

• RPCCA : Instead of running CCA directly on the high dimensional X Y, RPCCA

computes CCA only between the top krpcca principle components (left singular vec-

tor) of X and Y where krpcca � p1, p2. For large n, p1, p2, we use randomized algo-

rithm introduced in [28] for computing the top principle components of X and Y

(see appendix for details). The tuning parameter that controls the tradeoff between

computational cost and accuracy is krpcca. When krpcca is small RPCCA is fast but

fails to capture the correlation structure on the bottom principle components of X

and Y. When krpcca grows larger the principle components captures more structure

in X Y space but it takes longer to compute the top principle components. In the

experiments we vary krpcca.

• D-CCA : See section 3.3.1 for detailed descriptions. The advantage of D-CCA is

it’s extremely fast. In the experiments we iterate 30 times (t1 = 30) to make sure

D-CCA achieves convergence. As mentioned earlier, when Cxx and Cyy are far

from diagonal D-CCA becomes inaccurate.

• L-CCA : See Algorithm 6 for detailed description. We find that the accuracy of

LING in every orthogonal iteration is crucial to finding directions with large cor-

relation while a small t1 suffices. So in the experiments we fix t1 = 5 and vary t2.

In both experiments we fix kpc = 100 so the top kpc singular vectors of X,Y and

every LING iteration can be computed relatively fast.

• G-CCA : A special case of Algorithm 6 where kpc is set to 0. I.e. the LS projection

43

in every iteration is computed directly by GD. G-CCA does not need to compute

top singular vectors of X and Y as L-CCA . But by equation 3.4.1 and remark 3.4.3

GD takes more iterations to converge compared with LING . Comparing G-CCA

and L-CCA in the experiments illustrates the benefit of removing the top singular

vectors in LING and how this can affect the performance of the CCA algorithm.

Same as L-CCA we fix the number of orthogonal iterations t1 to be 5 and vary t2,

the number of gradient iterations for solving LS.

RPCCA , L-CCA , G-CCA are all ”asymptotically correct” algorithms in the sense

that if we spend infinite CPU time all three algorithms will provide the exact CCA so-

lution while D-CCA is extremely fast but relies on the assumption that X Y both have

orthogonal columns. Intuitively, given a fixed CPU time, RPCCA dose an exact search

on krpcca top principle components of X and Y. L-CCA does an exact search on the

top kpc principle components (kpc < krpcca) and an crude search over the other directions.

G-CCA dose a crude search over all the directions. The comparison is in fact testing

which strategy is the most effective in finding large correlations over huge datasets.

Remark 3.5.1. Both RPCCA and G-CCA can be regarded as special cases of L-CCA

. When t1 is large and t2 is 0, L-CCA becomes RPCCA and when kpc is 0 L-CCA

becomes G-CCA .

In the following experiments we aims at extracting 20 most correlated directions from

huge data matrices X and Y. The output of the above four algorithms are two n × 20

matrices Xkcca and Ykcca the columns of which contains the most correlated directions.

44

Then a CCA is performed between Xkcca and Ykcca with matlab built-in CCA function.

The canonical correlations between Xkcca and Ykcca indicates the amount of correlations

captured from the the huge X Y spaces by above four algorithms. In all the experiments,

we vary krpcca for RPCCA and t2 for L-CCA and G-CCA to make sure these three

algorithms spends almost the same CPU time (D-CCA is alway fastest). The 20 canoni-

cal correlations between the subspaces returned by the four algorithms are plotted (larger

means better).

We want to make to additional comments here based on the reviewer’s feedback.

First, for the two datasets considered in the experiments, classical CCA algorithms like

the matlab built in function takes more than an hour while our algorithm is able to get

an approximate answer in less than 10 minutes. Second, in the experiments we’ve been

focusing on getting a good fit on the training datasets and the performance is evaluated

by the magnitude of correlation captured in sample. To achieve better generalization

performance a common trick is to perform regularized CCA [31] which easily fits into

our frame work since it’s equivalent to running iterative ridge regression instead of OLS

in Algorithm 4. Since our goal is to compute a fast and accurate fit, we don’t pursue the

generalization performance here which is another statistical issue.

45

3.5.1 Penn Tree Bank Word Co-ocurrence

CCA has already been successfully applied to building a low dimensional word embed-

ding in [17, 19]. So the first task is a CCA between words and their context. The dataset

used is the full Wall Street Journal Part of Penn Tree Bank which consists of 1.17 million

tokens and a vocabulary size of 43k [37]. The rows of X matrix consists the indicator

vectors of the current word and the rows of Y consists of indicators of the word after. To

avoid sample sparsity for Y we only consider 3000 most frequent words, i.e. we only

consider the tokens followed by 3000 most frequent words which is about 1 million. So

X is of size 1000k × 43k and Y is of size 1000k × 3k where both X and Y are very

sparse. Note that every row of X and Y only has a single 1 since they are indicators of

words. So in this case Cxx,Cyy are diagonal and D-CCA can compute a very accurate

CCA in less than a minute as mentioned in section 3.3.1. On the other hand, even though

this dataset can be solved efficiently by D-CCA , it is interesting to look at the behavior

of other three algorithms which do not make use of the special structure of this problem

and compare them with D-CCA which can be regarded as the truth in this particular

case. For RPCCA L-CCA G-CCA we try three different parameter set ups shown in

table 3.1 and the 20 correlations are shown in figure 3.1. Among the three algorithms

L-CCA performs best and gets pretty close to D-CCA as CPU time increases. RPCCA

doesn’t perform well since a lot correlation structure of word concurrence exist in low

frequency words which can’t be captured in the top principle components of X Y. Since

the most frequent word occurs 60k times and the least frequent words occurs only once,

46

the spectral of X drops quickly which makes GD converges very slowly. So G-CCA

doesn’t perform well either.

Table 3.1: Parameter Setup for Two Real Datasets

PTB word co-occurrence URL features

id krpcca t2 t2 CPU id krpcca t2 t2 CPU

RPCCA L-CCA G-CCA time RPCCA L-CCA G-CCA time

1 300 7 17 170 1 600 4 7 220

2 500 38 51 460 2 600 11 16 175

3 800 115 127 1180 3 600 13 17 130

5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index

C
o
rr

e
la

ti
o
n

PTB Word Occurrence CPU time: 170 secs

L−CCA

D−CCA

RPCCA

G−CCA

5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index

C
o
rr

e
la

ti
o
n

PTB Word Occurrence CPU time: 460 secs

L−CCA

D−CCA

RPCCA

G−CCA

5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index

C
o
rr

e
la

ti
o
n

PTB Word Occurrence CPU time: 1180 secs

L−CCA

D−CCA

RPCCA

G−CCA

Figure 3.1: PTB word co-ocurrence: Canonical correlations of the 20 directions returned

by four algorithms. x axis are the indices and y axis are the correlations.

47

3.5.2 URL Features

The second dataset is the URL Reputation dataset from UCI machine learning repository.

The dataset contains 2.4 million URLs each represented by 3.2 million features. For sim-

plicity we only use first 400k URLs. 38% of the features are host based features like

WHOIS info, IP prefix and 62% are lexical based features like Hostname and Primary

domain. See [41] for detailed information about this dataset. Unfortunately the features

are anonymous so we pick the first 35% features as our X and last 35% features as our

Y. We remove the 64 continuous features and only use the Boolean features. We sort the

features according to their frequency (each feature is a column of 0s and 1s, the column

with most 1s are the most frequent feature). We run CCA on three different subsets of

X and Y. In the first experiment we select the 20k most frequent features of X and Y

respectively. In the second experiment we select 20k most frequent features from X Y

after removing the top 100 most frequent features of X and 200 most frequent features

of Y. In the third experiment we remove top 200 most frequent features from X and

top 400 most frequent features of Y. So we are doing CCA between two 400k ∗ 20k

data matrices in these experiments. In this dataset the features within X and Y has huge

correlations, so Cxx and Cyy aren’t diagonal anymore. But we still run D-CCA since it’s

extremely fast. The parameter set ups for the three subsets are shown in table 3.1 and the

20 correlations are shown in figure 3.2.

For this dataset the fast D-CCA doesn’t capture largest correlation since the correlation

within X and Y make Cxx,Cyy not diagonal. RPCCA has best performance in exper-

48

iment 1 but not as good in 2, 3. On the other hand G-CCA has good performance in

experiment 3 but performs poorly in 1, 2. The reason is as follows: In experiment 1 the

data matrices are relatively dense since they includes some frequent features. So every

gradient iteration in L-CCA and G-CCA is slow. Moreover, since there are some high

frequency features and most features has very low frequency, the spectrum of the data

matrices in experiment 1 are very steep which makes GD in every iteration of G-CCA

converges very slowly. These lead to poor performance of G-CCA . In experiment 3

since the frequent features are removed data matrices becomes more sparse and has a flat

spectrum which is in favor of G-CCA . L-CCA has stable and close to best performance

despite those variations in the datasets.

5 10 15 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Index

C
o
rr

e
la

ti
o
n

URL1 CPU time: 220secs

L−CCA

D−CCA

RPCCA

G−CCA

5 10 15 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Index

C
o
rr

e
la

ti
o
n

URL2 CPU time: 175secs

L−CCA

D−CCA

RPCCA

G−CCA

5 10 15 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Index

C
o
rr

e
la

ti
o
n

URL3 CPU time: 130secs

L−CCA

D−CCA

RPCCA

G−CCA

Figure 3.2: URL: Canonical correlations of the 20 directions returned by four algorithms.

x axis are the indices and y axis are the correlations.

49

3.6 Conclusion and Future Work

In this paper we introduce L-CCA , a fast CCA algorithm for huge sparse data matrices.

We construct theoretical bound for the approximation error of L-CCA comparing with

the true CCA solution and implement experiments on two real datasets in which L-CCA

has favorable performance. On the other hand, there are many interesting fast LS algo-

rithms with provable guarantees which can be plugged into the iterative LS formulation

of CCA. Moreover, in the experiments we focus on how much correlation is captured

by L-CCA for simplicity. It’s also interesting to use L-CCA for feature generation and

evaluate it’s performance on specific learning tasks.

50

Chapter 4

Augmented Approximate Gradient

Algorithm for Large Scale Canonical

Correlation Analysis

4.1 Introduction

4.1.1 Background

Canonical Correlation Analysis (CCA), first introduced in 1936 by [33], is a foundamen-

tal statistical tool to characterize the relationship between two multidimensional vari-

ables, which finds a wide range of applications. For example, CCA naturally fits into

multi-view learning tasks and tailored to generate low dimensional feature representa-

tions using abandunt and inexpensive unlabeled datasets to supplement or refine the ex-

51

pensive labeled data in a semi-supervised fashion. Improved generalization accuracy has

been witnessed or proved in areas such as regression [36], clustering [14, 10], dimension

reduction [22, 43], word embeddings [17, 19], etc. Besides, CCA has also been succes-

fully applied to genome-wide association study (GWAS) and has been shown powerful

for understanding the relationship between genetic variations and phenotypes [56, 15].

There are various equivalent ways to define CCA and here we use the linear alge-

braic formulation of [26], which captures the very essense of the procedure, pursuing the

directions of maximal correlations between two data matrices.

Definition 4.1.1. Let X ∈ Rn×p1 ,Y ∈ Rn×p2 and p = min{p1, p2}. Canonical correla-

tions λ1, · · · , λp and corresponding canonical vectors Φ = (φ1, · · · , φp),Ψ = (ψ1, · · · , ψp)

of the matrix pair (X,Y) are defined recursively by

(φj, ψj) = arg max
‖Xφ‖=1, ‖Yψ‖=1

φTXTXφi=0, 1≤i≤j−1
ψTY TY ψi=0, 1≤i≤j−1

cos∠(Xφ,Yψ)

λj = cos∠(Xφj,Yψj) j = 1, · · · , p

Lemma 4.1.2. Let Sx = XTX, Sy = YTY, Sxy = XTY and S
−1

2
x SxyS

−1
2

y = UDV>

be the singular value decomposition. Then Φ = S
−1

2
x U, Ψ = S

−1
2

y V, and Λ = D where

Λ = diag(λ1, · · · , λp).

Lemma 4.1.2 shows that CCA can be solved by first computing the whitening ma-

trices (XTX)−
1
2 , (YTY)−

1
2 and then perform a SVD on the whitened covariance matrix

(XTX)−
1
2 XTY(YTY)−

1
2 . This classical algorithm is feasible and accurate when the

data matrices are small but it can be slow and numerically unstable for large scale datasets

52

which are common in modern Natural Language Processing (large corpora [17, 19]) and

multi-view learning (abandunt and inexpensive unlabeled data [32]) applications.

Throughout the paper, we call the step of orthonormalizing the columns of X and Y

whitening step. The computational complexity of the classical algorithm is dominated

by the whitening step. There are two major bottlenecks,

• Huge matrix multiplication XTX,YTY to obtain Sx,Sy with computational com-

plexity O(np2
1 + np2

2) for general dense X and Y.

• Large matrix decomposition to compute S
−1

2
x and S

−1
2

y with computational com-

plexity O(p3
1 + p3

2) (Even when X and Y are sparse, Sx,Sy are not necessarily

sparse)

Remark 4.1.3. The whitening step dominates because in the SVD step, when applying

power iterations, instead of directly computing S
−1

2
x XTYS

−1
2

y , we only need to multi-

ply S
−1

2
x XTYS

−1
2

y with a thin matrix, which can be efficiently achieved by successively

multiplying each huge matrix with the thin matrix.

Remark 4.1.4. Another classical algorithm (built-in function in Matlab) introduced in [9]

uses a different way of whitening. It first carrys out a QR decomposition, X = QxRx

and Y = QyRy and then performs a SVD on QT
xQy, which has the same computa-

tional complexity O(np2
1 + np2

2) as the algorithm indicated by Lemma 4.1.2. However,

it is difficult to exploit sparsity in QR factorization while XTX,YTY can be efficiently

computed when X and Y are sparse.

53

Besides computational issues, extraO(p2
1+p2

2) space is needed to store two whitening

matrices S
−1

2
x and S

−1
2

y (typically dense). In high dimensional applications where the

number of features is huge, this can be another bottleneck considering the capacity of

RAM of personal desktops (10-20 GB). In large distributed storage systems, the extra

required space might incur heavy communication cost.

Therefore, it is natural to ask: is there a scalable algorithm that avoids inverting a

huge matrix and multiplying two huge matrices? Is it memory efficient? Or even more

ambitiously, is there an online algorithm that generates decent approximation given a

fixed computational power (e.g. CPU time, FLOP)?

4.1.2 Related Work

Scalability begins to play an increasingly important role in modern machine learning

applications and draws more and more attention. Recently lots of promising progress

emerged in the literature concerning randomized algorithms for large scale matrix ap-

proximations, SVD, and Principal Component Analysis [48, 38, 57, 28]. Unfortunately,

these techniques does not directly solve CCA due to the whitening step. Several authors

have tried to devise a scalable CCA algorithm. [5] proposed an efficient approach for

CCA between two tall and thin matrices (p1, p2 � n) harnessing the recently developed

tools, Subsampled Randomized Hadamard Transform, which only subsampled a small

proportion of the n data points to approximate the matrix product. However, when the

size of the features, p1 and p2, are large, the sampling scheme does not work. Later, [40]

54

consider sparse design matrices and formulate CCA as iterative least squares, where in

each iteration a fast regression algorithm that exploits sparsity is applied.

Another related line of research considers stochastic optimization algorithms for PCA

[3, 45, 8], which dates back to [46]. Compared with batch algorithms, they converge

faster and have better generalization property. Further, these stochastic algorithms can

be applied to streaming setting where data comes sequentially (one pass or several pass)

without being stored. As mentioned in [3], stochastic optimization algorithm for CCA is

more challenging because of the whitening step and remains an open problem.

4.1.3 Main Contribution

The main contribution of this paper is to directly tackle CCA as a nonconvex optimiza-

tion problem and propose a novel Augmented Approximate Gradient (AppGrad) scheme

and its stochastic variant for finding the top k dimensional canonical subspace. Its ad-

vantages over state-of-art CCA algorithms are three folds. Firstly, AppGrad scheme only

involves large matrix multiplying a thin matrix of width k and small matrix decomposi-

tion of dimension k × k, and therefore to some extent is free from the two bottlenecks.

It also benefits if X and Y are sparse while classical algorithm still needs to invert the

dense matrices XTX and YTY. Secondly, AppGrad achieves optimal storage com-

plexity O(k(p1 + p2)), the space necessary to store the output, compared with classical

algorithms which usually require O(p2
1 + p2

2) for storing the whitening matrices. Thirdly,

the stochastic (online) variant of AppGrad is especially efficient for large scale datasets

55

if moderate accuracy is desired. It is well-suited to the case when computational re-

sources are limited or data comes as a stream. To the best of our knowledge, it is the first

stochastic algorithm for CCA, which gives an affirmative answer to a question left open

in [3].

The rest of the paper is organized as follows. In next section, we describe the pro-

posed AppGrad scheme in detail and establish its convergence result. Section 3 extends

the algorithm to stochastic setting. Extensive real data experiments are presented in sec-

tion 4. Concluding remarks and future work are summarized in section 5. Proof of the

main theorem is relegated to the appendix.

4.2 Algorithm

For simplicity, we first focus on the leading canonical pair (φ1, ψ1) to motivate the pro-

posed algorithms. Results for general scenario can be obtained in the same manner and

will be briefly discussed in the later part of this section.

4.2.1 An Optimization Perspective

Throughout the paper, we assume X and Y are of full rank. We use ‖ · ‖ for L2 norm.

∀u ∈ Rp1 , v ∈ Rp2 , we define ‖u‖x = (uTXTXu)
1
2 and ‖v‖y = (vTYTYv)

1
2 , which are

norms induced by X and Y. For the rest of the paper, we will use (uTXTXu)
1
2 , (vTYTYv)

1
2

and their shorthands interchangeably.

To begin with, we recast CCA as an optimization problem [26].

56

Algorithm 7 CCA via Alternating Least Squares
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 and initialization (φ0, ψ0)

Output :(φALS, ψALS)

repeat

φt+1 = arg min
φ

1
2
‖Xφ−Yψt‖2 = S−1

x Sxyψ
t

φt+1 = φt+1/‖φt+1‖x

ψt+1 = arg min
ψ

1
2
‖Yψ −Xφt‖2 = S−1

y Syxφ
t

ψt+1 = ψt+1/‖ψt+1‖y

until convergence

Lemma 4.2.1. (φ1, ψ1) is the solution of

min
1

2
‖Xφ−Yψ‖2

subject to φTXTXφ = 1, ψTYTYψ = 1

(4.2.1)

Although (4.2.1) is a nonconvex optimization problem (due to the nonconvex con-

straint), [26] showed that an alternating minimization strategy (Algorithm 7), or rather

iterative least squares, actually converges to the leading canonical pair. However, each

update φt+1 = S−1
x Sxyψ

t is computationally intensive. Essentially, the alternating least

squares acts like a second order method, which is usually recognized to be inefficient for

large-scale problems, especially when current estimate is not close enough to the opti-

mum. Therefore, it is natural to ask: is there a valid first order method that solves (4.2.1)?

Heuristics borrowed from convex optimization literature give rise to a projected gradient

scheme summarized in Algorithm 8. Instead of completely solving a least squares in

57

Algorithm 8 CCA via Naive Gradient Descent
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initialization (φ0, ψ0), step size η1, η2

Output : NAN (incorrect algorithm)

repeat

φt+1 = φt − η1X
T (Xφt −Yψt)

φt+1 = φt+1/‖φt+1‖x

ψt+1 = ψt − η2Y
T (Yψt −Xφt)

ψt+1 = ψt+1/‖ψt+1‖y

until convergence

each iterate, a single gradient step of (4.2.1) is performed and then project back to the

constrained domain, which avoids inverting a huge matrix. Unfortunately, the following

proposition demonstrates that Algorithm 8 fails to converge to the leading canonical pair.

Proposition 4.2.2. If leading canonical correlation λ1 6= 1 and φ1, ψ1 are not eigenvec-

tors of Sx,Sy, ∀η1, η2 > 0, the leading canonical pair (φ1, ψ1) is not a fixed point of

the naive gradient scheme in Algorithm 8. Therefore, the algorithm does not converge to

(φ1, ψ1).

Proof of Proposition 4.2.2. The proof is similar to the proof of Proposition 4.2.5 and we

leave out the details here.

58

Example 4.2.3 (example for Proposition 4.2.2). Let

X =



1 5

2 −6

3 7

4 −8


,Y =



9 1

10 −1

11 −1

12 1


The CCA directions for X and Y are:

φ =

 0.1871 0.0234

0.0099 0.0766

 , ψ =

 0.0473 −0.0010

−0.0104 −0.4999


We can verify that

φ>X>Xφ = ψ>Y>Yψ = I

φ>X>Yψ =

 0.9585 0

0 0.1553


Let’s check the first pair of CCA directions

φ1,=

 0.1871

0.0099

 , ψ1 =

 0.0473

−0.0104


is not a fixed point of the naive projected gradient update:

For naive projected gradient update, let

φt =

 0.1871

0.0099

 , ψt =

 0.0473

−0.0104



59

, follow the update rule,

φt+1 =

 0.1871

0.0099

− sx
(

X>X

 0.1871

0.0099

−X>Y

 0.0473

−0.0104


)

=

 0.1871

0.0099

+ sx

 −0.2318

0.0786


Therefore, φt+1 isn’t parallel to φt and after the project step (which is essentially a

rescale) still φt+1 6= φt.

The failure of Algorithm 8 is due to the nonconvex nature of (4.2.1). Although ev-

ery gradient step decreases the objective function, this property no longer persists af-

ter projecting to its nonconvex domain
{

(φ, ψ) |φTXTXφ = 1, ψTYTYψ = 1
}

(the

normalization step). On the contrary, decreases triggered by gradient descent is always

maintained if projecting to a convex region.

Remark 4.2.4. For all the algorithms presented in this section, during the update of ψt+1,

φt can be replaced by φt+1, simply the difference between gradient descent and block

coordinate descent.

4.2.2 AppGrad Scheme

As a remedy, we propose a novel Augmented Approximate Gradient (AppGrad) scheme

summarized in Algorithm 9. It inherits the convergence guarantee of alternating least

squares as well as the scalability and memory efficiency of first order methods, which

only involves matrix-vector multiplication and only requires O(p1 + p2) extra space.

60

Algorithm 9 CCA via AppGrad

Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initialization (φ0, ψ0, φ̃0, ψ̃0), step size

η1, η2

Output: (φAG, ψAG, φ̃AG, ψ̃AG)

repeat

φ̃t+1 = φ̃t − η1X
T (Xφ̃t −Yψt)

φt+1 = φ̃t+1/‖φ̃t+1‖x

ψ̃t+1 = ψ̃t − η2Y
T (Yψ̃t −Xφt)

ψt+1 = ψ̃t+1/‖ψ̃t+1‖y

until convergence

AppGrad seems unnatural at first sight but has some nice intuitions behind as we will

discuss later. The differences and similarities between these algorithms are subtle but

crucial. Compared with the naive gradient descent, we introduce two auxiliary variables

(φ̃t, ψ̃t), an unnormalized version of (φt, ψt). During each iterate, we keep updating

φ̃t and ψ̃t without scaling them to have unit norm, which in turn produces the ‘correct’

normalized counterpart, (φt, ψt). It turns out that (φ1, ψ1, λ1φ1, λ1ψ1) is a fixed point of

the dynamic system {(φt, ψt, φ̃t, ψ̃t)}∞t=0.

Proposition 4.2.5. ∀λi > 0, let φ̃i = λiφi, ψ̃i = λiψi, then (φi, ψi, φ̃i, ψ̃i) are the fixed

points of AppGrad scheme.

To prove the proposition, we need the following lemma that characterizes the relations

among some key quantities.

61

Lemma 4.2.6. Sxy = SxΦΛΨTSy

Proof of Lemma 4.2.6. By Lemma 4.1.2, S
−1

2
x SxyS

−1
2

y = UDVT, where U = S
1
2
x Φ,

V = S
1
2
y Ψ and D = Λ. Then we have Sxy = S

1
2
x UDVTS

1
2
y = SxΦΛΨTSy.

Proof of Proposition 4.2.5. Substitute (φt, ψt, φ̃t, ψ̃t) = (φi, ψi, φ̃i, ψ̃i) into the iterative

formula in Algorithm 9.

φ̃t+1 = φ̃i − η1(Sxφ̃i − Sxyψi)

= φ̃i − η1(Sxφ̃i − SxΦΛΨTSyψi)

= φ̃i − η1(Sxφ̃i − λiSxφi)

= φ̃i

The second equality is direct application of Lemma 4.2.6. The third equality is due to the

fact that ΨTSyΨ = Ip. Then,

φt+1 = φ̃i/‖φ̃i‖x = φ̃i/λi = φi

Therefore (φ̃t+1, φt+1) = (φ̃t, φt) = (φ̃i, φi). A symmetric argument will show that

(ψ̃t+1, ψt+1) = (ψ̃t, ψt) = (ψ̃i, ψi), which completes the proof.

The connection between AppGrad and alternating minimization strategy is not in-

staneous. Intuitively, when (φt, ψt) is not close to (φ1, ψ1), solving the least squares

completely as carried out in Algorithm 7 is a waste of computational power (informally

by regarding it as a second order method, the Newton Step has fast convergence only

when current estimate is close to the optimum). Instead of solving a sequence of possibly

62

irrelevant least squares, the following lemma shows that AppGrad directly targets at the

least squares that involves the leading canonical pair.

Lemma 4.2.7. Let (φ1, ψ1) be the leading canonical pair and (φ̃1, ψ̃1) = λ1(φ1, ψ1).

Then,

φ̃1 = arg min
φ

1

2
‖Xφ−Yψ1‖2

ψ̃1 = arg min
ψ

1

2
‖Yψ −Xφ1‖2

(4.2.2)

Proof of Lemma 4.2.7. Let φ∗ = arg min
φ

1
2
‖Xφ−Yψ1‖2, by optimality condition, Sxφ

∗ =

Sxyψ1. Apply Lemma 4.2.6,

φ∗ = Sx
−1SxΦΛΨTSyψ1 = λ1φ1 = φ̃1

Similar argument gives ψ∗ = ψ̃1

Lemma 4.2.7 characterizes the relationship between leading canonical pair (φ1, ψ1)

and its unnormalized counterpart (φ̃1, ψ̃1), which sheds some insight on how AppGrad

works. The intuition is that (φt, ψt) and (φ̃t, ψ̃t) are current estimations of (φ1, ψ1) and

(φ̃1, ψ̃1), and the updates of (φ̃t+1, ψ̃t+1) in Algorithm 9 are actually gradient steps of the

least squares in (4.2.2), with the unknown truth (φ1, ψ1) approximated by (φt, ψt). In

terms of mathematics,

φ̃t+1 = φ̃t − η1X
T (Xφ̃t −Yψt)

≈ φ̃t − η1X
T (Xφ̃t −Yψ1)

= φ̃t − η1∇φ
1

2
‖Xφ−Yψ1‖2|φ=φ̃t

(4.2.3)

63

The normalization step in Algorithm 9 corresponds to generating new approximations

of (φ1, ψ1), namely (φt+1, ψt+1), using the updated (φ̃t+1, ψ̃t+1) through the relationship

(φ1, ψ1) = (φ̃1/‖φ̃1‖x, ψ̃1/‖ψ̃1‖y).

As equation (4.2.3) suggests, AppGrad actually uses approximate gradients. We show

that when current estimates enter a neighborhood of the true canonical pair, this approx-

imate gradient scheme is contractive. Without loss of generality, assume λmax(XTX),

λmax(Y
TY) ≤ 1 and ∃L > 1 such that λmin(XTX), λmin(YTY) ≥ L−1, where λmin,

λmax are smallest and largest eigenvalues. It is equivalent to condition number is bounded

by L since we can always normalize X and Y.

Theorem 4.2.8. Assume ∆λ = λ1 − λ2 > 0, Set η1 = η2 = ∆λ/6Cλ1, ∀C > 1. Let

δ = (C−1)(∆λ)2

6C2Lλ21
, ∆φ̃t = φ̃t− φ̃1,∆ψ̃

t = ψ̃t− ψ̃1. Then when ‖∆φ̃t‖2, ‖∆ψ̃t‖2 ≤ λ1∆λ/2

, AppGrad is δ-contractive in the sense that

‖∆φ̃t+k‖2 + ‖∆ψ̃t+k‖2 ≤
(

1− δ
)k(
‖∆φ̃t‖2 + ‖∆ψ̃t‖2

)
Remark 4.2.9. The theorem reveals that the larger is the eigengap ∆λ, the broader is

the basin of attraction. We didn’t try to optimize the conditions above and actually as

shown in the experiments, a randomized initialization always suffices to capture most of

the correlations.

4.2.3 General Rank-k Case

Following the spirit of rank-one case, AppGrad can be easily generalized to compute

the top k dimesional canonical subspace as summarized in Algorithm 10. The only dif-

64

Algorithm 10 CCA via AppGrad (Rank-k)

Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initialization (Φ0,Ψ0Φ̃0, Ψ̃0), step size

η1, η2

Output : (ΦAG,ΨAG, Φ̃AG, Ψ̃AG)

repeat

Φ̃t+1 = Φ̃t − η1X
T (XΦ̃t −YΨt)

SVD: (Φ̃t+1)TXTXΦ̃t+1 = UxDxU
T
x

Φt+1 = Φ̃t+1UxD
− 1

2
x UT

x

Ψ̃t+1 = Ψ̃t − η2Y
T (YΨ̃t −XΦt)

SVD: (Ψ̃t+1)TYTYΨ̃t+1 = UyDyU
T
y

Ψt+1 = Ψ̃t+1UyD
− 1

2
y UT

y

until convergence

ference is that the original scalar normalization is replaced by its matrix counterpart, that

is to multiply the inverse of the square root matrix Φt+1 = Φ̃t+1UxD
− 1

2
x UT

x , ensuring

that (Φt+1)TXTXΦt+1 = Ik.

Notice that the gradient step only involves a large matrix multiplying a thin matrix of

width k and the SVD is performed on a small k×k matrix. Therefore, the computational

complexity per iteration is dominated by the gradient step, of order O(n(p1 + p2)k). The

cost will be further reduced when the data matrices (X,Y) are sparse.

Compared with classical spectral agorithm which first whitens the data matrices and

then performs a SVD on the whitened covariance matrix, AppGrad actually merges these

65

two steps together. This is the key of its efficiency. In a high level, whitening the whole

data matrix is not necessary and we only want to whiten the directions than contains the

leading CCA subspace. However, these directions are unknown and therefore for two-

step procedures, whitening the whole data matrix is unavoidable. Instead, AppGrad tries

to identify (gradient step) and whiten (normalization step) these directions simultane-

ously. In this way, every normalization step is only performed on the potential leading k

dimensional CCA subspace and therefore only deals with a small k × k matrix.

Parallel results of Lemma 4.2.1, Proposition 4.2.2, Proposition 4.2.5, Lemma 4.2.7 for

this general scenario can be established in a similar manner. Here, to make Algorithm 10

more clear, we state the fixed point result without proof.

Proposition 4.2.10. Let Λk = diag(λ1, · · · , λk) be the diagonal matrix of top k canon-

ical correlations and let Φk = (φ1, · · · , φk),Ψk = (φ1, · · · , φk) be the top k CCA

vectors. Also denote Φ̃k = ΦkΛk and Ψ̃k = ΨkΛk. Then for any k × k orthogonal

matrix Q, (Φk,Ψk, Φ̃k, Ψ̃k)Q is a fixed point of AppGrad scheme.

The top k dimensional canonical subspace is identifiable up to a rotation matrix and

Proposition 4.2.10 shows that every optimum is a fixed point of AppGrad scheme.

4.2.4 Kernelization

Sometimes CCA is restricted because of its linearity and kernel CCA offers an alternative

by projecting data into a high dimensional feature space. In this section, we show that

AppGrad works for kernel CCA as well. LetKX (·, ·) andKY(·, ·) be Mercer kernels, then

66

there exists feature mappings fX : X → FX and fY : Y → FY such that KX (xi, xj) =

〈fX (xi), fX (xj)〉 and KY(yi, yj) = 〈fY(yi), fY(yj)〉. Let FX = (fX (x1), · · · , fX (xn))T

and FY = (fY(y1), · · · , fY(yn))T be the compact representation of the objects in the pos-

sibly infinite dimensional feature space. Since the top k dimensional canonical vectors

lie in the space spaned by the features, say Φk = FT
XWX and Ψk = FT

YWY for some

WX ,WY ∈ Rn×k. Let KX = FXFT
X ,KY = FYF

T
Y be the Gram matrices. Similar to

Lemma 4.2.1, kernel CCA can be formulated as

arg max
WX ,WY

‖KXWX −KYWY‖2
F

subject to WT
XKXKXWX = Ik WT

YKYKYWY = Ik

Following the same logic as Proposition 4.2.10, a similar fixed point result can be proved.

Therefore, Algorithm 10 can be directly applied to compute WX ,WY by simply replac-

ing X,Y with KX ,KY .

4.3 Stochastic AppGrad

Recently, there is a growing interest in stochastic optimization which is shown to have

better performance for large-scale learning problems [13, 50, 12]. Especially in the so-

called ‘data laden regime’, where data is abundant and the bottleneck is runtime, stochas-

tic optimization dominate batch algorithms both empirically and theoretically. Given

these advantages, lots of efforts have been spent on developing stochastic algorithms for

nonconvex spectral methods such as principal component analysis [46, 3, 45, 8]. Despite

promising progress in PCA, as mentioned in [3], stochastic CCA is more challenging due

67

Algorithm 11 CCA via Stochastic AppGrad (Rank-k)

Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initialization (Φ0,Ψ0, Φ̃0, Ψ̃0), step size

η1t, η2t, minibatch size m

Output : (ΦSAG,ΨSAG, Φ̃SAG, Ψ̃SAG)

repeat

Randomly pick a subset I ⊂ {1, 2, · · · , n} of size m

Φ̃t+1 = Φ̃t − η1tX
T
I (XIΦ̃

t −YIΨ
t)

SVD: (Φ̃t+1)TXT
IXIΦ̃

t+1 = UT
xDxUx

Φt+1 = Φ̃t+1UT
xD
− 1

2
x Ux

Ψ̃t+1 = Ψ̃t − η2tY
T
I (YIΨ̃

t −XIΦ
t)

SVD: (Ψ̃t+1)TYT
IYIΨ̃

t+1 = UT
y DyUy

Ψt+1 = Ψ̃t+1UT
y D
− 1

2
y Uy

until convergence

to the whitening step and remains an open problem .

As a gradient scheme, AppGrad naturally generalizes to the stochastic regime and

we summarize it in Algorithm 11. Compared with batch algorithm, only a small subset

of samples are used to compute the gradient, which reduces the computational cost per

iteration from O(n(p1 + p2)k) to O(m(p1 + p2)k) (m = |I| is the size of the minibatch).

Empirically, this makes stochastic AppGrad much faster than the batch version as we will

see in the experiments. Also, for large scale applications when fully calculating the CCA

subspace is prohibitive, stochastic AppGrad can generate a decent approximation given a

68

fixed computational power, while other algorithms only give a one-shot estimate after the

whole procedure is carried out completely. Moreover, when there is a generative model,

as shown in [13], due to the tradeoff of statistical and numerical accuracy, fully solving an

optimization problem is unnecessary since the statistical error will finally dominate. On

the contrary, stochastic optimization directly targets at the generative model and therefore

is more statistically efficient.

It is worth mentioning that the normalization step is accomplished using a sampled

Gram matrix XT
IXI and YT

IYI . A key observation is that when |I| = m = O(k),

(Φ̃t+1)TXT
IXIΦ̃

t+1 ≈ (Φ̃t+1)TXTXΦ̃t+1 using standard concentration inequality, be-

cause the matrix we want to approximate (Φ̃t+1)TXTXΦ̃t+1 is a k × k matrix, while

generally O(p) sample is needed to have XT
IXI ≈ XTX. As we have argued in previous

section, this bonus is a byproduct of the fact that AppGrad tries to identify and whiten

the directions that contains the CCA subspace simultaneously, or else O(p) samples are

necessary for whitening the whole data matrices.

4.4 Experiments

In this section, we present experiments on four real datasets (Mediamill, MNIST, Penn

Tree Bank, URL Reputation) to evaluate the effectiveness of the proposed algorithms for

computing the top 20 (k=20) dimensional canonical subspace. A short summary of the

datasets is in Table 4.1.

69

Table 4.1: Brief Summary of Datasets

DATASETS DESCRIPTION p1 p2 n

MEDIAMILL IMAGE AND 100 120 30, 000

ITS LABELS

MNIST LEFT AND RIGHT 392 392 60, 000

HALVES OF IMAGES

PENN TREE BANK WORD CO-OCURRANCE 10, 000 10, 000 500, 000

URL REPUTATION HOST AND 100, 000 100, 000 1, 000, 000

LEXICAL BASED FEATURES

4.4.1 Details of Datasets

Mediamill is an annotated video dataset from the Mediamill Challenge [51]. There are

43907 images in total, 30933 for training and 12914 for testing. Each image is a repre-

sentative keyframe of a video shot annotated with 101 labels and consists of 120 features.

CCA is performed to explore the correlation structure between the images and its labels.

MNIST is a database of handwritten digits. CCA is used to learn correlated rep-

resentations between the left and right halves of the images. Each image has a width

and height of 28 pixels and therefore, both views are 392 dimensional features. 60, 000

random samples are used for training and 10, 000 samples for testing.

Penn Tree Bank dataset is extracted from Wall Street Journal, which consists of 1.17

70

million tokens and a vocabulary size of 43, 000 [37]. CCA has been successfully used

on this dataset to build low dimensional word embeddings [17, 19]. The task here is a

CCA between words and their context. The rows of X matrix are indicator vectors of the

current word and the rows of Y are indicators of the word behind. We consider 10, 000

most frequent words to avoid sample sparsity (p1 = p2 = 10, 000). Both the training set

and testing set contains roughly 500, 000 samples.

URL Reputation dataset [41] is extracted from UCI machine learning repository.

The dataset contains 2.4 million URLs each represented by 3.2 million features. For

simplicity we only use the first 2, 000, 000 samples. 38% of the features are host based

features like WHOIS info, IP prefix and 62% are lexical based features like Hostname

and Primary domain. We run a CCA between a subset of host based features and a

subset of lexical based features. In both training and testing set, X and Y are of size

1, 000, 000× 100, 000.

4.4.2 Implementations

Evaluation Criterion: The evaluation criterion we use for the first three datasets (Me-

diamill, MNIST, Penn Tree Bank) is Proportions of Correlations Captured (PCC). To

introduce this term, we first define Total Correlations Captured (TCC) between two ma-

trices to be the sum of their canonical correlations as defined in Lemma 4.1.2. Then, for

estimated top k dimensional canonical subspace Φ̂k, Ψ̂k and true leading k dimensional

71

CCA subspace Φk,Ψk, PCC is defined as

PCC =
TCC(XΦ̂k,YΨ̂k)

TCC(XΦk,YΨk)

Intuitively PCC characterizes how much correlation is captured by certain algorithm

compared with the true CCA subspace. Therefore, the higher is PCC the better is the

estimated CCA subspace. This criterion has some advantages. First, compared with

‖PΦ̂k
− PΦk

‖ (PΩ is projection matrix of the column space of Ω), it is more natural and

relevant considering that the goal of CCA is to capture most correlations between two

data matrices. Second, when the eigengap ∆λ = λk − λk+1 is not big enough, the top k

dimensional CCA subspace is ill posed while the correlations captured is well defined.

We use the output of the standard spectral algorithms as the truth (Φk,Ψk) to cal-

culate the denominator of PCC. However, for URL Reputation dataset, the number of

samples and features are too large for the algorithm to compute the true CCA subspace in

a reasonable amount of time and instead we compare the numerator TCC(XΦ̂k,YΨ̂k)

(monotone w.r.t. PCC) for different algorithms.

Initialization We initialize (Φ0,Ψ0) by first drawing i.i.d. samples from standard

Gaussian distribution and then normalize such that (Φ0)TSxΦ0 = Ik and (Ψ0)TSyΨ0 =

Ik

Stepsize For both AppGrad and stochastic AppGrad, a small part of the training set

is held out and cross-validation is used to choose the step size adaptively.

Regularization For all the algorithms, a little regularization is added for numerical

stability which means we replace Gram matrix XTX with XTX + λI for some small

72

positive λ.

Oversampling Oversampling means when aiming for top k dimensional subspace,

people usually computes top k + l dimesional subspace from which a best k diemsional

subspace is extracted. In practice, l = 5 ∼ 10 suffices to improve the performance. We

only do a oversampling of 5 in the URL dataset.

4.4.3 Summary of Results

For the first three datasets (Mediamill, MNIST, Penn Tree Bank), both in-sample and

out-of-sample PCC are computed for AppGrad and Stochastic AppGrad as summarized

in Figure4.1. As you can see, both algorithms nearly capture most of the correlations

compared with the true CCA subspace and stochastic AppGrad consistently achieves

same PCC with much less computational cost than its batch version. Moreover, the larger

is the size of the data, the bigger advantage will stochastic AppGrad obtain. One thing to

notice is that, as revealed in Mediamill dataset, out-of-sample PCC is not necessarily less

than in-sample PCC because both denominator and numerator will change on the hold

out set.

For URL Reputation dataset, as we mentioned earlier, classical algorithms fails on

a typical desktop. The reason is that these algorithms only produce a one-shot estimate

after the whole procedure is completed, which is usually prohibitive for huge datasets.

In this scenario, the advantage of online algorithms like stochastic AppGrad becomes

crucial. Further, the stochastic nature makes the algorithm cost-effective and generate

73

24 25 26 27 28 29 30 31

84

86

88

90

92

94

96

98

100

log(FLOP)

P
C

C

Mediamill AppGrad

insample

outsample

26 27 28 29 30 31

75

80

85

90

95

100

log(FLOP)

P
C

C

Mnist AppGrad

insample

outsample

33 34 35 36 37

70

75

80

85

90

95

100

log(FLOP)

P
C

C

PTB AppGrad

insample

outsample

21 22 23 24 25
75

80

85

90

95

100

log(FLOP)

P
C

C

Mediamill S−AppGrad

insample

outsample

21 21.5 22 22.5 23 23.5 24 24.5
75

80

85

90

95

100

log(FLOP)

P
C

C

Mnist S−AppGrad

insample

outsample

28.5 29 29.5 30 30.5 31 31.5

60

65

70

75

80

85

90

95

100

log(FLOP)

P
C

C

PTB S−AppGrad

insample

outsample

Figure 4.1: Proportion of Correlations Captured (PCC) by AppGrad and stochastic App-

Grad on different datasets

74

decent approximations given fixed computational resources (e.g. FLOP). As revealed by

Figure 4.2, as the number of iterations increases, stochastic AppGrad captures more and

more correlations.

Since the true CCA subspaces for URL dataset is too slow to compute, we compare

our algorithm with some naive heuristics which can be carried out efficiently in large

scale and catches a reasonable amount of correlation. Below is a brief description of

them.

• No whitening (NW-CCA): directly perform SVD on the unwhitened covariance

matrix XTY. This strategy is also used in [56]

• Diagnoally whitening (DW-CCA) [40]: avoid inverting matrices by approximating

(XTX)−
1
2 and (YTY)−

1
2 with (diag(XTX))−

1
2 and (diag(YTY))−

1
2 .

• Whitening the leading m Principal Component Directions (PCA-CCA): First com-

pute the leading m dimensional principal component subspace and project the data

matrices X and Y to the subspace, denote them Ux and Uy. Then compute the

top k dimensional CCA subspace of the pair (Ux,Uy). At last, transform the CCA

subspace of (Ux,Uy) back to the CCA subspace of orginal matrix pair (X,Y).

Specifically for this example, we choose m = 1200 (log(FLOP)=35, dominating

the computational cost of Stochastic AppGrad) .

Remark 4.4.1. For all the heuristics mentioned above, SVD and PCA steps are carried

out using the randomized algorithms developed in [28]. For PCA-CCA, as the number

75

of Principal Components (m) increases, more correlation will be captured but the com-

putational cost will also increase. When m = p, PCA-CCA is reduced to the orginal

CCA.

Essentially, all the heuristics are incorrect algorithms and try to approximately whiten

the data matrices. As suggested by Figure 4.2, stochastic AppGrad significantly captures

much more correlations.

4.5 Conclusions and Future Work

In this paper, we present a novel first order method, AppGrad, to tackle large scale CCA

as a nonconvex optimization problem. This bottleneck-free algorithm is both memory

efficient and computationally scalable. More importantly, its online variant is well-suited

to practical high dimensional applications where batch algorithm is prohibitive and data

laden regime where data is abundant and runtime is main concern.

Further, AppGrad is flexible and structure information can be easily incorporated into

the algorithm. For example, if the canonical vectors are assumed to be sparse [56, 23],

a thresholding step can be added between the gradient step and normalization step to

obtain sparse solutions. On the contrary, it is hard to add sparse constraint to the original

CCA formulation which is a generalized eigenvalue problem. Heuristics in [56] avoid

this by simply skipping the whitening procedure (NW-CCA). [23] resorts to semidefinite

relaxation and therefore is not scalable. AppGrad with thresholding works really well in

simulations and we leave its theoretical properties for future research.

76

28 29 30 31 32 33
8

9

10

11

12

13

14

15

16

17

18

log(FLOP)

TC
C

URL Outsample

S−AppGrad
PCA−CCA
NW−CCA
DW−CCA

Figure 4.2: Total Correlations Captured (TCC) by NW-CCA, DW-CCA, PCA-CCA and

stochastic AppGrad on URL dataset. The dash lines indicate TCC for those heuristics and

the colored dots denote corresponding computational cost. Red arrow means log(FLOP)

of PCA-CCA is more than 33.

77

Appendices

78

Appendix A

Appendix for Chapter 3

A.1 Proof of Theorem 3.3.1

Continue to use the notations from the main paper.

Proof. Let’s focus on variable X:

Let

A = C̃xyC̃
>
xy = UDV>VDU> = UD2U>

and B = C
1
2
xxG. So the columns of U are eigenvectors of A. Let At1B = Qt1Rt1 be the

QR decomposition of At1B. Easy to check

Xt1 = (HXHY)t1XG = XC
− 1

2
xx At1B = XC

− 1
2

xx Qt1Rt1

Note that XC
− 1

2
xx Qt1 is an orthonormal matrix, so (XC

− 1
2

xx Qt1)Rt1 actually gives the QR

decomposition of Xt1 , i.e. Xkcca = XC
− 1

2
xx Qt1 .

79

By theorem 28.1 in [53], the columns of Qt1 will converge to U1 as long as the two

regularity condition hold which can be implied by our assumptions (see equation 28.4

and 28.5 in [53] for details). Therefore Xkcca = XC
− 1

2
xx Qt1 converges to XC

− 1
2

xx U1 which

are the top canonical variables of X. The argument for Y is the same.

A.2 Randomized Algorithm for Finding Top Singular Vec-

tors

Here we briefly describe a fast randomized algorithm which finds the top singular vectors

of the data matrices as mentioned in section 3.4 of the main paper. In fact our regression

based algorithms only need an orthonormal basis of the subspace spanned by the top left

singular vectors of X and Y instead of the singular vectors themselves. We stick with

top singular vectors in the statements and proofs of the main paper since its mathemati-

cally cleaner. All the mathematical properties of the algorithms mentioned in our paper

carry through if we replace the top singular vectors with any orthonormal basis of the

same subspace which is computationally more convenient because regression is a projec-

tion onto a certain subspace. Algorithm 12 is an randomized algorithm for finding this

orthonormal basis, based on the idea of random subspace finder introduced by [28].

Remark A.2.1. For numerical stability reasons, in step 2 we perform QR decomposi-

tion every time after multiply with (X>X) as suggested by [28]. More intuitions and

theoretical details of the algorithm can be found in [28].

80

Algorithm 12 Random Subspace Finder
Input : Matrix X ∈ n× p1, target dimension kpc, number of power iterations i.

Output : U1 ∈ n × kpc, an orthonormal basis of the span of the top kpc left singular

vectors of X, Q2, an orthonormal basis of the span of the top kpc right singular vectors

of X

1.Generate random matrices R2 ∈ p1 × kpc with i.i.d standard Gaussian entries.

2.Estimate the span of top kpc right singular vectors of X by A2 = (X>X)iR2.

3.Use QR decomposition to compute Q2 ∈ p1 × kpc which is an orthonormal basis of

the column space of A2.

4.Compute the span of top kpc left singular vectors of X by A1 = XQ2.

5. Use QR decomposition of A1 to compute an orthonormal basis U1

A.3 Gradient Descent with Optimal Step Size

Algorithm 13 gives a detailed description of the Gradient Descent algorithm we used in

LING in section 3.1 of the main paper which is explained in detail by [1].

Remark A.3.1. An implementation detail that worth mentioning is that after every iter-

ation of GD (Algorithm 13), we actually project the coefficient β2,t onto the orthogonal

complement of V1 the columns of which consists top kpc right singular vector of X (it’s

obtained by the randomized algorithm while computing U1 as described in Algorithm

12 above), i.e. we set βr,t+1 = βr,t+1 − V1V
>

1 βr,t+1 at the end of every iteration. The

projection step significantly increases the performance of LING and our CCA algorithm.

The intuition of projection step can be easily seen from the the proof of Theorem 2 (see

81

Algorithm 13 Gradient Descent with Optimal Step Size (GD)
Goal : Solve the LS problem minβr∈Rp ‖Xβr − Yr‖2.

Input : X ∈ n× p, Yr ∈ n× 1, number of gradient iterations t2, an initial vector βr,0

(We always initialize with 0 vector)

Output : βr,t2 , regression coefficients after t2 iterations.

for t = 0 to t2 − 1 do

Q = 2X>X

wt = 2X>Yr −Qβr,t

st =
w>t wt

w>t Qwt
. st is the step size which makes the target function decrease the most in

direction wt.

βr,t+1 = βr,t + st · wt.

end for

82

next section) which is addressed in remark A.4.2 of this appendix.

A.4 Error Analysis of LING

This section gives a detailed proof of theorem 3.4.2 in the main paper. Here we continue

to use the definition and other notations in the main paper and above sections.

Lemma A.4.1. Sub-optimality Bound for GD

Assume X is full rank with singular values λ1, λ2..λp. Let

f(βr) =
1

2
β>r Qβr − 2Y >r Xβr + Y >r Yr

be the target function value we want to minimize in regression. Assume f ∗ is the minimum

value of the target function. Let βr,t be the coefficient after t iterations when initializing

with 0 vector. The sub-optimality of βr,t which is defined as f(βr,t)− f ∗ satisfies:

f(βr,t+1)− f ∗

f(βr,t)− f ∗
≤

(
λ2
kpc+1 − λ2

p

λ2
kpc+1 + λ2

p

)2

Proof. Let X have the singular value decomposition

X = [U1, U2]

 Λ1 0

0 Λ2

 [V1, V2]>

where U1, V1 are top kpc singular vectors.

First we claim that if initialize with 0 vector, βr,t, wt will always be in the span of

V2. This is easy to see by recursion. Assume βr,t is in the span of V2, by Algorithm

83

13, wt = 2X>Yr − 2X>Xβr,t. Note that Yr is orthogonal to U1 since it’s the residual

of Y after projecting onto U1. So both X>Yr and X>Xβr,t lives in the span of V2 and

also wt lives in the span of V2. Therefore βr,t+1 = βr,t + stwt also lives in the span of

V2. If we start with 0 which is in the span of V2, βr,t, wt will stay in the span of V2 forever.

By taking derivatives of the target function we have

f ∗ = −2Y >r XQ
−1X>Yr + Y >r Yr

So we have

f(βr,t)− f ∗

=
1

2
β>r,tQβr,t − 2Y >r Xβr,t + 2Y >r XQ

−1X>Yr

= (Qβr,t − 2X>Yr)
>1

2
Q−1(Qβr,t − 2X>Yr)

=
1

2
w>t Q

−1wt (A.4.1)

84

f(βr,t+1)− f(βr,t)

=
1

2
(βr,t + stwt)

>Q(βr,t + stwt)

− 2Y >r X(βr,t + stwt)

− 1

2
β>r,tQβr,t + 2Y >r Xβr,t

=
1

2
s2
tw
>
t Qwt

+ stw
>
t Qβ2,t − 2stw

>
t X

>Yr

=
1

2
s2
tw
>
t Qwt − stw>t wt

= − (w>t wt)
2

2w>t Qwt
(A.4.2)

With above equation we have

f(βr,t+1)− f ∗

f(βr,t)− f ∗

= 1− f(βr,t)− f(βr,t+1)

f(βr,t)− f ∗

= 1−
(w>t wt)2

2w>t Qwt

1
2
w>t Q

−1wt

= 1− (w>t wt)
2

(w>t Qwt)(w
>
t Q
−1wt)

(A.4.3)

Since wt always lives in the span of V2, let zt = V >2 wt, we have

(w>t wt)
2

(w>t Qwt)(w
>
t Q
−1wt)

=
(z>t zt)

2

(z>t Λ2
2zt)(z

>
t Λ−2

2 zt)

By Kantorovich Inequality [1], (z>t zt)
2

(z>t D
2
2zt)(z

>
t D
−2
2 zt)

≥ 4(λkpc+1λp)2

(λ2kpc+1+λ2p)2
. Plug into equation

A.4.3 we have

f(β2,t+1)− f ∗

f(β2,t)− f ∗
≤

(
λ2
kpc+1 − λ2

p

λ2
kpc+1 + λ2

p

)2

85

Remark A.4.2. From the proof it’s clear that keeping the gradient wt and coefficient β2,t

in the span of V2 is curtail to the fast convergence to the GD algorithm. When U1 consists

exactly the top left singular vectors, we proved above that wt, β2,t will always stay in

the span of V2. However, in practice U1 in computed by Algorithm 12 which is only

an approximate of the top left singular vectors. In order to compensate the error of the

randomized algorithm, we project the coefficient β2,t back to the span of V2 after every

iteration of GD, as illustrated in remark A.3.1 of the appendix.

A.4.1 Proof of Theorem 3.4.2

With the above lemma we can proof theorem 3.4.2 in the main paper

Proof. The optimality of Y ∗ implies that Y ∗ − Y is orthogonal to the span of X and in

particular is orthogonal to Ŷt2 − Y ∗. By pythagorean theorem

‖Ŷt2 − Y ‖2 − ‖Y ∗ − Y ‖2 = ‖Ŷt2 − Y ∗‖2

On the other hand

‖Ŷt2 − Y ‖2 = ‖(Xβr,t2 + Y1)− (Yr + Y1)‖2 = ‖Xβr,t2 − Yr‖2

and

‖Y ∗ − Y ‖2 = ‖(Y1 + U2U
>
2 Yr)− (Y1 + Yr)‖2

= ‖U2U
>
2 Yr − Yr‖2

86

Easy to see ‖U2U
>
2 Yr − Yr‖2 = f ∗

Put above equations and lemma A.4.1 together,

‖Ŷt2 − Y ∗‖2 = ‖Ŷt2 − Y ‖2 − ‖Y ∗ − Y ‖2

= ‖Xβr,t2 − Yr‖2 − ‖U2U
>
2 Yr − Yr‖2

= f(βr,t2)− f ∗

=

(
λ2
kpc+1 − λ2

p

λ2
kpc+1 + λ2

p

)2t2

(f(βr,t2)− f ∗)

A.5 Error Analysis of L-CCA

This section gives detailed proof of Theorem 3 in the main paper. The next lemma gives

an easy way of computing distance between subspaces the proof of which is in theorem

2.6.1 [24].

Lemma A.5.1. Let

W = [W1
k
,W2
n−k

] Z = [Z1
k
, Z2
n−k

]

are n× n orthonormal matrices, dist(W1,Z1) = ‖W>
1 Z2‖2 = ‖W>

2 Z1‖2

Now let’s state the key lemma for error analysis of L-CCA (below we continue to

use the notation used in the main paper and supplementary):

Lemma A.5.2. Let Xt, Yt be the LING output in every iteration defined in Algorithm 3

of the main paper. Let Yt = HYX̂t−1+∆y,t, Xt = HXŶt+∆x,t where ∆x,t,∆y,t denotes

87

the error of LING compared with the exact LS solution. Assume ‖∆x,t‖2, ‖∆y,t‖2 ≤ ε for

every t. Then the distance between subspace spanned top kcca canonical variables and

the subspace returned by L-CCA is bounded by

dist(X̂t1 ,XC
− 1

2
xx U1) ≤ C1

(
dkcca+1

dkcca

)2t1

+ C2

d2
kcca

d2
kcca
− d2

kcca+1

ε

where C1, C2 are constants.

Proof. Let’s focus on the tth iteration. Note that QR decomposition is essentially a change

of basis, so we have X̂t = XtRx,t and Ŷt = YtRy,t for some non-singular matrix

Rx,t,Ry,t.

First represent X̂t in terms of X̂t−1 and errors of LING :

X̂t = XtRx,t

= (HXŶt + ∆x,t)Rx,t

= (HXYtRy,t + ∆x,t)Rx,t

= (HX(HYX̂t−1 + ∆y,t)Ry,t + ∆x,t)Rx,t

= HXHYX̂t−1Ry,tRx,t + HX∆y,tRy,tRx,t

+∆x,tRx,t (A.5.1)

Let HX∆y,t + ∆x,tR
−1
y,t = ∆t, together with equation A.5.1 we have

X̂t = (HXHYX̂t−1 + ∆t)Ry,tRx,t (A.5.2)

88

For simplicity assume there exist C0 > 1 s.t. ‖R−1
y,t‖2 ≤ (C0 − 1) for all t, we have

‖∆t‖2 ≤ ‖HX∆y,t‖2 + ‖∆x,tR
−1
y,t‖2

≤ ‖∆y,t‖2 + (C0 − 1)‖∆x,t‖2

≤ C0ε (A.5.3)

Now define Ut = (XC
− 1

2
xx)>X̂t. Since XC

− 1
2

xx and X̂t have orthonormal columns and X̂t

lives in the column space of X (follows from the definition of the LING algorithm), the

columns of matrix Ut is actually orthonormal. It’s also easy to check from the definition

that

dist(X̂t,XC
− 1

2
xx U1) = dist(Ut,U1) (A.5.4)

From now on we can bound dist(Ut,U1) instead. Let U = [U1,U2], define

U>Ut =

 U>1

U>2

Ut =

 W1,t

W2,t

 (A.5.5)

From lemma A.5.1, dist(Ut,U1) = ‖W2,t‖2. Now let’s track the quantity ‖W2,t(W1,t)
−1‖2

which will eventually help us bounding ‖W2,t‖2. Recall that A = C̃xyC̃
>
xy = UDV>VDU> =

UD2U>.

89

 W1,t

W2,t

 = U>Ut

= U>(XC
− 1

2
xx)>X̂t

= U>(XC
− 1

2
xx)>(HXHYX̂t−1 + ∆t)Ry,tRx,t

= U>A2(XC
− 1

2
xx)>X̂t−1Ry,tRx,t

+U>(XC
− 1

2
xx)>∆tRy,tRx,t

= U>(A2Ut−1 + (XC
− 1

2
xx)>∆t)Ry,tRx,t (A.5.6)

Note that

U>A2Ut−1 = D2U>Ut−1 =

 D2
1W1,t−1

D2
2W2,t−1

 (A.5.7)

and let  ∆1,t

∆2,t

 =

 U>1

U>2

 (XC
− 1

2
xx)>∆t

=

 U>1 (XC
− 1

2
xx)>∆t

U>2 (XC
− 1

2
xx)>∆t

 (A.5.8)

Together with equation A.5.3 we have the following norm bound for i = 1, 2

‖∆i,t‖2 = ‖U>1 (XC
− 1

2
xx)>∆t‖2 ≤ ‖∆t‖2 ≤ C0ε (A.5.9)

because Ui, XC
− 1

2
xx both have orthonormal columns. plug equation A.5.7 A.5.8 into

90

A.5.6 we have  W1,t

W2,t

 =

 D2
1W1,t−1 + ∆1,t

D2
2W2,t−1 + ∆2,t

Ry,tRx,t (A.5.10)

Equation A.5.10 directly implies

‖W2,t(W1,t)
−1‖2

= ‖(D2
2W2,t−1 + ∆2,t)(D

2
1W1,t−1 + ∆1,t)

−1‖2

≤ ‖(D2
2W2,t−1)(D2

1W1,t−1)−1‖2

+C3(‖∆1,t‖2 + ‖∆2,t‖2)

≤ ‖D2
2‖2‖W2,t−1W

−1
1,t−1‖2‖D−2

1 ‖2 + 2C3C0ε

=
d2
kcca+1

d2
kcca

‖W2,t−1W
−1
1,t−1‖2 + 2Cε (A.5.11)

where C = C0C3 are all constants independent of t. Note that in the first inequality, we

ignore the higher order error term ‖∆1,t‖2 · ‖∆2,t‖2.

Recursively apply equation A.5.11 t1 times leads to

‖W2,t1(W1,t1)
−1‖2

≤ ‖W2,0(W1,0)−1‖2

(
dkcca+1

dkcca

)2t1

+

t1−1∑
j=0

(
dkcca+1

dkcca

)2j

2Cε

= ‖W2,0(W1,0)−1‖2

(
dkcca+1

dkcca

)2t1

+
d2
kcca

d2
kcca
− d2

kcca+1

Cε (A.5.12)

91

From equation A.5.4 we have

dist(X̂t1 ,XC
− 1

2
xx U1) = dist(Ut1 ,U1)

= ‖W2,t1‖2

≤ ‖W2,t1(W1,t1)
−1‖2 (A.5.13)

The last inequality is because ‖W1,t1‖2 ≤ 1. Put equation A.5.12 A.5.13 together com-

pletes the proof.

Finally, use results of Theorem 3.4.2 in the main paper to bound ε in the above lemma

directly proves Theorem 3.4.5 in the main paper.

92

Bibliography

[1] Marina A.Epelman. Rate of convergence of steepest descent algorithm. Lecture

Notes, 2007.

[2] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on

dual bch codes. Technical report, 2007.

[3] R Arora, A Cotter, K Livescu, and N Srebro. Stochastic optimization for pca and pls.

In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton

Conference on, pages 861–868. IEEE, 2012.

[4] Andreas Artemiou and Bing Li. On principal components and regression: a sta-

tistical explanation of a natural phenomenon. Statistica Sinica, 19(4):1557–1565,

2009.

[5] Haim Avron, Christos Boutsidis, Sivan Toledo, and Anastasios Zouzias. Efficient

dimensionality reduction for canonical correlation analysis. In ICML (1), pages

347–355, 2013.

93

[6] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging

lapack’s least-squares solver. SIAM J. Sci. Comput., 32(3):1217–1236, April 2010.

[7] Francis R. Bach and Michael I. Jordan. A probabilistic interpretation of canonical

correlation analysis. Technical report, University of California, Berkeley, 2005.

[8] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence

of incremental pca. In Advances in Neural Information Processing Systems, pages

3174–3182, 2013.

[9] ke Björck and Gene H Golub. Numerical methods for computing angles between

linear subspaces. Mathematics of computation, 27(123):579–594, 1973.

[10] Matthew B Blaschko and Christoph H Lampert. Correlational spectral clustering.

In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference

on, pages 1–8. IEEE, 2008.

[11] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent.

In Yves Lechevallier and Gilbert Saporta, editors, Proceedings of the 19th Interna-

tional Conference on Computational Statistics (COMPSTAT’2010), pages 177–187,

Paris, France, August 2010. Springer.

[12] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent.

In Yves Lechevallier and Gilbert Saporta, editors, Proceedings of the 19th Interna-

tional Conference on Computational Statistics (COMPSTAT’2010), pages 177–187,

Paris, France, August 2010. Springer.

94

[13] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Ad-

vances in neural information processing systems, pages 161–168, 2008.

[14] Kamalika Chaudhuri, Sham M Kakade, Karen Livescu, and Karthik Sridharan.

Multi-view clustering via canonical correlation analysis. In Proceedings of the 26th

annual international conference on machine learning, pages 129–136. ACM, 2009.

[15] Xi Chen, Han Liu, and Jaime G Carbonell. Structured sparse canonical correlation

analysis. In International Conference on Artificial Intelligence and Statistics, pages

199–207, 2012.

[16] Paramveer Dhillon, Yichao Lu, Dean P. Foster, and Lyle Ungar. New subsampling

algorithms for fast least squares regression. In Advances in Neural Information

Processing Systems 26, pages 360–368. 2013.

[17] Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Multi-view learning of word

embeddings via cca. In Advances in Neural Information Processing Systems (NIPS),

volume 24, 2011.

[18] Paramveer S. Dhillon, Dean P. Foster, Sham M. Kakade, and Lyle H. Ungar. A

risk comparison of ordinary least squares vs ridge regression. Journal of Machine

Learning Research, 14:1505–1511, 2013.

[19] Paramveer S. Dhillon, Jordan Rodu, Dean P. Foster, and Lyle H. Ungar. Two step

cca: A new spectral method for estimating vector models of words. In Proceedings

of the 29th International Conference on Machine learning, ICML’12, 2012.

95

[20] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms

for l2 regression and applications. In Proceedings of the Seventeenth Annual ACM-

SIAM Symposium on Discrete Algorithm, SODA ’06, pages 1127–1136, Philadel-

phia, PA, USA, 2006. Society for Industrial and Applied Mathematics.

[21] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. Faster

least squares approximation. CoRR, abs/0710.1435, 2007.

[22] Dean P. Foster, Sham M. Kakade, and Tong Zhang. Multi-view dimensionality

reduction via canonical correlation analysis. Technical report, 2008.

[23] Chao Gao, Zongming Ma, and Harrison H Zhou. Sparse cca: Adaptive estimation

and computational barriers. arXiv preprint arXiv:1409.8565, 2014.

[24] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns

Hopkins University Press, Baltimore, MD, USA, 1996.

[25] Gene. H Golub and Hongyuan Zha. The canonical correlations of matrix pairs

and their numerical computation. Technical report, Computer Science Department,

Stanford University, 1992.

[26] Gene H Golub and Hongyuan Zha. The canonical correlations of matrix pairs and

their numerical computation. Springer, 1995.

96

[27] Isabelle Guyon, Asa Ben Hur, Steve Gunn, and Gideon Dror. Result analysis of the

nips 2003 feature selection challenge. In Advances in Neural Information Process-

ing Systems 17, pages 545–552. MIT Press, 2004.

[28] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Rev., 53(2):217–288, May 2011.

[29] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Rev., 53(2):217–288, May 2011.

[30] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert. An

algorithm for the principal component analysis of large data sets. SIAM Journal on

Scientific Computing, 33(5):2580–2594, 2011.

[31] David R. Hardoon, Sandor Szedmak, Or Szedmak, and John Shawe-taylor. Canon-

ical correlation analysis; an overview with application to learning methods. Tech-

nical report, 2007.

[32] Cibe Hariharan and Shivashankar Subramanian. Large scale multi-view learning on

mapreduce. 2014.

[33] H Hotelling. Relations between two sets of variables. Biometrika, 28:312–377,

1936.

97

[34] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using pre-

dictive variance reduction. Advances in Neural Information Processing Systems

(NIPS), 2013.

[35] Ian Jolliffe. Principal Component Analysis. Encyclopedia of Statistics in Behavioral

Science. John Wiley & Sons, 2005.

[36] Sham M. Kakade and Dean P. Foster. Multi-view regression via canonical correla-

tion analysis. In In Proc. of Conference on Learning Theory, 2007.

[37] Michael Lamar, Yariv Maron, Mark Johnson, and Elie Bienenstock. SVD and Clus-

tering for Unsupervised POS Tagging. In Proceedings of the ACL 2010 Conference

Short Papers, pages 215–219, Uppsala, Sweden, 2010. Association for Computa-

tional Linguistics.

[38] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark

Tygert. Randomized algorithms for the low-rank approximation of matrices. Pro-

ceedings of the National Academy of Sciences, 104(51):20167–20172, 2007.

[39] Yichao Lu, Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Faster ridge regres-

sion via the subsampled randomized hadamard transform. In Advances in Neural

Information Processing Systems (NIPS), 2013.

[40] Yichao Lu and Dean P Foster. large scale canonical correlation analysis with iter-

ative least squares. In Advances in Neural Information Processing Systems, pages

91–99, 2014.

98

[41] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying

suspicious urls: An application of large-scale online learning. In In Proc. of the

International Conference on Machine Learning (ICML, 2009.

[42] Ping Ma, Michael W. Mahoney, and Bin Yu. A statistical perspective on algorith-

mic leveraging. In Proceedings of the 31th International Conference on Machine

Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 91–99, 2014.

[43] Brian McWilliams, David Balduzzi, and Joachim Buhmann. Correlated random

features for fast semi-supervised learning. In Advances in Neural Information Pro-

cessing Systems, pages 440–448, 2013.

[44] Brian McWilliams, Gabriel Krummenacher, Mario Lucic, and Joachim M. Buh-

mann. Fast and robust least squares estimation in corrupted linear models. In Ad-

vances in Neural Information Processing Systems 27: Annual Conference on Neu-

ral Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,

Canada, pages 415–423, 2014.

[45] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory limited,

streaming pca. In Advances in Neural Information Processing Systems, pages 2886–

2894, 2013.

[46] Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors

and eigenvalues of the expectation of a random matrix. Journal of mathematical

analysis and applications, 106(1):69–84, 1985.

99

[47] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdeter-

mined linear least-squares regression. Proceedings of the National Academy of

Sciences, 105(36):13212–13217, September 2008.

[48] Tamas Sarlos. Improved approximation algorithms for large matrices via random

projections. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual

IEEE Symposium on, pages 143–152. IEEE, 2006.

[49] G. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm

in dual variables. In Proc. 15th International Conf. on Machine Learning, pages

515–521. Morgan Kaufmann, San Francisco, CA, 1998.

[50] Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse dependence on

training set size. In Proceedings of the 25th international conference on Machine

learning, pages 928–935. ACM, 2008.

[51] Cees GM Snoek, Marcel Worring, Jan C Van Gemert, Jan-Mark Geusebroek, and

Arnold WM Smeulders. The challenge problem for automated detection of 101

semantic concepts in multimedia. In Proceedings of the 14th annual ACM interna-

tional conference on Multimedia, pages 421–430. ACM, 2006.

[52] Liang Sun, Shuiwang Ji, and Jieping Ye. A least squares formulation for canonical

correlation analysis. In Proceedings of the 25th International Conference on Ma-

chine Learning, ICML ’08, pages 1024–1031, New York, NY, USA, 2008. ACM.

[53] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

100

[54] Joel A. Tropp. Improved analysis of the subsampled randomized hadamard trans-

form.

[55] Javier Vı́a, Ignacio Santamarı́a, and Jesús Pérez. A learning algorithm for adaptive

canonical correlation analysis of several data sets. Neural Netw., 20(1):139–152,

January 2007.

[56] Daniela M Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decom-

position, with applications to sparse principal components and canonical correlation

analysis. Biostatistics, page kxp008, 2009.

[57] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast random-

ized algorithm for the approximation of matrices. Applied and Computational Har-

monic Analysis, 25(3):335–366, 2008.

[58] Lu Yichao and Dean P. Foster. Fast ridge regression with randomized principal

component analysis and gradient descent. Arxiv, preprint, 2014.

[59] Tong Zhang. Solving large scale linear prediction problems using stochastic gradi-

ent descent algorithms. In ICML 2004: Proceedings of the twenty-first International

Conference on Machine Learning. OMNIPRESS, pages 919–926, 2004.

101

