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Wireless Multicast: Theory and Approaches
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Abstract—We design transmission strategies for medium access
control (MAC) layer multicast that maximize the utilization of
available bandwidth. Bandwidth efficiency of wireless multicast
can be improved substantially by exploiting the feature that a
single transmission can be intercepted by several receivers at
the MAC layer. The multicast nature of transmissions, however,
changes the fundamental relations between the quality of service
(QoS) parameters, throughput, stability, and loss, e.g., a strategy
that maximizes the throughput does not necessarily maximize
the stability region or minimize the packet loss. We explore
the tradeoffs among the QoS parameters, and provide optimal
transmission strategies that maximize the throughput subject
to stability and loss constraints. The numerical performance
evaluations demonstrate that the optimal strategies significantly
outperform the existing approaches.

Index Terms—Multicast, optimization, scheduling, stability, sto-
chastic control, throughput, wireless.

I. INTRODUCTION

SEVERAL wireless applications need one-to-many (mul-
ticast) communication, e.g., conference meetings, sensor

networks, rescue and disaster recovery, and military operations.
The existing research in wireless multicast have predominantly
lead to the development of end-to-end error recovery and
routing protocols [1]–[13]. End-to-end error recovery protocols
retrieve lost packets with minimum information exchange
among nodes, e.g., [1], [2]. Protocols for energy-efficient
multicast routing have been proposed in [11]–[13]. Though the
overall performance of the network depends on the efficiency
of the underlying scheduling strategy used at the medium
access control (MAC) layer, MAC layer multicast has not been
adequately explored. Our research is directed toward filling this
void.

Wireless communication is inherently broadcast in nature,
i.e., a packet can be intercepted by all nodes in the transmission
range of the sender (e.g., Fig. 1). Hence, it suffices to transmit
each packet once in order to reach all the intended receivers;
this substantially reduces bandwidth and power consumption in
wireless multicast. A multicast-specific challenge in exploiting
broadcast nature of wireless medium is that some but not all the
receivers may be ready to receive. For example, in Fig. 1, when
sender is transmitting to receiver , receiver cannot
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Fig. 1. An example demonstrating the advantages and the challenges
associated with wireless multicast. There are two senders S , S and five
receivers R to R . Dashed circle indicates the communication range of a
sender. A single transmission from S can reach all its receivers, R ; . . . ; R .

receive the transmission from sender as both the transmis-
sions will collide at ; though receivers , , and can
still receive the transmission. The policy decision is whether
the sender should transmit or wait until all the receivers are
ready. A policy that does not transmit until a sufficient number
of receivers are ready may render the system unstable (i.e., the
queue length at the sender becomes unbounded). On the other
hand, if the sender transmits irrespective of the readiness states
of the receivers, then the transmitted packet may be lost at sev-
eral receivers that were not ready. The resulting packet loss at
the receivers may be unacceptably high. The throughput, which
is the total number of packets received by all the receivers per
unit time, may be low at both extremes and maximum some-
where in between. This is because the transmission rate is low
in the first case, and packets do not reach most receivers in the
latter case. Thus, there is a multicast specific tradeoff between
throughput, stability, and packet loss.

We show that the fundamental relations between quality-of-
service (QoS) parameters such as throughput, loss, and stability
change due to the multicast nature of transmissions, e.g., a
strategy that maximizes the throughput does not necessarily
maximize the stability region or minimize the packet loss. We
propose a policy that decides when a sender should transmit a
packet so as to maximize the throughput subject to a) system
stability and b) packet loss constraints at the receivers. We
prove using the large deviation theory that a sender can attain
the above optimality objective by transmitting only when
the number of ready receivers is above a certain threshold.
This threshold-based policy is simple to implement once the
optimal threshold is known, as the sender need not know the
individual readiness states of the receivers. The optimal value
of the threshold depends on the statistics of the arrival and the
receiver readiness processes. We present an adaptive approach
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that computes the threshold based on the estimates of the
statistics obtained from system observations, and prove that the
computation converges to the optimal value.

The threshold-based scheme is a generalization of a
Threshold-1 protocol proposed by Tang et al., where a
sender transmits whenever at least one receiver is ready [14],
[15]. Other existing multiple-access strategies for wireless
multicast are Threshold-0, which is used in IEEE 802.11, and
unicast-based multicast [16]. The former transmits a packet
irrespective of the existing transmissions and the readiness
states of the receivers. This causes packet loss at the receivers
because of collision due to second hop interference. The latter
attains multicast by transmitting a packet separately to each re-
ceiver in round robin manner [16], and thus does not exploit the
broadcast nature of wireless medium. We analyze the existing
approaches and show, using numerical performance evaluation,
that the proposed optimal policy provides significantly more
efficient usage of bandwidth.

Now, we briefly discuss research contributions in other
areas of wireless multicast. Zhou et al. have investigated con-
tent-based multicast in ad hoc networks [17]. Nagy et al. have
investigated multicast in cellular networks [18]. Singh et al.
have proposed a protocol for power-aware broadcast [11].
Kuri et al. have proposed a contention resolution protocol for
multicast in wireless local-area networks [19]. This protocol
can be used only when all the nodes are in the transmission
ranges of each other, which does not hold in a multihop wireless
ad hoc network.

The paper is organized as follows. In Section II, we define
our system model. In Section III, we investigate the tradeoff be-
tween the different QoS parameters for multicast transmission.
In Section IV, we obtain threshold-based transmission policies
that maximize the throughput subject to stability and loss con-
straints, and propose adaptive schemes for computing the op-
timal thresholds. We compare the performance of the optimal
policy with other existing multicast policies in Section V. For
simplicity, we assume that the wireless channel to a receiver can
have only two states (ready and not ready) in most of the paper.
We relax this assumption to consider three or more states for the
transmission channel to each receiver in Section VI. We discuss
several open problems in Section VII. We present all proofs in
the Appendix.

II. SYSTEM MODEL

The objective is to design efficient transmission strategies for
a wireless network with several MAC layer multicast sessions,
e.g., Fig. 2. Each multicast session has a sender and a set of
receivers (multicast group). At the MAC layer, all the receivers
are within the transmission range of the sender. The scenario
described above is motivated by multicast communication in a
multihop wireless network (Fig. 3).

In this paper, we consider a single multicast session in isola-
tion with receivers (Fig. 4). The impact of the network and
the channel errors on the multicast session is that the receivers
are not always ready to receive. This may happen because of
transmission in the neighborhood of a receiver, bursty channel

Fig. 2. Figure shows four MAC layer multicast sessions. Nodes S to S are
the senders for multicast groups 1 to 4, respectively. Arrows from a sender point
to its designated receivers. Note that the node S is a sender for multicast group
2, and a receiver for multicast group 1.

Fig. 3. A multicast tree in a multihop wireless network from a source S to
destinations R to R . At the MAC layer, sender S multicasts to intermediate
nodes I to I , I multicasts to the receivers R to R , etc. Thus, there are four
separate MAC sessions: S to [I ; I ; I ], I to [R ;R ;R ], I to [R ;R ]
and I to [R ;R ].

Fig. 4. An isolated MAC layer multicast session. The packets arrive at the rate
� at the sender S. The receivers are R to R .

error, or power saving operation of a receiver. Thus, the re-
ceiver readiness states are correlated in the same time slot, and
across the time slots. We model the readiness process of all the
receivers as a Markov chain (MC) with an arbitrary transition
probability matrix (TPM) . We discuss the implications of the
Markovian assumption in Sections VI and VII. A state of the
MC is a -dimensional vector , where the
component is if the th receiver is ready and otherwise.
Let be the state space of the receiver readiness process. We
assume that the TPM is irreducible, aperiodic, and
time-homogeneous. Thus, has a unique stationary distribu-
tion , which depends on the network load,
channel characteristics, and power-saving scheme. Let be the
steady-state probability that receivers are ready to receive,

for each . We refer to the probability distribution
as the aggregate stationary distribution of the

receiver readiness process. In Section VI, we consider the more
general case where a receiver is ready with a probability that
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Fig. 5. Typical transitions of the receiver readiness process. A box indicates a time slot. TheT ’s,V ’s, andX ’s denote the sample points, duration of transmission,
and duration of back-off, respectively. Solid arcs indicate transitions in the receiver readiness process.

TABLE I
NOTATIONS USED IN THE ENTIRE PAPER

depends on the state of the receiver readiness process. We have
summarized the notations in Table I.

A sender queries the readiness states of the receivers by
transmitting control packets, and decides whether to transmit
a packet depending on the transmission strategy, availability
of packet, and result of the query. Every receiver maintains its
readiness state throughout the transmission. This assumption
is justified because the time scale of a change of transmission
quality is large as compared to the packet sizes. Also, the level
of interference does not change during a packet transmission,
since in several MAC protocols (e.g., IEEE 802.11), the ex-
change of control messages prevents a new transmission during
an ongoing transmission in the reception range of the receiver.
The sender backs off for a random duration before querying the
system again, irrespective of the transmission decision, so as to
allow other senders to use the shared medium. The structure of
the multiple-access protocol described above is similar to IEEE
802.11. Note that the receiver readiness process is Markovian
only when restricted to the slots in which the sender queries or
backs off, e.g., in duration in Fig. 5.

We assume that time is slotted. The number of packets ar-
riving in a slot constitutes an irreducible, aperiodic MC with
a finite number of states. The expected number of arrivals in
a slot under the stationary distribution is denoted as . The
packet transmission times and back-off durations are indepen-
dent and identically distributed (i.i.d.) random variables with ar-
bitrary probability distributions and the expected values
and , respectively. We assume that and are fi-
nite. Let and be the expected number of arrivals in
the duration of a back-off and a packet transmission, respec-
tively, under the stationary distribution of the arrival process.
Then, , and .

We consider data traffic and assume first-in first-out (FIFO)
selection of packets for transmission. We consider three QoS
measures: a) throughput, b) packet loss, and c) system stability.

Definition 1: A reward for a transmission is the number of
receivers that receive the packet successfully.

Definition 2: Throughput is the expected reward per unit
time.

Definition 3: The loss at a receiver is the fraction of trans-
mitted packets that are either not received or received in error
at the receiver. The system loss, or simply the loss, is the sum
of the losses at all the receivers in the multicast group. A loss
constraint specifies an upper bound ( ) on the system loss.

Definition 4: The sample points are the epochs at which the
sender samples (queries) the receiver readiness states.

Definition 5: A transmission policy is an algorithm that de-
cides whether to transmit a packet at a sample.

Definition 6: A system is stable if the mean queue length at
the sender is bounded. A stable transmission policy is one that
stabilizes the system.

Definition 7: The stability region of a transmission policy
is the maximum value of for which the policy stabilizes the
system. The stability region of the system is the maximum value
of for which some transmission policy stabilizes the system.

A transmission policy can be either offline or online. An off-
line strategy uses prior knowledge of packet arrivals at all (in-
cluding future) slots and the readiness states at all (including
future) samples in its decision process. Thus, an offline strategy
knows the readiness states at all slots a priori in the special
case that the sender samples the system every slot, i.e., when
every packet has length slot and there is no back-off. An on-
line strategy does not assume the knowledge of future evolu-
tion, and therefore takes the transmission decisions based on the
current packet availability and the number of ready receivers
at the current samples. We show that there exist online strate-
gies that maximize the throughput subject to stability and loss
constraints.

We will demonstrate that a small loss tolerance significantly
increases the throughput and the stability region of the system
in wireless multicast. The lost information can be recovered by
using coding redundancy, or a reliable protocol at a higher layer.
We impose a constraint on the sum of the loss at the receivers,
as a receiver can often retrieve lost packets from other receivers
who have received the packet. A sender may satisfy the loss
constraint by transmitting a packet several times until a suffi-
cient number of receivers receive the packet, e.g., in Fig. 1,
may transmit a packet to , , and even when is not
ready, and then retransmit the packet when becomes ready.
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But each additional transmission increases power consumption.
Therefore, we assume that a packet can be transmitted only once
at the MAC layer.

III. RELATION BETWEEN THROUGHPUT, STABILITY, AND LOSS

We first investigate the relation between the throughput
and stability for multicast transmission. In the unicast case,
a throughput optimal strategy is one that attains the stability
region of the system (Definition 7) [20], [21]. Let us exclude the
policies that transmit even when no receiver is ready. Then, in
Fig. 4 if , a policy that transmits whenever the sender has
a packet and the receiver is ready maximizes the throughput,
and attains the stability region of the system. This relation
between throughput optimality and system stability does not
hold in the multicast case. Let in Fig. 4. A policy that
transmits when at least one receiver is ready attains the stability
region of the system. However, the policy that transmits only
when both receivers are ready has a smaller stability region, but
it can provide a higher throughput for appropriate choice of the
system parameters. Assume that each receiver is ready with a
probability of in each slot independent of the other re-
ceiver and the readiness states in the other slots. Let ,

, . Then the throughputs of the two
policies are and , respectively. The
first (second) policy renders the system stable (unstable). If the
arrival rate is such that both the policies stabilize the system,
then throughputs are and , respectively. Thus, in the
multicast case, a policy that maximizes the throughput need
not attain the stability region of the system, and vice versa.
Hence, Lyapunov function based approaches cannot be directly
used to prove the throughput optimality of a transmission
strategy in the multicast case. We note that the throughput is
the product of the transmission rate and the expected reward
per transmission. The stability is guaranteed for both unicast
and multicast if the transmission rate equals the arrival rate.
Now, the equivalence between the maximization of throughput
and attaining the stability region in the unicast case is because
a transmitted packet always fetches a reward of one unit. The
reward obtained by a transmitted packet can, however, be any
integer between and in the multicast case depending on
the readiness states of the receivers. Therefore, the equivalence
does not exist in the multicast case.

We investigate the relation between throughput and loss now.
First, consider a stable system. The throughput of a transmis-
sion policy is , where is the average reward received by
the policy per transmission. Further, the loss is . Thus,
a throughput optimal policy minimizes the loss for stable sys-
tems. This relation, however, does not hold for unstable systems.
An unstable system is saturated in the sense that the sender al-
ways has a packet to transmit. For example, let in Fig. 4.
Now, let one receiver be ready with probability in each slot;
the other is always ready. Let . We consider a
policy that transmits only when both the receivers are ready, and
another that transmits with probability if only one receiver is
ready and with probability if both the receivers are ready. Let

. The transmission rates are and ,
respectively. Thus, neither policy is stable. The throughputs are

and , respectively. The losses are and ,
respectively. Thus, for , the second policy has both
higher throughput and higher loss. Hence, the maximization of
the throughput is not equivalent to the minimization of loss.

We now discuss whether the saturated region is relevant in
practice. If a policy that maximizes the throughput subject to
stability does not satisfy the loss constraint, then no stable policy
can do so. Thus, a system must operate in the saturated region,
if satisfying the loss constraint is more important than attaining
the stability. We note that it is always possible to satisfy the loss
constraint if the stability requirement is relaxed. For example,
a policy that transmits only when all receivers are ready has
zero loss, but can render the system unstable.

IV. THROUGHPUT-OPTIMAL TRANSMISSION POLICY

In Section IV-B, we obtain a transmission policy that maxi-
mizes the throughput subject to attaining system stability. Next,
in Section IV-C, we obtain a transmission policy that maximizes
the throughput subject to satisfying the loss constraint. In each
subsection, we provide algorithms that decide the parameters of
the optimum strategies without using any information about the
system statistics. We first present some definitions.

Definition 8: The busy samples are the sample points at
which the sender’s queue is nonempty. Sample points that are
not busy are called idle samples.

Definition 9: A single-threshold transmission policy is
a policy that transmits a packet at every busy sample with or
more ready receivers. The parameter is the threshold.

Definition 10: A two-threshold transmission policy is
a policy that sets threshold for a given sample with proba-
bility (w.p.) , or a threshold w.p. , and transmits in
accordance with the threshold.

Definition 11: A stable transmission policy is
-throughput optimal if no other stable transmission policy

can achieve throughput more than plus that achieved by .

A. Throughput Optimality Subject to Stability

We first describe the stability region of the system. The ser-
vice time of a packet is the difference between the times at
which the packet finishes transmission and reaches the head
of line position in the queue. For the system to be stable, the
expected service time must be less than the expected interar-
rival time of packets. The sum of the transmission time plus one
back-off duration is the lower bound on the service time of a
packet for any transmission policy. Hence, for stability we need

, i.e.,

(1)

We show that if (1) is satisfied, we can choose a threshold and
a probability such that the corresponding two-threshold policy

is -throughput optimal.

Theorem 1: Let the stability condition (1) hold. For every
, there exists a choice of parameters and such that

the corresponding two-threshold policy is -throughput
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optimal with probability . The optimal values of the parameters
and are

(2)

(3)

where

(4)

Let denote the two-threshold policy . Then, the
throughput of can be lower-bounded as

w.p.

(5)

We now motivate the above result in a special case. Let the
sender sample the system in every slot, i.e., every packet has
length , and there is no back-off. The number of packets served
per unit time under any stable policy is equal to the arrival rate

. A stable policy can achieve throughput higher than that of
another stable policy only by attaining a higher reward for
infinitely many packets. Now, for a two-threshold policy ,

, the sender transmits a packet for every busy sample
that has or more ready receivers. Each of the remaining
packets achieves reward . Thus, some other policy can achieve
a higher reward infinitely often only by sending packets in the
idle samples of . The choice of parameters and in
Theorem 1 ensures that the ratio of idle samples and the total
samples is less than or equal to . Now, even if all the idle sam-
ples of have ready receivers and if all of these sam-
ples are used by some other policy, then the improvement in
the throughput is not more than . Thus, is -throughput
optimal.

The computation of the optimal parameters provided in (2)
and (3) of Theorem 1 depends on , , , and . We
assume that the sender knows the values of , , and

. Next, we design an adaptive approach that com-
putes and accurately without prior knowledge of .

Let be the number of samples with ready receivers
and be the number of samples until time . Let

Now, estimates and for , are computed by sub-

stituting with its estimate in (2) and (3). Since the MC
is ergodic

w.p. for every

The preceding discussion motivates the following result.

Theorem 2: Let there exist a such that

Let .

Then, w.p. (6)

and, w.p. (7)

Since , , and , from
(1). In addition, , for each

for

and

for

Thus, there always exists a such that

We assume a strict inequality in the theorem.
The outputs and converge to and , respec-

tively, even when , , and are substituted with
their estimates in (2) and (3).

B. Throughput Optimality Subject to Loss Constraint

For stable systems, throughput maximization is equivalent
to loss minimization. Thus, we will assume a saturated system
throughout this subsection. We show that for appropriate choice
of parameters and , a two-threshold policy , , max-
imizes the throughput subject to any given loss constraint. First,
we quantify the throughput for a two-threshold policy .

Proposition 1: For a saturated system, the throughput
and the expected reward achieved per transmission
by a two-threshold policy , , are as

follows:

w.p. and

w.p.

We next show that a single-threshold policy maximizes the
throughput in a saturated system.

Theorem 3: A single-threshold policy maximizes the
throughput in a saturated system, if

The optimum threshold can now be computed from
Proposition 1.
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Fig. 6. The pseudo code of an algorithm that maximizes the throughput subject to loss constraints in a saturated system.

Under any policy , the loss is like in stable systems.
The difference with stable systems is that the throughput is not
a monotonic increasing function of the expected reward. This
explains the observation that a throughput optimal transmission
policy need not minimize the loss in a saturated system unlike
that in a stable systems. Thus, the policy proposed in Theorem 3
may not satisfy the loss constraint. We present a two-threshold
transmission policy that maximizes the throughput subject to
satisfying the loss constraint.

Theorem 4: In a saturated system, the two-threshold policy
(presented in Fig. 6), maximizes the throughput

subject to satisfying the loss constraint . The throughput at-
tained by is

w.p.

The expressions for the throughput and reward per packet
of a two-threshold policy, which are obtained in Proposition 1,
can be used in the computations in Fig. 6. We motivate The-
orem 4 now. We show that it is sufficient to consider only the
two-threshold policies that satisfy the loss constraint. The
loss constraint is satisfied if a) , or b) and

. It can be shown that maximizes the throughput in
the first case, and maximizes the throughput in the second
case.

Adaptive policies can be designed for saturated systems like
in Section IV-B. Let , , and be the values of the
parameters obtained in Theorem 3 and Fig. 6, if is replaced by

its estimate . If , or there exists a such
that , then ,

, and w.p. .

V. PERFORMANCE ANALYSIS OF THE EXISTING

MULTIPLE-ACCESS MULTICAST STRATEGIES

A. Threshold-0 Multicast ( )

In Threshold-0 multicast ( ), the sender transmits a packet
at every busy sample without querying the receiver about its

Fig. 7. Figure shows the readiness process for a receiver. The states R and
NR denote ready and not ready states, respectively.

readiness. It is thus a two-threshold policy with
and . IEEE 802.11 implements .

Theorem 5: If , then is stable, and w.p.
1, , and .

B. Threshold-1 Multicast ( )

In Threshold-1 multicast ( ) [16], the sender transmits a
packet whenever at least one receiver is ready. It is thus a two-
threshold policy with and .

Theorem 6: Let, , , be the number of samples
until time such that receivers are ready, and the sender’s
queue is empty. If

then is stable, and

w.p.

C. Unicast-Based Multicast ( )

In unicast-based multicast ( ), the sender transmits a
packet separately to each receiver in round robin manner. A
packet is delivered to a receiver only when it is ready. Hence,

has no loss. Thus, has a high throughput ( ) in its
stability region. A necessary condition for the system to be
stable under is that , since a lower
bound on the mean service time is . Thus, the
stability region of is at most times that of .
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Fig. 8. The throughput and the expected reward per packet of various multiple-access multicast strategies as a function of the arrival rate. Here, optimum policy
refers to the two-threshold policy� that maximizes the throughput subject to stability. (a) Throughput versus �. (b) Expected reward per packet versus �.

In its stability region, can attain throughput higher than
that of . Note that maximizes throughput among the poli-
cies that transmit a packet once in the MAC layer. Thus, our
framework does not apply to as it transmits a packet sev-
eral times. Multiple transmissions of a packet result in high
power consumption, low stability region, and high network load.
The increase in network load decreases the throughput for other
nodes.

D. Performance Comparison of the Policies

We compare the performances in the special case that the
readiness process for each receiver is Markovian, and indepen-
dent of the readiness process of any other receiver. For each
receiver, let (resp., ) denote the transition probability from
ready (resp., not ready) to not ready (resp., ready) state (Fig. 7).
We select , , and .
The throughput of is

For every

We numerically compute the throughput and expected reward
per packet under and using Theorems 1 and 5. We sim-
ulate the performance of as we have not been able to obtain
closed-form expressions for for an
arbitrary TPM, (Theorem 6).

We plot in Fig. 8 the throughput and the expected reward
per packet of the policies (two-threshold policy),
(Threshold-0 policy), (Threshold-1 policy), and (uni-
cast-based multicast policy) as a function of the arrival rate

. We consider only the stability region of the system. Note
that both the throughput and the expected reward per packet
are much higher for than that for and . Since the

expected loss is the group size minus the expected reward,
the loss under is significantly lower than that under
and .

Recall that the throughput for a stable policy is a product of
the arrival rate and the expected reward per packet. Fig. 8(b)
illustrates that the expected reward for decreases with in-
crease in the arrival rate. This happens because the threshold
decreases as the arrival rate increases so as to ensure stability.
From Fig. 8(a), the throughput increases until a certain value of
the arrival rate, i.e., for . In this region, the increase of
the arrival rate compensates for the decrease of the expected re-
ward. The transmission decision and hence the expected reward
per packet of and does not depend on the arrival rate.
Hence, the throughputs of and increase linearly with
the increase in the arrival rate. The policy attains a higher
expected reward per packet and a higher throughput than that
attained by , since unlike , transmits only when at
least one receiver is ready. However, has a stability region
larger than that of ; and attain the stability region of
the system (Theorems 1,5, and 6).

The policy incurs zero loss; therefore, in its stability
region attains a throughput slightly higher than that of .
However, has a considerably small stability region and
its throughput saturates outside its stability region, i.e., for

in Fig. 8(a). The policy incurs some loss
(Fig. 8(b)), but achieves a substantially larger stability region
( ) and a much higher throughput. Thus, the loss
tolerance of the system can be exploited to provide a significant
gain in throughput. We summarize the performance compar-
isons in Table II.

Finally, Fig. 9 shows the convergence of the throughputs of
the optimal and adaptive policies. The figure illustrates that both
policies have similar convergence times.

We do not compare the performance of the various policies
outside the stability region of the system, since the performance
objective is to maximize the throughput subject to loss con-
straints, and and suffer high loss in this region.
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TABLE II
SUMMARY OF THE PERFORMANCES OF DIFFERENT POLICIES

Fig. 9. Throughputs of the optimal and adaptive policies as a function of time. Here, � = 0:055.

VI. OPTIMAL TRANSMISSION STRATEGIES FOR MULTIPLE

READINESS STATES

We generalize the analytical framework to allow three or
more states of the channel to a receiver. The readiness process
is an irreducible, aperiodic, time-homogeneous discrete time
MC with states where the th state is , is
the probability of error-free reception of a packet at the th
receiver in the th state. Recall that earlier . The
expected reward associated with a state , , is the expected
number of receivers that receive a packet without any error in
state , . Let be the distinct
values of the rewards for different states ( ). Let be
the steady-state probability that the readiness process is in a
state where the reward is , .

A single-threshold transmission policy transmits a packet
only when the expected reward is greater than or equal to ,

. The other definitions can be generalized similarly.
We now generalize the analytical results presented earlier.

Theorem 7 (Generalization of Theorem 1): Let the stability
condition (1) hold. For every , there exists a choice of
parameters and such that the corresponding two-threshold
policy is -throughput optimal with probability . The
optimal values of parameters and are

where

Let denote the two-threshold policy . Then, the
throughput of can be lower-bounded as

w.p.

Proposition 2 (Generalization of Proposition 1): For a sat-
urated system, the throughput and the mean reward
achieved per transmission by a two threshold policy

, , are

w.p. and

Theorem 8 (Generalization of Theorem 3): A single-
threshold policy attains the maximum possible throughput
in a saturated system, if .
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The algorithm presented in Fig. 6 needs to be modified as
follows. The maximizations should be for thresholds less than
or equal to instead of . Now

The modified algorithm maximizes the throughput subject to
satisfying the required loss constraint in a saturated system.
The maximum throughput is

w.p.

The estimates of , , , and , can be used to
compute the parameters of the optimal strategies in an adaptive
manner as discussed before.

Theorem 9 (Generalization of Theorem 5): If
, then is stable, and w.p.

and

Theorem 10 (Generalization of Theorem 6): Let ,
, be the number of samples until time such that

receivers are ready and the sender’s queue is empty. If

then the policy is stable, and

w.p.

The proofs for the proposition and theorems presented in this
section are similar to those for the special case of on–off readi-
ness states.

Furthermore, Proposition 1, Theorems 3, 4, and their general-
izations hold for any stationary ergodic readiness process. The-
orems 1, 5, 6, and their generalizations hold for any stationary
ergodic process that satisfies the following additional condition.
Let denote the number of sample points with ready re-
ceivers, and let be the steady-state probability of receivers
being ready. Then, the additional condition is that the empirical
distribution converges to the stationary distribution
at rate , i.e., there exists a such that for every
there exists time such that for every

VII. CONCLUSION AND DISCUSSION

We design transmission strategies for MAC layer multicast
that maximize the utilization of available bandwidth. We estab-
lish that the relation between QoS parameters like throughput,
loss, and stability changes due to the multicast nature of trans-
missions. The maximization of the throughput is no longer

equivalent to attaining the stability region of the system or the
minimization of loss. We show that threshold-based transmis-
sion policies maximize the throughput subject to stability and
loss constraints, and present an adaptive approach to compute
the parameters of the optimum policies without any knowledge
of system statistics. To implement the threshold-based policies,
the sender only needs to know the number of ready receivers
in each slot, and not the individual readiness states of the
receivers. We analyze other existing policies, and show using
numerical performance evaluations that the optimal policies
provide significantly more efficient usage of bandwidth. Our
investigation provides the first step toward understanding MAC
layer multicast. We however considered somewhat restricted
systems and made some simplifying assumptions, which we
elaborate on next. We believe that our results will provide
the foundation for addressing more general versions of this
problem.

Our simplifying assumption was that the receiver readiness
process does not depend on the sender’s transmission policy. In
practice it may, however, be possible to design a transmission
policy that generates favorable readiness states and thereby im-
prove throughput. However, designing such a policy is likely to
involve coordination among the senders. This may be difficult
to attain in ad hoc networks that do not support centralized con-
trol. Our initial research suggests that designing such a policy is
NP-hard, but efficient approximation algorithms may exist. This
intellectually challenging problem remains open.

The restriction we considered was that each packet can be
transmitted only once at the MAC layer. Now we discuss the
open problems that arise when this restriction is removed. When
a sender can transmit a packet multiple times, its throughput
may increase. But retransmissions also increase the network
load, and thereby adversely affect the overall readiness process,
which in turn reduces the throughput. Multiple transmissions
also increase power consumption of each sender. The major
challenges in designing optimal retransmission schemes are to
determine a) the number of transmissions for each packet and
b) when to retransmit the packets. Next, we discuss possible ap-
proaches for these problems.

Suppose the maximum rate at which the sender can transmit
is which is determined by the network load and power con-
straints. Then, for a stable system, the expected number of trans-
missions ( ) allowed per packet is . It is however not clear
how can be determined. We now discuss how to formulate the
problem of computing the optimal retransmission strategy that
maximizes throughput subject to stability assuming that and
hence is known. Let denote a power set of set
minus the set itself. The sender maintains queues, where
each queue corresponds to a member of . A queue indexed by
a set contains packets that have already been received by
the receivers in . At every sample point, a transmission policy
decides whether to transmit, and which queue to serve if it trans-
mits. The decisions should maximize the throughput subject to
a) maintaining the transmission rate below and b) attaining
bounded expected queue length in every queue. Our initial in-
vestigation indicates that this problem is NP-hard, which is in-
tuitive as the number of queues is exponential in the number of
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Fig. 10. Typical transitions of the actual and the sampled receiver readiness processes. A box indicates a time slot. The T ’s, V ’s, and X ’s denote the sample
points, duration of transmission, and duration of back-off, respectively. Solid (dashed) arcs indicate transitions in the actual (sampled) receiver readiness process.

receivers. It may be worthwhile to investigate approximation al-
gorithms. We have studied a simpler version of the problem,
where the packets are served in a first-come first-serve (FCFS)
order, i.e., the sender has a single queue and can serve only
the head-of-line (HoL) packet [22], [23]. We assume that each
packet can be transmitted at most times and must be deliv-
ered to at least receivers, where , are given constants.
Using a Markov decision process (MDP) based formulation, we
prove that a threshold-type policy minimizes the total time for
delivering a packet to at least receivers. For each retransmis-
sion, a new threshold is selected, depending on the number of
previous transmissions of the packet and the reward received in
those transmissions.

APPENDIX I
NOTATIONS AND GENERAL PROPERTIES

We present some general properties of the receiver readiness
process and various transmission strategies which we will use in
the proofs. We summarize frequently used notations in Table III.

In any transmission policy, the sender samples the number
of ready receivers and subsequently may or may not transmit
based on the readiness state, packet availability, and the trans-
mission rule. If the sender decides to transmit, then the receiver
readiness states do not change until the transmission is over.
Irrespective of the transmission decision, the sender backs off
for a random time interval before sampling the receiver readi-
ness process again. The receiver readiness process observed at
the sampling points is the sampled receiver readiness process
(Fig. 10).

Property 1: The sampled receiver readiness process is a fi-
nite state, irreducible, and aperiodic DTMC. The unique sta-
tionary distribution of the sampled process is equal to that of
the original receiver readiness process .

Proof: The property follows since the receiver readiness
process does not change during a packet transmission, the
back-off intervals are i.i.d., and the original receiver readiness
process is a finite state, irreducible, and aperiodic DTMC.

Property 2: For any transmission policy , as
w.p. .

Proof: We observe from Fig. 10 that

(8)

Since the sender backs off after every transmission,
. From the right inequality in (8),

. The result follows since ,
i.e., .

TABLE III
NOTATIONS USED IN THE PROOFS

Property 3: For any transmission policy , if
exists w.p. , then

w.p.

Proof: Divide all sides by in (8) and take limit as .
Since ’s and ’s are i.i.d. with finite mean, the result follows
from Kolmogorov’s strong law of large numbers (KSLLN).

Property 4: Let

w.p.

for two transmission policies and . Then

w.p.

Proof: Follows from Property 3.

Property 5: For every stable policy

w.p. (9)

w.p. (10)

Proof: Clearly, (9) holds. Equation (10) follows from
Property 3 and (9).

Property 6: For any policy , and ,

w.p.

Proof: Follows from Property 1 and the ergodicity of the
sampled receiver readiness process.

Property 7: Consider a saturated system where the sender
always has a packet to transmit. Let be a two-threshold policy

. Then

(11)

(12)

Proof: Every sample with ready receivers corresponds
to a packet transmission w.p. . Let be the number of
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such samples before time . Every sample with or more
ready receivers corresponds to a packet transmission. There is a
random back-off before every new sample. Hence, for every ,
the following relations hold:

(13)

(14)

Here, and are i.i.d. sequences. Inequality (11) follows
by dividing both sides of (13) and (14) by , taking the limit as

, using Property 6, w.p. for every
and KSLLN in (13) and (14). From Properties 1,

2, and 6, w.p. for every .
Next

w.p.

from Property 6 and (11))

Thus, (12) follows.

APPENDIX II
PROOF FOR -THROUGHPUT OPTIMALITY OF THE POLICY

(THEOREM 1)

We prove the -throughput optimality of the two-threshold
policy in the following four steps. a) In Lemma 1, we ob-
tain a sufficient condition for the stability of a two-threshold
policy . b) In Lemma 2, we obtain a lower bound on the
throughput of a stable two-threshold policy . c) In Lemma
3, we obtain an upper bound on the throughput of any stable
policy. d) We use results obtained in Lemmas 1, 2, and 3 to
show that for every , is a stable policy that provides
throughput more than the highest throughput possible for any
stable policy minus . We first state and prove the supporting
Lemmas 1, 2, and 3 in Appendix II-A. We prove Theorem 1 in
Appendix II-B.

A. Proof of Supporting Lemmas

Lemma 1: A two-threshold policy is stable if

(15)

Proof: Let (15) hold. Let denote a random variable indi-
cating the length of an arbitrary busy period under . We show
that . The lemma follows.

The number of arrivals in time slot is . The number of
departures until time is . Without loss of generality, we
assume that the busy period under consideration starts in slot 1,
i.e., . We first consider a fictitious system in which the
sender’s queue is never empty. Let denote the number

of departures until time under two-threshold policy in the
fictitious system. We assume that both the actual and the ficti-
tious systems start with the same receiver readiness state. For
any sample path , if

(16)

We note that

from (12) in Property7)

(17)

Inequality (17) follows from (15) since and
. Hence, there exists a , such that

w.p. (18)

We use (18) for the fictitious system, to show that the expected
length of a busy period is bounded in the actual system. Consider
an event where the busy period under consideration is larger
than

(19)

The last equality follows from (16). Thus,

from (19))

(20)

Using exponentially fast convergence of empirical distribu-
tion to the unique stationary distribution for ergodic MCs [24]

(21)
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from (18)) (22)

From (20)–(22)

This proves the Lemma.

In the next lemma, we obtain a lower bound on the throughput
of a stable two-threshold policy .

Lemma 2: Let denote a two-threshold policy that
satisfies (15). Then

w.p. (23)

where

and

Proof: Let be the total number of samples where the
sender decides to transmit. This happens with probability
if the number of ready receivers is more than (equal to) . Even
if a sender decides to transmit, it will not transmit if a packet is
not available. From Property 6

(24)

Let be the total number of samples with ready receivers
and the sender decides to transmit. Then, from Property 6

if
if .

(25)

Furthermore

w.p.

from (10) and (24)) (26)

From (17) in Lemma 1, the stability condition (15) implies that
there exists such that

(27)

Then

w.p.

from (26) and (27))

w.p. (28)

Let be the total number of samples until time such
that receivers are ready, the sender decides to transmit, and the

sender’s queue is nonempty. Here, for every
. Let be the total number of samples until time such

that receivers are ready, the sender decides to transmit, but the
sender’s queue is empty. Then, . In
addition, let

and

Then

(29)

We note that . From (9)

w.p. (30)

In addition

w.p. (from (28), (29), and (30)) (31)

Throughput of the policy is given as follows:

(32)

Now

if

(from (10) and (25)) (33)

(from (10) and (25)) (34)

It follows that

(from (32))

w.p.

(from (31), (33), and (34)) (35)

The lemma follows.

In the following lemma, we prove an upper bound on the
throughput of any stable policy.
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Lemma 3: Let be an arbitrary stable transmission policy.
Then

(36)

where and are chosen such that

(37)

Proof: From (1), for any policy to be stable we need
. For any number , we can find a threshold

and probability such that for any
valid distribution . Hence, there exist and that satisfy (37).

Let be an indicator such that if the queue
is served and the reward achieved is in time slot ; it is zero
otherwise. Then

and

Let us define

Since is a stable policy, from (9) of Property 5

w.p. (38)

In addition

(from Property 6 and (10)) (39)

In addition, on any sample path

(40)

Now, the following linear program (LP) provides an upper
bound on the throughput of .

Maximize :
Subject to :
1)
2)
3)

The objective function follows from (40) and the constraints
follow from (38) and (39). The linear program is a fractional
knapsack problem [25] with knapsack volume units and
items. The volume and the value per unit volume of the th item
are and , respectively. The variables indicate the
volume of item put in the knapsack. The goal is to maximize
the total value of items put in the knapsack without
exceeding its volume (first constraint) and the volume of any
item (second constraint). The optimum strategy is to put the
items in the knapsack in descending order of their value per unit
volume, e.g., first put the item entirely, then , etc., until
the first constraint is violated [25]. The last item may be partially

added in the knapsack. Hence, the optimal value of the objective
function is

where and satisfy

This proves the desired result.

B. Proof of Theorem 1

Proof: First, we show that is a valid two-threshold
policy, i.e., and . Since

from (4)

Thus,

Hence, (2) results in a valid choice for . Now, we show that
. From (2)

and

Hence, from (3), . Now, we show that using
contradiction. Let . From (3)

This contradicts the choice of in (2). Thus, is a valid
two-threshold policy.

Now, we show that is a stable policy. From Lemma 1, it
suffices to show (15), i.e.,

(41)

The proof is by contradiction. Let

(from (3))

(42)

This contradicts the fact that and . Now,
follows from (4) since and . Thus, (41)
holds, and hence is a stable policy.



CHAPORKAR AND SARKAR: WIRELESS MULTICAST 1967

Now, we show that is -throughput optimal. From
Lemma 2

(43)

where and is as defined
in (23).

Let be an arbitrary stable policy. From Lemma 3 and (43)

(44)

where . Next, we show that

From (37)

Thus, . First let . Then

Now let . Then

since

since

From (44) it follows that

(45)

Now, we show that . From Lemma 2

(46)

where

Thus,

(from (42))

(from (4))

This proves that . The result follows since
is an arbitrary stable policy.

The expression for the throughput of follows from the
lower bound in Lemma 2 and the fact that

APPENDIX III
PROOF FOR CONVERGENCE OF THE PARAMETERS OF THE

ADAPTIVE POLICY, TO THOSE OF (THEOREM 2)

Proof: We can show that is a valid two-threshold

policy for every , using the fact that is a probability dis-
tribution. The arguments are similar to those used for proving
that is a valid two-threshold policy in Theorem 1.

By assumption, there exists such that

Clearly, there can be only one such . Since

and

Let

and .
Since converges to w.p. for every , there exists
such that for every , , for every ,

,
It follows that for all . Note that .

Thus, (6) follows. Next

(from equation (3))

w.p.

Thus, (7) follows.

APPENDIX IV
PROOF OF THE ANALYTICAL RESULTS FOR A SATURATED

SYSTEM (PROPOSITION 1, THEOREMS 3 AND 4)

We prove Proposition 1 in Appendix I-A, Theorems 3 and
4 in Appendices IV-C and IV-D respectively, and the sup-
porting lemmas used in the proofs of Theorems 3 and 4 in
Appendix IV-B.



1968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

A. Proof of Proposition 1

Proof: Let be a two-threshold policy . A sender
always has a packet to transmit in a saturated system. The policy

transmits with probability for every sample with (
or more) ready receivers. Thus, the throughput of the policy is
given as follows:

w.p.

( from Property 6 and (11))

The number of packets departed until time satisfies

w.p.

Thus, the average reward per transmission is

w.p. (from Property 6)

B. Supporting Lemmas Used in the Proof of Theorems 3 and 4

Lemma 6 shows that a two-threshold policy maximizes
throughput subject to a given loss constraint. Lemma 9 shows
that a single-threshold policy maximizes throughput among all
two-threshold policies with threshold greater than or equal to
any given . Theorem 3 follows from Lemmas 6 and 9.

Now we outline the proof of Theorem 4. Lemma 6 shows
that there exists a two-threshold policy that maximizes
throughput subject to loss requirements. Lemma 7 shows that
the reward of a two-threshold policy is a monotonic function of

and . Refer to the algorithm in Fig. 6. Lemma 9 shows that
maximizes throughput among two-threshold policies with

threshold greater than . Lemma 8 shows that the throughput
of either or is greater than or equal to that of any two-
threshold policy if . Thus, Theorem 4 follows.

We now state and prove Lemmas 4 and 5 which we use in
proving Lemma 6.

Lemma 4: The throughput of any transmission policy can
be upper-bounded as follows:

Proof: Consider an arbitrary . The throughput of is
upper-bounded by that obtained if all the samples with or
more ready receivers can be used for packet transmission, and
the remaining packets (which may be zero) can be transmitted
for a reward of each.

The upper bound in the previous property may not be tight de-
pending on the choice of and the policy. For example, the re-
maining packets may receive a reward less than as the number
of samples with ready receivers may be less than the number
of remaining packets. In addition, if the total number of samples
before time is high, then the number of packets
transmitted before may be upper-bounded to a quantity less
than depending on the packet lengths and the
back-off intervals. Thus, the number of transmitted packets may
be less than the total number of samples with or more
ready receivers.

Lemma 5: The throughput of a two-threshold policy
is given by

Proof: The result follows since, for a saturated system,
transmits a packet for every sample with or more ready
receivers and transmits the remaining packets for samples with
exactly ready receivers.

Lemma 6: Let be the set of transmission policies whose
loss is less than or equal to in a saturated system. If ,
there exists a two-threshold policy which is in and attains the
maximum throughput in .

Proof: Let be an arbitrary transmission policy in .
Let be a nontrivial sample path for this policy. The quanti-
ties are those for the sample
path . All of these quantities or their limits need not be equal or
even exist for every nontrivial sample path. We assume that the
reward per packet in sample path is lower-bounded by ,
i.e.,

(47)

Given the loss constraint, (47) holds for any ergodic transmis-
sion policy, and may hold even otherwise.

Now we construct a two-threshold policy and show
that and . We choose

From Property 7, for the above choice of parameters

w.p. (48)

From (48) and Property 4

w.p. (49)
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From Property 6, for every

w.p. (50)

From Lemma 5, it follows that

w.p.

Now, from Lemma 4

From (48)–(50)

w.p. (51)

Next, we note that

w.p.

w.p. (from (48) and (51))

w.p. (from (47))

Thus .
Now consider the two-threshold strategy which has the

maximum throughput among all two-threshold policies in .
There exists a two-threshold policy which attains this maximum
given the expressions for the throughput and expected reward
per packet obtained in Proposition 1. It follows from (51) that
the throughput under is greater than or equal to that attained
in any nontrivial sample path of an arbitrary transmission policy
in . The result follows.

Henceforth, will refer to an arbitrary two-threshold
policy .

Lemma 7: If or

The inequality is strict in the last case.
Proof: If , then , ,

irrespective of the values of and . In this case, .
Thus, the lemma holds. Let . Therefore, .

Now, we state a property that we use in the following discus-
sion. Let and be real numbers. Then for every

(52)

Let and and . Note
that is defined differently here. Note that

(53)

Thus,

w.p.

(from Proposition 1) (54)

(from (52))

(from (53)) (55)

In addition

w.p.

( from (54) and (52))

(from (53)) (56)

From (56), it follows that

since

from (53) since

from (55) since (57)

Now, we note that

if from (53) and since (58)

The lemma follows from (57) and (58) since .

Lemma 8: Let . Then

for any

In addition, if and
.

Proof: Let

and

Note that the definition of is different than that in Lemma 7.

(59)

(60)
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Now, we note that

(from (59))

since (61)

The lemma follows from (60) and (61).

Lemma 9: Let

Then

for any

Proof: The lemma follows if we show that
for arbitrary and . If , then the inequality

holds from the choice of . Let . Thus, . Now, we
note that

from Lemma 8 since

from the choice of and since

The lemma follows.

C. Proof of Theorem 3

Assume that there is no limitation on loss, i.e., .
Lemma 6 states that the throughput optimal policy lies in the
class of two-threshold-based policies. The result follows using

in Lemma 9.

D. Proof of Theorem 4

Proof: Refer to the algorithm in Fig. 6. If
, then , for any , from Lemma 7. Thus,

any single-threshold policy satisfies the loss constraint. Thus,
is the desired policy from Theorem 3.

Now we assume that . Thus, can be
computed. Note that . Thus, .
Hence, is a valid two-threshold policy. We will later show
that . Thus, is a valid two-threshold policy.

Using Proposition 1, it can be shown that
. From Lemma 7, only if or

. From Lemma 6, a two-threshold policy
which maximizes throughput among the two-threshold policies

, such that or , is the desired
policy

for any (from Lemma 9) (62)

In view of (62), the result follows if we show that

for any , such that . First let

From Lemma 8, for any

from the choice of (63)

Now let . From Lemma 8, since

for any (64)

The result follows from (63) and (64).
Finally, we show that . Note that , if

and . Let .
Thus,

This contradicts the choice of . Thus,

Note that from the choice of . Now, let
. Then, . Since

This contradicts the choice of . Thus, .
Now we show that . If , then

This contradicts the choice of . Thus, .
Finally, the expression for throughput follows from

Proposition 1.

APPENDIX V
THROUGHPUT ANALYSIS FOR THRESHOLD-0

MULTICAST POLICY (THEOREM 5)

The throughput and reward for can be quantified by an-
alyzing the discrete-time Markov chain (DTMC) representing
the evolution of the system state under .



CHAPORKAR AND SARKAR: WIRELESS MULTICAST 1971

Proof: We assume that the stability condition (1) holds,
i.e., . We model the process observed by the
sender at the sampling instances under as ,
where is the queue length, is the state of the arrival
process, and is the receiver readiness vector at the th
sample, . Here, is a DTMC.

We assume that the number of packets arriving and the
number of ready receivers are mutually independent in any
slot. This assumption was not required in the earlier proofs.
Let be the TPM for the sampled readiness process.
Here, does not depend on the transmission strategy since the
readiness process does not change during packet transmission.
Note that can be obtained from . Let be the
probability that the state of the arrival process is at the end
of a random back-off (packet transmission and subsequent
back-off) interval when the state was at the beginning of the
back-off (packet transmission and subsequent back-off) interval
and packets arrive during the back-off (packet transmission
and subsequent back-off) interval. The quantities are
well defined as the packet lengths and the back-off intervals are
i.i.d. and independent of the transmission policy.

Note that is a two-threshold policy with and .
From Lemma 1, is stable if

Thus, the DTMC is positive recurrent.
Let be the unique stationary distribution of

the DTMC . Then, is the unique solution of
the following balance equations. For every ,

(65)

(66)

The normalization condition is the following:

(67)

We next show that

(68)

where is a stationary measure for the following DTMC.
Packets arrive at a server as per a Markov process with TPM

if the sender has an empty (nonempty) queue. The server
serves packets every slot if it has a packet. The following balance
equations describe the DTMC:

(69)

(70)

The normalization condition is the following:

(71)

Using Lyapunov functions and Foster’s theorem [26], it can
be shown that this DTMC is positive recurrent whenever

.
Now, we show that given in (68) is a unique solution

to the balance (65) to (67) of the DTMC . The
claim follows from the following observations. a) Since is the
stationary distribution of the receiver readiness process,

and

b) If we substitute (68) in (65)–(67), then we obtain (69)–(71),
respectively, by applying observation a). c) Since is the unique
solution for (69) to (71), is the unique solution for the balance
equations of the DTMC .

Now, we obtain the throughput of the policy . Let be an
event that a packet is transmitted under policy . The expected
reward for a transmission is given as

reward

number of ready receivers

From (68), the events and that receivers are ready are
mutually independent under the steady-state distribution of

. Hence,

number of ready receivers

under the steady-state distribution of . Thus,

(72)

Since is stable

w.p.

(73)

The lemma follows from (72) and (73).



1972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

APPENDIX VI
THROUGHPUT ANALYSIS FOR THRESHOLD-1

MULTICAST POLICY (THEOREM 6)

The proof follows from the stability condition obtained in
Lemma 1 and the lower bound for throughput for arbitrary two-
threshold policies obtained in (35) in the proof of Lemma 2.

Proof: The policy is a two-threshold policy.
Using , in Lemma 1, is stable if

Let

The sender decides to transmit whenever at least one receiver
is ready. However, the sender may not transmit even if it de-
cides to, if its queue is empty. Thus, from (35), since

and

(74)

(from (10) and Property 6)

(75)

The last inequality follows from (74) and (75).
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