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I. CLUSTERING 

Clustering seeks to group or to lump together objects or variables that share 
some observed qualities or, alternatively, to partition or to divide a set of 
objects or variables into mutually exclusive classes whose boundaries reflect 
differences in the observed qualities of their members. Clustering thus ex­
tracts typologies from data which in turn represent a reduction of data 
complexity and may lead to conceptual simplifications. 
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Clustering should not be confused either with the analysis of the groupings 
made by subjects or with the assignment of objects to the categories in which 
they belong. 

Clusters emerge from the interaction between the characteristics that are 
manifest in multivariate data and the assumptions that are built into the 
procedure. The recognition of these assumptions pertains to problems of 
validity, to which much of the paper and its conclusion are devoted. 

Clustering originated in anthropology (Driver and Kroeber, 1932) and in 
psychology (Zubin, 1938; Tryon, 1939) in response to the need for empirically 
based typologies of cultures and of individuals. Computational problems 
hindered the initial development of these ideas. But by the early 1960s 
clustering techniques emerged in a variety of other disciplines, including 
biology (Sokal and Sneath, 1963). Applications are now so numerous that 
references to them would fill a book (see Sneath and Sokal, 1973). Problems 
to which clustering has found answers range from counting dust particles and 
bacteria, to land allocation in urban planning and political campaigning. 
Clustering has proven useful especially in psychology, anthropology, sociol­
ogy, political science, economics, management, geography, and literature~ 
virtually the whole spectrum of the behavioral and social sciences (Bailey, 
1975) in which data do not exhibit the determinism of the natural sciences 
and theories are based on types, categories, and differentiations that know­
ingly omit some of the less significant variations in the observed phenomena. 

In communication research, clustering provides a valuable tool for identify­
ing cliques from sociometric or communication network type data, for exam­
ple, or for detecting "invisible colleges" as manifest through citations of 
literature in scientific publications. Clustering is also used for grouping 
concepts that appear highly associated in given messages into stereotypes, for 
developing ernie as opposed to etic type categories for content analysis from 
receiver responses, or for detecting redundant questionnaire items that may 
be explained by a common underlying variable. Clustering may also be used 
to simplify the representation of complex communication systems and thus 
provides the pretext for other forms of analysis including modeling. 

As clustering has been applied to more and more diverse subject areas, 
clustering procedures have, themselves, grown in variety. I will not attempt to 
present a survey of either. Rather, based on the belief that all clustering 
techniques follow a few basic principles, with ample room open for further 
applications and developments of details, I shall discuss some of the options 
an analyst faces when deciding among existing clustering procedures or when 
assembling one for his special purpose, and I shall discuss some of the 
implications such choices have regarding computational efforts, validity and 
interpretability of results. This chapter provides in a sense a collection of tools 
for evaluating what exists and for constructing anew what is needed when 
multivariate data are to be analyzed by what has become known as clustering. 
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FIG. I. An n X m matrix of data in canonical fonn. 

II. CANONICAL FORM OF DATA 

Figure 1 depicts the canonical form of data for clustering. It is an n X m 
matrix X with entries xiu denoting measures of some sort. The common 
interpretation of this matrix is that each of n objects is described in terms of 
m values, each pertaining to a different variable. The rows of this matrix are 
m-tuples or vectors with m components. The variables may have different 
metrics, nominal, ordinal, interval, and ratio metric, and may have any 
number of degrees of freedom. This includes binary variables as a special 
case. 

It is basic to clustering that a matrix X whose variables have the same 
metric throughout can be interpreted in two ways, as objects X variables and 
as a variables X objects, for it is then possible to cluster objects in terms of 
variables, variables in terms of objects, and indeed both in terms of each 
other. For example, the matrix in Table I can be depicted either as in Fig. 2 
or as in Fig. 3. Figure 2 depicts distances between objects as would be 
required when objects are clustered in terms of the values on their descriptive 
variables. In Fig. 3 distances between variables are depicted in an object 
space with variables X and Y shown to be in close proximity. 

TABLE I 

DATA MATRIX WITH RATIO METRIC ENTRIES 

variables 

X Y Z 

A 2 2 0 

objects B 0 3 

c 2 3 
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FIG. 2. Distances between objects in a space of variables. 

An important distinction is whether data are "complete." If some of the 
entries xiu are not known or are unavailable for analysis, data are incomplete 
and require that special assumptions be adopted to compensate for the 
missing entries. This chapter considers complete data only. 

B 

A 
FIG. 3. Distances between variables in a space of objects. 

III. RELEVANCE OF DATA 

It is important that the variables that are chosen as descriptive of the 
objects in a sample be relevant to the attempted clustering. Individuals can be 
categorized in terms of their income, occupation, and social status, in terms 
of psychopathologies, in terms of physical conditions, their weight, height, 
strength, in terms of their life styles, etc. The choice among descriptive 
variables depends on the purpose of the clusters that are expected to emerge. 
While sampling theory provides statistical criteria for choosing among the 
objects of a population, criteria are less clear for choosing among the 
potentially infinite universe of possible variables. 

Generally, variables that either vary randomly or remain constant in the 
data may be ignored in cluster analysis as they provide little help in differen­
tiating among objects. Also redundant variables (different measures of the 
same underlying dimension) should be avoided for they only increase com­
putational efforts. The identification of constant, random, and redundant 
variables can be accomplished by a variety of analytical techniques. For 
example, factor analysis has been used to identify orthogonal variables. These 
could be said to be least redundant. 
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Except for the removal of constant, random, and redundant variables, the 
researcher requires a theory or at least good intuition to decide on the 
relevance of the remaining variables to a given problem. For example, a 
researcher wishing to cluster psychotherapeutic patients for the purpose of 
standardizing clinical treatments should derive his variables from existing 
theories about such treatments. Similarly, a researcher attempting to develop 
typologies for social organization of industrial enterprises must be careful to 
include all of the variables that sensible writers have associated with in­
dustrial organizations. In using theoretical writings to identify relevant vari­
ables, however, the researcher may encounter three basic difficulties. First, 
different theories may be concerned with different levels of aggregation, for 
example, alienation, an individual's state, versus vertical organization, a 
characteristic of formal structure in which individuals take part. Second, 
theoretical concepts may be abstract and multidimensional. Authoritarianism, 
for example, may not be measurable by a single variable. Finally, variables 
may not have the same weight. For example, "education" has more influence 
than "sex" on the formation of social groups focusing on academic topics, but 
the reverse is true for humor, social stereotypes, and economic expectations. 

In summary, the researcher should choose variables which are on the same 
level of abstraction, equal in weight, and logically independent of each other. 
But most of all such variables should feed into a theory or conceptual system 
that renders the description of the objects of analysis meaningful specimens 
for clustering. 

Though a lack of relevance may greatly complicate the interpretation of 
clustering results, this is a problem that is extraneous to the process of 
clustering and can therefore be mentioned only in passing. Section X wi11 
examine a second source of difficulties of interpretation. The following 
Sections IV and V are concerned with properties and forms of data. 

IV. ORDINALITY OF DATA 

Like all other multivariate techniques, clustering methods are used in 
identifying certain patterns within available data and differ mainly in the way 
they define, recognize, and represent such patterns. 

When clustering is defined as "a technique for grouping objects that are in 
close proximity to each other," one has a biordinal (of the order two) 
conception of the pattern in mind that clusters are to represent. Biordinal 
techniques either accept or immediately convert data into distances, dif­
ferences, similarities, disagreements, correlations, etc. Distances, etc., are 
quantitative expressions for relations between two objects or between two 
variables. They have exactly two arguments and belong to the class of binary 
relations. Biordinal clustering procedures yield clusters whose members stand 
to each other in a certain pairwise relationship, proximity being one example. 
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TABLE II 

DATA MATRIX WITH BINARY ENTRIES 

vanables 

2 3 4 

A 0 0 

ohjeC!s R 

c 0 

0 0 

0 

KLAUS KRIPPENDORFF 

There exist more complex relations, however, that cannot be decomposed 
without loss into a set of binary relations. This is easily demonstrated and 
provides the ground for the distinction between biordinal and multiordinal 
clustering techniques. 

Suppose one is given a 3 by 4 matrix X as in Table II with binary 
attributes, 0 or 1, in all cells. 

The distances or associations between the pairs of objects in Table II will 
have to be defined on three two-dimensional contingency matrices depicted 
as Table III. The uniform distribution of probabilities in these matrices 
indicates that the pairwise co-occurrence of attributes may be due entirely to 
chance. A biordinal clustering technique would therefore find no justification 
for merging objects into clusters. However, when objects are examined in 
triples rather than in pairs, one finds a strong tertiary relation present. This 
becomes obvious when the data in Table II are represented three-dimension­
ally as in Table IV. 

An example of a relation between three objects that is fully explainable in 
terms of any two of its three component binary relations is given as Table V. 
Here, biordinal clustering would be perfectly justifiable for there is nothing 
unique about the combination of the three objects that could not be expressed 
in binary terms. 

TABLE III 

CONTINGENCY MATRICES CONTAINING No ASSOCIATION IN PAIRS 

B c c 
0 0 1 0 

0 25 25 OC8J OC8J A A B 
25 25 1 25 .25 1 .25 .25 

TABLE IV 

CONTINGENCY MATRIX CONTAINING A TERTIARY AsSOCIATION 
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TABLE V 

CONTINGENCY MATRICES CONTAINING PAIR ASSOCIATIONS ONLY 

N 

B c c 

A~ A~ B~ 
~ ~ ~ 

265 

The point of this demonstration is that relations of lower ordinality do not 
imply anything about the presence or absence of relations of higher ordinal­
ity. Biordinal clustering techniques are therefore powerless in the presence of 
multiordinal relations. And when biordinal techniques are employed never­
theless, it is implicitly assumed that objects are linearly related as in Table V. 

Moreover, while data in canonical form are fully capable of exhibiting 
multiordinality, when such data are transformed into distances, similarities, 
etc., higher-order relations among objects are irretrievably lost [for more 
details and a calculus for higher-order relations in data see Krippendorff 
(1976, 1980)]. 

The significance of higher-order relations in reality and inherent in multi­
variate data cannot be underestimated. It is well known, for example, that the 
behavior of a social group cannot be inferred from the knowledge of the 
pairwise interactions between its members. There often are great qualitative 
differences between two-person interaction and three-person interaction, 
coalition formation being just one example requiring three or more parties. 
Even in chemistry, most man-made substances emerge when a certain num­
ber and quantity of elementary substances meet under suitable conditions, for 
example, in the presence of a catalyst. What does emerge cannot be predicted 
from known effects that any pair of elementary substances may have on each 
other. Or, if the components of electronic equipment have more than one 
input and/ or more than one output, their behavior can no longer be de­
scribed by a two-valued function. The switching network is then more 
complex precisely because the whole is different from the sum of the in­
put-output relations of its parts. The difference between a whole and its parts 
is variously called organization, synergy, interaction effects, or a Gestalt, and 
points directly to the difference between binary and higher-order relations. 
Unfortunately not all multivariate techniques are capable of exploring the 
multiordinal character of the data to which they are applied. 

The choice between biordinal and multiordinal clustering techniques 
should be made dependent on the nature of the data. Whenever objects form 
natural clusters on the basis of wholistic qualities similar to those just 
mentioned, multiordinal techniques are called for. If the choice of a biordinal 
technique is dictated by their availability, the researcher should at least be 
aware of or measure in quantitative terms what his clusters will omit. 
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V. DERIVED FORM OF DATA: DISTANCES 

Biordinal clustering usually starts with data in the form of a square matrix 
D whose entries diJ measure some distance, difference, or dissimilarity either 
(and generally) between all pairs of objects or (provided they possess the 
same metric) between all pairs of variables. See Fig. 4. 

Distances between the same objects must be zero. Otherwise, distances 
must be positive and symmetrical: 

du = 0, du > dii• dy = d_;; 

In order to possess at least interval metric properties within many-dimen­
sional space, distances must also satisfy the triangle inequality: 

dik < dij + ~k 
and in some cases the ultrametric inequality (Jardine and Sibson, 1971; 
Johnson, 1967): 

t:4k < max( dil' d_;k) 

Data may also be represented through measures of similarity, agreement, 
resemblance, or correlation, siJ. Similarities and distances are inversely related 
with the least similar objects giving rise to large distances and small distances 
reflecting strong resemblances. Similarity measures may be converted into 
distance measures, for example by 

objects 

2 n 

FIG. 4. A n1 matrix of distances. 
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The latter is my generalization of Gower's (1966) transformation, developed 
to convert similarity measures that range between 0 and + 1. A useful 
conversion for correlation coefficients has been suggested by Tukey (1977): 

du=l-r~ 

It expresses the degree to which two objects are linearly related (positive or 
negative) and takes its maximum value when the objects are statistically 
independent. This serves as an example that distances and similarities can 
have many different interpretations which need to be understood before a 
clustering is attempted. Motivations for these conversion formulas cannot be 
given here. 

I shall now give several distance and similarity measures and show how 
some of the more familiar measures can be regarded as special cases. For this 
purpose I shall first define four kinds of differences, one for each metric, then 
present methods of standardizing such differences across different metrics, 
and finally present a few key distance and similarity measures. 

Difference notions depend on the metric of the variables involved. This may 
be seen in the comparison between nominal and interval data. N aminal data 
are characterized by qualitative distinctions without any implied order. Thus 
a nominal value matches with another or it does not and all mismatching 
pairs differ to the same degree. Interval data, on the other hand, recognize an 
ordering of values that allows additions and subtractions. Differences then 
become a function of their algebraic difference and may be large or small. 
These intuitive notions can be given rigorous forms: For nominal scales the 
difference between two values xiu and x1u of the uth variable is 

{ 
0 iff x,u = xju• 

!J.u." = I 1.ff -+-
xiu I Xju 

For ordinal variables in which merely the rank orders count, such a difference 
is a function of the number of ranks above and below the two values to be 
compared. With 

and ~·! defined analogously, the difference in ordinal scales becomes 

6.iJ, u =I xi~ - xJ!I 
For variables with interval metric the difference is as just discussed: 

and for variables with ratio metric, the difference may be expressed by 

!J.ij,u =ixiu- "iulflxiul +1-"iul 
If both X;u and x1u are positive, as should be expected in ratio-level measure­
ments, then the ratio difference is a modification of Lance and Williams' 
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(1967) Canberrametric. All of these differences are taken from Krippendorff 
(1973), where also the motivations for their form may be found. 

The most obvious way of aggregating differences across variables into a 
measure of distance is by summing some power r of it: 

d" = [ f (~"· ur]'/' 
u=l 

When r = I, differences ~. are assigned equal weights and are merely 
lj, u 

summed. When variables are moreover dichotomous, diJ becomes the Ham­
ming distance (Hamming, 1950). For r = 2, du corresponds to the familiar 
Euclidean distance in multidimensional space which has been used since 
Heinecke (1898). The distance is common in research on the semantic 
differential (Osgood, Suci, and Tannenbaum, 1957) and has been discussed in 
the cluster analysis literature by Sokal and Sneath (1963), Gower and Ross 
(1969), and many others. Generally an increase in the exponent r increases 
the impact of larger differences over smaller ones and thereby affects the 
nature of the clusters formed. 

The Euclidean distance is appropriate when all variables possess the same 
metric but not when the metric of the variables differs. Variables then will 
have to be standardized. There seem to be three methods of standardizing 
distances across different metrics. 

The first is a reduction of the power of the metric of all variables to the least 
powerful metric among the variables. The possible metrics may be listed in 
order of increasing power: nominal, ordinal, interval, ratio. Thus if there are 
ratio scales (e.g., numerical age, income in dollars) and ordinal scales (e.g., 
variables containing such values as "most conservative," ·'somewhat con­
servative," "neutral"), the values of all variables would then have to be 
regarded merely by their rank within the set of all values. Similarly, when 
binary attributes occur, all variables would then have to be dichotomized 
(e.g., above or below a certain age, income, liberal versus conservative). 

A second method is to transform all values x1u so that their range falls 
within the interval 0 and I (Sokal and Sneath, 1963; Gower, 1971). The 
transformed value may be expressed as 

k 1, ... , n 

where minuCxku) and maxuCxku), k = 1, ... , n, represent the smallest and 
largest values in u, respectively. This method, however, is inapplicable to 
nominal metric variables, and if applied to ordinal data, it would assume 
interval characteristics that are not there. 

A third method, and one that I prefer, is to standardize the variance in each 
variable before summing. For this purpose one computes a variable-specific 
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weight: 

so that 
n n 

a: = L L wu(')(Llij, ,)' = I 
i=1 )=1 

for each variable. The weighted distance then follows the form proposed by 
Bock (1974): 

Evidently, when r = 2 and all wu(Z) = I, the distance becomes again the 
Euclidean distance. 

Another generalization of the Euclidean distance has been proposed by 
Mahalanobis (1936). For n > m, let the m X m covariance matrix 2: have 
entries: 

n 

auv = n L (xiu- x.J(xiv- x.J 
i=l 

where X.u and X.v are the means in variable u and v, respectively. Let the 
inverse of this matrix 2:- 1 have entries auv, then the Mahalanobis distance is 
defined by 

It is noticeable that the Mahalanobis distance depends on all n objects 
simultaneously with its range in fact a function of n: 

n n 

and L L dJ 
i=I )=1 

The Mahalanobis distance also eliminates the effects of possible correlations 
among pairs of variables on the distance between two objects. And it is 
relatively independent of the ranges in each variable. The Mahalanobis 
distance is not applicable across different metrics, but this drawback might be 
corrected by standardizing the variance in each variable according to the 
third method just discussed. Accordingly, the corrected covariance matrix 2:* 
has then entries 
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and the corrected distance becomes 

dij = ( ~ ~ a*""w"(I) wv(I)Llij, "Llij, v) 

112 

u=l v=l 

A most common similarity measure is the product-moment correlation 
coefficient ru which is defined by 

where x. and x are the mean values for objects i and j, respectively. This 
I. J• 

reliance on mean values presupposes that all variables possess interval or 
ratio metrics. 

While the correlation coefficient can easily be converted into a distance 
measure by one of the conversion formulas, its interpretation as a similarity 
measure is not too clear. r iJ = 0 denotes statistical independence, and I r iii = I 
denotes that variables are linearly dependent. Nonlinear relationships 
and relations of higher ordinality reduce the value of lrul• however. The 
difference between positive and negative values of ru adds another difficulty 
to the interpretation of the coefficient as a similarity measure. For example, it 
is not too obvious whether two objects between which a strong negative linear 
relation exists should thereby be regarded as similar or different. 

Opinions on the use of correlation coefficients for clustering vary consider­
ably in the literature. (For additional arguments see Section X.) 

In an approach to multiordinal clustering of nominal data, Krippendorff 
(1969, 1974) used information theoretical measures to asses the loss of 
structure in many-dimensional spaces caused by the grouping of the objects' 
qualitative descriptions. The notion of structure here considered may be 
paraphrased by "interdependent differentiation," "trans-information," "mul­
tiple-order interaction," or "relational entropy" and might be said to be the 
opposite of redundancy and randomness. The loss in the amount of structure 
due to the elimination of qualitative distinctions in one or more variables can 
be expressed by several distances between two objects. I shall define only one 
here. Let "<'> be the number of objects with the description 
(xi!, ... , xiu• ... , xim), nx be the number of objects described in terms of x 
in the uth variable, and nx be the number of objects that share the value x in 

'" the uth variable with the object i. The total amount of structure within the 
m-dimensional space-that is, the total amount of relatedness manifest in the 
m-valued distribution of objects-is 

n<"> n<.> m n n 
T = L ~' log,~' - L L ~log2~ 

i n n u= 1 x n n 

And the distance between two objects i and j becomes the loss in structure 
when all hyperplanes within which i and j are located are to be merged. 
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To express this, the two m-tuples <xi!, ... , x 1u, ... , x 1m) and <x11 , ... , 

xJu• . .. , x1m) are considered to be composed of two parts ic and kc and)c 
and kc, respectively, where Cis a set of variables within which (i) and (j) 
differ. With a loss function defined by 

Loss( a, b) = {
0 iff a=born.=Oorn.=O, 

( n. + nb) log,( n. + nb) - na log2 na - n• log2 nb 

otherwise 

the loss in structure, expressed as a distance, becomes 

dij = T(before) - T(after merging i andj) 

_!_ [ 2; 2; Loss(<ickz), (ickc>l- i; Loss(x,., -<;ull 
n c kc u=l 

1bis distance is small when objects are redundant, i.e., have many values in 
common, and values with respect to which the objects differ carry little 
information. The distance is large when the descriptions of objects represent 
sigrrificant differentiations within the m-dimensional space. Like the Maha­
lanobis distance, the preceding takes all objects into consideration that share 
some values with either of the two objects being compared. But, unlike the 
Mahalanobis distance, it takes account of the multiordinal nature of the 
distribution of objects and does not assume any ordering of values. 

For binary attributes, 0 or I, in all variables several simple distances have 
been used. To simplify the notation, let me represent the matching and 
mismatching of attributes associated with objects i and j in terms of a 2 by 2 
contingency table: 

j 
0 

a b e, 

0 c d l-e1 

ei 1- e1 

m I m 

a = 2: xiuxju• e, = 2: X;u 
m u=I m u=I 

where a is the proportion of matching ones between i and j, b is the 
proportion of mismatches with is zeros co-occurring with js ones, etc. 
(the distance dij is not to be confused with the proportion d). In these terms, 
the Euclidean distance becomes 

dv = (b + c) 112 

and two simple matching coefficients used by Zubin (1938) and Jaccard 
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(cited in Sokal & Sneath, 1963), respectively, are 

dij = b + c 

Yule's association coefficient 

and du=a+b+c 

su = (ad- bc)j(ad + be). 

has also been used as a similarity measure (Sokal & Sneath, 1963). 
Space does not permit a review and discussion of the many distance and 

similarity measures which are possible and have actually been applied in 
clustering. The user of any clustering technique that starts from distance or 
similarity data must ascertain though that these measures possess the metric 
properties that the clustering technique requires and that the assumptions 
implied by the choice of a particular distance measure conform to what the 
clusters are expected to represent. Specifically, multiordinal relations are not 
manifest in distance or similarity data. Multiordinal clustering techniques 
require continuous interaction with data in their canonical form because they 
are capable of retaining such relations. 

VI. GOALS AND COMPUTATIONAL EFFORTS 

A major problem of all multivariate techniques is the amount of computa­
tion required to produce results. Since the number of cells in a many-dimen­
sional space grows exponentially with the number of dimensions, such num­
bers often approach limits of computability before data can be considered 
rich enough to contain interesting information. Virtually all multivariate 
analysis algorithms rely on computational shortcuts to reduce this effort and 
thereby impose assumptions on the way data are processed. Cluster analysis 
is no exception and the user should know what is involved. 

While all clustering procedures yield groupings of objects or variables 
according to some criterion, the specific task may be one of the following: 

(a) selecting that subset of a set of objects which contains a designated 
object in relation to which criteria for inclusion into the subset, class, type, or 
cluster are defined. 

(b) selecting that partition of a set of objects into a specified number of 
exhaustive and mutually exclusive subsets, classes, types or clusters, the parts 
of the partition, of which each is in a specifiable sense optimal under the 
numerical restriction. 

(c) selecting that partition of a set of objects into any number of exhaus­
tive and mutually exclusive subsets which satisfies a specified criteria of 
optimality. 

(d) selecting that binary decision tree which contains only partitions 
satisfying (b) including the partition satisfying (c). 
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Table VI shows how the number of alternatives among which decisions 
need to be computed grows with the number of objects to be clustered. With 
only n ~ lO objects, task (a) presents 512 alternatives, which is a manageable 
and unproblematic number. But task (c) requires the evaluation of 116 
thousand partitions, a number that approaches practical limits of computa­
tion, while task (d) with its 2.6 billion decision trees already exceeds computa­
tionallimits. The lesson to be drawn from any extension of numbers n of this 
table into the domain of theoretical significance is that practical clustering 
procedures cannot compute alternatives simultaneously but must proceed 
iteratively, in irreversible steps. It is in the form of iteration that hierarchical 
clustering schemes emerge. 

Two iterative clustering procedures can be distinguished: The successive 
partitioning of a set of objects into more and smaller subsets (classes or 
clusters) and the successive merging of objects into fewer and larger subsets 
(classes or clusters). Sneath and Sokal (1973) call the former technique 
divisive and the latter agglomerative. With a vertical bar separating the parts 
of a partition among four objects, a, b, c, and d, these two options are 
depicted in Fig. 5 as a path through a partition lattice from top to bottom or 
from bottom to top, respectively. 

While either option results in the choice of one out of n!(n- 1)!2"- 1 

binary decision trees, their computational efforts are rather different as the 
following table of the number of alternatives may show: 

Successive partitioning: 

Successive merging: 

lst step 2nd step 

between2(~n-l)~l and2n-2 -l 

n(n - I) 
2 

(n-l)(n-2) 
2 

Numerically, when n ~ !00, the first step of successive partitioning poses 
about !030 alternative partitions to chose from, a practical impossibility, 
whereas successive merging calls for the evaluation of only 4950. While 
successive partitioning cuts these numbers down rather quickly, the first step 
is evidently prohibitive. 

Finally, computation is affected by two further distinctions. The first was 
suggested by Lance and Williams (1967). They define a combinatorial strategy 
as one in which the original input matrix (of distances or of data in canonical 
form) is successively transformed, becomes smaller and simpler, and thereby 
reduces the computational effort by each step. In contrast, in a noncombina­
torial strategy all computations are based on the original input which must 
therefore be maintained throughout. Obviously, combinatorial strategies are 
more efficient. Furthermore, I should like to distinguish between two combi­
natorial strategies: distance-recursive strategies in which each distance matrix 
is derived from its preceding distance matrix, and data-recursive strategies in 



TABLE VI 

COMPUTATIONAL EFFORTS OF FOUR DIFFERENT CLUS1ERING TASKS 

n: 1 2 3 4 5 6 

(a) Number of subsets of 
which g is a member, 2"- 1 1 2 4 8 16 32 

(b) Number of partitions 
into k parts, k- 1 1 1 1 1 1 1 

k-1 . (k - j)' 2 1 3 7 15 31 

.:E (-1)' ., (k- )' 3 1 6 25 90 
r=O J· J · 4 1 10 65 

5 1 15 
6 1 
7 
8 
9 

10 

(c) Total number of 
partitions, 1 2 5 15 52 203 

i: k~'<-1)1 :k-jf, 
k-1 J-0 }. (k J). 

(d) Number of binary 
decision trees, 0 1 3 18 180 2,700 

n!(n-1)! 
2n-1 

7 8 

64 128 

1 1 
63 127 

301 966 
350 1,701 
140 1,050 
21 266 

1 28 
1 

877 4,140 

56,700 1,587,600 

9 

256 

255 
3,025 
7,770 
6,951 
2,646 

462 
36 

1 

21,147 

57,153,600 

10 

512 

511 
9,330 

34,105 
42,525 
22,827 

5,880 
750 
45 

1 

115,975 

2,571,912,000 

"' :i:' 

e 
c: 
"' 
~ 
~ 
8 
$ 
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FIG. 5. Partition lattice involving four objects. 

which it is the canonical representation of data which is successively mod­
ified. The latter is exemplified in Table VII. Distance recursive strategies are 
at least m times (m = the number of variables) as efficient as data recursive 
methods. 

Of course, computational advantages must be weighted against the amount 
of information that combinatorial strategies lose. Computational shortcuts 
can not bypass questions of validity. 

VII. PRESENTATION OF RESULTS 

The conceptualization of multivariate data is difficult. We are just not 
accustomed to seeing point distributions in four-or-more-dimensional spatial 
representations and it is this fact that often serves as a motivation for 
applying multivariate statistical analyses. All multivariate techniques trans­
form such data. Even though analytical results may appear simple. it is often 
difficult to relate the transforms of these data to the original observations. 
This section does not deal with questions of meaningfulness and of the 
adequacy of the transformations for producing a result. It is rather concerned 
with several ways the results of a clustering process might be visualized 
leaving the conceptualization of the process for Section IX. 

A. Dendrograms 

The most important form of representing clustering results is the dendro­
gram (see Fig. 6) which is a tree-like structure whose branches terminate at 
the objects being clustered. The lengths of its branches indicate differences in 
homogeneity, or heterogeneity within clusters being merged or partitioned. 
Dendrograms are nothing but a more sophisticated form of listing objects by 
their membership in clusters: Each horizontal cut through a dendrogram 
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FIG. 6. Dendrogram representation of clustering, 

indicates one of several partitions of the set of objects, the height between this 
cut and the original (unclustered) objects indicates the level of homogeneity 
or heterogeneity lost in the partition. 

Dendrograms are particularly suited to represent a large number of objects 
and the whole history of a clustering process whether it proceeds by succes­
sive merging or partitioning. Relatively long stems between branching points 
indicate to the researcher where relatively large jumps in heterogeneity occur 
and might suggest cutoff points at which partitions might be meaningful. 

Figure 7 represents a small section of a dendrogram obtained by clustering 
299 sales appeals in television commercials (Dziurzinski, 1978) by the strong 
association method (see Section IX). 

Johnson (1967) used a modified dendrogram which is particularly suited 
for computer printouts (Fig. 16). 

B. Spatial Representations for Biordinal Clustering 

By far the most appealing form of representation depicts the proximities 
among objects in some space and indicates clusters by drawing their 
boundaries. Since proximities are an essential ingredient of Gestalt percep­
tion, groupings are much easier to visualize when similarities, correlation, and 
the like are expressed as distances. Figures 8 and 9 exemplify such a 
representation in one and in two dimensions. 

When three dimensions are involved, the representation is somewhat more 
cumbersome although still possible. Spatial representations in four or more 
dimensions become virtually unreadable however. Since many multivariate 
data consist of objects that are characterized by many more than three 
variables, the use of spatial representations of clustering results is extremely 
limited. But since two- or three-dimensional representations are so common, 
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FIG. 8. One-dimensional spatial representation of clusters. 

researchers have either ignored the many-dimensional character of the dis­
tances between objects and approximated them by distances in two- or 
three-dimensional representations or else have employed dimension reducing 
techniques, such as factor analysis, that yield visually representable distribu­
tions of objects in a space with orthogonal dimensions. Since the size of the 
resulting clusters and distances between them are then distorted in the visual 
representation, numerical values for these may have to be added to indicate 
their true quantitative relationship. These are omitted in Fig. 10, which is the 
visualization of a taxonomy of the Enterobacteri aceae (Lysenko & Sneath, 
1959). 

It should be reemphasized that spatial representations with their emphasis 
on proximity carry strong biordinal biases. Higher-order relations among 
three or more objects have no obvious spatial form. 

C. Reordered Distance Matrices 

Several authors, among them Sneath and Sokal (1973), suggest that the 
results of distance recursive merging be represented by reordering the entries 
of the initial distance matrix D 0 so that the proximity of rows (and columns) 
reflect the rank ordering of distances between objects. However, when the 
initial distances are rearranged not by their rank but by the hierarchical 
ordering that any iterative clustering process imposes, one obtains a reordered 
distance matrix, such as in Fig. 11, in which entries are "blocked" into 
sections representing distances within and between clusters, respectively. The 

0 0 
0 

0 

0 0 
0 0 

0 

FIG. 9. Two-dimensional spatial representation of clusters. 
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FIG. lO, Three-dimensional representation of many-dimensional clusters (Sneath & Sokal, 
1963, with permission of W. H. Freeman and Company). 

reordering of distance matrices does not reveal, however, the motivation for 
multi ordinal clusters. It is instructive primarily when clustering proceeds from 
distances and is biordinal. 

D. Prototypes and Centroids 

It is often desirable to identify an object, real or hypothetical, that is most 
representative of a cluster. Such an object is called the prototypical object or 
centroid, respectively. Centroids locate a given cluster, in multivariate space. 
In monothetic clustering schemes, the centroid is that m-tuple of values that 
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FIG. ll. "Blocked" distance matrix and associated dendrogram. 
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all objects in a cluster share. Since the objects in clusters emerging from 
polythetic techniques (see Section VIII) need not have any value in common, 
the centroid may then be quite abstract and is often unidentifiable in terms of 
data in canonical form. In either case, there may not exist a real object in the 
sample that coincides with the hypothetical centroid of a cluster. The object 
closest to the centroid of a cluster may then be chosen as the prototype of the 
cluster. 

In single linkage clustering methods (see Section VIII) and those that 
employ measures of differences between rather than within clusters, centroids 
have no clear theoretical justification because clusters have this chain-like 
appearance and heterogeneities are not accounted for by these methods. The 
computation of centroids and the identification of prototypes is thereby not 
excluded however. 

When data are in canonical form and biordinal clustering proceeds frurn 
distances, the centroid of the cluster G becomes the m-tuple 

where XGu is the arithmetic mean of values of the uth variable over objects in 
cluster G when that variable has interval metric, the median when that 
variable has ordinal metric, and the mode when that variable is unordered. 

Otherwise, the researcher tends to be restricted to identify the prototype of 
a cluster by 

min ( d c) <-> g is the prototypical object of G 
gEG g 

in which d
8
c stands for the heterogeneity measure chosen. In diametric 

clustering 

dgG = 'J'E~ ( dgj) 

whereby the prototype g is the one closest to the center of the circle 
circumscribing the objects in G. In variance-type clustering, 

( 
l )''' dgG = nG - 1 j~G d;j 

and when r = l, the prototype occupies a position close to the mean of the 
cluster. Large values for r make that position more responsive to the skewness 
of the distribution of objects within a cluster. 

In multivariate classification the prototype of a cluster is defined as that 
object which, when removed from the cluster, causes the least amount of 
structure loss within the cluster. With ngu = nGu - ngu and n<Kckc> = n<Gckc) 

n<Kckc> for simplicity of notation, 

dgG = _!_[2: 2;Loss((.ifckc), (gckc))- ~ Loss(gu,gu)] 
n c kc u=l 
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If the proportion n<gckc>fn<cckc> =constant for all objects that share some 
values with g, then dgG = 0 and g is both prototype and centroid of the 
cluster G. 

Two drawbacks of representing clusters by prototypes are that there may 
exist objects that are actually more representative (closer to the centroid) of a 
cluster than those occurring in the sample and that there may exist many 
different objects for which d,G is equal and minimum. The first problem is 
one of sampling and the second, one of measurement. 

E. Other Multivariate Techniques 

Insofar as it provides a single partition of canonically represented objects, 
clustering adds to the m descriptive values each object's membership in some 
cluster. Such an indication of membership can be regarded as the (m + l)st 
descriptive variable and thus expands the initial n X m matrix of data in 
canonical form to an n X ( m + I) matrix. This expanded matrix may be 
subjected to a variety of other multivariate techniques, for example, multiple 
discriminant techniques yielding explanations of the clusters in terms of the 
features that discriminate. 

The results of clustering can be subjected to factor analysis to obtain a 
more efficient system of coordinates for representing these clusters (see 
Chapter 8). The results of different clustering techniques can be compared by 
cross-tabulations, etc. In fact, there is no limit to the use of other analytical 
techniques for describing and exploring the nature of the clusters that have 
been obtained as well as in preparing the data for subsequent clustering. 

VIII. PROPERTIES OF EMERGING CLUSTERS 

The aggregate or shared properties of objects within a cluster, the 
boundaries around clusters, the relations between clusters, the tree-like 
dendrograms describing either the history of merging objects into classes or 
the history of partitioning sets of objects into subsets are all expected to be 
based on given data. Once the criteria for iterative merging or partitioning are 
set, the clusters that do emerge develop certain properties that should not be 
an artifact of the procedure. Decision criteria for clustering must therefore be 
based on measures that characterize sets of objects. This section presents 
several measures on clusters of two or more objects and in terms of three 
dimensions of classification: 

Difference measures versus heterogeneity measures 

Single linkage measures versus multiple linkage measures 

Polythetic measures versus monothetic measures 
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The distinction between biordinal and multiordinal clustering is also reflected 
in these measures and the formal conditions imposed on such measures 
depend to a large part on the computational approach taken, i.e., whether the 
procedure is distance recursive or data recursive and whether clusters are 
formed by partitioning (divisive) or by merging (agglomerative). Naturally the 
number of combinatorially possible clustering criteria exceeds those actually 
realized, and of those available only a few can be discussed here. 

The differentiation between difference measures and heterogeneity measures 
is conceptually simple but the implications are far from obvious. Applied to 
clusters (classes of objects), difference measures quantitatively assess dif­
ferences between two different clusters whereas heterogeneity measures assess 
differences within one cluster. Both are divergent generalizations of the 
distance between two objects. When a third object is added to a cluster of 
two, a difference measure assesses the difference between the third object and 
either one or both of the two objects already merged while a heterogeneity 
measure assesses some difference among all three objects regardless of how 
they were brought together and thereby assigns equal weight to each object 
involved. 

Notationally, dEF will be used to denote the heterogeneity of the union of 
two sets of objects, whereas dEIF will be used to denote the difference between 
the two sets. The distance du between two objects i and j then is the special 
and overlapping case at which E ~ {i} and F ~ {}). 

In these terms, and without reference to details, several formal require­
ments on the use of these measures as decision criteria for clustering can be 
stated. For distance recursive procedures, both heterogeneity and difference 
measures must satisfy analogous conditions: 

dEE > 0 

dEF > dEE' dE IF > 0 Positive 

dEF dFE' dE IF dFIE Symmetrical 

dEF < dEG + dGF' dE IF < dEIG + dGIF Triangle inequality 

to which the following may have to be added: 

Ultrametric inequality 

These conditions correspond to those for distances between two objects 
except that the heterogeneity within a cluster, dEE> may exceed zero and the 
difference between a cluster and itself, dElE' is meaningless by definition. 

For data recursive procedures these formal requirements may be relaxed to 
the following two conditions: 

(1) Decision criteria must not decrease with each upward move in the 
partition lattice (merging) and must not increase with each downward move 
in the partition lattice (partitioning). For any three clusters E, F, and G, at 
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any stage in the clustering process, 

max(dGG) < min(dEF) 

For difference measures this does not apply generally. However, if one 
interprets dele as that distance which served as criterion to merge two clusters 
into G, then, while some differences within G may exceed dEIF• at least under 
a successive merging strategy, 

max(dGIG) < min(dEIF) 

This condition favors heterogeneity measures because whenever G is the 
union of E and F, dec = dEF· For difference measures the condition must be 
rephrased to read: The largest of the differences that lead to the formation of 
a cluster must not exceed the smallest difference between any pair of clusters 
at that stage at which that cluster was formed. 

(2) Ideally, decision criteria should also be independent of the order of 
cluster formation: 

d{ijk}(ijk} = d{i){Jk) = d(ij}(k) = d{ik){J) 

This is again satisfied by heterogeneity measures but not by difference 
measures. Some of the implications of this failure will become apparent in the 
following. 

The second dimension of classification refers to whether clusters are 
characterized by a single representative linkage between two objects or 
whether the measure aggregates multiple linkages into a single index. I shall 
exemplify the two dimensions by several individual and polythetic measures 
for biordinal clusters. 

Difference Heterogeneity 

Single linkage: Connectedness Diameter 

Multiple linkage: Average linkage Variance 

Clusters that are characterized by the connectedness of their members 
(Johnson, 1967; single linkage clustering according to Sokal & Sneath, 1963) 
stem from the simplest form of clustering with difference measures: Clusters 
are formed by merging objects in the increasing order of their distances, i.e., 
by merging those clusters that contain at least one object each, which is least 
distant across cluster boundaries. Thus, the two clusters E and F, if they are 
to be merged to form the cluster G, satisfy the criterion: 

min(dw) = min( min (dij)) 
E, F E, F iEE,)EF 

The difference dEIF in this criterion is crucially dependent on the history of 
the formation of the cluster. It is the distance between two objects within G 
that at the point of the last addition to the cluster was the smallest distance 
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between objects of all different clusters formed prior to G. Within a cluster it 
is then possible to find distances between members that are larger or smaller 
than the distance on account of which the cluster was formed. 

While leading to an extremely simple form of computation (in fact it can he 
done manually by inspection of the distance matrix D without any arithmeti­
cal computation), the weakness of this criterion lies in its tendency to form 
long chains that often bridge otherwise perfectly meaningful clusters. Some of 
the peculiar clusters that this criterion will produce are illustrated in the 
spatial representation of Fig. 12. The use of difference measures generally and 
in conjunction with single linkage conceptions of those measures in particular 
allows clusters to .. grow out of control." 

Clusters may be characterized by the largest distance between their mem­
bers, called their diameter. The technique minimizing the diameter of a cluster 
is variably called the complete linkage method (Sokal & Sneath, 1963), 
compact clustering (Lorr, cited in Cureton, Cureton, & Durell, 1970), or the 
diameter method (Johnson, 1967) and controls for what single-linkage cluster­
ing omits, namely, that extreme differences within a cluster stay within 
bounds. The largest distance within a cluster G, the diameter, is 

dGG ~ max (du) 
I,JEG 

The diameter of a cluster is a heterogeneity measure but it takes only one 
distance as representative of the cluster as a who1e. In the formation of 
clusters that minimize this measure, a successive merging procedure will join 
at each step those two clusters whose most distant objects have the smallest 
distance across all pairs of clusters. Thus, by analogy to MacNaughton-Smith 
(1965) and Johnson (1967), if E and Fare merged to form a new cluster G, 

dGG ~ min(dEF) ~min( max (du)) 
E,F E,F iEE,jEF 
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FIG. 12. Clusters for single~linkage method. 



9. CLUSTERING 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

FIG. 13. Clusters for diametric method. 

285 

Compared with the connectedness criterion, the diameter criterion yields 
relatively compact clusters. But such clusters have several peculiar properties. 
First, there is the tendency of clusters to become circular and equal in 
diameter. Second, the number of objects within a cluster, the density of its 
population, has no bearing on the way clusters are formed. Third, and a 
corollary of the second, a center need not exist for such clusters. Figure 13 
illustrates some of the typical clusters diametric clustering will yield. These 
clusters are shown at two stages of formation. 

Average linkage clustering (Sokal & Sneath, 1963) extends the notion of 
connectedness to an aggregate measure of all distances between two clusters. 
So Bock (1974) defines the average distance between two clusters by 

The criterion to merge E and F into G, generalized to any power, then is 

( 
1 ) If, 

min (dE IF) ~ min -- L L d!j 
E, F £, F nEnF iEE jEF 

Another average linkage criterion is Pearson's (1926) coefficient of racial 
likeness: 

in which XEu is the arithmetic mean of values in E of variable u, and aEu is the 
variance within E regarding the uth variable. The coefficient has been used 
by Rao (1948, 1952), Sokal and Sneath (1963), and several others. The 
coefficient makes the difference between two clusters a function of the 
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variance within both and is thus not a "pure'' average linkage measure but 
belongs to the same family. 

Both difference measures work against the chainlike appearance of clusters 
typical of the connectedness criterion but do not eliminate it completely. 
Their clusters are less compact than those using corresponding heterogeneity 
measures. Difference measures simply do not optimize homogeneity within a 
cluster. Once two clusters are merged, the distances that contributed to that 
decision are no longer referred to in subsequent clustering steps. 

Clusters with minimum variance between their objects are achieved by 
taking all distances within a prospective cluster into account. Accordingly, a 
multiple linkage measure of heterogeneity within a cluster G is 

dGG = ( 1 ~ dij)l/' 
na(na- 1) ;,jEG 

and to minimize this heterogeneity, clusters E and F are merged into G when 

daa = min(dEF) =min( 
1 ~ dij)'

1
' 

E, F E, F (nE + nF)(nE + nF- 1) ;,jEE, F 

When the exponent r = 1, daa is the mean distance within the objects of a 
cluster and its use as a decision criterion assures that this mean distance is 
kept at a minimum. When r = 2, daa is the standard deviation within a 
cluster. And, since the variance is the square of the standard deviation, 
clustering with r = 2 also might be said to minimize the variance within 
clusters. Sokal and Sneath (1963) termed the latter index, the taxionomic 
distance. 

Variance-type heterogeneity measures compensate for a large distance 
within a cluster by several smaller distances within that cluster. Clusters with 
equal heterogeneity in this variance sense may thus be different in diameter. 
However, as r increases in value, larger distances are weighted increasingly 
heavily on the measure so that r in fact controls the conservatism of the 
clustering procedure. The higher the exponent r the more compact the 
clusters that emerge. Some typical clusters that variance methods will identify 
are depicted in Fig. 14. 

The relationship between variance-type difference and heterogeneity 
measures is easily illustrated by the following equality in which r = 1 for both 
the average linkage between clusters and the mean distance within the union 
of two clusters: 

(nE + nF)(nE + nF- J)dEF = nE(nE- J)dEE + nEnFdEjF + nF(nF- l)dFF 

This equality reveals the difference measure dEIF to be only one part of the 
heterogeneity measure dEF· If used as a clustering criterion, dEIF ignores the 
heterogeneities dEE and dFF of the clusters being merged and thus minimizes 
some property other than a characteristic of all the objects in the merging 
cluster. This accounts for what was suggested earlier, that difference measures 
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FIG. 14. Clusters for variance method. 

tend to let clusters .. grow out of control" and are for this reason inferior to 
measures of heterogeneity. 

Clusters may also be polythetic or monothetic (Sokal & Sneath, 1963). In a 
monothetic cluster all members share some properties. Objects are admitted to 
a cluster because a large number of their characteristics match. In a poly­
thetic cluster, members need not hold any value in common. They need only 
be similar in some respect and this similarity may be expressed by a high 
correlation, by a larger proximity between values, or by the sharing of values 
between pairs rather than among all members of a cluster. Distance recursive 
techniques yield polythetic clusters only and all clustering criteria discussed 
so far are also polythetic in resnlt. 

An example of a monothetic clustering technique is Krippendorff's (1975) 
strong associative clustering of binary attribute data. Key to the technique is 
the successive enumeration of the attributes that are shared among all 
members of a cluster. Since this number cannot be obtained from agreements 
between pairs, the enumeration must be data recursive. And seeking to 
correct observed agreement on attributes by what is due to chance, one of the 
more convincing coefficients turns out to be a generalization of Benini's 
(1901) measure of association. With ac as the proportion of attributes shared 
among objects in G and ei as the proportion of attributes associated with the 
object i of G, the coefficient, converted into a heterogenity measure by 
~J = 1 - su and stated as a decision criterion for merging E and F into G, is 

It is the proportion of the observed disagreement on attributes shared within 
G to the disagreement of chance matching. 
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A graphical representation of typical clusters resulting from this mono­
thetic, heterogeneity measure is difficult precisely because multiordinal 
clusters defy spatial representations. Further elaboration of the measure and 
an example are found in Section IX. This heterogeneity measure exemplifies a 
measure that does not satisfy the triangle inequality and would thus not lend 
itself to distance recursive clustering. 

An example of a polythetic multiordinal and variance-type technique is 
multivariate classification. It is a method by which clusters are formed neither 
by grouping objects in terms of their variables nor by grouping variables in 
terms of their objects (all of which might produce one univariate classification 
or clustering scheme) but by clustering variables in terms of each other, 
interactionally so to speak, using the distribution of objects in multivariate 
space as a reference for the interaction. Krippendorff (1969, 1974) developed 
the technique from information theory. The simplest decision criterion is 
given in the section on distances. And the recursive form of the heterogeneity 
measure is presented in Section IX where details are elaborated. This measure 
assesses the amount of multivariate structure lost within the m-dimensional 
space when some of the terms within variables are no longer differentiated. It 
can be interpreted as expressing the amount of multivariate information that 
can no longer be transmitted due to the formation of clusters in each 
dimension or as the amount of relational entropy lost within a cross-classifi­
cation of m separate clustering schemes, one for each variable. What this 
clustering technique achieves is a more efficient representation of the objects 
involved, one that reduces the m-dimensional space in volume without much 
loss in the essential relationship (see Figs. 20 and 21 for examples). Since the 
complexity of the resulting cluster again defies a simple graphical representa­
tion, Fig. 15 offers a two-dimensional diagram of the nature of the clusters 
that the technique might identify. 
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In conclusion, it is evident that the choice of clustering criteria is the most 
important determinant of the kind of clusters that do emerge and the kind of 
properties these clusters are thereby able to represent. The classification of 
these properties merely serves to clarify principal differences between cluster­
ing criteria and the emerging properties of clusters. Examples are more 
numerous for difference than for heterogeneity measures, for single than for 
multiple linkage procedures, for polythetic than for monothetic clusters. The 
reliance of biordinal rather than multiordinal conceptions of properties is 
striking, and the fact that I did not exemplify the results of partitioning 
approaches to clustering is indicative of suspicious white spaces on the map 
of all combinatorially possible clustering techniques. 

IX. CLUSTERING ALGORITHMS 

An algorithm is a stepwise procedure that is completely specified (leaves no 
alternative undecidable) and transforms some input into some output. 
Clustering algorithms accept data as input either in their canonical form of a 
data matrix X or in their derived form of a distance matrix D. The output of 
a clustering algorithm either identifies a cluster containing a given object, 
produces some partition, i.e., a set of clusters, satisfying some criterion of 
optimality, or it gives a decision tree that contains partitions all of which 
satisfy some criterion of optimality. 

Because of the insurmountable efforts required to compute clusters, parti­
tions, and decision trees simultaneously, demonstrated previously, algorithms 
must be defined recursively. A recursive algorithm is one that is applied to 
some initial set of data, yielding an output to which it is applied again and 
again until some terminating criterion is met. Recursive clustering algorithms 
work themselves stepwise either down a partition lattice (through successive 
partitioning) or up the partition lattice (through successive merging). After the 
first step, a recursive algorithm avoids references to the initial data and 
transforms only its transforms. 

This section presents four different algorithms for clustering objects or 
variables. The algorithms are chosen for their distinctive features: successive 
partitioning versus successive merging, biordinal clustering versus multiordi­
nal clustering, data recursive versus distance recursive, monothetic versus 
polythetic, etc. The algorithms presented here do not exhaust all alternatives 
however. A researcher has many more options than are given here. 

A. The Johnson Algorithm 

The first example of a clustering algorithm is taken from Johnson (1967), 
who formalizes the two single-linkage clustering techniques previously dis­
cussed. Since both are distance-recursive merging techniques and proceed 
identically except for their clustering criteria, I shall describe only one here, 
the algorithm for diametric clustering. The Johnson algorithm is extremely 



290 KLAUS KRIPPENDORFF 

simple, speedy in execution, and therefore inexpensive to use, which might 
explain its widespread application. 

Given: Then X n matrix of distances (dij) = Ds at the initials= 0. 

Step 1 Search for the smallest distance, mine,-F(df.:F) in the 
(n - s) X (n - s) matrix D'. 

Step 2 Print or store on a history record: s + 1, E, F for which d'lF is 
minimum and merge all pairs of objects in E and F into G. 

Step 3 Compute a new ( n - s - I) X ( n - s - I) matrix of distances in 
D'+ 1 from D' by replacing all entries with references to E and F by 

d'+l - (d' d·') GI - max El> IF for all I "i' E, FinD' 

Step 4 Set s <- s + I, return the new D' to Step I unless either the 
smallest distance d~p 1, now d/;G, exceeds a specified limit, the number of 
remaining clusters n - s falls below a specified number, or any other 
terminating criterion is satisfied. 

Step 5 Print results and terminate. 

For an illustrative example, Johnson uses data obtained from a psycho­
acoustic study of 16 principle consonants which are listed here across Fig. 16. 
The numbers down the left-hand side are similarity values that were obtained 
in the study and are here associated with each merging as indicated. Appar­
ently the resulting clusters correspond to the distinctive features presumed by 
Miller and Nicely (1955) who provided these data. At the level of five clusters 
the 16 phonemes divide into a hierarchy, as depicted in Fig. 17. 

ptkf0sfbdgv"dz'3mn 

2.635 
2.234 XXX 
2.230 XXX 
2.123 XXX 
1.855 xxxxx 
1.683 xxxxx 
1.604 xxxxx 

XXX 
XXX 
XXX 

xxxxx 
xxxxx 

XXX 
XXX 
XXX 
XXX 
XXX 
XXX 
XXX 

XXX 
XXX 
XXX 
XXX XXX 

1.525 XXXXX XXXXX XXX XXXXX XXX 
l.l86 XXXXX XXXXX XXX XXXXXXX XXX 
1.119 XXXXX XXXXX XXXXX XXXXXXX XXX 
0.939 XXXXX XXXXXXX XXXXX XXXXXXX XXX 
0.422 XXXXXXXXXXXXX XXXXX XXXXXXX XXX 
0.302 XXXXXXXXXXXXX XXXXXXXXXXXXX XXX 
0.019 xxxxxxxxxxxxx xxxxxxxxxxxxxxx 
0.000 XXX XXXXX 

FIG. 16. Computer printable dendrogram for phoneme clusters (Johnson, 1967). 
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p I k f 8 sf 
unvoiced unvoiced 

stops fncat1ves 

l unvoiced j 
non-nasals 

b d g v Oz 3 

voiced voiced 

T''"~ ..... ., 
non-nasals 

L voiced 

mn 

voiced 
nasals 

FIG. 17. Typology for phonemes derived from clustering (Johnson, 1967). 

B. The CON COR Algorithm 

291 

The second example of a clustering algorithm is taken from Breiger, 
Boorman, and Arabie (1975). It is the only effective partitioning algorithm I 
know that is applicable to a wide variety of data. CONCOR is the acronym of 
"convergent correlation" which designates the iterative application of correla­
tions to yield stable indications of dependencies which are in turn used to 
partition a set of objects or variables into two parts. The use of correlations 
identifies the method as a biordinal partition technique. 

Given: The n X m matrix (xiJ = X with interval metric in each 
variable u. 

Step I Compute the nG X nG matrix of product-moment correlations 

1(rij)a = 1R/; for the initials = 0 and r = 0 where the initial set G is the set of 
all nG ~ n objects. 

Step 2 Compute the na X na matrix of product-moment correlations 
t+ 1(rij)a = 1+ 1R/; from all pairs i and} in 1R/; and iterate this step to create 
from oR2 = 0R/;, 1R/;, 2R/;, 3R/;, ... until all entries rij of wR~ approximate 
within a specified limit the value + I or - I. 

Step 3 Permute wR~ into the bipartite form: 

E F 

EEB 
F~ 

Step 4 Print or store on a history record: s + I, the partition of G into E 
and F, and decompose the original correlation matrix 0R2 into and store 
separately the two submatrices, the nE X nE matrix 0R2 and the np X nF 

matrix 0R$. 
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Step 5 Set s +--- s + 1, search for the largest remaining matrix 0Rl, and 
return that matrix as 0R~ to Step 2 unless either s exceeds a specified limit or 
the number nG of the largest cluster falls below a specified number. 

Step 6 Print results and terminate. 

The authors developed this algorithm for clustering a variety of sociometric 
data and profiles of either objects or variables between which correlations can 
be computed. This requires that all variables possess interval metric. There is 
no reason, however, to restrict the use of this algorithm to canonical forms of 
data and to variables with interval metrics. Since the principal feature of the 
algorithm is that correlations are computed iteratively, any matrix of dis­
tances or similarities with appropriate interval metric properties could be 
entered at Step I in place of 0R2. 

The authors have applied this algorithm to many sets of data and report 
that with n = 70 and the cutoff point for ru = .999, no more than II 
iterations are needed to approximate stability conditions. This keeps the 
required computational effort within practical limits. Apparently, while there 
are a few theoretical examples of a knife-edge character in which the iteration 
of correlations does not converge to the bipartite form, actual data that would 
lead to indecisions of this sort have not been encountered. 

The interpretation of the CONCOR clusters is difficult however. As the 
authors recognize, the procedure does not use measures of homogeneity or 
heterogeneity as decision criteria, and while it is easy to understand when 
correlations are positive within clusters and negative across, such an under­
standing is indeed difficult when one is concerned with correlations of 
correlations of correlations . . . that might be II times removed from the 
data. Nevertheless Breiger, Boorman, and Arabie have compared CONCOR 
results with a variety of results obtained from other clustering techniques and 
found them convincing. Its clusters seem to be very similar to those obtained 
by clustering techniques based on a connectedness criterion. 

C. The Strong Association Algorithm 

In the next example I shall attempt to illustrate how a very simple 
multiordinal clustering procedure works and also how the required decision 
criteria may be formulated recursively to keep computational efforts small. It 
will be recalled that the computational effort of multiordinal clustering is 
generally magnified by the fact that such techniques require constant interac­
tion between the procedure and data in their canonical form. Since clustering, 
to be practical, must proceed recursively, measures that keep account of the 
increasing heterogeneity in the emerging clusters should be defined recur­
sively as well, else the procedure would have to return to the original data at 
each step and thereby annul the computational advantage of recursion. 

The algorithm for strong association of 2m data (Krippendorff, 1975) was 
developed in this way. It is applicable to binary attribute data where the 
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attributes to be shared within clusters are assigned the value X;
11 

= 1 and the 
absence of this attribute the value X;u ~ 0. In terms of the 2 X 2 contingency 
matrix defined in Section V, Krippendorff's generalization of Benini's 
association coefficient, which is converted here to a suitable heterogeneity 
measure by diJ = I - siJ. is 

where, in terms of the canonical form of data, e; = m -
12.';;= 1x;u is the 

proportion of attributes present in object i, aEF = m-
1L'::= 1II;EE,Fxiu is the 

proportion of attributes shared within E and F, min;EE, F(e;) is the largest 
possible proportion of attributes that could be shared within E and F, and 
II;EE, Fe; is tbe expected proportion of attributes that would be shared if their 
co-occurrence were due to chance. 

It turns out, all these components of the measure can be defined in terms of 
one matrix and two quantities for each cluster at the initial s = 0 and at any 
s + I from s. At s = 0 and from the initial n X m matrix X 0 with entries X;~.~. 
the maximum proportion of attributes in cluster { i), containing just one 
member, is 

and so is the initial probability of attributes in that one-object cluster: 

l rn 

P{;} = m u~l X;u = e; 

At each prospective merger of two clusters E and F into G, these quantities 
change as follows: 

p}/ 1 = min( p.1;, p,;), 

And the (n- s) X m matrix X' becomes the (n- s- I) X m matrix x•+l 
by 

So that the measure of heterogeneity for merging E and F into G becomes a 
function of values solely available at the preceding iteration: 

This recursive formulation provides the key to the following surprisingly 
efficient algorithm: 

Given: The n X m matrix (x;~) = xs at s = 0 with the presence of an 
attribute denoted by X;u ~ I and its absence by X;u ~ 0. 
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Step 1 F . 1 2 t s - s - -l"'m or t = , , ... , n se f.!.{i} - P(i)- m ..:::..u=lxiu· 

Step 2 Compute the (n - s) X (n - s) distauce matrix (df.:F) = D' from 
the (n - s) X m matrix xs by 

. ( , ') -lrrm , , ds = min P.E• ILF - m u=lxEuxFu 
EF · ( , ') , , nun fLD flF - PEPF 

Step 3 Search for min( d:F) in D' and for this smallest distance, print or 
store on a history record: s + 1, min(df.:F), E, F, the newly assigned label G, 
and D' if required. 

Step 4 Compute those recursive accounts that are affected by the merger 
of E and F into G: 

p.~+ 1 = min( p.~, p.;), s<-s+l 

Step 5 Return the reduced (n - s) X m matrix X' to Step 2 unless either 
max( dJ6 ) exceeds a specified value or any other terminating criterion is 
satisfied. 

Step 6 Print result and terminate. 

The example given in Table VII starts with an initial data matrix X 0 

describing 10 objects in terms of 16 variables. When the distribution of 
attributes are examined in this matrix, one may discover that the attributes of 
object j are fully contained in the attributes of the ith object, yielding, as it 
should, a distance of dJ = 0. Since monothetic clusters are represented by the 
attributes its objects share, the cluster (i,j} then takes on the attributes i and 
j have in common, here those of}, which may be seen in the subsequent 
transform of the data matrix. Also objects e and f show the strongest possible 
association which d,~ = 0 indicates. At the third iteration it is the objects g 
and h that are found least different. In terms of the 2 X 2 contingency table, 
the distance would be computed as follows: 

0 

h 

g 
0 1 
6 2 

16 16 

1 1 
16 16 

9 
16 

8 
16 

1 

•(8 ') 1 ffilll 16• 16 -16 

•(8 9) 89 =·29 
rmn 16 • 16 -1616 

dgh of D 3 then appears in D 4s diagonal as associated with the cluster ( g, h}. 
So the process continues as indicated in Fig. 18. 
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TABLE VII 

HISTORY OF TRANSFORMS OF DATA IN CANONICAL FORM, EXAMPLE 

a0111011101111010 .00 
b1011110101101001 .96 .00 
c 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 l.l6 .64 .00 ' - 1 
d 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 .71 .89 !.07 .00 
e0011111111100110 .83 .96 .87 .00 .00 
j 0 1 I 0 0 1 1 0 0 1 I 1 0 0 1 1 .36 !.19 !.42 .76 !.07 .00 
g 1 1 0 0 1 1 1 0 0 0 I 1 0 0 0 1 1.20 l.OO !.60 !.14 !.60 .57 .00 
h 1 1 0 0 1 0 1 0 0 0 1 1 I 1 0 1 !.42 l.l9 !.42 !.27 !.78 !.02 .29 .00 
i 0 1 0 1 1 1 I 0 1 0 0 1 0 1 1 I 1.28 !.60 1.28 l.l9 .96 .89 .67 .89 .00 

295 

j 0 I 0 I 1 0 1 0 0 0 0 1 0 1 I 0 .91 !.91 !.83 .98 .91 .98 .86 .65 .00 .00 

.00 

.96 .00 
a 0 1 1 1 0 1 I 1 0 1 1 1 1 0 1 0 
b1011110101101001 
c1011011111001101 

de0010111101100110 
!0110011001110011 
g1100111000110001 
h I 1 0 0 1 0 1 0 0 0 1 1 1 I 0 1 

l.l6 1.00 .00 s = 3 
.42 .68 .63 ,00 
.36 l.l9 !.42 .54 .oo 

!.20 l.OO !.60 .82 .57 .00 
!.42 1.19 !.42 .91 !.02 .29 .00 

ij 0 1 0 1 I 0 1 0 0 0 0 I 0 1 1 0 .50 1.17 l.OO .56 .66 .62 .44 .00 

a0111011101111010 .00 
b1011110101101001 .96 .00 
c I 0 1 1 0 I I 1 I 1 0 0 1 1 0 1 1.16 .64 .00 

de 0 0 I 0 I I 1 1 0 1 I 0 0 1 1 0 .42 .68 .63 .00 
!0110011001110011 

ghll00101000110001 
ij 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 

af 0 1 1 0 0 I 1 0 0 1 1 I 0 0 1 0 
bl011110101101001 

.36 1.19 !.42 .54 .00 

.82 '77 !.02 .80 .55 .29 

.50 !.17 l.OO .56 .66 .52 .00 

.36 

.97 .00 

s=4 

c 1 0 1 1 0 1 1 I 1 1 0 0 1 1 0 I !.05 .64 .00 ' - 5 
de 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 .45 .68 .63 .00 
gh I I 0 0 I 0 I 0 0 0 I 1 0 0 0 I .64 .77 !.02 .80 .29 
ij 0 I 0 1 1 0 1 0 0 0 0 I 0 1 1 0 .56 1.17 l.OO .56 .52 .00 

adejO 0 10 0 1 I 0 01 I 0 0 0 1 0 
b1011110101101001 
cl011011111001101 

gh 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 
ij 0 1 0 1 I 0 1 0 0 0 0 I 0 1 1 0 

adejOO I 0011001100010 
b 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 
c1011011111001101 

ghij 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 

adejOO I 0011001100010 
be I 0 1 1 0 1 0 I 0 1 0 0 1 0 0 1 

ghij 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 

.45 

.67 .00 

.68 .64 .00 

.92 '77 !.02 .29 

.79 1.17 !.00 .52 .00 

.45 

.67 .00 

.68 .64 .00 

.88 .96 .98 .52 

.45 

.75 .64 

.88 !.08 .52 

abcdej 0 0 1 0 0 I 0 0 0 1 0 0 0 0 0 0 .75 
ghij 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 l.Ol .52 

s=6 

s=7 

s = 8 

s=9 
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FIG. 18. Dendrogram for strong association clustering, an example. 

The researcher now has to decide which partition is the most meaningful 
one, that is, at what level clusters are most convincingly interpretable. This is 
in part an intuitive decision but it can be strengthened by statistical consider­
ations. In this example tbe null hypothesis (that the sharing of attributes 
within clusters is due to chance) can be rejected on significance levels 
indicated in the dendrogram at each point of merger. One can see that the 
significance level drops sharply after the sixth step and one might on these 
grounds be led to accept the partition of the ten objects into four clusters as 
optimal. However, the attributes then still overlap. A perfect differentiation 
between clusters is achieved only before the last step, at a point at which the 
two remaining clusters share no attributes anymore, with 7 out of the 16 
variables providing the basis of the differentiation. All others dropped out. 

D. The Multivariate Classification Algoritbm 

This example presents a clustering technique that does not cluster objects 
for their own sake, but rather uses them as a vehicle for simplifying their 
multivariate description. The description of these objects is a qualitative one; 
i.e., variables have the nominal metric throughout. Given a many-dimensional 
distribution of objects, the task of the clustering procedure is to reduce the 
representational space of this distribution not in dimensionality but in size 
without or with only a small amount of losses in structure within this 
space. Clusters then emerge not in one variable (e.g., the set of objects) and in 
terms of all other variables, rather, clusters emerge in all variables simulta­
neously, each in terms of all others. What is thereby taken account of is that 
the clustering within one variable may interact with the clustering in another 
variable and that higher-order dependencies within data are allowed to enter 
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such interactions. The most distinctive feature of this algorithm is that it 
optimizes the representation of multiordinal relations in data by the simulta­
neous clustering of values within many variables. 

I am presenting here a version of the algorithm that is a considerable 
simplification of the one initially published (Krippendorff, 1974) and 
although multivariate classification provides several choices of heterogeneity 
measures, only the information theoretical measure of the amount of loss in 
structure will be used in the example. Since the procedure is a multiordinal 
one, and hence proceeds data recursively, the recursive formulation of loss 
functions is a key factor to the algorithm's practicality. 

The algorithm yields several (as many as there are variables) hierarchical 
clustering schemes for the qualities in terms of which objects are described. 

Given: The n X m matrix ( x;) = X, all variables with nominal metric 
(unordered values). 

Step I Reduce then X m matrix X to an (n - s) X m matrix X' contain­
ing n - s unique objects i to each of which is assigned the frequency nur 
Compute frequencies nx = L7:::fnx_ for each value x occurring in variable u. 
(From here on X' serves as a mat~ix of indices only.) Set d(nuJ = 0 for all 
i = 1, 2, ... , n - s. 

Step 2 With the function 

{ 

0 iff a = b or na = 0 or nb = 0, 

Loss( a, b) = ( na + nb) log2 ( na + nb) - na 1og2 na - nb 1og2 nb 

otherwise 

with nx denoting the frequency of the value xEu within variable u in terms of 
which :;bjects in cluster E are characterized, and with the m-valued descrip­
tion of each object divided into two parts, Ec and Kc- so that n<EcKc> denotes 
the number of objects that share values X;c within the set C of variables with 
objects in E but differ with respect to the remaining variables C, now then 
compute the new (n - s) X (n - s) distance matrix D', replacing missing 
distances only, by 

where 

and where the sum over C refers to all subsets of variables in C whose values 
differ between E and F. 

Step 3 Search for minE, p(d~F) inns and print or store on a history record 
s + l, D' if desired, minE. F(d,;F), and for this minimum: E, F, the newly 
assigned label G, and for all values xEu =F- Xp11 : xEu• xFu• Xcu• u. 
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Step 4 Merge E and F into G by modifying for all XEu oF xFu and u: 

for all clusters whose objects share some value x with values in Kc of E and 
F: 

and 

dGG = dEF• dEl = d1F = 0 for all I oF E, F 

recompute s so that the number of unique objects or clusters is n - s. 

Step 5 Return altered accounts to Step 2 unless either max(dGG) exceeds a 
specified limit, the number of clusters n - s falls below a specified number, 
or any other terminating criterion is satisfied. 

Step 6 Print results and terminate. 

Note that dEF measures the amount of structure lost by merging E and F. 
Within the three dimensions u, v, and w, if xEu = xFu are the values E and F 
share, the distance between E and F expresses the difference it would make to 
the total amount of structure in the data when (with K denoting clusters other 
thanE or F) all triples (xKu• XKv• XEw) and (xKu• XKv• xFw), (xKu• XEv• XKw) 

and (xKu• XFv• XKw>• and (XKu• XEv> XEw> and <xKu> XFv• XFw> WOUld nO 
longer be differentiated. The sum over C then assures that all clusters are 
merged whose objects share some value with E or Fin v, in w, and in both 
vw. What dEF assesses is the effect of collapsing not only the point E and F 
but also all planes on which these points are located (see Fig. 19). 

FIG. 19. A multivariate clustering step in three-dimensional space. 
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The implementation of the previously published version of the multivariate 
classification algorithm used an extremely wasteful form of storage (objects 
occupied cells in an m-dimensional array) and more complicated accounting 
devices that made the procedure reach computational limits before practical 
results could be obtained. The preceding algorithm is currently under in­
vestigation. 

What multivariate classification accomplishes might best be illustrated 
graphically in Fig. 20. Suppose a three-valued characterization of a sample of 
objects finds all objects distributed as in the left space. There is a lot of 
redundancy in the values used for describing these objects and there is also 
some structure manifest in the distribution. Multivariate classification would 
now attempt to eliminate this redundancy by grouping variables in such a 
way that the remaining space contains as much of the initial structure as 
possible. In the illustration on the right of the original distribution no 
structure is lost. The algorithm boiled the initial representation down to its 
essentials. 

In another, somewhat more artificial example, consider the schematic 
figure of a man as in Fig. 21. The clustering of values in the horizontal 
dimension first eliminates the duplication of columns, here due to symmetry, 
and yields the figure to the right of the original, showing no loss. The 
clustering of values in vertical dimension eliminates all duplication of rows 
and yields the figure below the original, showing no loss either. Clustering in 
both dimensions yields the resultant figure below and right of the original, 
also showing no loss in structure. (At this point it might be said that the 
example is misleading insofar as the algorithm does not recognize proximities 
between rows and columns which are important in Gestalt perception.) The 
original figure can be reconstructed from the figure below and right of the 
original by inverse application of the hierarchical clustering that emerged in 
each variable. 

redundant relations 

(a) 

the same relations without 
redundancy 

(b) 

Fto. 20. Simplification of a distribution by multivariate classification. (a) Redundant 
relations; (b) the same relations without redundancy (Krippendorff, 1974). 
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FIG. 21. Simplification of a figure by multivariate classification. 

Further simplification of the figure results in losses which are indicated 
here by shading. When such losses occur they cannot necessarily be evaluated 
from either dimension in isolation. Losses in structure are losses in interaction 
effects and thus require that losses be inspected simultaneously for all 
variables involved. Continuing the classification one might reach the figure in 
the extreme lower right comer. The two final steps would wipe out the 
structure in this simple figure. Where to stop the clustering is a question of 
applying suitable termination criteria on the process. 

It should be mentioned that a variety of clustering algorithms appear in 
Hartigan (1975) whose work was published after this was substantially 
completed. 

X. VALIDATION AND VINDICATION 

Clustering procedures compute clusters, often regardless of how strong the 
patterns permeate the data these clusters aim to represent. In any distribution 
of objects in space, even in an entirely random one, some objects are bound 
to be closer to each other or more similar than are others. Even when 
neighboring objects are approximately equidistant, the slightest inequality can 
provide the kick that starts a clustering sequence rolling. Testing for the 
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statistical significance of the clusters that do emerge in the process therefore 
is an important safeguard against attempts to interpret the results of a 
clustering process when an underlying pattern is spurious or does not exist in 
fact. The minimum requirement is to test one of two null hypotheses: that the 
co-occurring qualities shared within a cluster are due to chance or that the 
objects of different clusters are drawn from the same population. 

But evidence for the statistical significance of clusters should be seen 
only as a prerequisite for entering into validity considerations. Only when 
null hypotheses can be rejected with confidence might one find empirically 
meaningful interpretations of clustering results. When clustering turns out to 
be due to chance or an artifact of the procedure, their potential validity may 
be soundly questioned. 

Although I am quite aware of existing typologies for kinds of validation, Jet 
me focus here on only two types that Feigl (1952) termed validation and 
vindication. In the context of this application, validation is a mode of 
justification according to which the results of a particular analytical proce­
dure are justified by showing the structure of that procedure to be derivable 
from general principles or theories that are accepted quite independently of 
the procedure to be validated, while vindication is a mode of justification that 
renders a particular analytical procedure acceptable on the grounds that its 
results lead to accurate predictions (to a degree better than chance) regardless 
of the details of the procedure. Tbe rules of deduction and induction are 
essential to validation while the relation between means and particular ends 
provide the basis for vindication. In focusing on these two kinds of justifica­
tion, I take for granted that the procedure is reliable, that successive cluster­
ing is order invariant, that distances and homogeneity measures satisfy 
required conditions, etc., aU of which can be justified on logical grounds. I 
also take for granted that data are relevant in the sense considered earlier, for 
it is inconceivable that valid clusters can be obtained from irrelevant data. 

Two not necessarily separate questions pertain to the validation of cluster­
ing procedures. First, exactly what features of objects are characterized when 
data enter the procedure in their derived form as distance or similarity 
measures, and are these features and the omission of others justifiable on 
theoretical or on empirical grounds? And second, exactly what does a 
clustering procedure optimize; which clustering criteria does it employ; and 
how do the measures that characterize the emerging clusters relate to a theory 
about how objects become associated, group themselves, or are clustered in 
reality? 

Regarding the first question, it should be noted that there are great 
differences between how product-moment correlations, Euclidean distances, 
or information losses conceptualize and quantitatively assess dissimilarities 
between objects. For example, the product-moment correlation assesses the 
degree to which two objects are linearly related. A positive riJ indicates that 
the values of two objects increase in the same direction, while a negative riJ 
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indicates such an increase to be in the opposite direction. But riJ = + 1 does 
not imply i = j. The underlying concept of resemblance is a very peculiar 
one, and the researcher who wishes to cluster on the basis of a correlation 
matrix must establish that available knowledge about the nature of the 
objects would indeed lead to this conception. Product-moment correlations 
assume that objects i and j are related by 0X;u + bj = aixiu + b1 for all 
variables u and that similarity is independent of the constants a and b. 
Obviously this does not conform to intuition, which suggests that two objects 
are maximally similar only when i = ), that is, x1u = x1u for all of the u. 
Pearson's intraclass correlation coefficient satisfies this condition, the prod­
uct-moment coefficient does not. 

An examination of whether the formal properties of the underlying dis­
tance or similarity measures are defensible ought to be made before any 
clustering for a particular purpose is undertaken. Failure to provide such 
validating evidence makes it otherwise difficult to interpret findings in the 
light of a given theory. 

One common way of bypassing the validation of distances is to input data 
in the form of subjective difference or similarity ratings obtained from a 
sample of subjects. If the researcher is indeed interested in clustering subjec­
tive difference or similarity judgments, two problems tend to arise: One is the 
variance that such judgments invariably entail and the other is that such 
judgments ought to satisfy the formal conditions of a distance. 

Answers to the second question pertaining to the validation of clustering 
criteria pose even greater problems. To decide on the acceptability of a 
clustering criterion, the researcher must first decide on the properties his 
clusters are to represent. Given such a designation of purpose the researcher 
must then examine the principles underlying the formation of the groupings 
in reality that a clustering attempts to approximate or predict. In order to 
complete the validation, the researcher must finally demonstrate consistency 
between the decision criteria, difference or heterogeneity measures employed 
in the clustering procedure on the one side and knowledge about the natural 
processes on the other. This knowledge may take the form of an established 
theory, of hard empirical evidence, or in its weakest form, of grounded 
intuition. Wherever such knowledge comes from, validation may rely on it. 

For example, if the resulting clusters are expected to predict how individu­
als form cliques or other social forms of organization, then knowledge about 
the way such social groupings emerge is indispensable in the validation of a 
procedure. The knowledge that cliques and social groups possess synergetic­
organizational-Gestalt qualities and that their formation cannot be predicted 
from information on the interaction within pairs of individuals would render 
biordinal techniques invalid from the start (unless the effect were insignifi­
cantly small). To be valid, a multiordinal technique would then have to 
replicate the social process involved. 

Another crucial option is whether clusters are formed on the basis of 
differences between clusters or heterogeneities within. The chainlike clusters 
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resulting from the connectedness method have already been contrasted with 
the compactness of the diameter method. The knowledge that all similarities 
or distances within a cluster will determine its boundaries with other clusters 
lends validity to a minimum heterogeneity criterion. In contrast, the knowl­
edge that significant similarities and distances follow a hierarchical pattern, 
representing differences between clusters while neglecting those within, would 
lend validity to a minimum difference criterion. A hypothetical example of a 
situation in which a difference measure might be superior to a heterogeneity 
measure would be a certain form of communication within a social organiza­
tion in which communication occurs primarily on the same level of the 
organizational hierarchy and between minimally different parts of the organiza­
tion and is secondary or absent across different levels of such a hierarchy and 
within these parts. Such an implicit hierarchical conception of difference 
would be inappropriate when an organization is formed on the basis that 
members share certain properties, that communication within is larger or 
more important than communication across the parts of an organization, etc. 

It is often more difficult to apply available evidence about natural group­
ings on a given clustering technique than to formalize such evidence into a 
computable clustering criterion. The development of the strong association 
technique by Krippendorff (1975) is a case in point. It started with a problem 
in content analysis where the development of ernie or indigenous as opposed 
to etic or imposed categories is a common problem. The task was to develop a 
reliable coding instrument for advertising appeals in categories that are close 
to those used by television viewers. For this purpose Dziurzynski (1978) asked 
subjects to group about 300 appeals culled from commercials into categories 
that seemed most meaningful to them. In observing the subject's justifications 
one often finds some like this: "If i and} are together, then k must be in the 
same category, but if h and i are in the same category then k cannot join 
them." Those are typical multiordinal arguments. The task was to form 
clusters among aspects based on agreements among subjects regarding the 
grouping. The formalization of the notion of agreement, which ought to be 
maximum when groups are either identical or when one is included in the 
other, leads to an association coefficient which has been discussed in the 
preceding. The correspondence was taken as validating evidence. 

To summarize, validation asks whether the way information is processed 
within a clustering procedure is consistent with the way such information 
would be processed in the real world, while vindication asks the a posteriori 
question of whether the results of a clustering procedure correspond with 
independently obtained evidence about clusters. 

The most obvious form of vindication is to establish correspondence be­
tween the results of a clustering procedure and the results obtained by other 
methods (including by independent observation). Since clusters obtained by 
other methods must always be available for such comparisons, vindication 
primarily yields information about the efficiency or simplicity and only 
secondarily about the adequacy of the underlying structure. 
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So, when developing the partitioning algorithm CONCOR and probably 
because correlations of correlations of . . . is a concept that is far removed 
from penetrations by intuition, Breiger et a/. (1975) compared their results 
with those obtained by a variety of other clustering techniques. The finding 
that CONCOR results approximate those obtained by the connectedness 
method makes the procedure vindicatively acceptable but only to the extent 
the results of this connectedness method are already known to be valid in a 
particular application. 

In another example of vindication, we asked subjects to group sets of words 
according to perceived semantic similarities. Since the multivariate classifica­
tion algorithm was developed by formalizing certain theories of contextual 
meanings, if the theories and their algorithmic implementation are correct, 
then computational results and subjective clusters are expected to be in high 
agreement. In this case we were fortunate to be able to vary certain computa­
tional parameters and found, to our surprise, that the weakest clustering 
criterion resulted in the best fits. This may serve as a warning against the 
assumption that the validity of clustering procedures increases with their 
complexity. 

In vindication experiments, the variability of a clustering technique is a 
deceptive virtue, however, for it is always possible to find a computational 
approximation to an independently obtained set of clusters. This possibility is 
exemplified in work done by Lance and Williams (1967) who showed with 
Fig. 22 how changes in value of one variable of their clustering criterion 
causes extremely different dendrograms to emerge from the same data. The 
danger is that once one considers oneself free to play with the clustering 
criteria, one can ''prove" any thing, and since the computation then merely 
supports what is already known, the proof given is "empty." 

Vindication allows all conceivable clustering options to be tested against 
empirical evidence, but its aim is to find that option which produces con­
sistently high agreements within the empirical domain chosen. A single 
"convincing match" means very little. Carefully used, vindication provides a 
method for generalizing or for confining the success of a particular clustering 
procedure. 

The researcher who does not have independently obtained clusters at his 
disposal might be led to believe that the computational results "make sense" 
or are "acceptable on intuitive grounds." But a better way of rendering such 
results plausible is to get into the very procedure that produced them and to 
show that the procedure is, at least ideally, a homomorphic representation of 
the processes known to explain the phenomena under consideration. All users 
of clustering techniques should be expected to make at least some effort at 
validation when publishing their results1 

1Referring to the comments on this section by Tukey (see Chapter 16, Section B), I disagree 
that validation is impossible or dangerous but I am perfectly happy with his words: "All users of 
clustering techniques should be expected to make at least some effort (a) to explain why they 
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~=+0.50 

~=-0.25 ~=-0.50 ~=-1.00 

Fro. 22. Results of applying six different clustering criteria on the same objects (Lance & 
Williams, 1967, with permission of British Computer Society). 

XI. SUMMARY-CONCLUSION 

This chapter explores clustering as a multivariate technique in communica­
tion research and does so with several kinds of users in mind. 

There is, first, the researcher who wants to make use of data stemming 
from clustering, either for a secondary analysis by different techniques, for 
supporting practical decisions, or simply, to understand published findings. If 
he seeks a level of understanding beyond the Presentation of Results he will 
want to acquaint himself with Validation and Vindication, needs to be able to 

chose the methods used and (b) to make as clear as is reasonable the tentative character of 
clustering results in general and the degree to which this applies to those they describe." 

This section is merely intended to put into focus the fundamental relationship between the 
description of objects, the process of clustering and its results (all of which are very much guided 
by the researcher's choices), and the nature of the objects and the processes by which objects 
form groups, cliques, classes, lumps, associations, or Gestalts (which are not so much influenced 
by if not independent of the way they are analyzed). No multivariate technique can avoid some 
degree of artificiality and its results are, hence, always tentative to some extent. The task of 
validating an analytic technique is to justify and to explain the use of a procedure not in terms of 
aesthetics, convenience, or habit but in reference to knowledge about reality, however hypotheti­
cal this might be. 
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judge the Relevance and Ordinality of Data from which results are obtained 
and read particularly the section on Properties of Emerging Clusters, at least 
where it pertains to the clustering procedure actually used, He may then be 
able to judge whether given clustering results may be interpretable in view of 
his particular problem. 

There is, second, the researcher who seeks to apply one of the available 
clustering procedures to his data, with the aim of data simplification, in 
search for a typology or to group or lump together phenomena that share 
certain characteristics. Such a user may need to know the form of 
data amenable to clustering: Canonical Form of Data and Derived Form of 
Data. He may want to become familiar with the Presentation of Results. And, 
after familiarizing himself with the basic ideas of Validation and Vindication, 
he may want to read all that needs to be known to understand what available 
clustering procedures do: Properties of Emerging Clusters, Ordinality of 
Data, Clustering Algorithms, etc. He may then be able to make intelligent 
choices among available procedures or find that the tasks he set for himself 
cannot be accomplished by Clustering. 

There is, third, the researcher who wants to design his own special purpose 
clustering technique. Whether he is a computer programmer himself or 
delegates the writing of such a procedure to someone else, he ought to 
consider the warnings in Goals and Computational Efforts seriously before 
conceptualizing a Clustering Algorithm, taking most of the sections of this 
chapter and references to additional literature into account. 

The chapter will be useful, fourth, to the computer prograrmner who will 
have to converse with empirically oriented social scientists when helping him 
either to implement, modify, or to develop anew suitable clustering proce­
dures. Much too often have I found that differences in technical discourse 
prevent the full utilization of available analytical or intellectual resources. 
Computer programmers may be keenly aware of Goals and Computational 
Efforts and the nature of Clustering Algorithms but often lack understanding 
of the philosophical issues raised in Validation and Vindication and the 
special demands made by available social theory on the Properties of Emerg­
ing Clusters. 

The chapter is on clustering. But several important issues point beyond this 
(here welcome) restriction, for example, the issue of validating the logic of an 
analytical procedure as opposed to merely vindicating its result or the issue of 
the ordinality in data and the ordinality a procedure can take. It is amazing 
that most current multivariate techniques are biordinal in structure and thus 
fail to deliver what their label seems to suggest. So far we have always 
thought in categories: variance analysis, multidimensional scaling, clustering, 
etc., each had its own purpose and assumptions. Ultimately these categorial 
distinctions need to be overcome by tying the processes they follow more 
directly to those of the empirical world. These issues are of concern, finally, 
to the methodologist and epistemologist of the social sciences. 
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