
Counter-Example Guided Predicate Abstraction

of Hybrid Systems?

Rajeev Alur1, Thao Dang2, and Franjo Ivan�ci�c1

1 University of Pennsylvania
2 VERIMAG

Abstract. Predicate abstraction has emerged to be a powerful tech-
nique for extracting �nite-state models from in�nite-state systems, and
has been recently shown to enhance the e�ectiveness of the reachability
computation techniques for hybrid systems. Given a hybrid system with
linear dynamics and a set of linear predicates, the veri�er performs an
on-the-
y search of the �nite discrete quotient whose states correspond
to the truth assignments to the input predicates. The success of this
approach depends on the choice of the predicates used for abstraction.
In this paper, we focus on identifying these predicates automatically by
analyzing spurious counter-examples generated by the search in the ab-
stract state-space. We present the basic techniques for discovering new
predicates that will rule out closely related spurious counter-examples,
optimizations of these techniques, implementation of these in the veri�-
cation tool, and case studies demonstrating the promise of the approach.

1 Introduction

Inspired by the success of model checking in hardware veri�cation and proto-
col analysis [12, 20], there has been increasing research on developing tools for
automated veri�cation of hybrid (mixed discrete-continuous) models of embed-
ded controllers [1, 4, 6, 9, 16, 19, 22]. Model checking requires the computation of
the set of reachable states of a model, and in presence of continuous dynam-
ics, this is typically undecidable. Consequently, contemporary tools for model
checking of hybrid systems, such as CheckMate[9] and d/dt[6], approximate
the set of reachable states by polyhedra. It has been shown that e�ectiveness of
the reachability computation for hybrid systems can be enhanced using predi-
cate abstraction [3]. Predicate abstraction is a powerful technique for extracting
�nite-state models from complex, potentially in�nite-state, discrete systems (see,
for instance, [14, 23]), and tools such as Bandera [13], SLAM [7], and Feaver [21]
have used it for analysis of C or Java programs. The input to our veri�cation
tool consists of the concrete system modeled by a hybrid automaton, the safety
property to be veri�ed, and a �nite set of predicates over system variables to

? This research was supported in part by ARO URI award DAAD19-01-1-0473,
DARPA Mobies award F33615-00-C-1707, NSF award ITR/SY 0121431, and Eu-
ropean IST project CC (Computation and Control).



be used for abstraction. For the sake of eÆciency, we require that all invariants,
guards, and discrete updates of the hybrid automaton are speci�ed by linear ex-
pressions, the continuous dynamics is linear, possibly with bounded input, and
the property as well as the abstraction predicates are linear. An abstract state is
a valid combination of truth values to the predicates, and thus, corresponds to
a polyhedral set of the concrete state-space. The veri�er performs an on-the-
y
search of the abstract system by symbolic manipulation of polyhedra.

The core of the veri�er is the computation of the transitions between ab-
stract states that capture both discrete and continuous dynamics of the original
system. Computing discrete successors is relatively straightforward, and involves
computing weakest preconditions, and checking non-emptiness of intersection of
polyhedral sets. For computing continuous successors of an abstract state A, we
use a strategy inspired by the techniques used in CheckMate and d/dt. How-
ever, while tools such as d/dt are designed to compute a \good" approximation
of the continuous successors of A, we are interested in checking if this set in-
tersects with a new abstract state permitting many optimizations. Postulating
the veri�cation problem for hybrid systems as a search problem in the abstract
system has many bene�ts compared to the traditional approach of computing
approximations of reachable sets, and our experiments indicate signi�cant im-
provements in time and space requirements compared to a tool such as d/dt.

The success of our scheme crucially depends on the choice of the predicates
used for abstraction. In this paper, we focus on identifying such predicates au-
tomatically by analyzing spurious counter-examples generated by the search in
the abstract state-space. Counter-example guided re�nement of abstractions has
been used in multiple contexts before, for instance, to identify the relevant timing
constraints in veri�cation of timed automata [5], to identify the relevant boolean
predicates in veri�cation of C programs [7], and to identify the relevant variables
in symbolic model checking [11]. We present the basic techniques for analyzing
counter-examples, techniques for discovering new predicates that will rule out
spurious counter-examples, optimizations of these techniques, implementation of
these in our veri�er, and case studies demonstrating the promise of the approach.
Counter-example guided re�nement of abstractions for hybrid systems is being
independently explored by the hybrid systems group at CMU [10].

The abstract counter-example consists of a sequence of abstract states lead-
ing from an initial state to a state violating the property. The analysis problem is
to check if the corresponding sequence can be traversed in the concrete system.
We perform a forward search from the initial abstract state following the given
counter-example. The analysis relies on techniques for polyhedral approxima-
tions of the reachable sets under continuous dynamics. We also implemented a
local test that checks for feasibility of pairwise transitions, and this proves to be
e�ective in many cases. If the counter-example is found to be infeasible, then we
wish to identify new predicates that would rule out this sequence in the re�ned
abstract space. This reduces to the problem of �nding predicates that separate
two sets of polyhedra. We present a greedy strategy for identifying such predi-
cates. After discovering new predicates, we include these to the set of predicates



used before, and rerun the search in the re�ned abstract state-space. We demon-
strate the feasibility using three case studies. The �rst one involves veri�cation
of a parametric version of Fischer's protocol. The second one involves analysis
of a thermostat model, and the third analyzes a model of an adaptive cruise
controller. In each of these cases, we show how counter-example analysis can be
e�ective in discovering the predicates that are needed for establishing safety.

2 Predicate Abstraction for Linear Hybrid Systems

In this section, we brie
y recap the de�nitions of predicate abstraction for linear
hybrid systems and the search strategy in the abstract space as outlined in [3].

2.1 Mathematical Model

We denote the set of all n-dimensional linear expressions l : Rn ! R with �n

and the set of all n-dimensional linear predicates � : Rn ! B , where B := f0; 1g,
with Ln. A linear predicate is of the form �(x) :=

Pn
i=1 aixi + an+1 � 0;

where �2 f�; >g and 8i 2 f1; : : : ; n + 1g : ai 2 R. The set of �nite sets
of n-dimensional linear predicates is denoted by Cn, where an element of Cn
represents the conjunction of its elements.

De�nition 1 (Linear Hybrid System). An n-dimensional linear hybrid
system is a tuple H = (X ; L;X0; I; f; T ) with the following components:

{ X � R
n is a convex polyhedron representing the continuous state-space.

{ L is a �nite set of locations. The state-space of H is X = L� X . Each

state thus has the form (l; x), where l 2 L is the discrete part of the state,

and x 2 X is the continuous part.

{ X0 � X is the set of initial states. It is assumed that for all locations l 2 L,

the set fx 2 X j (l; x) 2 X0g is a convex polyhedron.

{ I : L! Cn assigns to each location l 2 L a �nite set of linear predicates I(l)
de�ning the invariant conditions that constrain the value of the continuous

part of the state while the discrete location is l. The hybrid automaton can

only stay in location l as long as the continuous part of the state x satis�es

I(l), i.e. 8� 2 I(l) : �(x) = 1. We write Il for the invariant set of location

l, that is the set of all points x satisfying all predicates in I(l).
{ f : L ! (Rn ! R

n ) assigns to each location l 2 L a continuous vector
�eld f(l) on x. While at location l the evolution of the continuous variable is

governed by the di�erential equation _x = f(l)(x). We restrict our attention to

hybrid automata with linear continuous dynamics, that is, for every location

l 2 L, the vector �eld f(l) is linear, i.e. f(l)(x) = Alx where Al is an n� n

matrix. The analysis can also be applied to systems having linear continuous

dynamics with uncertain, bounded input of the form _x = Alx+Blu.

{ T � L � L � Cn � (�n)
n is a relation capturing discrete transition jumps

between two discrete locations. A transition (l; l0; g; r) 2 T consists of an

initial location l, a destination location l0, a set of guard constraints g and



a linear reset mapping r. From a state (l; x) where all predicates in g are

satis�ed the hybrid automaton can jump to location l0 at which the continuous

variable x is reset to a new value r(x). We write Gt � Il for the guard set of

a transition t = (l; l0; g; r) 2 T which is the set of points satisfying all linear

predicates of g and the invariant of the location l.

2.2 Transition System Semantics

We de�ne the semantics of a hybrid automaton by formalizing its underlying
transition system. For simplicity we consider the system _x = Alx, and we denote
the 
ow of this system with �l(x; t) = eAltx. The underlying transition system
of H is TH = fX;!; X0g. The state-space of the transition system is the state-
space of H , i.e. X = L�X . The transition relation!� X�X between states of
the transition system is de�ned as the union of two relations!C ;!D� X �X .
The relation !C describes transitions due to continuous 
ows, whereas !D

describes transitions due to discrete jumps.

(l; x)!C (l; y) i� 9t 2 R�0 : �l(x; t) = y ^ 8t0 2 [0; t] : �l(x; t
0) 2 Il:

(l; x)!D (l0; y) i� 9(l; l0; g; r) 2 T : x 2 Gt ^ y = r(x) ^ y 2 Il0 :

2.3 Discrete Abstraction

We de�ne a discrete abstraction of the hybrid system H = (X ; L;X0; I; f; T )
with respect to a given k-dimensional vector of n-dimensional linear predicates
� = (�1; �2; : : : ; �k) 2 (Ln)k . We can partition the continuous state-space X �
R
n into at most 2k states, corresponding to the 2k possible boolean evaluations

of � ; hence, the in�nite state-space X of H is reduced to jLj2k states in the
abstract system. From now on, we refer to the hybrid system H as the concrete
system and its state-space X as the concrete state-space.

De�nition 2 (Abstract state-space). Given an n-dimensional hybrid system

H = (X ; L;X0; f; I; T ) and a k-dimensional vector � 2 (Ln)k of n-dimensional

linear predicates we can de�ne an abstract state as a tuple (l; b), where l 2
L and b 2 B

k . The abstract state-space for a k-dimensional vector of linear

predicates hence is Q� := L� B
k . We de�ne a concretization function C� :

B
k ! 2X for a vector of linear predicates � = (�1; : : : ; �k) 2 (Ln)k as C�(b) :=
fx 2 X j 8i 2 f1; : : : ; kg : �i(x) = big:

De�nition 3 (Discrete Abstraction). Given a hybrid system H = (X ; L;X0;

f; I; T ), we de�ne its abstract system with respect to a vector of linear predicates

� as the transition system H� = (Q� ;
�
!; Q0) where

{ the set of initial states is Q0 = f(l; b) 2 Q� j 9x 2 C� (b) : (l; x) 2 X0g;

{ the abstract transition relation
�
!� Q� �Q� is de�ned as the union of the

following two relations
�
!D;

�
!C� Q� � Q� . The relation

�
!D represents



transitions in the abstract state-space due to discrete jumps, whereas
�
!C

represents transitions due to continuous 
ows:

(l; b)
�
!D (l0; b0) i� 9(l; l0; g; r) 2 T; x 2 C�(b) \ Gt :

(l; x)!D (l0; r(x)) ^ r(x) 2 C�(b
0);

(l; b)
�
!C (l; b0) i� 9x 2 C�(b); t 2 R�0 : �l(x; t) 2 C� (b

0) ^

8t0 2 [0; t] : �l(x; t
0) 2 Il:

2.4 Searching the Abstract State-Space

Given a hybrid system H we want to verify certain safety properties. We de�ne a
property by specifying a set of unsafe locations U � L and a set B � X of unsafe
continuous states. The property is said to hold for the hybrid system H i� there
is no valid trace that leads to some state in B while in an unsafe location. We
implemented an on-the-
y search of the abstract state-space giving priority to
computing discrete successors rather than continuous successors, as this is gen-
erally much faster. Computing discrete successors is relatively straightforward,
and involves computing weakest preconditions, and checking non-emptiness of
intersection of polyhedral sets. For computing continuous successors of an ab-
stract state A, we compute the polyhedral slices of states reachable at �xed
times r; 2r; 3r; : : : for a suitably chosen r, and then, take convex-hull of all these
polyhedra to over-approximate the set of all states reachable from A. We are
only interested in checking if this set intersects with a new abstract state. This
approach has many bene�ts compared to the traditional approach of computing
approximations of reachable sets, one of them being the fact that the expensive
operation of computing continuous successors is applied only to abstract states,
and not to intermediate polyhedra of unpredictable shapes and complexities.

We include an optimization technique in the search strategy. For each con-
crete counter-example in the concrete hybrid system, there exists an equivalent
counter-example that has the additional constraint that there are no two consec-
utive transitions due to continuous 
ow. This is due to the additivity of 
ows of
hybrid systems, namely (l; x) !C (l; x0) ^ (l; x0) !C (l; x00) ) (l; x) !C (l; x00):
We are hence searching only for counter-examples in the abstract system that
do not have two consecutive transitions due to continuous 
ow.

3 Counter-Example Analysis

An abstract counter-example consists of a sequence of abstract states and transi-
tions leading from an initial state to a state violating the property. The analysis
problem is to check if the corresponding sequence of modes and discrete switches
can be traversed in the concrete system. The analysis relies on techniques for
polyhedral approximations of the reachable sets under continuous dynamics. To
speed up the feasibility analysis, we also implemented a local test that checks
for feasibility of pairwise transitions, and this often proves to be e�ective.



3.1 Global Analysis Algorithm

We denote the set of transition labels �T as �T = T [fCg, denoting that either
a discrete transition or a continuous transition occurred. For the subsequent
de�nitions of counter-examples in the abstract state-space we use the following
notation for transitions due to discrete jumps for t = (l; l0; g; r) 2 T :

(l; b)
�
!t (l

0; b0) i� 9x 2 C�(b) \ Gt : (l; x)!D (l0; r(x)) ^ r(x) 2 C�(b
0):

De�nition 4. An abstract path p in the abstract state-space given by the

vector of predicates � of length n � 0 is a pair (a; t) 2 (Q�)
n+1 � (�T )

n; such

that a = (a0; : : : ; an) and t = (t0; : : : ; tn�1) with ti 2 �T , a0 = (l0; b0) 2 Q0,

and 80 � i � n� 1 : ai
�
!ti ai+1. The set of abstract paths of length n given by

the vector of predicates � is denoted by P�
n . A counter-example is an abstract

path p = (a; t) = ((a0; : : : ; an); (t0 ; : : : ; tn�1)), such that an is a violation of the

property to be proven. We call the sequence of abstract states a = (a0; : : : ; an)
of a counter-example p = (a; t) an unlabeled counter-example.

The counter-example analysis problem is twofold. The �rst objective is to
check whether a counter-example in the abstract system corresponds to a counter-
example in the concrete system. In case that the analysis �nds that this partic-
ular counter-example cannot be traversed in the concrete system, we want the
analysis to identify one or more new predicates that would rule out closely related

counter-examples in the re�ned abstract state-space. The re�ned abstract state-
space is de�ned by adding these predicates to the previous set of predicates used
in the abstract state-space search. We de�ne the notion of re�nement between
abstract paths to formalize the concept of closely related abstract paths.

De�nition 5. A vector of predicates � 0 2 (Ln)k
0

re�nes a vector of predicates

� 2 (Ln)k, if its corresponding set of predicates includes all predicates in �.

De�nition 6. An abstract state a0 = (l0; b0) 2 Q�0 for the vector of predicates

� 0 re�nes another abstract state a = (l; b) 2 Q� for the vector of predicates �,

i� l = l0 and C�0 (b
0) � C�(b).

De�nition 7. An abstract path p0 = ((a00; : : : ; a
0
n); (t

0
0; : : : ; t

0
n�1)) 2 P�0

n for a

vector of predicates � 0 re�nes another abstract path p = ((a0; : : : ; an); (t0; : : : ;
tn�1)) 2 P�

n for a vector of predicates �, with ai = (li; bi) and a0i = (l0i; b
0

i
), i�

� 0 re�nes �, 80 � i � n : a0i re�nes ai, and 80 � i � n� 1 : t0i = ti.

During the counter-example analysis we de�ne Pre : Q� ��T �Q� ! 2X

and Post : 2X ��T �Q� ! 2X functions that consider only the abstract states
or the concretely reachable state space rather than the whole continuous state-
space X . The computation of these takes into consideration the concretization of
the abstract state, as well as the invariants and guards of the system. We de�ne



the functions Pre and Post with a = (l; b) and a0 = (l0; b0) as:

Pre(a; t; a0) =

8>>>><
>>>>:

�
x 2 C�(b) \ Gtj

r(x) 2 C�(b
0) \ Il0

�
: t = (l; l0; g; r);8<

:
x 2 C� (b) \ Ilj9� 2 R�0

�l(x; �) 2 C� (b
0) \ Il0

^8� 0 2 [0; � ] : �l(x; �
0) 2 Il0

9=
; : t = C:

Post(P; t; a0) =

8>>>><
>>>>:

Post

��
x 2 C�(b

0) \ Il0 j
9y 2 Gt \ P : x = r(y)

�
; C; a0

�
: t = (l; l0; g; r);8<

:
x 2 C� (b

0) \ Il0 j9� 2 R�0

9y 2 P : �l0(y; �) = x

^8� 0 2 [0; � ] : �l0 (y; �
0) 2 Il0

9=
; : t = C:

Our counter-example analysis algorithm is presented in algorithm 1. The set
R0 is the part of the initial state-space that is covered by the abstract state
(l; b0). We then compute the concretely reachable state-space of each abstract
state of the counter-example. For each 1 � i � n we compute Ri as the reachable
region after i transitions according to the counter-example. It is hence clear that
if Ri = ; for some i then the counter-example is spurious.

Algorithm 1 Analyzing a counter-example p 2 P�
n

R0 = C�(b0) \ fx 2 Il0 j(l0; x) 2 X0g
for 1 � i � n do

Ri = Post(Ri�1; ti�1; ai)
if Ri = ; then
return \Counter-example is spurious!"

end if

end for

return \Counter-example is concrete!"

In the case that we found that the counter-example is spurious, we want
to use the counter-example to �nd new predicates. Consider a counter-example
p 2 P�

n , such that Rk+1 = ; and Rk 6= ; for 0 � k < n. We call tk the failing
transition of the counter-example p. Then we can prove the following lemma.1

Lemma 1. Given a counter-example p = (a; t) = ((a0; : : : ; an); (t0; : : : ; tn�1))
2 P�

n where tk is the failing transition, we have Rk \ Pre(ak; tk; ak+1) = ;:

We want to add new predicates to the vector � , so that the re�ned vector � 0

does not allow a re�ned (unlabeled) counter-example of p to reappear. Consider
a strategy that adds predicates to the set � that correspond to a separation
of Rk from Pre(ak; tk; ak+1) for a failing transition tk. This means that we are
looking for a re�ned set of predicates � 0 of � , such that every re�ned abstract

1 Please note, that we omit all the proofs in this paper for the sake of brevity.



state intersects at most with one of the two sets Rk and Pre(ak; tk; ak+1). We
de�ne the notion of separation in terms of polyhedral sets, since we approximate
the set of reachable states by polyhedral slices in the implementation of the tool.
It should be noted here that we use under-approximations of the reachable sets
of states during the analysis of counter-examples while we over-approximated
the reachable sets of states during the search in the abstract state-space.

De�nition 8 (Separating predicates). Let P = fP1; : : : ; Png and Q =
fQ1; : : : ; Qmg be two disjoint sets of convex polyhedra. We denote by

S
P andS

Q the union of all polyhedra in P and Q. A �nite vector of linear predicates

� = (�1; �2; : : : ; �k) separates P and Q i� for all b 2 B
k , at least one of the two

sets (C� (b) \
S
P) and (C�(b) \

S
Q) is empty.

The predicates in � are called separating predicates. Note that such a vector
� always exists2, but it is often not unique.

Theorem 1. Assume a counter-example p 2 P�
n for a vector of predicates �

such that tk is the failing transition. If � 0 re�nes � and additionally contains

predicates corresponding to a separation of Rk from Pre(ak; tk; ak+1), and we �nd

a re�ned counter-example p0 2 P�0

n of p, then there exists a failing transition tj
in p0, such that j < k.

As a single counter-example p is of �nite length, the above theorem assures us
that after a �nite number of iterations, a re�nement of p will not be possible.

3.2 Locally Infeasible Abstract States

In this section we present a second counter-example analysis algorithm, which
checks a counter-example quickly for a common cause of spurious counter-ex-
amples. We also show that this analysis produces new predicates with stronger
implications for subsequent searches in the re�ned abstract state-space.

De�nition 9. For a path p = (a; t) 2 P�
n+1 given the vector of predicates �,

with a = (a0; : : : ; an+1) = ((l0; b0); : : : ; (ln+1; bn+1)) and t = (t0; : : : ; tn), we
say that an abstract state ai for 1 � i � n is locally infeasible, i�

Post(C� (bi�1); ti�1; ai) \ Pre(ai; ti; ai+1) = ;:

The detection of locally infeasible abstract states can be implemented in
a straight-forward fashion. In addition, we can easily compute new predicates
that disallow re�ned counter-examples. If a state ai is locally infeasible, then we
can use the fact that our implemented optimization technique guarantees that
either ti�1 or ti is a discrete transition. If ti�1 is discrete, one reasonable choice
is to use the predicates corresponding to the constraints of the polyhedral sets
representing Post(C� (bi�1); ti�1; ai) in the re�ned search. Otherwise, a possible

2 It is easy to see that we can simply take the linear constraints of all polyhedra from
P or from Q to determine �.



approach is to use the predicates corresponding to Pre(ai; ti; ai+1) in the re�ned
search. We denote this strategy of picking new predicates by LocalStrategy.

We can now prove the following two theorems about using the strategy
LocalStrategy in case we �nd a locally infeasible abstract state. The theo-
rems formalize that by using this strategy we can assure that a re�nement of
the (unlabeled) counter-example will not be found in subsequent searches.

Theorem 2. Assume a counter-example p 2 P�
n for a vector of predicates �,

such that there is a locally infeasible abstract state ai in p. A search in the re�ned

abstract state-space given by the strategy LocalStrategy to �nd new predicates

will not �nd a counter-example that is a re�nement of p.

Theorem 3. Assume a hybrid system H = (X ; L;X0; I; f; T ) with the proper-

ties that 8l 2 L : (l; l0; g; r) 2 T ) l 6= l0, and 8(l; l0; g1; r1); (l; l0; g2; r2) 2 T :
g1 = g2 ^ r1 = r2. Additionally assume a counter-example p = (a; t) 2 P�

n for

a vector of predicates �, such that there is a locally infeasible abstract state ai
in p. Then a search in the re�ned abstract state-space obtained using the strat-

egy LocalStrategy to re�ne the set of predicates � will not produce a re�ned

unlabeled counter-example.

4 Computing separating predicates

In the previous section we described two counter-example analysis algorithms.
If the counter-example is found to be infeasible, then we wish to identify one or
more new predicates that would rule out this sequence in the re�ned abstract
space. This reduces to the problem of �nding one or more predicates that separate
two sets of polyhedra. We present a greedy strategy for identifying the separating
predicates. After discovering new predicates, we then include these predicates
to the set of predicates used before, and rerun the search in the re�ned abstract
state-space de�ned by the enriched predicate set.

4.1 Separating two disjoint convex polyhedra

Let P and Q be two disjoint convex polyhedra. To separate them, we de�ne the
distance between P and Q as follows: d(P;Q) = inffd(p � q) j p 2 P ^ q 2 Qg
where d(�) denotes the Euclidean distance. Since P and Q are disjoint, d(P;Q)
is positive. Let p� 2 P and q� 2 Q be points that form a pair of closest points.
We denote by s(p�; q�) the line segment with extreme points p� and q�. The
half-space H which is normal to s(p�; q�) and has q� as a supporting point can
be written as: H = fx j hp� � q�; xi � hp� � q�; q�ig. We denote by H the
complement of H.

Lemma 2. The polyhedron Q is contained in H and P is contained in H.

We remark that Lemma 2 also holds for any half-space which is normal to
s(p�; q�) and passes through an arbitrary point in s(p�; q�). Hence, any such
half-space can be used to de�ne a separating predicate. To compute d(P;Q) as
well as p� and q�, there exist eÆcient algorithms [8] which take time O(KP+KQ)
where KP and KQ are the number of vertices of P and Q.



4.2 Separating two disjoint sets of convex polyhedra

We proceed with the problem of �nding a set � of separating predicates for two
sets of convex polyhedra P1 and P2. In order to keep the size of the abstract
state space as small as possible, we want to �nd � with the smallest number of
predicates. Many related polyhedral separation problems have been considered
in literature [17, 18]. However, the solutions proposed in these works are only for
two and three dimensional polyhedra. On the other hand, even in low dimensions
most separation problems were shown to be intractably hard. In three dimensions
the problem of �nding a minimum facet-separator for two polyhedral solids is
NP-complete [15]. Our objective is not to �nd an optimal solution but to develop
methods which are e�ective on the problem of separating reachable sets of hybrid
systems for abstraction re�nement purposes.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������P2

P1

P2

P1 Q2Q2

�1

P3 P3 Q3

S
Q

S
Q

Q1Q1

Q3
S
P

S
P

�2

Fig. 1. Subdividing the sets P = fP1; P2; P3g and Q = fQ1; Q2; Q3g respectively into
fP1; P2g, fP3g and fQ1; Q2g, fQ3g allows to �nd two separating predicates �1 and �2.

Our solution is based on the following observation. Given two set of polyhedra
P1 and P2, if the convex hulls of P1 and P2 are disjoint, then one can apply the
method presented in the previous section to �nd a separating predicate. If the
convex hulls intersect, it is clear that P1 and P2 cannot be separated by a single
hyperplane. The main idea is to divide P1 and P2 into subsets of polyhedra such
that their convex hulls do not intersect allowing to �nd a separating predicate.
The procedure of subdivision can be done in a hierarchical way. We begin with
all polyhedra in P1 and P2 and recursively subdivide until the convex hulls are
pairwise disjoint. Moreover, for eÆciency purposes, instead of convex hulls, we
can use approximations by non-axis-aligned bounding boxes which are easier to
compute and test for overlaps (see �gure 1). One way to compute tight �tting
bounding boxes is to align the axes of the box in the directions along which the
vertices of the polyhedra tend to lie. From the vertices of the polyhedra we can



determine the matrix of covariance and take its largest eigenvectors to de�ne
the orientation of the box.

Our method for computing separating predicates is summarized in algorithm
2. We denote by H(�) the half-space de�ned by predicate �. Given a set P of
polyhedra, chull(P) and bbox(P) are respectively the convex hull and the non-
axis-aligned bounding box of P . The set S(P ; �) = fs 2 P j s � H(�)g is the
largest subset of P lying entirely inside H(�), and Int(P ; �) = fs \ H(�) j s 2
P ^ s \ H(�) 6= ;g is the intersection of

S
P with H(�). The core of the

algorithm is a procedure, called sep, which computes a separating predicate for
two disjoint polyhedra using the method presented in section 4.1. Two sets of
polyhedra P1 and P2 are called separable if convfP1g\convfP2g = ; where conv
is a convex-approximation operation which can be chull or bbox. The notation
separable(P1;P2) in the algorithm indicates that P1 and P2 are separable.

Algorithm 2 Separating(P1;P2)

Step 1. If separable(P1;P2), compute � = sep(chullfP1g; chullfP2g) and return �.
Step 2. Divide P1 and P2 into subsets P11, P12 and P21, P22, respectively.
Step 3. Compute separating predicates for pairs of one set and a subset of the other:

�t = f� = sep(chullfPig; chullfPjkg) j separable(Pi;Pjk); 1 � i 6= j; k � 2g:

If �t 6= ;, go to step 4; otherwise, continue with pairs of subsets:

�t = f� = sep(chullfP1ig; chullfP2jg) j separable(P1i;P2k); 1 � i; j � 2g:

If �t = ;, repeat the algorithm for all pairs (P1i;P2j); 1 � i; j � 2.
Step 4. Pick �m 2 �t that maximizes jS(P1; �)j+ jS(P2;:�)j.
Step 5. Compute pairs (Int(P1; �m); Int(P2; �m)), (Int(P1;:�m); Int(P2;:�m)).
For each pair, if both sets are non-empty, repeat the algorithm for the pair.

We brie
y sketch the proof of the correctness of algorithm 2. As one can see
from step 4, we use a greedy strategy to choose separating predicates, that is we
select the one that can separate the largest number of polyhedra. The goal of
step 5 is to exclude the subsets of

S
P1 and

S
P2 that the selected predicate �m

can separate. Indeed, if one of the sets Int(P1; �m) and Int(P2; �m) is empty,
then either P1 or P2 lies entirely outside the half-space H(�m). This means that
the predicate �m can separate a part of one set from the other, and we only need
to continue with the remaining part.

One factor that determines the number of separating predicates is the sub-
division in step 2. The way we subdivide the sets P1 with view of avoiding
interference of the resulting subsets with P2 is as follows. We �rst try to split
P1 into two subsets such that one contains all the polyhedra entirely outside
conv(P2). If this subset is empty, then we split P1 with respect to a hyperplane
which is perpendicular to the longest side of bbox(P1) and passes through its



centroid. Another option for the normal of the splitting hyperplane is the line
passing through the two most distant points.

We now brie
y discuss the bound on the number of predicates algorithm 2
can produce. It is easy to see that the upper bound corresponds to the case
where no splitting can produce separable subsets, which requires to consider all
pairs of polyhedra. In other words, in this case, each time algorithm 2 �nds a
separating predicate �m, j(Int(P1; �m)j = jP1j � 1 and j(Int(P2; �m)j = jP2j;
similarly, j(Int(P1;:�m)j = jP1j and j(Int(P2;:�m)j = jP2j � 1. This means
that in each side of the half-space of �m, two sets of polyhedra remain to be
separated and the size of one set is decreased by 1. For example, if jP1j =
jP2j = K, we can prove that algorithm 2 produces in worst case 2K+1 � 1
predicates. It is important to note that this worst case typically happens when
the polyhedra in each set are all disjoint and intertwine with those in the other
set. However, in this context, reachable sets to be separated are often connected.
Hence, in many practical cases, convex hulls or non-axis-aligned bounding boxes
are relatively good approximations and the number of separating predicates
produced by algorithm 2 is often much smaller than this bound. Finally, we can
use the following lemma to achieve better eÆciency.

Lemma 3. If a set of predicates � separates the boundaries of P1 and P2 then

it separates P1 and P2.

To prove the lemma, we remark that � separates P1 and P2 i� any line segment
between a point in P1 and another point in P2 intersects with the hyperplane
of at least one predicates in � . Hence if � separates the boundaries of P1 and
P2 then it separates P1 and P2 since any line segment connecting points in the
interior of two disjoint sets must cross the boundaries of both sets. Using lemma
3 we can consider only some boundary layer of P1 and P2, which allows to obtain
tighter convex approximations and thus reduces splitting.

5 Implementation and Experimentation

We presented foundations for automated veri�cation of safety properties of hy-
brid systems by combining the ideas of counter-example guided predicate ab-
straction and polyhedral approximation of reachable sets of linear continuous
dynamics. The presented counter-example analysis tool extends previous work
on predicate abstraction of hybrid systems [3]. Our current prototype imple-
mentation of the predicate abstraction model checking and the counter-example
analysis tool are both implemented in C++ using library functions of the hybrid
systems reachability tool d/dt [6]. We implemented a translation procedure from
Charon [2] source code to the predicate abstraction input language which is
based on the d/dt input language. Our tool uses the polyhedral libraries CDD
and QHull. We have implemented the global analysis algorithm, the local feasi-
bility check, as well as the computation of separating predicates as part of the
counter-example analysis tool.



5.1 Fischer's Mutual Exclusion

We �rst look at an example of mutual exclusion which uses time-based synchro-
nization in a multi-process system. We want to implement a protocol that allows
a shared resource to be used exclusively by at most one of two processes at any
given time. The state machines for the two processes are shown in �gure 2. The
example is small enough to be used e�ectively for an illustration of our approach.

IDLE

ACCESS CHECK

REQUEST IDLE

ACCESS CHECK

REQUEST

turn := 1

_x = 1

x := 0
x � Æ
^ turn 6= 1

x � Æ^ turn = 1

x � �

_x = 1

turn = 0 ! x := 0

y := 0
y � Æ
^ turn 6= 2

y � Æ^ turn = 2

y � �

_y = 1

turn := 2

_y = 1
turn = 0 ! y := 0turn := 0

turn := 0

turn := 0 turn := 0

Fig. 2. The two processes for the mutual exclusion example

The possible execution traces depend on the two positive parameters � and
Æ. If the parameters are such that � � Æ is true, we can �nd a counter-example
that proves the two processes may access the shared resource at the same time.
On the other hand, if Æ > �, then the system preserves mutual exclusive use
of the shared resource. We use this example to illustrate the use of the local
feasibility check of counter-examples for the case that Æ > �. Consider the
abstract system de�ned by the predicates used in the description of the 2-process
Fischer's mutual exclusion protocol. These are: x � Æ; y � Æ; x � �; y � �; Æ >

�;� > 0; Æ > 0; x � 0 and y � 0. The search in the abstract state-space �nds
a counter-example of length nine. The third abstract state a3 in the counter-
example has both processes in their respective Request locations, turn = 0, and
0 � x � �; 0 � y � �. The following state a4 can be reached by a discrete
transition td, and the �rst process is now in its Check location, while turn = 1
and 0 � x � �; 0 � y � �. The �fth abstract state a5 can then be reached
by a continuous transition tc, so that the locations and the turn variable are
unchanged, but now we have x > Æ; 0 � y � �. Then, a4 is locally infeasible, as
shown by projection onto the variables x and y:

Postj(x;y)(a3; td; a4) = f(x; y)T 2 R
2 j 0 � x � y � � < Æg and

Prej(x;y)(a4; tc; a5) = f(x; y)T 2 R
2 j 0 � y < x � � < Æg;

hence, we know that Post(a3; td; a4) \ Pre(a4; tc; a5) = ;. Following the strat-
egy LocalStrategy we include the only one new predicate x � y to the set
of predicates. In the next iteration with this re�nement of the abstract state-
space, we obtain a symmetrical locally infeasible counter-example. The strategy
LocalStrategy then suggests the symmetric predicate y � x. The subsequent
reachability analysis �nds 54 reachable abstract states in the re�ned abstract
state-space, which all maintain the mutual exclusion property.



5.2 Thermostat

We have also successfully applied our counter-example guided predicate abstrac-
tion technique to verify a thermostat example. We present this case study to
illustrate the global counter-example analysis algorithm as well as the procedure
to separate two disjoint sets of polyhedra. The single hybrid automaton in this
case study is shown in �gure 3. It contains a timer clock and a temperature
Temp. The initial location is Heat and the initial set is clock = 0; 5 � Temp � 10,
and the bad set is Temp < 4:5 in any location. The model can be proven cor-
rectly by adding the predicate clock � 0 to the predicates that are already
mentioned in the model as transition guards and location invariants. In this
case, the abstraction uses ten predicates and �nds 35 reachable abstract states.

Cool CheckHeat
_Temp = �Temp
Temp � 5

_Temp = �Temp=2
clock � 1

Temp � 9

Temp � 6!
clock := 0

_Temp = 2
Temp � 10
clock � 3

clock := 0

clock := 0

clock � 0:5!

clock � 2!

Fig. 3. The Thermostat example. We omit the di�erential equation _clock = 1 in all
three locations.

For purposes of illustration, we start the veri�cation using our counter-
example guided predicate abstraction toolkit with the predicates mentioned in
the model; that means, we are searching for a set of predicates that can be used
to re�ne this initial set to be able to prove the safety of the given model. Note
that picking the aforementioned predicate clock � 0 would suÆce. In addition,
to illustrate the global analysis algorithm and the separating routine only, we
skip the local feasibility checking algorithm. The �rst iteration of our algorithm
produces a spurious counter-example of length 7 after 11 abstract states have
been discovered by the search of the abstract state-space. The separation routine
suggests the following four linear predicate to re�ne the abstract state-space:

0.979265*Temp + 0.202584*clock <= 9.34423

0.872555*Temp + 0.488515*clock <= 8.16961

0.428587*Temp + 0.9035 *clock <= 4.11184

-0.0680518*Temp + 0.997682*clock <= -0.439659

Please notice the last suggested predicate and its similarity to the predicate men-
tioned before. The model designer may have been able to use this suggested set of
predicates to re�ne the abstract state space by adding the predicate clock � 0.

Following our example, after re�ning the predicates with the help of these
four predicates, the system still �nds a spurious counter-example, and sug-
gest four more predicates. In a third round after discovering another spurious
counter-example, the system generates eleven more predicates, one of which is
0.0139043*Temp + 0.999903*clock <= 0.152558. The total set of 28 predi-



cates is in the following iteration enough to prove the thermostat example safe.
The search in the abstract state-space �nds 358 reachable abstract states.

5.3 Coordinated Adaptive Cruise Control

We have also successfully applied our predicate abstraction technique to ver-
ify a model of the Coordinated Adaptive Cruise Control mode of a vehicle-to-
vehicle coordination system. This case study is provided by the PATH project
(see http://www-path.eecs.berkeley.edu).We �rst brie
y describe the model
omitting a more detailed discussion for the sake of brevity. The goal of this mode
is to maintain the car at some desired speed vd while avoiding collision with a car
in front. Let x and v denote the position and velocity of the car. Let xl, vl and
al denote respectively the position, velocity and acceleration of the car in front.
Since we want to prove that no collision happens regardless of the behavior of
the car in front, this car is treated as disturbance, more precisely, the derivative
of its acceleration is modeled as uncertain input ranging in [dalmin; dalmax].

The closed-loop system can be modeled as a hybrid automaton with 5 contin-
uous variables and 8 locations.The invariants of the locations and the transition
guards are speci�ed by the operation regions and switching conditions of the
controller together with the bounds on the speed and acceleration. In order to
prove that the controller can guarantee that no collision between the cars can
happen, we specify an unsafe set as xl � x � 0 in all locations. To de�ne initial
predicates, in addition to the constraints of the invariants and guards, we use
the predicate of the bad set allowing to distinguish safe and unsafe states and
predicates representing the initial set. Assuming that the follower car is faster
than the preceding car, and a too small initial separation of the two cars, the tool
�nds a counter-example that corresponds to a real trace in the concrete system.
On the other hand, if the two cars start with a large enough initial separation,
the combined veri�cation approach enabled us to prove safety of the abstract
system which implies safety of the concrete system.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3{34, 1995.

2. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivan�ci�c, V. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embedded
systems. Proceedings of the IEEE, 91(1), January 2003.

3. R. Alur, T. Dang, and F. Ivan�ci�c. Reachability analysis of hybrid systems via predi-
cate abstraction. In Hybrid Systems: Computation and Control, Fifth International

Workshop, LNCS 2289. Springer-Verlag, 2002.
4. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183{235, 1994.
5. R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing veri�cation by succes-

sive approximation. Information and Computation, 118(1):142{157, 1995.



6. E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability anal-
ysis of piecewise-linear dynamical systems. In Hybrid Systems: Computation and

Control, Third International Workshop, LNCS 1790, pages 21{31. 2000.
7. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.

In SPIN 2000 Workshop on Model Checking of Software, LNCS 1885. 2000.
8. S. Cameron. A comparison of two fast algorithms for computing the distance

between convex polyhedra. IEEE Transactions on Robotics and Automation,
13(6):915{920, 1997.

9. A. Chutinan and B.K. Krogh. Veri�cation of polyhedral-invariant hybrid automata
using polygonal 
ow pipe approximations. In Hybrid Systems: Computation and

Control, Second International Workshop, LNCS 1569, pages 76{90. 1999.
10. E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald. Veri�-

cation of hybrid systems based on counterexample-guided abstraction re�nement.
In Tools and Algorithms for the Construction and Analysis of Systems, 2003.

11. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction re�nement. In Computer Aided Veri�cation, pages 154{169, 2000.

12. E.M. Clarke and R.P. Kurshan. Computer-aided veri�cation. IEEE Spectrum,
33(6):61{67, 1996.

13. J.C. Corbett, M.B. Dwyer, J. Hatcli�, S. Laubach, C.S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting �nite-state models from Java source code. In
Proceedings of 22nd International Conference on Software Engineering. 2000.

14. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In Proceedings

of the 4th ACM Symposium on Principles of Programming Languages, 1977.
15. G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In

Canadian Conference on Computational Geometry, 1990.
16. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Hybrid

Systems III: Veri�cation and Control, LNCS 1066. Springer-Verlag, 1996.
17. D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed poly-

hedra - a uni�ed approach. In Proc. of ICALP'90, pages 400{413, 1990.
18. H. Edelsbrunner and F.P. Preparata. Minimum polygon separation. Information

and Computation, 77:218{232, 1987.
19. T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: the next generation. In

Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 56{65, 1995.
20. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279{295, 1997.
21. G.J. Holzmann and M.H. Smith. Automating software feature veri�cation. Bell

Labs Technical Journal, 5(2):72{87, 2000.
22. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Springer International

Journal of Software Tools for Technology Transfer, 1, 1997.
23. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstractions for the veri�cation of concurrent systems. Formal Methods in System

Design Volume 6, Issue 1, 1995.


