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Abstract 
Recently, a new category of domains used for the mathematical foun- 

dations of denotational semantics, t hat of L-domains, have been under 

study. In this paper we consider a related category of posets, that of local 

lattices. First, a completion operator taking posets to local lattices is de- 

veloped, and then this operator is extended to a functor from posets with 

embedding-projection pairs to local lattices with embedding-projection 

pairs. The result of applying this functor to a local lattice yields a local 

lattice isomorphic to the first; this functor is a pseudo-retract. 

Using the functor into local lattices, a continuous pseudo-retraction 

functor from w-bifinite posets to w-bifinite L-domains can be constructed. 

Such a functor takes a universal domain for the w-bifinite posets to a 

universal domain for the w-bifinite L-domains. Moreover, the existence of 

such a functor implies that, from the existence of a saturated universal 

domain for the w-algebraic bifinites, we can conclude the existence of a 

saturated universal domain for the w-bifinite L-domains. 

1 Introduction 

In the search for structures for use as mathematical foundations of the denotational 

semantics of programming languages, for several years attention has been focused on 

the category of bounded-complete (w-algebraic) directed-complete posets. In partic- 

ular, the requirement was made that every bounded subset of the poset should have 

a least upper bound. If one thinks of the points in the poset as being partial infor- 

mation, and one point is greater than another if it contains more information, then 

we are insisting that every demonstrably consistent set of information should have a 

join in the whole poset of information. 

However, recently a new class of posets have been studied as an alternative, namely 

the (w-algebraic) L-domains. An L-domain is a directed-complete poset (a cpo) with 

the property that the set of elements below each element forms a complete lattice. 



So how do L-domains differ from bounded-complete cpo's? In an L-domain, bounded 

sets need not have joins in the poset as a whole. We only require that such a bounded 

set have a unique minimal upper bound below any given upper bound. Thinking in 

terms of information, we require a demonstrably consistent collection of information 

have a join relative to a given witness of this consistency, relative to each particular 

way we have more complete information. The idea of L-domains was introduced by 

Achim Jung in his investigations into extensions of Smyth's Theorem [7,6]. They were 

independently discovered by Thierry Coquand as a special instance of his category of 

embeddings [I]. 

For the first part of this paper, we will focus our attention on a class of posets 

more general than the L-domains. The class we shall focus attention on is that of 

local lattices. A local lattice is a poset with the requirement that each principal ideal 

(the set of points below a given one) is a complete lattice. From the point of view 

of computation this is a crazy class to be looking at  because we are not making the 

requirement that our posets be directed-complete. However, the construction we give 

here does not use the condition of being directed-complete, and would not simplify 

it. In the end we will restrict to finite posets (and then go to the w-bifinites), and 

finite local lattices are the same thing as finite L-domains. 

2 From Posets to Local Lattices 

A classic example of a completion operator on posets is given by the following: 

2.1 Definition. Let P be a poset. Given X C P ,  let 

X =  {y  I y < x for all x E X )  = {Y 1 y 5 X ) ,  

the set of all lower bounds for X in P. Let M ( P )  = { X  ( X P} ordered by subset 
inclusion (i.e. X < Il: iff X C Y). Let j : P + M ( P )  by j (x)  = {x) =J x the - 
principal ideal generated by x. 

This construction is known as the MacNeille completion. Some properties which 

this construction has are: 

1. M ( P )  is a complete lattice. 

2. M ( P )  P iff P is a complete lattice. 



3. j is an injective function which preserves and reflects order, and which preserves 

all existing meets and joins. 

(See Theorem 111.3.11 in [ 5 ] ,  for example.) In this section, we shall develop a similar 

construction for local lattices. 

2.2 Definition. A poset L is called an local lattice if for every x E L the principal 

ideal generated by x (given by x = 2) forms a complete lattice under the restricted 

ordering. 1 

Thus we have that an L-domain is a cpo which is also a local lattice. A fairly 

typical example of a local lattice is the following: 

2.3 Example. 

Notice that, while it is true that any bounded subset of a local lattice must have a 

meet, as the previous example shows, it need not be the case that a bounded subset 

have a join (i.e. a local lattice need not be bounded complete). However, what will 

be the case is that below any upper bound for a given bounded subset there will 

exist a unique minimal upper bound. That is, while we do not have absolute joins 

for bounded subsets, we do have "joins" for bounded subsets relative to given upper 

bounds. 

2.4 Definition. Let P be a poset, X a bounded subset of P, and u an upper bound 

for X. Then v is a join for X relative to u if v is the join of X in the poset J, u with 

the restricted order relation. 

Note that an element v is the join of a bounded set X iff v is the join of X relative 
to every upper bound for X. 

The following gives us a useful way of thinking about local lattices. 



2.5 Lemma. For any poset P the following are equivalent: 

1. Every non-empty bounded subset has a meet. 

2. For each bounded subset and each upper bound of it, there exists a join for the 

bounded subset relative to the upper bound. 

3. P is a local lattice. I 

A complete lattice is a poset in which every subset has a meet. One way of 

thinking about the MacNeille completion is that it parsimoniously adds meets for all 

subsets of the original poset. (For any subset X & P ,  the new set X will be the meet 

of j*(X) = {j(x) I x E X )  in M(P).)  Given the above lemma, a first attempt at 

turning a poset into a local lattice might be to add, in a similar fashion, meets for 

all bounded subsets. This construction does not quite work. One of the difficulties is 

that, in adding meets for all bounded subsets of the original poset, you may create 

new bounded subsets without meets. While some sense can be made out of iterating 

the process (by injecting each partial result into the MacNeille completion of the 

original poset), there are other difficulties which arise. (Ultimately, we are aiming for 

a functor from posets to local lattices and this process just does not mesh well with 

functions.) A more fruitful approach lies in attempting to add relative joins for all 

bounded subsets in a reasonably parsimonious fashion, and this is the approach we 

shall pursue. 

But how frugal is frugal? If we only include one minimal upper bound for each 

bounded subset of our original poset, then we will turn it into a bounded-complete 

poset, and not just a local lattice. On the other hand, if we try to add one minimal 

upper bound for each existing upper bound of a given bounded subset we will obvi- 

ously just get a big mess. The solution is to amalgamate all the upper bounds of a 

given bounded subset which must end up having the same minimal upper bound in 

the local lattice we are trying to build, and then for each such amalgamation add one 

relative join. 

2.6 Definition. Let P be a poset. Given a bounded subset X of P ,  define 

- 
X = { y  I y 2 z for all x E X) = {y 1 y 2 X ) .  

That is, is the set of upper bounds for X in P ,  or the ceiling of X in P. For each 
bounded subset X C P define an equivalence relation - on by the following: 



1. If a and b are elements of and {a ,  b} is bounded in P, then a N b. 

2. If a b and b - c, then a - c. 

That is, we take the transitive closure of the relation of consistency. We will say that 

a and b are linked in X if a N b. Let us write [aIx for the equivalence class of a in X 
under this equivalence relation. I 

If we view a poset as a graph where there is an edge between two points precisely 

when one is greater than the other, then [aIx is just the connected component of 
- 
X which contains a. Two elements a and b of X are linked iff there exists a chain 

ao, . . . , a ,  in f? such that a = ao, b = a,, and for all i ,  0 < i < n either a; 5 a;+l 

or ai > ai+l. As a consequence the notion of being linked is preserved by monotone 

functions. 

2.7 Lemma. Let P and Q be posets, and let f : P + Q be a monotonic function. 

I f X  is a bounded subset of P and u and v are two upper bounds which are linked in 
- 
X ,  then f ( u )  and f (v) are linked in for all subsets Y of Q such that f *(x) C P 
(where f*(X)  = { f  ( w )  I w E I?}). I 

As the next lemma shows us, these equivalence classes do unite upper bounds 

which must have the same relative join. 

2.8 Lemma. Let X be a bounded subset of a local lattice L,  and let y and z be two 

upper bounds of X which are linked in x. Then a join for X relative to y is a join 

for X relative to z .  

Proof. Note that since L is a local lattice, there exists a relative join for each of y and 

z. Now, since y and z are linked in ;i?, there exists a sequence yl,.  . . , y, in I? such 

that y = yo, z = y, and {yi, is related for i = 0, .  . . , n - 1. Let us proceed by 

induction on n. If y = z ,  then obviously X has the same relative join with respect to 

y and z. By the inductive hypothesis, it is no loss to assume that y and z are related, 

say y 5 z Since L is a local lattice, 4 z is a complete lattice. Therefore, there exists 

a unique minimal upper bound w for X which is below z. However, y is below z and 

above X and hence is above this unique minimal upper bound w. Thus w must a.lso 

be the unique minimal upper bound of X which is below y. 

Using equivalence classes of minimal upper bounds, we are now in a position to 

define our construction. 



2.9 Definition. For any poset P ,  define 

L ( P )  = {A C P I A = [aIx, for some X c P bounded, some a E T). 

Define a partial ordering on L ( P )  by superset containment; that is, say that A 5 B 
if A >  B. I 

The ordering on L ( P )  is really just the same as the ordering on the upper or 

Smyth power domain. Note that every element of L ( P )  is an upwards-closed subset 

of P.  

As things stand, L ( P )  is a collection of sets, each of which is defined in terms of 

the existence of some subset. In order to be able to compute with the elements of 

L ( P )  it will be helpful to have more structural information about these sets in their 

own right. The next three lemmas help us in this regard. 

2.10 Lemma. Let A be an element of L ( P )  and let a be an element of A. Then 

A = [a]& 

- 
Proof. Since A (A) and any two elements of A are linked in A, any two elements - 
of A are linked as elements of (A). Therefore, A C [aIA. - Since we have that A is an 

element of L ( P ) ,  there exists X & P such that A = [aIx. Note that X is contained 

in A, and hence is contained in f?. Therefore, since a E m, we have that 

[ a ] ~  [ a ] ~  = A. I 

2.11 Lemma. Let A and B be elements of L ( P )  with A n B non-empty. Then, for 

every subset X C P with A = [aIx (where a E A), we have A C: B iff X C B. 

Proof. Note that for any X with A = [aIx we have X C A. If A L B, then A > B 

so A C B, and hence X C B. So suppose A = [aIx for some X C B. Then - 
B C (B) x. And since A n  B is non-empty, it is no loss to assume that a E A n  B. 

We want to show that B C A. That is, we want to show that for all b E B ,  we have 

b is linked to a in x. Let b E B. Now, both a and b are elements of B, and as such - 
they are linked in (B). However, (B) E X and hence b is linked to a in x. 1 

2.12 Lemma. Let A E L ( P ) .  Then A is closed under meets when viewed as a subset 

of P .  



Proof. Suppose that W is a subset of A, and that y = A W .  If W is the empty set, 

then y = T, and since A is an upwards closed set in P ,  we must have that T E A. 
So, let us suppose that W is non-empty. To show that y E A, it suffices to show that 

A & [ylW Since y = A W, we have that W [y]{,) - n A  =t y n A  and hence [y]{,} - nA 
is non-empty. Therefore, by Lemma 2.1 1, to show that A C [y]{,),  - it suffices to show 

that A C { y } .  However, we have this since W = { y }  since y = A W, and A C W - - 
since W C A. I 

At last we are in a position to see that our operator L  does as it is supposed to 

do and turns a poset into a local lattice. 

2.13 Theorem. For any poset P ,  the poset L ( P )  is a local lattice. 

Proof. To show that L(P)  is a local lattice, it suffices to show that every non-empty 

bounded subset of L(P)  has a meet in L(P) .  Note that if a subset of L ( P )  is bounded 

by B E L ( P ) ,  then it is bounded by [bIlb for every b E B. Let {A; 1 i E I }  be a 

bounded subset of L(P) .  Without loss of generality we may assume that it is bounded 

by [bIlb for some b E P. Let X = n{A; - I i E I). Now, b E A; for each i E I since 

{ A ;  1 i E I) is bounded by [bIlb. Since X 5 y for all y E A; for all i E I, we have 

X 5 b. Let A = [bIx. Now, b E A; and X - A; for all i E I .  Therefore, by Lemma 

2.11 we have that A & A; for all i E I .  Suppose that C Ai for every i E I .  Then 

C s A; for every i E I, so C X s [bIx = A. Moreover, C B = [bIlb SO b E C .  - - 
Thus, again by Lemma 2.11, we have that C C A. Therefore, A is that meet of 

{A; 1 i E I } .  1 

If L ( P )  is to be thought of as the completion of P  with respect to being a local 

lattice, we need to be able to view P  as living in L(P) .  That is, we need an injective 

function ~p : P  + L ( P )  such that l p ( p )  5 l p ( q )  iff p 5 q. 

2.14 Definition. For any poset P  define ~p : P  t L ( P )  by ~ p ( ~ )  = blfp1 =T p, the 

principal filter generated by p. I 

2.15 Theorem. The function ~p : P  -+ L ( P )  is an injective function which preserves 

and reflects order, (i.e. ~ p ( p )  5 L ~ ( Q )  H p 5 q), and preserves all existing meets and 

joins. 



Proof. That ~p is an injective function that preserves and reflects order is immediate 

from the definition of LP and the definition of the order relation on L(P) .  

If the meet of the empty set exists in P, then P has a top element, T. In this case, 

{T) = lp(T) is clearly the top element of L(P) ,  and hence the meet of the empty 

set in L(P). Suppose that p = A U and that A C lp(u) =T u for every u E U .  Since 
A LT u for each u E U ,  we have that u E A for every u E U ;  we have U A. But then 

p E A, since, by Lemma 2.12, A is closed under meets. Therefore, A CT p = ip(p). 

Hence, ~ p ( p )  is the meet in L(P)  of { L ~ ( u )  I u E U}. 
If the join of the empty set exists in P, then P has a bottom element, I. In this 

case P = ~ ~ ( 1 )  is the bottom element of L(P) ,  and hence is the join of the empty set 

in L(P). So suppose that p = V U  and A 7 ~ p ( u )  for every u E U .  Then for every 

a E A and every u E U we have a 2 u. But then a >_ p for every a E A, and hence 
A J ~p(p) .  Therefore, lp(p) = V{LP(U) I u E U ) .  I 

If L(P)  is to be thought of as a completion of P with respect to being a local 

lattice, in addition to having ~ p ,  we need to know that if P is already a local lattice, 

then L doesn't change it (up to isomorphism). 

2.16 Theorem. For any poset P we have P E L(P)  i f l  P is a local lattice. 

Proof. By Theorem 2.13, L(P)  is always a local lattice. Therefore, if P !2 L(P),  then 

P must also be a local lattice. 

Let P be a local lattice. Since, by Theorem 2.15, we have that ip : P + L(P) 

is an injection which both preserves and reflects order, to show that P 2 L(P) it 

suffices to show that ~p is a surjection. Let A E L(P)  and let a E A. Now, A is a 

subset of P which is bounded by a. Therefore, since P is a local lattice, there exists 

p E P which is a join for A relative to a.  Our goal is to show that A = ~ p ( p ) .  

Note that a 2 p, and hence that a ET p = ~ p ( p ) .  Therefore, since A {p) and - 
a E A n ~ ~ ( p ) ,  by Lemma 2.11 we have that A & ~p(p) .  On the other hand, every - 
x E A is linked to a in (A). Therefore, by Lemma 2.8, p is the join of A relative to 

x for every x E A. In particular, p 5 x for every x E A, and thus A LT p = ~p(p ) .  

That is, A 7 ~ p ( p ) ,  and hence A = ~ p ( p ) .  I 

It might be nice if we had that L were a minimal completion operator. That is, 
we might like to have that if P is a poset, M is local lattice, and j : P -+ hl is an 

injection preserving and reflecting order, and preserving all existing meets a.nd joins, 

then there exists a monotonic injection 77 : L(P)  + M such that j = 7 o ip. (Actually, 



we would want that q should be an embedding (see the next section)). Unfortunately, 

this is too much to hope for. However, we do get the following factorization result. 

2.17 Proposition. Given a poset P, a local lattice M ,  and a monotonic function 
f : P + M ,  there exists monotonic function 77 : L(P) -+ M such that f = o ~ p .  

Moreover, if v : L(P) -+ M is another monotonic function such that f = v o ~ p ,  then 

?(A) < v(A) for all A E L(P)  

Proof. Define q by q([a]J = A{y E M 1 y 5 f ( a )  and y 2 f (x) for all x E A}. That 

is, we map A to the join of A relative a in M. That the function q is well-defined is 

given to  us by Lemmas 2.7 and 2.8. It is immediate that 77 is monotonic. To show is 

that f = q o ~ p ,  compute. 

since p E f p. Finally, suppose that v : L(P) -+ M with v o ~p = f .  Then, for all - 
x E A we have v(A) 2 v ( L ~ ( x ) )  = f (x) and v(A) < v(~p(a ) )  = f (a) for any a E A. 

Therefore, v(A) 2 q( A). I 

3 Dealing with Functions 

So far, we have built an operator L which takes a poset and turns it into an local 

lattice, and if the poset is already a local lattice, it leaves it alone (up to isomorphism). 

Moreover, we have a way of viewing P as living in L(P)  via our monotone injective 

function ~ p .  But what we are after is more, namely that L be (extended to) a functor 

from an appropriate category of posets to a correspondingly appropriate category of 

local lattices. The morphisms we will be interested in are embedding-pro jection pairs. 

3.1 Definition. Given posets P and Q, a monotone function E : P 4 Q is an 

embedding if there exists a monotone function p : Q -+ P such that p o E = idp and 

E. o p(q) 5 q for all q E Q. The function p is called a projection from Q to P I 

It should be noted that an embedding is an injection and a projection is a surjec- 

tion. It is a fairly straight-forward and well-known fact (see Proposition 0.3.2 in [2], 



for example) that an embedding uniquely determines its corresponding projection, 

and likewise a projection uniquely determines its corresponding embedding. There- 

fore, instead of referring to the category of posets with embedding-projection pairs, we 

could equally well refer to the category of posets with embeddings or to the category 

of posets with projections. 

In order to extend L to a functor from the category of posets with embedding- 

projection pairs (POep) to the category of local lattices with embedding-projection 

pairs (LLeP), we first need to extend L  to act on embedding-projection pairs. 

For sake of convenience, if f : X -+ Y, let f *  : 2X  + 2Y denote the function 

f*V) = { f  (4 l u  E U ) .  

3.2 Definition. Let P and Q  be posets, and suppose that ( E  : P  -+ Q ,  p : Q -+ P) 
is an embedding-projection pair. Define ( L ( E )  : L ( P )  -+ L(Q) ,  L(p)  : L(Q)  -+ L ( P ) )  

by 

and 

L ( W )  = [ E ( ~ ) I c * ( A )  some a E A  

L ( P ) ( B )  = [ ~ ( b ) l , * ( ~ )  some b E B. 

That L(r) and L(p) are well-defined functions, i. e .  that their definition is inde- 

pendent of the choices of a and b is given to us by Lemma 2.7. The next thing we 

need to know is that if ( 6 ,  p )  is an embedding-projection pair, then so is ( L ( E ) ,  L(p)) .  

For this the following lemma will be useful. 

3.3 Lemma. Let p : Q  + P  be a projection, and let B  be a subset. Then p*(B) = 

P 

Proof. Since p is monotone, p*(B) G p*(B). If y E p*(B), then Y I p(b)  for every 

b E B. Let 6 : P + Q  be the embedding associated with p. Then E ( Y )  5 ~ ( p ( b ) )  5 b 

for every b E B .  Therefore, ~ ( y )  E B. But then y = p ( c ( y ) )  E p(B). I 

3.4 Lemma. If P  and Q  are posets and ( E  : P + Q ,  p : Q  + P )  is an embedding- 

projection pair, then ( L ( E ) ,  L(p) )  is also an embedding-projection pair. 



Proof. Let R and S be arbitrary posets, let A B E L(R) and let f : R -+ S be a 

monotone function. Let c E B, and hence c E A. Now, A C_ B, and thus, since f is 

monotone, 

f*(A) G f*(B) C [f ( c ) l r (~ ) .  

Therefore, by Lemma 2.1 1 we have [ f (c)lj(.4) L [f ( c ) ] ~ * ( ~ ) .  In particular, both L(E) 

and L(p) are monotone functions, given that both E and p are. 

Now, for (L(t), L(p)) to be an embedding-projection pair, we need L(p) o L(E) = 

idL(P) and L(E) o L(P)(B) 5 B for all B E L(Q). To see that L(p) o L(t) = idL(p), fix 

A E L(P)  and a E A. Then 

L(~) (L( t ) (A) )  = L ( ~ ) ( [ E ( a ) l € * ( ~ ) )  

= W r ( a ) ) l P * ( ~ )  

= [~(4a))lp*c.*(a)) by Lemma 3.3 

= [aIA = A since p o 6 =id. 

To see that L(t) o L(p)(B) 5 B for all B E L(Q), fix B E L(Q) and b E B. Then 

= [ble*(p.(~))  since b > e(p(b)) 

= [bl e* (P* (B)) by Lemma 3.3 

c [bIB = B 

by Lemma 2.11 since c*(p*(B)) C 2 .  I 

3.5 Theorem. Let POep be the category of posets and embeddings-projection pairs 

(where the arrow points in the direction of the embedding). Let LLep be the category of 

local lattices with embeddings-projection pairs. Then L : POep -t LLeP is a functor. 

Proof. By Theorem 2.13 we have that L takes posets to local lattices. By the previous 

lemma we have that L : Hompoe~ (P, Q) -t HomLLep(L(P), L(Q)) for all P and Q in 

POeP. It is immediate from the definition of L that L(idp) = idL(p). TO show that L 

is a functor it remains to show that L preserves composition of embedding-projection 

pairs. To this end it suffices to show that L preserves composition of projections. Let 

P, Q and R be posets with projections pl  : P + Q and p:! : Q + R. Fix B E P and 



b E B. Then 

by Lemma 3.3 

Therefore, L preserves composition, and hence is a functor. I 

We have more from L, namely that it commutes with the action of the L ~ ' s .  

3.6 Lemma. For every P and Q E POep, and ( 6 ,  p) E Homp0ep(P, Q) we have 

L(E) o ~p = LQ o E and LP 0 L(P) = P 0 LQ. I 

3.7 Definition. Let C be a category and let B be a full subcategory. A functor 

F : C + B is a pseudo-retraction if there exists a natural isomorphism from the 

identity functor on B to F restricted to B, i.e. if there exists a family of isomorphisms 

iB : B E F(B), one for each object in B, such that for all arrows f : B1 + B2 in B, 
we have F ( f )  o iB, = ig, o f .  I 

3.8 Corollary. The functor L : POeP --+ LLeP is a pseudo-retraction. 

Proof. By the proof of 2.16, we have that for all L in LLeP LL is an isomorphism. 

Therefore, Lemma 3.6 tells us that the family { L L  I L E LLep) provides the desired 

natural isomorphism. I 

4 Restricting to the Bifinites 

So far, we have been looking at  the categories of posets and of local lattices. However, 

for a class of posets to be used as a mathematical foundation for the denotational 

semantics of programming languages, (in order to sensibly model computation) one 

usually restricts to the class of directed-complete posets (cpo's). Unfortunately, the 

functor L which we have built does not take cpo's to cpo's; it does not in general 

preserve directed-completeness. However, it does preserve finiteness. 



Recall that an w-bifinite domain is a directed-complete poset which is an w-bilimit 

(directed colimit) of an w-chain in the category DCPOY of directed-complete posets 

with continuous embedding-projection pairs of finite posets with least element. (An 

w-chain in a category C is a functor F : w -+ C from the ordinal w viewed as a 

category.) In [4] it is observed that the subcategories of w-bifinites (wBep) and w- 

bifinite L-domains (wBLep) are closed under the formation of bilimits of w-chains 

in the category of directed complete posets with embedding-projection pairs. If we 

restrict our functor L to the finite posets, we may use it to construct a functor L* from 

the w-bifinite posets to the w-bifinite L-domains which has much the same behaviour 

as L.  

4.1 Definition. Let C be a category with colimits of w-chains and let B be a non- 

empty full subcategory of C. We shall say that B is an w-closed subcategory of C if 
B is closed under the formation of colimits of w-chains and if for every object A of C 
such that there exists an object B of B and an arrow f : A -+ B in C we have that 

A is an object of B. I 

The following lemma is certainly a previously-known fact, although the author 

could find no direct reference to it. The proof shall be omitted here, for it is moder- 

ately long but fairly straight-forward. 

4.2 Lemma. Let B be an w-closed subcategory of wBep, and let A be the intersection 

of B with the finite posets (i.e. the full subcategory of B whose objects are exactly the 

finite posets of B). Let I : A -+ B be the inclusion functor. Suppose that F is a func- 

tor from A t o  any w-complete category C .  Then there exists a functor p : B -+ C 
A 

which preserves w-colimits and whose restriction to A, i.e. F o I, is  naturally isomor- 

phic to  F .  Moreover, any other functor G : B 4 C which preserves w-colimits and 

whose restriction to A is naturally isomorphic to F is naturally isomorphic to p.  I 

4.3 Corollary. Let B be an w-closed subcategory of wBep, and let A be the inter- 

section of B with the finite posets, PO%. Let I : A -+ B be the inclusion functor 

of A into B, and let J : PO% + wBeP be the inclusion functor of finite posets 

with embedding-projection pairs into the bifinites. Let G : PO% -+ A be a pseudo- 

retraction functor. Then there exists a pseudo-retraction : wBeP + B which pre- 
serves w-bilimits and whose restriction to the finite posets, 50 J ,  is naturally isomor- 

phic to  I o G.  I 



Proof. Let K : A -+ PO% be the inclusion functor of A into PO"<pW, the category 

of finte posets with embedding-projection pairs, and let L : B -+ wBep be the cor- 

responding inclusion functor of B into wBep. Then we have L o I = J o I(. Let 
- - 
G = I o G, the w-colirnit preserving extension of I o G given to us by the preceding 

lemma. (We take C to be B and F to be I o G). Then we have that c preserves 

w-bilimits (w-colimits) and that o J is naturally isomorphic to I o G. What re- 

mains to be seen is that is a pseudo-retraction. For this, we need to show that - 
G o I< is naturally isomorphic to IdB. However, apply the second half of the previous 

lemma, but with I o IdA for F, since IdB is an w-colimit preserving extension of 

I o IdA, it suffices to show that (g  o L )  o I is naturally isomorphic to I o IdA. Now, 
- 
G o L o I = o J o K which is naturally isomorphic to I o G o K. But G o I( is 

naturally isomorphic to IdA, since G is a pseudo-retraction. Therefore, (c o L )  o I is 

naturally isomorphic to I o IdA. I 

In [4], it is also shown that the category of w-bifinite L-domains has a universal 

domain. 

4.4 Definition. Let C be a category. An object U is universal in C if for every 

object A of C ,  there is a (not necessarily unique) arrow f : A -+ U. fl 

Notice that it is immediate from the definitions, that if U is universal in a category 

C,  and F : C -+ B is a pseudo-retraction, then F ( U )  is universal in B. That a 

universal domain U exists for the w-bifinites was shown by Gunter in [3]. Therefore, 

we have 

4.5 Corollary. Let U be a universal domain for the w-bifinites, and let be a con- 
tinuous extension of the functor L restricted to the finite posets. Then E(u) is a 
universal domain in the category of w-bifinite L-domains. fl 

5 Functors and Universal Domains 

As we have already seen, pseudo-retraction functors provide us with an easy means 

to conclude that a subcategory of w-bifintes has a universal domain. In [4] the notion 

of a specific kind of universal domain, that of a fully-saturated universal domain, was 

introduced. As was shown in that paper, fully-saturated universal domains have the 



advantage that, when they exist, they are unique up to isomorphism. In the remainer 

of this paper, we shall show that pseudo-retraction functors also provide us with a 

means to conclude that a subcategory of w-bifintes has a fully-saturated universal 

domain. 

We begin with some preliminary definitions and facts. 

5.1 Definition (Gunter and Jung). An arrow f : A t B in a category C is an 

increment if for every pair of arrows h,  g in C with f = h o g either h or g is an 

isomorphism. A category C is incremental if 

1. C has an initial object, 

2. C has colimits of w-chains, 

3. every object A of C is a colimt of an w-chain (A;, a i j )  where A. is initial, each A; 
is finite (in the category C) ,  and each arrow a;+~,i : A; -+ is an increment. 

I 

5.2 Lemma. Let C be an incremental category and let B be an w-closed full subcat- 

egory of C .  Then B is an incremental category. 

Proof. See the proof of Corollary 10 in [4]. ( 

In particular, we have that wBLeP is incremental, since wBeP is. 

5.3 Definition (Gunter and Jung). Let C be an incremental category and let A be 

an object in C .  An object A+ together with an arrow s : A -+ A+ is a saturation of A 

in C if, for every increment f : B + B' and arrow g : B t A, there exists an arrow 

h : B' t A+ such that h o f = s o  g .  The category C is said to have finite saturations 

if for every finite object A in C there exists a saturation s : A --+ A+ such that A+ is 

finite. I 

The following fact about saturations follows immediately from the definition. 

5.4 Lemma. Let A, A+ be objects in an incremental category C ,  and let f : A + A+ 
be a saturation of A. Then, for all objects C and D in C,  if there exists arrows 

g : C -+ A and h : A+ + D,  then h o f : A t D is another saturation of A and 

f o g : C t A+ is a saturation of C .  



In general, the image of a finite saturation under a functor wil not be a finite 

saturation. Even if the functor is a pseudo-retraction, the image of a finite saturation 

will not generally be a finite saturation. However, as the next lemma shows, a pseudo- 

retraction will carry some finite saturations to finite saturations. 

5.5 Lemma. Let C be an incremental category and let B be an w-closed full subcat- 

egory of C .  Let F : C + B be a pseudo-retraction of C to B .  If A is an object in B 
and s : A + A+ is a saturation of A in C, then F ( s )  : F ( A )  + F(A+)  is a saturation 

of F ( A )  in B. 

Proof. Since F : C + B is a pseudo-retraction, we may fix LB : B + F ( B )  a family 

of isomorphisms in B which form a natural transformation from the identity functor 

on B to F restricited to B. Then for all objects B ,  C and arrows f : B + C in B, 
we have LC o f  = F ( f )  o LB .  

Now, suppose that we have objects B, B' and arrows f : B + B' and g : B --+ 

F ( A )  in B. We want to show that there exists an arrow h : B' + F(A+)  such that 

F(s)og = ho f .  Since A is an object in B, the arrow LA : A + F ( A )  is an isomorphism. 

Therefore, we can form the arrow L A ' O ~  : B t A. Since s : A + A+ is a saturation for 

A in C ,  there exists an arrow k : B' t A+ in C such that s o LA' og = k o f .  Applying 

the functor F ,  we then have F ( s )  o F ( L ~ '  o g )  = F ( k )  o F ( f ) .  Let h = F ( k )  o L B I .  

Then 
h o  f = F ( k )  o LBI o f 

as was to be shown. Pictorially, we have the following commutative diagram: 



5.6 Definition (Gunter and Jung). Let B be an w-closed full sub-category of wBep. 

An object U of B is fully saturated in B if for every pair of objects M, N and arrows 

f : M + U and g : M -+ N in B there exists an arrow h : N -+ U such that f = hog. 

I 

From the definition we can see that a fully saturated object is a universal domain. 

More then that, it was shown in [4] that any fully saturated ojbect is unigue up to 

isomorphism. Also in that paper a means for constucting a fully saturated ojbect was 

given. 

5.7 Theorem (Gunter and Jung). Suppose that B is a closed full sub-category of 

wBep. Let (S;, s i j )  be an w-chain in B where So is initial, each S; is finite, and each 

s;+~,i : S; -+ Si+l is a saturation in B and let U be the bilimit of this w-chain. Then 

U is fully saturated in B. 

Proof. See the proofs of Theorem 11 and Theorem 19 in [4]. I 

Now, a pseudo-retraction functor does not preserve arbitrary finite saturations, 

so just taking the image of an w-chain of finite saturations and then taking its bilimt 

need not get us a fully saturated domain. (In fact, in the case of it will not.) 
However, the pseudo-retraction does give us a way of constructing an w-chain of 

finite saurations out of the image of an w-chain of finite saurations. 



5.8 Lemma. Let (S ; ,  s i j )  be an w-chain in wBep where So is initial, each S; is finite, 
and each s;+~,; : Si -+ Si+l is a saturation. Let B be an w-closed full subcategory 

of wBep, and suppose there exists a pseudo-retraction F : wBeP + B which takes 
finite objects of wBeP to finite objects of B .  Then there exists a subchain ( S n i ,  sninj )  
(with ni > nj for all i > j )  such that F(S,) is initial in B ,  and a sequence of 
embeddings ei : F(Sn , )  + S,,,, such that e; o F(snini-,) = snitIni o e;-l and such that 
F(e;)  : F2(Sn,)  -t F(S,,,) is a saturation in B .  

Proof. Let ( U ,  (u; ) ;~ , )  be a bilimit of the w-chain (S; ,  s i j ) .  By Theorem 5.7 we have 

that U is a fully saturated object in wBep. 
We shall define the subchain (S,,, sninj )  and embeddings e; : F(Sn,)  + Snit, 

inductively. Let Sn, = So. Since So is initial in wBep, it is an object of B ,  and hence 

initial in B .  However, since So in an object of B ,  we have that So S F ( S o ) ,  so F(So)  
is intial in B .  Let Sn, = Sl and let e, = sl,o o L;:. By Lemma 5.4, eo is a saturation 

in B .  
Now, suppose Sni and ei-1 have been selected. Then we have the arrows 

uni o ei-1 : F(Sn,-,) + U and F(snini-,) : F(Sni- ,)  + F(Sni ) .  Since U is fully sat- 

urated, there exists an arrow g : F(Sn,)  + U such that g o F(S, , ,~-~) = uni o e i - ~ .  
However, F(Sn, ) is finite, being the image under F of a finite object. Therefore, there 

exists a k and an arrow h : F(Sn,)  + Sk  such that g = uk o h. Moreover, we may 
choose k such that k 2 n;. Let n;+l = k + 1 and let e; = sk+l,k o h = snitlk o h. It re- 

mains to show that eioF(snin,-,) = s,,,,,, oe;-1 and that F(e;)  : F2(Sn i )  -+ F(Sn,+,) 
is a saturation. 

To see that e; o F(sn,ni-l) = snitIn, o e;-1, we'll compute the equation for the 

embeddings. If f is an arrow in uBeP, let f be the embedding and f p  be the 
corresponding projection. Then 

s: ,+]~,  0 e:-1 = siitlk 0 sin, 0 4 - 1  

- 
- siitl k o U: o U ;  o sin, o e!-, 
- - s:,+, o U ;  o u:, o ey-, 

- - sZitlk U ;  0 ge F ( s t n , - l )  

- 
- ~:,+,k o u: o u i  o he o F(skni- , )  
- 
- s:i+lk he F(sRn;-,) 

= e: o F(sRni-,). 

Since the equation holds for the embeddings, it holds for the embedding-~rojection 

pairs. 



Now, ei = s k + l , k  o h and s k + l , k  is a saturation of Sk. Therefore, by Lemma 5.4, 
we have that ed : F(Sn,) + Snit, is a saturation in wBep, and thus by Lemma 5.5 we 

have that F(e;) : F2(Sn,) -+ F(Sn,,,) is a saturation in B .  I 

5.9 Theorem. Let B be an w-closed full subcategory of wBep, and suppose there 

exists a pseuod-retraction F : wBeP + B which takes finite objects of wBeP to finite 

objects of B. Then there exists a fully saturated object in B .  

Proof. Let (Si, sij) be an w-chain in wBeP where So is initial, each S; is finite, and each 

s;+~,; : S; -+ S,+l is a saturation. That such an w-chain exists was shown by Gunter 

in [3]. Since B is an w-closed full subcategory of wBep, there exists a sequence of 

embeddings e; : F(Sn,)  -+ Snitl such that F(e;) : F2(Sni)  -+ F(Snit,) is a saturation 

in B. Let 7 be the natural isomorphism from the identity on B to F resticted to B .  

Then F(ei) o qqsn,)  is also a saturation for each i .  Then he bilirnit of the w-chain 

(F(S,,),  ~)p(s,,,) o F(ej ) )  is fully saturated in B. I 

5.10 Corollary. There exists a fully saturated object for the category w-bifinite L- 
domains. I 
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