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Abstract 

Human motion recognition has many important appli- 
cations, such as improved human-computer interaction and 
surveillance. A big problem that plagues this research area 
is that human movements can be very complex. Manging 
this complexity is diflcult. We turn to American Sign Lan- 
guage (ASL) recognition to identify general methods that 
reduce the complexity of human motion recognition. 

In this paper we present a framework for continuous 3 0  
ASL recognition based on linguistic principles, especially 
the phonology of ASL. This framework is based on parallel 
Hidden Markov Models (HMMs), which are able to capture 
both the sequential and the simultaneous aspects of the lan- 
guage. Each HMM is based on a single phoneme of ASL. 
Because the phonemes are limited in number, as opposed 
to the virtually unlimited number of signs that can be com- 
posed from them, we expect this framework to scale well to 
larger applications. 

We then demonstrate the general applicability of this 
framework to other human motion recognition tasks by ex- 
tending it to gait recognition. 

1. Introduction 
Human motion recognition is a field with a wide variety 

of applications. Of particular interest are gesture recogni- 
tion for new modes of human-computer interaction, and gait 
recognition for video surveillance systems and intrusion de- 
tection. These applications share a common problem: Hu- 
man movements can be very complex, with many actions 
taking place both sequentially and simultaneously. As an 
example of sequential complexity, consider a gesture that 
consists of a complex series of hand movements. As an ex- 
ample of simultaneous complexity, consider a human hand- 
ing an object over to another human, while wallcing at the 
same time. Likewise, when a human performs a complex 
gesture, he could use both hands to perform two different 
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actions at the same time. 
Because there are so many different combinations of se- 

quential and simultaneous human movement actions, it is 
impossible to model them all explicitly. We elaborate on 
this problem in Sec. 3.1 and Sec. 3.2. For this reason, a 
comprehensive framework for human motion recognition 
must provide a way to reduce the complexity of the prob- 
lem. An obvious approach is to break down the actions into 
smaller primitives that are powerful enough to be combined 
into any conceivable action. Unfortunately, we have little 
data on what these primitives are for most human motion 
recognition applications, because they are relatively uncon- 
strained. 

American Sign Language (ASL) recognition yields valu- 
able insights into the problem of managing complexity. 
Unlike most other motion recognition applications, ASL 
recognition is highly structured and constrained, thanks to 
the status of ASL as a language. Furthermore, the linguis- 
tics of ASL have been extensively researched (e.g., [ 13]), 
which helps us identify the primitives (“phonemes”) of 
ASL. For this reason, it is beneficial to research ASL recog- 
nition first before applying the results to other research ar- 
eas. 

In this paper we describe a novel and extensive frame- 
work for continuous ASL recognition based on an extension 
to hidden Markov models (HMMs). The main contribu- 
tions of this work are (1) modeling each sign in terms of its 
constituent phonemes, thus handling sequential complexity: 
(2) reducing simultaneous complexity by modeling signs in 
terms of independent channels and recognizing them with 
parallel HMMs, which are essentially regular HMMs ap- 
plied to several channels simultaneously; and (3) recogniz- 
ing signed sentences from full-fledged 3D data, which we 
collect either with a magnetic tracking system, or with 3D 
computer vision methods [7]. 

To demonstrate that the ASL recognition framework can 
be generalized, we discuss its application to gait recogni- 
tion. Although gait and ASL are two very different areas, 
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we show that many concepts are similar. These similari- 
ties allow us to carry over the framework with virtually no 
modifications. 

The rest of the paper is organized as follows: We discuss 
related work, then provide an overview on the phonolog- 
ical structure of ASL and its sequential and simultaneous 
aspects. We then describe how to model these aspects with 
parallel HMMs and provide experiments to verify our ap- 
proach. We then generalize the framework to gait recog- 

explicitly based on discontinuities in the movements. They 
integrated the handshape, position, orientation, and move- 
ment aspects at a higher level than the HMMs. 

We used HMMs and 3D computer vision methods to 
model phonological aspects of ASL with an unconstrained 
sentence structure [14]. In [15] we extended the conven- 
tional HMM framework to capture the parallel aspects of 
ASL, which ordinarily would make the recognition task too 
complex. 

nition. In the concluding remarks we discuss briefly what 
the framework has accomplished and provide an outlook for 
future work. 

3. Overview of the Framework 
We now discuss the two main aspects of our framework, 

which are the linguistic modeling of ASL, and the mod- 
2. Related Work eling of the sequential and simultaneous aspects of ASL 

with a novel HMM-based approach- Although taking ad- 
vantage of research into linguistics to model the signs is 
specific to signed languages, the principal idea of break- 
ing down larger units into their constituent Parts applies to 
other recognition tasks. Likewise, the HMM framework Can 
be applied to other recognition tasks without alterations. In 
Sec. 5 we show by example of gait recognition how to ex- 
tend our framework to other applications. 

Much previous work has focused on isolated sign lan- 
guage recognition with clear pauses after each sign, d- 
though the research focus is slowly shifting to continuous 
recognition. These pauses make it a much easier problem 
than continuous recognition without pauses between the in- 
&vidual signs, because explicit segmentation of a conticu- 
ous input stream into the individual signs is very difficult. 
For this reason, and because of coarticulati , work 
on isolated recognition often does not gen 
continuous recognition. 

Some isolated recognition work used neural networks [3, 
161. Other work focused on computationally inexpensive 
methods [6]. 

based on HMMs, which offer the advantage of being able to 
segment a data stream into its constituent signs implicitly. It 
thus bypasses the difficult problem of segmentation entirely. 

with a single camera to extract two-dimensional features as 
input to HMMs with a 40-word vocabulary and a strongly 
constrained Sentence Structure [121. They aw." that the 
smallest unit in sign language is the whole sign. This as- 
sumption leads to scalability problems, as vocabularies be- 
come larger. 

H- €knz and colleagues used HMMs to recognize a Cor- 
PUS o f G " n  Sign Language 151 with 2 l X ~ ~ e d  methods. 
They experimented with stochastic bigam language 
models to improve recognition performance. The results of 
using stochastic grammars lWFly agreed with our results 
in [14]. ageable. 

Y. Nam and K. Y. Wohn [lo] used three-dimensional 
data as input to HMMS for COntinUOUS recognition Of geS- 
t ~ %  They introduced the concept of movement Primes, 
which make UP sequences of more Complex ~ovements. 
The mOvement Prime approach bears Some superficial Sim-  

ilarities to the phoneme-based approach in this paper. 
Limg and M- OuhYoung used HMMs for Continu- 

to 3.1. ASL Linguistics 
ASL is the primary mode of communication for many 

deaf people in the USA. It is a highly inflected language; 
that is, many signs can be modified to indicate subject, ob- 
ject, and numeric agreement. They can also be modified 

tion [ 131. Like all other languages, ASL has structure, 
which sets it clearly apart from most other human motion 
recognition It allows us to test ideas in a con- 
strained framework first, before attempting to generalize the 
results. 

In particular, managing the complexity of large data sets 
is an area where ASL recognition work can yield valuable 
insights. ~~~~i~~ complexity is already difficult in the 
constrained field of ASL recognition, because signs ap- 
pear in many different forms, both sequentially and simul- 
taneously. Other human motion recognition applications 
are often much less constrained than ASL, so this problem 
will only be exacerbated. It is, therefore, important to de- 
velop methods that the complexity of ASL, and, by 
extension, other human motion recognition problems man- 

The key idea behind managing complexity is that actions 
be broken down into smaller subunits, and that any ac- 

tion can be described in terms of these subunits. In the case 
of ASL these subunits are called phonemes'. Formally, a 
phoneme is defined to be the smallest contrastive unit in a 
language. In English, examples of phonemes are the sounds 
/c/, /a/ ,  and /r/. In ASL, examples of phonemes are the 

Most work on continuous sign language recognition is to indicate manner (fast, slow, etc.), repetition, and dura- 

Skimer A- Pentland wed a view-based 

ous recognition of Taiwanese Sign Language with a vocab- 
'Some people prefer to associate the term "phoneme" with spoken lan- 

guages only, and use the term "chereme" for sign languages. We follow 
the terminology of spoken language linguistics, because the underlying 

between 71 and 250 [*I Unlike Other in 
this area, hey  did not use h e  HMMs to segment the input -_ - - -  - 
stream implicitly. Instead, they segmented the data stream concepts are the same. 
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Figure 1. The sign for “father.” The white X 
indicates contact between the thumb and the 
forehead after each tap. The location of the 
hand at the forehead and the tapping move- 
ments are examples of phonemes. 

M 
straight 
back 

movement of the hand toward the chin in the sign for “FA- 
THER,” and the starting location of the hand in front of the 
forehead at the beginning of this sign (Fig. 1). 

Phonemes are limited in number, as opposed to the vir- 
tually unlimited number of words or signs that can be con- 
structed from them. In English, there are approximately 40 
distinct phonemes, whereas in ASL there are approximately 
150-200 distinct phonemes2. For this reason, taking advan- 
tage of phonology can make an otherwise intractable mod- 
eling task feasible. It is practical to provide enough training 
data for a small set of phonemes, from which every sign can 
be constructed. Doing the same for signs that are not mod- 
eled in terms of phonemes would become impossible with 
vocabularies larger than a few hundred signs. 

Unlike in spoken language linguistics, sign language 
linguists have not yet agreed on a common phonological 
model for ASL. Surveying all of the different phonological 
models is beyond the scope of this paper. We now briefly 
describe the one that we use in our recognition framework. 

H 

The Movement-Hold Model The Movement-Hold 
model [9] assumes that signs can be broken down into two 
major types of segments, which are called movements 
and holds. Movements are those segments, during which 
some aspect of the signer’s configuration changes, such 
as a change in handshape, or a hand movement from one 
location to another. Holds, in contrast, are those segments, 
during which the hands remain translationally stationary. 

Signs are made up of sequences of movements and holds. 
A very common sequence is MMMH (three movements fol- 
lowed by a hold), such as in the sign for “FATHER’ (Fig. 1). 
This sign starts out with a movement toward the forehead, 
then away from the forehead, toward the forehead again, 
followed by a hold touching the forehead. Attached to each 
segment is a bundle of articulatory features, which primar- 

M 
straight 
back 

%is number applies to the the Movement-Hold phonological 
model 191 described in Section 3.1. The numbers for other models vary 
slightly. 

M 
straight 
forward 

ily describe the handshape, orientation, and location of each 
segment. Fig. 2 shows a schematic example. 

For a detailed description of all the existing phonemes 
in the Movement-Hold model, see [9]. For a detailed de- 
scription of the phonemes that we have used so far in our 
framework, see [ 151. 

near 
forehead 

points up 
faces left 

S-hmd 

Simultaneous Aspects of ASL The Movement-Hold 
model is ideally suited for ASL recognition, because it em- 
phasizes sequential aspects over simultaneous aspects. This 
emphasis fits HMMs very well, because they are sequen- 
tial in nature. Yet, despite the emphasis on sequentiality, a 
lot of phonemes also occur simultaneously. For example, 
often the handshape changes simultaneously with the hand 
movement in a sign. Likewise, many signs are two-handed, 
and both hands move simultaneously. A purely sequential 
framework cannot capture this kind of simultaneity. 

A look at the Movement-Hold model immediately sug- 
gests an approach to incorporating simultaneity into the 
framework by modeling all possible combinations of seg- 
ments and feature bundles. This approach fails because of 
the sheer number of possible combinations of phonemes. If 
we consider both hands, and assume 30 basic handshapes, 
8 hand orientations, 8 wrist orientations, and 20 major body 
locations [9], the total number of phoneme combinations 
is (30 x 8 x 8 x 20)2 M 1.5 x IO9. Even if we employ 
some constraints on the weak hand for two-handed signs, 
the number is still approximately 2.9 x lo8 [ 151. It would 
be impossible to get enough training data for 10’ models. 

This problem is not unique to sign language recognition. 
Many other motion recognition applications, such as ges- 
tures and full human body movement, are even worse off, 
because they are less constrained than ASL. For this rea- 
son, a different approach toward handling simultaneous pro- 
cesses is necessary. 

For this reason, we make a major modification to the 
Movement-Hold model. Instead of attaching the bundles of 
articulatory features to the movement and hold segments, 

touches 
forehead 

points up 
faces left 

5-hmd 

near 
fore head 

points up 
faces left 

5-hmd 

touches 
forehead 

points up 
faces left 

5-hmd 

Figure 2. Schematic description of the sign 
for “FATHER” in the Movement-Hold model. 
It consists of three movements, followed by a 
hold (compare Fig. 1). 
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the sequence of signs, and hence the recognized sentence, 

The Baum-Welch algorithm is used to train HMMs on 
a set of training data in polynomial time, and the Viterbi 
algorithm is used to find the most likely state sequence in 
polynomial time through a network of HMMs during the 
recognition phase. For details on these algorithms, see [ 1 11. 

E] Fl El Fl canberecovered. 
forward forehead 

[Zzq 
[q 

Figure 3. The sign for “father,” where the dif- 
ferent features are modeled in separate chan- 
nels. Compare with Fig. 2. 

we break them up into channels that are independent from 
one another. One channel consists of movements and hold 
segments that describe the type of movement and the body 
locations of the right (“strong”) hand. Other channels could 
consist of the segments in the left (“weak”) hand, the hand- 
shape, the hand orientation, and the wrist orientation. Fig- 
ure 3 shows how the sign for “FATHER” is represented with 
this modification. 

By modeling the simultaneous aspects of ASL as inde- 
pendent channels, we gain the ability to model each chan- 
nel separately, yet combine each channel on the fly during 
recognition of a signed sentence. The success of this ap- 
proach depends primarily on how independent the channels 
are from one another in reality. In the case of ASL, there 
is some linguistic evidence that the strong and weak hands 
move independently from each other [9]. Our experiments 
in Sec. 4 suggest that the independence assumption is at 
least partially valid. 

3.2. Recognition with Hidden Markov Models 
One of the main challenges in ASL recognition is to cap- 

ture the variations in the signing of even a single human. 
Hidden Markov models (HMMs) are a type of statistical 
model embedded in a Bayesian framework and thus well 
suited for capturing these variations. In addition, their state- 
based nature enables them to describe how a signal changes 
over time. 

An HMM X consists of a set of N states S ~ , S Z ,  . . . , 
SN. At regularly spaced discrete time intervals, the sys- 
tem transitions from state S,  to state S, with probability 
uZ3. The probability of the system initially starting in state 
S, is xi .  Each state S, generates output 0 E R, which is 
distributed according to a probability distribution function 
b i ( 0 )  = P(0utput is OISystem is in S,}. In most recogni- 
tion applications b, (0) is a mixture of Gaussian densities. 

We use one HMM per phoneme, which are then chained 
together to form the signs. The individual signs in turn 
are chained together into a network. Then the recognition 
problem is reduced to finding the most llkely state sequence 
through the network that could have generated the input sig- 
nal with the signs to be recognized. From the state sequence 

Modeling Simultaneous Aspects Regular HMMs, as we 
have described them so far, can model the sequential as- 
pects of the Movement-Hold model well, but they are not 
suitable for modeling the simultaneous aspects. In the past, 
researchers have suggested using factorial hidden Markov 
models [4] and coupled hidden Markov models [ 2 ] .  Al- 
though these two approaches are good at capturing simul- 
taneous, coupled processes, they would still require a pri- 
ori knowledge of all the possible phoneme combinations at 
training time. In other words, they do not address the un- 
derlying problem, which is the sheer number of possible 
phoneme combinations. 

Instead, we introduce Parallel HMMs (PaHMMs) as a 
modification to the HMM framework that directly reflects 
the decomposition of the simultaneous aspects of ASL into 
independent channels, as described in Sec. 3.1. We model 
each channel separately with HMMs and train them sepa- 
rately. At recognition time, PaHMMs combine the prob- 
abilities from each channel by multiplying them. That is, 
PaHMMs are essentially regular HMMs that are used in 
parallel. We describe the details of this approach and the 
algorithms for PaHMMs in [ 151. 

Because the channels are independent, the complexity 
problems with the number of possible phoneme combina- 
tions disappear. With PaHMMs we can train the phonemes 
in each channel separately and put together new, previously 
unseen combinations of phonemes on the fly. Thus, during 
the training phase, we need only enough data for a robust 
estimate of the HMMs’ parameters for each phoneme, in- 
stead of all combinations of these. 

4. Experiments 
We ran several continuous recognition experiments with 

3D data to test the feasibility of modeling the movements 
of the left and the right hands with PaHMMs. We used two 
channels, which modeled the movements and holds of the 
left and the right hands, respectively. Our database con- 
sisted of 400 training sentences and 99 test sentences over 
a vocabulary of 22 signs. The transcriptions of these signs 
are listed in [ 151. 

We collect the sentences with an Ascension Technolo- 
gies Motionstarm 3D tracking system, and with our vision- 
based tracking system at 60 frames per second. The lat- 
ter uses physics-based modeling to track the arms and the 
hands of the signer, as depicted in Figure 4. The physics- 
based models are estimated from the images from a sub- 
set of three orthogonal cameras. These are selected on a 
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Figure 4. These images show the 3D tracking 
of the sign for “father.” 

Regular HMMs 
Level Accuracy Details 
sentence 80.81% 
sign 93.27% H=294, D=3, S=15, I=3, N=312 

H = 80, S = 19, N = 99 

Parallel HMMs 
Level Accuracy Details 
sentence 84.85% H = 84, S = 15, N = 99 
sign 94.23% H=297, D=3, S=12, I=3, N=312 

Table 1. Results of the recognition experi- 
ments. H denotes the number of correct sen- 
tences or signs, D the number of deletion er- 
rors, S the number of substitution errors, I 
the number of insertion errors, and N the to- 
tal number of sentences or signs in the test 
set. 

per-frame basis depending on the occluding contour of the 
signer’s limbs [7]. 

We used an 8-dimensional feature vector for each hand. 
Six features consisted of 3D positions and velocities relative 
to the base of the signer’s spine. For the remaining two fea- 
tures, we computed the largest two eigenvalues of the posi- 
tions’ covariance matrices over a window of 15 frames cen- 
tered on the current frame. In normalized form, these two 
eigenvalues provide a useful characterization of the global 
properties of the signal. 

In the experiments we compared the recognition accu- 
racy of modeling only the movements and holds of the right 
hand with regular HMMs and modeling both hands with 
PaHMMs. The results are given in Table 1 and show that 
one the sentence level, the difference in recognition ac- 
curacy between regular and parallel HMMs is significant. 
Hence, PaHMMs can make the recognition system more ro- 
bust. 

5. Extensions to Gait Recognition 
Most of the framework for ASL recognition readily car- 

ries over to gait recognition. To test this hypothesis, we 
set up an experiment within our framework to discriminate 
among walking on level terrain, walking upward a slope, 
and walking downward a slope. 

The basic unit in gait recognition is the half-step; that is, 
the time a leg takes to complete one of the stance or swing 
phases. A step consists of two half-steps. The first half-step 

Pelvis segment and y-axis Pelvis elevation angle 

Figure 5. Sagittal elevation angles. We calcu- 
late them from the 2D positions of the markers 
at the sites indicated on the pictures. 

models the leg during the stance phase, and the second one 
models the leg during the swing phase. The type of gait 
can change any time a half-step has been completed. Thus, 
concepts from ASL recognition have direct equivalents in 
gait recognition: A whole signs correpsonds to a step, and 
a phoneme corresponds to a half-step. 

Before describing the experiment, we briefly cover how 
to represent gait data, which is very different from ASL 
data. 

5.1. Data Representation 
Elevation angles measure the orientation of a limb seg- 

ment with respect to a vertical line in the world. We define 
the limb segment v’between two points a’ and b on the body: 
v’ = a’ - c. Typically a’ and care points at opposite ends of 
a limb. The sagittal elevation angles are obtained by first 
projecting v’ onto the sagittal plane to form vs%9. The angle 
between vszg and the negative y axis is its sagittal elevation 
angle, 1c, (Fig. 5).  

We have followed the definition of elevation angles and 
placement of markers as used in [I], with the addition of 
a heel marker. Unlike joint angles and absolute coordinate 
values of the limbs, elevation angles are invariant with re- 
spect to different size humans. In addition, they appear to 
be invariant across different humans, as long as they per- 
form the same kind of walking activity (e.g., walking on a 
level plain, walking on a slope) [ 13. This property makes el- 
evation angles a compelling choice for recognition features, 
especially for person-independent gait recognition. 

5.2. Experiment 
The task of the experiment was to discriminate among 

walking on level terrain, walking upward on slopes, and 
walking downward on slopes; as well as to identify the tim- 
ing of the half-steps correctly. The slopes had different in- 
clinations anywhere between 8 and 15 degrees. The shape 
of the terrain affects only the elevation angle of the foot, 
whereas the other angles appear to be unaffected. For this 
reason, we used the three elevation angles of the lower leg, 
the upper leg, and the pelvis as the feature vector. 

+ 
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We measured the elevation angles from a walking subject 
with the help of markers, as shown in Fig. 5. Future work 
could use our framework for tracking 3D body models [7], 
instead, to measure the elevation angles from any perspec- 
tive. For the training set we used a set of ten measurements 
from a single person for each of level terrain, a 
upward slope, and a 15 degree downward sfope. 
used a total of six HMMs - two for each type of step - 
chained together into a network. The sampling rate was 60 
frames per second. 

The test set contained the elevation angles of a person 
walking across uneven terrain. The recognizer was able to 
identify all half-steps in the test set correctly. The recogni- 
tion of the timing of the steps worked well, as long as the 
type of step did not change. At transitions from one type of 
step to another, the recognizer often identified the end of the 
half step up to seven frames too early or too late. One pos- 
sible explanation is that the elevation angles behave differ- 
ently during a transition. In this case, modeling the transi- 
tions explicitly with HMMs, similar to modeling transitions 
between signs in sign language recognition [ 141, might im- 
prove the results. 

6. Conclusions 
We have developed a framework for human motion 

recognition. Although we initially applied it to ASL recog- 
nition, we have shown by example of gait recognition that 
it can be generalized to other recognition tasks. This makes 
our framework a promising contribution to the areas of 
human-computer interaction and video surveillance tasks. 

Future work in ASL recognition should model other 
channels, such as handshape and orientation, and incorpo- 
rate facial expressions, which constitute a large part of the 
grammar of ASL. It should also verify the framework with 
larger vocabularies. However, a prerequisite to experiment- 
ing with large vocabularies is a standardized corpus of ASL 
sentences. No such corpus exists at present. 

Future work in gait recognition should model the tran- 
sitions between different types of steps, incorporate more 
different types of steps (e.g., climbing a ladder or a stair), 
and model the differences between walking and running. It 
should also use 3D human body tracking, instead of mea- 
suring the sagittal elevation angles from the side with the 
help of markers. 
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