
Outline of a Calculus of Type Subsu.mption

Hassan Ait-Kaci

Technical Report MS-CIS-83-34

Department of Computer and Information Science

The }vfoore School of Electrical Engineering

University of Pennsylvania

August 1983

- . -

.... ✓ ___ ..

1. Abstract
2. Informal Discussion

2.1. Thesis
2.2. Antithesis
2.3. Synthesis

3. A Formal Calculus
3.1. On Indexed Terms
3.2. On Subsumption
3.3. On Indexings
3.4. On Term Lattices

4. Conclusion

Table of Contents
1
2
2
3
<1
5
5
'1

10
12
12

Figure 3-1:
Figure 3-2:
F'lgure 3-3:
Figure 3-4:

II

List of Figures
The Generalization Algorithm for Indexed Terms
The Unification Algorithm for Indexed Terms
Expression of a LUB in TISV/~
Expression of a GLB in TlS"../~

13
14
15
15

1

1. Abstract

This paper is a brief analysis of the notion of syntactic representation of
types followed by a proposal of a formal calculus of type subsumption. The
idea which is developed centers on the concept of indexed term, an extension

of the definition of algebraic terms relaxing the fixed arity and fixed indexing

constraints, and which allows term symbols to have some pre-order structure.
It is shown that the structure on the set of symbols can be l;lhomomorphically ii

extended to indexed terms to what is defined to be a subsumption ordering.

Furthermore, when symbols have a lattice structure, this structure extends to a
lattice of indexed terms. The notions of unification and generahzation are
also shown to fit the extension, and constitute the meet and join operations.

2

2. Informal Discussion

The approach which is developped in this paper deals with the notion of representation

and classification of objects. I shall assume some elementary background in universal

algebra, formal logic and automatic theorem proving.

2.1. Thesis

8ubiyping is concerned with capturing the notion of subsumption among abstract

objects. Thus, I would like to define a notational system for representing approximations

of objects of which one conceives in one's mind. Moreover, I want this system to contain

some mechanism which could automatically classify object thus represented objects in a

fashion which is congruent with their interpretation as approximations.

An example of such a system IS provided by first-order terms or trees in universal

algebra and logic. For example, I would like to express the fact that a person has a

name, a birth date, and a sex. Representing a thus specified generic person as a term

could be person (x, y, a). Then, by a convention remembered at interpretation, the

symbol person at the root of a term denotes a person object, and the variables z , y, z

as place markers for a person's name, date of birth, and sex, respectively. The

classification mechanism in this model is term inetantiaiion, or one-way first-order

unification. 1 The meaning of variables is that they stand for incomplete information and

may be substituted for by terms. Thus, person (Haaeani y , z) denotes any person named

Hassan, and person(Hassan,date(i4,June,y) ,z) designates any person named Hassan

and born the 14th of June. The term appearing as the date of birth in the latter person

illustrates the substitution process. If I choose to define a type to be a. first-order term as

shown, and the type classification ordering to be term instantiation, then I have at hand

a type system as wished. Indeed, the types thus defined form a lattice whose meet

operation (i.e., greatest lower bound) is first-order unification [S], and whose join

operation (i.e., least upper bound) is first-order anti-imijication; or generalization [4]. In

fact, a calculus for the representation of semantic networks was proposed in [2], based on

such a lattice as above.

IThat is, based on the partial ordering or terms defined as: tl ::5t2 if and only if there exists a

substitution e such that tl =t20.

3

2.2. Antithesis

There is however a certain amount of inflexibility inherent to the definition of types as

terms. Firstly, a term is a finitely branching tree. In particular, it has a fixed number of

arguments. If I want to extend the definition of a person to also have a. marital status, I

must entirely redefine the type person to take one more argument, and hence revise all

previously used instances of a person. Secondly, a term has a fixed order of arguments.

This is very convenient to consistently interpret position within a term as having a fixed

mea.ning. For example, in a person term, the first argument is once and for all meant to

denote the person's name. Indeed, this is also taken advantage of by the unification

process; i.e., in order to match, two terms are expected to have their corresponding

subterrns in the same order. This is the same principle used in most programming

languages to pass procedure parameters. As a. result, one must constantly keep in mind

the original intended interpretation of the order of subterrns. Thirdly, type subsumption

as one-way pattern-matching is forcing a common syntactical pattern for all terms in a

chain in the lattice. For example, if I define a type student ex, y) where ex, y) stand; in

this order, for school and subject, then I cannot express that I also intend a student to be

a person, since a type is identified by its constant root symbol and student is distinct

from person. Finally, there is no provision in the definition of a term for specifying any

restriction on the pattern of subterrns. For example, restricting the name of a person to

terms whose root symbols belong to, or better yet do not belong to a given set, is not

syntactically possible.

The foregoing shortcomings of the first-order term model of types make it rather look

rather limited. However, it has appeal because of its solid formal grounds, its simplicity,

and its use as the basic model of types of such clear and clean programming languages as

PROLOG.2 It would be of great advantage if this model of types could be enhanced so

that it may keep its elegance and sound formal basis, lend itself to a powerful

interpretation scheme, and yet overcome the limitations explicated above. The remainder

of this section is the description of such a data. model.

21 am not referring to any particular implementation, but rather to the abstract and pure language

4

2.3. Synthesis

I propose to modify the notion of a type by extrapolating on the classical definition of a

term. Let's first relax the fixed-arity constraint; i.e., a term may have an unbounded

number of subterms. Next, let's relax the fixed-position constraint by explicitly indexing

or labeling the arguments. The reader familiar with ADA will note that this language

allows a procedure call's actual parameters to be specified either by position, or possibly

out of order by explicit labeling. However, in ADA all actual parameters muei be

present. In our case, since a type can now have a potentially infinite number of

attributes, all that is ever needed is to specify only those which are relevant at any given

time. For example, person (name :Hassan) denotes all persons named Hassan, and

person (sex: Male) stands for all male persons. Furthermore, let's assume some partial

ordering on the root symbols. This can easily be extended to an ordering on terms in a

way very similar to a homomorphic extension. For example, if the symbols person and

student are such that student-<persoIl., then I can consistently say that

student (name : Hassan, subj ec t iCf S) IS a subtype of par aon Iname t Has aan ,

subj ect: CIS).

I shall call this kind of extension of a term an indexed term, or more figuratively a type

template. Its definition stays inductive in essence as is the definition of a. term in

universal algebra. The idea is based on the concept oi rnulti-sorted terms with the very

peculiar difference that the set of sorts is the set of terms! This is quite a new formal

window through which to look at data and program structures that makes them

syntactically undistinguishable. This forces re-thinking of many related notions. The

concepts of variable and symbol which are central in programming as well as formal

languages are to be construed in a completely different yet more general way. Indeed, I

shall try to explain that if symbols are partially ordered, the notion of variable is but the

restrictive designation of a maximum element. Symbols, and indexed terms for that

matter, may be specified as upper bound constraints within other terms. I shall try and

show how a, natural extension of a partial ordering on the symbols may be consistently

defined on indexed terms. Such classical operations as va-riable substitution, term

unification, etc., take on a new interpretation of which the classical well-known notions

are particular cases.

5

The next section describes the grounds on which the order structure of the set of

indexed terms will be resting.

3. A Formal Calculus

3.1. On Indexed Terms

I shall call an index set any countable, not necessarily finite, totally ordered set. I shall

use the symbol If < iJ (resp., tI ~ II!) to denote an index set's ordering (resp., its reflexive

closure]. Examples of index sets are the set of natural numbers naturally ordered, and

the set of all strings on a linearly ordered alphabet ordered lexicographically. An

indexing function is a strictly increasing function from an initial segment of N+, the set

of positive integers, to an index set I. I shall refer to such a function as an l-indexin.q.

The notation en] stands for the initial segment {:1.,n): and [0], for 0.

Deflnit.lon 1: Let S be a set of sy·?nbols; and 1) a set of variables. Let I an
index set. The set T1SV of indexed terms (or indexed trees) is the set
inductively generated as follows:

It Variables are indexed terms;

e Symbols are indexed terms;

Cl Otherwise, an index term is a triple of the form (f, i, T), where f is a
symbol in S, IS an I-indexing (i,e., ,,:N+ --d), and T =

{t « ') , ... , t (,) is a set of indexed terms.i ,.i. t. n,

One readily recognizes a straightforwyd extension of the notion of first-order terms in

def~nitio~ 1. lnde~d, the class~cal ~efinToIl corresponds to t~e case wher~ I is ~ +, and

all indexing functions are the identity on N+. The set of variables of an indexed term t

will be denoted as Var{t).

The introduction of indexing is not merely to make a complicated matter of }1, simple

one, but to allow for more flexibility of representation for terms along the lines of what

was discussed in section 2.3, page 4. This will also allow a more general treatment of the

lattice-theoretic properties of subsumption which will serve our eventual calculus of

partially ordered types. For now, one can always rely on the classical term

6

representation of the form f (t1, ... ,tn) to ground one's intuition of what is to come.

Indeed, as mentioned before) this representation is but a particular syntactic variation of

the indexed term (f,t,{t (1\'" .,t (,}), where t is the identity on N+. I shall oftent) t n,

use this classical notation in illustrative examples which would otherwise be notationally

cumbersome if given for general indexed terms.

Next, we need a similar generalization of the concept of 'variable substitution. As

usual, a substitution is a function from V to T1SV which is the identity function almost

everywhere, except for a finite set of variables. A substitution B will thus be identified to

a finite set of pairs {(vi' t1) , ... , (v ,t)} such that vB=t. if v=v., and vo=v otherwise.n n 1 1
;«

This is extended to an indexed term subsitution 0 in a "hornoruorphic" way as follows:

*I) to :: to if t is a variable;

'*
4iil to = t if t is a symbol;

In general, the '"homomorphic 01 extension will be confused for the variable substitution
*itself, and therefore the notation II to" will be used when it is actually meant H to II

The composition of substitutions is defined exactly as usual, and I recall it next for the

sake of completeness.

Definition 2: Let B = {(Yi,s)}~=l and ¢ == {(wj.tj)}j=l two
substitutions. The composition of (}and 1>is the substitution denoted 81>, and
defined as O¢::::: ({(vi,8i¢')}~=1 U 1» - {(v,"l) I vE{vi}~=l} - HWjJtj) I
j E Inl . and ::liE [m), vi =w j }.

Applying the composition O¢ to a term IS then the same as first applying e, then

applying 1/>. Let's also recall that substitution composition is associative, non-

commutative, and that it defines a partial ordering on the set of substitutions: B is less

than if> if there exists a substitution l' such that 1)=BV)·

When an equivalence relation is defined on terms, particular substitutions relatively to

given terms, called unifiers and generalizers, are defined as follows.

7

Definition 3: Let :::--= be an equivalence relation on the set of terms. Let 8

and t be two terms. A unifying substitution, or unifier, for sand t is a
substitution 8 such that s8 == to. A gener-alizing pair- of eubetitutions, or
pair of qeneralizere, for sand t is a pair of substitutions (0, ¢) such that
there is a term u, and uO = sand utj> = t.

For example, using the classical algebraic term representation and term equality as an

equivalence relation on terms, consider the terms 6 :::::f (z , g (a» and t = f (h (b) , y) .

Then, {(x,h(b», (y,g(a,))} is a unifier for Band t, and ({(y.g(a)},{(x,h(b»}) IS

a pair of generalizers for sand t with generalized term f (z , y) .

3.2. On Subsumpt.ion

A (partial) ordering on a set S is a binary relation on S which is reflexive, anti-

symmetric, and transitive. A quasi-orderinq on a set S is a binary relation on S which is

reflexive and transitive. A quasi-ordering .-< on S induces an equivalence relation '"'-' on S

defined as -< n -<~l. Furthermore, the quasi-ordering -< induces an ordering relation -<

on the quotient set S/""' defined as follows: [xl~[yl if and only if x-<y.3

Definition 4: Let S be a set of symbols quasi-ordered by .<: 1 V a set of
variables, and I an index set. The subsurnpiion relation ::S induced by -< on
the set of indexed terms T1SV is inductively defined as follows; a -< t, if and
only if there exists a. substitution of variables 0 such that:

1. either t is a. variable and s == to;

2. or s == (f , i , {8,~(1)' ... ,St(m)})' t == (g, 'T/,{t17(1) , ' .. ,t'T/(n)}) ,4 and

a. f -< g;

b. n < m;

c. there exists a [m]-indexing K: [n]~[m], such that t(II:(i»=rl(i)
and a (,.» -< t (.)0, Vi.. 1<i<n.

/, K ~l - Tf 1 '

3This is well-defined SInce it can be easily verified that it does not depend on particular class
represen tativ es.

4Here and in all that follows, we use the notational convention that a term of the form

(f,L,{t (1)' ... ' t I)}) with n=O is equivalent to the symbol f.t t,n

8

This definition is meant to generalize the simple subsumption notion corresponding to

the orthodox term instantiation. Indeed, this is what it would reduce to if definition

4 was limited to the case where the quasi-ordering on S is equality, all indexings are the

identity 011 N+, and terms have fixed arity.

To illustrate this general notion of subsumption, let's consider the set of symbols

$={a.,b,f,g,h} such that b-ca and f-<g. In the following example, let's assume that all

indexing is systematically the identity on N+. According to definition 4, we thus have:

f(x,x,a) -< g(y,z) (1)
f (f (a, z) , g (y, b) , h (z) -< g (g (z) ,g (u , z) (2)

One can verify that a substitution for inequality (l) IS {(y, z) , (z , x)}, and one for

inequality (2) is {(z,a.), (u,y)}.

Theorem 5: Let S be a set of symbols quasi-ordered by -<, V a set of
variables, and I an index set. Then, the subsumption relation :S induced by -<
on the set of indexed terms T1SV is a quasi-ordering.

Proof: \Ve must prove that -< is reflexive and transitive. 'tVe proceed by
structural induction. For reflexivity, we must verify that for any term t we
have t-<t. The base cases are when t is a variable or a symbol and are trivial
The inductive case for t = (f,L,{tL(l)' ... ,tL(n)})' with n~O is also
immediate, taking 8 to be the empty substitution, and", the identity on [n}.

As for transitivity, let a , t, u be terms such that s-<t and t-<u. If u is a
variable, then immediately s -<u. Now, for the inductive step, Jet's assume u is
not a variable. Then, by the definition of subsumption, t, is necessarily not one
either. And hence, s must also be a non-variable. 'Writing s .-
(f,L,{S (,), ... ,s ('})' t = (g,J,{t (l), ... ,t ()}). and u =

L 1 L Mj 11 11n '
(h,8,.{.Uq(1)' ... 'uo(p)})' we have p<rr:'lf-<h (sinc~ s-:t and t-<u, and by
transitivity of S; and -<), and there eXlslt two substitutions 81, and fJ2, and a
Em] -indexing "1' and a En]-indexing "'2 such that:

ViE lal ('»)o

'v'j E [p] f 41\)

9

s~(.'1;1 «» --< t (')81, ViE[n] (.5)rl 1

t11 (K2 «» -< U8(j) 82, 'v'j E [p] (6)

by definition of subsumption. Now, define the substitution 0=--,;:8281, and the
Em] -indexing K=1\:10K2' Hence, using equations (3) and (4) together with
associativity of composition, we obtain:

'v'jE [pJ

and combining this with inequalities (5) and (6), we get:

'v'j E [p],

By inductive hypothesis on the transitivity of -<, this states that we have s --<u,
and terminates the proof.

As a corollary, the subsumption quasi-ordering on T1SV induces an equivalence relation

R:::: on T1SV' Furthermore, it induces a partial ordering on the quotient set 7ISV/R::::, where

R:::: is defined as --< n -<-1, as described in the beginning of this section.

Lemma 6: The set of variables 11 is an equivalence class modulo
furthermore, 11is the maximum element in TISV/~'

"'-'"

The proof of lemma 6 is immediate. We can then justifiably adopt the notation

TT /~' or simply T when there is no ambiguity, to denote tV], for any variable v inISV r--;»

V.

It must be clear, at this point, that most notions defined for regular algebraic terms are

easily generalizable to indexed terms. Thus, let's define the concept of congruence.

Definition 7: Let T1SV be defined as before. Let "'-' be an equivalence
relation on S, and R:::: an equivalence relation on T1SV' The relation R:::: is an
indexed congruence (or simply a congruence), if and only if whenever two
symbols f and g are such that f"'-'g, and n pairs of indexed terms sp ti'
iE[n], are such that B.R::::t·l then (f,~,{s1"" ,s }) ~ (g,~,{tl"" ,t }),~ ~ . n n
for any I-indexing t: [n]-41.

10

It is therefore not difficult to establish the following lemma.

Lemma 8: The equivalence relation ~ = -< n -<-1 induced by a
subsumption relation -< on the set of terms T1SV is a congruence relation.

3.3. On Indexings

The result that will be of prime interest is stated as theorem 13. In order to be

complete, the preliminaries necessary for its proof must contain a study of the particular

order structure on the set of]:·indexings suggested in definition 4. This is what is further

described and elaborated upon in this section.

Definit.lon 9: Let I be an index set, and let t: Em]-+1 and 17: En] -+1 be two
J--indexings. Define the binary relation -«: on I-indexings as: t-«:17 if and only if
(1) n<m, and (2) there exists a [mJ-indexing IC:[n]-+[m], such that 1/=.01(;.

The verification of the following proposition is straightforward.

Proposition 10: The relation « defined in definition 9 IS an ordering
relation.

We can define two binary operations V and 1\ on the set of I-indexings. Let ~:[m]--1

and 11:[n] _.,...£ be two I-indexings. Let p = It ([ruJ)nl1 ([n]) I, and q --

It ([m]) UI/ (Tn l) I. Let (\117: Ipl -- 1 and tl\77: [q] -+I be the two I-indexings defined as:

(tV1J)(i) = the ith least element in t«(m])(iq([n]), ViE[p] ('7)\ I

(t!\1l)(i) = the ith least element in l([m])U1J([n]), 'v'iE[q] (8)

where "Ieast " refers to the total ordering on I.

This leads to the following theorem:

Theorem 11: The binary operations defined by expressions (7) and (8)
define a lattice structure on the set of I-indexings ordered by «, and yield
respectively the UJB and GLB of two I-indexings.

Proof': Let t, -I], n , Ill, p. q be defined as above. We need to establish first
that tVrl and tl\rt are indeed respectively an upper bound and a lower bound of

11

both t and "I. For this, consider the four indexings "1: [p] -+ (m], "2: [p] - En])
11:3: [mJ --+ [q], and "4: En] - [q]) respectively defined by expressions (9), (10),
(11), and (12).

te1 (jJ = j, where j E Em] and t (j) == (tVTJ) (1) , ViE [p] (9)

(" = j,wherejE[n] and "I (j) = (tVTJ) (i) , ViE (p] (10)"2 ~I

K3 (i) _. j, where j E [q] and (t!\'II) (j) == t (i) , \fiE [m] (11)

1>:4 (a) = j, where j E [q] and (I,ATJ) (j) :::; "I (iJ , ViE En] (12)

It is easy to verify that these are well-defined four indexings such that, on
one hand, tOKl -= TJ0K,2= i.\/n" and hence, tV11 is an upper bound for both t and
11; and on the other hand, (LAn)o/i:3 = i, and (tA11)OK4 = 11, proving that LAI] is a
lower bound for both /, and '1].

The next thing to prove that tVrt is the least upper bound. Let a: [p'] -I be
a. I-indexing such that i«a and l/«a. That is p' :Sm., p'<n, and there exist two
indexings .;;'1: lp'J --+ Em] and K'2: [p'J - [n] such that a=I,O,,' 1 and a=--=17oK'2'

Therefore, a (i) El ([m]) and a (a) E'I] (InD , ViE Ip'I . That IS,

a ([p']) ~=t (Iml) nlJ (En]). But, 0: is an indexing, and so it is injective. Hence,
p'<p. Now, consider the indexing /J: [p'J-[pJ defined by fj == (LV/i)-lo/,ol,;'l'

where (LV11) -1: (tVr;) ([p]) -+ [p] is the inverse function of ~VY/. The function fj

is well-defined and is indeed an indexing. Furthermore, tV17=o:ofj- Therefore,
we have proved that a«tV11.5

Finally, we prove that t/\17 is the greatest lower bound. Let 0:: [q'J - I be a
I-indexing such that a«L and a«17. That is m~q', n<q', and there exist two
indexings 1\:'3: Em] ----+ Iq'I and 1<:'4: En] - Iq'I such that L=aOtc'3 and rl=ao/'~'4'

That is, ViE Em] U (11,] # :3jE Iq'I , 0: (f) =, (a.) or 0: (a) =11(i). We can
reformulate this as follows: \f1{Et(Iml) U'I] ([n]), :3jE Iq'L. a (j) =k. Again,
since a is injective, this proves q<q'. Also, this justifies the sound definition of
the indexing B: ['1] - [q'J as: \fiE Iql , ,8 (L) =j , j E Iq'I and
a (j) = (I,AI]) -1 (i), where (/,A11) -1 : (tA17) ([q]) _ [q] is the inverse function of
tA11. Again, the function fj is well-defined and is indeed an indexing.
Furthermore, Ct=(L/\Y/)Op_ Therefore, we have proved that tA11«a.

---_._-----
5We could as well have defined f3 == (tV11) -101/OK'2' The proof works symmetrically,

12

3.4. On Term I.•att.iees

The last step before theorem 13 concerns the definition of algorithms of unification

and qeneralization for indexed terms.

Lemma 12: If the set of symbols S is a lattice, then for two given indexed
terms in T1SV' a maximum pair of generalizers always exists and is
computable. Also, a minimum unifier or proof that no unifier exists is
computable.

Proof: Given two indexed terms, the algorithm in figure 3-1; page 13,
computes their maximum pair of generalizers, and the algorithm in figure 3-·2,
page 14, computes their minimum unifier or fails. In these two algorithms, it is
made implicit use of p, q, V, 1\, as defined in expressions (7), (8), and of 1\:1' /(2'

11:3, and /(4' defined by expressions (9), (10), (n), and (12).

,iVe are finally ready for the main theorem:

Theorem 13: If the quasi-ordering -< on the set of symbols S is a lattice
ordering, then the quotient set T1SV/R::, augmented with a bottom element

..lr /~~'where ~~ is defined as -< n -<-1, has a lattice structure.
ISV ~~

Proof: We need to prove the existence of LUB's and GLB's. The expressions
sup and in! in figures 3-3 and 3-4 are well-defined and compute respectively
the GLB and the LUB of two congruence classes modulo ~.

4. Conclusion

Introducing the notion of indexed term and subsumption as specified in definitions

1 and 4 is aimed at extrapolating and generalizing the essential properties of orderings

such as the ones studied in [3] and [4]. The study of this definition of subsumption will be

the basis of a semantics of the theory of types which I propose to develop. As an

illustration, I intend to use the calculus defined here to formally capture the kind of

structures generally proposed as semantic networks. One such example which I think

would lend itself to be thus formalized is KI-0ne, the knowledge representation language

developed by R.Brachman [1]. Another concrete goal is the extension of the logic

13

procedure generalize
(input

s,t ; indexed term;
~1'~2 ; substitution;

~utput
81,82 ; substitution;
u : indexed term)

begin
81 ;= ~1; 82 ;= ~2;

if s is a variable then
if s = t then u ;= s
else

if s = s¢2 then ~ 82 ;= 82LJ{(s,t)}; u ;= S end
else
if 3vEV such tha.t =. = sand vtP

2
=t then u r= v

else
~.!!
let vEV such that v
81 ;= 81LJ{(v,s)}; 112
end

:= v

else
if t is a

if t

variable then
ttPl !hen begin 81 ;= 81LJ{(t,s)}; u ;= t end

I
that v¢1 = sand v¢2 =t then u ;= v

else
-j~f3vEV such

else
begin
let vEV such tha.t v
81 ;= 0lLJ{ (v , s) }: (j2

end

= «. = v¢2;

02U!{(V,t')}; u ;= v

else
begin
let s = (f,L,{Si(l),·",sl,(lTL)})' t = (g,t1,{t?](1), ... ,t17(n)});

!.or i ;= 1 to p do generaliZe(St(ljl(i)),t'I](''l:
2
(l.)),{ll,B2,e1,(12,U(tVr])(i));

u ;= CS'UPS(f,g),tV17,{U(tVl1)(l), ... ,UCtVrn(p)})

end
end;

Figure 3-1: The Generalization Algorithm for Indexed Terms

14

procedure unify
(input

s,t : indexed ter~;
¢ : substitution;

output
() substi tution 9!. fail;
u : indexed term)

begin
(j : = ¢>;
if s is a variable then

if t is a variable then
begin u := t; if --;-r? t then () (}{(s, t)} end

else
if sEVar(t) then () := Jail
~lse begi~ u := t; () := (}{(s,t)} end

else
if t is a varia.ble then ~~n u
else

begin
let s > (f,£,{si(1),···,sL(liI)}), t = (g,T/,{t7](l), ... ,t1'/(n)});

h := infsU ,g);

if h = ~s then () Jail
else

bep:in
i := 1;
while (i < q) ane! (0 T- Jail) do

p'~gin
if C3j, jE[m] and "3(j)=i) ~ (3k, kErn] and K:4(k)=i) then

unify (s L(j) (), t7](k) (), B, B, U (L/\ rO (i))

else
if :Jj, jE[m] and "3(j)=i then u(L/\71)(i) SL(j)

else
if 3k, kE en] and K:4 (k) =i then u(L/\7])(i) t170c);

s; (J B{(t,s)} end

i := i+1
end

if () 7= fa-il then u

end
end

Figure 3-2: The Unification Algorithm for Indexed Terms

15

SUp([s), [t)) := [u]
wh!E! generalize(s,t,0,0,81,B2,u);

Figure 3-3: Expression of a LtJB in TISV/R::j

inf ;(s), (t]) := if 8 = Jail then _L "I- /~ else [u]
- -- lISV'" --

where sE [s] and tE [tJ such that. Var (5) n Var (t) = 0
and unify(s,t,0,B,u);

Figure 3-4: Expression of a GLB in TISvl~

programming language PROLOG to a typed interpreter of indexed term "Horn It-clauses.

In fact, this idea introduces a whole study of a definition of models for indexed term

alqebrae, their existence, and the possibility of extending such notions as algebraic, logic,

and denotational semantics. Indeed, the content of this paper has just barely scratched a

film off a potentially fecund mathematics. It is an equally interesting challenge to point

out either of its positive or negative upshots.

1 ~10.l.0

References

[1] Brachrnan, R.J.
A. Neui Paradigm for Representing Knowledge.
BBN Report 3605, Bolt Beranek and Newman, Cambridge, l\t1A, 1978.

[2] Deliyanni, A., and Kowalski, R;A.
Logic and Semantic Networks.
Communications of the AC1\!f 22(3):184-192, 1979.

[3] Plotkin, G.D.
Lattice Theoretic Properties of Subsumption,
Memorandum .MIP-R-77, Department of Machine Intelligence and Perception,

University of Edinburgh, June, 1977.

[4] Reynolds, J.C.
Transformational Systems and the Algebraic Structure of Atomic Formulas.
In D. Michie (editor), Machine Intelligence 5, chapter 7. Edinburgh University

Press, 1970.

[5] Robinson, J.A.
A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the AC~\112(1):23-41, 1965.

