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Pairing an Epsilon-Negative Slab With a Mu-Negative
Slab: Resonance, Tunneling and Transparency

Andrea Alù and Nader Engheta, Fellow, IEEE

Abstract—Here, we analyze the transverse-magnetic (TM)
wave interaction with a pair of slabs, one being an epsilon-negative
(ENG) layer in which the real part of permittivity is assumed
to be negative while its permeability has positive real part, and
the other being a mu-negative (MNG) layer that has the real
part of its permeability negative but its permittivity has positive
real part. Although wave interaction with each slab by itself has
predictable features, we show that the juxtaposition and pairing
of such ENG and MNG slabs may, under certain conditions, lead
to some unusual features, such as resonance, complete tunneling,
zero reflection and transparency. The field distributions inside
and outside such paired slabs are analyzed, and the Poynting
vector distributions in such structures are studied. Using equiv-
alent transmission-line models, we obtain the conditions for the
resonance, complete tunneling and transparency, and we justify
and explain the field behavior in these resonant paired structures.
Salient features of the tunneling conditions, such as the roles of
material parameters, slab thicknesses, dissipation, and angle of
incidence are discussed. The analogy and correspondence between
the ENG-MNG pair and the pair of a slab of conventional material
juxtaposed with a “double-negative” medium is also discussed.
Finally, a conceptual idea for a potential application of such a
“matched” lossless ENG-MNG pair in “ideal” image displacement
and image reconstruction is proposed.

Index Terms—Double-negative material, left-handed material,
metamaterial, negative index of refraction, negative permeability,
negative permittivity, negative index material, transparency, tun-
neling, zero reflection.

I. INTRODUCTION

RECENTLY, the idea of electromagnetic complex mate-
rials with both negative real permittivity and permeability

(referred to with various names such as double-negative (DNG)
[26] or left-handed (LH) media [1]) has attracted a great deal
of attention (see e.g., [1]–[41]). This idea dates back to 1960s
when Veselago considered theoretically the monochromatic
electromagnetic plane wave propagation in a lossless medium
with simultaneously negative real permittivity and permeability
at a given frequency, and he theoretically showed that in such
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media the direction of the Poynting vector is antiparallel to the
direction of phase velocity [1]. The recent resurgence of interest
in this medium began when Smith, Schultz and Shelby, inspired
by the work of Pendry ([2]–[4]), constructed such a composite
medium for the microwave regime [5]–[7]. Their composite
“medium” consists of arrays of small metallic wires and split
ring resonators [5]. Many research groups are now exploring
various aspects of this class of complex media, and several
potential future applications have been speculated ([1]–[41]).

In one of our earlier works in this area, we theoretically intro-
duced the idea of thin subwavelength cavity resonators ([8], [9])
in which a layer of DNG material was paired with a slab of con-
ventional medium (i.e., double-positive (DPS) medium). In that
work, our theoretical results revealed that a slab of DNG meta-
material can act as a phase compensator/conjugator, and thus by
combining such a slab with another slab made of a conventional
dielectric material one can, in principle, have a 1-D cavity res-
onator whose dispersion relation does not depend on thesum
of thicknesses of the interior materials filling this cavity, but in-
stead it depends on theratio of these thicknesses [8]. We later
extended this work to the analyzes of parallel-plate waveguides
containing a pair of DPS and DNG layers, guided modes in open
DNG slab waveguides, and mode coupling between open DNG
and DPS slab waveguides ([9]–[14]). In each of these problems,
we have found that when a DNG layer is combined with, or is
in proximity of, a DPS layer interesting and unusual properties
are observed for wave propagation within this structure. Indeed,
the paired DNG-DPS bilayer structures may exhibit even more
interesting properties than a single DNG or DPS slab – prop-
erties that are unique to the wave interaction between the DNG
and DPS layers.

Most of the work reported in the recent literature has been fo-
cused on the wave interaction with DNG media, either by them-
selves or in juxtaposition with conventional (DPS) media. How-
ever, materials in whichonly oneof the two parameters and

has the negative real part,not both, may also exhibit unusual
features when they are paired in a conjugate manner. Fredkin
and Ron [17] have shown that such a combination can provide
an effective group velocity that would be antiparallel with the
effective phase velocity, and thus this combination may act as
an equivalent LH medium. Here in the present work we present
some other sets of interesting characteristics of this paired struc-
ture, such as resonance, complete tunneling and transparency,
and we show another form of connection and correspondence
between the ENG-MNG bilayer structure and the DNG-DPS
pair.

Methods for constructing particulate composite media in
which the real part of permittivity can attain negative values in
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a certain frequency range have been suggested in the literature
(see e.g., [4]). Likewise, techniques to form passive complex
media with negative real permeability in a given frequency
band have also been studied [3]. To form a medium with both
real permittivity and permeability being negative, one has
to combine both fabrication techniques, as done in [5]–[7].
However, it seems that constructing two slabs of materials, each
with only one of the material parameters having negative real
part, may be less intricate, and this is one of the motivations
behind our work presented here.

As for the terminology, for a medium with negative real
permittivity (and positive real permeability), we use the term
epsilon-negative (ENG) medium, while for a medium with
negative real permeability (and positive real permittivity) we
choose the term mu-negative (MNG) medium. These are indeed
media with single-negative (SNG) parameter, as opposed to
double-negative (DNG) media [26]. In most of our analysis,
the media are assumed lossless. However, when dissipation
is considered, the complex parameters and

are used where and are nonnegative
quantities for passive media for the time dependence. We
also consider loss to be relatively small, i.e., and

. Finally, although this work reported here involves
the transverse-magnetic (TM) polarization case, similar fea-
tures and results are obtained for the TE case, which can be
easily shown by using the duality principle.

II. GEOMETRY AND FORMULATION OF THE PROBLEM

Consider a Cartesian coordinate system ( ) with unit
vectors , , and . We take a TM -monochromatic plane
wave in free space with its wave vector
in the - plane, with , and its magnetic and elec-
tric field vectors and given below:

(1)

We assume the problem to be two-dimensional (2-D), i.e., all
quantities are independent of thecoordinate. We also assume
the component of the wave vector,, to be a real quantity, and
thus for the case of a propagating wave we have .
If, however, , the wave will be evanescent, and the
choice for the root square will be
to have a decaying wave along the direction.

Consider a pair of slabs of thicknessesand , one made
of a lossless ENG material and the other of a lossless MNG
material inserted in the region . (Fig. 1) We take
the TM incident wave to be the one given in (1). Since in these
ENG and MNG slabs , we have in each slab
and thus waves in such layers are obviously always evanescent.
Therefore, the magnetic field vectors in the four regions can be
written as follows:

Fig. 1. Geometry of the problem: TM wave interaction with two slabs, one
of which can be made of an ENG material, in which real part of permittivity is
negative (but real part of permeability is positive), and the other made of a MNG
material, in which the real part of permeability can be negative (but real part of
permittivity is positive). Outside region is assumed to be free space.

(2)

where and are the reflection and transmission
coefficients, the coefficient ’s are the amplitude coefficients
of waves in each of the slabs, normalized to the amplitude
of the incident wave, the subscripts () and ( ) indicate the
forward-decaying and backward-decaying evanescent waves
in each slab, and with ,
2 represents the wave number in each slab. The expression for
the electromagnetic fields in all four regions can be trivially
obtained from Maxwell’s equations. We should emphasize that
since these slabs are made of SNG materials, and

. The reflection and transmission coefficients and
the coefficients ’s can be obtained by requiring the tangential
components of the electric and of the magnetic fields to be
continuous at the boundaries. The detailed expressions for
these coefficients for the general 2-slab problem are obtained,
but it is too long to be included here. To gain some insights
into the behavior of the fields in these regions, instead we
present the plots of real and imaginary parts of the magnetic
fields ( component) in these four regions for selected
parameter values. Fig. 2(a) shows the magnetic field
behavior inside and outside the slabs for a sample pair of
ENG-MNG slabs. Here we notice that the slope of the term

has opposite signs on both sides of the boundary
between the slabs, in addition to the change of slope sign at the
boundary . This is due to the fact that the tangential com-
ponent of the electric field
must be continuous at the boundaries, implying that
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(a)

(b)

Fig. 2. Real and imaginary parts of the normalized total transverse magnetic
field as a function ofz coordinate, when a normally incident TM wave
illuminates a pair of: (a) lossless ENG-MNG slabs and (b) lossless MNG-ENG
slabs. Here the magnetic field intensity of the TM incident wave is assumed
to be unity, i.e.,H = 1 in (1). In (a), the parameters are chosen to be
" = �3" , � = 2� , " = " , � = �5� , d = 2�=5 jk j,
d = 2�=5 jk j, � = 0; and in (b) the two slabs are simply reversed in
position. The value of reflection, transmission, andC ’s coefficients are then
found to beR = 0:17 + 0:94j, T = �0:04 + 0:3j, C = 1 � 1:19j,
C = �0:16 + 0:25j, C = �0:3 + 0:48j, C = 0:01 + 0:04j
in (a) andR = 0:4 � 0:87j, T = �0:04 + 0:3j, C = 0:49 + 0:75j,
C = 0:1 + 0:12j,C = 0:56+ 0:59j,C = �0:06+ 0:03j in (b).

.
Since in Fig. 2(a), and , the term thus
has opposite signs on both sides of (and also on both
sides of ). As a result of this change of slope at ,
the dominant behavior of the magnetic field (for the TM case)
in the two slabs is different, i.e., if in the first slab the total
magnetic field is decreasing just before it gets to , it will
be increasing in the second slab just past , or vice versa.
Fig. 2(b) shows the plot of for the case where the first slab
is a MNG material and the second slab is an ENG medium. A
similar observation can be made here with the change of slope
sign at and .

This difference between the field behavior in the ENG and
MNG parts of this bilayer structure obviously affects the trans-

mission and reflection coefficients and, as will be shown in the
next section, this can lead to an interesting anomalous tunneling,
transparency and resonance phenomenon.

III. EQUIVALENT TRANSMISSION-LINE (TL) MODEL AND

DISTRIBUTED CIRCUIT ELEMENTS FOR THEENG-MNG
BILAYER

It is well known that considering the equivalent TL
model for a TM plane wave propagation in a homogeneous
isotropic medium, one can write and

where and are shorthand
for and for the TM case.
(Using duality, we can find the corresponding terms for the TE
case.) With these expressions one can express the equivalent
inductance per unit length and equivalent capacitance per
unit length for this TL model as

(3)
where and are two positive constant coefficients that de-
pend on the geometry of the equivalent transmission line. Using
the concept of and , we propose appropriate equivalent
TL models for waves, either propagating or evanescent waves,
inside DPS, DNG, ENG, and MNG slabs. Such TL models for
the lossless case are listed in Table I for easy reference. In as-
signing equivalent TL models for each of these cases in Table I,
we take into account the following points.

1) If happens to be a negative real quantity, will be
negative real, which conceptually translates into “nega-
tive inductive reactance” at a given
frequency. This negative reactance can be effectively re-
garded as the reactance of an equivalent “positive capac-
itance”, i.e., for that given fre-
quency. So in the TL analogy, whenever , we can
think of that as an effective positive capacitance . In
such a case, the TL model consists of series capacitance

(instead of conventional series inductance).
2) Likewise, if , we will have , which

can be viewed as an effective shunt positive inductance
, i.e., . In this situation, we

will have a shunt inductor (instead of a shunt capacitance)
in the TL model; The equivalent C-L transmission line
as the “left-handed” transmission line has already been
considered in [19]–[22] as a realization of 1-D and 2-D
wave propagation in DNG media.

3) We are assuming to be a real quantity. Thus, for a
propagating wave in a lossless medium we should have

, and for an evanescent wave .
Therefore, as mentioned earlier, waves in lossless ENG
and MNG slabs are obviously always evanescent, hence
there is only one single entry for each ENG and MNG
case in Table I.

4) We use the symbols L-C, C-C, L-L, and C-L transmission
lines to distinguish which reactive elements are used as
the distributed series (first symbol) and shunt elements
(second symbol), respectively, in the TL model.
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TABLE I
EFFECTIVETL MODELS FORTM WAVES IN LOSSLESSDPS, DNG, ENG, MNG SLABS. BOTH PROPAGATING AND EVANESCENTWAVES ARE CONSIDERED INTHIS

TABLE. IN EACH CASE, A SKETCH OFINFINITESIMAL SECTION OFTL MODEL WITH DISTRIBUTED SERIES ANDSHUNT REACTIVE ELEMENTS PERUNIT LENGTH OF

THE LINE IS SHOWN. IN ADDITION, IT IS ALSO INDICATED WHETHERL AND C IS POSITIVE ORNEGATIVE, AND WHETHER� AND Z ARE REAL OR IMAGINARY

QUANTITIES. THE SYMBOLS L-C, C-C, L-L, AND C-L TRANSMISSIONLINES AREUSED TOINDICATE WHAT EFFECTIVEREACTIVE ELEMENTS AREUSED AS THE

DISTRIBUTED SERIES(FIRST SYMBOL) AND DISTRIBUTED SHUNT EFFECTIVEELEMENTS (SECOND SYMBOL), RESPECTIVELY, IN THE TL MODEL

5) When the loss is present, one can always add the equiv-
alent distributed series resistance and shunt conductance
per unit length in the TL model given in Table I.

The paired ENG-MNG structure can now be viewed as
the cascade of transmission line segments with appropriate
TL elements shown in Table I, representing the TM wave
propagation in the ENG and MNG slabs sandwiched between
the two similar semi-infinite lines. Using the standard TL
formulation, one can find the following expression for the
transverse input impedance at the front face ( ) of any
generic bilayer followed by a uniform half space, see (4) shown
at the bottom of the page, where the symbolsand indicate
the characteristic impedance and wave number in each segment
of this cascaded line and can be obtained from Table I for
different slabs. We are interested in exploring the possible
conditions upon which one would get zero reflection from this
structure, thus having complete transmission of the TM wave
through a pair of ENG-MNG slabs. Assuming for the moment
that the first slab is ENG and the second is MNG, from Table I
we can see that for the lossless ENG slab the characteristic
impedance of the equivalent L-L transmission line is purely
inductive,
with since and , whereas for
the lossless MNG slab the C-C line is purely capacitive, i.e.,

with
since and . In both slabs, the wave

numbers are imaginary, i.e.,
and since the wave inside
each slab is evanescent. The characteristics impedanceand

the wave number of the semi-infinite segments of the TL,
which represent propagating waves in the outside DPS region,
are both real quantities expressed as
and . The zero-reflection condition

can be achieved if and only if:

(5)

Substituting the values of ’s and ’s for the ENG and MNG
slabs given above into (5) leads to the following expression:

(6)

The above condition will be satisfied for a pair of finite-thick-
ness ENG and MNG slabs if and only if, we have:

(7)

leading to the conditions:

(8)

A pair of lossless ENG and MNG slabs satisfying (8) gives rise
to a zero-reflection scenario, when it is sandwiched between
two similar half spaces. It is interesting to note that the above

(4)
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(a)

(b)

Fig. 3. Sketch of real and imaginary parts of the normalized total transverse
magnetic field as a function ofz coordinate, when a TM wave with
45 angle of incidence impinges on: (a) a “matched pair” of lossless
ENG-MNG slabs, and (b) a “matched pair” of lossless MNG-ENG slabs.
The parameters of these slabs, which are chosen such that the zero-reflection
conditions are satisfied for the 45-incident TM wave, are" = �3" ,
� = 2� , d = 2�=5 jk j and" = 2" , � = �1:19� ,
d = 2�=5:28 jk j. The reflection, transmission andC ’s coefficients
are found to be:R = 0, T = 1, C = 0:5 � 0:42j, C = 0:5 � 0:42j,
C = 1:85 � 1:54j, C = 0:14 � 0:11j, where the upper (lower) sign
refers to Case a (b). We notice that the incident wave completely “tunnels”
through these pairs. The field distribution inside these slabs are different; in
(a) the real and imaginary parts ofH have the same sign, while in (b) they
have opposite signs.

conditions in (7) are the necessary and sufficient conditions for
zero reflection from any pair of SNG slabs sandwiched between
two similar semi-infinite regions. Thus, for a given if the
parameters , of the ENG slab, , of the MNG slab
and the thicknesses and are chosen such that (8) is ful-
filled, we can have complete transmission of a wave through
this lossless ENG-MNG bilayer structure, resulting in an in-
teresting tunneling phenomenon. We name such an ENG-MNG
pair a “matched pair” for the given value of .

Fig. 3(a) presents the magnetic field () distribution in an
ENG-MNG pair, which is matched for a TM plane wave with
45 angle of incidence. Fig. 3(b) shows the magnetic field dis-
tribution in the matched MNG-ENG pair for such an incident

wave. Note that the value of at the front face of the pair (i.e.,
at ) is the same (both its real and imaginary parts) as that
at the back face of the pair (i.e., at ), manifesting
the complete tunneling of the incident wave through these loss-
less pairs, without any phase delay. The field values within the
ENG-MNG pair, however, can attain high values at the interface
between the two slabs (i.e., at ). Such unusual behavior of
the field inside and outside the ENG-MNG pair (or MNG-ENG
pair) can be justified by using the equivalent TL model, as will
be shown in Section V. As mentioned earlier, Fig. 3 reveals the
fact that the field variation inside the ENG-MNG pair can be
different from that inside the MNG-ENG pair, even though the
conditions (8) are the same for both matched pairs. In the former,
the real and imaginary parts of inside the pair possess the
same sign, while in the latter they have opposite signs.

Fig. 4 illustrates the distribution of the real part of the
Poynting vector inside and outside the matched pair of
ENG-MNG (a) and MNG-ENG (b), for the TM plane wave
at . Here we see the complete flow of power
through the matched pair of slabs, an interesting observation
given the fact that each of the ENG and MNG slabs by itself
would not have allowed a sizeable fraction of incident power
to go through. Pairing the lossless ENG and MNG slabs thus
provides transparency for the incident wave at a particular
angle, and leads to an interesting flow of the real part of the
Poynting vector inside the paired slabs.

IV. CHARACTERISTICS OF THETUNNELING CONDITIONS

Some of the salient features and characteristics of the zero-
reflection and complete tunneling conditions given in (5)–(8)
can be described as follows:

A. Dependence on Material Parameters

From the derivation described in Section III, it is clear that if
one exchanges the order of the slabs, i.e., instead of ENG-MNG
pair, to have the MNG-ENG pair, the above conditions will re-
main unchanged. However, as shown in Figs. 3 and 4, the field
structure and the flow of the real part of the Poynting vector in-
side the two slabs will be different.

The conditions given in (5)–(8) are obtained for the
ENG-MNG pair (or an MNG-ENG pair). However, when an
ENG slab is next to another ENG slab, the zero-reflection
conditions will obviously never be achieved. When the ENG
slab is juxtaposed even with a DPS or a DNG slab, the
zero-reflection condition may not be satisfied either, for the
case where the wave inside the DPS or DNG slab is assumed
to be a propagating wave. This is due to the fact that in such
a case, and of the ENG would be purely imaginary,
whereas and of the DPS or DNG would be purely real,
and thus one cannot achieve a real in (4). However, if
is chosen such that the TM wave inside the DPS or DNG slab
is an evanescent wave, according to the equivalent TL models
shown in Table I, the DPS or DNG slab can be treated as an
equivalentMNG or ENG slab (for the TM mode), respectively,
and a zero-reflection condition may, under certain conditions,
be achievable.
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(a)

(b)

Fig. 4. Distribution of the real part of the Poynting vector inside and outside
the matched pair of (a) lossless ENG-MNG and (b) lossless MNG-ENG, for the
TM plane wave at� = 45 , described in Fig. 3. Here we see the complete
flow of power through the matched paired slabs, highlighting the “complete
tunneling” phenomenon, transpareny, and zero reflection property.

The phenomenon of complete transmission through an inho-
mogeneous layer with a particular permittivity profile [42] and
also through multilayered structures made of several layers of
alternating plasma (with negative epsilon) and conventional di-
electric (with positive epsilon) materials [43] have been ana-
lyzed in the past. But the tunneling effect in those structures
is due to the phenomenon of “leaky resonance” [42], [43] in
which any positive-permittivity slab is placed between at least
two negative-permittivity layers. In our problem presented here,
the tunneling phenomenon is different in that it occurs for a pair
of slabs consisting of only one ENG and one MNG layer.

The conditions derived in (8) do not depend on the material
parameters of the two identical external regions, but only on the
parameters of the ENG and MNG slabs. In fact, as we will show
in Section V, these zero-reflection conditions are not due to the
matching between the slabs with the external regions, but in-
stead only due to the interaction of the ENG and MNG slabs
with each other, resulting in a “resonance” phenomenon. How-
ever, if the two outside semi-infinite regions are filled by two
different media, the zero-reflection condition will change, and
will in general depend on the external parameters as well. It is
important to note that even in this general case (8) still represents
a “transparency” condition, depending only on the internal inter-
action of the two slabs with themselves. So when the conditions
in (8) are satisfied, the paired slabs will become “transparent” to
the incoming wave, and if the two outside media are the same,
zero reflection will be achieved.

Moreover, it is interesting to note that the zero-reflection con-
dition can also be satisfied by a pair of lossless DPS and DNG
layers, if we have and for a given
angle of incidence and polarization. This is possible, since it is
known [1] that in DNG media the direction of phase velocity is
opposite to the direction of the Poynting vector, so the condi-
tion is achievable. The condition is
also attainable. Such a DPS-DNG bilayer structure will also be
transparent to an incident wave with a specific angle and polar-
ization. The correspondence between the ENG-MNG pair and
the DPS-DNG pair will be discussed in Section VI. In relation
to this, it is worth noting that Zhang and Fu [23] has shown
that the presence of a DNG layer (or layers) can lead to unusual
evanescent photon tunneling when such DNG layers are next to
conventional layers. Their case can be considered as a special
solution to our (7), since as shown in Table I the TL models
for the evanescent waves in DPS and DNG layers are similar to
those of MNG and ENG layers (for TM case) or ENG and MNG
layers (for TE case), respectively.

B. Dependence on Slab Thicknesses

The conditions shown in (8) do not restrict the sum of the
thicknesses of the two slabs, . One could thus have thick
or thin layers of lossless ENG and MNG materials as long as the
above conditions are satisfied in order to achieve transparency.
When dissipation is present, the sum of the thicknesses can play
a role, as will be discussed in Section IV-F.

C. Brewster-Type Angle

The zero-reflection conditions given in (8) in general depend
on the value of . If the parameters of the ENG and MNG
slabs are first chosen, one may be able to find a real value of

satisfying (8). If such a real exists and if it satisfies the
inequality , then it will be related to a particular
angle of incidence of the TM wave for which the wave is “tun-
neled” through the lossless ENG-MNG bilayer structure com-
pletely and without any reflection. This “Brewster-type” angle
can be expressed as:

(9)
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We should remember that in the above relation, , ,
, and . Obviously, an arbitrarily chosen set of such

parameters for the pair of ENG and MNG slabs may not always
provide us with an angle in the real physical space. In
order to have such an angle, the following necessary condition
should be fulfilled

(10)

As an aside, it is worth noting that the above condition coincides
with the one required for having a Zenneck wave at the interface
between semi-infinite DPS and DNG media (and also semi-infi-
nite ENG and MNG media), as shown in [13], [16]. The further
analogies between these two phenomena will be discussed in a
future publication.

D. Conjugate Matched Pair of ENG-MNG Slabs

Of the infinite set of parameters satisfying (8), the particular
set , deserves special attention.
We name such a pair of lossless ENG and MNG slabs the conju-
gate matched pair or strictly matched pair, in contradistinction
with the term matched pair we defined earlier that referred to
an ENG-MNG pair that satisfies the general condition (8) for
a specific value of . For the lossless conjugate matched pair,
the reflection and transmission coefficients and the coefficient

’s in the field expressions inside the slabs are simplified and
expressed as:

(11)

where , , and . For
this case, the zero-reflection and complete tunneling through the
slabs occurs foranyvalue of and any angle of incidence (and
for any polarizations, although only TM case is discussed here),
hence . Moreover, no effective phase delay due to the
length is added to the wave propagation, i.e., the phase
of the transmitted wave at is the same as the phase
of the incident wave at . Furthermore, the coefficients

and in the first slab have the same magnitude, which
means that, according to (2) the decaying and growing exponen-
tial terms in have the same magnitude at . As the
observation point moves through the first slab and approaches
the interface between the first and second slabs, the magnitude
of would be dominated by the growing exponential term.
In the second slab, however, the magnitude ofis dominated
by the decaying exponential, as the last two relations in (11) re-
quire. Therefore, the field inside the conjugate matched pair of
ENG-MNG slabs is predominantly concentrated around the in-
terface between the two slabs. This behavior can be seen from
Fig. 5(a).

(a)

(b)

Fig. 5. (a) Sketch of real and imaginary parts of the normalized total transverse
magnetic field as a function ofz coordinate, when a normally incident TM wave
impinges on a conjugate matched pair of lossless ENG-MNG slabs, and (b)
distribution of the real and imaginary part of the normalized Poynting vector
inside and outside of this structure. The normalization is with respect to the
value of the Poynting vector of the incident wave. We note that the real part of the
normalized Poynting vector is uniform and equal unity through the paired slabs,
implying the complete tunneling of the incident wave, whereas the imaginary
part of the Poynting vector is only present inside the pair and has its peak at the
interface between the two slabs. The parameters of the ENG and MNG slabs,
which are chosen such that the conjugate matched pair conditions are satisfied,
are " = �3" , � = 2� , " = 3" , � = �2� and
d = d = 2�=5 jk j. The reflection, transmission andC ’s coefficients for the
pair are found to beR = 0,T = 1,C = 0:5�0:61j,C = 1:76+2:15j,
C = 0:14 � 0:17j.

The real and imaginary parts of the Poynting vector for a wave
tunneling through these conjugate matched pair of ENG and
MNG slabs is shown in Fig. 5(b), where the case of a normally
incident wave is considered. From Fig. 5(b) we see that the real
part of the Poynting vector is uniform and equal unity through
the structure, indicating the complete tunneling phenomenon.
The imaginary part of the Poynting vector, on the other hand, is
zero outside the paired slabs, it is only present inside the slab,
and has its peak at the interface between the two slabs. This ex-
hibits the presence of stored energy in these paired slabs, which,
as will be explained in Section V, can be regarded as a “reso-
nance” phenomenon.
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E. Variation in Angle of Incidence for the Matched Pair of
ENG-MNG Slabs

For a given set of parameters for the ENG and MNG slabs,
the general matched pair condition for zero reflection and
transparency may be satisfied if the TM incident wave can
have a specific incident angle, , given in (9). This implies
that when an ENG-MNG pair is designed to be transparent
for a TM wave with a specific angle of incidence, this pair
will not be transparent to other angles of incidence. Recall
that the zero reflection and transparency condition for the
more specific conjugate pair is independent of the angle
of incidence. Here we explore the sensitivity of reflection
coefficient for the general matched pair to this angular
variation. A variation in the transverse wave number

causes a perturbation in the zero-reflection conditions,
which can be expressed, to a first-order approximation, as

and ,
where , and are the values satisfying
the matched condition (8), i.e., for . The reflection
sensitivity on the angular variation, therefore, increases with

.
Moreover, the reflectivity increases with the difference be-

tween the constitutive parameters in the two media and the total
thickness of the structure. Fig. 6 shows the magnitude of the re-
flection coefficient for the ENG-MNG pair with several sets of
parameters designed to make the pair transparent at .
When the media parameters are chosen closer to the conjugate
matched pair conditions, the reflectivity remains low for a wider
set of angles, whereas for larger values of , the re-
flectivity increases as the angle of incidence deviates from the
design angle . Such dependence on the difference between
the constitutive parameters saturates for large, as seen from
Fig. 6 and the first-order approximation. The reflectivity will de-
pend more on the total thickness of the structure. As can be seen
from Fig. 6, the reflectivity from a thinner structure [Fig. 6(a)] is
less sensitive to the angular variation than that from the thicker
pair [Fig. 6(b)].

F. Presence of Material Loss

In finding the matched pair conditions given in (6)–(8) and
the conjugate matched pair conditions, we considered lossless
ENG and MNG slabs. Obviously, with the presence of loss,
perfect transparency and zero reflection is not achievable due
to the mismatch between the paired slabs and the outside re-
gion, as well as the absorption in the materials. It is important
to explore the sensitivity of the wave tunneling phenomenon on
the value of or . Imagine we have a conjugate matched
pair of ENG-MNG slabs, for which we can have complete tun-
neling, i.e., we achieve the zero reflection for the lossless case.
Fig. 7 shows how the reflection and transmission coefficients
vary with and/or . In this Figure, it is assumed that ,
while is allowed to be nonzero. (Analogous results are ob-
tained if , and ) We note that for , the
reflection coefficient is zero for all values of, representing the
case of a conjugate matched pair. However, whenbecomes
nonzero, the reflection coefficient may attain nonzero values,

(a)

(b)

Fig. 6. Sensitivity of the reflection coefficient to variation of the angle of
incidence. The magnitude of the reflection coefficient from matched pairs of
lossless ENG-MNG is plotted as a function of angle of incidence. Here we
first select the ENG slab with parameters" = �3" , � = 2�
and d = 2�=5 jk j for (a) andd = 4�=5 jk j for (b).
Then the parameters of the MNG slab are chosen such that the pair satisfies
the zero-reflection condition ((8)) for the TM wave with 45angle of
incidence. Since there are two relations in (8), but there are three parameters
(" ; � ; d ) to determine for the MNG slab, we have one degree
of freedom. As a result, in principle, for a given ENG the choice of MNG is not
unique in order to form a matched ENG-MNG pair. We show a family of curve
for several pairs of matched ENG-MNG slabs. For each pair, the reflection
coefficient is then evaluated as a function of angle of incidence. The values
of parameters for the MNG slab are shown near each plot (the values of the
permittivity and permeability of the MNG slab are shown with respect to"
and� ). We notice that the variation of the reflection coefficient with angle of
incidence is less sensitive for thinner slabs (a) than for the thicker ones (b).

and the sensitivity of the reflection coefficient ondepends on
the value of : the larger the value of, the more sensitive the
reflection coefficient will be with respect to . This would be
expected from physical arguments. For small values of, the re-
flection coefficient is not too sensitive to the presence of small

. In addition, one can also determine how the transmission of
a wave through the pair is affected by the loss. In Fig. 8, for the
TM case we see the behavior of the total magnetic field inside
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(a)

(b)

Fig. 7. Magnitude of (a) the reflection coefficient and (b) the transmission
coefficient for the conjugate matched pair of ENG-MNG slabs shown in
Fig. 5(a), when the loss mechanism is introduced in the permittivity of
both slabs as the imaginary part of the permittivity. (Normal incidence is
assumed here.) We notice that the sensitivity of the reflection and transmission
coefficients to the presence of loss (i.e., on" ) depends on the value of the
thicknessd; i.e., the reflection and transmission coefficients will become more
sensitive to variations with respect to" as the value ofd becomes larger.

and outside of the ENG-MNG pair, whenand are allowed
to be nonzero. Obviously, for larger values ofand , more
absorption occurs in the structure, resulting in lower values of
the transmitted wave.

V. RESONANCE IN THEENG-MNG BILAYER

As listed in Table I, the evanescent TM wave propagation in
the ENG and MNG slabs can be modeled as equivalent L-L and
C-C transmission lines, respectively. Therefore, the ENG-MNG
pair can be modeled using the TL, as shown in Fig. 9(a). In
Fig. 9, this pair is shown as the cascaded L-L and C-C trans-
mission lines in the range and ,

Fig. 8. Effect of loss on the field distribution in a conjugate matched
ENG-MNG pair excited by a normally incident plane wave. Here we show the
distribution of the real and imaginary parts of the total transverse magnetic
field inside and outside of the conjugate matched pair of ENG-MNG slabs
considered in Fig. 5(a), when the loss is present in the form of the imaginary
part of the permittivity in both slabs.

respectively. The two semi-infinite regions of free space,
and , can of course be modeled as the standard L-C
transmission lines for the case of a propagating TM wave.

It is interesting to observe how the TL section between
and affects the propagation through the line from
left to right. Let us first assume that we divide the L-L line and
C-C line into many small infinitesimal segments. The number
of such infinitesimal segments is taken to be ,
thus the length of each segment in the L-L and C-C lines is

and , respectively. In each segment, we have certain
amounts of series impedance and shunt admittance, which can
be obtained by multiplying, respectively, the segment length by
the series impedance per unit length and shunt admittance per
unit length, analogous to the method used in [20]. We now look
at the nodes and . Referring to Fig. 9(a), the total
impedance between these two nodes can be written as:

(12)

As described earlier, is defined as .
By substituting the values of and for the TM case the
above equation can be re-written as:

(13)

Taking into account the conditions given in (8) for a matched
pair and considering the fact that and , after
some mathematical manipulations, we obtain .
This implies that the series reactive elements between the nodes

and are in resonance, and thus these two nodes have
the same voltage, i.e., . From
this, one can assert that the shunt element at node
(i.e., between node and the ground) and the shunt element
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(a)

(b)

Fig. 9. Equivalent transmission line models with corresponding distributed series and shunt elements, representing the TM wave interaction with (a) a pair of
ENG-MNG slabs, and (b) a pair of DPS-DNG slabs. In each section, the TL consists of many infinitesimally thin cells containing series and shunt elements. As
shown in Table I, the choice of such equivalent series and shunt elements in the TL model depends on the material parameters in each slab, the polarization of the
wave (here we only consider TM polarization), and whether the wave is propagating or evanescent.

at node are now in parallel. The total admittance
of these two parallel shunt reactive elements is

(14)

Following similar steps and considering that
, we find , which implies

that the two shunt elements are in resonance. Consequently,
the current flowing in the inductive element between
the nodes and is the same as the current
flowing in the capacitive element between the nodes

and . These two elements are then effectively
in series, since , and repeating the
above steps it can be shown that these two elements are
in resonance as well, i.e., , resulting in

. Following this procedure
as we go away from the middle node toward the end
nodes 0 and , we notice that such resonance behavior occurs
for every pair of series and shunt elements, and thus we find
that the current and voltage at the node 0 are the same at those
at node , i.e.:

(15)

From this, one can conclude that the input impedance at
(looking into the right in Fig. 9(a)) is the same as the input
impedance at (looking into the right). Therefore,
the segment of the TL between and , which
represents the matched pair of lossless ENG and MNG slabs,
is in resonance and has become “transparent” to the incoming
wave that is effectively “tunneling” through this segment with
no effective phase change. Although the lossless ENG or MNG
slab by itself does not allow the perfect complete tunneling of
the incoming wave through it, when we juxtapose an ENG slab
with an MNG slab with the properly selected set of parame-
ters we obtain a resonant structure which provides transparency
and zero reflection to the incoming wave. If the slab parameters
are chosen to have a conjugate matched lossless pair, then an

incident wave with any angle of incident and polarization can
tunnel through the pair. From a TL and circuit element point
of view, one can also see that if we only have one of the L-L or
C-C transmission lines individually, the current and voltage will
decay along such a line. However, when we join the L-L and the
C-C segments to represent the ENG-MNG pair, we have a res-
onant structure in which the current and voltage behave quite
differently.

In order to intuitively understand and interpret the field be-
havior inside the ENG-MNG pair, we evaluate the current in
each series element in the resonant segment betweenand

in Fig. 9(a). Considering the fact that at we
have no reflection, and thus , where is the
characteristic impedance of the TL before the point , we
find the following expression for the current in the series ele-
ments between nodes and , where

where

(16)

with and being shorthand for

. If for the special case where
, then the above equation can be simplified as

(17)
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Fig. 10. Correspondence between the cascaded “thin” layers of ENG-MNG slabs and the cascaded “thin” layers of DPS-DNG slabs, using the concept of
equivalent transmission lines, discussed in Table I and Fig. 9. Detailed explanation is given in the text.

The corresponding expressions for the current in series elements
between the consecutive nodes and , where

is a node in the C-C TL section, can also be
found by simply making the following substitutions

, in (16) and (17). The currents
and increase with power of , when

increases from 0 to . Same considerations can be made
for the corresponding expressions for the voltages at the nodes

and . Their behavior is very similar. Consequently, in
this equivalent circuit model, we observe that the current and
voltage distributions within this resonant segment are concen-
trated around the node and then they decrease in mag-
nitude as one approaches to the edges of the segment, i.e., to-
ward the nodes 0 and. This is obviously consistent with what
we obtain for the field behavior using the wave theory, as shown
in Figs. 3 and 5.

It is worth noting that the resonant behavior of the
ENG-MNG segment of the line can also be interpreted in
terms of the impedance mismatch between the two TL sections
at the node . As listed in Table I, the characteristic
impedance of the L-L line representing the ENG slab (for the
TM mode) is a positive imaginary quantity,
with while the one for the C-C line for the MNG
slab is a negative imaginary quantity, with

. If one treats the evanescent wave in the ENG slab
as an “incoming” wave impinging on the boundary between
the ENG and MNG slabs, the Fresnel “reflection coefficient”
for such an incident evanescent wave can then be written
as . When the
ENG-MNG pair is a matched pair, according to the conditions
(8), , resulting in an infinitely large reflection
coefficient! This should not cause any concern, because: (1)
this is a reflection coefficient between an “incident”evanescent
wave and “reflected”evanescentwave, which each by itself
does not carry any real power; and (2) the “singular” nature of

this reflection coefficient implies that we can have a resonant
“natural” mode for this segment of the line acting effectively as
a “cavity resonator.”

VI. CORRESPONDENCEBETWEEN THEENG-MNG PAIR AND

THE DPS-DNG PAIR

Fredkin and Ron [17] have shown that a layered structure
with alternating slabs of negative-epsilon and negative-mu ma-
terials may effectively behave as a DNG material, because the
effective group velocity in such a structure would be antipar-
allel with the effective phase velocity. Here using the TL model
we present a different analogy between the ENG-MNG pair
and the DPS-DNG pair. The transmission line model shown in
Fig. 9(a) can be modified to represent the TM wave interac-
tion with a lossless DPS-DNG bilayer structure. Using the in-
formation given in Table I, we can model the DPS-DNG pair
as the transmission line shown in Fig. 9(b). One can immedi-
ately see that, like the case of ENG-MNG pair, if the param-
eters of the DPS-DNG pair are chosen such that the zero-re-
flection conditions are satisfied, the resonance phenomenon be-
tween the series reactive elements and between the shunt re-
active elements in infinitesimal sections of the TL will occur.
As a result, we can again have and

, suggesting that the matched pair of lossless DPS and
DNG slabs can be in resonance and may become “transparent”
to the incoming wave. In this sense, the ENG-MNG pair may
act in a similar manner as the DPS-DNG pair. However, one
should remember that the behavior of the wave propagation
within these two pairs is different: in the ENG-MNG pair, the
fields are sum of evanescent waves, whereas in the DPS-DNG
pair, we can have propagating waves. Since in the small-argu-
ment approximation, trigonometric sinusoidal and hyperbolic
sinusoidal functions may appear somewhat similar, for a short
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range of distance the evanescent field function may approxi-
mately resemble those of the propagating wave. One can then
anticipate that a “thin” ENG-MNG pair may essentially func-
tion like a thin DPS-DNG pair. This point is pictorially illus-
trated in Fig. 10. Imagine that we have cascaded “thin” layers
of identical lossless ENG-MNG pairs. The layers are assumed to
be electrically thin with thicknesses and . The equiv-
alent cascaded pair, L-L and C-C, transmission line model of
this structure is also shown in Fig. 10. It can be seen from this
model that if the layers are assumed to be thin enough, these
cascaded pairs can also be viewed as cascaded pairs of L-C
and C-L lines, thus representing cascaded pairs of DPS-DNG
layers. Specifically, we notice that each segment of -
is sandwiched between the two segments of - , and vice
versa. Therefore, for thin layers the grouping of - and

- together can be assumed instead, representing thin
DPS and DNG layers, respectively. If the matched pair condi-
tions, (8), for the ENG-MNG pair are satisfied, one would get
the tunneling effect for the entire set of cascaded ENG-MNG
pairs, since all these pairs behave as resonant structures individ-
ually. As was the case in [23], if the matched pair conditions are
fulfilled, the same can be said about the set of cascaded pairs of
DPS-DNG slabs for the evanescent tunneling.

Analogous behaviors can also be exploited in guided-wave
structures. As was the case with the paired parallel DPS-DNG
layers inserted in a parallel-plate cavity or waveguide structure
[8], the matched ENG-MNG paired parallel slabs could also
support a resonant mode when they are placed between two par-
allel metallic walls [13]. Furthermore, the phase of the field at
the back face of this matched pair is also the same as the phase
at the front face. Some aspects of this ENG-MNG parallel-plate
cavity have been reported in [13].

VII. “I DEAL” I MAGE DISPLACEMENT AND IMAGE

RECONSTRUCTION

Consider a pair of lossless ENG-MNG slabs that are conju-
gate matched for a given fixed frequency. In front of this pair,
we put an object, e.g., a line source (see Fig. 11). The field dis-
tribution at the object plane can in general be expanded in terms
of spatial Fourier components with spatial wavenumber param-
eters and . Here for the sake of simplicity, we assume that
the object is independent of thecoordinate and that we have
a 1-D Fourier expansion in terms of spatial components with
wavenumber only, where . Since the loss-
less ENG-MNG pair is conjugate matched, each of the spatial
Fourier components, propagating as well as evanescent waves in
the outside region, will in principle tunnel through the pair, and
they show up at the exit face with the same corresponding values
as their values at the entrance face. This means that an observer
on the back side of the paired slab will see the object as though it
were displaced and seated closer to the observer by the amount

. In fact, conceptuallyall of its spatial Fourier compo-
nents are preserved. In the absence of the ENG-MNG pair, if the
distance between the object and the observer is assumed to be

, the observer for large enoughwill only receive the propa-
gating waves from the object, and the evanescent wave portion
of the Fourier decomposition will be negligible at the observa-

Fig. 11. Sketch of a conceptual idea for the image displacement and image
reconstruction with conceptually all the spatial Fourier components preserved,
using the concept of conjugate matched ENG-MNG paired slabs. When such
a pair of ENG-MNG slabs is inserted between the object (on the left) and the
observer (on the right) that is at a distanceD away from the object, the virtual
image of the object appears closer to the observer, at the distanceD� 2d, with
ideally all its spatial Fourier components present, i.e., with its original resolution
intact.

tion plane. However, if we insert the conjugate matched lossless
ENG-MNG pair in the region between the object and the ob-
server, the apparent location of the object will be at the distance

, which may provide near-field observation of the objects
with theoretically all spatial Fourier components (propagating
and evanescent components in the outside region) present, i.e.,
with its original resolution intact. This can conceptually provide
an interesting future application of such paired slabs in image re-
construction and resolution enhancement. One should also point
out that an analogous matched pair of lossless DPS-DNG slabs
would also “preserve,” and allow “tunneling,” of the evanescent
waves as they interact with such a pair, similar to what Pendry
has analyzed for a DNG slab surrounded by a DPS medium [2].
However, unlike the case of an ENG-MNG pair, propagating
waves can exist in the DPS-DNG pair, and owing to the anoma-
lous negative refraction at the interfaces between DNG and DPS
materials, a focusing effect occurs leading to a real image [2].
Such a focusing effect for a DNG slab has already been sug-
gested and studied by Pendry in the particular case in which the
DPS slab material is taken to be the same as the outside region,
i.e., free space [2]. In general, for a DPS-DNG pair a real image
of an object can be formed, whereas for an ENG-MNG pair,
a virtual image can be obtained. This behavior is illustrated in
Fig. 11.

VIII. SUMMARY

In this paper, we have studied the TM wave interaction with
a pair of ENG-MNG slabs, and we have found that, although
wave interaction with each of these slabs alone leads to pre-
dictable results, the juxtaposition and pairing of such ENG and
MNG slabs would, under certain conditions, lead to some un-
usual features such as resonance, zero reflection, complete tun-
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neling and transparency. We have analyzed the field distribu-
tions inside and outside such paired slabs, including the reflec-
tion and transmission from this pair, and the flow of the Poynting
vector in such structures when the zero-reflection conditions are
satisfied. The equivalent transmission-line models with appro-
priate distributed series and shunt reactive elements have been
derived. They have been applied in this study in order to derive
the necessary and sufficient conditions for zero reflection, reso-
nance, complete tunneling and transparency, and to explain the
seemingly anomalous field behavior in these paired structures.
In particular, we have shown that pairing the ENG and MNG
slabs may exhibit resonance phenomenon, and that such a res-
onance is one of the reasons behind the transparency for these
paired slabs and the unusual field behavior within them. Fur-
thermore, we have discussed several characteristics of the tun-
neling conditions, such as the roles of the material parameters,
slab thicknesses, dissipation, and angle of incidence. We have
also explored the analogy between the ENG-MNG pair and the
DPS-DNG pair. Finally, as a potential application of the con-
jugate matched lossless pair of ENG-MNG slabs, we have pro-
posed an idea for an “ideal” image displacement and image re-
construction utilizing such a pair.
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