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This letter points out a close parallel between the operator formalism for string theory

and the action of a Lie algebra on a differential complex. The construction of conformal

field theories can then be regarded as a cohomology problem; we suggest that this viewpoint

may survive the generalization beyond finite genus Riemann surfaces.
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1. Introduction

The operator formalism for string theory provides a generalization of the notions of

Hilbert space of states, BRST cohomology, and the rest of conformal field theory from

string tree amplitudes (CFT on a sphere) to more complicated Riemann surfaces. One

basic inspiration for this approach was the work of Krichever and Novikov, Sato and Sato,

and others on the KP hierarchy. One can build an infinite-dimensional Grassmannian

containing, among other things, the moduli spaces of Riemann surfaces of every genus.

The details of this construction are not so important to the present discussion, but what

is important is that over this Grassmannian there is a bundle with a natural section.

The bundle consists of infinite wedge products of first-quantized state vectors, and so

it is natural to interpret it as the Fock space of a very simple conformal quantum field

theory: a single fermion. (See e.g. [1].) Thus the existence of a natural section amounts

to a naturally-defined state of the 2d field theory associated to any given point of the

Grassmannian. In particular for every Riemann surface with a chosen point and local

coordinate about that point one has a ray in the a fixed Fock space summarizing that

surface.

The operator formalism seeks to generalize the above situation in a number of ways.

One begins with a general conformal field theory and again seeks to associate to each

underlying Riemann surface with puncture and local coordinate a state in whatever Fock

space was appropriate for the sphere. For certain theories the principle guiding the choice

turns out to be very simple: to each Riemann surface we find certain geometrical data,

namely a collection of diffferentials which extend nicely from a unit circle around the

chosen point to the rest of the surface; we then form corresponding charge operators on

the Fock space H and require that they all annihilate the desired state [2][3]. For example,

such charge conditions suffice to determine the appropriate state for free spin-0 bosons and

spin-1 fermions, and hence for the bosonic string.

The utility of the above construction comes when we note that the partition function

of a given conformal theory on a given surface is just the inner product of the above

state with the standard SL(2,C)-invariant vacuum. Correlation functions can similarly be

computed as easily as on the sphere, once the appropriate master state is known. Insertions

of external states can also be easily computed by taking the product not with the vacuum

but with the desired state [4][5]. Also the superconformal case runs closely parallel to the

conformal case [6].
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The construction of the basic state associated to a Riemann surface described above

is specific to the special CFT’s mentioned. From the analysis there emerge, however, some

more general facts. One of these is that in any CFT the basic state satisfies a set of

differential equations which determine it everywhere on moduli space once it is known at

one point, a well-known fact exploited in [7] [8][4]. In this letter we wish to point out

a remarkable parallel between this “equation of motion” in CFT and the action of a Lie

algebra in a differential complex [9]. In a sense the complex we study sits midway between

the one familiar in string field theory [10][11] and the one studied in [12](see also the

remarks in [6]). In this light the ‘equation of motion’ becomes an equivariance condition,

a fact which should survive (and guide) the generalization from individual moduli spaces

to the correct universal moduli space.

2. The Ingredients

We have noted above that the basic state associated to a Riemann surface is not in

general well defined given only the surface and a puncture. Instead one needs to make

a choice of a local coordinate z near the puncture; changing z then modifies the special

state by introducing a stress tensor. To get a well defined state we accordingly work on

the space P of moduli of Riemann surfaces with a puncture and local coordinate centered

on the puncture. (One can just as easily work with n punctures.) Over P we build the

trivial bundle H = H ×P where H is the Fock space of the original CFT. Thus the basic

state becomes a section of H.1

P is itself a principal bundle over the desired moduli space M of Riemann surfaces

with puncture; the group is simply Diff+S
1 of changes of local coordinate z. Denote a

point of M by (Σ, P ) and a point of P by Σ̃ = (Σ, P, z); then infinitesimally a generator

v ∈ Vir≥0 acts by Σ̃ 7→ (Σ, P, z + vz). Moreover we also know that Vir acts on the bundle

H, via the action of the stress tensor as mentioned above. But we can do even better than

this. The full diffeomorphism group (or rather the Virasoro algebra) acts on P [8]. The

construction is described e.g. in [4]. Moreover, when a state is uniquely defined by charge

conditions such as those described above one can show that as we move in any direction in

1 We will suppose that we are dealing with a string theory, so that the central charge of

Virasoro vanishes. More generally one can tensor a nontrivial line bundle into H.
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P (not just in the vertical directions) that the state changes by the corresponding insertion

of the stress tensor:

δv|Σ̃〉 = T (v)|Σ̃〉 . (2.1)

Here v ∈ Vir is any vector field on the circle and δv is the corresponding vector on P,

regarded as a directional derivative. |Σ̃〉 is the section of H evaluated at Σ̃ ∈ P, and

T (v) =
∮
Tzz(z)v

z(z)dz is the mode of the stress tensor corresponding to v.

Eqn. (2.1) is very general. Even if the conserved-charge method is not sufficient to fix

a state for a general CFT, we always expect to have (2.1). Accordingly we would like to

take (2.1) as a fundamental property and find a suitable mathematical home for it.

3. Operations

Consider as an analogy a principal G-bundle P over some manifold M , where G is a

Lie group. Then G acts on P from the right; similarly G acts on all the functions, forms,

etc. defined on P . Furthermore, to every element v of the Lie algebra g there is a vector

field Rv on P .

We can cast the situation in algebraic terms as follows [9]: we again note that g acts

on the complex of differential forms (Ω, d) on P . In fact Ω serves as a representation of

g, and d commutes with the action. More generally we will say that an “operation” of

g consists of a representation θ of g in a differential complex (Ω, D). For every v ∈ g we

thus get θ(v) linear in v; θ(v) is a linear map of Ω of degree 0 satisfying

θ([v, v′]) = [θ(v), θ(v′)] . (3.1a)

We further require that for every v ∈ g there be given another operator on Ω called i(v).

i(v) is again linear in v, again a linear operator on Ω, but it reduces the degree of a form

by one. It must satisfy three axioms:

i(v)2 = 0 (3.1b)

[θ(v), i(v′)] = i([v, v′]) (3.1c)

[i(v), D]+ = θ(v) . (3.1d)

In our example, we can satisfy conditions (3.1) by letting

θ(v) ≡ £(Rv)
, Lie derivative (3.2a)
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i(v) ≡ i(Rv)
, Interior product. (3.2b)

Here Rv is the vector field on P associated to v ∈ g.

Note that one has at once from (3.1) that

[D, θ(v)] = 0 , (3.3)

so that θ in (3.2) really does commute with D. (Remember that in the example D is the

exterior derivative.)

To summarize, an operation of g in a complex (Ω, D) consists of a choice of θ(·), i(·)

satisfying the axioms (3.1). The differential forms on any principal G-bundle provides an

example of an operation, and in this context the notion is very powerful. For example,

Chevalley’s theorem on the cohomology of symmetric spaces is naturally phrased in terms

of just such an operation [9]. Now however we will discard the example and focus on

another, more interesting one: conformal field theory.

4. String Theory

Strictly speaking we will not be interested in an arbitrary conformal field theory, but

only in string theories; that is, we ask for a BRST operator Q and associated ghost field

b to be singled out. We also assume that the central charge c = 0. We will construct an

operation of the Virasoro algebra, Vir, on a certain complex.

Again let P = Pg,1 be the moduli space of curves of genus g with one puncture and

local coordinate. In order to get a differential complex, one might try taking the differential

forms on P and tensoring them in with the bundle H of states. This doesn’t quite work.

Instead consider

Ω ≡ {sections of H} ⊗ {skew forms on Vir} . (4.1)

Certainly given any H-valued differential form ω̃ we get an ω ∈ Ω, just by letting

ω(v1, . . . , vp) ≡ ω̃(Vv1 , . . . , Vvp) .

Here Vv is the tangent to P given by v ∈ Vir. The point of using (3.3) is that given a

tangent to P we cannot go backwards and obtain a corresponding v; in general there is an

ambiguity due to the “Borel” subspace of Vir [8].
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The space Ω has two gradings: Ωp,n is the subspace of p-forms of ghost number n.

We can define a diagonal operator β as follows: for a section s ∈ Ω,

“ βs = b(·) ∧ s ” ,

or more precisely,

(βs)(v1, . . . , vp) ≡
1

p

∑
(−)jb(vj)s(v1, . . . , v̂j , . . .) . (4.2)

Then β leaves the combined grading p+ n unchanged.

To make Ω into a complex we must supply a differential D which raises p by one unit.

First we can define a d on skew forms on Vir as follows: Roughly speaking,

“d =
∑

vA ⊗ δvA” ,

where vA is a basis of Vir and vA is the dual basis. More precisely if s is a 0-form then ds

is the 1-form given by (ds)(v) ≡ δvs, the derivative. Acting on 1-forms,

(ds)(v, v′) = δv(s(v
′))− δv′(s(v))− s([v, v′]) ,

and so on. Thus d2 = 0. Now we can define the desired D on H-valued forms:

D ≡ d −Qβ . (4.3)

One can readily verify that D2 = 0 when acting on, say, 0-forms:

(D2s)(u, v) = (dQβs)(u, v) + (Qβds)(u, v) + (QβQβs)(u, v)

= ([δu(Qb(v)s)−Qb(v)δus+QT (u)b(v)s]− (u↔ v))−Qb([u, v])s

= 0 .

We can now identify the family of states Σ̃〉 over P associated to any string theory as

a closed 0-form, that is, as a representative of a cohomology class for the complex (Ω, D).

This follows since this state satisfies QΣ̃〉 = 0 [4]; one thus has

(DΣ̃〉)(v) = δvΣ̃〉 −Qb(v)Σ̃〉 = (δv − T (v))Σ̃〉 ,

and this vanishes because of the ‘equation of motion’ satisfied by Σ̃〉.
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Next we need to find an appropriate i(·). This is simply the interior product of a

skew form on Vir with a vector v ∈Vir; it does not affect the Fock space part of Ω at all.

Certainly one has that (3.1b) is satisfied. Moreover the basic state Σ̃〉 is a 0-form and so

automatically satisfies i(v)Σ̃〉 = 0 for any v.

Using i we now use (3.1d) to define θ and see whether (3.1a, c) are satisfied. Thus

θ(v) ≡ Di(v) + i(v)D

= £v +Q(βiv + ivβ)

= £v +Qb(v) ,

(4.4)

where £v = [d, i(v)]+ satisfies the desired (3.1a). Then one easily shows that θ also

satisfies (3.1a) and so furnishes the desired representation of Vir on Ω. Finally it is trivial

to check that

[θ(v), i(u)] = [£v, i(u)] = i([v, u]) .

Thus we have indeed found an operation of Vir on (Ω, D); the required axioms are satisfied

on arbitrary sections of Ω, not just on the basic section Σ̃〉. Applied to Σ̃〉, however, we

find that any string theory background supplies us with an equivariant cohomology class

over P: since

i(v)Σ̃〉 = 0, θ(v)Σ̃〉 = 0 , v ∈ Vir , (4.5)

we have a class in H0
i=θ=0(Ω).

We can say the same thing in another way which makes contact with the analysis in

[4]. Let µ̃ψ = 〈ψβ2g−2Σ̃〉 correspond to the differential form on moduli space (actually on

P) for the insertion of the state ψ. If Qψ〉 = 0 then µ̃ψ is a closed differential form [4], and

this is necessary and sufficient for us to be able to define the insertion of ψ into a string

amplitude [5]. From the present viewpoint this implication follows at once from the fact

that since Σ̃〉 is equivariant, then both Σ̃〉 and β2g−2Σ̃〉 are closed under D.

5. Conclusion

It remains to be seen what fundamental significance, if any, this equivariant structure

has for string theory proper. One can speculate that the correct generalization of string

perturbation theory to a universal moduli space must retain this structure, and that any

equivalence of perturbatively distinct string backgrounds will be due to the vanishing of

equivariant cohomology classes on the universal space [13].
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In any case the framework described here is certainly incomplete. No mention has

been made of the ring structure of Ω, corresponding in the classical analogy to wedge

product of differential forms. Undoubtedly the correct way to define a product on our Ω

is via sewing of surfaces. Since universal moduli space, whatever it is, will contain all of

the different genera moduli spaces in close proximity (see for example [14]), one may then

wonder whether the equivariance condition (4.5) admits a generalization. Parallel to the

locus of any given genus, (4.5) as usual describes the variation of a state as the moduli

are changed. Transverse to the locus, perhaps a generalization of (4.5) will exist joining

different genera. This relation could be the infinitesimal analog of sewing; its flatness

conditions could be infinitesimal generators of the sewing consistency relations.
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