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Introduction 
A large body of functional neuroimaging literature has elucidated relationships between 
structure and function, as well as functional activity patterns during a variety of 
functional activation paradigms. Statistical parametric mapping (SPM) (Friston et al., 
1995) has played a fundamental role in these studies, by departing from the conventional 
biased ROI- and hypothesis-based methods of data analysis and enabling unbiased voxel-
by-voxel examination of all brain regions. While a great deal of knowledge has been 
gained during the past decade regarding brain regions that are activated during various 
tasks using voxel-based SPM analysis, the quantitative characterization of entire spatio-
temporal patterns of brain activity, as opposed to voxel by voxel examination, has 
received much less attention, especially as a means for deducing “the state of the mind” 
from functional imaging data. The important distinction between a voxel-based analysis 
and the analysis of a spatio-temporal pattern is the same as the distinction between (mass) 
uni-variate and multi-variate analysis (Davatzikos, 2004). Specifically, a pattern of brain 
activity is not only a collection of active voxels, but carries with it correlations among 
different voxels. Notable efforts towards the functional activity pattern analysis have 
been made (Strother et al., 1995 and McIntosh et al., 1996), some of which, attempt to 
use these methods to classify complex activation patterns using machine learning 
methods (Cox and Savoy, 2003 and LaConte et al., 2005).  

In this paper, we present an approach to the problem of identifying patterns of functional 
activity, by using a high-dimensional non-linear pattern classification method. We apply 
this approach to one of the long-standing challenges in applied psychophysiology, 
namely lie detection. Deception is a socially and legally important behavior. The 
limitations of the specificity of the currently available physiological methods of lie 
detection prompted the exploration of alternative methods based on the correlates of the 
central nervous system activity, such as EEG and fMRI (Rosenfeld, 2001, Spence et al., 



2001 and Langleben et al., 2002). Using SPM-based analyses of multi-subject average 
group data, several recent fMRI studies demonstrated differences in brain activation 
between truthful and non-truthful responses in various experimental paradigms 
(Langleben et al., 2002, Langleben et al., in press, Ganis et al., 2003, Kozel et al., 2004a,
Kozel et al., 2004b and Lee et al., 2002). In order to translate these data into a clinically 
relevant application, discrimination between lie and truth has to be achieved at the level 
of single participants and single trials (Kozel et al., 2004b), not just via group analysis. 
The potential of the SPM-based approach to achieve this goal is limited due to the 
between-subject variability of regional brain activity. In the current work, we have 
overcome this limitation using a multi-variate non-linear high-dimensionality pattern 
classification technique (Lao et al., 2004) applied to spatial patterns of brain activation 
recorded via fMRI. Using data acquired with a previously reported formal deception 
paradigm (Langleben et al., in press), we have tested the hypothesis that truthful and non-
truthful responses could be distinguished via analysis of the pattern of functional brain 
activity. In addition to classifying a pattern of functional activity to the “truthful” and 
“non-truthful” categories, we construct spatial maps that display the brain regions that are 
most distinctive between these two response categories, by following the gradient 
direction of the decision function of the classifier, thereby allowing for visualization of 
the aspects of the functional activity patterns that are most different between the two 
conditions (lying and truth-telling).  

Methods 
Participants and deception task 
Twenty-two right-handed male undergraduate students (M age = 19.36, SD = 0.5). After 
complete description of the study to the participants, written informed consent was 
obtained. The experimental procedure has been described in detail elsewhere (Langleben 
et al., in press).  

A pseudorandom sequence of playing cards was composed of five stimulus classes: (1) 
Lie (5 of clubs or 7 of spades, participant's choice); (2) Truth (5 of clubs or 7 of spades); 
(3) Recurrent Distracter (2 hearts); (4) Varied distracter (remaining cards 2 through 10, 
all suits); and (5) Null (back of a card). Stimuli were presented for 2 s followed by a 
variable ISI (0–16 s) during which the null condition was displayed. Twenty-four Lie, 
Truth, and recurrent distracter cards and 168 variant distracter cards were shown. 
Participants were instructed to press a left button (yes) to confirm that a card was in their 
possession and the right button (no) to deny it. A total of 432 stimuli were presented with 
a total session length of 14.4 min.  

Instruction protocol 
Participants were presented an envelope containing 2 cards (5 clubs and 7 spades) and 
$20. One investigator (DDL) instructed participants to deny possession of one of the 
cards and acknowledge possession of the other in the imaging phase of the study. 
Participants were warned that the “fMRI investigator”, naïve to the true intent of the 



study, would give contradictory instructions. The assignment of “Lie” and “Truth” to the 
cards contained in the envelope, was left to the participants. Participants were told by 
DDL that they could keep the $20 only if successful in concealing identity of the lie card 
during the scan session. Participants were escorted to the scanner by a third party and 
instructed by the “fMRI investigator” (JWL) to respond to each trial as accurately and 
truthfully as possible. After the session, participants were debriefed, informed that the 
compensation was not contingent on performance, queried about the lie card, and asked if 
they employed any strategy during the task.  

Image acquisition 
Images were acquired using BOLD imaging (Bandettini et al., 1992) on a clinical 3 T 
Siemens Trio Scanner (Iselin, NJ). A 5 min magnetization-prepared, rapid acquisition 
gradient echo image (MPRAGE) was acquired for anatomic overlays of functional data 
and spatial normalization. BOLD imaging used a 33-slice whole-brain, single-shot 
gradient-echo (GE) echo-planar (EPI) sequence (TR/TE = 2000/21 ms, FOV = 240 mm, 
matrix = 64 × 64, slice thickness/gap = 4/0 mm). This sequence delivered a nominal 
voxel resolution of 3.75 × 3.75 × 4 mm.  

Data analysis—parameter estimate images (PEIs) 
Functional data were processed and analyzed using statistical parametric mapping 
(SPM2, Wellcome Department of Cognitive Neurology, London, UK). Data were slice-
time corrected and motion-corrected to median image using b-spline interpolation (4 
degrees of freedom). Co-registered images were normalized to standard anatomical space 
(T1 MNI template) using tri-linear interpolation (Ashburner and Friston, 1999) and 
smoothed with a Gaussian filter (full-width half maximum = 8 mm, isotropic). A high 
pass frequency filter (to a maximum of 1/100 Hz) and correction for autocorrelation 
{AR(1)} between scans were applied subsequently to the data. Initial statistical analysis 
was performed using the general linear model. The expected hemodynamic response was 
modeled by convolving stimuli onsets with a double gamma function as implemented in 
SPM2 (Friston et al., 1998). Forty-eight regressors modeled “lie” and “truth” events 
individually while two additional regressors modeled the variant distracter and recurrent 
distracter conditions. Parameter Estimate Images (PEIs), i.e. regression coefficients or 
“beta”, of the HRF regressor for each of the 50 conditions, were calculated from the least 
mean square fit of the model to the time series. The PEIs were used for the second stage 
analysis of non-linear pattern classification.  

Non-linear pattern classification 
To quantify the spatial patterns of brain activity that distinguish truthful from non-truthful 
responses, we first sampled brain activity uniformly throughout the entire brain, in a way 
that was unbiased by any a priori hypothesis of specific regions of interest. We then used 
these brain activity samples in conjunction with a pattern classification method to find 
patterns that allow us to distinguish between truthful and non-truthful responses. Our 
methodology is detailed next.  



The bounding box of the linearly-registered PEIs was evenly subdivided into 560 cubes, 
each having a size of 16 mm × 16 mm × 16 mm. The average value of the PEI of each 
event was calculated within each of these boxes, thereby resulting in 560 measurements 
from each scan distributed uniformly throughout the entire brain. This collection of 
measurements constituted a sample of the spatial activation pattern. Customary to the 
machine learning terminology, we call these 560 values features. These features were 
subsequently normalized, so that they ranged from 0 to 1. Specifically, all PEIs of each 
individual, including truthful and non-truthful responses, were pooled together. The 
maximum and minimum values were determined and used to linearly rescale all PEIs of 
the respective individual between 0 and 1. This was repeated for all individuals 
separately. Feature normalization is an important procedure, since we are interested in 
examining relative levels of activation, i.e. activation patterns. Moreover, this scaling 
process is often used to reduce the total variance of the measurement across individuals, 
and thereby help make classes more separable.  

These normalized measurements were then used as features into a non-linear support 
vector machine (SVM) with a Gaussian kernel (Lao et al., 2004, Vapnik, 1999 and 
Scholkopf and Smola, 2001). SVM is a powerful classification method that finds the 
hypersurface (high-dimensional analog to a surface separating two classes) that 
maximizes the margin between two distributions, the truthful and non-truthful responses 
in our case. One of the most important characteristics of SVM is that it is not calculated 
from all samples (activation patterns), but only from samples that lie close to the interface 
between the two groups of interest. In our case, the algorithm focuses only on activation 
patterns that are difficult to classify into truthful or non-truthful responses, since other 
patterns are easy to classify, anyway. A second important characteristic of SVM is that it 
can determine non-linear separating boundaries (hypersurfaces), by mapping the 560-
dimensional feature vector into an infinite-dimensional space. Accordingly, complex and 
non-linear decision boundaries can be formed that separate the two conditions.  

Using the aforementioned procedures, classifiers were constructed and tested using cross-
validation. In each repetition of the cross-validation procedure, 1% of the PEIs were left 
out, and a classifier was constructed from the remaining 99% of the PEIs. This classifier 
was then tested on the left out 1%. This procedure was repeated 30 times, for randomly 
selected sets of left out PEIs. The cross-validation procedure is important, since SVM is a 
high-dimensional non-linear classifier (560 features) that was applied to a relatively small 
sample (24 “lie”, 24 “truth” for 22 participants, yielding 1056 training PEIs), suggesting 
that it is flexible enough to separate these two conditions. Therefore, how well a trained 
SVM “explains” the data may not be indicative of how well the same classifier will 
separate new sets of data.  

Although the training and testing procedures provide us with quantitative measures of the 
ability of the classifier to separate the two sets of responses, they do not directly provide 
us with an intuitive way to understand which brain structures are most informative in 
terms of the classification. In Lao et al. (2004), we described a procedure for constructing 
such visual displays. Briefly, after the classifier has been trained, a hypersurface that lies 
in-between the set of truthful responses and the set of non-truthful responses has been 



determined; this hypersurface generates a maximum margin between these two classes of 
response. Using the training samples that lie on one side of this hypersurface, one can 
follow the gradient of the decision function from +1 to −1, thereby capturing the most 
important differences between the truthful and non-truthful conditions. We applied this 
procedure for all support vectors, i.e. for all example patterns that after training ended up 
being close to the dividing hypersurface, and recorded the boxes whose values changed 
the most along the path from truthful to non-truthful response. By overlaying these boxes 
on the brain images themselves, we obtained 3D displays of the regions whose activation 
was important in the classification process.  

The procedure described above may have some practical limitations since, correct 
baseline data from an individual being tested have to be collected and used to construct a 
classifier (these images would be part of the 99% of the sample), before the actual test 
data can be collected and analyzed. Thus, we also used the following procedure to 
determine the potential of building a single classifier that could be applied to a number of 
individuals taking the same test or performing the same experimental deception task. 
During each repetition of the classification experiment, we left out all images of one 
individual, instead of 1% of all images, then trained a classifier on images of all other 
individuals and tested on the left out individual. In order to reduce the effects of various 
types of noise, we formed averages of all PEIs of truthful and non-truthful responses for 
all individuals, thereby ending up with 44 images in total, 2 for each individual. We then 
investigated the generalization performance of the classifier by training it on the 42 
images of the 21 individuals, then testing it on the 2 images of the left out individual, 
then repeating this procedure 22 times, each time leaving the PEIs of a different 
individual out.  

Results 
Behavioral 
A significant difference in accuracy [F(3,19) = 9.62, P < 0.05] and response time 
[F(3,19) = 31.44, P < 0.05] was observed among the four stimuli classes. The response 
time to Varied Distracter, Repeat Distracter, Lie, and Truth were 634 (SD 17), 654 (20), 
717 (24), and 806 (27) ms, respectively, and the % of correct answers was 96 (SD 0.79), 
98 (0.26), 97 (0.94), and 93 (1.25), respectively.  

Non-linear pattern analysis 
As described in Methods, we first examined the individual PEIs. A support vector 
machine achieved 99.3% separation of the truth/lie conditions, when trained on the PEIs. 
In the testing stage, during which 30 repetitions of training on 99% and testing on 1% of 
the PEIs were applied, we obtained classification accuracy equal to 87.9% (90% 
sensitivity, 85.8% specificity). Fig. 1 shows the training and testing accuracy of the 
classifier, in these experiments (only a randomly selected representative set of samples is 
shown, for clarity of the figure).  



Fig. 1. Plots of the value of the “decision function”, which shows whether or not the spatial activation 
pattern is representative of truth-telling or lying (1 is classified as truth and −1 as lie). Top row is for 
individual PEIs and bottom row for average PEIs. Training accuracy (i.e. how well the model “explained” 
the data) was above 99% and 95% (left). Testing accuracy (which reflects the predictive value of the 
classification scheme) was obtained via cross-validation, i.e. by testing the trained classifiers on previously 
unseen data sets and repeating for many times (right): sensitivity was 90% and 90.9%, for the two types of 
experiments, and specificity was 85.83% and 86.36%. The vertical axis shows the value of the decision 
function, and the horizontal axis shows different subjects (subject number).  

For comparison purposes, we applied a linear classification method (Fisher's Linear 
Discriminant Analysis, FLDA) to the same data, testing the efficacy of linear separators. 
We obtained classification accuracy equal to 65.6%, which is notably lower than the 
SVM result. Moreover, we tested voxel-wise t statistic maps, which are customary in 
spm-type of analysis. Since statistical parametric mapping is not meant for classification, 
but rather for generating voxel-by-voxel statistical parametric maps, we tried to create a 
comparison that is as fair as possible to the two methods. In particular, we selected the 
box that displayed the most significant P value (highest t value), based on t tests analysis 
of the PEIs, and trained a one-variable SVM classifier based on it. The resulting 
classification rate was 63.1%. This most discriminative box is shown in Fig. 2. These two 
results strongly indicate that not only there are relationships in the activity patterns of 



different regions that must be considered in classification, but also that these relationships 
are non-linear.  

Fig. 2. The area with the lowest P value obtained by the t test applied to the PEIs of the 512 cubic 
subregions in which the brain was divided. This area was used for classification, for comparison purposes.  

In order to display the regions that played important role in the classification, as 
described in Methods, we constructed paths from truthful to non-truthful responses, by 
following the gradient of the decision function. Fig. 3 (right) shows an overlay of the 
most significant boxes on a 3D rendering of the template brain. We note that some of 
these boxes are deeper in the brain, hence they appear fuzzed out. In the same figure, on 
the left, we show regions which had relatively higher (lower) PEI values in truthful 
responses (green) and in non-truthful responses (red).  



Fig. 3. Left: Different 3D views of regions or relatively higher activity during truth-telling (green) and 
lying (red). Right: Areas in which functional activity was found to be most informative in terms of pattern 
classification, in the sense that activities in primarily those regions were jointly used to classify an activity 
pattern. Some of the blue regions are relatively deeper and therefore appear fuzzed out in this rendition.  

In the second set of analyses, described in Methods, we tested the classification method 
on average PEIs, one for each subject and separately formed for truthful and non-truthful 
responses. The classification results were nearly the same as in the previous sets of 
experiments. A 95.5% separation accuracy was obtained in this case. Cross-validation 
using leave-one-subject-out yielded an average classification rate of 88.6% (90.9% 
sensitivity, 86.4% specificity), with the most discriminant features (boxes) being almost 
identical to the ones in Fig. 2.

Discussion 
We presented an approach to classification of patterns of brain activity obtained during 
lying and truth-telling, during a forced choice deception experiment (LaConte et al., 
2005, Lykken, 1991, OTA, 1983 and Rosenfeld et al., 1988). The main premise of this 
paper has been that a high-dimensional non-linear classification analysis can reveal 
spatial patterns of activity that distinguish lying, from telling the truth. As detailed in our 
discussion in Lao et al. (2004), although voxel-based analysis has been very useful in 
identifying regions activated in various cognitive activation paradigms, it could be of 
limited value when used to detect complex and spatially distributed image patterns, since 
correlations among different brain regions might be highly distinctive from the brain 



activity pattern (and they are, in the current study, as the experimental results showed). 
This is particularly important in lie detection, since as described in the Introduction,
voxel-by-voxel group differences do not allow us to reliably classify patterns of brain 
activity during truth-telling and lying, due to across-subject variability. Our hypothesis 
herein was that examining the entire brain pattern in a high-dimensional space formed by 
all brain regions jointly would help better separate truthful from non-truthful responses 
and potentially yield a methodology of value in applied lie detection. The high 
classification accuracy of our approach suggests that, with a more extensive training of 
the classifier, SVM analysis of fMRI data could surpass the accuracy of the polygraph, 
which is estimated to be between 65 and 95% (Stern, 2004).  

We used two complementary approaches to classification, based on the same data. In the 
first one, we attempted to classify individual responses, having trained on a large number 
of images. In the second approach, we averaged all responses of the same individual (one 
average for truth-telling and one for lying), and therefore we trained the classifier on a 
relatively small number of data, but data that presumably had less noise and variability 
across individuals. There is an obvious trade-off between these approaches, hence they 
gave very similar results. However, we believe that the second approach will ultimately 
prove far more powerful, if more training samples become available. This is because 
noise in the data can adversely affect high-dimensional classifiers, a limitation that signal 
averaging should be expected to alleviate to a large extent, without sacrificing separation 
flexibility, provided that a large enough set of training samples is available. The second 
approach is also more practical, because it does not require that the classifier be first 
trained on the person under study, before it can be applied for testing purposes.  

We would like to emphasize the importance of the cross-validation experiments we 
performed, since this is an issue that is often neglected in the literature. In particular, 
statistical models are often used to “explain the data”, which in our case amounts to 
separating the two conditions. However, a model that explains one set of data well does 
not necessarily generalize well to other sets of data, even if those are drawn from the 
same distribution. Accordingly, we used well-established cross-validation methods for 
estimating the generalization ability of a classifier (Hastie et al., 2001). However, it 
should be stressed that performance of the same classifier on new data that are not drawn 
from the same distribution could be significantly worse, since cross-validation guards 
only against overtraining, but not against training on a data set that is not fully 
representative of a statistical distribution. There are many reasons why new data could 
yield significantly different classification performance, including significant differences 
in scanner characteristics, acquisition protocols, and of course study design. Therefore, 
the main conclusion from this study is not that a universal classifier can be built that 
detects truthful from non-truthful responses, but rather that sophisticated classification 
methods can be trained on specific experimental set-ups to identify certain patterns of 
brain activity.  

The regions that were most informative in terms of classification (Fig. 2) were the right 
prefrontal regions (inferior and superior frontal gyri, Brodmann Area [BA] 6 and 44), and 
the bilateral posterior cortex (superior temporal and inferior parietal gyri, BA 38, 40). 



Additional regions included bilateral pericentral (BA 2,3 and 4) areas and foci in the right 
cerebellum and the striatum. Most of the prefrontral regions have been previously 
implicated in a variety of executive function tasks, including response inhibition and 
error monitoring, including deception experiments (Langleben et al., in press and Kozel 
et al., 2004b). The temporoparietal parietal cortex (BA 38 and 40), has been associated 
with average increased activity during deception in most fMRI studies of deception 
reported so far (Spence et al., 2004). Remarkably, this somatosensory association area 
and the primary somatosensory cortex (BA 2,3) have a role in the skin conductance 
response (Critchley et al., 2000), providing a possible link between central and peripheral 
physiological markers of deception (Bechara et al., 2000).  

Feature normalization is an important aspect of the classification process, since it 
effectively changes the characteristics of the underlying probability distributions, in a 
way that hopefully reduces intra-class variation and therefore amplifies inter-class 
separation. In Methods, we presented one possible way of feature normalization. We also 
experimented with a variety of other approaches, such as normalizing each feature 
separately, i.e. by normalizing the activity within each box so that it represents a z score 
across subjects, as well as normalization by the baseline images estimated by the SPM 
analysis used to determine the PEIs. We also used the baseline activity measurements as 
separate features. However, all of these methods gave inferior results.  

Feature selection is also a key issue in pattern classification. In these experiments, we did 
not use any feature selection, but rather sampled the entire brain region at the resolution 
of each cube. This approach has both advantages and disadvantages over a variety of 
alternatives (Chambers and Hastie, 1991 and Clark and Pregibon, 1993). Its main 
advantage is that it avoids potential biases that might be introduced by feature selection, 
and which would necessitate cross-validation of the feature selection process itself, along 
with the classification. That procedure would be extremely computationally expensive. 
The main disadvantage of our feature selection method is that it does not attempt to 
identify in advance the features (brain regions) that are most informative, and therefore 
might include features that are just noise and tend to deteriorate the performance of the 
classifier. This bolsters our confidence that classification accuracy can potentially be 
improved using more sophisticated feature selection methods, such as methods based on 
wavelets and other hierarchical image representation schemes (Lao et al., 2004).  

In conclusion, although spatial patterns of brain activation have been previously shown to 
present average differences between lying and truth-telling, the specificity of the average 
pattern to individual events of lie and truth has not been demonstrated and thus the value 
of these data for clinical lie detection applications was uncertain (Kozel et al., 2004b). 
Our findings demonstrate that a high-dimensionality non-linear pattern classification 
method is capable of accurately detecting subtle, spatially distributed, and complex 
patterns of brain activity associated with lying, thus bridging the gap between average 
group data and the practical lie detection in individuals. Under the conditions of the 
present deception paradigm (GKT2), the separation ability was almost 100%. Predictive 
power was also very high, as determined from responses of individuals that were not part 
of the SVM training procedure. These cross-validation results are particularly promising 



since training a classifier on an individual to be tested may be impossible in practical lie 
detection. Since the number of participants was relatively limited in these experiments, 
we anticipate that performance will improve significantly with more extensive training. 
Moreover, since the classification method is not specific to lie detection, it could 
ultimately be used to a very broad range of applications in which the state of mind is to 
be inferred from spatio-temporal patterns of brain activity. More sophisticated feature 
selection approaches (Lao et al., 2004) could further help improve the performance of the 
classifier by selecting only the brain regions that are most distinctive between the two 
conditions. Finally, the same approach could potentially be used with other measures of 
brain activity, such as EEG.  
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