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ABSTRACT

PERCEPTUALLY DRIVEN SIMULATION

Ben Sunshine-Hill

Supervisor: Norman I. Badler

This dissertation describes, implements and analyzes a comprehensive system for percep-

tually-driven virtual reality simulation, based on algorithms which dynamically adjust level

of detail (LOD) for entity simulation in order to maximize simulation realism as perceived by

the viewer. First we review related work in simulation LOD, and describe the weaknesses of

the analogy that has traditionally been drawn between simulation LOD and graphical LOD.

We describe the process of “perceptual criticality modeling” for quantitatively estimating

the relative importance of different entities in maintaining perceived realism and predicting

the consequences of LOD transitions on perceived realism. We present heuristic cognitive

models of human perception, memory, and attention to perform this modeling. We then

propose the “LOD Trader”, a framework for perceptually driven LOD selection and an

online approximation algorithm for efficiently identifying useful LOD transitions. We then

describe “alibi generation”, a method of retroactively elaborating a human agent’s behavior

to maintain its realism under prolonged scrutiny from the viewer, and discuss its integration

into a heterogeneous perceptually driven simulation. We then present the “Marketplace”

simulation system and describe how perceptually driven simulation techniques were used to

maximize perceived realism, and evaluate their success in doing so. Finally, we summarize

the dissertation work performed and its expected contributions to real-time modeling and

simulation environments.
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Chapter 1

Introduction

1.1 Of simulation and perception

Computer simulation has long proceeded along a viewer-agnostic trajectory.

That is, the role of a computer simulation has traditionally been to compute the complete

state of a simulated system at a particular time, given information about the complete state

of the system at some time in the past and rules for how the system must change over time.

From there, the state of system is visualized as needed: The information is processed into

graphics which can be perceived visually by a human participant. In scientific computing,

these visualizations are generally a compromise between the quantity and precision of the

information which can be presented, and the clarity and intuitiveness of the presentation.

The purpose is to enable the viewer to quickly discard irrelevant information about the

simulation state, while identifying and quantifying those bits of data which are of particular

importance.

The standard approach has been to make simulation independent of visualization: The

simulation produces, and the visualization consumes. Certainly this is true to reality: The

world works in the same way whether it is being perceived or not, and is unaffected by what

1



particular bits of it are important to the viewer.1 A user who desired realistic results from a

simulation would be justifiably suspicious if it turned out those results changed whenever

her back was turned.

1.2 Perceptually motivated simulation

However, for a certain class of simulations (of which video games are the largest and most

visible example), “realistic” is a very different sort of thing. First of all, the “realism” in

question may relate to how “realistically” the magic fireballs cast by an elf wizard affected

the zombies surrounding him – a topic on which the medical literature is curiously silent.

More to the point, however, the realism sought here is perceptual. The simulation must be

realistic not because some rocket engine being designed won’t work right if the answers

were wrong, but because a palpably unrealistic depiction of reality risks destroying the user’s

suspension of disbelief. Visualization is no separate concern here. The rules about what the

viewer sees when the simulated world is in a particular state are every bit as important as

the rules about how that world works. It can be safely assumed that objective realism is a

sufficient condition for perceptual realism.2 But is it a necessary condition? Clearly not!

As a simple example, it is a standard practice to break a video game world up into levels,

with the user present in, and able to perceive, exactly one level at a time. The game doesn’t

bother to simulate the other levels. They are frozen in time until awakened by the player’s

arrival; awaiting their cues, like actors in a play, because it doesn’t matter how you act if

you aren’t on stage. For video games, this laziness is a matter of necessity. Taken together,

the demand for realism, and for large, open worlds, far outstrips the available computational

1At quantum scales, observing a system may indeed change its state, although what constitutes an
“observation” here is murky. Although quantum mechanics in some respects inform this work, the simulations
considered here, as a rule, do not rely on the faithful simulation of quantum effects.

2That might be an oversimplification – stage magicians make a living by conjuring apparently unrealistic
results, while working in the real world – but it’s a reasonable one for most situations.
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power. Video games simply could not provide the necessary real-time experience, rendered

at dozens of frames per second, without this sort of culling.

1.3 The limits of realism discrimination

This compromise of realism in the service of performance may not even be a “compromise”

at all. Humans are not perfect, objective judges of realism. Recent behavioral studies have

demonstrated that people can be surprisingly insensitive to major, unrealistic changes in

their environment [Simons and Levin, 1998]. With that in mind, it is worth exploring two

distinct forms of perceptual realism.

On the one hand is ideal perceptual realism, the quality of being indistinguishable from

real life to a viewer with perfect perception of detail, memory of past events, and statistical

analysis of the patterns of those events. This is distinguished from objective realism in

that the data that can be gathered by the world is limited by conventional human rules of

perception – at any given moment, the viewer is located at a particular point, looking in

a particular direction, and cannot gather direct data about anything not visible from that

perspective. This is an easy quality to pin down: The output of a perceptual simulation

possesses ideal perceptual realism if and only if there exists an objectively realistic simulation

which would produce identical output. For instance, consider a simulation of a parking

garage which showed only the entrance and exiting of cars. As long as the series of entrances

and exits were feasible (i.e. the garage was never over- or under-loaded with cars, the only

cars exiting were those which had previously entered, etc.) the simulation would possess

ideal perceptual realism, regardless of whether there were actually an assignment of cars to

parking spaces being simulated.

On the other hand is practical perceptual realism, the quality of being indistinguishable

from real life to a human viewer with human powers of cognition. For instance, suppose the

3



parking garage simulation no longer bothered to simulate the current inventory of parked

cars, instead only generating random car exits, at plausible intervals. The simulation would

no longer possess ideal perceptual realism, as before long, a car would exit which had never

entered. It being beyond the capacity of mere mortals to keep track of the full inventory of

cars based on entrances and exits, however, the simulation could be reasonably considered

to possess practical perceptual realism.

Practical perceptual realism is a much more difficult quality to pin down comprehensively,

because there’s no recourse to objective equivalence. Our only models of human cognition

are empirical. That is, the only way to verify that a simulation possesses practical perceptual

realism is to run human experiments. And a lot of human experiments, at that – a simulation

may be noticed as unrealistic only in a small percentage of runs (when the Wienermobile

happened to exit twice in a row3), or only by a small percentage of users (ones with unusually

apt memory), or only as a result of the user viewing the simulation from an unusual and

unexpected perspective (if the simulation was only intended to be viewed for a few minutes,

but the user decided to view it for three days and thereby was able to clearly discern that

the number of exits far exceeded the number of entrances). For a wide range of simulations

which do not possess ideal perceptual realism, it would not be possible to definitively prove

that they possessed practical perceptual realism.

1.4 Rationing computational resources

The real utility of defining practical perceptual realism is not to create an absolute test, but

to suggest a relative ordering. In any real-time simulation, computational resources must be

rationed – if it is possible to build a computer with more computational power than anyone

could possibly want, it has certainly not yet been done – and there are good and bad ways of

3Seven Wienermobiles are currently in operation, but as each is assigned to a separate region of the United
States, more than one would not normally be observed in a single location.
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rationing computational resources. For example, consider a crowd simulation which has run

out of available memory, and must discard some people from the crowd in order to continue

executing. Should the victims be chosen randomly? To do so might introduce a serious loss

of realism, if one of the victims was nearby and fully visible to the viewer – people do not

generally disappear like this. Better to choose a faraway agent, hidden behind something or

out of the viewer’s frustum. The comparisons won’t always be apples-to-apples, though:

we may instead choose to reclaim the memory from some other area of the simulation, say,

by discarding the set of cars in a nearby parking garage. Better to lose this agent, or that

car? In other words, what is the relative perceptual criticality of different entities? Again,

defining “perceptual realism” does not by itself answer these questions, but it does provide

an ideal framework within which to tackle them.

1.5 Perceptually driven simulation

This dissertation presents a framework for “perceptually driven simulation”. A perceptually

driven simulation is a realtime simulation which rations computational resources in order to

maximize perceptual realism.

A perceptually driven simulation must have the ability to perform the following tasks:

1. Simulate an individual entity through multiple strategies, and during the simulation,

change which strategy is used to simulate an entity;

2. Estimate the importance of the individual entities for the viewer, and thereby the

probable effect of changing their simulation strategies on the realism of the simulation

as a whole; and

3. Coordinate the simulation strategies of all entities in order to maximize realism while

respecting resource constraints.
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The framework has the following components, which will be explored in subsequent

chapters.

1.5.1 Perceptual criticality modeling

We have developed a system for estimating the expected impact of certain simulation

decisions on perceptual realism, based on simple heuristic models of human perception.

1.5.2 The LOD Trader

The LOD Trader is a system for dynamically changing the way in which different entities in

the simulation are simulated, in order to maintain an allocation of computational resources

which provides near-optimal realism.

1.5.3 Alibi generation

Alibi generation is a technique we have developed for transparently upgrading the realism of

agents in order to increase perceptual realism with a low computational cost. It provides two

simulation strategies for virtual human agents, and the means to transition between them.

We have integrated this technique into our perceptually driven simulation framework.

To evaluate this framework, we have developed the “Marketplace” simulation, which

uses these components to maximize the perceived realism of a virtual-reality simulation of a

crowded marketplace.

1.6 Organization

In the remainder of this dissertation, we will first review past work directly concerned

with perceptually driven simulation, and in particular simulation level of detail; other
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related work will be discussed in context. We will then describe the three components

of the perceptually driven simulation framework listed above. We will then describe the

“Marketplace” simulation, the process of integrating perceptually driven simulation into it,

and tests performed to determine how effective these techniques proved to be. Finally, we

will summarize the work performed, and its potential contributions to real-time modeling

and simulation environments.
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Above all Siddhartha learned how to
listen with a quiet heart, with a waiting,
open soul, without passion, without
desire, without judgment, without
rebuke.

Herman Hesse, Siddhartha

Chapter 2

Related work

This chapter reviews existing work in perceptual simulation and simulation level of detail

(simulation LOD or SLOD).

2.1 Level of detail

It is difficult to pinpoint where work on simulation LOD began. From the earliest days

of computer graphics, the limited computational power of rendering systems1 required

aggressive optimization techniques to perform interactive-rate rendering. Clark [1976]

first introduced the concept of rendering different objects in a scene at different levels of

detail, depending on their apparent size. This concept was embraced by many commercial

rendering toolkits, and quickly became a standard element of interactive virtual reality

rendering [Luebke, 2003]. Granieri et al. [1995], among others, extended this concept

from still rendering to motion, using different articulation models to maximize the speed

of animating faraway characters without compromising the realism of nearby characters.

Because Granieri et al.’s characters used the output of their articulations to drive the motion

1At least, by modern standards. In thirty years, researchers to come will no doubt pity us our own limited
computational power.
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of their root positions, this could technically be seen as simulation LOD, with more detailed

articulations producing more nuanced paths. However, as all levels of articulation involved

playback of prerecorded motion clips, this was still simulation LOD only in the loosest

sense.

2.2 Simulation level of detail

Carlson and Hodgins [1997] first introduced real, rendering-decoupled simulation level of

detail to computer graphics. Their simulation consisted of a crowd of one-legged creatures

attempting to escape a “giant puck”. Each creature could be simulated dynamically (as a

driven articulated body with four torque-controllable degrees of freedom) with collisions

against rigid bodies in the world; via a hybrid model which displayed animations generated

by interpolating prerecorded joint motions but directly accelerating a point-mass represen-

tation of the creature, or by a simple, unarticulated model which likewise accelerated the

model as a point-mass but which did not synthesize joint motions and was therefore not

appropriate for simulating on-screen creatures. Carlson and Hodgins defined conditions

under which the LOD of a creature changed, based on both the immediate importance of

the creature to the rendered scene and the capability of the different simulation levels to

realistically react to the creature’s current state. For instance, because the point-mass models

were not capable of reacting to inter-object collisions, fully dynamic simulation was used

for creatures near a potentially colliding object. Other than that constraint, visibility and

distance were used to select LOD: Off-screen creatures were simulated as pure point-masses,

faraway visible creatures used the hybrid model, and nearby creatures used the fully dynamic

model. The camera distance used to choose between the dynamic and hybrid models was

chosen experimentally, but was not reactive to the simulation; the authors observed that

different camera distance thresholds greatly affected the overall performance of the system,
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but did not discuss the automatic and dynamic selection of an optimal threshold. Their

results showed a great difference between the average and worst-case observed performance

with far thresholds, although they did not comment on this result. This difference implies

that with a far threshold distance, performance was determined largely by the population

of the area near the camera. There was, therefore, a significant potential for experience

improvements from dynamic threshold selection.

Much later work in real-time physical simulation likewise focused on modifying the

type or parameters of an object’s physical model by tracking the importance of the object

and/or the capability of different models to realistically react to current state. For instance,

Redon et al. [2005] adapted the detail in articulated dynamic characters in response to their

distance from the camera (although they mention this criterion for level selection only in

passing, concentrating instead on the mathematics of the joint simplification). Likewise,

Debunne et al. [2001] performed real-time deformation of volumetric bodies by dynamically

increasing the finite element resolution of areas of bodies undergoing more deformation

and reducing the resolution of areas of bodies at rest. Although camera distance was not a

factor in resolution adaptation, the increase in resolution in highly deformed areas led to

realistic haptic feedback, arguably the most appropriate measure of perceptual quality in

their application. Brogan and Hodgins [2002] built on the ideas introduced in [Carlson and

Hodgins, 1997] with a bicycle race simulation which more accurately predicts the ability of

a reduced-DOF controller to accurately model the outcome of the fully dynamic controller.

2.2.1 Perceptual validation

Dingliana and O’Sullivan [2000] developed an anytime collision detection algorithm which

could produce approximate results in a guaranteed time limit, and a collision reaction system

which could act on this approximate data. In their later work (O’Sullivan and Dingliana,

2001, O’Sullivan et al., 2003), they performed a series of psychophysical experiments to
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determine the perceptual consequences of different levels of collision approximation, thereby

qualifying the types of inaccuracies which were most likely to be perceived by participants;

this data could be used to tune the degree of approximation during simulation. O’Sullivan

and Dingliana were nearly unique in actually performing controlled testing on the percep-

tual effects of their approximations; most authors stopped short of perceptual validation,

concentrating instead on showing real-time performance at “good enough” accuracy levels.

2.3 Behavioral level of detail

Other work focused on behavioral rather than physical simulation. O’Sullivan et al. [2002]

developed the ALOHA system for real-time simulation of groups of human agents through

LOD adaptation. The ALOHA system encompasses rendering, physical, and behavioral

LOD. For instance, there are three levels of detail for conversations between agents: One in

which prerecorded sequences of dialogue and associated nonverbal behavior (e.g. gestures)

are performed, one in which nonverbal behavior is randomly generated while respecting

basic conversational rules (for situations in which agents can be seen but not heard), and

one in which nonverbal behavior is randomly generated and does not correspond to actual

communication. In [MacNamee et al., 2002], the technique of “role-passing” was integrated

into the ALOHA system. In role passing, a character’s (initially simplistic) behavior is

externally augmented in certain situations in order for them to realistically accomplish the

activities expected of them in certain roles. For instance, a character behind a bar could

assume the “bartender” role, with the behaviors specific to that role, and later doff the role

and be able to walk home without accidentally mixing anyone a drink. While not precisely

LOD in the classical sense, the authors made the case that externalizing roles in this manner

reduces the computational expense of characters on average by freeing them from even

considering the set of behaviors specific to any given role.
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Musse et al. [1999] enumerated discrete “levels of autonomy” to describe the ability of a

virtual human agent to successfully complete a goal with varying levels of input: “guided”,

indicating that the agent must be given explicit and exhaustive action instructions specific to

the situation; “programmed”, indicating that the agent is given an explicit and exhaustive

description of the goal but is capable of determining a set of actions to accomplish that goal;

and “autonomous”, indicating that the agent need only perceive the environment and will

determine goals and actions for itself. Although the authors did not approach these levels

as potentially on-the-fly substitutable, as conventional “levels of detail” would be, they did

discuss the types of situations in which different levels of autonomy would be necessary

or sufficient, and provided a formalism for externalizing intelligence from the agent to its

environment, a common component of high-performance human simulation [e.g. Brom

et al., 2007, Stocker et al., 2010, Kistler et al., 2010].

Niederberger and Gross [2005], drawing on the levels of autonomy described by Musse

et al., described a system for level of detail in human behavior. Each agent is assigned

an LOD depending on their distance and visibility, and this level determines how often

the agent’s simulator is invoked, how much time it has to complete, and whether it may

plan autonomously or must be managed by a higher level planner. From there, the system

determines what type of behavior is used. High-level agents use proactive planning and

are allowed to spend a long time searching for optimal plans, while low-level agents only

behave reactively, with their higher-level functioning driven by a grouped planner. This

system actively manages the total time spent on agent simulation, apportioning the total

time-slice based on LOD rather than independently assigning time-slices with no regard for

their sum. Although the selection of LOD is similar to that of other approaches, considering

only distance and visibility, the system does use a “nearly visible” zone which allows for

higher levels of detail for agents just outside the viewing frustum. The detection of nearly

visible objects arises from their broadphase visibility determination algorithm, and thus has
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no independent cost. The authors motivated higher levels of detail for nearly visible objects

“just to make sure that they really behave correctly.”

Kistler et al. [2010] and Wißner et al. [2010] described a city simulation and a beer

garden simulation, apparently branches of the same underlying project, which uses multiple

dimensions of behavioral LOD. At lower levels of detail2, the optimality of planned paths is

reduced, inter-agent avoidance is removed, update rates are reduced, and “some behavior is

dropped”. (There is additionally LOD applied to rendering, animation, and sound generation,

but these do not affect the ongoing state of the simulation.) Similar to [Chenney, 2001], large

and infrequent simulation steps are taken for out-of-view agents. A set of integrated levels

of detail is defined in the application, with each integrated level specifying the LOD along

all dimensions. The choice of integrated LOD is entirely determined by camera distance

and visibility.

Brockington [2002] described the behavioral LOD used in the computer role-playing

game Neverwinter Nights. In this multiplayer game (unlike earlier games by the same

developers), players can wander around the world independently rather than remaining

grouped tightly into the same area. Brockington developed five levels of behavioral LOD.

While distance from the (closest) player character is used to choose between two levels, and

a semantic view of game areas is used to choose within two others, levels of detail are also

chosen based on the current activity of agents: Those fighting or otherwise interacting with

a player character are given a higher LOD than those merely nearby a player character. At

lower LODs, characters move coarsely from tile to tile or directly to their destination, do

not execute random walks, and are allowed a lower percentage of the total computational

budget (with their simulation steps not invoked on every frame).

2The authors actually used “higher LOD” to refer to reduced levels of detail, denoting full simulation as
level 0 and giving simplifications progressively higher numbers. Brockington [2002] used a similar scheme.
To avoid ambiguity, we defer to the majority and use “higher LOD” in all cases to indicate more detail.
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Brom et al. [2007] developed a village simulation, noting in particular the simulation

of miners drinking in a pub. Agents draw their behavior from an “and-or tree” [Thornton,

2007], with atomic actions as leaves, and composite actions as and-nodes. Agent behavior

can be simplified by executing composite actions atomically. Additionally, a semantic

hierarchy is defined over the simulation area, allowing areas of the world to be collapsed

at low levels of detail; although agents can still perform actions, they do so in an abstract

manner. However, the agents themselves are never removed from the simulation as a result

of collapsing an area. Brom et al. made the unique observation that the viewer might not be

the only entity around which LOD should be high, suggesting that “important places” and

characters should create a halo of high LOD around them.

2.3.1 Non-comprehensive simulations

Some work focused on LOD in particular types of behavior, rather than human behavior

in general. Osborne and Dickinson [2010] demonstrated the hierarchical grouping of

flocking agents to minimize computational costs for faraway agents: Nearby agents are

individually simulated, while faraway agents are simulated in progressively coarser group

nodes. Although this technique drastically reduces the cost of simulation, the authors did

not explore the effect of different grouping thresholds on perceptual or objective realism,

and in fact did not so much as mention the consequences of grouping on realism. As such,

their results are not terribly useful.

Jan and Traum [2005] described an algorithm for simulating conversation between

background characters; this simple algorithm was intended for use as a low behavioral

LOD, as an alternative to earlier conversational models developed by the authors, but only

evaluated believability in a limited manner, and did not evaluate performance.

Narain et al. [2009] developed a crowd simulation which used an incompressible fluid

approximation for densely populated areas to maximize performance and prevent unrealistic
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deadlocks, but suggest that in sparser areas a technique such as reciprocal velocity obsta-

cles [Van den Berg et al., 2008] could be used for more realistic individual agent paths, and

show that the two techniques can interact realistically in boundary areas. The choice of levels

here would be motivated by capabilities rather than perceptual importance. Going further in

this direction, Singh et al. [2011] developed a modular architecture for crowd simulation

which featured several steering algorithms, dynamically changing the steering algorithm on

a per-agent basis to minimize computational cost without compromising the quality of the

steering. Although distance from the viewer and other perceptual considerations were not

considered for algorithm selection in these projects, the basic architectures would support

that use.

2.3.2 The LOD membrane

The work of Brom et al. [2007] and that of Osborne and Dickinson [2010] share the concept

of an “LOD membrane”, a formalism for guaranteeing completeness when simplifying a

hierarchical simulation. An LOD membrane is a partitioning over the nodes of a tree into

simulated and non-simulated objects, such that:

1. The root is simulated.

2. Either all of a node’s children are simulated, or none of its children are simulated.

3. If a node is not simulated, none of its descendants are simulated.

This partitioning implicitly defines a set of “membrane” nodes, which are simulated but

whose children are not simulated. If these nodes are leaves, they simulate as normal for

a fully-detailed simulation. If they are not leaves, they are responsible for mimicking the

activity of their descendant nodes in an approximated fashion. Nodes which are simulated

but which are not membrane nodes (that is, their children are also simulated) may execute
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certain bookkeeping operations but their simulation is primarily handled by their descendants.

This formalism guarantees that every leaf node has its activity handled by exactly one

membrane node, and membrane nodes can assume that none of their descendants are acting

autonomously. In [Osborne and Dickinson, 2010] the membrane nodes are the flocking

groups which act as a single agent; in [Brom et al., 2007] the membrane nodes are the lowest

non-collapsed spatial areas, within which agents act.

2.4 Presence

While many researchers have studied the perception of realism in the context of rendering

simplification [Luebke, 2003, chap. 9], few have studied it in the context of simulation (but

see subsection 2.2.1). However, a related concept, that of presence, has received considerable

attention. Lombard and Ditton [1997] describes presence as “an illusion that a mediated

experience is not mediated.” From a behaviorist standpoint, presence is a human state in

which the human’s reactions to mediated (that is, simulated under controlled circumstances)

stimuli are the same as that human’s reactions to the same stimuli would be in an unmediated

setting. The concept is applicable to virtual reality, telepresence, movies, books – any

medium in which stimuli are intended to be evocative, rather than merely descriptive, of a

specific unmediated experience.

Presence is a larger, more holistic concept than perceptual realism as described here. A

person viewing a simulation on a 9-inch monochrome monitor would feel less presence than

if she were to view it on a stereoscopic 60-inch full color display. However, her perception

of the realism of the simulation itself would be the same, or might even be higher for the

monochrome monitor (if the low fidelity covered flaws in the rendering). Perceptual realism

as described here is more analytic: The viewer, provided with sensory input, determines a

“state of the world” corresponding to that input, and judges whether that state of the world is
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realistic, rather than judging whether the sensory input itself is realistic. Nevertheless, there

is obvious overlap between the two concepts.

The association of presence with telepresence and media studies (both of which involve

recorded and reproduced stimuli) has led some presence researchers to invent catalogues of

the determinants of presence which are not readily applicable to simulation; the determinants

focus on how accurately and vividly stimuli are reproduced, and how plausible recorded

actors’ behaviors are, but do not consider the situation where the world is entirely computer-

simulated. The models are not fundamentally incompatible, however. Social realism, the

feeling that other people encountered in a virtual environment are behaving in a reasonable

and consistent manner, is commonly mentioned as a determinant of presence. If one extends

the concept of social realism beyond social behavior to encompass the simulation of all

entities, the result is very much like perceptual realism.

2.5 Breaks in Presence

Slater and Steed [2000] introduced the concept of a Break in Presence (BIP), a discrete

event in which a viewer transitions from feeling present in a virtual environment, to feeling

present in the real world.3 Many things can cause a BIP; the viewer noticing a particular

unrealistic event in the simulation is a sufficient but not a necessary condition. Though

discrete events in themselves, a particular BIP may not have a discrete external cause: they

can occur at unpredictable intervals, the products of unobservable mental processes, with

their frequency being partially determined by ambient external factors.

The subset of BIPs which have proximal external causes – and, further, causes relating

to the perception that the simulation is behaving in a realistic manner, are of importance to

perceptually driven simulation. We term these Breaks in Realism (BIR), and discuss them

3The reverse event, in which a viewer becomes present in the virtual environment, is also considered a BIP.
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further in chapter 3.

As mentioned earlier, vividness of presentation can have opposed effects on presence

and perceived realism; and it seems clear that perceived realism has an effect on presence.4

It is unclear whether there is any causal force in the other direction – whether an increase in

a viewer’s sense of presence, from whatever source, affects the likelihood of BIRs.

4This effect may not be consistent or monotonic. Vinayagamoorthy et al. [2004], studying the effect of
texture repetition and character modeling fidelity, claim that high-fidelity character models lowered reported
presence levels. Their confidence intervals, however, do not appear to support this conclusion. Garau et al.
[2003] provided better support for this claim. Both studies, however, focused on the low end of the realism
scale: a choice between the cartoonish and the freakish. Later work, such as that of Slater et al. [2009],
supports a positive correlation between realism and presence at higher levels of rendering quality.
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The brain has its own language for
testing the structure and consistency of
the world. But we never see the
machinery of logical analysis, only the
conclusions.

Carl Sagan, Cosmos

Chapter 3

Perceptual criticality modeling

In this chapter we discuss the design of heuristic models to measure the relative potential

impact of per-object LOD decisions on the viewer’s overall perception of realism. The basic

question to be answered is, given an entity in the world and a potential event affecting how

the entity is simulated, “what is the probability that, if this event is made to take place, the

viewer would perceive the entity as unrealistic”? The potential consequence of the viewer

perceiving the entity – and, by extension, the simulation as a whole – to be unrealistic, is

a break in realism (BIR).1 An unrealistic event is one which has a nonzero probability of

causing a BIR event; an event which has a greater probability of causing a BIR than another

is more unrealistic than the other.

As we shall argue, estimating the impact of an entity’s LOD decision on the perceived

realism of a simulation involves evaluating both the a priori unrealism of the LOD itself,

and the degree to which the viewer’s relationship with that particular entity can exacerbate

or mitigate that unrealism. We refer to this latter factor as perceptual criticality, and will

describe the space in which it exists and how it may be estimated.

1To be contrasted with a “break in presence” as defined by Slater and Steed [2000]. A BIR is a sufficient
condition for a BIP, but not a necessary one.
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3.1 The arithmetic of unrealism

3.1.1 Independence

We make the important simplifying assumption that BIRs caused by different entities are

independent random variables. That is, it assumes that if, in the event, the viewer perceives

entity A as unrealistic, the posterior likelihood of perceiving B as unrealistic does not change.

This assumption may be criticized on several fronts.

Sensitization. If a viewer experiences a BIR, this may cause her to be more alert to other

unrealistic entities, particularly similar ones. Noticing that a broken mailbox has been

mysteriously repaired, for instance, may sensitize her to notice other entities which

likewise are unexpectedly restored to their pristine state.

Location. Certain BIRs are dependent on the uncertain event of the viewer being able to

perceive them in the future, so BIRs of entities near each other in the world become

positively correlated. If and when a viewer experiences a BIR from a given entity, she

must be located near that entity, and therefore BIRs from entities nearby it become

more likely; likewise, BIRs from faraway entities become less likely.

Correlation. Two or more entities may be perceived as unrealistic due to the relationship

between them. For instance, if two blue mailboxes next to each other on the street

change to grey while the viewer is not watching them, the result may be less likely to

be noticed than if only one of them changes to grey and the other remains blue.

Of these potential dependencies, the first may be disregarded as long as the viewer does

not notice sources of unrealism to begin with. As the viewer noticing even a single unrealism

should be regarded as a failure of the system, the subsequent greater or lesser likelihood of

noticing other sources of unrealism is academic. The second dependency will be discussed
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in section 3.2.2. It is unclear in what, if any, situations the third dependency would arise as a

result of LOD simplification, and in our opinion is unlikely to be encountered in the dseign

of a simulation LOD system.

3.1.2 Log-scaling

In our system, rather than working directly with BIR probabilities, we look at their negated

log inverse probability – that is, − log(1− p), the negated logarithm of the probability that a

source of unrealism is not noticed. This quantity (which we will refer to as the “log-scale”)

has the following properties:

1. 0 is the minimum possible value in the log-scale, equating to p=0 in the linear scale.

2. The sum of log-scale values for two unrealistic events is equal to the log-scale of the

probability that neither event causes a BIR, assuming the independence criterion from

section 3.1.1.

3. Multiplying a log-scale value by a nonnegative real number n produces the log-scale

of the probability that none of n independent copies of the event cause a BIR.

The first two properties make it possible to determine the “total unrealism” of a simulation

through a simple summation. The third allows us to assign mathematical meaning to a

phrase such as “twice as unrealistic”; one event is n times as unrealistic as another if getting

away with the first event is as likely as getting away with n copies of the second event. (n

need not be an integer.) This interpretation is better behaved than operating directly on p: it

means that an event which is “twice as unrealistic” as some event which would be noticed

50% of the time, need not be noticed all the time, and it does not restrict us from describing

an event as, say, “three times as unrealistic” as some event which would be noticed 50% of

the time.
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3.2 Categories of unrealism

In order to determine the likelihood of a BIR, one must first decide what situations can give

rise to a BIR. Under ideal circumstances, these situations are undesirable but not unexpected:

they are the known consequences for LODs which have lower computational resource

requirements relative to higher-fidelity LODs. We have identified the following categories of

unrealism, which are not intended to be exhaustive but are intended to be nearly exhaustive

of realism that might be created in the service of increased performance:

3.2.1 Unrealistic state

In this category, the immediately and directly observable state of an entity, or the directly

observed propagation of that state over a short period of time, would be unlikely or impos-

sible in real life. Two pedestrians occupying overlapping positions in space, or a vehicle

traveling without its wheels turning, could cause a BIR of this sort. This category has direct

analogues in graphical LOD: If an object is rendered at a detail level which is not perfectly

indistinguishable from highest detail at its current draw distance, its state is unrealistic.

Likewise, if a character is animated with a low-quality skeleton at a distance which allows

the discernment of its joints, its short-term behavior is unrealistic.

The probability of a BIR from unrealistic state is affected by the audacity of the unrealism

(the degree to which it is distinct from any likely or possible state), the observability of

that portion of the state which exhibits the unrealism, and the attention which the viewer

is paying to that exhibited state. In comparing BIR probabilities between heterogeneous

entities, it is likely that the first factor can only be determined empirically.2

2Attentional factors also play a part in visual fidelity metrics, as an entity which the viewer is watching
directly is observed with macular rather than peripheral vision and thereby observable in more detail. Organi-
zationally, we delegate this overlap of concerns to attentional modeling, as without gaze tracking it is more
difficult to extricate gaze from attention than from vision.
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3.2.2 Fundamental discontinuity

In this category, an entity’s current state is perceived as being incompatible with its observed

state in the past. For example, a mailbox which the player had earlier crashed into being later

observed as undamaged could cause a BIR of this sort. As another example, a pedestrian

who, after temporarily being out of view, had traveled a distance which was patently

incompatible with their walking speed. This category does not focus on situations where the

discontinuity occurs while the entity is being continuously observed; those situations are

adequately covered by the previous category. For this sort of BIR to occur, the viewer must

draw on her recollection of past observations. The probability of a BIR from fundamental

discontinuity is proportional to the audacity of the discontinuity, the degree of recollection

of prior observations, and the expected attenuation of memory upon return to the entity

(which is, in turn, dependent on the amount of time before that return).

Because this type of BIR is predicated on an uncertain future return to an entity, it is

susceptible to compromising the assumption of independence described in section 3.1.1,

by introducing positive covariance for memory attenuation for entities near each other, and

negative covariance for entities far from each other. Our model for expected return time does

not take physical location as input, and so sidesteps this issue. A more elaborate system

could estimate fundamental discontinuity on a spatial basis instead of a per-entity basis,

but this would not be appropriate for moving entities and, in our opinion, would not yield

significant marginal benefits.

3.2.3 Unrealistic long-term behavior

In this category, an entity’s behavior is perceived as realistic in the short term, but observing

it for a sufficient quantity of time demonstrates unrealism. A pedestrian who is forever

circling a single block can cause a BIR if the viewer observes it for long enough, but
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cannot cause a BIR of this category based on only a short period of observation. Likewise,

a car which never runs out of fuel becomes unrealistic only if the viewer follows it for

several hours. This type of BIR has no analogue in graphical LOD, though weak parallels

may be drawn with impostor-based rendering. This category is distinct from fundamental

discontinuity in that it can (though does not necessarily) result from continuous observation

of an entity.

The factors of the likelihood of a BIR from unrealistic long-term behavior are similar to

those of fundamental discontinuity, but include the duration of continued observation of the

entity.

The different categories of unrealism are summarized in table 3.1.

3.3 Unrealism and linear functionals

The various factors of BIR probability listed in table 3.1 may be broadly separated into

two categories. The first, consisting of the “audacity” factor, contains properties of the

event itself, rather than the viewer; the second, consisting of “observability”, “attention”,

“memory”, and “duration”, are products of the viewer’s situation and his relationship to the

entity associated with the event – the criticality of that entity. If the viewer’s observability

of an entity increased, we would expect the BIR probability for all BIRs associated with

that entity to increase in equal proportions. Conversely, if a viewer had equal observability

and attention factors for two different entities, we would expect two unrealistic state events

with the same audacity, one for each entity, to result in equal BIR probabilities.

This leads to an elegant mathematical model of BIR probability. If the audacity factors

for the three categories of unrealism from a single event are gathered into a column vector,

and the criticality factors for the categories of unrealism as induced by the current state of

the viewer and his relation to the entity are gathered into a row vector, the product of the
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two vectors is the total BIR probability of the event. In this model, the audacity vector of

an event is fixed for all instantiations of that event and independent of the specific viewer,

and a particular criticality induces a positive linear functional over the audacity vector space

which is independent of the particular events taking place. We refer to this functional as a

“criticality multiplier”.

For instance, consider a human entity who has just approached the viewer and asked

her for directions, before being momentarily obscured by a passing door. Attention and

return time factors are high, and memory and observability factors are low. This leads

to a high probability of BIRs from unrealistic state, and a low probability of BIRs from

fundamental discontinuity or unrealistic long-term behavior. An event which is audacious

as to unrealistic state only, such as the entity’s animation being temporarily frozen, will lead

to a low BIR probability overall, while an event which is audacious as to both unrealistic

state and fundamental discontinuity, such as the entity’s face changing to someone else’s

face, has a somewhat higher BIR probability (though still low, because of the low memory

factor). If, on the other hand, the viewer has been conversing with the human entity for

several minutes before the events occur, the frozen animation event will still lead to a low

BIR probability but the face changing event will lead to a high BIR probability, without any

need to change the audacity vectors for the two events.

3.4 Factor modeling

In this section, simple computational models for the various non-audacity factors involved

in criticality modeling are derived. These models are not intended to be precise; are based

on simple, informal reasoning about the underlying processes, with only occasional recourse

to settled science; and have only informal empirical support. They are intended to be simple

to understand, efficient to implement, and transparent enough in operation to be easily tuned.
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More detailed models may be substituted, e.g. the inattentional blindness model of Gu et al.

[2005] or the ACT-R declarative memory system [Douglass et al., 2009].

3.4.1 Observability

Observability is the property of being capable of being observed, as opposed to the property

of actually being observed. As a result, it may be confidently estimated based purely on

output from the renderer. An entity which is not on-screen, either because it is outside the

viewing frustum or because it is hidden by an occluding object, has an observability of 0.

An entity which is on-screen and subtends a large enough proportion of the screen to have

its details clearly visible, has an observability of 1. Visible but faraway entities present the

only real difficulty for quantifying observability. We take the simple expedient of measuring

the solid angle subtended by unoccluded portions of an entity, a quantity which is roughly

proportional to the number of pixels in which the entity can be found. Above a certain

solid angle (the “saturation angle”), the entity is considered “visible enough” to be fully

observable; beyond that distance the observability is proportional to the solid angle:

Oi =


Ωi

Ωsat
if Ωi < Ωsat,

1 if Ωi ≥ Ωsat.
(3.1)

3.4.2 Attention

Modeling attention is an important aspect of criticality modeling for two reasons. First,

scrutiny of an entity’s realism increases with attention. Simons and Chabris [1999] found

that subjects who were shown a video of several people playing with balls, and a gorilla

unexpectedly walking across the scene, were less likely to notice the gorilla if they were

concentrating on a challenging cognitive task related to the people playing with balls.

Second, rate of memorization increases with attention [Pessin, 1933], so a good model of
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memorization should take expected attention into account to the extent that it depends on

initial encoding strength.

Human attention is a limited resource. A viewer watching a crowd of one hundred

people will be less likely to notice a single person’s momentary unrealistic behavior than if

she was watching a single person. It is tempting, therefore, to model attention as a constant

which is divided among the entities in a simulation. At the same time, however, human

attention is not a fixed quantity: A person performing an unchallenging cognitive task, such

as watching a colored dot and waiting for it to change color, will not have their performance

drop to half if a second dot is added. A simple model to account for these phenomena is the

addition of a constant ambient attentional load before normalizing. This quantity represents

that portion of the viewer’s intellect which is not devoted to any entity in the simulation. For

some per-entity indicator of attempted attention Âi, the effective attention Ai given to an

entity is then

Ai =
Âi
L

, where total attentional load L is (3.2)

L = Âamb +
n∑
j=1

Âj . (3.3)

This behaves reasonably: For a small number of low-attentional-load entities, total at-

tentional load is largely taken up by ambient attentional load. As the number of entities

increases, per-entity effective attention decreases, but the total proportion of attentional load

taken up by entities in the simulation increases.

It remains to model the input to this equation. Our model of attempted attention primarily

draws on an exponential moving average of observability as an input. Certain behaviors,

however, may be taken as indicative of increased attention:

• Focusing, in which the viewer manipulates the camera angle in order to roughly center

the entity on the screen, and
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• Following, in which the viewer manipulates the viewing position in order to limit the

distance to the entity.

Time-averaging is likewise used to typify these behaviors. The degree of focusing is

determined as an exponential moving average of the cosine of the angle between the viewer’s

forward-vector and a ray connecting the viewer to the centroid of the entity, modulated by

observability. Similarly, the degree of following is determined as an exponential moving

average of the distance between the viewer and the entity (saturated to a particular maximum

range), also modulated by observability. The total attempted attention for an entity is the

sum of these three factors, linearly weighted by empirically determined constants and with

decay factors for the exponential moving averages also empirically determined.

3.4.3 Memory

Although no precise, comprehensive description of the structure and operation of human

memory has yet gained wide acceptance, many memory researchers have proposed math-

ematical models to predict and explain the performance of experimental participants in

memory tests. Of the various memory tasks commonly studied, one of the most relevant for

this area is that of associative recognition. Associative memory tasks call for participants to

memorize associations between pairs of items in a study list. The most common associative

task is known as the cued recall or paired associate task, in which participants are shown

one item from a pair of items from the study list and asked to respond with the other item

from the pair. In the associative recognition task, in contrast, participants are shown either a

pair of items drawn directly from the study list (an intact pair, or target) or a pair of items

created by combining items from two pairs from the study list, but which did not occur

together in the study list (a rearranged pair, or lure), and asked to respond whether the pair

was on the study list. (In the recognition literature, a correctly recognized target item is a
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hit, and a lure item incorrectly recognized as a target item is a false alarm.)

Item recognition tasks are well-described by a dual-process model, which describes two

strategies by which a participant can successfully recall a target item: familiarity, in which

the participant feels that they “know” that the item was on the study list, and recollection, in

which the participant “remembers” the experience of studying the item [Yonelinas, 1994].

Yonelinas [1997] found that although both processes are required to account for observed

performance on item recognition tasks, associative recognition draws almost exclusively

on recollection. Moreover, in the case of associative recognition tasks, recollection has a

second effect which is not found in item recognition tasks: A participant may recognize a

test pair as a lure by recalling the original intact pair which was modified to produce the

lure.

A well-known effect in human memory performance is retroactive interference (RI),

whereby a participant’s ability to remember studied material is reduced if they study other

material in the interim between the original material and the test of that original mate-

rial [Britt, 1935].3 RI is maximized if the interpolated material is similar to the original study

material. Many studies have demonstrated RI in cued recall tasks, but have generally failed

to demonstrate a significant RI effect in associative recognition. Verde [2004], however, has

proposed that this is due to RI causing opposed effects for recognition, reducing recollection

but increasing familiarity. This hypothesis predicts that RI increases false-alarm rates, which

was borne out by studies performed by Verde.

In the case of fundamental discontinuities, associative recognition provides a reasonable

model for the cognitive task undertaken by viewers. An association between an entity’s

identity (“the mailbox at that location”) and its state (“dented”) is memorized. Later, the

participant is shown either the same identity/state pair, or one with the same identity but

3Proactive interference, whereby a participant’s ability to remember studied material is adversely affected
by memory tasks performed prior to that material, has also been studied but is of less interest here.
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modified state (“not dented”), and asked to determine if the pair is intact. The goal of

criticality modeling here is to determine the false-alarm rate – that is, to quantify the

probability that the participant will “accept” the rearranged pair. RI will increase this

probability, particularly RI from similar items.

We have developed a simple model for memory estimation, based on exponential decay

of the estimated memory of the viewer for an entity towards the current estimated attention

for that entity. Two decay rates are used: α for increasing estimated memory, and β for

decreasing estimated memory. The latter rate is multiplied by the current total attentional

load, representing retroactive interference.

dMi

dt
=


α(Ai −Mi) if Ai > Mi

βL(Ai −Mi) otherwise.
(3.4)

α controls the rate of memorization; β controls the rate of forgetting. The parameters are

chosen such that α � βL for reasonable values of L, such that estimated memory tends

towards the maximum recent attentional estimate for the entity.

An important consequence of this model is that the fractional fall-off of memory of

an entity over time, assuming zero ongoing attention for that entity and a constant total

attentional load, is given by
Mi(t+ ∆t)

Mi(t)
= e−βL∆t. (3.5)

3.4.4 Duration

The duration factor represents the quantity of separate observations which, taken together,

reveal unrealistic behavior. It may be simply represented as the sum of attention, modulated

by observability, over time:
dDi

dt
= AiOi (3.6)

31



3.4.5 Return time

Fundamental discontinuity events are unique in that the unrealism they create is not experi-

enced immediately, but is deferred until the viewer next perceives the entity. As such, in

order to quantify the probability of a BIR from fundamental discontinuity, it is necessary

to estimate the expected memory of the viewer for the entity not at the time of the event

but at that later meeting. We assume that only the next time the viewer returns to the entity

is significant for an LOD decision. Assuming no BIR occurs, the entity’s new state will

thereafter be the most recently observed state for that entity, “removing” the discontinuity

by bringing the viewer’s expected expectation of the entity’s state back into agreement with

the entity’s actual state.4

Analyzing the expected amount of time (“lifetime”) which passes between the beginning

of a period and the occurrence of a particular event is known as survival analysis. (The

occurrence of that event is known as a “failure”.) A lifetime probability distribution induces

a particular hazard function, the momentary event rate at a particular age, conditioned on

survival up to that age.

The lifetime distribution can be used along with a function relating the lifetime to the

subsequent expected “reward” (resultant BIR probability). The distance between the viewer

and the entity places a lower bound on the time to return to a point from which the entity

may be observed. For a lifetime distribution function F (x) and an expected reward function

R(x), if it has been t0 units since the viewer last encountered the entity, the expected reward

is

E[R|t > t0] =

∫ ∞
t0

F ′(t)R(t)dt

1− F (t0)
.

Although many probability distributions can be used to describe the lifetime of a survival

4This assumption is supported by the Comprehensive Holographic Associative Recall Model (CHARM)
proposed by Eich [1982], wherein earlier stored associations are subject to strong interference from later stored
associations with similar or identical cues.
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process, one of the most common is the Weibull distribution. With the shape value set as

0 < k < 1, the failure rate (per-unit-time probability of return) modeled by the Weibull

distribution decreases over time, a desirable property: A viewer who had been absent from

a given entity for one second would reasonably have a greater probability of returning to

that entity in the next second, than a viewer who had been absent from the entity for several

hours would have of returning to the entity over the following second. Because the return

process is objectively measurable, the lifetime distribution may be automatically learned

from user performance data.

The “reward” (in this case, a penalty) is directly related to the likelihood of successful

recall upon return. Inserting the falloff rate of memory (evaluated at time t0), assuming

constant total attentional load,5 this makes the expected reward given time t0 since the entity

was last visited

E[R|t > t0] =

∫ ∞
t0

k
λ

(
t
λ

)k−1
e−(t/λ)kMie

−L(t−t0)dt

e−(t/λ)k

=

∫ ∞
t0

k

λ

(
t

λ

)k−1

Mie
−L(t−t0)dt

= k(λL)−kMie
−Lt0Γ (k, Lt0)

which can be separated into the current memory factor Mi and the return time factor

Ri = k(λL)−keLt0Γ (k, Lt0) . (3.7)

5A smoothed L may be used to avoid estimating large memory losses during momentary spikes in
attentional load.
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3.5 The criticality multiplier

The various factor models in section 3.4 may be combined as described in section3.3 to

produce the criticality multiplier for an entity,

Bi = [OiAicUS, MiRicFD, AiMiDicULTB] , (3.8)

where cUS, cFD, and cULTB are scaling factors chosen to give the three components similar

magnitude. For a given event, the dot product of this functional and a column vector

indicating the audacity of the unrealism of the event with respect to the three types of

unrealism will produce the total unrealism of the event, as measured in log-probability

space.
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Greed clarifies, cuts through, and
captures the essence of the evolutionary
spirit.

Stanley Weiser, Wall Street
Chapter 4

The LOD Trader

In this chapter we present the “LOD Trader”, a simulation LOD system which uses a

cost-benefit formalism to optimize the perceptual realism of a simulation. We motivate the

need for the system by describing the practical differences between graphical and simulation

LOD, and show how careless co-opting of common graphical LOD techniques for simulation

LOD can lead to sub-optimal realism and poor performance.

4.1 Proactive and reactive LOD

A graphical level-of-detail rendering system can be thought of in terms of two concerns:

The process by which an object or effect is rendered at a particular quality level, and how

that level is chosen. There are many solutions for the first concern, from simply having

different versions of a mesh or shader, to continuous, real-time geometry simplification, to

impostor rendering. The second concern, in contrast, has a single solution form for most

systems: A monotonic function mapping distance to quality level, such that objects and

effects which are further from the viewer are rendered at lower qualities.

While this approach, properly tuned, guarantees a certain per-frame graphical quality
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for a scene, it does not guarantee the framerate at which the scene can be rendered. That is,

while an LOD system can greatly improve graphical performance, it is still left to the scene

author to produce a scene which can be rendered at the desired framerate. If unforeseen

circumstances occur which result in an unusually large number of objects needing to be

rendered at relatively high quality, framerate can suffer quite badly. The loss in realism

from the low framerate, in such a situation, can far outstrip the loss in realism that would

occur from simply rendering all objects at a lower level of detail [Luebke, 2003]. The

heuristic function used to determine level of detail, in other words, suffers from not taking

into account the total rendering load and the resultant framerate; it is proactive in reducing

detail in faraway objects (even when framerate is not a problem), but not reactive to heavy

rendering loads.

Some reactive graphical LOD systems do exist [Luebke, 2003]. These are based either on

adjusting level of detail in response to measured framerate, as in the Viper system [Holloway,

1991], or on heuristic prediction of rendering costs of different LOD decisions, as in the

visualization system developed by Funkhouser and Séquin [1993]. This latter system is

particularly interesting, as it uses a cost-benefit formalism to optimize the realism of a scene

while staying under a computational budget.

In contrast, all simulation LOD systems described in the extant literature are proactive:

They change levels in response to manually predefined rule-sets. For instance, Brockington

[2002] switched between five distinct per-agent levels of detail based on predefined boundary

distances from the viewer; Brom et al. [2007] defined a hierarchical system of LOD nodes,

with predefined distance and visibility rules used to define a “membrane” over the LOD tree

to determine what was simulated and what was not; and Osborne and Dickinson [2010] used

the same “membrane” approach but applied it to groups of agents, but again used predefined

boundary distances to maintain the membrane.

As with graphical LOD systems, proactive simulation LOD systems cannot provide

36



performance guarantees, and do not react gracefully or effectively to especially crowded

situations. Unlike graphical LOD systems, however, proactive simulation LOD systems also

suffer in a second way: Graphical LOD systems are often tuned so that LOD transitions

happen at far enough distances that the quality degradation can be held to a minimal

objective standard. But because degraded behavior, in contrast to degraded graphical quality,

is difficult to quantify objectively, the fact that LOD reduction takes place even in sparse

situations which do not require it may lead to an unnecessary loss of realism. That is, while

a sufficiently distant object can be rendered at a low graphical LOD without any loss of

quality at all, it is usually not possible to show that lowering the simulation LOD for an

entity cannot lead to a loss of realism, no matter how distant.

Simulation level of detail, in short, is badly in need of reactive design. So why has this

approach been ignored?

4.2 The difficulties of reactive simulation LOD

Although simulation LOD was inspired by, and many aspects of it are taken from, graphical

LOD, the two have significant practical differences. In this section we describe three of the

most pressing issues.

4.2.1 Heterogeneous resources

Real-time rendering is not memory-limited. That is, arbitrarily complex scenes can be

rendered with a fixed amount of graphical memory resources. The representation of those

scenes which is presented to the graphics card, of course, must be capable of holding the

entire scene, but can be streamed from larger memory stores on a per-frame basis.1 There is,

1Limiting the need for per-frame data streaming can dramatically improve graphical performance, but this
is generally treated as a separate problem from graphical LOD, as most rendering systems do not provide the
application explicit control over the caching of data in graphics memory. Additionally, the use of “texture
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as far as graphical LOD is concerned, exactly one resource: time.

In contrast, simulation can become impractical by taking up an immense amount of

memory, rather than by taking too long to complete. For instance, large-step simulation of

out-of-view objects, such as that described by Chenney [2001], can be used to amortize

simulation costs over many frames, minimizing the simulation time with large amounts of

objects; but these objects’ state must still be held in memory at all times, and the “potential

state-space” which is maintained for each object can consume a large amount of memory. As

an extreme example, even simply maintaining the full name of each person in a simulation

of the population of New York City would take over 100 megabytes of memory, but the

per-frame computational cost of simulating the change of these names would be quite low

(usually occurring, after all, only upon birth or marriage).

A more commonly occurring illustration of this problem is found in the maintenance

of changes to the world. Modern video games which include firearm combat as a central

game mechanic generally show holes or dents in objects which are hit by bullets. Over

the course of a game, millions of shots may be fired. The simulation cost of these bullet

holes is essentially zero, as once created they are never changed. However, to maintain them

throughout the entire course of the game would take a large amount of memory. Likewise,

moved furniture, dented mailboxes, etc. must be reset eventually in order to keep memory

usage under control.2

A simulation LOD system must consider at least these two independent costs of de-

tail. Past approaches to reactive graphical LOD have relied on there being only one con-

strained resource, either by using algorithms which do not support multiple resources

atlases” to minimize rendering pipeline stalls means that the set of textures held in graphics memory changes
infrequently, usually only when moving between levels or zones.

2A piece of furniture, of course, requires the same amount of information to identify its position whether or
not the player has moved it. However, by resetting an area of the world to its initial state, this information can be
drawn from the high-capacity read-only storage used to distribute the game, rather than from per-saved-game
storage.
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[Funkhouser and Séquin, 1993], or by adjusting a single global level of detail modifier to

maintain the framerate near a specified level [Hitchner and McGreevy, 1993], and are

therefore inadequate for use in simulation LOD.

4.2.2 Short- and long-term LOD selection

In graphical LOD, the cost of LOD changes is minimal. Consider a simple proactive

graphical LOD system which switched an object between two levels of detail based on its

distance from the viewer, fading the change over several frames to reduce the “popping”

effect. If the viewer were to hover on the threshold of the distance and pace slightly, causing

the object’s level of detail to vacillate, the only runtime cost would be that of processing the

fade. (There may be a penalty to realism caused by the frequent fading, but this is easily

managed by applying hysteresis to the transition distance.)

In contrast, the computational cost and the cost to realism from switching LODs may be

severe in a simulation LOD system. For instance, alibi generation (a technique for upgrading

the realism of a single agent, to be described in chapter 5) takes a significant amount of

time for each upgraded agent; a single frame of alibi-ful simulation is vastly more expensive

than a single frame of alibi-less simulation. These ramping-up (or ramping-down) costs

are justified by amortizing over many frames: once the alibi has been generated, alibi-ful

simulation is only slightly more expensive than alibi-less simulation, and the alibi must only

be generated once.

Simulation LOD should ideally be considered on a long-term basis, as opposed to the

frame-by-frame allocation of a graphical LOD system. But reactive graphical LOD depends,

to a large extent, on frame-by-frame allocation. Reactive graphical LOD which relies on

measured framerates must have the ability to “experiment” with different levels of detail

in order to maintain the accuracy of its predictions, by perturbing the level of detail of an

object for a single frame and measuring the results; but these experiments are not feasible for
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simulation LOD. Heuristic reactive LOD does not suffer from this issue, but in the context

of simulation LOD it raises difficult questions of optimal resource allocation on a long-term

basis.

4.2.3 Levels and transitions

Because graphical detail is drawn on a frame-to-frame basis, there are no constraints on

transitioning between levels – the levels of detail available for rendering an object during a

particular frame are independent of which levels of detail were chosen for the object in the

past. In contrast, transitioning from one particular simulation strategy to another may not

only be expensive, as explained in the previous section, but may not even be possible at all.

As an example, consider a vehicle simulation, which can simulate cars either as simple

kinetic objects moving along predetermined lane lines, or as physically realistic bodies

capable of changing lanes or even going off-road. Transitioning from the first level is

straightforward: The initial position, orientation, and velocity of the physical body are

copied from the simple kinetic object, and other state parameters such as steering angle

are calculated to continue the vehicle’s immediate trajectory. But transitioning in the other

direction – from physical body to kinetic object – may not be feasible. If a vehicle is off-road,

changing lanes, or otherwise off the predetermined lane lines, it is impossible to transition

in a way which preserves the object’s identity and state.

Another example serves to demonstrate both the usefulness of transitions and the dangers

of executing them in a short-sighted manner. Consider a simulation – of any sort, really, but

the vehicle one will do – when there are an additional two levels of detail: “frozen”, in which

the entity is immobilized and not simulated until it comes back into view, as in Chenney

[2001], and “removed”, in which the entity is removed from the world entirely.3 In the

3The latter level is conceptually murky – lack of existence as a state – but its implementation is straightfor-
ward enough.
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short term, the two levels have equal benefit, since neither would be chosen for a vehicle

which was on-screen. And clearly the “removed” level has lower cost: “frozen” requires a

per-frame visibility test to unfreeze at the appropriate time, and allocated memory to store

its state, while “removed” of course requires nothing. By this algebra, objects would never

be frozen, only removed, a clearly naı̈ve strategy.

Because transitions may be one-way, or otherwise sparsely connect levels of detail,

the decision to perform one must take into account the future transitions which would be

available, and the likelihood that they would be necessary. As in the example above, it is

sometimes worthwhile to spend computational resources not for immediate gain, but as

maintenance on an option to later transition to a level which would otherwise be unavailable.

It may not be possible to do this in an optimal manner – the problem is one of planning

under uncertainty, a notoriously computationally intensive task [LaValle, 2006].

A final factor complicating the idea of a “transition” is that a single entity may have

several simulation components, which may be partially or completely independent. For

instance, a vehicle entity may vary in the fidelity of its driving physics, as well as in the

quality of the AI used to steer it. If each feature has three different levels of detail, the

vehicle as a whole has nine possible levels of detail. It is tempting to avoid this combinatorial

explosion by disassociating the components from each other, but this may not be possible:

If the lowest AI level requires simple, skid-free dynamics which are not provided by the

highest physics level, only eight levels for the vehicle should be considered. (As we shall see

later, there are other reasons to consider only a small subset of the possible combinations.)

4.3 Optimal resource allocation as a knapsack problem

Funkhouser and Séquin [1993], in their predictive LOD system, used a cost-benefit formal-

ism to determine what level of detail should be used to render each object. For each level of
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detail of each object, there is a rendering time cost to rendering that object at that level, and

a quantified benefit to doing so (based on how well it will improve the perceived realism of

the scene as a whole). Because each object has a finite set of levels of detail to choose from,

and the total cost must be below the time budget for the frame, the problem of choosing

optimal LODs for all objects is the Multiple-Choice Knapsack Problem (MCKP).4 This

problem is NP-complete [Garey and Johnson, 1990]; their approximation algorithm was a

greedy iterative one, modifying whatever level of detail gave the greatest cost/benefit ratio

until the solution became stable. By reusing the previous frame’s LOD choices as the initial

state for objects in the next frame, the algorithm benefited from temporal coherence.

Likewise, Garvey and Lesser [1993] introduced the concept of “design-to-time” real-

time scheduling, an approach to solving a problem consisting of a discrete set of subtasks,

each with one or more possible methods of approximation, given constraints on the total

computation time available. The authors used a similar heuristic to that of Funkhouser and

Séquin [1993], picking downgrades which maximized cost/benefit. Unlike Funkhouser and

Séquin, however, Garvey and Lesser did not approach the problem as one of optimization:

A fixed lower bound to solution quality was pre-specified, and schedules which met this

bound were considered equally acceptable. The system never upgraded subtasks to more

time-consuming and accurate methods.

Lee and Fishwick [1998] approached this problem as one of choosing process abstrac-

tions from an ideal model. Their approach was to bound the minimum number of abstractions

necessary to meet the time constraint, and then test all combinations of abstractions to find

the one which provides the best accuracy while respecting the time constraint. This approach

does not leverage temporal coherence, and despite not guaranteeing an optimal solution

4Funkhouser and Séquin described the problem in one place as the “Continuous Multiple-Choice Knapsack
problem”, but this seems to be a typo: The continuous version of the MCKP allows a continuous-valued
weight to be given to each chosen item, but no such provision can be made in LOD selection, and the authors’
proposed heuristic did not address the continuous problem.
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(which might involve more than the minimum number of abstractions) its expected time

complexity is exponential.

As described in section 4.2.1, simulation LOD must consider both processing and

memory resources. Because both constrain the detail of the world, the resultant problem

cannot be effectively modeled as MCKP. Instead, it must be modeled as what is known as a

“Multidimensional Multiple-Choice Knapsack Problem” (MMKP) [Akbar et al., 2001].5

The approximation algorithm given in [Funkhouser and Séquin, 1993] is not applicable

to the MMKP, as it considers only a single cost-benefit ratio. Toyoda [1975] developed the

concept of “aggregate resource consumption” for the Multidimensional Knapsack Problem

(MDKP) (which, like the MMKP, supports multiple resource constraints, but uses 0-1

allocation rather than multiple-choice allocation). For an item i with resource requirement

vector ri and value vi, and current total resource consumption vector C, aggregate resource

consumption for the item is given by ai = ri·C
|C| . Toyoda described an approximation

algorithm for the MDKP with good empirical performance based on this metric, which

starts with no items selected and greedily picks items with maximal vi/ai, recalculating

aggregate resource consumption each time in order to guide the search toward items which

draw primarily from slack resources. This approach was applied to the MMKP by Khan

[1998], and later improved by Akbar et al. [2001] and Khan et al. [2002] with an iterative

refinement very similar in operation to that of Funkhouser and Séquin: After the initial

solution is found, a candidate solution is produced by picking the upgrade which maximizes

value per unit resource consumption, followed by one or more downgrades to pay for the

upgrade. The iterative improvement is repeated as long as candidate solutions have a higher

total value.6

5The same problem is referred to as “d-MCKP” by, e.g., Kellerer et al. [2004].
6Khan approached the MMKP as a tool for adapting quality of service in a resource-limited multi-user

multimedia system. This application is similar in many respects to simulation LOD control: it seeks to
maximize perceptual quality in the presence of multiple resource constraints. However, resource constraints
and usage are constant throughout a session, and quality rankings are explicitly provided rather than being
heuristically determined. As a result, that application has little need for on-line updates of the allocation
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4.4 The trader analogy

We propose an approximation algorithm for the MMKP, designed specifically for managing

simulation level of detail, which combines a weighted value heuristic similar to that of Khan

et al. [2002] with the temporal coherence exploitation of Funkhouser and Séquin. This

algorithm selects levels of detail for all managed objects in a simulation on an on-going

basis, adapting to changes in object importance, computational costs, resource availability,

and the addition and removal of objects from the system.

The inspiration for the LOD Trader is economic: The system has a “budget” for simula-

tion (the computational resources available), a set of “holdings” (the current LOD selections

for all objects), and the ability to “trade” these holdings by changing an object’s level of

detail. Each holding and each available trade has a “cost” (the computational resources

consumed by that LOD) and a “benefit” (the ability of that LOD to maintain the perceptual

realism of the simulation, as determined by perceptual criticality modeling, discussed in

chapter 3). During each update, holdings and available trades may change their value, and

under certain circumstances, their cost. The system then iteratively “buys” detail for objects

where higher levels of detail provide advantageous cost-benefit ratios, and “sells” detail

for objects with lower cost-benefit ratios in order to pay for them, ensuring that the final

holdings can be afforded by the available resources.

4.4.1 Benefits and penalties

In the remainder of this chapter, we will describe both “benefits” for realism and “penalties”

for realism. Although penalties more accurately describe the motivation behind LOD

selection, the notion of “costs” and “benefits” is more straightforward to describe and reason

about, and so the algorithm will be described in those terms.

solution.
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4.5 The environment of the LOD trader

4.5.1 Specification of resources

The LOD trader supports an arbitrary number of heterogeneous resource types. These

resources can each be expressed in any desired units, and it is not necessary to limit their

relative magnitudes. Similarly, the preprocessing phase does not constrain the resource

limits which can be imposed at runtime, and these limits may be adjusted from frame to

frame. However, specifying constraints on the ratios between total available resources where

practical may allow a slight increase in runtime performance by allowing the system to

evaluate fewer transitions, as described in section 4.6.1.

For the case of memory and computation time as resources, we found it practical to

specify resource usage in kilobytes and microseconds, respectively.

4.5.2 Specification of capabilities

As noted in section 4.2.3, an entity may have several “features”, each of which may be simu-

lated through several methods. Certain features may be partially or wholly interdependent

(as in the case of one of the AI simulation levels being incompatible with one of the physics

simulation levels.) In fact, the LOD choice for one feature may remove the need to simulate

another feature entirely. For instance, an entity which is temporarily frozen offscreen has no

need to choose any LOD for its skeletal animation.

We represent the LOD-varying features inherent to an entity, and the relationships

between them, via a feature graph, a variant of the and-or tree.7 This is a singly-rooted,

directed acyclic graph, where nodes represent either features, or LODs for those features.

The graph obeys the following rules:

7Kang et al. [1990] use “feature models”, a similar but more complex graph type, for representing features
in commercial products.
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1. The root node is a feature.

2. A feature node has one or more LOD node children, corresponding to possible LODs

for that feature. Each of those LOD nodes has only the feature node as its parent.

3. An LOD node has zero or more feature node children, corresponding to features

which must all be assigned LODs if the LOD is selected for the feature. Multiple

LOD nodes can have a single feature node as a child.

4. An LOD node also has directed edges to zero or more LOD node children which share

the same parent, corresponding to possible transitions between LODs.

5. An LOD node also has directed edges to zero or more LOD node children which do

not share the same parent, corresponding to inter-LOD constraints which require that

if the source LOD is selected, the destination LOD must also be selected.

An example tree is given in figure 4.1. This precise definition of feature graphs, and

the resultant constraint capabilities (which are not comprehensive), is not crucial to their

functionality; in particular, rules 3–5 may be replaced or augmented with any representation

reducible to a set of logical constraints.

It is important to note that not all entities under the control of the LOD trader need to

use the same feature graph. A separate feature graph can be used per entity type, each with

its own features and LODs, and resources will be redistributed among the full set of entities,

regardless of type. There is no need to artificially impose per-entity-type resource limits,

only the actual global resource limits.

The goal of the LOD trader, then, is to find a “feature solution” for each entity. A feature

solution is a mapping from feature nodes to LOD nodes, such that:

1. The root node is in the mapping.
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Figure 4.1: An example feature graph, with eight features. This feature graph has 252
feature solutions.
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2. All feature nodes map to their own children.

3. Other than the root, a feature node is in the mapping iff one of its parent LOD nodes

is in the mapping.

For example, one possible feature solution for the tree in figure 4.1 is {〈Exists,Yes〉 ,

〈Behavior, Interact〉 , 〈Action anims,HQ〉}; another is {〈Exists,No〉}.

4.5.3 Enumerating feature solutions

The full set of possible feature solutions for a feature graph may be found by a simple

recursive algorithm which expands incomplete solutions by making all possible choices for

one of their required but unchosen features. If a different representation for the feature graph

were used, the brute force method of enumerating all LOD combinations and filtering those

that violated any constraint could be used instead. The time complexity of such a method

would be exponential in the number of features.
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Algorithm 4.5.1: FINDFEATURESOLUTIONS(rootFeature)

completeSolutions← ∅
incompleteSolutions← {EMPTYSOLUTION()}
while incompleteSolutions 6= ∅∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

solution← POP(incompleteSolutions)
requiredFeatures← {rootFeature}
for each lod ∈ GETLODS(featureSolution)∣∣ requiredFeatures← requiredFeatures ∪ FEATURECHILDREN(lod)
end
chosenFeatures← GETFEATURES(solution)
if requiredFeatures = chosenFeatures∣∣ PUSH(completeSolutions, solution)
else∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

feature← some element of (requiredFeatures \ chosenFeatures)
for each lod ∈ FEATURELODS(feature)∣∣∣∣∣∣∣∣∣∣
solution′ ← solution
ADDCHOICE(solution′, feature, lod)
if solution′ does not violate any inter-LOD constraint∣∣ PUSH(incompleteSolutions, solution′)
end

end
end

end
return (completeSolutions)

4.5.4 Costs, penalties, and transitions

An important result from chapter 3 is that the total estimated unrealism from a particular

LOD choice can be computed as the product of a nonnegative row vector which is specific

to that entity but independent of the entity’s LOD, with a nonnegative column vector which

is specific to that LOD but shared among all entities using that LOD. We refer to the former

vector (really a linear functional) as a “criticality multiplier” or (equivalently) a “benefit

multiplier”, and to the latter vector as an “audacity vector”, the negation of which can be

considered a “benefit vector”.

Accordingly, each LOD node has a nonnegative vector-valued resource cost, and a
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nonnegative vector-valued audacity vector, representing the computational cost and the

penalty to realism which accrue from ongoing simulation of the feature at that level. The

highest quality LOD for a feature will generally have a audacity vector of zero.

In addition, transitions between the different LODs of a feature are assigned a cost vector

and an audacity vector, corresponding to the computational cost and the penalty to realism

which accrue specifically from the act of transitioning between the two levels. Although it is

not required for the proper operation of the LOD trader, common sense dictates that LOD

transitions are transitive, and that their costs and penalties obey the triangle inequality – that

is, that if it is possible to transition from LOD A to LOD B, and from LOD B to LOD C,

then it is possible to transition from LOD A directly to LOD C, and the cost of doing so is

not greater than the sum of the two other costs.

Finally, an LOD may have a transition to or from the “null LOD”, corresponding to the

situation where another feature transition adds or removes that LOD’s feature’s need for

simulation. These transitions have their own costs and benefits. (The null LOD itself has

cost zero and benefit zero.) Most LODs will have transitions to the null LOD, though not

necessarily from the null LOD.

The full benefit vector of a feature solution is equal to the sum of the benefit vectors

(the negated audacity vectors) of all its feature LODs, and the full cost vector of a feature

solution is likewise equal to the sum of the cost vectors of all its feature LODs. For a feature

solution α the total benefit vector is referred to as bα and the total cost vector is referred to

as cα.

The relative cost vector of a transition from one feature LOD to another is equal to the

difference between the cost vectors of the two LODs, plus the cost of the transition itself.

The relative benefit vector is likewise equal to the difference between the benefit vectors of

the two LODs, plus the cost of the transition itself.

The relative benefit vector of a transition from one feature solution to another is equal to
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the sum of all relative benefit vectors for features whose LODs differ between the solutions,

and the relative cost vector is summed likewise. We denote transition benefits and costs

from feature solution α to feature solution β as bα,β and cα,β .

4.5.5 The cost multiplier

Just as an entity’s criticality induces a linear functional on the space of audacity vectors

which determines the overall realism penalty for that particular entity/transition combination,

the resource constraints of the system induce a linear functional on the space of cost vectors

which determines the overall resource effect of taking that transition. This cost multiplier is

nonnegative, as it is never useful, all else being equal, to consume more resources. Without

loss of generality, the L1 norm of the cost multiplier is constrained to 1, to streamline the

entity elimination process described in section 4.6.1.

During the upgrade phase, the cost multiplier is proportional to available resources.

During the downgrade phase, the cost multiplier of overspent resources is proportional

to the amount of overspending; the cost multiplier of all other resources is 0. The cost

multiplier is recalculated before each upgrade phase and each downgrade phase, but is not

recalculated during the phase when a transition is chosen, as transitions could already have

been discarded which would have been chosen given the new multiplier.

4.5.6 Upgrades and downgrades

It is useful to make a distinction between “upgrade” and “downgrade” transitions. An

upgrade transition is one which could potentially result in a net benefit, for some valid

benefit multiplier; this is a transition that should be considered during the upgrade phase

of the algorithm. A downgrade transition is one with a nonpositive cost vector; this is a

transition that reclaims resources without spending other resources, and should be considered
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during the downgrade phase of the algorithm. Note that transitions with mixed cost vector

signs are not considered as downgrades, despite the potential for them to reclaim a scarce

resource by spending from an abundant resource; because the cost multiplier is zero for

underspent resources during the downgrade phase, the aggregate resource heuristic does not

accurately score these types of transitions as downgrades. A transition may be an upgrade, a

downgrade, both, or neither.

4.5.7 Evaluating usefulness

Although the number of feature solutions for a feature graph may be quite high (in the

hundreds or thousands), many of them have no practical use. For example, it would be a bad

idea to simulate a person’s grasping animations with high-quality IK, and her locomotion

with avoidance-free straight-line paths interpenetrating other people. Any character impor-

tant enough for the IK would be important enough for at least basic avoidance behaviors. Put

differently, there is no cost multiplier and benefit multiplier combination which would give

this feature solution a better benefit/cost ratio than some other feature solution. The set of

potentially useful feature solutions can be described as
{

arg maxα
Bbα
Ccα
| B ∈ B, C ∈ C

}
.

The potential usefulness of a feature solution may be evaluated through constraint

satisfaction. Denoting the cost of a feature solution α as cα and the benefit of the feature

solution as bα, the potential for a feature solution α to be better than a feature solution β in

some circumstance is equivalent to the existence of some cost multiplier C and some benefit
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multiplier B such that

Bbα
Ccα

>
Bbβ
Ccβ

(4.1)

Bbα · Ccβ > Bbβ · Ccα (4.2)

Bbα · cᵀβC
ᵀ > Bbβ · cᵀαCᵀ

B(bαc
ᵀ
β)Cᵀ > B(bβc

ᵀ
α)Cᵀ

B(bαc
ᵀ
β − bβc

ᵀ
α)Cᵀ > 0

Therefore, a feature solution is potentially useful iff

∃B ∈ B∗, C ∈ C∗ s.t. ∀χ 6=α, B(bαc
ᵀ
χ − bχcᵀα)Cᵀ ≥ 0. (4.3)

This is a generalized bilinear program [Al-Khayyal, 1992], which may be formulated as

a quadratically constrained quadratic programming problem [Al-Khayyal, 1992, Boyd and

Vandenberghe, 2004] by solving for x = [B C] ∈ B∗×C∗, representing each inequality in

the quadratic form

[B C]

 0 Mα,χ

Mᵀ
α,χ 0

 [B C]ᵀ ≥ 0, where Mα,χ = bαc
ᵀ
χ − bχcᵀα. (4.4)

Alternatively, one may simply randomly generate a large number of benefit/cost sce-

narios, evaluate which feature solution is optimal for each, and consider a feature solution

potentially useful iff it is optimal for at least one benefit/cost scenario.

A related concept is the usefulness of transitions. This is a similar but distinct property:

High transition costs may cause a particular transition to not be useful, even if the destination

feature solution is useful as described above. (The converse, where a destination feature

solution is not useful, yet a transition to it is useful, appears to be possible in contrived
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circumstances but is unlikely in practice.) The random generation approach as described

above may be used to evaluate the usefulness of a transition; the quadratic programming

approach may not, as the denominators involved in equation (4.1) may be negative, making

the step to equation (4.2) invalid. Upgrade and downgrade transitions should be considered

separately when evaluating usefulness.

In our tests, roughly 10% of upgrade transitions were potentially useful, of which 50–

80% were accepted. The culling process was less effective for downgrades, with 75% of

transitions being potentially useful and about 12% accepted. However, these ratios are

highly dependent on the feature graph and on relative resource constraints.

4.6 The design of the LOD trader

The LOD trader proceeds by hypothesizing a set of trades consisting of both upgrades and

downgrades. After each set is hypothesized, the net benefit to realism that would result is

calculated. If the net benefit is positive, the trades are made, changing the manner in which

entities are simulated. If it is not, the set is discarded and no change is made.
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Algorithm 4.6.1: RUNLODTRADER(entities, availableResources)

for each entity ∈ entities∣∣ b[e]← CALCBENEFITMULTIPLIER(entity)
end
repeat∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

savedAvailableResources← availableResources
C ← CALCCOSTMULTIPLIER(availableResources)
upgrades← SELECTTRANSITIONS(entities, C, upgrade, availableResources, C)
C ← CALCCOSTMULTIPLIER(availableResources)
downgrades← SELECTTRANSITIONS(entities, C, downgrade,

availableResources)
transitions← upgrades ∪ downgrades
netBenefit← CALCNETBENEFIT(transitions)
if netBenefit > 0∣∣ APPLYTRANSITIONS(transitions)
end

until netBenefit ≤ 0
availableResources← savedAvailableResources

4.6.1 Efficiently eliminating un-promising transitions

Even with useless transitions culled, finding the downgrade transition (if any) which offers

the best benefit/cost ratio for a particular entity is a non-trivial task, involving several

multiply/adds and a floating-point division for each transition. For simulations with hundreds

or thousands of entities, most of which are far away and undeserving of much computational

resources, it is important to efficiently eliminate entities which are clearly not in need of

upgrades, without checking all potentially useful transitions for each.

Consider the benefit/cost ratio for a particular upgrade transition. Clearly, this ratio will

be maximized when the (scalar) cost is minimized, and the (scalar) benefit is maximized.

The cost multiplier is constrained to be nonnegative, with an L1 norm of 1, and may have the

ratios of its elements further constrained, as described in section 4.5.1. For a given transition,

then, it is possible via simple constrained linear optimization to find the legal cost multiplier
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which minimizes the scalar cost of this transition. The scalar cost thus realized may then be

used to divide the benefit vector for the transition, without first taking the dot product of the

benefit vector with the benefit multiplier for the entity; later, the dot product of this vector

and the entity’s benefit multipler places an upper bound on the possible benefit/cost ratio of

that transition. Restating, the resultant vector, which we denote wα,β for a transition from

feature solution α to feature solution β, is found as

wα,β =
bα,β

minC∈C∗ Ccα,β

and guarantees that

∀B∈B∗,C∈C∗ ,
Bbα,β
Ccα,β

≤ Bwα,β .

For a particular starting feature solution, we can gather the w vectors for all valid and

potentially useful transitions to other solutions into a matrix Wα, such that

∀B∈B∗,C∈C∗,χ,
Bbα,χ
Ccα,χ

≤ ||BWα||∞ . (4.5)

Not all vectors need be present in W , as some are dominated by others (even among

potentially useful transitions); the reduced set may be found as the vertices of the intersection

of the upper convex hull of all w with the space of valid benefit multipliers.

For all entities in the simulation, once their benefit multipliers are known, equation 4.5

may be used to derive upper bounds on the benefit/cost ratios for upgrades to those entities

(an operation consisting of only multiply/adds, compares, and conditional moves, which

can be implemented without conditional branches), and a max-heap of entities may be built,

keyed on those upper bounds. This heap, the “expansion queue”, is used to pick an entity to

expand into its set of potentially useful upgrades.
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Algorithm 4.6.2: MAKEEXPANSIONQUEUE(entities, transitionType)

expansionQueue← EMPTYHEAP()
for each e ∈ entities∣∣∣∣ ratioBound← W [featureSolution[e]] · b[e]

ADDTOHEAP(expansionQueue, ratioBound, e)
end
if transitionType = upgrade∣∣ MAXHEAPIFY(expansionQueue)
else∣∣ MINHEAPIFY(expansionQueue)
end
return (expansionQueue)

Expanding an entity from the expansion queue is performed by examining all available

transitions for the entity, and picking the transition which gives the best benefit/cost ratio.

Algorithm 4.6.3: EXPANDENTITY(entity, C, transitionType)

bestTransition, bestRatio← 〈∅,∅〉
transitions← AVAILABLETRANSITIONS(featureSolution[entity],

transitionType)
for each transition ∈ transitions∣∣∣∣∣∣∣∣
ratio← (B[entity] · b[transition]) / (C · c[transition])
if ratio is better than bestRatio∣∣ bestTransition, bestRatio← 〈transition, ratio〉
end

end
return (bestTransition, bestRatio)

4.6.2 Entity selection

The goal of the LOD trader is to choose upgrade transitions which maximize benefit/cost,

and then to pay for them by making downgrades which minimize benefit/cost. To that end,

throughout the selection of upgrade transitions, a set of upgrades is maintained with the

invariant that it slightly overspends the resources available: if the lowest-ratio transition were
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discarded from this set, it would no longer overspend any resource. This set is maintained

as a min-heap. To initialize this transition heap, transtions are added by expanding entities

popped from the expansion queue until the resources are overspent, and then the set is

heapified.

Algorithm 4.6.4: FILLTRANSITIONHEAP(expansionQueue, C, transitionType,
availableResources)

transitionHeap← EMPTYHEAP()
while availableResources ≥ 0∣∣∣∣∣∣∣∣
entity ← POPVALUE(expansionQueue)
transition, ratio← EXPANDENTITY(entity, transitionType)
ADDTOHEAP(transitionHeap, ratio, transition)
availableResources← availableResources− c[transition]

end
if transitionType = upgrade∣∣ MINHEAPIFY(transitionHeap)
else∣∣ MAXHEAPIFY(transitionHeap)
end
return (transitionHeap)

More entities are then popped from the expansion queue, expanded to upgrades, and

pushed into the transition heap. After each push, transitions are popped from the transition

heap to maintain the “slight overspending” invariant. Once the maximum key of the

expansion queue is lower than the lowest ratio actually chosen for the upgrade set, the

remainder of unexpanded entities may be disregarded without further computation.
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Algorithm 4.6.5: EXPANDREQUIREDENTITIES(expansionQueue, C,
transitionHeap, availableResources)

while PEEKHEAP(expansionQueue) is better than PEEKHEAP(transitionHeap)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

entity ← POPHEAP(expansionQueue)
transition, ratio← EXPANDENTITY(entity, C, transitionType)
PUSHHEAP(transitionHeap, ratio, transition)
availableResources← availableResources− c[transition]
while (availableResources+ costs[PEEKVALUE(transitionHeap)]) � 0∣∣∣∣ transition← POPVALUE(transitionHeap)
availableResource← availableResources+ c[transition]

end
end

The result of upgrade transition selection is the values remaining in the transition queue

after all required entities have been expanded, either through the initial heap fill or further

expansion.

Algorithm 4.6.6: SELECTTRANSITIONS(entities, C, transitionType,
availableResources)

expansionQueue← MAKEEXPANSIONQUEUE(entities, transitionType)
transitionHeap← FILLTRANSITIONHEAP(expansionQueue, C,

transitionType, availableResources)
EXPANDREQUIREDENTITIES(expansionQueue, transitionHeap, C,

availableResources)
return (VALUES(transitionHeap))

4.6.3 Downgrades

The selection of downgrades is congruent to the selection of upgrades; the system attempts

to pick downgrades which minimize the benefit/cost ratio (with a small negative benefit and

a large negative cost), and the transition set invariant is that no resource is overspent but if

the highest-ratio downgrade were removed then at least one resource would be overspent.
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4.6.4 Initial LOD assignments

When the simulation begins, initial LOD assignments are needed to seed the algorithm.

Khan et al. [2002] start with the lowest-benefit assignment for each object, with an additional

backup plan if this violates any resource limits. Finding this initial solution is non-trivial in

the generalized MMKP (in fact, it is itself NP-complete), but in the case of simulation LOD,

most objects will have a simulation level with extremely low utilization of all resources,

meaning that a clear path exists from any non-feasible solution to a feasible solution. The

choice of initial LOD assignments is therefore of less concern from this point of view. As

we shall discuss in chapter 6, the choice of initial LOD assignments is largely dictated by

the circumstances under which entities are created.
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I found myself halfway between the
perception of the concept ‘horse’ and
the knowledge of an individual horse... I
could expect all horses, but not because
of the vastness of my intellect, but
because of the paucity of my deduction.

Umberto Eco, The Name of the Rose

Chapter 5

Alibi generation

In this chapter, we describe the technique of alibi generation. We originally created alibi

generation as a standalone perceptually-driven real-time simulation system for pedestrian

agents within a large open-world video game. In this form, it does not interface with a

coordinating system such as the LOD trader, and does not require the quantification of

unrealism. In sections 5.8 and 5.9, we discuss how alibi generation may be embedded into a

larger framework of perceptually driven simulation, and how its techniques can be extended

beyond pedestrian goal generation into other domains.

5.1 Introduction

In recent years, the “open world” style of video game, in which players wander freely

through a large populated area, has become very popular. Most agents in open world games

are not enemies, but residents, going about their life as the backdrop of the main gameplay.

At times they are drawn into the gameplay, and must react to the player’s behavior and to

the indirect results of that behavior. In order to maintain suspension of disbelief in these

games, it is important that agents behave realistically in all situations, giving the impression
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of a living city. Patterns of unrealistic or unlikely behavior negatively impact the realism of

the game.

The increased demands for agent realism and large, open worlds present practical

difficulties for game developers. Memory and processing power is limited on video game

hardware, and much of it is devoted to graphics, sound, and other resource-intensive tasks.

As the size and complexity of the virtual population grows, it quickly becomes intractable

to simulate the virtual population in real-time.

Luckily, real-time simulation of the entire virtual population is not required for these

games. Because the player can only see a small portion of the world at a time, she cannot

evaluate the overall realism of the world, only that portion which is visible to her. As far as

the player is concerned the world is realistic as long as the visible portions of it at any given

time are realistic.

These twin demands — thrifty use of computational resources, and the appearance of

realistic simulation — have driven the development of a variety of clever methods (tricks)

which maintain the perception of realism while reducing the actual realism. For instance,

out-of-view portions of the world will have their agents deleted entirely, with a set number

randomly created when the player returns to the vicinity. Even agents which are invisible

because they are behind the character may be frozen in place in order to free up simulation

resources. Agents will often have only a veneer of realistic behavior, appearing at first

glance to be moving towards some desired destination while actually turning randomly at

each intersection.

Such tricks are difficult to get just right. User testing is required to determine whether

they compromise realism in unanticipated ways. Parameter tweaking is often necessary

to arrive at a realistic configuration, and the parameters may not map cleanly to quantities

which designers wish to directly control. For example, if the rate at which agents enter an

area does not match the initial population, the agents’ speed of motion, and the geometry
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of the area, agents may exit the area at a greater rate, and the player will perceive that

an area is always well-populated when she arrives, only to mysteriously empty out soon

afterwards. In contrast, if the rates of exit and entry are directly tied to each other, the

player may perceive that a small area always happens to have three people in it, with one

entering every time another leaves. Agents with only random turning will quickly reveal

their unrealistic behavior if followed by the player. These tricks may produce realistic results

early in development, only to become unrealistic later due to designers’ varying demands on

the world.

We have developed an alternative approach, whereby designers build a highly realistic

whole-world pedestrian simulation, from which a perceptually identical “perceptual sim-

ulation” is generated. Although the perceptual simulation simulates only a small portion

of the world at a time, and does so with inexpensive approximations, it can be statistically

guaranteed that the results are perceptually indistinguishable from those of the original

simulation.

The basis of the simulation is the probabilistic modeling of observable information

about an agent. Agents are initially created with only a minimal set of information, and any

information which is later required for a higher level of detail is created on demand in a

manner which ensures consistency with previous observations of the agent. We refer to such

an incremental addition of information about an agent as an alibi, which fills in details of

the agent’s goals and back-story to give the impression that its behavior is driven by concrete

needs and goals. The act of giving an agent an alibi causes no immediately visible changes,

but allows the realism of the agent’s actions to hold up under closer scrutiny from the player.
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5.2 Motivating example

Here we present a simple but detailed pedestrian behavior model, which describes where

agents go, when they go there, and why they go there. This example is intended to showcase

various features that are difficult to model with perceptual simulation. By itself this model

is unsuitable for actual use in a large, heavily populated world, as it requires full simulation

of out-of-view agents at all times, thereby motivating the need for a perceptually identical

real-time simulation. We do not intend this model to be perfectly realistic: it ignores certain

important dimensions, like time of day, in favor of a straightforward presentation.

5.2.1 World schema

The world is partitioned into walkable region “cells”, which are connected to each other

by “portals”. Agents walk from cell to cell through the portals. In a city model, a length of

sidewalk or a crosswalk will be represented as a cell.

In addition to walking between portals, agents may exit and enter buildings. The

entryways of these buildings are known as “targets”. Targets are categorized into a dozen

or so “types”, representing what the building is used for. Examples of target types in our

model are “house”, “office building”, “restaurant”, and “grocery store”. (A building with

multiple uses will be represented as several co-located targets.) The number of targets in the

world is much greater than the number of target types. Targets are additionally organized by

which cell they are in.

All portals and targets in a given cell can be directly reached from all other portals and

targets in the same cell, without passing through any other portals. In our navigation graph,

portals and targets form the nodes of our world, and any two nodes which are in the same

cell have an edge between them. Each portal is present in two cells, and is connected to all

other nodes in both. We refer to a directed edge in the graph as a “segment”, a linear-shaped
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area along which pedestrians may be found, walking in a particular direction away from

one node and towards another. We denote by n the number of targets in the world, by m the

number of target types, and by s the number of segments in the world.

5.2.2 Agent behavior

An agent, at any given time, will either be inside a target, or will be travelling from its

previous target to its next one. Agents always travel along the shortest path through the

world to their next target. (For distance calculations, portal locations are measured as

the midpoint between their edges; for pedestrian simulation along sidewalks, this is not

a significant oversimplification.) Upon arriving at a target, an agent spends a randomly

determined amount of time there, which we model using a normal distribution. Afterwards,

it chooses a “goal” randomly, from a distribution conditioned on the type of the target it

is currently at. A goal consists of a type of a target to choose as a destination, as well as

instructions on how that target is determined; the agent may have a particular preferred target

for that goal which is determined when the agent is created (for instance, the agent’s own

home will always be chosen for the “go home” goal), may choose the closest target of that

type (as would be appropriate for grocery stores and other such fungible destinations), or

may uniformly randomly choose a target of that type (for, say, a courier delivery to an office

building). Certain goals may be round-trip; after leaving a target reached by a round-trip

goal, the agent will return to the target from which it had previously departed. Other than

returning from round-trips, the agent’s choice of goals is independent of its previous goals

and the goals of other agents; a target type therefore has an associated goal distribution,

consisting of the probability of choosing each goal next.

We simulate low-level pedestrian motion control using a simple social forces model.

The method is compatible with other crowd motion controllers, such as the many cited by

Pelechano et al. [2008].
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5.3 Components of perceptual simulation

Maintaining the perceptual realism of our real-time simulation requires two main tasks:

Adding and removing agents as necessary to ensure the realism of aggregate behavior

without overtaxing simulation resources, and generating alibis to upgrade agents to keep

their behavior realistic under scrutiny.

5.3.1 Creating and deleting

Agents are created in two circumstances: in media res when a new area of the world comes

into view, and entering at random intervals from targets or areas of the world which are out

of view.

For the first circumstance, whenever a new cell comes partially into view, agents are

generated along each of its segments. An individual agent from among the entire population

of the world will have a particular steady-state probability of being on a given segment when

that segment’s tile comes into view, and (without knowledge of agents’ bound targets) each

agent in the world will have the same such probability. The number of agents present on a

segment when it comes into view, therefore, can be modeled as a binomial process, with

n the population of the world not currently visible and p the probability that a given agent

is on the segment at a given time. Simple and efficient algorithms to generate binomial

variates are well-known; for several examples refer to [Devroye, 1986]. Because of the high

population of the world and the high number of segments in the world, this distribution can

also be approximated by a Poisson distribution if desired [Devroye, 1986].

For the second circumstance, each segment beginning in a target, and each segment

whose starting portal is out of view, has a given probability during each small time-step

of having an agent appear, and in the steady state of the simulation this probability is

independent of previous appearances (with the exception of social forces, discussed later).
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As a result, the random variable representing the time before the next agent appears is

exponentially distributed, with λ the inverse of the expected time between arrivals on that

segment [Devroye, 1986], and can be sampled in constant time. This arrival process is not

applicable to segments whose starting node is a portal in view of the player — that is, whose

companion cell is visible — as these segments will have already-generated agents arriving

from the companion cell.

At the moment when a new tile comes partially into view after being completely out of

view, therefore, three tasks must be performed: The number of agents along each segment

within the tile must be sampled and the resultant number of agents generated, and each

segment whose starting node is a target or a portal whose other tile is still out of view must

have a “next arrival time” sampled and remembered. Arrival times for all segments of this

type are placed in a priority queue. Whenever a scheduled arrival occurs, a new agent is

generated at the beginning of that segment, and a new exponential variate is sampled for the

segment and placed back in the priority queue. Finally, any segments currently in the arrival

priority queue whose starting node was a portal on that cell are removed from the queue, as

their agents will henceforth arrive in already-generated form.

Cells which pass entirely out of view must continue to be simulated for a short time, or a

return to the cell may produce obvious discrepancies. The cell must continue to be simulated

for at least as long as it takes for the set of agents in the cell to change entirely. Following

[Sung et al., 2004], this burden may be alleviated by freezing simulation of the agents, and

advancing them at once only if and when the cell comes back into view. Likewise, agents

which pass from a visible cell into an invisible cell must continue to be simulated for some

time, but can also be simulated in a frozen manner.
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5.3.2 Alibi generation

While the previous section suffices to distribute momentarily plausible agents over the

visible portion of the world, it does not by itself give them plausible long-term behavior. A

short-term solution is to store the conditional probability table for transitioning to a given

segment given the agent’s last few segments; this table can be stored in a compressed form

[Gagie, 2006] but the memory requirements quickly become intractable as the segments

grow longer. If the player follows an agent for any significant period of time, interacts with

the agent in a nontrivial manner, or inspects its behavior in any other way (for instance, by

blocking the agent’s segment and forcing it to replan) an actual goal destination is required.

The agent’s destination, and any other information about the agent generated some time

after its creation, forms the agent’s alibi. As far as the player is concerned, this information

had always existed but was not known to her. An alibi, therefore, must be consistent with

all previously observed information about the agent, and the geometry of the world and the

distribution and habits of agents in the world in general. Additionally, over time there must

be no observable patterns to alibis, even those generated for different agents in exactly the

same situation. In short, any alibi must be an independent, fair sample from the conditional

distribution of possible alibis given observed behavior. In section 5.5, we show how this

may be done without explicitly storing the conditional probability table.

5.4 Deriving the probabilities

We now return to the motivating example in section 5.2, and show how the distribution

parameters mentioned above can be analytically determined. The general approach is to

determine the different circumstances under which an agent can have a particular alibi

(source and destination), and then to weight and sum these circumstances to determine the

prior probability of having that alibi. We then filter to determine the posterior probability of
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an alibi given the agent’s observed path.

First, some definitions. For a given pair of nodes i, j, We denote the distribution of

the time required for an agent to travel from target i to target j by Dij . (Here and for the

remainder of this paper, we use i and j as target indices, and k and l as target type indices.)

We denote the type of target i by S(i), and the number of targets of type k in the world by

‖Sk‖. We denote the conditional probability of choosing a goal with type l from target type

k, assuming the previous goal was not round-trip, by pGkl; we further split this into one-way

and round-trip probabilities pOkl and pRkl, which are the normalized conditional probabilities

of choosing a goal with type l given that the previous one-way goal was of type k and

that the next goal is constrained to be, respectively, one-way or round trip. We denote the

conditional probability of picking any one-way goal from a target of type k by pRk , giving

the identity
∑m

l=1 p
R
k p

R
kl +

∑m
l=1(1− pRk )pOkl = 1. We denote the distribution of the waiting

time at a target of type k by Wk. Finally, we denote by closest(i, l) the closest target to i of

type l.

Recall that goals may be round-trip, forcing a return to the original target after leaving the

destination, or one-way, with future goals sampled independently of past goals. Consider the

sequence of targets which an agent reaches as a result of one-way goals only, disregarding for

the moment the sequence of round-trip goals which it may perform between each one-way

goal. This continuous-time process of one-way goals may be modeled as a semi-Markov

process [Ross, 1996]. A semi-Markov processes is a random process which, like a standard

Markov chain, moves from state to state with transition probabilities independent of all but

the most recent state, but which will stay in a particular state for a real-valued period of time

whose distribution depends on the current and/or the next state. The limiting behavior of a

semi-Markov process can be described by the tuple 〈pij, Fij〉, where pij is the probability of

transitioning to state j given current state i (the “jump process”), and Fij is the distribution

of the time for that transition to occur. We denote an agent’s current state in the semi-Markov
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process as the last target the agent reached by a one-way goal, irrespective of whether they

are still inside that target as well as of whether they have performed other round-trip goals

since reaching it. For this process, pij = pOS(i)S(j)/ ‖S(j)‖ if S(j) is not fungible, pOS(i)S(j)

if it is fungible and closest (i, S (j)) = j, and 0 otherwise. (Without prior information on

bound targets, there is no need to differentiate between goals to bound targets and goals to

uniformly chosen targets.) Note that the jump process is independent of all but the target

types, because the agent chooses from between goals directly, but the transition time is

dependent on the specific targets, because different targets may take more or less time to

transition due to their positioning in the world.

While pij is simple to calculate as above, the calculation of Fijis more complex. We

consider the agent’s actions upon arriving at a target i, of type k. First it waits for a time

given by Wi. It will then carry out zero or more round trip goals; for each goal to some target

j, it walks to that goal, taking time given by Dij , waits at that goal for time Wj , walks back

to the original target taking time Dji, and then waits again at target i for time Wi. Finally, it

walks to its next one-way destination j for time Dij , at which point it is in the next state and

the clock stops. We denote the round-trip travel time for a round-trip destination to a target

of type l by DR
il , remembering that this may be dependent on whether l is a fungible target

type. The number of round-trip goals it chooses before leaving on a one-way goal is given

by a negative binomial random variable [Ross, 1996] with r = 1 and success probability

p = pRk , with expected value p
1−p , and the proportion pRkl of those are specifically round-trip

goals to target type l; we denote the number of those round-trips taken by Nkl. Organizing

one-way goals by their target type, we thus have

E[Fij] = E[Wk] +
m∑
l=1

E[Nkl]
(
E
[
DR
il

]
+E[Wl]+E[Wk]

)
+ E[Dij] . (5.1)

It remains to calculate these expected values. E[Wk] is simply the mean of the nor-

70



mal distribution, and E[Nkl]= pRkl
(
pRk /

(
1− pRk

))
, as above. E

[
DR
il

]
can be calculated as

minj,S(j)=l E[Dij] + E[Dji] if l is fungible, and ‖Sl‖−1∑
j,S(j)=l E[Dij] + E[Dji] otherwise.

This is sufficient to describe the steady-state probability of the semi-Markov process.

First, the steady state of the jump process σ is given by the equation σj =
∑n

i=1 σipij (recall

the definition of pij as above), and can be found as the eigenvector of [pij] with eigenvalue 1.

We can marginalize Fij over the destination target as Fi =
∑n

j=1 pijFij , and then entirely

as F =
∑n

i=1 σiFi. The steady state of the semi-Markov process itself is then σ̂i = σi
E[Fi]
E[F ]

.

The probability σ̂i of having last visited one-way target i at any given time can be further

broken up; for instance, the probability of having just reached target i and being currently

waiting inside it before leaving either for the first round-trip goal or for the next one-way

goal is σi
E[Wi]
E[F ]

. Additionally, σ̂i can be used to determine the probability of being on one’s

way to, or coming back from, a particular goal. Since any agent who is not inside a target

will be on a one-way goal, going to a round-trip goal, or coming back from a round-trip

goal, we can find the summed joint probability of being on one’s way from target i to target

j for any reason as

P (i, j) = αij + βij + γij , where (5.2)

αij = σ̂ipij
E[Dij]

E[Fij]
, (5.2a)

βij = σ̂iδij
E
[
NS(i)S(j)

]
E[Dij]

E[Fi]
, (5.2b)

γij = βji, and (5.2c)

δij = pRS(i)S(j) ·


‖S (j)‖−1 if S (j)is not fungible,

1 if closest (i, S (j)) = j, or

0 otherwise.

(5.2d)

From here, one can easily find the joint probability of going from i to j and also being
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on a segment {a, b} as

P (i, j, {a, b}) = P (i, j)SPij ({a, b}) E[Dab]

E[Dij]
, (5.3)

with SPij ({a, b}) equal to 1 if {a, b} is on the shortest path from i to j and 0 otherwise, and

can sum over i and j as

P ({a, b}) =
n∑
i=1

n∑
j=1

P (i, j, {a, b}) (5.4)

which gives us the parameter for our binomial and exponential variates, to sample popula-

tions and arrival intervals. (This can be extended to observed paths consisting of multiple

segments.)

5.5 Alibi Sampling

In this section we demonstrate how to use the above derivations for practical alibi sampling.

While it is straightforward to find P(i, j| {a, b}) for an individual situation, sampling from

this distribution would be more difficult. It would be possible to precompute all values

and store their cumulative sums, and sample using a binary search, but this would require

O(n2s) space for single-segment observed routes and even more for longer observed routes,

far from practical for worlds of large size. (It is important to sample both i and j, in case

the resultant alibi is the first half of a round trip.) Instead, we express this probability

with the equivalence P(i, j| {a, b})=P(i, j, {a, b})/P({a, b}). Note from equations 1–3 that

this quantity is entirely dependent on E[Dij], SPij({a, b}), E[Dab], E
[
DR
il

]
, E[Wk], E[Fi],

P ({a, b}), σ̂i, closest (i, l), E[Nkl], pOkl, and ‖Sk‖. Of these, the first two can be determined

through shortest path searches, the third is taken directly from the world, and the remainder

can be precomputed and stored with size Θ (s+m2 +mn) in the number of segments,

72



target types, and targets. (Recall that m� n.)

This approach does not, however, allow for a binary search-based sampling. Instead we

use the Metropolis-Hastings algorithm [Hastings, 1970] to sample from this distribution

based only on the ability to calculate the ratio of individual probabilities, and a function to

iteratively perturb i and j randomly in space. This algorithm uses a Markov chain whose

steady state distribution is the desired distribution, sampling from it after a burn-in period

which allows the distribution to converge. For the perturbation function, we store at each

target a table of the nearest q targets, with one-way transitions pruned to avoid a division by

zero in the transition probability ratio. The probability ratio is calculated from the two i, j

pairs as in equation 5.3, noting that P ({a, b}) and E[F ] cancel out. E[Dij] and SPij ({a, b})

are iteratively maintained using A* searches from a to i, from b to j, and from i to j; the

first two change only their goal nodes, and thus computations can be reused by keeping

the closed list and lazily recomputing the heuristic for all nodes on the open list. For the

third search, MT-Adaptive A* search [Koenig et al., 2007] shows promise for speeding up

computation.

5.6 Results

We have tested the perceptual simulation described using a world with approximately 12,000

targets and 1,000,000 agents (approximately 80% of whom were inside at any given time),

on an Intel Core i7-based computer. The persistent memory overhead of the precomputed

data, not including data about the geometry of the world, was approximately 52 kB, scaling

roughly linearly with the number of targets. Sampling the population of all segments in a cell

took less than 0.1 ms. Using the Kullback-Liebler divergence between the the distribution

of generated alibis and the ground-truth probabilities to monitor the convergence of the

Metropolis-Hastings chain to the equilibrium, we found satisfactory convergence for alibi
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Figure 5.1: Kullback-Liebler divergence of alibi sampling versus ground-truth probabilities,
under varying Metropolis-Hastings transition table size and number of iterations.

sampling with 500 iterations and transition tables of size q=50. The optimum transition

table size was dependent on the number of iterations (Figure 1). Alibi sampling took

approximately 15 ms; this computational load can easily be spread over hundreds of frames

if desired, making the additional computational burden affordable for even the stingiest of

AI time-slices, and can be used as an anytime algorithm in especially processing-intensive

situations.

Alibi sampling, therefore, produces agents whose observed behavior is virtually indistin-

guishable from those in the original simulation model. Players would have to analyze the

behavior of hundreds or thousands of agents in order to determine whether the simulation

they were viewing was the original simulation or the perceptual simulation, an activity

which is not usual for video game players.
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5.7 Drawbacks

There is a subtle but meaningful caveat to the guarantee of realism provided by alibi

generation. Because agents which pass into an out-of-view cell are destroyed, it is possible

for a viewer to realize she is observing unrealistic behavior by observing someone nearing a

portal, stepping out of view so that the destination cell becomes invisible, then returning.

Since the agent would have reached the portal while the destination was invisible, no alibi

would be generated for it, and the agent would have vanished. A possible solution would be

to generate alibis for agents passing into cells which were recently visible, but this could

greatly increase the number of alibis required, lowering performance.

Likewise, the treatment of alibi-ful agents which pass out of view becomes a compromise

between realism and performance. If alibi-ful agents are destroyed after a short period

of invisibility, a viewer following one from afar can notice them vanishing after they are

temporarily obscured (a situation which could easily arise in real gameplay, instead of as

a “gotcha”). If they are allowed to linger for an unlimited amount of time, over time the

simulation can tend towards most agents having an alibi, removing the benefits of alibi

generation.

Finally, unnecessary alibi generation can often occur, and in a problematic fashion.

Newly visible cells create agents at random positions along segments, so some agents will

inevitably be very close to the end of their segments. This causes these agents to invoke alibi

generation almost immediately, despite the fact that the player may not have even noticed

them yet. Moreover, if the processing burden of alibi generation is being spread over many

frames, there will not be time to finish the generation process for these agents. These two

problems can actually be used to solve each other, to some extent: if alibi generation has not

completed for an agent, the most recently generated alibi may be used solely to compute

the next segment for the agent, but that alibi may then be discarded and the agent remain in
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alibi-less simulation until the next segment. This puts a de-facto lower limit on the amount

of time visible before an agent is considered to “deserve” an alibi, although its precise value

is more an artifact of processing than a well-supported compromise.

Solutions to these problems are discussed in the following section.

5.8 Integration with the LOD trader

The original alibi generation system cannot be precisely implemented as a subordinate of

the LOD trader. With minor modifications, however, it can be, and gains desirable properties

which were not available without the LOD trader. There are two potential forms for this

integration, which will be described in turn.

5.8.1 Cells as entities

In this form, alibi generation as described in this chapter uses two separate feature graphs:

One for cells, and one for agents.

The “cell” feature graph is the simpler of the two, and exists primarily to drive the rules

for agent creation. It consists of one feature, with two LODs: visible and invisible. The

“invisible” LOD, of course, has an extremely high audacity coefficient for unrealistic state.

The cost of simulation at the “visible” LOD is based on the expected cost of simulation of

newly created agents. The transition from invisible to visible also has significant resource

costs, as it entails the creation of agents; however, the high audacity coefficient for unrealistic

state means that, under all but the most extreme circumstances, this transition will occur

whenever the cell region comes into view.

The “agent” feature graph is slightly more complex. It has one feature, with three LODs:

alibi-less, alibi-ful, and nonexistent. As envisioned in the original design, transitions are

only available from the first to the second, from the second to the third, and from the first to
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the third LOD. in the alibi-less LOD, agents reaching portals whose other cell is visible do

not immediately generate alibis, but transition to a new segment randomly based on a simple

per-segment probability table. The alibi-less LOD has a small but significant audacity for

unrealistic long-term behavior, causing its unrealism to increase over time while the agent is

visible. Transitioning from the alibi-less to the alibi-ful LOD, of course, has a high CPU

cost; the alibi-ful LOD has a slightly higher CPU and memory cost than the alibi-less LOD.

The alibi-ful LOD has a zero audacity vector, reflecting its status as the “realistic” LOD.

The transition from alibi-less or alibi-ful to nonexistent LOD has a high audacity coefficient

for unrealistic state and a medium coeffient for fundamental discontinuity; coupled with

the zero resource cost for the nonexistent LOD, this will cause un-memorable agents to be

destroyed when out of view for a little while, but will prolong the lives of agents which have

been the source of attention recently.

In addition, a transition may be added from the alibi-ful to the alibi-less LOD, with zero

transition cost or penalty (the additional penalty coming from the destination level). This

allows agents which were given alibis and subsequently unattended to discard those alibis

for a small gain in resources.

5.8.2 Cells as triggers

In this form, two crowd simulations are used: the normal discrete agent simulation, and an

overlaid flow-based simulation. Each cell will have a set of currently present discrete agents,

and a real-valued continuous population.

At the beginning of the simulation, all cells have zero discrete population, and each

has a continuous population equal to its average population. When a cell becomes visible

following a period of invisibility (or is visible at the beginning of the simulation), as many

agents are generated as the integral portion of the continuous population, with that population

being correspondingly reduced. This transition only occurs at the moment when the cell
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becomes visible.

Portals operate in a complementary manner. When both cells of a portal are invisible, it

transfers continuous population in each direction with a flux proportional to the average flux,

and to the incoming cell’s continuous population. When one cell of a portal is visible and

the other is invisible, continuous population flows bidirectionally, but flux from the invisible

cell to the visible cell does not increase the visible cell’s continuous population. Instead, a

Poisson process generates discrete agents at the portal heading into the visible cell at the

corresponding average rate.

Agents’ feature graph is similar to the previous form, with the added caveat that agents

are not allowed to become nonexistent while in a visible cell (even if they themselves are not

visible). When an agent does become nonexistent, its current cell’s continuous population is

incremented by 1. Sufficiently memorable agents are thus allowed to continue operating in

invisible cells, while less memorable agents are absorbed into the continuum.

5.8.3 Discussion

Both forms are reasonably straightforward to implement. The first form has a definite perfor-

mance edge, allowing the instant destruction of swaths of agents when cells are sufficiently

out of view. The second form, however, allows for arbitrary degrees of compromise between

resource usage and realistic persistence. Moreover, it guarantees conservation of population,

even in circumstances where the viewer’s actions change the normal flow of traffic.

Implementing the decision to create, destroy, and alibi-ize agents in terms of these

benefit/cost tradeoffs removes some of the deterministic crispness of the original design,

and compromises the elegant guarantee that alibi-less behavior can never be noticed. In

particular, the benefit of giving an agent an alibi is calculated based on the duration of

observation, rather than the number of inter-segment turns made. If desired, this latter

criterion can be substituted, by simply removing the transition from alibi-less to alibi-ful
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from the feature graph, and instead manually forcing it when the agent nears the end of the

segment.

The benefit, however, is an effective solution to the concerns described in section 5.7.

Agents are no longer destroyed needlessly or carelessly: the decision to destroy one is

made only when the resources are needed, and the agents chosen for destruction are those

the viewer is least likely to miss. Nor are alibis generated for agents almost immediately

after creation, since the penalty for alibi-less simulation only becomes significant after a

period of actual visibility (of the entity, not the cell). Finally, these LOD decisions may

be coordinated with those of other simulation types, to provide better guarantees on total

system performance.

5.9 Beyond pedestrians

In chapter 4, we discussed how transitions present considerably more of a challenge for

simulation LOD systems than they do for graphical LOD systems. Rendering is an essentially

stateless, side-effect-less process of transforming input into output; the LOD choices made

on the previous frame do not affect the rendering process in the next frame. Moreover,

different graphical LODs, while differing in operation, take as input the same data about a

scene’s contents. At a high level, a graphical LOD system may be viewed as a collection of

functions which transform scene information into rasterized graphical data, all operating on

the same domain.

A simulation LOD, in contrast, consists of both data processing and data description.

All simulation LODs for a particular simulation need will generally output the same data –

however crowd simulation is done, the result must be positions for agents – but additional

internal state will differ between LODs. This state may be an implementation detail of the

LOD, but more often it is a reflection of the particular rules being followed: A physically-
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based locomotion LOD must keep track of individual limb velocities, and a playback-based

locomotion LOD has no need to.

When transitioning between simulation LODs with different state spaces, a mapping

process must take place. Consider the case of the locomotion LODs above. Transitioning

from physics to playback is trivial: limb velocites are no longer needed, and are discarded.

Transitioning from playback to physics is slightly more involved, as initial limb velocity

state must be generated through finite differencing.

Note the potential for discontinuous limb velocities when transitioning from physics to

playback. This occurs because the state mapping is overconstrained: The physics state space

has much higher dimensionality than the animation state space, and so the closest animation

state to a given physics state may induce significantly different output. The state mapping

from playback to physics, in contrast, is not overconstrained, as any animation state may

be transformed through finite differencing into an equivalent physics state. Neither is it

underconstrained: There is exactly one “correct” set of limb velocities for a given animation

state, which should always be generated when transitioning from that animation state.

So far, so good. But there are situations in which the state mapping involved in an

LOD transition is underconstrained. Transitioning a vehicle from animation to physical

simulation, for instance, might involve the generation of a fuel tank level. There is no

single “correct” fuel level, as nothing about the previous simulation unambiguously implied

a specific level. But there are “incorrect” fuel levels. If the vehicle was in the process of

pulling into a gas station when the transition occurred, it would be silly for the fuel tank to

be full; if it was pulling away from the gas station, it would be silly for the fuel tank to be

empty.

Not fatally silly, of course. We could come up with plausible excuses for each of these:

The first driver was pulling into the gas station for a snack, not a fill-up, for example. But a

viewer’s suspension of disbelief has its limits. In the long term, they expect cars to generally
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leave gas stations with more fuel than they came in with. But they also expect a certain

amount of variety: if every car pulling into a gas station had a fuel level of precisely one

eighth, realism would suffer as well. These underconstrained mappings, in other words,

map from a determined entity state to a probability distribution of possible states. And this

determined entity state is not just immediate simulation state, but encompasses the viewer’s

history of observations of that entity.

Alibi generation fills precisely this niche: the generation of plausible data to solve

an underconstrained state mapping. Its applicability extends beyond goal generation for

pedestrians. For the fuel tank example above, simple rules governing when people stop

at gas stations and what happens to their fuel level when they do can be used to derive a

conditional distribution over fuel level given observed activity, and this distribution can be

sampled to generate fuel levels for vehicles being transitioned to simulation LODs which

require them.
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Please take a minute to tell us what
happened in as much detail as possible.

The Unity3D crash reporterChapter 6

The Marketplace Project

6.1 Overview

The Marketplace project is a use case scenario for comprehensive human agent animation

and modeling. As part of this project, we have developed a realtime perceptually-driven

simulation of a large Middle Eastern public marketplace.1 In the simulation, virtual humans

travel around the marketplace, interacting with objects and other humans. The humans are

intended to appear intelligent and rational in their behaviors, and the marketplace as a whole

is intended to feel crowded and “alive”.

Perceptually-driven simulation techniques are used to maintain real-time performance on

commodity computer hardware while maximizing realism. In particular, an implementation

of the LOD Trader controls many features of the virtual humans’ simulation. In this chapter,

we describe the design of the marketplace simulation. We then enumerate the features which

are subject to LOD control and the various levels of each, including the computational

costs and perceptual penalties involved. We describe the process of tuning the estimation of

1While the influence of cultural factors on human behavior is an important component of the project as a
whole, this simulation does not attempt to faithfully reproduce a particular culture; it draws indiscriminately
on Arab, Afghan, and even Mediterranean cultural influences.
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these costs and penalties, as well as the process of tuning the parameters of the perceptual

criticality model. We describe informal tests of the simulation’s performance and realism,

and their results. Finally, we discuss the consequences of the LOD trader design and

operation on the simulation.

6.2 The simulation

6.2.1 Architecture

The simulation is implemented in the Unity3D game engine, and targets an Intel Core

i7-based PC running Microsoft Windows 7. Most of the system is programmed in C], with

computationally intensive routines rewritten in C++ as necessary.

6.2.2 Graphics

Human models are generated from an off-the-shelf collection of body part and clothing

meshes, with simple constraint rules to prevent incompatible clothing and visible interpen-

etration during animation. Face and clothing textures are randomly chosen from a small

database to maximize the appearance of variety. In all, 115200 unique male and 2268

unique female meshes are possible. World geometry is made up of low-polygon objects,

procedurally assembled into stalls and product displays through a set of simple rules. Static

occlusion culling is used to reduce rendering costs.

A birds-eye view of the Marketplace environment is shown in figure 6.1.

6.2.3 Behavior

High-level behavior is based on “smart objects” similar to the AI system in The Sims [Viega,

2001], with dynamic utility weightings used to guide goal selection. A person will have a
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Figure 6.1: A birds-eye view of the Marketplace simulation environment.
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vector of utility coefficients for various events such as “Buy fruit”, “Have fun”, and “Spend

money”. A utility coefficient may be positive to indicate the person’s desire for the event

to occur, negative to indicate aversion to the event, or zero to indicate indifference. The

simulation world is outfitted with “affordance sites”, each one with a description of an

action a person can take and a corresponding vector of values describing the presence and

degree of those events which would result from taking the action. For instance, an apple stall

would have a “Buy apples” affordance with positive “Buy fruit” and “spend money” values.

The affordance also describes a transformation on utility coefficients which occurs when

the person performs the action, consisting of a scaling followed by an addition for each

coefficient. The person herself also has a set of utility transformations which are performed

after each action. A view of the Marketplace environment showing the available affordance

sites and the extents of their offer volumes is shown in figure 6.2.

This simple system allows a wide range of behavioral effects. For instance, each person

starts (assuming full quality simulation) with positive utility weightings for a subset of

the “Buy X” events, which serves as a shopping list: the affordances which provide these

events have transformations which scale the corresponding utility by 0, causing a person

to not re-buy a product she has already bought. As another example, a person’s personal

utility transformation subtracts a small amount from the person’s “spend time” utility. Most

affordances have a small positive “spend time” value, with the exception of the “leave

the marketplace” affordance, which has a zero “spend time” value and negative values for

all “Buy X” events. Over time, this causes people to leave the marketplace after awhile,

particularly once they have completed all of their errands.

The existence of people, and their state, is driven by the alibi generation approach dis-

cussed in section 5.8.2. Rather than symbolically derive the alibi distribution for affordance-

driven agents, we simply ran the full-quality simulation until we had gathered several

hundred alibi samples for each affordance site, and we only generate alibis when agents are
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Figure 6.2: Affordance sites, and the volume within which they are offered to agents, in the
Marketplace simulation environment.
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at affordance sites. The cells used for world visibility are shown in figure 6.3.

6.2.4 Navigation

Pathfinding is performed by building a navmesh (a 2-dimensional convex polygonal tesse-

lation of walkable areas), performing an A* search to identify a path between polygons,

and refining the path with a visibility-based string-pulling algorithm. Navigation along the

path is controlled by a variant of the Reciprocal Velocity Obstacles algorithm [Van den Berg

et al., 2008]. The publicly available Recast and Detour libraries are responsible for these

steps.

6.2.5 Animation

The animation of human characters is split into locomotion animation and action animation.

Locomotion animation is performed either with an off-the-shelf data-driven IK system which

blends different walk cycle animations to match the character’s local velocity, or by simple

time-scaled animation playback. Action animation is based on playback, and may include

IK retargeting.

6.3 LOD control

As detailed in chapter 4, the LOD-varying features inherent to an entity are described by

a feature graph. This graph consists of a set of features, a set of LOD choices for each

feature, and a set of features which is required for each LOD choice. Virtual people in the

Marketplace simulation have seven features, which are described in turn.
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Figure 6.3: Cells used for visibility testing and agent creation in the Marketplace simulation.
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6.3.1 EXISTENCE

This is the root feature of the graph, and is thus the only feature which must be present

in a feature solution (it therefore has no null level). It has two levels: Yes and No. The

only allowed transition is from Yes to No, which causes the person to be deleted from the

simulation. The No level, of course, has no required features; the Yes level requires the

BEHAVIOR feature.

Costs and benefits for the EXISTENCE levels are a little idiosyncratic. Costs for the Yes

level are small, and represent primarily the bookkeeping overhead involved in maintaining

the person in the simulation at all. This includes the expected cost of processing by the LOD

trader itself. Costs for the No level, of course, are zero. It bears mentioning that although

the Yes level has only small costs, a transition from a feature solution including the Yes level

to one including the No level may represent a large total reduction in costs because the No

level has no required features and thus any such transition will realize the cost reduction

from moving all other features to the Null level.

As it is the highest level for the feature, the penalties for the Yes level are zero. The

penalties for the No level, perhaps counterintuitively, are also zero, as a nonexistent person

cannot be a priori unrealistic purely as a result of its ongoing unrealism. However, the

transition from the Yes level to the No level incurs very high Unrealistic State (US) and

Fundamental Discontinuity (FD) penalties, representing the patent unrealism of a person

either winking out of existence in front of the viewer or mysteriously vanishing while

off-screen.

6.3.2 BEHAVIOR

This feature controls the basic behavioral strategy of the person, and is required by all

existent people. It has three levels: Interact, Walk, and Goal Driven. The Goal Driven
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behavior is the highest level, at which the person repeatedly identifies a useful goal to

perform, walks to a place where that goal may be accomplished, and performs an action

which accomplishes the goal, which may affect its own state and the state of the world.

It may interrupt its behavior cycle to perform incidental actions which become available

(described later). Walk and Interact are simple, non-goal-driven behaviors which are used to

provide background texture to the simulation. At the Walk level, the person continuously

walks between randomly chosen sites in the marketplace, never performing any actions at

those sites, and choosing a new site two meters before they get to their current destination.

At the Interact level, the person stands in a single location and interacts with an object or

person at that location, looping the interaction endlessly without affecting itself or the world.

The costs of all levels are small, as most costs are subsumed by their required features.

As the highest level, the penalties for the Goal Driven level are zero. The Interact and

Walk levels each incur a small Unrealistic Long-Term Behavior (ULTB) penalty, from the

unrealism of continuously acting without accomplishing anything. Additionally, the Walk

level incurs a small US penalty from the potential for the person to reach a random point and

then walk towards a random point in a very different direction, in an apparently unmotivated

U-turn.

Transitions are allowed from either Interact or Walk to Goal Driven, or from Goal

Driven to Interact or Walk, but not between Interact and Walk. Transitioning from Walk to

Interact is not allowed: it would require the person to be in a position where interaction

could occur, but because the person is walking in a random place this cannot be guaranteed.

Transitioning from Interact to Walk would be possible, but is not necessary to implement,

as its functionality is replicated by a transition to the Goal Driven level with random goal-

picking and no incidental actions (discussed in sections 6.3.3 and 6.3.4, respectively). The

costs and penalties for all transitions are zero.

Four features are required by the Goal Driven level: NAVIGATION, INCIDENTAL AC-
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TIONS, ACTION ANIMATIONS, and GOAL PICKING. The Interact level requires only

ACTION ANIMATIONS, and the Walk level requires only NAVIGATION.

6.3.3 GOAL PICKING

This feature controls the algorithm which goal-driven people use to choose a site, and

is required by people with Goal Driven behavior. It has three levels: Uniform Random,

Weighted Random, and Affordances. At the Uniform Random level, a random site is

uniformly chosen from the entire simulation. At the Weighted Random level, a person’s

next site is chosen from a distribution conditioned on the person’s previous site. At the

Affordances level, all sites within range are evaluated as described in section 6.2.3.

The first level has a small FD penalty representing the possibility for manifestly unre-

alistic successive sites, and both the first and the second level have small ULTB penalties.

The costs of the Uniform Random level are essentially zero, and the costs of the Weighted

Random level are low as well. The CPU cost of the Affordances level is higher, and there

is additionally a small memory cost to maintain the utility vector. Transitions to the Af-

fordances level require a utility vector to be generated through alibi generation, based on

a pre-sampled distribution attached to the person’s current affordance site, and so incur a

significant CPU cost. If the person is not currently at a site, alibi generation is deferred until

they reach their destination.

6.3.4 INCIDENTAL ACTIONS

This feature controls whether a goal-driven person monitors the area around her for, and

responds to, opportunities for incidental actions; it is required by people with Goal Driven

and Walk behaviors. These include actions like talking to a friend or giving money to a

beggar. Like goals, these may be considered based on their affordances and the person’s
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current utility weightings; if the person does not have use Affordances for GOAL PICKING,

they are instead invoked randomly. The two levels are No and Yes, and are self-explanatory.

The No level has a small ULTB penalty representing the unrealism of a person never

performing incidental actions (rather than passing up a single incidental action). The Yes

level has a small CPU cost.

The INCIDENTAL ACTIONS feature is unique in that it is required by certain levels of

two different features.

6.3.5 NAVIGATION

This feature controls both the process by which a person determines a shortest path from

one point to another and the process by which it navigates along that path. It is required by

people with a BEHAVIOR level which involves walking. It has three levels: Pathing Only,

Collision Resolution, and Avoidance. At the Pathing Only level, a person finds a shortest

path to the desired end point, then moves along that path without attempting to avoid other

people or reacting to interpenetrations. At the Collision Resolution level, a person checks for

and attempts to resolve interpenetrations with other people but does not proactively avoid

them. At the Avoidance level, a person uses the Reciprocal Velocity Obstacles algorithm to

predict and avoid interpenetrations with other people. Path finding requests are serviced at a

maximum per-frame rate, with higher LOD requests prioritized over lower LOD requests;

hence, higher LODs additionally reduce latency by a small amount.

The Pathing Only level has a small but nonzero CPU cost and a high US penalty (due to

the potential for interpenetrations). The Collision Resolution level has a higher CPU cost

and a small US penalty, due to its potential to collide unrealistically with other people. The

Avoidance level has the highest CPU cost, and a zero penalty. All transitions are allowed,

and there are no transition costs or penalties.

The NAVIGATION feature is nearly unique in that it governs interactions between people,
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rather than individual behavior. The Collision Resolution and Avoidance levels cause

the person to be registered within an occupancy grid; this grid is then used to determine

potentially colliding neighbors. At the Pathing Only level, this registration does not occur.

As a result, Pathing Only people are invisible to Collision Resolution and Avoidance people,

causing their effective behavior (and unrealism) to degrade to that of Pathing Only. In

practice, however, this is not an issue: Because the penalty multiplier for the lower levels

emphasizes unrealistic state, the inputs to which are mostly spatially coherent, people which

could potentially interact will tend to have the same NAVIGATION level.

Another unique aspect of the NAVIGATION feature is its sensitivity to population density.

If all people in an area are simulated with Pathing Only, the frequency of interpenetrations

experienced by a single person is proportional to the density of that area. As a result, the

penalty multiplier for the NAVIGATION feature assumes a particular ambient population

density, and becomes inaccurate as the density diverges from that estimate. It would

be possible to address this issue by duplicating the US penalty factor into two factors,

one including population density as a factor, but this would require the new factor to be

considered in all penalty calculations.

6.3.6 LOCOMOTION

This feature controls the generation of walking animation for a person. It is required

by people with a BEHAVIOR level which involves walking. It has three levels: None,

Playback, and IK. At the None level, skinned animation is disabled entirely while walking;

the character’s limbs are frozen in place and it glides along its path. At the Playback level, a

single forward walk animation is played in a loop, time-warped to match the person’s speed.

At the IK level, full IK-based locomotion is performed, giving realistic walking animations

at any speed and along any trajectory.

The CPU cost of the None level is very low but nonzero, representing the computational
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cost of batching the static geometry. The CPU cost of the Playback level is higher; the CPU

cost of the IK level is higher still. Likewise, the None level has a very high US penalty, the

Playback level has a medium US penalty, and the IK level has a zero penalty. Transitions

are allowed between all levels, and there are no transition costs or penalties.

6.3.7 ACTION ANIMATIONS

This feature controls the playback of animations for people performing actions. It is required

by people which perform actions, either due to a Goal Driven or Interact behavior, or a

Walk behavior with INCIDENTAL ACTIONS enabled. It has three levels: None, Low Quality,

and High Quality. These levels are roughly equivalent to the corresponding LOCOMOTION

levels: None freezes the animation, Low Quality plays a fixed animation, and High Quality

adapts the animation for style (driven by the person’s mood) and uses IK to retarget end

effector positions. Like the LOCOMOTION feature, these features differ in their CPU cost

and their US penalty.

The ACTION ANIMATIONS feature and the LOCOMOTION feature are clearly similar:

Both control the generation of skinned animation, and their levels roughly correspond to

each other. It is tempting to combine them into a single feature to simplify the graph.

However, leaving them separate allows their cost and penalties to be individually tweaked,

the IK involved in navigation being considerably more expensive than that involved in action

animations. Additionally, because the two features are required by different sets of LODs,

leaving them separated allows the cost of doing any locomotion to be separated from the

cost of doing any action animations, preventing the overstatement of the cost of feature

solutions which only do one.
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6.3.8 MESH RETENTION

This feature controls how a person’s skinned mesh is retained in memory. There are three

levels: None, Invisible, and Visible. At the None level, no mesh is assigned to the object; at

the Invisible level a mesh is generated and assigned but not shown; and at the Visible level

the mesh is shown. A transition to the None level, or to the null level, causes the mesh to

be returned to a pool of available resources; thus a person who transitions from Visible to

None then back to Visible will have a different appearance. The memory cost of the Invisible

and Visible levels are high, and there is a large US penalty for the Invisible and None levels.

All transitions are allowed; transitioning from Visible or Invisible to None or the null level

introduces an FD penalty.

This feature is unique in that its level is directly constrained by other LODs. The feature

as a whole is required for all existent people, but additionally LOCOMOTION and ACTION

ANIMATIONS levels other than None require the Visible level specifically, as they operate on

the mesh skeleton. This allows visible but unanimated people, but does not allow animated

people to be invisible. If not for this constraint, the system could theoretically choose to

spend resources on animating an invisible person due to the lower total realism penalty

relative to that of an invisible unanimated person. This constraint sidesteps that weakness in

the additive model of unrealism.

6.4 Tuning

6.4.1 Measuring costs

The process of quantifying the costs of different feature LODs was relatively straightforward.

A large number of people were spawned in the simulation world at a particular feature

solution, the simulation was run for a set period of time while the viewer was moved along

95



a pre-recorded path through the scene, and the average and peak frame times and memory

heap usages were recorded. By re-running this benchmark with different feature solutions,

the resource usages of individual LOD features could be accurately estimated.

The resource overhead of the world itself was also measured. Different viewpoints

within the scene could have an order of magnitude more or fewer objects visible, resulting

in a high range of overhead costs. To account for this, a second automated measurement

procedure was used. The world was divided into a 2 dimensional grid with a resolution

of 2 meters. For each grid point at each of 8 evenly spaced view directions, the average

time to render a frame was measured and stored. At runtime, trilinear interpolation was

used to estimate the overhead at the viewer’s current position and view direction. This was

subtracted from the total resource usage targets each time the LOD trader ran, to update the

maximum resources apportioned among people by the LOD trader.

The ratios between available resources were also tracked. We observed extremal ratios of

up to approximately 100 available kilobytes of RAM per available microsecond of CPU time,

and up to approximately 0.15 available microseconds of CPU time per available kilobyte of

RAM. These extrema were fed back to the transition culling process, slackened by a safety

factor of two, to serve as constraints on subsequent runs.

6.4.2 Tuning the criticality model

The process of tuning the various factors of the perceptual realism criticality model was less

straightforward, and required different techniques for each factor.

Observability

Observability was the second easiest factor to tune. At a distance of closer than four meters

it was found to be easy to distinguish between people performing IK-based and pre-animated

locomotion, the subtlest of the unrealistic state-based sources of unrealism. We therefore
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chose the solid angle subtended by a person at a distance of four meters as the saturation

angle. This is the only parameter of the observability model.

Attention

Attention was considerably more difficult to tune, because of its extreme subjectivity. For

instance, the value for the ambient attentional load parameter has a strong effect on the

relative behavior of the LOD trader in crowded versus sparse situations. At a high ambient

attentional load, the attention estimate for individual people is mostly independent of

crowding. At a low attentional load, crowded situations lead to a more precipitous lowering

of per-person attention. When tuning this parameter, the knowledge that too high a value

would lead to background people behaving unrealistically strongly primed us to be sensitive

to this consequence. At one point, I greatly increased the ambient attentional load value to

test the results, and anecdotally observed a sharp drop in realism for background people. It

was only after the test that I realized I had not saved the new parameter settings: the drop in

realism was entirely a creation of my subjective expectations.

Tuning the relative weighting of observability, focusing, and following factors revealed

the third factor to be of little benefit. Unrealistic state BIRs did not seem more probable for

entities which were being followed but not focused; other BIRs would naturally be subject

to a higher criticality for followed entities because of the greater memory and duration

factors. We found an observability weighting of 0.7 and a focusing weighting of 0.3 to

predict attention well.

Memory

The two parameters of the memory model, α and β, respectively govern the rates of

memorization and forgetting. The first was set to 0.6, equating to a rise in estimated memory

from 0 to 95% of the estimated attention in approximately 5 seconds. The second was set
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to 0.001, equating to an approximately 10-second half-life of memory under the highest

observed attentional loads. These parameters prevented underestimation of memory in all

but the most contrived scenarios, but did overestimate long-term retention of memory for

most entities. This overestimation did not appear to lead to a significant waste of resources,

as discussed in section 6.7.6.

Duration

The duration model had no parameters to tune. This made it the easiest model to tune.2

Return time

The parameters of the Weibull return model were directly estimated by recording actual

return times over several hours of performing self-directed tasks within the simulation. A

statistical analysis program was used to fit a Weibull distribution to this model, including

censoring of data for entities which never returned to being visible. The best-fit shape

parameter was k ≈ 0.8, supporting the hypothesis that the hazard rate decreases over time.

(The scale parameter of the distribution serves only as a constant factor in the expected

reward model, and is thus unimportant to estimate independently of audacity factors.)

6.4.3 Tuning audacity

The process of tuning features’ audacity vectors was ad-hoc and iterative, consisting pri-

marily of adjusting audacities in response to consistently noticed BIRs. Rough quantitative

reasoning was used to adjust relative audacities from different LODs for the same category

of unrealism (“This one’s about twice as unrealistic as that one”), but this was less useful for

comparing different categories of unrealism because the criticality factors could not easily

2Zen koan: also the hardest.
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be compared, particularly when the criticality model was re-tuned. This issue is discussed

in section 6.7.1.

6.5 Alternative implementation

To evaluate the relative usefulness of the LOD trader, we implemented a simple proactive

LOD control system based on the general approach taken by existing simulation LOD

systems, such as that integrated into the game Neverwinter Nights [Brockington, 2002].

This system did not perform criticality modeling or respect resource constraints, instead

picking LODs based only on viewer distance and visibility. The threshold distances for LOD

transitions were tuned to maximize quality at a particular framerate quality, as described in

section 6.6.1; separate thresholds were used for each feature.

6.6 Evaluation

The LOD trader was evaluated independently, and relative to proactive LOD control, in terms

of several quality metrics. The ability of the two systems to respect resource constraints,

and the resultant effect on performance, was objectively measured. The ambient visual

realism of the simulation under the two LOD systems was also subjectively evaluated, with

the viewer wandering the simulation and engaging in self-directed tasks.

6.6.1 Performance testing

Each of the two systems was benchmarked with a prerecorded 60-second flythrough of the

scene. The time to simulate and render each frame was recorded. The LOD trader was set

to a target framerate of 30 FPS (0.033 seconds per frame); the proactive LOD selector was

tuned (by means of adjusting its threshold radii) to maintain an average framerate of 30.
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Figure 6.4: Per-frame execution time during a 60-second flythrough of the Marketplace
simulation, as a proportion of total frames rendered and as a proportion of total simulation
time.

Frames during which a garbage collection occurred were not considered. Figure 6.4 shows

the distribution of frame times for each system, as a proportion of total frames rendered and

as a proportion of total simulation time.

Although the mean frame time of the two systems was nearly identical, the standard

deviation of proactive LOD selection was nearly double that of the LOD trader: 19 millisec-

onds versus 10 milliseconds. The LOD trader maintained a framerate of at least 25 FPS

during 80% of the execution time; the proactive LOD selector maintained this framerate
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during only 50% of the execution time.

The LOD trader itself had an execution time of 57 microseconds per frame, or 0.17% of

the target frame time. Its memory usage was approximately 500 kilobytes for the feature

graph and transition data, plus 48 bytes per entity; this usage could easily be reduced by

half by picking narrower datatypes, with no reduction in functionality.

6.6.2 Perceptual study

A perceptual study was undertaken to determine whether the LOD trader produced lower

BIR rates than proactive LOD selection. Thirty-second real-time video captures were made

of the simulation from a fixed viewpoint, with LOD selection performed either by the

proactive selector or by the LOD trader, and with a population of 1, 3, or 5 times the base

rate, resulting in six videos. Each was encoded to FLV format at a resolution of 640 by 480

pixels at 30 frames per second (The simulation was capped to 30 frames per second but was

allowed to skip frames.) A screenshot from one of these videos (LOD trader, population

rate 5) is shown in figure 6.5.

Subjects were recruited through the Mechanical Turk web service. Each subject was

shown a randomly chosen video once. Subjects were instructed not to pause or replay

the video. Afterwards, the subject was given a list of potential problems with the video.

Each problem described either an underlying problem with the simulation which was

independent of LOD selection (e.g. “Unrealistic head motion”), a problem which was

present at low LODs but not high LODs (e.g. “Feet sliding along the ground”, “Sudden

change in direction”), or a problem which did not exist (e.g. “Sunglasses changed from

black to white”). For each problem, subjects were asked to score on a five-point Likert scale

whether the problem was perceived in the video (1 for “Definitely not”, 5 for “Definitely”),

and how often the problem occurred (1 for “Never”, 5 for “Constantly”). Subjects were

voluntarily allowed to view other videos, up to all six. Each video was viewed 20 times,
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Figure 6.5: A frame from one of the videos shown to participants in the perceptual study of
the Marketplace simulation.
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resulting in 120 data points from 46 participants. In order to filter out participants who did

not actively attend to the video, all responses from participants who answered “4” or “5”

when asked whether the problems that did not exist in the video occurred were discarded (3

participants, representing 10 data points).

Results of the survey questions for problems present at low LODs but not high LODs

are given in table 6.1. No significant difference in incidence of direction change perception

between proactive selection and the LOD trader was observed at population rates of 1 or 3

(p > 0.05); Incidence of direction change perception was significantly lower (p < 0.05) with

the LOD trader than with proactive selection at population rate 5. Incidence of foot skate

perception, and frequency of foot skate and direction change were all significantly lower

(p < 0.05) with the LOD trader than with proactive selection at all population rates. These

results support the hypothesis that the LOD trader is effective at reducing the incidence and

frequency of BIRs from low-LOD simulation.

6.6.3 Subjective evaluation

In addition to the frequent slowdowns caused by the proactive LOD selector – one area of

the simulation was nearly unnavigable – its ability to maintain the perception of realism was

middling at best. In order to maintain the required average framerate, it was necessary to

decrease the threshold radius for IK-based locomotion to 5 meters, a distance at which foot

skate was easily perceptible, particularly in sparsely populated areas. It was also necessary to

threshold existence at 50 meters for out-of-view people; at this radius, it was quite common

for memorable people to perceptibly disappear.

The LOD trader maintained a good perception of realism under nearly all circumstances.

Long sightlines in foreground-crowded areas seemed to pose a problem for the criticality

model: background people could occasionally be seen to be simulating without animations

while visible along these sightlines. In very crowded situations the weaknesses of the

103



LOD mode

Population rate

Survey question

Su
rv

ey
 re

sp
on

se

1

2

3

4

5

pro tra pro tra pro tra pro tra pro tra pro tra pro tra pro tra pro tra pro tra pro tra pro tra

1 3 5 1 3 5 1 3 5 1 3 5

Direction change
perceived

Foot skate perceived Direction change
frequency

Foot skate frequency

Table 6.1: Perceptual study responses, on a five-point Likert scale, for the incidence and
frequency of BIRs from low LODs at different population rates and with either the LOD
trader (“tra”) or proactive selection (“pro”) controlling LODs. Lower numbers are better.
Error bars represent 95% confidence intervals.
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Collision resolution navigation could also cause BIRs due to people vibrating in an attempt

to push past each other. Other unrealistic situations were largely the result of weaknesses in

the “ground truth” simulation.

6.6.4 Personal impressions

The LOD trader is by its nature deceptive to the viewer, and the surprising audacity of its

decisions is matched by its surprising ability to get away with them. This made debugging

difficult at times. For instance, it was nearly impossible to confirm that mesh pooling – which

causes people to change their appearance, sometimes radically – was working properly. It

was necessary to memorize people’s appearance during a short period of time, then look

away for a few seconds, then look back and check that their appearance had changed. If

a single person were close to the camera, or the same group of people was rendered for

more than a few seconds, the memory model correctly ascertained that the people were now

memorable to the viewer (i.e. the programmer), and refused to pool their meshes until they

had been invisible for some time, at which point I really had forgotten what they looked

like. It became necessary to give a small percentage of the people bright pink hats, merely

to fool the criticality model. Of course, the LOD trader would have been more than capable

of accounting for the additional audacity of changing bright pink hat state, had that been

exposed in the feature graph.

6.7 Discussion

The implementation of the Marketplace simulation led to several lessons about the unrealism

modeling methods chosen, and about the design of the LOD trader.
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6.7.1 Cascaded tuning

As should be clear from section 6.4, many steps are involved in tuning the criticality model

and realism penalties. This process is significantly complicated by the long chains of

dependencies in tuning. Changing the saturation angle of the observability model, for

instance, affects attention calculations, which in turn affects the memory and duration

models, to different degrees. This has the effect of changing the relative weightings of FD

and ULTB BIRs, invalidating any prior tuning of audacity factors in a feature graph. Any

change to a parameter in the criticality model has this sort of a cascaded effect. A quiescent

and dependable set of parameters for the criticality model could significantly reduce the

effort needed to tune the system as a whole. In order for this to happen, the criticality models

must be validated as providing acceptable accuracy over a range of types of simulations.

6.7.2 Transition costs and penalties

A weakness of the LOD trader lies in its inability to heuristically distinguish between

temporary costs and penalties from transitions, and ongoing costs and penalties from LODs.

For instance, consider a graph of one feature with two levels, the lower level having a cost

of 0 and the higher level having a cost of 1. Suppose that the transition cost from the higher

level to the lower level was 1.1. Under these circumstances, the total calculated cost of the

downward feature solution transition would be positive, so this transition would never be

taken. Put differently, the LOD trader is not able to trade short-term costs and penalties for

long-term gain. A more insidious form of this relates to unrealism penalties: If there is a

transition penalty for an upgrade transition which is greater than the realism benefit from

the two levels in some coefficient, this transition should ideally be taken speculatively while

criticality is low and so the transition would do little harm, but instead the transition is taken

later, when criticality is high. This was the case with the initial transition penalties for the

106



MESH RETENTION feature from the None level to the Visible level: The transition itself had

a large US penalty (due to the unrealism of “blinking into view”), while the None level had a

small but significant ULTB penalty (related to an earlier design of the mesh pooling system).

This resulted in people remaining invisible unless the viewer inadvertently followed them;

after a short period of time the rising ULTB criticality would overcome the US penalty of

the transition, and the person would pop into view exactly where they shouldn’t.

A potential solution to this issue is discussed in section 7.1.2.

6.7.3 Costs and visibility

Many features have ongoing costs which are not constant, but vary greatly depending on

factors such as visibility and crowding. The LOD trader relies on constant costs in order

to cull feature solution transitions, but could perform the culling based on a range of costs

instead. This would require a model of costs for each such LOD to be created and tuned. In

the Marketplace simulation, the MESH RETENTION feature was a prime candidate for this,

as the cost of rendering a mesh was dependent in part on its size on the screen and needed

to be estimated as an upper limit. While a non-constant cost model would have avoided

this overestimation and thereby allowed upgrades elsewhere, it would not have affected the

selection of the MESH RETENTION feature itself, as the observability and hence the US

audacity vector would grow faster than the rendering cost.

6.7.4 Feature graph design

Cost accounting was a little tricky with the feature graph design: It was necessary to decide

and remember which costs were handled by high-level features, and which were delegated

to lower-level features, due to redundancy in the expressiveness of the graph. If a feature

was required by exactly one LOD, for instance, increasing the cost of that LOD by a certain
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amount was equivalent to increasing all the required feature’s LODs by the same amount.

While not a serious impediment, some care was necessary to avoid under- or over-counting

costs, and diagnosing an inaccurate accounting was sometimes difficult.

6.7.5 Types of attention

The tuning of our attention model was in some ways a compromise between different types

of attention. Certain unrealistic state BIRs, such as blinking in and out of existence, can

easily happen in a viewer’s peripheral vision; others, such as foot skating, are likely to go

unnoticed unless the viewer is directly attending to them. This is not necessarily addressed

sufficiently by tuning the audacity of these events, as the proper ratio may be different closer

to the center of the viewer’s vision. We felt that this did not present a serious enough problem

in the Marketplace simulation to warrant complicating the attention model or bifurcating the

US category of BIRs, but those options might be considered in other applications.

6.7.6 RAM and memory

The Marketplace simulation world was approximately the size of two football fields, with

a population of up to 500. This makes it several orders of magnitude smaller than the

environment in the Heisenburgh simulation. At the same time, it has considerably more

variation than can be found in the entirety of Heisenburgh, with distinctly different-looking

“rooms” and areas of activity. We felt that this was a worthwhile tradeoff, allowing us to

concentrate on the minutia of human behavior rather than large-scale content creation. This

had a major effect on LOD selection. With a population of only 500, RAM requirements

were rarely taxed, even with wild overestimation of the viewer’s memory for people. In

a modern open-world video game, huge development team sizes allow for worlds which

are both large and varied; under these circumstances, RAM would be a more valuable
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commodity, and careful tuning of the memory model to avoid over-estimation would be

more important.
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Chapter 7

Conclusions

The prime advantage of current proactive simulation LOD control systems is simplicity

– of implementation, of execution, and of tuning. This simplicity is not a quality to be

undervalued. In problem areas such as LOD control, where the theoretical weaknesses of the

“standard approach” obscure the soundness of the practical motivations underlying it, a more

complex approach can appear self-evidently useful to its creators but not to its potential

users. A technique such as reactive simulation LOD control faces high barriers to adoption

into widespread practical use. It must convincingly defend itself on the following fronts:

• Ease of implementation. The system must be reasonably straightforward to implement,

leveraging well-established data structures and algorithms where possible.

• Real-world efficiency. The system must be tested in conditions designed to mirror its

intended real-world use, and be found to consume only a small proportion of system

resources. While it would be possible to argue that a sufficiently effective LOD

control system could use significant resources yet make up for it with more significant

resource savings from the chosen LODs, ideally the resource utilization should be so

low that it would not be seen as any sort of a tradeoff. Ideally, it should require under

one percent of the processor time and memory space of its target hardware, and in
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the case of NUMA architectures, be operable on a single processing element without

heavy data transfer or synchronization penalties. Both average and peak resource

utilization should be considered.

• Obvious practical advantages. The system must be compared to the standard approach,

again in conditions designed to mirror its intended real-world use, and its performance

and quality advantages must be unequivocal. It must provide far better quality when

targeting similar performance, and far better performance when targeting similar

quality.

We feel that the perceptually driven simulation system described in this dissertation

succeeds on all these fronts.

For ease of implementation, the most conceptually complex element of the system is the

mathematical model underlying alibi generation; but alibi generation, while a useful tool for

simulation LOD, is not obligatory for such a system. The most complex data structure in the

entire system is a priority queue, and the algorithms underlying the LOD trader are short and

straightforward. As to real world efficiency, the processor and memory requirements of the

system, even at peak, are well under one percent of those available in a commodity desktop

PC or video game console. The only input to the LOD trader is visibility and distance

information for updating the criticality model; the only output is LOD decisions. In the case

of the Cell Broadband Engine processor used by the PlayStation 3, this makes the LOD

trader a good candidate for offloading to an SPU, with entity visibility information sent

by DMA from the graphics process and LOD decisions distributed to required systems by

mailbox. Finally, the practical advantages of this reactive LOD control compared to standard

proactive LOD control are clear: the lack of resource guarantees offered by proactive LOD

control mean that the target framerate cannot be consistently maintained under any but the

most austere quality settings. The LOD trader, in contrast, maintains an acceptable framerate
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even when crowd size and rendering complexity swell, without compromising the average

quality of the simulation.

7.1 Future directions

7.1.1 Black-box alibi generation

The complexity of alibi generation is largely in its analytic models of agent behavior, which

even for the simplistic behavior model in Heisenburgh required the use of an exotic and

little-known generalization of Markov processes, as well as several different probability

distributions. For agents with somewhat more complex behavior, analytically based alibi

generation will likely be intractable. Here, an empirically driven approach may be promising,

with observations of the “full fidelity” simulation used to build approximate probability

distributions for initial agent generation and alibi generation. This would be a Machine

Learning approach to alibi generation, and the primary challenges would be to smooth the

observed data to effectively cover the large sample space, and to compress the distributions

into a reasonable space without losing important features.

7.1.2 Multi-horizon LOD planning

As discussed in section 6.7.2, a significant weakness of the LOD trader was the short-term

nature of its decisions. A simple extension to the LOD trader which might mitigate this

weakness would be to split each resource into multiple “futures” (again, in the financial

sense), each one constraining that resource a particular number of frames hence. This would

greatly complicate the calculation of costs and benefits, which would need to be estimated

based on future criticality changes and Bellman’s principle of optimality. It is also unclear

how the set of horizons would be chosen.
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7.1.3 Better criticality modeling

Though motivated by experimentally supported knowledge of the underlying cognitive

processes, the criticality models presented here are by no means the most accurate, precise,

or broadly applicable models possible. A wealth of literature about human cognitive

processes exists, nearly ready to be integrated into criticality models. (Admittedly, most of

this knowledge is motivated by a desire to increase optimize human cognitive ability, rather

than a desire to “lie to the viewer and get away with it”.) The categorization of BIRs and of

their factors could also be reexamined.

7.1.4 Practical use

As discussed in section 6.7.6, the perceptually driven simulation techniques discussed in

this dissertation have not really been thoroughly stress-tested yet. Doing so in an academic

environment presents major practical problems, chiefly that of producing the huge amount of

creative effort involved in the development of a simulation environment that is large, varied,

interesting, memorable, and realistic. It is our hope that video game developers and others

with a business need for large, realistic simulation environments will give these techniques

the thorough vetting due them after the promise they have shown thus far.
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effective attention, 28

false alarm, 30

familiarity, 30

feature graph, 45, 87

Focusing, 28

Following, 29

fundamental discontinuity, 23

hazard function, 32

hit, 30

intact pair, see target

level of detail

proactive, 36

reactive, 36

simulation, 8

lure, 29

memory, 29

Multiple-Choice Knapsack Problem, 42

observability, 27

paired associate, see cued recall

perceptual criticality, 5, 19

perceptual criticality modeling, 44

presence, 16

realism

perceptual, 2
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practical, 3

rearranged pair, see lure
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semi-Markov process, 69

survival analysis, 32

target, 29

unrealistic long-term behavior, 23
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