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ABSTRACT

EXAMINATION OF CALLAWAY-HOLLAND-BASED THERMAL

CONDUCTIVITY CALCULATION FOR NANO-PHONONIC CRYSTALS

Ruiyuan Ma

Jennifer R. Lukes

Phononic crystals are periodic structured materials whose frequency spectrum is char-
acterized by band gaps, which are regions in frequency space where acoustic or elastic
waves cannot propagate. Nano scale phononic crystals have shown promise for reduc-
ing thermal conductivity and improving the thermoelectric figure of merit. Correctly
calculating the thermal conductivity of nano phononic crystals has become increas-
ingly important due to the growing research interest in the thermal properties of these
materials. A widely used expression to calculate thermal conductivity, presented by
Klemens and expressed in terms of the relaxation time by Callaway and Holland,
originates from the Boltzmann transport equation. In its most general form, this
expression involves a direct summation of the heat current contributions from indi-
vidual phonons of all wavevectors and polarizations in the first Brillouin zone. In
common practice, the expression is simplified by three assumptions commonly ap-
plied in bulk materials: first, the isotropic assumption that converts the summation
over wavevector to an integral over wavevector magnitude; second, the assumption
that phonon-phonon scattering rates for nano-phononic crystals can be described by
the same empirical expressions commonly used for bulk materials and fitted to ex-
perimental data in bulk materials; third, the effective material assumption that the
thermal transport can be modeled by treating the nano-phononic crystal as a single
bulk effective medium with properties dictated by the nano-phononic crystal disper-
sion relation. The accuracy of nano-phononic crystal thermal conductivity predictions
using these three assumptions need to be validated. In this dissertation, we propose
to verify these assumptions one by one.

First, to investigate the isotropic assumption, the thermal conductivities of bulk Si,
Si/Ge superlattices, and Si/Ge quantum dot superlattices have been calculated using
both the isotropic and direct summation methods, and the results show that the dif-
ferences between the two methods increase substantially with supercell size. These
differences arise because the vibrational modes neglected in the isotropic assump-
tion provide an increasingly important contribution to the thermal conductivity for
larger supercells. To avoid the significant errors that can result from the isotropic
assumption, direct summation is recommended for thermal conductivity calculations
in superstructures. Second, to investigate the assumption of the empirical phonon-
phonon scattering rates from bulk material, work to calculate the phonon-phonon
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scattering rates from the empirical equations has been done and compared against
the results from an established normal mode analysis method, which provides more
accurate results. The fundamental reasons behind the difference between the empir-
ical method and the NMA method will be discussed. Finally, the effective material
assumption will be briefly examined by using Green Kubo Modal Analysis method.
Overall, this dissertation will provide direction in the correct thermal conductivity
calculation for nano-phononic crystals.
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Chapter 1

Introduction

1.1 Nano-Phononic Crystals

Nano-phononic crystals, which are composite materials with nanoscale structural pe-

riodicity, have attracted considerable attention in recent years due to their unusual

physical properties (Cargnello et al. 2015, Knight 2003, Wang et al. 2016, Nikitov

et al. 2001, Soukoulis & Wegener 2011). Phononic crystals are periodic structured

materials whose frequency spectrum is characterized by band gaps, which are regions

in frequency space where acoustic or elastic waves cannot propagate. Therefore,

phononic crystals have been widely applied to control the propagation of sound and

elastic waves (Wang et al. 2014, Graczykowski et al. 2015, Maldovan 2013b). In appli-

cations ranging from thermoelectric energy harvesting (Mart́ın-González et al. 2013)

to advanced thermal insulations (Maldovan 2015), identifying new materials with

very low thermal conductivities is essential to advance the state of the art technol-

ogy. Nano-phononic crystals have shown promising applications in reducing thermal

conductivity and improving the thermoelectric figure of merit. In particular, it has

been proposed that the nano-phononic crystals with different air holes or pillars can

be used to control and suppress the propagation of heat (Tang et al. 2010, Hopkins

et al. 2010, Maldovan 2013a, Zen et al. 2014, Maldovan 2015, Anufriev & Nomura

2017). It is also well established that superlattices, or planar composites with 1D

nanoscale periodicity (1D nano-phononic crystals), can be tailored to achieve low
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thermal conductivities (Lee et al. 1997, Koh et al. 2009). The thermal conductivities

of such materials can be tuned by varying the periodicities and characteristic sizes

of the constituent materials (Tang et al. 2010, Hopkins et al. 2010, Zen et al. 2014,

Ravichandran et al. 2014, Yu et al. 2010). This tunability arises from the geometry

dependence of the phonon dispersion relation (Yu et al. 2010, Davis & Hussein 2014,

Zen et al. 2014) and the interfacial phonon relaxation time (Qiu et al. 2015, Koh et al.

2009). Designing nano-phononic crystals with lower thermal conductivity has been a

popular research topic.

1.2 Applications in Tailoring Thermal Conductiv-

ity

Nano-phononic crystals have been proposed to be able to tailor thermal conductivity,

which attracts a lot of interest. The notable concept in the literature is thermocrystals

proposed in 2013 (Maldovan 2013a), which could potentially reduce thermal conduc-

tivity by 23%. The thermocrystal structure is a combination of nano-phononic crystal

and alloy. The silicon thin film was embedded with different air cylinder structures

while the substrate was mixed with nano-particles. This hybrid structure was de-

signed to eliminate the transport of phonons in certain frequency ranges. Another

pioneering work in tailoring thermal conductivity with nano-phononic crystals (Davis

& Hussein 2014) utilized local resonances of nano pillars in the silicon pillar-on-plate

nano-phononic crystals to reduce group velocity and thus thermal conductivity in this

system.

Since then, tens of papers have been published to tailor thermal conductivity using

nano-phononic crystals.

1.3 Thermal Conductivity Calculation Methods

Multiple methods to calculate thermal conductivity have been developed. This section

will briefly introduce the most relevant methods.

2



1.3.1 Molecular Dynamics

The basic idea of molecular dynamics (MD) is to apply Newton’s laws of motion on

an ensemble of atoms interacting with each other through an interatomic potential.

One technique in Molecular Dynamics to study thermal properties is non-equilibrium

molecular dynamics (NEMD) or direct method, using a heat source and sink. The

other technique is equilibrium molecular dynamics (EMD) which usually uses the

formula developed by Green and Kubo (GKMD).

The limitation of molecular dynamics is that it neither considers the quantum

effect of a nanoscale system nor simulates the systems behavior under Debye temper-

ature. In addition, this method cannot describe electron-phonon interaction in many

semiconductor systems because it is an entirely classical approach, and electrons are

not considered.

Equilibrium Molecular Dynamics - Green-Kubo

The GKMD uses fluctuations in the heat current to compute the thermal conductivity

in the α direction, as shown in the following equations (Schelling et al. 2002):

kα �
1

kBV T 2 S
ª

0
@ Sα�t�a Sα�0� A dt, (1.1)

where Sα�t� and @ Sα�t� a Sα�0� A are the α component of the heat current vector

and the heat current autocorrelation function.

The extensions of Green-Kubo molecular dynamics which used in this disserta-

tion, including normal mode analysis and Green Kubo modal analysis, which will be

explained in Chapters 3 and 4.

Non-Equilibrium Molecular Dynamics

Non-Equilibrium Molecular Dynamics (NEMD), which is also called the “direct method”,

requires a temperature gradient across the simulation cell, while the Green-Kubo

approach uses current fluctuations to compute the thermal conductivity via the

fluctuation-dissipation theorem. The temperature gradient is created in the simu-
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lation system by adding or removing heat from two thin slabs of the same thickness.

Even though only kinetic energy is added to the system, equilibration between ki-

netic and potential energy is expected to be achieved in a typical vibration period.

The heat current and the resulting temperature gradient is then calculated when the

system reaches steady state, and Fourier’s law is used to obtain thermal conductivity.

There are some challenges associated with NEMD. One is the tendency of the

center of mass of the entire system to drift. The other one is the size effect from the

limited simulation cell size used in this method. Both challenges can be alleviated by

carefully design the simulations including using the velocity-rescaling algorithm and

extrapolating the behavior of infinite system by performing several simulations with

different sizes for the same system.

Homogeneous NEMD

Homogeneous NEMD (Evans 1982) was developed based on an extension of linear

response theory for non-canonical, classical systems. This theory allows calculating

the thermal conductivity based on a translationally invariant non-equilibrium simu-

lation algorithm for dense fluids. Excellent agreement with experiment is obtained

when applied to Lennard-Jones Ar material.

1.3.2 The Phonon BTE Equation

BTE Equation

The BTE equation is based on a different theory from molecular dynamics. The

fundamental equation to study the thermal conductivity is the steady state phonon

Boltzmann Transport Equation (BTE) (Klemens 1958, Ziman 1960, Kaviany 2014) in

the perturbation theory, which describes the balance of phonon population between

diffusive drift and scattering as

Ñvλ � ©�nλ� � ∂nλ
∂t

Ss, (1.2)
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in which Ñvλ is the group velocity, λ specifies the phonon mode, nλ � n0
λ�n

�

λ is the total

phonon occupation number with n�λ representing the deviation from the equilibrium

phonon distribution n0
λ. The big challenge is how to solve for the right hand side

scattering term in the Eq. 1.2. With the assumption that n�λ is independent of

temperature, we can get ©�nλ� � �∂nλ∂T �©T � �∂n0
λ

∂T �©T . The equation 1.2 can be

converted to

Ñvλ©T �∂n
0
λ

∂T
� � ∂n

�

λ

∂t
Ss. (1.3)

In the case of a small thermal gradient, the equation is solved linearly, by con-

sidering just small deviation from equilibrium. Let’s define Φλ as nλ � n0
λ �Φλ

∂n0
λ

∂�Òhωλ�

where Òhωλ is the energy of a phonon. The density of the thermal current U can be

defined as (Sparavigna 2016)

U �
1

Ω
Q
λ

Òhωλvλnλ � � 1

Ω
Q
λ

Òhωλvλ
∂n0

λ

∂�Òhωλ�Φλ (1.4)

where Ω � NV is the volume of the crystal, N is the number of primitive cells. The

density current U can also be expressed in a Cartesian frame with unit vectors ui as

Uj � �Pi kji
∂T
∂xi

. Tensor kij is the thermal conductivity tensor.

Iterative Methods

The iterative method is based on an iterative solution to the linearized BTE, was first

proposed by Omini and Sparavigna (Omini & Sparavigna 1995, 1996). Instead of cal-

culating the anharmonic corrections to quasi-harmonic frequencies and linewidth, the

iterative method uses the phonon scattering probability which are typically com-

puted with Fermi’s golden rule (Ziman 1960, Srivastava 1990, Broido et al. 2005).

Omini and Sparavinga has computed the thermal conductivity of argon and krypton

(Omini & Sparavigna 1996) and silicon and germanium (Omini & Sparavigna 1997).

Broido extended this method to calculate the thermal conductivity of bulk silicon

and germanium with second- and third-order force constants completely from den-

sity functional perturbation theory (DFPT) calculations (Broido et al. 2007). The
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iterative method solves the linearized BTE to compute the thermal properties for

semiconductor materials, which has been proved as an accurate method (Debernardi

et al. 1995, Deinzer et al. 2003, Omini & Sparavigna 1995, 1996, Broido et al. 2005).

This computational framework can provide accurate thermal property calculations

without adjustable parameters. The iterative method and Fermi’s golden rule have

then been extensively used in the last decade and have produced thermal properties

of polar and non-polar semiconductors with good agreement with experimental mea-

surements, including bulk Si (Broido et al. 2005, Ward & Broido 2010, Esfarjani et al.

2011), Si/Ge superlattice (Garg et al. 2011, Garg & Chen 2013), Mg2X (Chernatyn-

skiy & Phillpot 2015a), graphene and other materials. The main drawback of this

method is that it requires a huge computational effort both from the electron energy

structure calculation and iterative solution calculations (Omini & Sparavigna 1996).

Here is the brief summary for the iterative method, and details can be found in

the reference (Broido et al. 2005). The start point of the iterative method is the

energy and quasi-momentum conservation

ωj�q� � ωj��q�� � ωj���q���, q � q� � q�� �K, (1.5)

where j is the phonon branch index, and K is a reciprocal lattice vector that is zero

for normal processes and nonzero for umklapp processes. The branch index �j, q� is

same as λ.

The equation n�λ � �
∂n0

λ

∂ωλ
Ψλ is used to perturb the phonon distribution function nλ,

where Ψλ represents the deviation from the equilibrium distribution function. Using

the δ�ωλ � ωλ� � ωλ��� function to maintain the conservation of energy and momentum,

the three-phonon scattering rates can be written as

W �

λλ�λ�� �
π

4N

n0
λ�n0

λ� � 1~2 � 1~2��n0
λ�� � 1�

ωλωλ�ωλ��

SΦ��λ,λ�, λ���S2 � δ�ωλ � ωλ� � ωλ���, (1.6)

where N is the number of unit cells. To measures the strength of scattering events,

the three-phonon scattering matrix elements, Φ��λ,λ�, λ��� � Φ�j,�q; j�,�q�; j��, q���, is
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described by

Φ�j,�q; j�,�q�; j��, q��� �

Q
m
Q
l�m�

Q
l��m��

Q
αβγ

Φαβγ�0m, l�m�, l��m���

� eιq
�
�Rl�eιq

��
�Rl��

Ñejαm�q�Ñej�βm��q��Ñej��γm���q���º
MmMm�Mm��

,

(1.7)

where 0, l�, l�� are the unit cells of the three atoms, m,m�,m�� specify the atoms in

the corresponding unit cells whose mass are Mm,Mm� ,Mm�� , and α,β, γ are Cartesian

components. Φαβγ�0m, l�m�, l��m��� is the third-order force constant, and the Ñe repre-

sent phonon eigenvectors. The scattering rate from isotropic impurities (W imp
λλ� ) and

boundary (W bs) can also be found in the reference paper (Broido et al. 2005). The

linearized phonon Boltzmann equation can be converted into

kBT � Ñvλ©T �∂n
0
λ

∂T
�

� Q
λ�λ��

�W �

λλ�λ���Ψλ�� �Ψλ� �Ψλ��
1

2
W �

λλ�λ���Ψλ�� �Ψλ� �Ψλ��

�Q
λ�

W imp
λλ� �Ψλ� �Ψλ� � n0

λ�n0
λ � 1�Ψλ

1

τ bs
.

(1.8)

In order to solve Eq. (1.8) using the iterative method, it’s necessary to define Ψλ �

PλFλα�∂T ~∂xα� and substitute it into Eq. (1.8), three new equations will be obtained

and the iterative procedure can be initiated by following the details in the reference

paper (Broido et al. 2005).

The RTA Assumption

The relaxation time assumption is commonly used to solve equation 1.3, which as-

sumes that deviation of single phonon mode population has an exponential decay

curve with time:

n�λ � exp�� t

τλ
�, (1.9)
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where τλ represents the relaxation time. The right hand side (the collision term) in

BTE (1.3) becomes

∂n�λ
∂t

Ss � �
n�λ
τλ
. (1.10)

Therefore, the steady state BTE (1.2) under the RTA assumption can be expressed

as

Ñvλ©T �∂n
0
λ

∂T
� � �n

�

λ

τλ
. (1.11)

The relaxation time, τλ � 1~Γλ where Γλ is the scattering rate, is interpreted

as the average time between collisions of the phonon mode λ with other modes.

Incorporating the Bose-Einstein distribution in Eq. (1.11), we can get a simple model

to calculate phonon thermal conductivity (Klemens 1958), which is also called the

direct summation method in this work,

kFBZ �Q
λ

Cph�Ñq, λ�v2�Ñq, λ�τ�Ñq, λ� (1.12)

where Ñq is wavevector. The summation is taken over all phonons in the full Brillouin

zone, as noted by the subscript FBZ. All the parameters, Cph, kB, Òh,T,ω , has been

defined in section ??.

Analytical Models (the Callaway-Holland Model)

Multiple analytical models have been developed based on the phonon BTE equa-

tions, in which the Callaway-Holland model (Callaway 1959, Holland 1963) is the

most commonly used. The Callaway-Holland model is based on the RTA assumption

(Eq. (1.11)), however, it segmented scattering processes into two categories: the pro-

cesses which conserve the total crystal momentum (the normal processes), and the

processes which do not conserve the crystal momentum including umklapp processes,

impurity scattering, and boundary scattering (Callaway 1959). In the original deriva-

tion process (Callaway 1959), Callaway only considered the momentum conserving

8



(N) and non-conserving processes (U), and the Eq. (1.10) can be re-written as:

∂n�λ
∂t

Ss �
n�λ
τN

�
n�λ
τU
. (1.13)

When τN is large enough, the thermal conductivity is determined principally by

τU and relaxation times from other scattering processes (Callaway 1959). To take

other scattering processes (boundary (B) scattering and impurity (I) scattering) into

account, the Callaway-Holland model (Callaway 1959) uses the Matthiessen’s rule to

calculate the total scattering rate τ

1~τ � 1~τU � 1~τB � 1~τI . (1.14)

Therefore, the Normal processes relaxation time will not be included in the thermal

conductivity calculation in this work.

In order to calculate the thermal conductivity, phonon properties including phonon

frequency w, group velocity v, and relaxation time τ need to be input into Eq. (1.12)

or Eq. (1.15). The typical Callaway-Holland method used empirical scattering rates,

which will be examined in section 3. The most common method to calculate w, v is

the lattice dynamics method (LD).

Isotropic Assumption

To make the Callaway-Holland model even simpler, people often use the isotropic

thermal conductivity assumption in bulk materials. This assumption assumes that

the dispersion curves in all directions are same as the selected directions, such as [100]

direction. The general form under RTA assumption, Eq. 1.12 can be written as:

kISO �
1

6π2 S
qmax

q�0
Cph�q, λ�v2�q, λ�τ�q, λ�q2dq (1.15)

where Cph, q, v, and τ are specific heat, wavevector magnitude in a chosen direc-

tion, component of phonon group velocity in the direction of interest, and the phonon

relaxation time. λ specifies the phonon branch index. The integration assumes the dis-
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persion curves in all directions are same as that in the direction of interest (usually the

[100] direction), contrasting to the full dispersion curve which will be introduced in Eq.

(1.12) section 1.3. The specific heat is given as Cph�q, λ� � kBx2 exp�x�~�exp�x��1�2,
where x � Òhω�q, λ�~kBT and kB, Òh, T , and ω are Boltzmann’s constant, reduced

Planck’s constant, temperature, and angular frequency.

Compared to Eq. 1.12, the equation under isotropic assumption uses volume

integration instead of direct summation of all phonon modes in the Brillouin zone.

1.4 Group Velocity and Relaxation Times

The group velocity of phonon modes can be represented by the following equation

(Landry 2009):

vg�q, λ� � ∂ω�q, λ�
∂q

(1.16)

The basic method to get the group velocity is to calculate the slopes of the phonon

dispersion curve. As for group velocity in x direction, one can make a little change

of wavenumber in x direction and keep the same ky, kz value and get the derivation

of frequency with respect to wavenumber.

It becomes very critical to calculate τλ. There are multiple ways for the relaxation

times calculation, including empirical equations in harmonic lattice dynamics, anhar-

monic lattice dynamics, and normal mode analysis. Those methods will be explained

in this section.

1.4.1 Harmonic Lattice Dynamics

The lattice dynamics techniques (LD), which is formally derived in the reference book

(Dove 1993), gives an approximate analytical solution of the dynamics of the atoms

in a crystal. LD techniques can be used differently under two different assumptions,

one is harmonic LD and the other is anharmonic LD. The harmonic LD is the most

commonly used method to compute the vibrational frequencies and modes available

in a crystal lattice. The phonon dispersion curves and density of states (DOS) can
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be directly calculated using this method. The main drawback of the harmonic LD is

that the atoms in a crystal are assumed to sit at their zero temperature equilibrium

positions, which is only valid if the atomic motion is small compared to the spacing

between neighboring atoms (Turney 2009). Due to thermal expansion, the spacing

between the neighboring atoms can change with temperature, which is one issue

related to the harmonic approximation.

1.4.2 Anharmonic Lattice Dynamics

Compared to the analytical models, other accurate calculation methods have been

developed in the last decade, such as the Anharmonic Lattice Dynamics (ALD) and

the iterative method to solve linearized BTE.

Anharmonic Lattice Dynamics is the natural extension of quasi-harmonic lattice

dynamics. Higher (third- and fourth-) order derivatives are included as a perturbation

to the quasi-harmonic frequencies in anharmonic LD, which has been fully developed

by Turney and et al. (Turney 2009). The most important parameters in Anharmonic

LD are the frequency shift, ∆ , and the linewidth, Γ � 1~τλ , for each phonon mode due

to anharmonic interaction with other phonons. The Anharmonic LD addressed the

thermal expansion problem in the harmonic LD method by including higher (usually

third- and fourth-) order derivatives of the energy as a perturbation to the quasi-

harmonic frequencies (Turney 2009). The drawbacks of the anharmonic LD method

is that the computation is very complicated and expensive and there are only a few

papers published using this method.

1.4.3 Normal Mode Analysis

The normal mode analysis (NMA) method is developed by McGaughey and Kaviany

(McGaughey & Kaviany 2005), Turney et al. (Turney 2009), and Larkin et al. (Larkin

& McGaughey 2013), based on the data from GKMD. Although it uses the empirical

potentials in the classical MD calculation, it provides advantages over other meth-

ods such as DFPT and ALD because the molecular dynamics includes the complete
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anharmonicity. We briefly review this method in this section and the detailed steps

can be found in the reference paper (Huberman 2013). The thermal conductivity

calculation equation is similar to the previous kFBZ equation in section 1.12. The

main difference is that the phonon life time in the NMA method is extracted from

the autocorrelation of total energy of normal modes, which can be defined in the

following equation:

τ�Ñq, λ� � S
ª

0

@ E�Ñq, λ; t�E�Ñq, λ; 0� A
@ E�Ñq, λ; t�E�Ñ0, λ; 0� A , (1.17)

in which the total energy of normal mode can be defined by

E�Ñq, λ; t� � 1

2
ω�Ñq, λ�Q��Ñq, λ; t�Q�Ñq, λ; t� � 1

2
Q̇��Ñq, λ; t�Q̇�Ñq, λ; t�, (1.18)

where Q�Ñq, λ; t� is the normal mode coordinate (McGaughey & Larkin 2014, Larkin

2013), t is time in MD simulation, and Ñq and λ are phonon wave-vector and branch

index.

The Q̇�λ, t� is the time derivative of the harmonic coordinate, Q�λ, t�, which are

described in the following equations:

Q�λ, t� � 1º
N

max

Q
b,l

º
mbexp��ιÑq � Ñr�b, l��Ñe��λ, b� � Ñu�b, l, t�, (1.19)

and

Q̇�λ, t� � 1º
N

max

Q
b,l

º
mbexp��ιÑq � Ñr�b, l��Ñe��λ, b� � Ñ̇u�b, l, t�, (1.20)

where Ñe�λ, b� is the eigenvector determined from the harmonic lattice dynamics cal-

culation, and Ñu�b, l, t� is the displacement from equilibrium of the atom b in the unit

cell l at time t.

The NMA method could also be applied in the frequency domain, which utilizes

the relationship between lifetime and the linewidth, τλ � 1~Γλ, where Γλ (same as

Γq,v). The following equations (Huberman et al. 2013) based on the Lorentzian fitting

centered at ωA�λ� :
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C�λ,ω� � C0�λ�
2

Γ�λ�~π
�ωA�λ� � ω�2 � Γ2�λ� , (1.21)

in which C�λ,ω� is the autocorrelation of the normal modes based on the spectral

energy density method (SED).

This dissertation used the normal mode analysis in the time domain. The normal

mode analysis method can be summarized into six steps: first, create the appropriate

atomic structure based on the unit cell needed; second, select the necessary wave-

vectors for the super cell; third, calculate the frequencies and mode eigenvectors of

the normal phonon modes using harmonic lattice dynamics softwares (GULP); fourth,

extract the positions and velocities for all atoms from the Green Kubo molecular dy-

namics simulation using LAMMPS; fifth, obtain all phonon normal mode coordinates

using harmonic lattice dynamics and molecular dynamics; sixth, compute the phonon

properties using the autocorrelation of the total normal mode energies for time do-

main analysis.

Before we move to the next session, let’s summarize the thermal simulation method

used in this dissertation, as shown in Table 1.1.

Table 1.1: Thermal Conductivity Methods Used in the Present Work

Callaway-Holland NMA GKMA

Relaxation
times

Fit from experimental
data

Mode autocorrelation
functions

N/A

Inputs ω, τ , group velocity
Forces, eigenvectors
and atom velocities

from MD
Phonon eigenvectors

Equations Eq. 1.12 1.15 Eq. 1.12 1.17 Eq. 1.1

Comments
Requires fitting

parameters

Require harmonic
lattice dynamics and

Lorentzian fitting

Requires harmonic
lattice dynamics
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1.5 Thermal Conductivity Calculation of Periodic

Materials

This session reviews literature papers for thermal conductivity in related nanomate-

rials: superlattices and phononic crystals.

1.5.1 Superlattices

Superlattices are important materials in the phonon transport field because of their

unique thermal properties which have been extensively studied. Garg (Garg et al.

2011) used first principle and iterative method to study the thermal conductivity of

superlattice with perfect interfaces in a short-period limit, and they found that the

thermal conductivity of the superlattice can exceed that of the bulk material and vary-

ing the mass mismatch could reduce the thermal conductivity. In a later study for su-

perlattices with rough interfaces, Garg (Garg & Chen 2013) showed that the decrease

in the group velocity of low frequency phonons and the interface-disorder-induced

scattering of high frequency phonons drive the superlattice thermal conductivity to

below the alloy limit. He also found that the interplay between reduced group velocity

and an increase in lifetime leads to the minimum thermal condutivity. Increasing the

mass-mismatch could further lower the thermal conductivity of superlattices. Hu-

berman (Huberman et al. 2013) studied the disruption of superlattice phonons by

interfacial mixing using GKMD, lattice dynamics based BTE methods and showed

that both methods agreed for cross-plane k and highlighted the importance of includ-

ing secondary periodicity. Mizuno (Mizuno et al. 2015) used equilibrium MD method

to study the thermal conductivity of layered superlattices and showed that those ma-

terials with different mass-mismatch or weakened interactions result in lower thermal

conductivity.
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1.5.2 Phononic Crystals

Computational modeling offers great potential to engineer the structures of nano-

phononic crystals and superlattices to minimize thermal conductivity. Because of

its simplicity and minimum computational effort, one of the analytical models, the

Callaway-Holland model, has been extensively used to calculate the thermal conduc-

tivity for nano-phononic crystals (Gillet et al. 2009, Hopkins et al. 2010, Reinke et al.

2011, El-Kady et al. 2012, Alaie et al. 2015, Davis & Hussein 2014).

The thermal conductivity of nano-phononic crystals have been studied using mul-

tiple methods. Callaway-Holland model under isotropic assumption is the most com-

mon one. The Callaway-Holland model has been used in different materials, includ-

ing silicon thin films with multiple air cylinders (Alaie et al. 2015), the silicon nano-

phononic crystals with square holes (Dechaumphai & Chen 2012), and the pillar-based

nano-phononic crystals (Davis & Hussein 2014). Molecular dynamics has also been

used to study the thermal conductivity of nano-phononic crystals. The thermal con-

ductivity of nanoscale Si pillar-on-plate PnCs were studied using molecular dynamics

(Honarvar et al. 2016) to investigate the effects of different geometry parameter such

as nano-pillar in reducing the thermal conductivity of the base membrane, and found

that the thermal conductivity reduction increases as the volume fraction of nano-

pillar increases. Molecular dynamics was also used to study the thermal conductivity

of a nanoscale three-dimensional (3D) Si phononic crystal with spherical pores (Yang

et al. 2014) and found that the thermal conductivity was reduced by a factor of

10,000 times compared to bulk Si at room temperature, and the result depends on

the porosity.

1.6 Thermal Conductivity Calculation in Nano-

Phononic Crystals: Problems and Assumptions

Even though the Callaway-Holland-based thermal conductivity method has shown

good agreement with experimental results in certain situations, questions still remain
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with the Callaway-Holland model. We have summarized three major problems with

the Callaway-Holland model. The first one is significant errors from the Callaway-

Holland model. This model produced up to 25% error in the thermal conductivity

calculation for silicon thin film under the isotropic assumption (Sellan et al. 2010).

The second problem is inconsistent results. The thermal conductivity for bulk Si

using the Callaway-Holland model under the isotropic assumption was decreasing as

the simulation supercell size increases (Davis & Hussein 2011), which is not physically

meaningful. The last problem is adjusting thermal conductivity results using random

geometric parameters, for example, the thermal conductivity of Si/Ge quantum dot

phononic crystals were adjusted by a non-dimensional geometric factor fk � 2 using

the Callaway-Holland model (Gillet et al. 2009).

Even though it has been widely used, the Callaway-Holland model is questionable

for nano-phononic crystals because there are three major assumptions embedded in

it: the isotropic thermal conductivity assumption, the empirical scattering rates as-

sumption, and the effective material assumption. The three assumptions were rooted

in the desire to develop a simple analytical model to calculate thermal conductivity

for bulk materials; more detailed information can be found in Section 1.3. Those

three assumptions may be inappropriate in the thermal conductivity calculation for

nano-phononic crystals since they have significant difference in material components

and supercell sizes compared to the bulk materials.

First, it has been assumed that the dispersion curves in every directions are same

as one of the high-symmetry direction, usually the [100] direction, which results in

the isotropic thermal conductivity. This assumption produced good results for bulk

materials when using primitive cells, which is the smallest possible unit cell of a

lattice, because the the phonons along the [100] direction are representative of the full

Brillouin-zone data at low-frequencies and the bulk thermal conductivity is dominated

by low frequency phonons (Sellan et al. 2010). However, the authors (Sellan et al.

2010) have shown that the isotropic assumption produces up to 25% error within

thin films. This dissertation will examine the validity of the isotropic assumption in

nano-phononic crystals.
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Second, the Callaway-Holland thermal conductivity calculations in the literature

have also used empirical scattering rates based on empirical parameters fit to bulk

materials. Since the nano-phononic crystals have multiple materials and much more

complicated structures, doubt arises as to the validity of using the same empirical

scattering rates from bulk materials in the nano-phononic crystals.

Third, another question associated with nano-phononic crystals is the accuracy

of the effective material assumption. In particular, it is not clear whether the ef-

fective material assumption in the Callaway-Holland model can correctly calculate

or include the properties for phonons with wavelength in the same scale or shorter

than the supercell size. When the supercell increases as the periodicity of a nano-

phononic crystal increases, there are more portions of phonons with wavelength in

the same scale or shorter than the supercell size. The effective material assumption

is appropriate for phonons with wavelength much longer than supercell size, however,

it may incorrectly calculate the phonons with wavelength shorter than the supercell

size or incorrectly calculate the properties for those phonons, which will be explained

in Section 4.

More information on those assumptions can also be found in Chapters 2 to 4.

1.7 Goals

In summary, the validity of the following assumptions associated with the isotropic

Callaway-Holland model will be examined in this dissertation:

1. The isotropic thermal conductivity assumption in supercell lattice dynamics cal-

culation;

2. The assumption that empirical scattering rates derived from bulk materials can

be used for nano-phononic crystal calculations;

3. The effective material assumption in nano-phononic crystals.
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Chapter 2

Examination of the Isotropic

Thermal Conductivity Assumption

for Nano-Phononic Crystals

2.1 Literature Reviews on Isotropic Assumption

As discussed before, thermal conductivity can be calculated by solving the full Boltz-

mann Transport Equation (BTE), which is tedious (Chen 2005). A simpler method,

derived from the BTE and expressed in terms of relaxation time, has been presented

by Klemens (Klemens 1958). In its most general form, this expression involves a direct

summation of the heat current contributions of individual phonons of all wavevectors

and polarizations in the first Brillouin zone, called the direct summation method in

this paper.

In common practice, the direct summation expression is simplified by making an

isotropic assumption that converts the summation over wavevector to an integral

over wavevector magnitude. This approach, proposed by Callaway (Callaway 1959)

and Holland (Holland 1963), yields calculated thermal conductivities that agree well

with experimental data on many bulk materials, for example Si and Ge (Slack &

Glassbrenner 1960, Glassbrenner & Slack 1964). Because of its simplicity and mini-
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mal computation effort, the Callaway-Holland approach, referred to as the “isotropic

method” for the remainder of this paper, has been used to predict the thermal con-

ductivity of various nanomaterials including Si and Ge nanowires (Mingo et al. 2003),

Si/Ge quantum dot superlattices (QDSL) (Gillet et al. 2009), periodic microporous

(Hopkins et al. 2009) and nanomesh (Alaie et al. 2015) membranes, Si/nanovoid su-

perlattices (Davis & Hussein 2011), nanoscale phononic crystal slabs (Reinke et al.

2011), porous silicon nanobridges (Marconnet et al. 2012), pillared silicon thin films

(Davis & Hussein 2014), and two-side branched nanowires (Li et al. 2017). While one

study reports that a partial coherence approach based on the isotropic method agrees

well with phononic crystal experimental data (Dechaumphai & Chen 2012), others

raise issues for further exploration with respect to the applicability of the isotropic

method for phononic crystal and superlattice calculations. These include the origin

of the decrease of bulk Si thermal conductivity with increasing supercell size (Davis

& Hussein 2011) and the ability of a single geometric factor to appropriately adjust

the isotropic thermal conductivity results to account for non-spherical Brillouin zones

(Gillet et al. 2009). Even though it has been shown that the isotropic assumption

becomes increasingly less accurate compared to the full Brillouin-zone method as

the silicon film thickness is reduced (Sellan et al. 2010), the reason behind the dis-

crepancy is not clear. Meanwhile, the validity of the isotropic method has not been

carefully evaluated for superlattices and phononic crystals of different periods or su-

percell sizes. With the recent surge of interest in predicting the thermal properties of

phononic crystals, such evaluation becomes increasingly important. One of the easi-

est ways to evaluate the isotropic method is to compare it with the direct summation

method, which has been successfully applied to different nanomaterials, including Si

and Ge (Klemens 1958), and Si/Ge and GaAs/AlAs superlattices (Tamura et al. 1999,

Yang & Chen 2003).
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2.2 Methods to Validate the Assumption

In this section, the thermal conductivities of different materials, including bulk Si,

and Si/Ge QDSLs are calculated using the direct summation and isotropic models.

Key inputs to the models are group velocities, which are obtained from dispersion

relations generated with harmonic lattice dynamics calculations (Dove 1993), and

relaxation times, which are computed using established empirical equation models

(Gillet et al. 2009, Glassbrenner & Slack 1964, Davis & Hussein 2011). Calcula-

tions were performed for various different sized supercells, which are the periodically

repeating building blocks used to generate phononic crystal structure.

To examine the validity of the isotropic assumption further, we compared the re-

sults of direct summation and isotropic calculations on various QDSL configurations.

Si/Ge QDSLs with supercell side length varying from two to five CCs of Si and a sin-

gle CC of Ge in the center, as seen in Fig. 2.1, were investigated first. Ge/Si QDSLs

with the same geometry as the Si/Ge systems but with reversed atom positions were

also investigated in order to explore the effects of material configuration on thermal

conductivity.

2.2.1 Theory and Methods

The lattice thermal conductivity computed using the direct summation method, kFBZ ,

is given by (Klemens 1958)

kFBZ �Q
λ

Cph�Ñq, λ�v2�Ñq, λ�τ�Ñq, λ� (2.1)

where Cph, Ñq, v, and τ are specific heat, wavevector, component of phonon group

velocity in the direction of interest, and the phonon relaxation time. λ specifies both

the phonon wavevector and frequency. The summation is taken over all phonons in

the full Brillouin zone, as noted by the subscript FBZ. The specific heat is given as

Cph�Ñq, λ� � kBx2 exp�x�~�exp�x� � 1�2, where x � Òhω�Ñq, λ�~kBT and kB, Òh, T , and

ω are Boltzmann’s constant, reduced Planck’s constant, temperature, and angular
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Figure 2.1: Schematic of Si3Ge1 quantum dot superlattice. The silicon supercell is
the central cube with black boundaries. It has a side length of 3 CCs and is embedded
with a blue germanium quantum dot with side length 1 CC. The supercell is repeated
infinitely in all directions, as indicated by the neighboring “image” supercells with
faint gray quantum dots.

frequency. In the isotropic assumption, Eq.(1) is converted to (Holland 1963)

kISO �
1

6π2 S
qmax

q�0
Cph�q, λ�v2�q, λ�τ�q, λ�q2dq (2.2)

21



where q is the wavevector magnitude in a chosen direction. The group velocity is

calculated using Ñv � ∂ω
∂Ñq , where the dispersion relation ω�q� is obtained from atomistic

lattice dynamics calculations (Zhao & Freund 2005). Since thermal conductivities in

the [100] and [110] directions are considered in this paper, v � dω
dq is used to calculate

group velocity in each direction respectively. The derivative is evaluated numerically

for each phonon with wavevector q by applying small perturbations �~ � dq in that

direction, calculating the frequencies at q�dq and q�dq, and dividing their difference

dω�λ� by 2dq. It was found that the value of group velocity was independent of the

perturbation magnitude for dq @ 0.6e � 3rad~nm , so perturbations at or below this

value were used for all group velocity calculations. A significant numerical challenge in

calculating group velocities for materials with complex dispersion relations is to make

sure that the frequencies ω�q � dq� and ω�q � dq� are evaluated on the same phonon

branch (λ). Recognizing that the eigenvectors of two phonon modes on the same

branch point in the same direction when these modes have infinitesimally different q

values, we verified that the eigenvectors were parallel before proceeding with group

velocity calculations. Branch-dependent group velocity results can be found in Fig.

A.1 of the Appendix. A linearized Stillinger-Weber potential was used in this study

and all the parameters used in this work can be found in Ref. (Zhao & Freund 2005).

In general τ depends on phonon-phonon, phonon-boundary, and phonon-defect

scattering (Klemens 1958). In QDSL, it additionally depends on phonon-nanoparticle

scattering (Kim & Majumdar 2006, Gillet et al. 2009). In this section, the relaxation

time for bulk Si is expressed as τ � �τ�1U � τ�1I ��1, where τ�1U � BTω2 exp��C~T �
represents Umklapp phonon-phonon scattering and τ�1I �Dω4 represents defect scat-

tering by impurities. The relaxation time for Si/Ge and Ge/Si QDSL is expressed as

τ � �τ�1U �τ�1NP �τ
�1
I ��1 , where τ�1NP � ηv��σf��1��σn��1��1 represents nanoparticle scat-

tering with σf � πR2χ4h1�χ,∆M~M,∆K~K� and σn � 2πR2h2�χ,∆M~M,∆K~K�.
Here η, M , and K are the nanoparticle volumetric density, the mass of the host

medium, and force constant of the host medium, and χ � qR is the size parameter

for a scatterer with the characteristic radius R � a~2 in this paper. For both QDSL

types, the parameter B in τU is taken from the host material’s value while the angu-
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(a) (b)

Figure 2.2: (a) Spherical Brillouin zone and (b) Neglected phonons.

lar frequency is taken from actual dispersion curves. Detailed information about the

functions, h1, and h2, can be found in Refs. (Kim & Majumdar 2006, Gillet et al.

2009). The values of the parameters used in the relaxation time calculations (Table

3.1) are taken from Refs. (Singh et al. 2011, Gillet et al. 2009).

Table 2.1: Simulation parameters

B(sK�1) C(K) D(s3) ∆M~M ∆K~K
Si 1.73e � 19 137.39 1.32e � 45 1.5849 0.2410
Ge 3.35e � 19 57.6 2.40e � 44 �0.6131 �0.3175

2.3 Results

The thermal conductivity predictions from the isotropic and direct summation meth-

ods in various materials with different supercell sizes will be presented in this section.

We first verify the simulation code by comparing the results in this work to literature

papers, we then calculate the thermal conductivity results in bulk Si, Si/Ge QDSLs,

and Ge/Si QDSLs.
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Figure 2.3: (a) Reduced thermal conductivity for Si, Ge and Si/Ge superlattices with
different periodicity; (b) Thermal conductivity for bulk Si. Lines are results from this
work, markers in (a) are results from Ref. (Tamura et al. 1999), and markers in (b)
are results from Ref. (Hopkins et al. 2009).

2.3.1 Verification of Modeling Methods

Before examining the validity of the isotropic assumption, we first verified the direct

summation and isotropic methods against benchmark data in the literature. The

direct summation results were compared to the reduced thermal conductivity data

computed by Tamura et al. (Tamura et al. 1999) for bulk Si, bulk Ge, and Si/Ge

superlattices with different atom layer thicknesses as shown in Fig. 2.3 (a). In Fig. 2.3

(a), the superlattice unit cell geometry is denoted n �m, where n and m refer to the

thicknesses of the Si and Ge layers, respectively, in terms of the number of atomic

layers in the superlattice unit cell. Using the same potentials, geometries, and lattice

constants, we obtained very good agreement with Tamura’s results. Additionally, we

compared our isotropic method thermal conductivity calculations to those of Hopkins

et al. (Hopkins et al. 2009) for bulk Si. Excellent agreement between the two is found

(Fig. 2.3 (b)).

2.3.2 Bulk Silicon

After verifying our method, the thermal conductivity of bulk Si with different supercell

sizes was calculated using both direct summation and isotropic methods. Convergence
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tests with different q-space resolution show that the thermal conductivities achieve

stability for q-space intervals dq below 0.025 rad/nm, so the value 0.025 rad/nm was

used for all calculations. Figure 2.4 shows that the direct summation method gives

a constant thermal conductivity for all supercell sizes, as expected. In contrast, the

isotropic thermal conductivity results decrease with supercell size, showing a similar

trend to that observed in Ref. (Davis & Hussein 2011). The decreasing behavior

predicted from the isotropic method is not physically meaningful, as the choice of

supercell size should not affect the thermal conductivity of a bulk material. Moreover,

the difference between the direct summation and the isotropic methods for bulk Si

increases as the supercell size increases. This implies that the isotropic method is

increasingly unreliable for predicting thermal conductivities when the supercell size

increases and indicates that great care must be taken when using it to predict the

thermal conductivity of supercell-based systems such as superlattices, nano phononic

crystals, and other periodic structures.
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Figure 2.4: Thermal conductivity of bulk Si with different supercell sizes using the
direct summation and isotropic methods.
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2.3.3 Silicon/Germanium Quantum Dot Superlattices

To examine the validity of the isotropic assumption further, we compared the results

of direct summation and isotropic calculations on various quantum dot superlattices

(QDSL) configurations. Si/Ge QDSLs with supercell side length varying from two

to five CCs of Si and a single CC of Ge in the center, as seen in Fig. 2.1, were in-

vestigated first. Ge/Si QDSLs with the same geometry as the Si/Ge systems but

with reversed atom positions were also investigated in order to explore the effects of

material configuration on thermal conductivity. The thermal conductivity results for

Si/Ge, Ge/Si QDSLs in the [100] direction, and Si/Ge QDSLs in the [110] direction

are shown in Fig. 2.5 (a), (b), (c), respectively. For both methods and in both QDSL

types, the thermal conductivity increases toward the bulk value of the host material as

the supercell size increases. This increase occurs because the nano particle relaxation

time decreases relative to the Umklapp and impurity relaxation time as supercell size

increases, leading to longer phonon lifetimes and higher thermal conductivities. It is

also observed that the Si/Ge QDSL thermal conductivity increases at a higher rate

than that of the Ge/Si QDSL. This is thought to occur because the increase in vol-

ume fraction of host material with supercell size is another factor, in addition to the

decrease in phonon-nanoparticle relaxation time, that impacts thermal conductivity.

In the Si/Ge QDSL case, the host material (Si) thermal conductivity is higher than

that of the QD (Ge). This leads to thermal conductivity enhancement beyond that

determined by nanoparticle scattering alone. In contrast, the lower thermal conduc-

tivity of the Ge host material in Ge/Si QDSL leads to a suppression of overall thermal

conductivity below that determined by nanoparticle scattering alone. This suppres-

sion is not strong enough to offset the increase with supercell size due to reduction

in nanoparticle relaxation time, so the Ge/Si QDSL thermal conductivity follows the

same trend as that of Si/Ge QDSL. More interestingly, the thermal conductivities

from direct summation grow more rapidly with supercell size than those from the

isotropic method. This is similar to the case of bulk Si, where the isotropic thermal

conductivity deviates more strongly from the direct summation results as supercell
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Figure 2.5: Thermal conductivity of (a) Si/Ge QDSLs in [100] direction, (b) Ge/Si
QDSLs in [100] direction and (c) Si/Ge QDSLs in [110] direction.

size increases.

The difference between the isotropic assumption and the direct summation meth-

ods can be more clearly quantified by calculating the ratio of kISO (Eq. 1.15) and

kFBZ (Eq. 1.12), as shown in Fig. 2.6 for Si/Ge QDSL, Ge/Si QDSL, and bulk Si

in the [100] direction. For all three cases, the isotropic thermal conductivity results

drift further away from the direct summation results as the supercell size increases.

The change of the ratio from the smallest supercell to the largest supercell is 15% to

25% in all three cases.

2.4 Discussion

Despite the differences in supercell configurations and materials studied, all of the

previous results show that isotropic calculations underpredict thermal conductivity

when compared to the direct summation case, and that this effect becomes more

pronounced for larger unit cell materials. There are two possible reasons for the dif-

ferences between kISO and kFBZ : 1) the effects of crystal anisotropy, which are not

considered in the isotropic model, and 2) the effects arising from Brillouin zone geom-

etry, which is different for the isotropic and direct summation models. We examine

these two effects by constructing an artificial spherical Brillouin zone (SBZ), comput-

ing its thermal conductivity kSBZ using Eq. (1), and comparing the results separately

to the Iso-BZ and FBZ results. Like the FBZ thermal conductivity calculation, the
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Figure 2.6: Ratio of the isotropic and direct summation results in bulk Si, Si/Ge
QDSLs, and Ge/Si QDSLs along the [100] direction.

SBZ calculation uses the exact dispersion curves to sum the thermal conductivity

contributions at each wavevector inside the Brillouin zone. Unlike the FBZ calcula-

tion, the SBZ only includes points within the sphere defined by the [100] zone edge

(Fig. 2.2 (a)). The wavevectors in the space between the SBZ and FBZ edges are

denoted ”neglected phonons” (Fig. 2.2 (b)). The SBZ and the Iso-BZ calculations

share the same zone edge, but differ in that the Iso-BZ calculations are isotropic and

only consider dispersion data in the [100] direction.

The effect of anisotropy is analyzed first, by computing the ratio �kSBZ�kISO�~kFBZ
for Si/Ge and Ge/Si QDSLs. This ratio represents how much the isotropic thermal

conductivity, computed using dispersion data in a high symmetry [100] direction, is

lower than the direct summation thermal conductivity computed in a Brillouin zone

of the same size and shape. Figure 2.7 shows, for both types of QDSLs, that the

anisotropy effect contributes less than 23% to the overall FBZ thermal conductivity

and that there is only a small dependence on supercell size.

Next, the effect of Brillouin zone geometry is analyzed, by computing the ratio
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�kFBZ�kSBZ�~kFBZ for the QDSLs. This ratio represents the fraction of total thermal

conductivity that is contributed by neglected phonons outside the SBZ. The ratio of

the number of neglected phonons to the number of FBZ phonons depends only on the

ratio of spherical and full Brillouin zone volumes, and thus is constant with respect

to supercell size. This is evident from Fig. 2.8, which shows as shaded areas the

reciprocal space volumes neglected for 2 � 2 � 2 and 4 � 4 � 4 supercells. Figure 2.8

also shows how the real space representations and the Brillouin zones differ for these

supercells.

It is not known whether the ratio of thermal conductivities will also be constant

with supercell size. If so, a simple thermal conductivity scaling approach based on the

ratio of Brillouin zone volumes is appropriate to estimate thermal conductivity (Ref.

(Gillet et al. 2009)). Figure 2.7, however, shows that the thermal conductivity ratio

for the various QDSLs is not constant. The increasing trend for �kFBZ � kSBZ�~kFBZ
indicates that the phonons outside the SBZ contribute more to thermal conductivity

as supercell size increases and that the neglected phonon contribution becomes more

important.

To understand why the neglected phonons become increasingly important for

larger supercells, Cph, v2, τ , k, and 1~ω2 are averaged for the neglected phonons

in the [110] direction and for all phonons in this direction, and their ratio is taken for

bulk Si. This direction is chosen because it contains a significant number of neglected

phonons, as illustrated in Fig. 2.8. Figure 2.9 (a) shows that the ratios for Cph and

v2 are very close to one, which means that these parameters do not have any signif-

icant effect on the thermal conductivity supercell size dependence. The trends for

τ and k are the same, indicating that the relaxation time is the primary reason for

the difference. This behavior for τ arises from umklapp scattering, which has 1~ω2

dependency and is shown in Fig. 2.9 (a). To examine the sensitivity of this result

with respect to τ , three different expressions for τ are used to compute the thermal

conductivity of bulk Si. Since umklapp scattering is dominant in bulk Si, the main

difference in these three expressions is the coefficient for the umklapp relaxation time,

whose form varies from Bω2T exp��C~T � (Davis & Hussein 2011) to Bω2~ sinh�x�
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Figure 2.7: Ratios of the Brillouin shape effect (kFBZ�kSBZ) and the anisotropic effect
(kSBZ�kISO) to the direct summation result (kFBZ) in Si/Ge and Ge/Si QDSLs along
the [100] direction.

(Holland 1963) and Bω2~v2 (Gillet et al. 2009). Even though the ratio of kISO~kFBZ
depends on τ , Fig. 2.9 (b) shows that the trends of this ratio are similar for all three

cases. There are some limitations in the above relaxation time assumptions (Ward

& Broido 2010). First of all, the relaxation times due to phonon-phonon scattering

were originally developed for small phonon frequencies and low temperatures where

the resistive umklapp scattering processes are weak. Second, the constants in these

equations are usually determined by fitting to experimental data. Regardless of the

particular form chosen for τ , it is clear that the increase in τ of the neglected phonons

is responsible for the decrease of kISO~kSBZ with supercell size.

To better understand why the average τ of neglected phonons increases with super-

cell size, the branch averaged τ at each q point, denoted `τ�q�e, is calculated at each

point along the [110] direction. Each `τ�q�e is then normalized by the branch- and

q- averaged relaxation times ( 1
nq Pq`τ�q�e). The normalized branch averaged `τ�q�e,
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nq`τ�q�e�Pq`τ�q�e��1, is plotted in Fig. 2.10 for bulk Si with different supercell sizes.

For all supercell sizes, the smallest wavevector phonons have the longest relaxation

times. As wavevector increases, relaxation times decrease monotonically to asymp-

totic values that are highest for the largest supercells. Since the normalized `τ�q�e of

the neglected phonons in the largest supercells is bigger, relative to 1
nq Pq`τ�q�e, than

that of the smaller supercells, these neglected phonons provide a higher contribu-

tion to thermal transport. Thus, as supercell size increases, the isotropic assumption

underpredicts thermal conductivity more strongly. Another interpretation of these

results: because the extent of the Brillouin zone decreases as supercell size increases

(Fig. 2.8), the neglected wavevectors are smaller, and thus their lifetimes and thermal
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conductivity contribution are larger.

Figure 2.10: Normalized branch averaged `τ�q�e in [110] direction for different bulk
silicon supercell sizes.
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Finally, the overall contribution to thermal conductivity from neglected phonons in

all directions is computed as a function of supercell size (Fig. 2.11). A notable increase

from the 15% � 23% range to the 37% � 43% range is observed for Si/Ge and Ge/Si

QDSLs as supercell size increases. These results indicate that the phonons neglected

in SBZ calculations provide a significant contribution to thermal conductivity and

should not be neglected.
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Figure 2.11: Percentage contribution of neglected phonons to thermal conductivity
in Si/Ge and Ge/Si QDSLs along the [100] direction.

2.5 Conclusions

In summary, the direct summation method yields the same bulk Si thermal con-

ductivity value with different supercell sizes, which is physically meaningful and

comparable with results from other works. The difference between the direct sum-

mation and isotropic methods depends substantially on the supercell size for both

bulk Si and Si/Ge quantum dot superlattices. The thermal conductivity contribution
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from phonons neglected in the isotropic assumption calculations increases as supercell

size increases, which can be explained by the increased relaxation time of neglected

phonons. While significantly smaller than the effect of Brillouin zone shape, the effect

of crystal anisotropy has a non-negligible contribution to the thermal conductivity

dependence on supercell size.
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Chapter 3

Examination of the Empirical

Relaxation Time Assumption for

Nano-Phononic Crystals

In the previous chapter, (Ma & Lukes 2018), we discussed the isotropic assumption

models to study Si/Ge quantum dot superlattices (QDSLs). The results indicated

that phonon-phonon scattering rates are very important to correctly simulate the

thermal conductivity of large supercells. It also implied that the contribution of

the phonon-phonon scattering rates are influenced by the supercell size of the nano-

phononic crystals and the phonon-phonon scattering rates may be different for dif-

ferent geometries (or roughness). This finding piqued the interest in studying mode-

dependent τ in nano-phononic crystals using more accurate methods including the

normal mode analysis method, which has not been done before.

As briefly mentioned in the previous sections (section ??), the relaxation times for

each phonon mode are inputs to the Callaway-Holland models (Eq. 1.15) to calculate

the thermal conductivity. Methods for obtaining the relaxation time is critical for

effective calculations of the thermal conductivity of nano-phononic crystals. This

section will first cover empirical scattering equations to calculate τ in both bulk

materials and nano-phononic crystals, and then explain the non-empirical methods for

τ calculations including first principles and Normal Mode Analysis methods. Finally,
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the lifetimes for bulk Ar and Ar/Heavy Ar QDSLs from empirical equations are

benchmarked with those values from Normal Mode Analysis.

3.1 Literature Reviews

The mode-dependent phonon-phonon relaxation time is the characteristic time for

a system to reach an equilibrium condition after a disturbance, which is τ for each

phonon normal mode in Eq. (1.15). The mode dependent phonon-phonon relaxation

time is very important for three reasons. First, it provides much more detailed in-

formation about phonon transport in the nano-materials. Second, it could give more

accurate data to correctly calculate thermal conductivity. Third, it could potentially

provide insight on how to manipulate the phonon transport to achieve lower ther-

mal conductivity, specifically which part of phonons contributes the most to thermal

transport and which part of phonons should be blocked.

3.1.1 Empirical Relaxation Time Equations

The most straightforward calculation method for relaxation time is the empirical

(analytical) models, which is briefly summarized in Table 3.1. T is temperature, sub-

scripts N,U,T , and L indicate the normal scattering, umklapp scattering, transverse

and longitudinal wave, respectively; A,B,BU ,BN and C are constants; θ is Debye

temperature; α is a numerical constant. Those empirical equations have been used

by various researchers for specific occasions. Even though the results may agree with

experimental data, the empirical equations lack the agreement with more accurate

methods.

3.1.2 Non-Empirical Relaxation Times

In the last two decades, a few non-empirical methods have been developed to study

mode dependent relaxation times including the iterative method with Fermi Golden

rule and the normal mode analysis methods. The iterative method with Fermi Golden
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Table 3.1: Empirical equations of inverse relaxation time for different scattering pro-
cesses (adapted from Feng & Ruan (2014))

Scattering process Empirical equations

Normal process (Three-phonon) τ�1N � BNω2T 3 (Callaway 1959)

Umklapp process (Three-phonon) τ�1U � BUωT 3exp�� θ
αT �, low T (Klemens 1958)

Umklapp process (Three-phonon) τ�1U � BUω2T 3 (Callaway 1959)

Umklapp process (Three-phonon) τ�1U �
BTUω

2

sinh�x� , ω1 B ω B ω2 (Holland 1963)

Boundary
τ�1bs �

vλ
lF , l � diameter ,F � surface roughness

(Casimir 1938, Berman & Ziman 1953)

Impurity τ�1imp �
π
2gω

2D�ω� � Aω4 (Klemens 1955)

rule uses the 2nd and 3rd force constants from Ab Initio calculation or classical poten-

tial to calculate the scattering rates, has been extensively studied for bulk materials

(Broido et al. 2005, Esfarjani & Stokes 2008, Chernatynskiy & Phillpot 2015b), and

short-period superlattices (Garg et al. 2011, Garg & Chen 2013). The notable results

using the Fermi’s Golden Rule and iterative method including the phonon relaxation

time results in the bulk Si by Broido (Broido et al. 2007) and the relaxation times

and phonon thermal properties in Si/Ge superlattice by Garg and et al. (Garg &

Chen 2013).

Such spectral dependent information has also been studied using molecular dy-

namics (MD). For example, McGaughey et al. (McGaughey & Kaviany 2004), Henry

et al. (Henry & Chen 2008), Qiu et al. (Qiu et al. 2012), and Feng et al. (Feng & Ruan

2014) used the phonon spectral energy density (SED) or equivalently, time domain

normal mode analysis (TDNMA) methods in the framework of equilibrium molecu-

lar dynamics (EMD) simulations to extract the spectral dependent scattering rates.

In addition, Zhou and Hu (Zhou et al. 2015) developed time domain direct decom-

position method (TDDDM) based on nonequilibrium molecular dynamics (NEMD)

simulations to study the mode specific phonon-phonon scattering and successfully

match the results with SED method for bulk Si and Ar, which is one of the biggest

advantages of TDDDM compared to SED and TDNMA in EMD simulations. They

also found that those phonon modes with mean free path larger than system sizes are

truncated in NEMD. However, papers which used non-empirical scattering rates have
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not compared the mode dependent scattering rates to the geometry of the materials.

Turney and McGaughey also evaluated the thermal conductivity for Ar and showed

that the normal mode analysis (NMA) method was equivalent with other methods

such as GKMD (Turney 2009). In this chapter, the normal mode analysis (NMA)

method will be used to study the mode dependent lifetimes.

Research Gap

The normal mode analysis method is potentially one of the best tools to provide

the most accurate mode-specific scattering rates because the successful record of

simulating mode dependent phonon properties and thermal conductivities (Broido

et al. 2005, Garg et al. 2011, Garg & Chen 2013). However, due to the expensive

computation costs, only a few papers exist using the normal mode analysis method

to examine the mode-specific scattering rates in bulk materials (Garg et al. 2011,

Ward & Broido 2010), and the complication associated with nano-phononic crystal

simulation. In this chapter, we will use the normal mode analysis based on Green

Kubo Molecular Dynamics methods in the well-established open source software,

LAMMPS, to calculate the mode-dependent relaxation time.

3.2 Methods to Validate the Assumption

In this section, the phonon dependent lifetime and thermal conductivities of different

materials, including bulk Ar, Si, and Ar/heavy Ar QDSL, are calculated using the

normal mode analysis (NMA) and Callaway-Holland methods. The key inputs to the

Callaway-Holland model (direct summation method) are group velocities, which are

obtained from dispersion relations generated with harmonic lattice dynamics calcu-

lations (Dove 1993) and relaxation times from established empirical equation models

(Gillet et al. 2009, Glassbrenner & Slack 1964, Davis & Hussein 2011). Calcula-

tions were performed for various different sized supercells, the periodically repeating

building blocks used to generate phononic crystal structure.
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Figure 3.1: Verification of the normal mode analysis method to literature results:
Blue stars are result from current work, red circles is result from the reference paper
(Huberman 2013). The geometry is Ar heavy Ar superlattices with thickness of 4CCs
and length 8x6x6 at T=20K.

3.3 Results

We first verify the NMA method, then calculate thermal conductivity of bulk Ar and

Ar/Heavy Ar QDSLs.

3.3.1 Verification of Modeling Methods

Before examining the validity of the assumption of empirical scattering equations, we

first verified the normal mode analysis against benchmark data in the literature. The

results were compared to the lifetime data computed by Huberman et al. (Huberman

2013) for Ar/heavy Ar superlattice as shown in Fig. 3.1. Using the same potentials,

geometries, and lattice constants, we obtained very good agreement with Huberman’s

results (Fig. 3.1).

The empirical equation method in this chapter is same as the direct summation

method in Chapter 2. The material is changed from Si and Ge to Ar and heavy
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Ar with the Lennard-Jones potential. The τ equation in this chapter is similar to

Chapter 2. In general, τ depends on phonon-phonon, phonon-boundary, and phonon-

defect scattering (Klemens 1958). In QDSL, it additionally depends on phonon-

nanoparticle scattering (Kim & Majumdar 2006, Gillet et al. 2009). In this chapter,

the relaxation time for bulk Ar is expressed as τ � �τ�1U � τ�1N ��1, where τ�1U � τ�1N �

�B1 � B2�ω2T 3 represents normal (N) and Umklapp (U) three-phonon scattering.

The relaxation time for Ar/Heavy Ar is expressed as τ � �τ�1U � τ�1N � τ�1NP � τ�1I ��1
, where τ�1NP � ηv��σf��1 � �σn��1��1 represents nanoparticle scattering with σf �

πR2χ4h1�χ,∆M~M,∆K~K� and σn � 2πR2h2�χ,∆M~M,∆K~K�. Here η, M , and

K are the nanoparticle volumetric density, the mass of the host medium, and force

constant of the host medium, and χ � qR is the size parameter for a scatterer with

the characteristic radius R � a~2 in this paper. τ�1I �Dω4 represents defect scattering

by impurities. For QDSLs, the parameter B in τU is taken from the host material’s

value while the angular frequency is taken from actual dispersion curves. Detailed

information about the functions, h1, and h2, can be found in Refs. (Kim & Majumdar

2006, Gillet et al. 2009). The values of the parameters used in the relaxation time

calculations (Table 3.2) are taken from Refs. (Chen et al. 2004). The heavy Ar atoms

have exact same parameters as Ar atoms except the mass, which gives ∆M~M � 2

when the mass ratio is 3.

Table 3.2: Simulation parameters for Ar/Heavy Ar QDSLs with mass ratio of 3

B1 + B2(sK�1) D(s3) ∆M~M ∆K~K
Ar 8e � 19 4.01e � 43 2 0

3.3.2 Bulk Materials

After verifying the Normal Mode Analysis method, the lifetime of bulk Ar with dif-

ferent supercell sizes was calculated using both normal mode analysis and empirical

scattering equation methods. Convergence tests for size effect, time effect and q-space

resolution effect are conducted first to make sure that results are reasonable, then the

thermal conductivity results for bulk Ar is presented.
40



100 101

Frequency [LJ units]

10-12

10-11

10-10

L
ife

tim
e
 [
s]

(a)

100 101

Frequency [LJ units]

10-12

10-11

10-10

Li
fe

tim
e 

[s
]

(b)

Figure 3.2: Convergence test of bulk Ar for different sizes: (a) bulk Ar 40x10x10 CCs
and (b) bulk Ar 60x10x10 CCs.

Convergence Results

Figure 3.2 and Figure 3.3 show that the lifetime results became very stable even when

we increase the supercell size and decrease the time interval in each case. In this work,

the time interval is how often we store the MD data. Therefore, in the following cases,

similar supercell size (8x6x6 CCs) and computation length (220 steps) will be used for

the MD calculation for Ar and Ar/HAr QDSLs. To verify the convergence of group

velocity calculation and obtain a clear trend, we calculate the cumulative value of

the square of the group velocity in the x direction, which is defined as Pω
0 v

2
x�ω� and

plotted in Fig. 3.4. Figure 3.4 with different q-space resolution show that the group

velocities achieve stability for q-space intervals dq below 10�5 LJ unit, so the value

10�5 LJ unit was used for all calculations.

Lifetime and Thermal Conductivity of Bulk Ar

Figure 3.5 shows one example of the lifetime results from the normal mode analysis

for bulk Ar material. To test the size effect of the thermal conductivity from both

methods, we calculated the thermal conductivity results for bulk Ar with multiple

supercell sizes, which was shown in Figure 3.6. The x-axis shows the supercell size in
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Figure 3.3: Convergence test of bulk Ar for different time intervals in MD: (a) time
interval = 32 time steps and (b) time interval = 16 time steps using bulk Ar 40x10x10
CCs.
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Figure 3.4: Convergence test of velocity in bulk Ar for different q-space resolutions
with dq = 10�5, 5x10�5, and 10x10�5.
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Figure 3.5: Lifetime of bulk Ar using the normal mode analysis method.

CCs for five samples, which are 8x6x6 CCs, 30x8x8 CCs, 40x10x10 CCs, 50x10x10

CCs, 60x10x10 CCs in x,y,z directions. The y-axis represents the thermal conductivity

results in [W/mK]. Figure 3.6 shows that both NMA and empirical equations give

constant thermal conductivity for all supercell sizes for bulk Ar, as expected. In

addition, it also showed that the empirical method results over-estimated the thermal

conductivity results compared to the NMA method, which made us doubt the validity

of the empirical equation method.

3.3.3 Nano-Phononic Crystals

To examine the validity of the empirical scattering rate assumption further, we com-

pared the results of normal mode analysis and Callaway-Holland models on various

QDSL configurations and materials. Ar/heavy Ar QDSLs with supercell side length

3x3x3 CCs of Ar and a single CC of heavy Ar with mass varying from two to five

times of Ar in the center, a similar geometry as seen in Fig. 2.1 for Si/Ge QDSL. For

both methods and in all QDSL types, the thermal conductivity decreases with the

increasing dot masses. This is thought to occur because the mass mismatch could in-
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Figure 3.6: Thermal conductivity of bulk Ar with different supercell sizes using the
empirical equation and normal mode analysis methods.

crease the scattering events in QDSLs, and the nano particle relaxation time increases

relative to the Umklapp and impurity relaxation time as mass mismatch increases.

Phonons are reflected at interfaces of different materials, impeding phonon transport

and reducing thermal conductivity. In addition, the results of empirical equation

method deviated from the results of normal mode analysis, which is also shown as

the ratio of kEMP ~kNMA in Fig. 3.8. The thermal conductivity ratio goes below 1 for

larger mass because the empirical equation method underestimate the results as the

mass ratio increases.

The comparison of phonon lifetimes between NMA (which is also called NMD in

some literatures) and Empirical for Ar/heavy Ar QDSL with different mass ratio is

plotted in Fig. 3.9, where the mass ratio changed from 2 to 5. For both methods and

in all QDSL types, the phonon lifetime decreases with increasing frequency. It is also

observed that the lifetimes from the NMA method increases at certain high frequency

range compared to that of the empirical equation method, which is thought to increase

the phonon-nanoparticle relaxation time, which impacts thermal conductivity. In

the empirical equation case, the lifetime monotonically decreases as the frequency
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Figure 3.7: Thermal conductivity of Ar/Heavy-Ar QDSL with (different) dot masses
using the empirical equation and normal mode analysis methods.

Figure 3.8: The ratio of thermal conductivity results from the empirical equation
method and the normal mode analysis method for Ar/H-Ar QDSL with different dot
masses.
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(a) (b)

(c) (d)

Figure 3.9: Lifetime of Ar/Heavy-Ar QDSL using the empirical equation method
(green circles) and normal mode analysis method (blue circles) with different mass
ratio: (a) mass ratio = 2, (b) mass ratio = 3, (c) mass ratio = 4, and (d) mass ratio
= 5.

increases, which is similar to the trend of bulk Ar.

3.4 Discussion

The difference between the empirical equations and the normal mode analysis meth-

ods can be more clearly quantified by calculating the ratio of kemp (Eq. 2) and kNMA

(Eq. 1), shown in Fig. 3.8 for Ar/Heavy Ar QDSL, with mass ratio = 2 to 5. For

all three cases, the empirical equation thermal conductivity results drift further away

from the normal mode analysis results as the mass ratio increases. The change of the

ratio from the lightest mass to the heaviest mass is �25% to �20% in all five cases.
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All of the previous results show that empirical equation method for thermal con-

ductivity calculation is different from the normal mode analysis method, and that

those two methods have a large difference at low mass ratio, goes to zero, then at

higher mass ratio increases again. To explain this trend, we would like to revisit

the direct summation equation (Eqn 2.7) and analyze the contributions from specific

heat, group velocity and relaxation times.

The only difference between the two methods for a specific mass ratio is the

relaxation time, however, all the three parameters (specific heat, group velocity and

relaxation times) could change the results when we study different mass ratios. Those

figures will be presented one by one.

Figure 3.10 showed that the difference of the cumulative value of the mode thermal

conductivity between EMP and NMA as a function of frequency, which is defined as

χ�ω� � �Pω
0 kEMP � Pω

0 kNMA�~Pωmax
0 kNMA, where EMP stands for the empirical

equation method. Here we used the cumulative value because it provides a more

clear trend than plotting thousands of modes on one figure separately. The cumulative

values are frequency dependent, which gives us a direct idea on which part of phonon

modes contributes more to the differences. For example, Fig. 3.10 showed that the

phonons at low frequency ( [3-13] LJ unit) and high frequency ([18-25] LJ unit) behave

differently. We can see that the major difference concentrated at certain frequency

ranges, and the contributions at those frequency ranges are changing as the mass

ratio increases.

Similarly, we defined χτ�ω� � �Pω
0 τEMP � Pω

0 τNMA�~Pωmax
0 τNMA to represent

the difference of the cumulative value of the mode lifetime between the empirical

and NMA methods. Figure 3.11 illustrates the difference of χτ for different mass

ratios quantitatively and we found that χτ doesn’t change significantly with increasing

mass ratio, which is different from the function χ in Fig. 3.10. This finding seems

counterintuitive at first since the only difference between the empirical equation and

normal mode analysis for a specific mass ratio is τ . However, other two parameters

Cp, vx could change with increasing mass ratio, resulting in the difference between the

two methods.

47



0 5 10 15 20 25

Frequency [LJ unit]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Mass ratio = 2
Mass ratio = 3
Mass ratio = 4
Mass ratio = 5

Figure 3.10: The difference of cumulative mode thermal conductivity between two
methods, χ, as function of frequency for different mass ratios.
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Figure 3.11: The difference of cumulative mode lifetime between two methods, χτ as
a function of frequency for different mass ratios.
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Figure 3.12: The normalized cumulative values of mode Cp, ΦCp , as a function of
frequency for different mass ratios.

Next, we break down the Equation 2.7 into Cp, v2 and τ to study which parameter

is the key driver for the difference between the empirical equation and normal mode

analysis methods. To obtain a clear trend, we defined a general normalized cumu-

lative function for any parameter f versus frequency, Φf�ω� � Pω
0 f�ω�~Pωmax

0 f�ω�.
Therefore ΦCp�v2x

, ΦCp , Φv2x
represent the normalized cumulative functions of three

different parameters, which could clearly show us the fundamental difference.

The normalized cumulative functions of Cp and v2 are plotted in Fig. 3.12 and

Fig. 3.13. It’s obvious that Cp has very little contribution to the difference while

v2 contributes most to the change. Since we have tested the accuracy of the group

velocity calculation with different q-space resolutions (Fig. 3.4), the results are reli-

able. To directly compare those parameters with different mass ratios, we plotted the

summation value of Cp, v2, τ versus mass ratio for both NMA and empirical methods,

as shown in Fig. 3.14, Fig. 3.15, and Fig. 3.16. Those figures clearly showed that

there is no significant dependence on mass ratio for parameters Cp and τ , while we

see the dependence on mass ratio for v2x.
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Figure 3.13: The normalized cumulative values of mode v2x, Φv2x
, as a function of

frequency for different mass ratios.

Figure 3.14: The summation of Cp for different mass ratio.
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Figure 3.15: The summation of v2 for different mass ratio.

Figure 3.16: The summation of τ from empirical equation and NMA methods for
different mass ratio.
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Figure 3.17: The dispersion curve of Ar/Heavy Ar QD (2x2x2 CCs and mass ratio =
5) with a mini-bandgap at [7.1 - 8.1] frequency range.

The behavior could be understood in the following way. As the mass ratio in-

creases, the dispersion curves of the quantum dot are depressed and the velocity have

huge reduction, which was clearly illustrated by the mini-bandgap on the dispersion

curve in Fig. 3.17 for Ar/heavy Ar QDSL with supercell size of 2x2x2 CCs and mass

ratio of 5. This idea of group velocity reduction was also discussed in literature (Yang

& Chen 2003) for GaAs/AlAs superlattices. Overall, the only difference between the

empirical equation and normal mode analysis methods at a specific mass ratio is

τ , which changes little when the mass ratio increases. However, the group velocity

reduction caused by the increasing mass ratio significantly changes the differences

between those two methods.

3.5 Conclusions

In summary, we found three major conclusions from the comparison of thermal con-

ductivities calculated from the normal mode analysis and empirical equation methods.

First, the empirical equation method cannot replicate the normal mode analysis re-
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sults, especially in the high frequency range. Second, the thermal conductivity results

from the empirical equation deviates from those of the normal mode analysis when

the mass of the quantum dot increases. Finally, the group velocity reduction caused

by the increasing mass ratio significantly changes the differences between those two

methods while the difference of lifetime between those two methods are relatively

stable.
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Chapter 4

Examination of the Effective

Material Assumption for

Nano-Phononic Crystals

This chapter analyzes the validity of the third assumption in the Callaway-Holland

model for nano-phononic crystals: the effective material assumption. We are going

to first look at the literatures which covers the effective material assumptions. We

then introduce the Green Kubo Modal Analysis (GKMA) method which will be used

to evaluate the effective material assumption by comparing it to the normal mode

analysis method. The GKMA method directly determines mode-dependent thermal

conductivities from modal heat flux instead of calculating intermediate parameters

such as Cp, vx, τ . The results from the GKMA and NMA methods will be presented

and discussed. Finally, the conclusion about the validity of the effective material

assumption will be presented.
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4.1 Literature Reviews on Previous Work

4.1.1 Optical Meta-Material Versus Photonic Crystals

As discussed in section 1.3.2, the fundamental problem with equations (1.15), (1.11)

and (1.12) as applied to nano-phononic materials is that they treat the material

as a single bulk material with effective properties. A more accurate BTE-based

method would be to directly simulate phonon transport in nano phononic materials,

by representing each region with different material properties, and interfaces, and

computing the heat flux from the temperature gradient.

However, as the supercell size of nano-phononic crystal increases, phonons with

wavelengths shorter than the supercell size will be incorrectly calculated, such as the

frequencies and group velocities of those phonon modes (Ma & Lukes 2018). This

idea that the periodic composites with different geometry parameters show different

properties is not a new concept in optics, which can been seen in the transitions from

meta-material to photonic crystals (Rybin et al. 2015). In optical meta-materials, the

effective material assumption is valid because the wavelength of light is much longer

than the periodicity of the material. However, the effective material assumption can-

not capture the actual physics in the photonic crystals when the wavelength is of

the order of the periodicity. Concerns on the incorrect calculation for shorter wave-

length phonons raises questions on the validity of the effective material assumption

in nano-phononic crystals. The development of Green Kubo modal analysis (GKMA)

(Lv & Henry 2016), based on the heat current function in the Green Kubo Molecular

Dynamics method, gives us the advantage to evaluate the validity of the effective

material assumption of the Callaway-Holland model in nano-phononic crystals.

4.1.2 Virtual Crystal Assumption

The effective material assumption is similar to the virtual crystal assumption, in which

the disordered materials and the mixture of two or more pure crystals have phonon

properties that are compositionally weighted averages of the phonon properties of
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the constituent base crystals. The virtual crystal approximation has been used in the

thermal properties calculation for alloys (Larkin & McGaughey 2013, Huberman et al.

2013) and disordered materials (Larkin 2013). Henry and et al. (Lv & Henry 2016,

Seyf et al. 2017) have shown that the virtual crystal approximation in disordered ma-

terials is inaccurate by comparing the GKMA and virtual crystal assumption thermal

conductivity results for In0.53Ga0.47 thin film. In this work, we want to compare the

difference between those two methods for nano-phononic crystals.

4.1.3 Introduction of GKMA Method

The GKMA approach is a totally different thermal conductivity approach. It is not

based on BTE so it does not make any assumption about effective Cp, v, τ . It is based

on the heat current autocorrelation. The Green Kubo Modal Analysis (GKMA)

method (Lv & Henry 2016, Seyf et al. 2017) is explained as follows.

First, we need to define the normal mode:

X�Ñq, λ� � 1

N1~2Q
jl

m
1~2
j exp��iÑq � Ñr�jl�e��j, Ñq, λ� � Ñu�jl, t��. (4.1)

Then the velocity of the normal mode can be calculated by

Ẋ�Ñq, λ� � 1

N1~2Q
jl

m
1~2
j exp��iÑq � Ñr�jl�e��j, Ñq, λ� � Ñ̇u�jl, t��. (4.2)

The velocity of atoms can be calculated by

Ñ̇u�jl, t� � 1

�Nmj�1~2Qq,γ exp�iÑq � Ñr�l��e�j, Ñq, γ� � Ẋ�Ñq, λ��. (4.3)

The heat flux Q can be calculated in the following equation:

Q�q, λ� � 1

V
Q
i

�Ei Ñ̇ui�q, λ� �Q
j

��©riΦj Ñ̇ui�q, λ� � Ñrij�, (4.4)

where Ñ̇ui�q, λ� � 1
�Nmj�1~2

exp�iÑq �Ñr�l��e�j, Ñq, λ� � Ẋ�Ñq, λ� is the basic component in equa-

tion 4.3, λ is phonon mode index, and V is the volume of supercell, Ei is the sum of
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potential and kinetic energy of atom i, Φj is the potential energy of atom j, and rij

is the distance between atom i and j.

The thermal conductivity over individual mode contribution is expressed as:

k�q, λ� � V

kBT 2 S
ª

0
`Q�q, γ, t� �Q�0�e, (4.5)

in which kB is Boltzmann constant and T is temperature.

4.2 Method to Validate the Assumption

The main idea of validating the effective material assumption is to conduct a system-

atic comparison for two sets of calculations. The first set is the Green Kubo Modal

Analysis (GKMA) method where the modal thermal conductivity for bulk materi-

als and nano-phononic crystals are calculated directly from Green Kubo formula for

modal heat fluxes. The second set is the normal mode analysis (NMA method) (Tur-

ney 2009) where the phonon properties (such as lifetimes) are extracted from the

GKMD and spectral energy density (1.12) to calculate the modal thermal conductiv-

ity. By comparing the modal results from these two methods, we expect to have a

basic idea on how accurate the effective material assumption is in the thermal con-

ductivity calculation for nano-phononic crystals. The modal thermal conductivities

of bulk Ar and Ar/heavy Ar QDSLs will be discussed in this section.

4.3 Results

4.3.1 Verification of GKMA method

Before examining the validity of the effective material assumption, we first verified

the GKMA method against the literature results or traditional Green Kubo molecular

dynamics. The geometry is bulk Ar with 6x6x6 conventional cells. The thermal

conductivity of bulk Ar using GKMA at T � 20K is plotted in Fig. 4.1, with the

heat current autocorrelation function. The thermal conductivity result from GKMA
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Figure 4.1: Heat current autocorrelation function (top) and thermal conductivity
(bottom) of GKMA method for bulk Ar with 6x6x6 CCs at T = 20 K.

method averaged from 5e4 � 15e4 [fs] in Fig. 4.1 is 1.14 W ~mK, which matches well

with literature papers (McGaughey & Kaviany 2004). Figure 4.2 showed that the

thermal conductivities for bulk Ar at T � 50K from five cases with different initial

velocities. The average value of those five cases, the bold magenta line averaged from

5e4 � 15e4 [fs], is 0.305 W ~mK, which agrees with the results from literature paper

(McGaughey & Kaviany 2004) too. Overall, we obtained good agreement between

GKMA results and the benchmark results.

4.3.2 Nano-Phononic Crystals

Limited cases for nano-phononic crystal thermal conductivity calculation using Green

Kubo Modal Analysis (GKMA) method have been conducted because the modal

thermal conductivity calculation is computationally very expensive. The basic cell

is same as the Ar/heavy Ar QDSLs we used in the last chapter: 3x3x3 conventional

cells (CCs) of Ar with 1x1x1 CCs of heavy Ar with mass of 3 times of normal Ar. The
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Figure 4.2: Thermal conductivity of GKMA method for bulk Ar at T=50K using a
4x4x4 conventional cell. Bold magenta line is the average thermal conductivity of five
initializations.
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Figure 4.3: Thermal conductivity of GKMA method for Ar/heavy Ar with 3x3x3-
2x2x2 CCs at T = (a) 20 K, (b) 30 K, (c) 40 K, and (d) 50 K.

basic cell is then repeated several times in x, y, z directions (two times in this work,

3x3x3-2x2x2) to stabilize the calculation data. The thermal conductivity result for the

Ar/heavy Ar QDSL (3x3x3-2x2x2) with full size of 6x6x6 CCs at T � 20,30,40,50K

were plotted in Fig. 4.3.

The thermal conductivity result of the Ar/heavy Ar QD in Fig. 4.3 from GKMA

method is 0.21W ~mK from GKMA method at T � 20K, and 0.17W ~mK at T � 50K.

In comparison, the thermal conductivity results for the same geometries using the

GKMA method and normal mode analysis (NMA) methods are listed in the Table

4.1. Even though the thermal conductivities from both results are close enough at

T � 20K, they have a sizable difference at high temperatures T � 50K. The reason

may be that normal mode analysis cannot correctly capture the thermal conductivity
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contribution of the short wavelength phonon modes excited at high temperature.

Table 4.1: Thermal conductivity from GKMA and NMA methods [W ~mK]

T 20(K) 30(K) 40(K) 50(K)
GKMA 0.220 0.18 0.162 0.150
NMA 0.213 0.164 0.137 0.114

4.4 Conclusion

The Green Kubo Modal Analysis (GKMA) method is verified in this chapter, and

applied in bulk Ar, and Ar/heavy Ar QDSLs. A simple comparison between GKMA

and NMA for Ar/heavy Ar QD (3x3x3) at different temperatures has been conducted.

Those results agreed well at low temperature 20K, however, it deviated at high

temperature. This difference could imply that the normal mode analysis may not

correctly capture the phonon behaviors at high temperature.
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Chapter 5

Conclusions

5.1 Summary and Contributions

The following is a summary of the most important contributions made by this disser-

tation.

Nano-phononic crystals are periodic structures characterized by band gaps in the

frequency spectrum that present surprising and transformable properties. Correctly

simulating thermal propagation of these materials is essential for optimizing and

tuning their properties. The different assumptions involved in the Callaway-Holland

model makes it challenging to accurately predict thermal conductivities of nano-

phononic crystals.

First, this dissertation investigated the isotropic thermal conductivity assump-

tion by benchmarking it with direct summation method for thermal conductivities

in bulk Si, Si/Ge QDSLs, and Ge/Si QDSLs. The direct summation method yields

the same bulk Si thermal conductivity value with different supercell sizes, which is

physically meaningful and comparable with results from other works. The difference

between the direct summation and isotropic methods depends substantially on the

supercell size for both bulk Si and Si/Ge quantum dot superlattices. The thermal

conductivity contribution from phonons neglected in the isotropic assumption calcu-

lations increases as supercell size increases, which can be explained by the increased

relaxation time of neglected phonons. While significantly smaller than the effect of
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Brillouin zone shape, the effect of crystal anisotropy has a non-negligible contribution

to the thermal conductivity dependence on supercell size.

Second, this dissertation provided several conclusions when examining the empiri-

cal relaxation time assumption. The empirical potentials cannot replicate the normal

mode analysis results, which was following the τ � ω�2 rule at the low frequency and a

peak in the high frequency range. In addition, the thermal conductivity results from

the empirical potential deviates from those of the normal mode analysis when the

mass of the quantum dot increases. The fundamental reasons behind the deviation is

because of the group velocity, which produces the difference between the contribution

from the two methods as the mass of quantum dot changes.

Third, The Green Kubo Modal Analysis (GKMA) method is verified in this dis-

sertation, and applied in bulk Ar, and Ar/heavy Ar QDSLs. A simple comparison

between GKMA and NMA for Ar/heavy Ar QD at different temperatures have been

conducted. Those results agreed well at low temperature 20K, however, it deviated at

high temperature. This difference could imply that the normal mode analysis may not

correctly capture the phonon behaviors at high temperature, and Green Kubo Modal

Analysis method is recommended when considering effective material assumption.

Overall, this work quantitatively evaluated the three major assumptions associated

with the Callaway-Holland model for thermal conductivity calculations for nano-

phononic crystals, which provides directions for future researchers on how to simulate

the thermal conductivity of nano-phononic crystals correctly.

5.2 Challenges

There are a lot of challenges in simulating the thermal conductivity of nano-phononic

crystals. The biggest one is that normal mode analysis and Green Kubo Modal Anal-

ysis methods are computationally expensive. The normal mode analysis has a heavy

demand on storage, which may easily reach to 500 GB for a system with supercell

size of 10nm and 1000 wave-vectors in the q-space. The Green Kubo Modal Analysis

method could take 1 week for a system of 5nm when considering all the phonon
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modes and wave-vectors at the same time. The computational expensiveness makes

the simulation really difficult. The future researchers should be aware of those chal-

lenges. To provide benchmarks, the isotropic thermal conductivity assumption based

Callaway Holland model only takes several minutes, while the direction summation

method may takes 2-3 days for same geometries. The time for the normal mode anal-

ysis method varies from several hours to several days based on the simulation cell and

q-space resolution, and it easily takes more than 5 days for the Green Kubo Modal

Analysis to obtain reasonable results.

5.3 Future Directions

Nano-phononic crystals provide great opportunities for realizing and engineering in-

teresting thermal and phononic behavior. One important extension of this work could

include analyzing the phonon modal contribution in the Green Kubo Modal Analysis

method. Different phonon modes may behave and contribute differently to the ther-

mal conductivity in nano-phononic crystals. The modal phonon behavior is critical

to understand the effective material assumption in nano-phononic crystals.

Another interesting future direction is to use the first principles based calculations

for more accurate thermal conductivity simulations. First principle method is sup-

posed to provide the most accurate thermal conductivity results for nano-materials,

but also demands extensive computational resources. It may also be interesting in

this field to develop the accurate interatomic forces form first principles and quantum

chemistry, which could provide a framework for interactions between different atoms

in nano-phononic crystals.
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Appendix A

Group Velocity

Accurate calculations of group velocity are important for thermal conductivity calcu-

lations in this paper. For future reference by the research community, we have plotted

two examples of [100] direction group velocities computed in this work in Fig. A.1.

The branch dependent phonon group velocities for bulk Si and for the Si3Ge1 QDSL

in Fig. A.1 show that our group velocity method can clearly distinguish phonons

from different branches.
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Figure A.1: Phonon group velocities from different branches along the [100] direction
in (a) bulk Si with 1x1x1 CCs and (b) Si3Ge1 QDSL.
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