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We show how to obtain explicit integration measures on ordinary moduli space corre-

sponding to the correlation functions of pure 2-dimensional topological gravity. In partic-

ular our prescription tells how to remove the zero modes of the βγ system. We then use

our formula to derive the “dilaton equation” introduced by E. Verlinde and H. Verlinde,

a relation between the N -point and (N − 1)-point correlations of this theory. Just as in

critical string theory we use the fact that certain brst-exact states fail to decouple. In-

stead they build up Čech classes, in this instance the Euler class of an N -times punctured

surface. Throughout we use the “semirigid” formulation of topological gravity. Thus the

Liouville sector of other approaches never enters.
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1. Introduction

The recent development of two-dimensional quantum gravity has seen an alarming

proliferation of apparently equivalent theories, some of which seem at first to be utterly

dissimilar. Matrix models, continuum gravity with conformal matter, and topological

gravity all seem to give the same answers for scaling exponents and indeed for correlation

functions. Since it seems hard to attempt a direct correspondence among the elementary

dynamical variables of these theories,1 the general approach to proving their equivalence

has been to prove simple relations among their n-point amplitudes. In particular, recursion

relations can determine part or all of the amplitudes of topological gravity in terms of a

few elementary ones [2][3][4][5].

Moreover, such recursion formulæ can teach us more about the common structure

presumably underlying each of the incarnations of 2d gravity. For example, Witten has

suggested that the compatibility of recursion relations be regarded as an integrability, or

“cocycle,” condition defining the topological phase [2]. But a full understanding of the

recursion formulæ, let alone their deep meaning, is still elusive. For example, a direct

derivation of the KdV formula from intersection theory is still lacking.

Each of the various recursion formulæ for topological gravity extant today has a

slightly different status. The clearest ones have a direct derivation from the fundamental

definition of the theory in terms of intersection theory. These include the special relations

for genus zero and one [2], but they also include the remarkable “puncture equation” of

ref. [3], as well as [6][7] the “dilaton equation” of ref. [4]. The two latter relations are valid

in every genus; adopting the normalization of [2], one has

PE : 〈σ0

N∏

i=1

σni
〉g =

N∑

j=1

nj〈

N∏

i=1

σ
ni−δ

j

i

〉g (1.1)

DE : 〈σ1

N∏

i=1

σni
〉g = (2g − 2 +N)〈

N∏

i=1

σni
〉g . (1.2)

In addition to the intersection-theory formulation, 2d topological gravity is supposed

to admit another instantiation as a free conformal quantum field theory [8][9][10]. In

such a framework E. Verlinde and H. Verlinde found a whole series of recursion relations

generalizing (1.1)–(1.2) [4]. The first two of these are in fact the puncture and dilaton

1 But see the recent paper of Kontsevich [1].
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equations. The higher recursion formulæ are more complicated; they involve terms on the

rhs with surfaces of lower genus. Again these relations were all derived in the context of a

field-theoretic formulation of topological gravity, using a somewhat indirect combination

of field theory and self-consistency arguments. It would be nice to have a direct derivation

from a simple field theory.

In this paper we will give the derivation requested above for the dilaton equation,

(1.2), and much more. First we will need to define our local field theory precisely. This

is more than a matter of choosing a lagrangian [11]. One must also settle upon a class

of observables. This is a nontrivial step; indeed as we will see the topological theory will

emerge as a truncation of a larger, nontopological theory. (Similar phenomena are well

known in topological matter theories [12].) Even after a class of observables has been

chosen there remains the problem of computing the correlations. For this one needs a way

to construct a volume form on moduli space, which can then be integrated to get answers.

It is not in general obvious how to construct such a volume form; later on we will mention

a plausible alternative which is simply wrong.

What is needed is clearly some organizing principle determining the lagrangian and the

physical states and the correct volume form, in a mutually consistent way. The “semirigid”

geometry recently introduced in ref. [13] will provide such a lodestone for us. It constructs

our theory as a truncation of local N = 2 supergravity by imposing a self-consistent

constraint. The physical states are those of N = 2 subject to the constraint. The usual

operator formalism techniques then yield a volume form on a constrained subspace of the

moduli space of N = 2 surfaces. As shown in [13] this volume form then projects to the

desired density on ordinary moduli space M.

Remarkably [4] all the physical observables of the constrained theory are brst-exact.

They fail to decouple, however, because while each satisfies the weak physical state condi-

tion [14], still each is the brst-variation of something which does not. Thus each computes

a Čech cohomology class, just like the dilaton of critical string theory [14][15][16].

In the following sections we will find an explicit formula for the integration measure

of topological gravity, including the disposition of the βγ zero modes. We will see how the

semirigid prescription leads to some unexpected terms in the measure, just as it did in the

supercurrent [13], and how both sets of unexpected terms are crucial to get the desired

answers. We also recall [13] how our geometrical principle gives a precise description for

how our surfaces may degenerate.
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Applying this point of view to O1 we will then at once get the dilaton equation, just as

in the bosonic string [16]. A similar analysis can be carried out for the puncture equation

[17]. Our derivation makes no use of the “Liouville sector” of [4]. Indeed this sector does

not arise at all in the analysis of [18], nor in the semirigid framework; nor for that matter

did it appear in the critical bosonic string, where the dilaton equation is again valid. Our

arguments can be used to analyze the higher On as well, though we will not attempt this

here.

Throughout this paper we will consider pure topological gravity. Thus all coupling

constants are zero and we work at the first critical point of the matrix model.

2. General remarks

There is by now an extensive literature on topological quantum field theory (TQFT).2

All such theories share some key features. All begin as gauge-invariant quantum field

theories with a scalar supersymmetry generated by QS . The supersymmetry ensures the

near-perfect cancellation of bosonic and fermionic contributions to all amplitudes, and in

particular the absence of propagating physical modes. Similarly, after brst gauge-fixing

one finds the brst cohomology to be trivial.

Nevertheless these theories are not empty. On one hand gauge-fixing does not com-

pletely eliminate the original degrees of freedom; a moduli space M of inequivalent config-

urations remains. On the other hand, as explained in [20][21][22], the appropriate space of

physical states consists of the “equivariant” cohomology with respect to the gauge group:

an operator is deemed trivial only if it is the brst variation of a gauge-invariant operator.

There are indeed some states nontrivial in this sense. Since they are all trivial in the

broader sense, however, they all nearly decouple; indeed they would decouple completely

were M topologically trivial. Instead their correlations pick up topological properties of

M. This phenomenon appears quite explicitly in bosonic string theory as well [14]; here

the dilaton is almost trivial. In a TQFT all physical observables are of this type.

Thus the essence of topological field theory is that it has a brst-like complex of states

with an action of the gauge group, no ordinary cohomology, but some nontrivial equivariant

cohomology.

2 For a review with references see [19]. In this paper we use “TQFT” synonymously with

“cohomological QFT.”
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Such a field theory can be written down for 2d gravity [8][9][10][18][4]. Let us briefly

recall the formulation given in [13]. Begin with local N = 2 supergravity on a space with

coordinates z, θ, ξ, with derivatives Dθ ≡ ∂θ + ξ∂z, D̃ξ ≡ ∂ξ + θ∂z. We now gauge-fix as

usual to get a free B C ghost system. We then expand about a symmetry-breaking vev for

one of the ghost field components. More precisely we impose the constraint D̃ξC
θξ ≡ const.

The meaning of this constraint is that it breaks the local superconformal symmetry down

to an anomaly-free subalgebra, including one isolated generator which plays the role of

QS . But of course we cannot stop here. Whenever we impose a first-class constraint we

get the problem that time evolution becomes undetermined; any amount of the constraint

may be added to the hamiltonian. Alternately in quantum mechanics the constraint on

C is incompatible with the canonical commutation relations (or free propagator) of the

BC system. The cure for all these problems is of course to impose canonically-conjugate

conditions on the observables of the theory. For example, in Yang-Mills theory if we

choose to impose Gauss’s law before quantization we find we may only observe gauge-

invariant quantities, since the Gauss constraint generates gauge transformations under

Poisson bracket. Similarly in our case we must require of all observables that they not

depend on two of the components of B. In the language of [13] this allows dependence on

b, β only, not on b̆, β̆. The unbroken symmetry generators Ln, Gn, and QS all have this

property automatically. For example,

G = −2β∂c− (∂β)c− b. (2.1)

The N = 2 brst charge also descends to our constrained theory. We find

QT ≡ QN=2
BRST = − 1

2

∮
dz D̃B C DC ,

where dz denotes [dz|dθdξ]. QT is seen to be nilpotent, even though the original N = 2

ghost system was anomalous. It is also invariant under Ln, Gn and so defines the required

scalar brst charge. Moreover one has QT = QS + QV where QV is the brst charge

associated to the Virasoro algebra, so QT is the operator of [4]. Finally one has {QT , bn} =

Ln and [QT , βn] = −Gn. Adapting the argument of [23], these commutation relations tell

us that QT plays the role of the exterior derivative on an appropriate supermoduli space

M̂. Namely, M̂ is the space of supermanifolds built from pieces of the z|θξ plane patched

together by maps corresponding to the unbroken generators Ln, Gn:

z′ = f(z) + θρ(z)

θ′ = θ

ξ′ = ρ(z) + ξ∂f(z)− θξρ(z) .

(2.2)
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Thus θ has spin zero. We will call supermanifolds of the form (2.2) “semirigid” Riemann

surfaces, or SSRS.

Physical vertex operators O must now be annihilated by QT + Q̄T and subject to the

above constraint on their B-dependence. Any collection {Oi} of such operators yields a

form of some sort on the space P̂g,N of SSRS with g handles, N marked points, and local

superconformal coordinates at those points, just as in the fermionic string [23]. Note that

in this form B potentially enters both via the explicit operators O, and via the insertions

B[v] ≡
∮
dzBv needed to soak up the background charge of the BC system. These

insertions are not manifestly functions of D̃B only, but they are nonetheless compatible

with the constraint if v is a chiral tensor, D̃v = 0. Indeed such v do generate the infinites-

imal form of (2.2).3 Demanding that all external states be independent of b̆, β̆ thus gives

a consistent truncation of our theory. Henceforth we will drop the fields b̆, β̆ altogether.

What we need, however, is a volume form on Mg,N , the ordinary moduli space without

local coordinates, for it is here that the intersection-theory definition of topological gravity

lives [2]. We can get to Mg,N in two steps. First, as explained in [23] we can reduce from

P̂g,N to M̂g,N if in addition to

(QT + Q̄T )|O〉 = 0 (2.3)

we require the “strong physical state condition:”

bn|O〉 = βn|O〉 = Ln|O〉 = Gn|O〉 = 0 , n ≥ 0. (2.4)

Of course to get nonzero answers we must also require that |O〉 have appropriate ghost

charges. It turns out that the present theory has only one nontrivial operator of this

type, the “puncture” operator |O0〉 = c1c̄1δ(γ1)δ(γ̄1)|0〉. But a weaker condition than

(2.4) suffices, as explained in [14][15][16]. If (2.4) is replaced by the “weak physical state

condition, ” or WPSC,

(b0 − b̄0)|O〉 = 0 , (2.5)

then we can get a volume form on M̂g,N if we first choose a “slice,” a choice σ̂ : M̂ → P̂ of

local coordinates near each puncture.

Before we ask how our answers depend on the choice of σ̂, we still must pass from

the supermoduli space M̂ to the ordinary space M. Fortunately this is easy. There is a

3 Note that the generalization of (2.2) with θ
′ = θ+const. is not generated by chiral v, which

is why we did not allow it.
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natural projection [13] π : M̂ → M; we integrate over the fibers of π to obtain at last a

volume form Ω on Mg,N .

The analysis of [14][15] now shows that changing the slice σ̂ changes Ω by a total

derivative. It is well known that such total derivative ambiguities can be important in string

theory. Indeed we will recall later how they enter in the bosonic string calculation of [16].

Remarkably, however, we will prove that in topological gravity this residual dependence

vanishes, at least in the collision of O1 with any On, yielding contact interactions which are

completely independent of choices. In fact they are just winding numbers in the complex

plane.

As mentioned above the insertion of |O〉 = (QT + Q̄T )|O
′〉 where |O′〉 obeys (2.5) also

yields a total derivative on M̂. The states obeying (2.5) and not trivial in this “equivariant”

sense are

|On〉 = (γ0)
nc1c̄1| − 1〉 , | − 1〉 ≡ δ(γ1)δ(γ̄1)|0〉 . (2.6)

We write |n〉 to denote the Fock vacuum at Bose sea level n. The states (2.6) are not quite

the same as the states discussed in [4], but they differ by terms which are truly trivial.

The difference is nevertheless important as we shall see in due course. We would like to

identify On with σn in (1.1), (1.2) (up to some constant) and in particular O1/2πi with

the dilaton, σ1. Indeed an analysis along the lines of [15] shows [17] that the contribution

to an (N + 1)-point function including an O1 is 2πi(2g − 2) times the n-point function

without the dilaton, plus collision terms which we must compute.

Our goal is thus to establish well-defined delta-function contact terms in the correla-

tions of O1 with other On and hence complete the derivation of (1.2). In order to say that

we really understand such terms we need to find a way to smooth them out, recovering

their singular form in some limit. We did this in [16] for the case of the bosonic string

dilaton. There the crucial observation was that the states |On〉, n > 0, since they fail

the strong physical state condition, are sensitive to their normal ordering.4 The normal

ordering which is nonsingular as a surface pinches is however incompatible with the choice

which can be made globally. We must interpolate between these and in the process pick

up the desired smoothed contact terms.

4 Originally it seemed that the Liouville sector could be used to covariantize vertex operators

so that this normal-ordering analysis would not be needed, but this no longer seems to be the

case [24].
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3. The measure

In this section we will make the above program very concrete. Namely we will begin

with a collection of physical states |Oni
〉 obeying the conditions (2.3), (2.5) and the choice

of a slice σ : M → P on an open set of M. We will promote σ to a slice σ̂ for M̂, compute

the volume form Ω̂ on M̂, and integrate it over the odd directions to get Ω on M.

We need to make some additional choices before we can write down formulas. One

can check that these choices in fact drop out of our final formula for the measure, or in

other words that our formalism is covariant. First we choose coordinates m1, . . . ,mK for

Mg,N , where

K ≡ 3g − 3 +N .

In addition we realize the map σ : M → P by giving a family of Riemann surfaces de-

pending on ~m. Thus we give a collection of patching functions uα = fαβ(uβ ; ~m ), with the

understanding that at most one puncture Pi lies on any patch Uα, and that in that case

uα(Pi) ≡ 0.

To keep the notation simple we will suppose our family to be of a special form.

Namely we will choose one puncture P0 ∈ U0 and suppose U0 to be completely surrounded

by another patch U1 with annular overlap. Moreover all fαβ are assumed independent of

~m except for u0 = f01(u1; ~m ). In a small enough region of M we can always represent σ

this way. (It is easy to generalize to other situations.)

We can now promote our family of Riemann surfaces to a family of semirigid Riemann

surfaces following [13]. As shown in [13], to study surfaces patched from maps of the form

(2.2) it suffices to consider those constructed from the z|θ plane via5

z′ = f(z) + θρ(z)

θ′ = θ .
(3.1)

Again θ is a globally-defined coordinate. In fact we can say still more. Given any family

of Riemann surfaces built from patches Uα ⊂ C with transition functions

uα = fαβ(uβ ; ~m)

5 As explained in [13] we could have equally used the description in ref. [24] of this geometry;

however, our choice will lead to easier algebra.
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depending on parameters ~m we can always introduce an equal number of Grassmann

parameters ~ζ and construct

zα = Fαβ(zβ , θβ ; ~m,
~ζ ) ≡ fαβ(zβ ; ~m+ θ~ζ )

θα = θβ
(3.2)

which is of the form (3.1). Changing to a different set of coordinates ~m′ induces a split

coordinate transformation on (~m, ~ζ ). In our case we have

z0 ≡ F01(z1, θ; ~m,
~ζ ) = f01(z1; ~m ) + θζa

∂f01(z1; ~m )

∂ma
(3.3)

and we regard all the zα as fixed except for z0.

Our choice of slice (3.3) has two key features. First the coordinates (~m, ~ζ ) defined

by (3.2) define a split structure for M̂, and hence in particular a projection π : M̂ → M.

That is, the ~m are defined to be lifted from the corresponding coordinates on M. One can

check that starting from a different set of coordinates ~m′ induces a split transformation of

(~m, ~ζ ), and that choosing a different presentation of the same family of surfaces likewise

changes nothing. Since the coordinates (~m, ~ζ ) are adapted to the projection, to integrate

Ω̂ along the fibers of π we simply insert ∂
∂ζa

into the odd slots of Ω̂ and integrate the fiber

coordinates ~ζ.

The second key feature of (3.3) is that everywhere it obeys

∂z0
∂ζ̄i

= 0 ,
∂z0
∂ζa

= θ
∂z0
∂ma

. (3.4)

Eqns. (3.4) are more general than our special family (3.3); they apply to any family pro-

moted via (3.2) from a family of ordinary Riemann surfaces. They make global sense

because different coordinate systems (~m′, ~ζ ′) are related by split, holomorphic transforma-

tions, and because θ is a global coordinate. The virtue of (3.4) is that it will make the

measure Ω̂ constructed using (3.3) very simple.

To find this measure we need the ghost insertions appropriate to the slice (3.3). As

usual [25][14][16] this means we must differentiate z0 with respect to the moduli, then

reexpress the answer in terms of z0 itself. Thus in the bosonic string we would need

va(z0, ~m ) ≡
∂f01
∂ma

◦ f−1
01 , ṽa(z0, ~m ) ≡

∂f01
∂m̄a

◦ f−1
01 , (3.5)
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where the composition and inverse refer to the z-dependence. We now need a corresponding

expression for F01. First we note that

z1 = f−1
01 (z0, ~m )− θζa

( 1

f ′01 ◦ f
−1
01

)
va ,

where prime denotes derivative with respect to the first argument. Next we define

Va(z1, θ; ~m,
~ζ ) by

F01(z1, θ; ~m+ ~∆, ~ζ ) =
(
I+∆ · V + ∆̄ · Ṽ

)
◦ F01(z1, θ; ~m,

~ζ ) + O(∆2) ,

analogously to (3.5). Using the identities

δ(A ◦B−1) = (δA) ◦B−1 − (A′ ◦B−1) ·
1

B′ ◦B−1
· (δB ◦B−1)

(A ◦B−1)′ = A′ ◦B−1 ·
1

B′ ◦B−1
,

we compute ∂va
∂mb and v′a to obtain

Va = va + θζb
∂va
∂mb

, Ṽa = ṽa + θζb
∂ṽa
∂mb

. (3.6)

Similarly varying ~ζ instead of ~m yields

Υa = θva , Υ̃a = 0 .

These imply that the desired ghost insertions are

B̂
( ∂

∂ma

)
≡ ba − ζbβab + bã − ζ̄bβãb (3.7)

δ
(
B̂
( ∂

∂ma

))
≡ δ(βa) (3.8)

where

ba = b[va] ≡

∮
bzz(z)v

z
a(z)dz ; bã = b[ṽa]

βa = β[va]

βab = β[∂va/∂m
b] ; βãb = β[∂ṽa/∂m

b] .

(3.9)

As mentioned earlier the simplicity of (3.7) is a consequence of (3.4).
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To integrate ~ζ we will need the explicit ~ζ-dependence of the state 〈Σ(~m, ~ζ )| associated

to our surface by the operator formalism. Using (3.3) we get

〈Σ(~m, ~ζ )| = 〈Σ, F01| = 〈Σ, (I+ θζava) ◦ f01|

= 〈Σ, f01|(1− ζaGa − ζ̄aḠa) .
(3.10)

Let us now assemble the ingredients we have found. To evaluate the volume form Ω̂

on the tangent vectors ∂
∂m1 , . . . ,

∂
∂ζ1

, . . . , ∂
∂m̄1 , . . . ,

∂

∂ζ̄1
, . . . , ∂

∂ζ̄K
we must compute a certain

correlation function, in which we insert the desired states On1
, . . . ,OnN

and the ghost

insertions (3.7)–(3.8). The states (2.6) have ghost charges

On : (Ubc, Uβγ ;Ub̄c̄, Uβ̄γ̄) = (1, n− 1, 1,−1) .

Let us assume for now that the inserted states obey the condition for topological amplitudes

[18][2]: ∑
ni = K , K ≡ 3g − 3 +N . (3.11)

Then ⊗Ni=1|Oni
〉 has charges (N, 3g−3, N,−N). The anomaly on a surface of genus g equals

(3g−3,−3g+3, 3g−3,−3g+3). Also we have seen that the ghost insertions corresponding

to odd tangent vectors (3.8) are very simple, contributing (0,K, 0,K). Thus the various

other insertions on the surface must contribute (−K,−K,−K, 0).

There are K insertions of type B̂
(

∂
∂ma

)
, and K of type B̂

(
∂

∂m̄a

)
. From (3.7) each can

have four types of terms:

(i) b terms of charge (-1,0,0,0) , (ii) b̄ terms of charge (0,0,-1,0) ,

(iii) ζβ terms of charge (0,-1,0,0) , (iv) ζ̄β̄ terms of charge (0,0,0,-1) .

The Grassmann integral over d~ζd~̄ζ will in general bring down some factors of the super-

current. Again using (3.2), (3.4) all such terms involve ζaGa (never ζaζbLn, etc.) and we

get four more types of insertion (see (2.1)):

(α) ζcβ terms of charge (1,-1,0,0) , (β) ζ̄ c̄β̄ terms of charge (0,0,1,-1) ,

(γ) ζb terms of charge (-1,0,0,0) , (δ) ζ̄ b̄ terms of charge (0,0,-1,0) .

Imposing now the anomalous conservation of Uβ̄γ̄ we find that terms (iv), (β) cannot

contribute. Integrating d~̄ζ then shows we must use all K of the (δ) terms. Thus the

inhomogeneous terms of Ḡ are necessary to get nonzero answers. Imposing conservation
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of Ub̄c̄ we then find that terms (ii) cannot contribute. Finally charge conservation in the

holomorphic sector shows that terms (γ) cannot contribute either.

Thus our integrand vanishes unless every B̂
(

∂
∂m̄a

)
gives rise to a holomorphic insertion,

i.e. all 2K terms of type (i), (iii) must be used. This in turn requires our slice to be

maximally nonholomorphic, i.e. all of the ṽa in (3.5) must be nonzero in order to get a

nonzero answer. This useful property depends crucially on taking the holomorphic form

of the states |On〉, eqn. (2.6).

Having done the integral over d~̄ζ, we finally integrate ~ζ to get the desired volume

form Ω on Mg,N :

Ω
( ∂

∂m1
, . . . ,

∂

∂m̄K

)
=

∫
dK~ζ 〈Σ(~m) |

K∏

c=1

(1− ζcGc)

K∏

a=1

[
(ba − ζbβab)(bã − ζbβãb)

]

×

K∏

b=1

[
bbδ(βb)δ(βb)

]
| On1

〉 ⊗ · · · ⊗ |OnN
〉 .

(3.12)

Here 〈Σ(~m)| is the state in the bcβγ Fock space associated to the ordinary Riemann surface

at ~ζ = 0 and

G(0) = −2β∂c− (∂β)c (3.13)

is the quadratic bit of G.

Eqn. (3.12) is our desired explicit formula for the measure on M. We have written

it entirely in terms of ordinary CFT on ordinary Riemann surfaces. It depends on the

chosen slice σ via (3.9), (3.6), and (3.5). One can show however that changing our family

f01 of patching functions without changing σ modifies the va by Borel vectors and leaves

(3.12) unchanged. Notice that we have managed to conserve all four charges separately,

and not just the linear combination Ubc+2Uβγ . Note also that in the formula (3.12) we can

drop the antiholomorphic fields altogether: the left-moving part of the correlation function

is just a constant. This follows from the form (2.6) of the states; the insertions baδ(βa)

convert all of them into the SL2-invariant |0〉 in the barred sector.

The striking thing about (3.12) is that only the first of the three terms in parentheses

looks familiar. In this term there are ordinary b-ghost insertions for moduli, as is familiar

from the bosonic string, and enough picture-changing operators G
(0)
b δ(βb) to satisfy the

Bose sea anomaly. The other terms seem superfluous. Nevertheless they are a definite

consequence of the semirigid approach, coming from the extra terms in (3.7) and of the
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inhomogeneous term −b of G.6 They are also definitely necessary to get the desired an-

swers. Without them, for instance, the dilaton-dilaton contact term comes out incorrectly

normalized relative to dilaton-puncture.

Eqn. (3.12) defines the measure in general. We now turn to an application to see how

contact terms can arise in this theory.

4. The dilaton equation

We begin with an extremely simple rederivation of the result of ref. [16] for the contact

interaction in the bosonic string. A key conclusion of [16] was that in the bosonic string the

contact terms thus defined are not quite fixed by geometry. We had to choose a standard

fixture, a 3-punctured sphere with coordinates which we tied to the rest of the surface by

the usual plumbing construction. Placing the punctures at ∞, 0, and 1, we can write this

fixture as

(
P

1, z−1, z + a1z
2 + a2z

3 + · · · , z − 1 + ã1(z − 1)2 + ã2(z − 1)3 + · · ·
)

. (4.1)

One then finds that while a2, ã2 . . . drop out of the calculation, the strength of the contact

interaction depends on a1, ã1. We gave a physical motivation for one choice of (4.1)7 but

this residual dependence is annoying. Thus in the following derivation we will separate the

contact term into a piece which is obviously independent of all choices, plus a correction.

This separation is equally valid for topological gravity. We will then examine the correction

and show that it vanishes for topological gravity but not for the bosonic string. Briefly

the answer lies in the nature of the semirigid plumbing construction [13]. Finally we will

comment on the derivation along the lines of [16], which yields the same answers in a rather

surprising way.

For the bosonic string we use ordinary geometry. We insert a dilaton at P and an

ordinary vertex operator |ψ〉 at Q. To describe a degenerating Riemann surface we take

two fixed surfaces with coordinates (ΣL, σX), (ΣR, σY ) and join them via the plumbing

σX = q/σY . Taking the only q dependence to be in the neck as q → 0 is the essence of

the stable-curve compactification. The key to the analysis of [16] was to generalize this

prescription to curves with marked points and coordinates centered at those points, so that

6 For another approach to these terms using multi-valued Beltrami differentials see [24].
7 It amounts to a1 = ã1 = 1

2
, etc.
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we can insert arbitrary states not obeying (2.4). Thus now ΣL, ΣR have coordinates on

various other points {Pi} besides X, Y , and again these are independent of q; the only q

dependence is again in the neck.

For the case at hand we tie (4.1) onto any (ΣL, σX) to get (ΣL, σ̌P , σ̌Q) where

σ̌P =
σX
q

− 1 + a1(
σX
q

− 1)2 + · · · |q| ≪ ǫ (4.2)

and similarly at Q, where ǫ is some small fixed number. For our construction to make

sense the value of ǫ should drop out in the end. When |q| ≫ ǫ, however, we should use a

coordinate like

σ̌′
P = σX − q |q| ≫ ǫ , (4.3)

as it is (4.3), not (4.2), which makes global sense as P, Q move over the surface. Recall

that both σ̌, σ̌′ depend on two moduli, namely q and the location r of the attachment point

X where σX is centered. We see from (4.2) that different choices of fixture (4.1) amount

to different slices and hence potentially different answers.

Since (4.2) and (4.3) disagree, to get a smooth slice we must interpolate between them

in the region |q| ∼ ǫ. Outside this region, say at |q| ∼ 2ǫ, we may take

σ̌P =
|q|

q
(σX − q) =

|q|

q
σ̌′
P |q| ∼ 2ǫ , (4.4)

but we cannot smoothly remove the overall phase because it winds as we move around

q = 0.

The analog of (2.6) for the bosonic string is the dilaton state |D〉 = 2c1c−1|0〉. Suppose

we insert this using the slice (4.3). To find the appropriate ghost insertions we follow

sect. three, differentiating the slice and expressing the answer in power series in σ̌′. This

gives b̂( ∂
∂q
)b̂( ∂

∂q̄
) = b−1b̄−1, which kills |D〉. Something similar happens with (4.2). To

get a nonzero answer we need our slice to depend nonholomorphically on q. But this is

precisely what is happening in the interpolation region, ǫ < |q| < 2ǫ, as we see from (4.4).

Thus we have smoothed the delta function into this annular region as desired. To compute

it we now observe that |D〉 = Qc0|0〉, so that the form

Ω = dν

is a total derivative on ǫ < |q| < 2ǫ. On the boundary |q| = 2ǫ we find that

ν
(
· · · ,

∂

∂q

)
= 〈ΣL, σ̌p, σ̌Q | · · · b̂

( ∂
∂q

)
c0|0〉P⊗ | ψ〉Q (4.5)
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and similarly when inserting ∂
∂q̄
. On the left the ellipsis denotes other tangent vectors

besides ∂
∂q
, ∂
∂q̄
; on the right it denotes the corresponding ghost insertions. Differentiating

(4.4) shows that

b̂
( ∂
∂q

)∣∣∣
|q|∼2ǫ

=
|q|

q
bP−1 +

1

2q
(bP0 + bQ0 − b̄P0 − b̄Q0 ) .

Since |ψ〉 obeys (2.4) we get

∮

|q|=2ǫ

ν =

∮ ( dq

2q
−

dq̄

2q̄

)
〈ΣL, σ̌Q | · · · | ψ〉Q

=2πiΩψ

(4.6)

where Ωψ is the measure with no dilaton inserted. As promised this is a topological

invariant — it is precisely the winding number of the phase |q|
q

relating (4.3) to (4.4).

We are not done, however. On |q| = ǫ we know Ω = 0 because (4.2) is holomorphic

in q. Still it does not follow that ν = 0, since in (4.5) we dropped one of the tangents ∂
∂q
,

∂
∂q̄
. In fact differentiating (4.2) and the similar expression at P gives

b̂
( ∂
∂q

)∣∣∣∣
|q|∼ǫ

= bP−1 + (1 + 2a1)b
P
0 + bQ0 + (b≥1 terms) .

Again substituting into (4.5) gives (taking into account the orientation of the boundary)

−

∮

|q|=ǫ

ν = −

∮
dq

q
(1 + 2a1)〈Σ, σ̌Q | · · · | ψ〉Q = −2πi(1 + 2a1)Ωψ . (4.7)

Combining (4.6) with (4.7) gives the full answer, which does depend on the slice via a1

as anticipated. Now choosing a1 = − 1
2 eliminates the inner piece, giving us the answer of

[16].

We should pause to comment on a confusing point. If |ψ〉 above is itself a dilaton then

we cannot drop the terms involving bQ≥1 above. Such terms modify the strength of the

contact term, but they do not lead to divergent answers, in apparent contradiction with [16].

Mathematically the source of this difference is clear: by switching from (c1c−1−c̄1c̄−1)|0〉 to

2c1c−1|0〉 we discarded a genuine, but divergent, total derivative. Physically the meaning of

this step is simply that the fusion of two of the present dilatons can never yield the tachyon

c1c̄1|0〉, while in [16] this did happen. For similar reasons we chose the holomorphic form

of the observables of topological gravity in (2.6).
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We are now ready to repeat our contact term analysis, this time in topological gravity.

In our analysis of the bosonic string we began by observing that the measure Ω = 0 close

to q → 0. In sect. three however we proved a stronger statement in topological gravity:

Ω = 0 everywhere unless the slice σ is as far as possible from being holomorphic. That is,

if any ∂σi

∂m̄a = 0 then Ω = 0. In particular (4.2) is holomorphic in q, so once again Ω ≡ 0

near q → 0, and hence we can use the same strategy as before to split the contact term

into two bits.

Now we use (2.6) at both P, Q, with n = 1 at P . With the notion of puncture given

in [13] we see that again (4.1) is the most general fixture in P̂0,3.
8 Now however we must

change the plumbing from σX = q/σY to the one appropriate to semirigid geometry [13]:

σX = (q + θδ)/σY . (4.8)

Here θ is the same on both sides of the pinch and δ is an anticommuting modulus, the

partner of q. Eqn. (4.8) obeys (3.4); it gives (cf. (4.2))

σ̌ = q−1
[
σX−Eq−θδq−1σX

]
+a1q

−2
[
σX−Eq−θδq−1σX

]2
+ · · · , |q| ≪ ǫ , (4.9)

which is to be compared to (cf. (4.3))

σ̌′ = σX − Eq − Eθδ , |q| > 2ǫ . (4.10)

To make the notation compact we have introduced a constant E which is = 0 for σ̌Q,

= 1 for σ̌P . Again both forms depend on two even moduli q, r and two odd δ, ρ; the

attachment point X is located at r, ρ in some fixed set of coordinates. Again we can

smoothly interpolate σ̌ from its asymptotic form (4.9) as |q| → 0 to |q|
q
σ̌′ at |q| ∼ 2ǫ; again

the phase is unremovable. Then exactly the same argument as before yields the residue

(4.6), since again bQ0 annihilates |On〉Q. We need only to make two minor adaptations to

(3.12). First of course not one, but two local coordinates σ̌P , σ̌Q depend on q, δ. Secondly

we are not inserting |O1〉P to get a top form, but rather (c0 − c̄0)c1c̄1| − 1〉P to get a

(2K − 1)-form. One finds that the integral
∫
dδdδ̄ brings in the inhomogeneous bits of

both GP−1 and ḠP−1; together with b0δ(β−1)δ(β̄−1) from the ghost insertions this converts

the inserted state to |0〉P , which we again can erase.

8 For example we cannot add λθ to the local coordinate because λ would have to be anticom-

muting, and hence a function of the odd moduli. But the 3-punctured sphere has no moduli at

all [13].
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Once again we have the answer we want, but we are not yet finished. As in the bosonic

string we must now turn to the other boundary |q| = ǫ of the annular patch. Here the slice

is given by (4.9). This time one finds that this contribution is always zero! The algebra

is slightly tedious, so we have relegated it to the Appendix. The implication, however, is

simple: since the measure is zero for |q| < ǫ, and the contribution from the annular patch

is just the winding number (4.6), we at once find the dilaton equation, eqn. (1.2), with

σ1 = O1/2πi. The answer is completely independent of the choice of the degeneration

fixture (4.1), as promised.

Instead of using Stokes’ theorem, one can go through all the calculations of [16] in

semirigid geometry. We have recovered the same answer at least for O0 or O1 at Q. In

particular the independence of a1, ã1 follows, though now it looks much more surprising.

A key feature of this derivation is that as we noted at the end of sect. three, the integrals

over the odd moduli ρ, δ, do not all bring down factors of the supercurrent G. Rather,

some of these integrals differentiate the explicit moduli dependence of the normal ordering

(see (3.7)), a phenomenon first seen in the heterotic string [15]. For this reason, just

naively picture-changing all the operators On n times and then proceeding on ordinary

moduli space does not yield the correct dilaton equation.

5. Conclusion

Conformal and superconformal geometry tell us all we need to know to construct

string and superstring amplitudes. Namely, the geometry dictates the class of surfaces on

which correlation functions may be taken to live, the dynamics of the geometric fields on

those surfaces, the possible couplings to matter, and the space of physical states. What we

have seen here is how semirigid geometry dictates all these ingredients for pure topological

gravity. In particular the geometry unambiguously requires certain unexpected elements

in the measure, and these elements are necessary to yield the required contact terms in

the dilaton equation.

The semirigid approach also provides a common superspace home for both ghost and

matter fields; it tells us that we can couple pure topological gravity to matter systems ob-

tained by appropriate truncation of locally N = 2 supersymmetric matter. In particular it

leads us to expect that higher matrix models correspond to higher N = 2 minimal models

coupled to topological gravity, as seems to be the case [26][27], rather than to topologi-

cal SL(n,R) gauge theory. It has been suggested that these higher topological gravities
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generate the intersection numbers of some exotic new moduli spaces [24]. Whether the

semirigid approach can shed light on the construction of the latter spaces is an interesting

open question.
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Appendix A. A calculation

We want to compute the analog of (4.7) for the topological theory. To simplify the

equations we will set to zero all the arbitrary coefficients ai, ãi beyond the dangerous a1

and take ã1 = a1 ≡ a. We will give only the main points of the calculation.

We want to construct the differential form ν whose exterior derivative is the measure

Ω. We are not computing the difference of ν across patch boundaries, but rather the

contribution to
∫
ǫ<|q|<2ǫ

dν from the inner boundary. Since for |q| ∼ ǫ the slice has

already reached its asymptotic form (4.9), the calculation is fairly easy. This of course is

why we split the calculation up in this way.

From (4.9) we have f01(z1) =
z1
q
− E + a

(
z1
q
− E

)2
, so

vq = −
1

q

[
E + (1 + 2aE)z0 + (a− 2a2E)z 2

0 + O(z 3
0 )

]
, ṽq = 0

∂vq
∂q

= −
1

q
vq .

From (3.7)–(3.10) we thus get (suppressing all moduli except q, q̄)

ν = 〈Σ, f01 | GqGq(dq bq + dq̄ bq)|δ(βq)|
2 · cP0 c

P
1 c̄

P
1 (γ

Q
0 )ncQ1 c̄

Q
1 | −1〉P ⊗ | − 1〉Q . (A.1)
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Note that the term βqq of (3.7) is annihilated by δ(βq). Consider the first term of (A.1).

We may replace Gq by G
(0)
q since (bq)

2 = 0 (see (2.1), (3.13)). Commuting G
(0)
q to the

right we only pick up modes of cP , cQ which either kill |0〉 or are already present. Thus

this term vanishes. The second term is even easier: δ(β̄q) converts the antiholomorphic

part of | − 1〉P into the SL2-invariant vacuum, which G
(0)
q then kills.
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