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Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
3Laboratory of Biomaterials, Federal Institute for Material Research and Testing, Unter den Eichen 87,
12200 Berlin, Germany
4Center for Bioactive Materials and Tissue Engineering, School of Engineering and Applied Sciences,
University of Pennsylvania, Philadelphia, Pennsylvania 19104
5Department of Plastic and Maxillofacial Surgery, Division of Oral Surgery, Charité—University Medical Center
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Abstract: Ideally, bioactive ceramics for use in alveolar
ridge augmentation should possess the ability to activate
bone formation and, thus, cause the differentiation of
osteoprogenitor cells into osteoblasts at their surfaces.
Therefore, in order to evaluate the osteogenic potential of
novel bone substitute materials, it is important to examine
their effect on osteoblastic differentiation. This study
examines the effect of rapidly resorbable calcium–alkali–
orthophosphates on osteoblastic phenotype expression
and compares this behavior to that of b-tricalcium phos-
phate (TCP) and bioactive glass 45S5. Test materials were
three materials (denominated GB14, GB9, GB9/25) with a
crystalline phase Ca2KNa(PO4)2 and with a small amor-
phous portion containing either magnesium potassium
phosphate (GB14) or silica phosphate (GB9 and GB9/25,
which also contains Ca2P2O7); and a material with a novel
crystalline phase Ca10[K/Na](PO4)7 (material denomi-

nated 352i). SaOS-2 human bone cells were grown on the
substrata for 3, 7, 14, and 21 days, counted, and probed
for an array of osteogenic markers. GB9 had the greatest
stimulatory effect on osteoblastic proliferation and differ-
entiation, suggesting that this material possesses the
highest potency to enhance osteogenesis. GB14 and 352i
supported osteoblast differentiation to the same or a
higher degree than TCP, whereas, similar to bioactive
glass 45S5, GB9/25 displayed a greater stimulatory effect
on osteoblastic phenotype expression, indicating that
GB9/25 is also an excellent material for promoting os-
teogenesis. � 2007 Wiley Periodicals, Inc. J Biomed
Mater Res 00A: 000–000, 2007
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INTRODUCTION

The use of dental implants has become a common
treatment to replace missing or lost teeth.1 However,
when teeth are missing, the natural resorptive pro-
cess subsequent to extraction frequently results in an
alveolar ridge with deficient bone volume.1–3 In

addition, the fabrication of an esthetically and func-
tionally successful implant prosthesis generally can
be accomplished only if the implants are placed in
the ideal position with regard to the anticipated
restorative design.1,2 As the implant should ulti-
mately represent the apical extension of an optimal
prosthetic superstructure, the implant position should
primarily be determined by the planned, future pros-
thesis, and not solely by bone anatomy.1,2 Thus, aug-
mentation of the alveolar ridge before implant place-
ment is frequently required in implant dentistry.1–3

The current gold standard for bone reconstruction
in implant dentistry is using autogenous bone
grafts.4–6 Among the various techniques to recon-
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struct or enlarge a deficient alveolar ridge, the
concept of guided bone regeneration (GBR)7 has
become a predictable and well-documented surgical
approach.4 The need for localized ridge augmenta-
tion prior to the placement of dental implants has
been one of the clinical indications for GBR.7 At
present, autogenous bone grafts are preferably com-
bined with barrier membranes.4,5 These autografts
have been used to reduce the defect volume, thereby
stabilizing the blood clot, and to support the mem-
brane as a space-maintaining device, thus preventing
their collapse into large defects.4,7 Furthermore,
augmentation of the maxillary sinus floor with
autogenous bone grafts has become a well-estab-
lished pre-implantology procedure for alveolar
ridge augmentation of the posterior maxilla.8 The
main disadvantages of autogenous bone grafts have
been the need for an additional surgical site,
increased donor site morbidity, insufficient volume
of (intraorally) harvested bone, and the need to use
general anesthesia for extraoral bone harvesting.9–12

Using biodegradable bone substitutes as a mem-
brane-supporting device would simplify GBR, since
it avoids second-site surgery for autograft har-
vesting.4,5 This is also true for sinus floor elevation
procedures.9–12

A bone substitute material for alveolar ridge aug-
mentation must be rapidly resorbable and should
undergo remodeling and complete substitution by
newly formed functional bone tissue in view of plac-
ing dental implants in such augmented sites.5,13,14

Alloplastic bone substitute materials are superior to
freeze-dried human allografts because of their safety
in terms of disease transmission and immunological
aspects.5,12

Recently, the use of tricalcium phosphate (TCP)
and bioactive glass (Bioglass 45S5) particles as allo-
plastic bone graft materials for alveolar ridge aug-
mentation and sinus floor elevation procedures has
received increasing attention in implant den-
tistry.6,14–19 With b-TCP, biodegradation has been
reported to be incomplete 9.5 months after grafting
in the human mandible. Histologic examination of
these biopsies revealed that 34% of the biopsy
consisted of mineralized bone tissue and 29% of
remaining b-TCP.16 Biopsies sampled at 6 months
after sinus floor augmentation consisted of 38% min-
eralized bone and between 8 and 26% remaining
b-TCP.19 With respect to bioactive glass 45S5 (BG)
particles of a narrow size range, Tadjoedin et al.
reported that, after grafting in the human sinus floor,
BG particles appeared to resorb within 1–2 years.15

This was by dissolution rather than by osteoclastic
activity.15 The volume of the biologically trans-
formed BG particles in the biopsies decreased from
29% at 4 months to 15% at 6 months and 8% at 15
months.15 Thus, compared with the bone substitute

materials that are currently clinically available,14–19

there is a significant need for bone substitute materi-
als that degrade more rapidly, but still stimulate
osteogenesis at the same time.5,13,14 Thus consider-
able efforts have been undertaken to produce rapidly
resorbable bone substitute materials, which exhibit
good bone bonding behavior by stimulating
enhanced bone formation at the interface in combi-
nation with a high degradation rate. This has led to
the development of a series of novel, bioactive,
rapidly resorbable glassy crystalline calcium–alkali–
orthophosphate materials.20–22 These are glassy crys-
talline calcium–alkali–orthophosphates, which exhibit
stable crystalline Ca2KNa(PO4)2 or Ca10[K/Na](PO4)7

phases.20–23 These materials have a higher solubility
than TCP. They are designed to exhibit a higher
degree of biodegradability compared to TCP20–22

and, therefore, could be excellent alloplastic materi-
als for alveolar ridge augmentation. Another ap-
proach to increase the solubility and biodegradabil-
ity of calcium-orthophosphates is by adding more
phosphates, resulting in the formation of crystalline
or amorphous diphosphates. Diphosphates have a
higher solubility than orthophosphates and Ca2P2O7

is transiently formed in vivo during the mineraliza-
tion process of the bone matrix.24 A number of
in vitro and in vivo studies, which examined calcium
phosphates to which diphosphates were added,
yielded favorable results regarding their potential to
regenerate bone.25,26 Therefore, a calcium–alkali–
orthophosphate ceramic was recently developed,
which also contains a small portion of diphosphates
(Ca2P2O7).22 Furthermore, three-dimensional scaf-
folds can be fabricated from these calcium–alkali–
orthophosphate ceramic materials27 (with and with-
out addition of diphosphates), which is advanta-
geous for tissue engineering purposes.

Ideally, bioactive biomaterials for use in bone
regeneration should possess the ability to activate
bone formation and, thus, cause the differentiation
of osteoprogenitor cells into osteoblasts at their sur-
faces. Therefore, in order to evaluate the osteogenic
potential of novel implant materials, it is important
to examine the effect of these materials on osteoblas-
tic differentiation. Consequently, over the last dec-
ade, various cell culture assays have been developed
which permit studying the effect of biomaterials on
the expression of markers of the osteoblast pheno-
type in vitro.28–32 These in vitro assays have proven
valuable for screening novel biomaterials, since they
facilitate gaining insight into how osteoblastic cell
differentiation is influenced by endosseous implant
materials.

This study examines the effect of novel rapidly
resorbable calcium–alkali–orthophosphates when com-
pared with currently clinically used materials (b-TCP
and bioactive glass 45S5) on the expression of an array
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of osteogenic markers by human osteoblast-like cells
(SaOS-2).

MATERIALS AND METHODS

Test materials

Four novel rapidly resorbable calcium–alkali–orthophos-
phate ceramic bone substitute materials21–23,31,33 were stud-
ied in comparison to currently clinically used synthetic
bone substitute materials (b-TCP, bioactive glass 45S5).
TableT1 I summarizes their composition. These materials are
glassy-crystalline materials with a higher solubility than
b-tricalcium phosphate and their main crystalline phase is
either the new phase Ca2KNa(PO4)2

20–23 or Ca10[K/Na]
(PO4)7.22 Test materials were three materials with the crys-
talline phase Ca2KNa(PO4)2 and with a small amorphous
portion containing either magnesium potassium phosphate
(material denominated GB14) or silica phosphate (mate-
rials denominated GB9 and GB9/25, GB9/25 also contains
Ca2P2O7); and a calcium phosphate material with the crys-
talline phase Ca10[K/Na](PO4)7 (material denominated
352i).20–22 Preparation of GB9 and GB14 has been described
in detail elsewhere.20,21 Importantly, GB9/2522 also con-
tains a small portion of crystalline and amorphous diphos-
phates (Ca2P2O7), unlike GB9, which does not.20,21,31,33

Crystallization occurs spontaneously from the melt, and
thus, the bioceramics can easily be fabricated. The dissolu-
tion rate of the calcium–alkali–orthophosphates depends
on the amount of added MgO, SiO2 and P2O5. In a simu-
lated physiological solution (0.2M Tris-HCl), GB14, GB9,
GB 9/25, and 352i dissolve faster than TCP.20–22 GB14,
GB9, GB9/25, and 352i discs were made using reagent-
grade CaHPO4, Na2CO3, K2CO3, MgCO3, SiO2, and H3PO4.
These compounds were mixed, and a melt was formed in
a platinum crucible at about 15508C for 2 h. The material
was cast and crushed to produce granules. b-TCP, GB14,
GB9, GB9/25, and 352i specimens were prepared by
compressing granules (grain size 40 lm) followed by
sintering to form 10-mm diameter discs, as described
previously.31,33,34

Bioactive glass 45S5 (BG) discs, 12 mm in diameter and
1-mm thick, were cut from cast rods (MO-SCI, Rolla, MO)

using a slow-speed diamond wheel saw (South Bay Tech-
nology, Clemente, CA) and acetone as a coolant. After cut-
ting, discs were polished with 600- and 800-grit silicon
carbide papers and then ultrasonically cleaned, first in
acetone and then in ethanol. A layer of carbonate apatite
(c-Ap) was formed on the BG surface using a treatment in
Tris buffered solution (pH 7.4 at 378C) supplemented with
electrolytes typical for plasma (TE),35 as described recently
by Radin et al.36 In brief, each disc was placed in a sepa-
rate vial and immersed at a BG surface-to-solution-volume
ratio of 0.1 cm�1. The vials were placed on a shaker table
in a water-jacketed incubator (Thermo Forma) at 378C with
a humidified atmosphere containing 5% CO2. The immer-
sion time was 3 days. Subsequently, the discs were rinsed
with ethanol, dried, and stored in a desiccator.36 This pro-
cedure resulted in the bioactive glass surface to be fully
and uniformly covered by a layer of fine, densely packed
precipitates composed of crystalline carbonate calcium
phosphate apatite as evidenced by SEM/EDX/FTIR analy-
ses as previously described.36 Prior to cell seeding, BG
discs were sterilized by immersion in ethanol for 30 min
followed by exposure to UV-light for 30 min. This was fol-
lowed by immersion in tissue culture medium for 2 h at
378C in order to facilitate serum protein adsorption as pre-
viously described.28,35,36 Previously it was shown by El-
Ghannam et al. AQ2

28,37 that this type of pretreatment (creation
of a c-Ap layer and subsequent immersion in tissue culture
medium prior to cell seeding) resulted in the greatest
stimulatory effect of Bioglass specimens on osteoblast dif-
ferentiation, and thus lead to more enhanced osteoblast
differentiation compared with untreated Bioglass discs or
BG discs solely immersed in tissue culture medium. The
ceramic specimens were sterilized at 3008C for 3 h. Phase
transformations do not occur below 6008C.

Surface roughness measurements

The surface roughness of the various specimens was
characterized by profilometry using a Hommel T 8000 Sur-
face Profile Measuring System with a diamond stylus
(Hommel, Germany). Parameters used to quantify surface
roughness were Ra (the arithmetic mean of departures of
the roughness profile from the mean line) and Rz (the
average of five consecutive values of roughness height,
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TABLE I
Composition of Novel Calcium–Alkali–Orthophosphate Ceramic Bone Substitute Materials, TCP,

and Bioactive Glass 45S5

Material

Composition (wt %)

CaO P2O5 Na2O K2O MgO SiO2 Ca3(PO4)2

GB14 30.67 43.14 9.42 14.32 2.45
GB9 32.25 40.81 8.91 13.54 2.57 1.92
GB9/25 29.25 44.81 8.41 13.04 2.57 1.92
352i 40-45 45-48 5-8 1-2 1-1.5 1-2
TCP 100
BG 24.5 6.0 24.5 45.0

TCP, tricalcium phosphate; BG, bioactive glass 45S5.

AQ1CALCIUM–ALKALI–ORTHOPHOSPHATES ON OSTEOBLAST DIFFERENTIATION IN VITRO 3

Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.a



which is defined as the distance between the top of the
highest peak and the bottom of the deepest valley).

Scanning electron microscopy

The surface morphology of the various specimens was
characterized by scanning electron microscopy (SEM).
SEM analysis of the different bioceramic surfaces was
performed after fabrication and after the preincubation
treatment in fully supplemented cell culture medium.
Preparation for SEM analysis included rinsing the different
samples three times in 0.1M cacodylate-buffered solution,
pH 7.2, and fixing in 4% glutaraldehyde in 0.1M sodium
cacodylate-buffered solution at 48C for 15 min. Subse-
quently, the specimens were washed with cacodylate
buffer 0.1M, pH 7.2, three times and dehydrated in ascend-
ing concentrations of ethanol, viz. 30, 50, 70, 80, 90, and
96%, finally immersed in absolute ethanol for 10 min each,
after which the specimens were immersed for 10 min each
in three baths of hexamethyldisilazane (Sigma, St. Louis,
MO). Each specimen was then air-dried for 24 h. The dried
specimens were glued onto aluminium stubs, sputter-
coated with gold, and examined in a CamScan MaXim at
an accelerating voltage of up to 20 kV.

Cell cultures

The SaOS-2 human osteoblast-like osteogenic cell
line,38,39 derived from a human osteosarcoma, was obtained
from the German Collection of Microorganisms and Cell
Cultures (Braunschweig, Germany). Cells were cultured in
a modified McCoy’s 5A medium (Sigma-Aldrich, Tauf-
kirchen, Germany) containing 10% FCS (Gibco, Paisley,
UK), 1% penicillin (10,000 U)/streptomycin (10 mg/mL,
Gibco), 1% 200 mM L-glutamine (Gibco), and 0.1M ascorbic
acid phosphate magnesium salt (Wako Pure Chemicals,
Osaka, Japan) and maintained in a humidified atmosphere
containing 5% CO2 at 378C. The culture medium was
changed three times per week. When cells reached conflu-
ence, a trypsin-EDTA solution (0.5 g/L trypsin and 0.2 g/L
EDTA, Gibco) was used to detach cells from the bottom of
the culture flasks, and 1/3 of the total cells were trans-
ferred into a new tissue culture flask. These osteogenic
human cells (SaOS-2) were used for the cell culture experi-
ments described later.

Cellular quantitative immunocytochemistry assay

All calcium phosphate ceramics were preincubated in
500 lL of culture medium for 24 h without cells. Previ-
ously, it was demonstrated that preincubation of calcium–
alkali–orthophosphate ceramics in cell culture medium for
24 h prior to cell seeding resulted in greater bone nodule
formation compared to seeding cells on the native ceramic
specimens.33,34 The bioactive glass specimens were
immersed in tissue culture medium and incubated for 2 h,
as described earlier. SaOS-2 cells of the 5th to 8th passage
were seeded at a density of 8.49 3 104 cells/cm2 on the
different substrates (10 specimens per material) and

cultured for 3, 7, 14, and 21 days. A modified version of
the cellular quantitative immunocytochemistry assay
described by Wang et al.32 was used to quantify the intra-
cellular protein expression of an array of osteogenic
markers characteristic of the osteoblast phenotype. In brief,
at the predetermined time-points, cells were harvested
from the test surfaces by trypsinization using 0.02% tryp-
sin/0.02% EDTA in phosphate-buffered saline solution
(PBS) and counted with a hemocytometer as described pre-
viously.29,31,32 A prescribed aliquot of cells (1 3 104) was
placed into wells of 96-well plates and centrifuged at 1000
rpm for 10 min. The supernatant from each well was vac-
uum-aspirated using a fine needle and cells were dried to
the plates for 30 min in a fan-forced incubator at 378C.
Cells dried to the plates were fixed by immersing the
entire plates for 1 min in methanol:acetone (9:1) at room
temperature as previously described.29,31,32 Fixation of cells
was required in order to avoid loss of cells during the
detection protocol. Subsequently, cells were air-dried and
then washed in two changes of PBS. This was followed by
incubation in 0.25% Triton 100-X (ICN, USA) and 0.25%
Nonidet NP40 (Sigma) in PBS for 5 min to permeabilize
the cell membrane. This solution was decanted and cells
were washed in two changes of 0.05% (v/v) Triton 100-X
in PBS. In order to reduce nonspecific binding, 50 lL of
the blocking solution consisting of 2% (w/v) bovine serum
albumin, heat inactivated (Sigma-Aldrich) in Hanks’
balanced salt solution (Sigma-Aldrich), was added to each
well, and the plates were incubated for 20 min at room
temperature in a humidified chamber. The blocking solu-
tion was then decanted and the wells drained, before the
monoclonal or polyclonal antibodies were added. The
expressed intracellular proteins were detected using mono-
clonal antibodies for ALP (Sigma), OC (Santa Cruz), as well
as polyclonal antibodies for Col I (LF-39), OP (LF-124), ON
(BON-I), and bone sialoprotein (BSP, LF-83).40 The polyclonal
antibodies used in this study were generously provided by
Dr. Larry Fisher (NIDCR, Bethesda, MD).

The presence of a biotin label on the F(ab)2 fragment of
the secondary antibody was quantitated using a one-step
application of a soluble complex of streptavidin and
biotinylated alkaline phosphatase41 (Dako Cytomation,
Denmark) and, subsequently, visualization by the p-NPP
assay.41 An amount of 5 mM of levamizole was added to
inhibit endogenous ALP activity. Quantitation was per-
formed by measuring the optical density of the yellow
color (p-NP), and it was read by a SPECTRA MAX 340PC
plate reader (Molecular Devices, Sunnyvale, CA) at
405 nm. The results were normalized to the internal con-
trol b-actin protein.29,31,32

Statistical analysis

Two runs of experiments were performed and assays
were run in quadruple. The measurements from the two
different experimental runs were pooled. To compare the
different substrata to each other, multiple testing was per-
formed using Student’s t-test, which included applying the
Bonferroni-adjustment according to the number of tests
performed. Significance was assumed achieved for p <
0.05.
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RESULTS

Surface roughness measurements

TableT2 II lists the results of the surface roughness
assessment. Owing to the difference in fabrication
process, the TCP, GB14, GB9, GB9/25, and 352i
specimens exhibited a significantly higher surface
roughness than the BG specimens (Table II).

SEM analysis

The SEMs in FigureF1 1 illustrate the surface mor-
phology of the various bioceramic discs after fabrica-
tion. FigureF2 2 shows the various bioceramic surfaces

after completion of the preincubation treatment in
fully supplemented cell culture medium. The Bio-
glass 45S5 surface is uniformly covered by a layer of
fine, densely packed precipitates [Fig. 2(B)]. Previ-
ously, these precipitates were shown to be composed
of a crystalline carbonate calcium phosphate apatite
(c-Ap).35

Cellular proliferation

All substrates supported continuous cellular
growth for 21 days (Fig. F33). By day 21, the number
of cells on GB9 was higher than on all other materi-
als. This was followed by GB9/25, which displayed
higher cell numbers than 352i, bioactive glass 45S5
(BG), and TCP. Furthermore, 352i had more cells
than BG and TCP, while GB14 had less cells than BG
and TCP. And cell numbers on BG were higher than
on TCP after 3 weeks of incubation.

Cellular differentiation

At day 3, SaOS-2 cells cultured on GB9 expressed
significant higher protein levels levels for ON and
BSP, compared with the other surfaces (p < 0.0006)
[Figs. F4,4(A) and F55(E,F)]. Also protein production for
Col I and OP was significantly higher when cells
were grown on GB9 than for cells cultured on BG,
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TABLE II
Surface Roughness of the Different

Bioceramics Examined

Biomaterial

Surface Roughness

Rz, Mean (lm) Ra, Mean (lm)

TCP 13.89 2.30
GB14 13.03 2.17
GB9 13.37 2.21
GB9/25 13.24 2.18
352i 13.43 2.22
BG 4.02 0.43

TCP, tricalcium phosphate; BG, bioactive glass 45S5.

Figure 1. Scanning electron micrographs of the various calcium phosphate specimens after fabrication of the disc-shaped
substrata: (A) tricalcium phosphate; (B) Bioglass 45S5; (C) GB14; (D) GB9; (E) GB9/25; (F) 352i.
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GB9/25, and 352i (p < 0.002) [Fig. 5(A,C)]. Further-
more, SaOS-2 cells grown on the novel biomaterials,
GB9/25 and 352i, and on BG had significantly higher
levels of ALP compared with cells cultured on GB14,
GB9, and TCP (p < 0.002) [Fig. 5(B)].

At day 7, protein formation in SaOS-2 cells cul-
tured on BG and GB9 was significantly higher for
Col I, ON, and BSP than in cells grown on all other
materials (p < 0.003) [Figs. 4(B) and 5(A,E,F)]. The
same was true when comparing protein expression
for Col I, ON, and BSP in cells on GB9, GB9/25, and
GB14 to that in cells cultured on TCP specimens
(p < 0.002) [Fig. 5(A,E,F)]. Moreover, cells cultured
on all calcium–alkali–orthophosphate materials ex-
pressed significantly higher protein levels for OP
than cells cultured on TCP (p < 0.006) [Fig. 5(C)].
Protein production by SaOS-2 cells for ALP was sim-
ilar on all biomaterials studied [Figs. 4(B) and 5(B)].
Furthermore, SaOS-2 cells grown on BG had signifi-
cantly higher levels of OC compared with cells
cultured on GB9, GB9/25, TCP, and 352i (p <
0.002).The same was true when comparing OC pro-
duction in cells on GB14 and GB9 to that in cells
cultured on 352i (p < 0.006) [Figs. 4(B) and 5(D)].

At day 14, cells grown on GB9 expressed signifi-
cantly higher protein levels of Col I, ON, and BSP
than do cells cultured on all other surfaces (p <
0.0095) [Figs. 4(C) and 5(A,E,F)]. The same was true
when comparing OP formation in cells on GB9 to
that on GB9/25, GB14, 352i, and TCP) [Figs. 4(C)

and 5(C)]. Moreover, cells cultured on GB9 also
expressed significantly higher levels of OC than
SaOS-2 cells grown on TCP [Figs. 4(C) and 5(D)].
Furthermore, BG displayed more cells expressing
significantly higher protein levels of OC than cells
grown on all other materials as well as significantly
higher protein levels of Col I, ON, and BSP com-
pared with cells on GB9/25, GB14, 352i, and TCP
[Figs. 4(C) and 5(A,E,F)]. Moreover, protein pro-
duction by SaOS-2 cells for Col I, OP, OC, ON, and
BSP was higher when these cells were cultured on
any of the calcium–alkali–orthophosphate ceramics
than for the same cells grown on TCP [Figs. 4(C)
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Figure 2. Scanning electron micrographs of the various bioceramic surfaces after preincubation in fully supplemented
cell culture medium: (A) tricalcium phosphate; (B) Bioglass 45S5; (C) GB14; (D) GB9; (E) GB9/25; (F) 352i.

Figure 3. Number of SaOS-2 cells cultured over 21 days
on different bioceramics.
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and 5(A,C–F)]. However, these differences in protein
production were only statistically significant for Col
I and BSP (p < 0.004). Also cell growth was higher

on GB9/25, GB14, and GB9 specimens compared
with the TCP surfaces. Furthermore, cells cultured
on GB9 and GB9/25 also expressed significantly
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Figure 4. The temporal expression of bone-related proteins by SaOS-2 cells cultured on different calcium phosphate
materials for 3 weeks. (A) Day 3, (B) day 7, (C) day 14, (D) day 21. Intracellular protein expression by SaOS-2 cells is at
(A) 3, (B) 7, (C) 14, and (D) 21 days of culture on tricalcium phosphate (TCP), bioactive glass 45S5 (BG), GB14, GB9, GB9/
25, and 352i. Results are normalized to the internal control b-actin protein for each time point and each substratum. All
values are mean 6 standard deviation of eight measurements. Col I, Type I collagen; ALP, alkaline phosphatase; OP,
osteopontin; OC, osteocalcin; ON, osteonectin; and BSP, bone sialoprotein.

Figure 5. The expression of various osteogenic proteins by SaOS-2 cells cultured on different bioceramics for 3 weeks
depicted as a function of time. (A) Type I collagen, (B) alkaline phosphatase, (C) osteopontin, (D) osteocalcin, (E) osteonec-
tin, and (F) bone sialoprotein. Results are normalized to the internal control b-actin protein for each time point and each substra-
tum. All values are mean 6 standard deviation of eight measurements. TCP, tricalcium phosphate; BG bioactive glass.
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higher levels of ALP than cells grown on BG (p <
0.01) [Figs. 4(C) and 5(B)].

At day 21, GB9 had the highest cell numbers
(Fig. 3) expressing significantly higher protein levels
of Col I and ON than do cells cultured on all other
surfaces (p < 0.002) [Figs. 4(D) and 5(A,E)]. The
same was true when comparing OC formation in
cells on GB9 to that on 352i and TCP surfaces (p <
0.0003) [Figs. 4(D) and 5(D)]. Furthermore, SaOS-2
cells cultured on GB9/25 displayed greater cell num-
bers and significantly higher levels of Col I and BSP
than cells grown on GB14, BG, 352i, and TCP (p <
0.005), and significantly higher levels of ON than
cells on GB14, 352i, and TCP (p < 0.0003) [Figs. 4(D)
and 5(A,E,F)]. Also OC and OP formation was
greater in cells cultured on GB9/25 compared with
the same cells grown on TCP (p < 0.0123) [Figs. 4(D)
and 5(C,D)]. Protein production by SaOS-2 cells for
Col I, OP, OC, ON, and BSP was higher when these
cells were grown on BG (p < 0.003) and GB14 than
for the same cells grown on 352i and TCP [Figs. 4(D)
and 5(A,C–F)], while cell number was lower (Fig. 3).
However, with regard to GB14, these differences in
protein production were only statistically significant
for Col I, ON, and BSP (p < 0.003). Cells cultured on
352i expressed higher levels of Col I, OP, OC, ON,
and BSP than cells on TCP [Figs. 4(D) and 5(A,C–F)].
However, these differences in protein expression
were only statistically significant for BSP (p < 0.003).

In cells grown on GB9, protein expression of Col I,
ALP, OP, and BSP peaked at 14 days, while protein
production for OC and ON increased further at 21
days (Fig. 5).

DISCUSSION

Ideally, a biomaterial used as bone substitute ma-
terial should be a temporary material serving as a
scaffold for bone formation. As such, it should
undergo complete substitution by newly formed
functional bone tissue.42,43 Especially for applications
such as alveolar ridge augmentation, this substance
must be rapidly resorbable in view of placing
implants as quickly as possible in such augmented
sites.5,9,13,14 Bone bioactivity has been defined as the
ability of materials to form a bond with the adjacent
tissues.44,45 Ideally, this bond consists of bone laid
down by osteoblastic cells recruited to the implant
surface. Consequently, bioactive bone substitute
materials for use in alveolar ridge augmentation
should possess the ability to activate bone formation
in combination with a high degradation rate.5,13,14,30

This in turn requires the ability to differentiate osteo-
genic cells into osteoblasts on their surface.30,45

Therefore, in order to evaluate the osteogenic poten-
tial of bioactive bone substitute materials it is impor-

tant to examine the effect of these materials on osteo-
blastic differentiation.

Osteoblast differentiation is defined by three
principal biological periods: cellular proliferation,
cellular maturation, and matrix mineralization.46–48

Differentiating osteoblasts are known to synthesize
and secrete type I collagen, alkaline phosphatase,
and other noncollagenous extracellular bone matrix
proteins such as osteonectin, osteocalcin, osteopon-
tin, and bone sialoprotein.46–49 These bone–matrix
proteins have proven to be particularly useful osteo-
genic markers characterizing the different stages of
osteoblast differentiation.46 Type I collagen is
expressed during the initial period of proliferation
and extracellular-matrix biosynthesis, whereas ALP
is expressed during the postproliferative period of
extracellular-matrix maturation, and the expression
of osteopontin, osteonectin, osteocalcin, and bone
sialoprotein occurs later during the third period of
extracellular-matrix mineralization.46–49 Consequently,
since there is no specific single marker for osteoblasts,
the cellular expression of a range of noncollagenous
and collagenous proteins as well as alkaline phospha-
tase has to be investigated when examining cellular
differentiation. Thus, the present study quantitatively
records the response of human osteogenic cells to
novel rapidly resorbable calcium–alkali–orthophos-
phates when compared with currently clinically used
bone substitute materials (b-TCP and bioactive glass
45S5) in terms of protein expression of an array of
osteogenic markers as a measure of phenotypic differ-
entiation.29,31

Different calcium phosphates tested, significantly
affected cellular growth and the temporal expression
of an array of bone-related proteins. In the current
study, GB9 had the most effect on proliferation and
differentiation of SaOS-2 cells, inducing type I colla-
gen formation as well as expression of osteopontin,
bone sialoprotein, and osteonectin protein at 3, 7,
and 14 days, indicating later osteoblast differentia-
tion. This pattern was maintained at a later time
point (day 21) for Col I, ON, and OC. OP, ON, OC,
and BSP have been tightly linked to osteoid produc-
tion and matrix mineralization,46–49 thereby suggest-
ing that this material may possess a higher potency
to promote osteogenesis and matrix calcification,
than do TCP, BG, and the other calcium phosphates
tested.

GB9/25, BG, and 352i induced enhanced ALP
expression at 3 days characterizing the change from
the proliferative to the postproliferative period,
before this feature was seen in TCP. This suggests
that these materials are capable of promoting more
rapid differentiation of osteogenic cells into osteo-
blasts compared with TCP.

After 1 and 2 weeks, BG showed enhanced expres-
sion of Col I, BSP, ON, and OC compared with
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GB9/25, GB14, 352i, and TCP. Also at 3 weeks, simi-
lar to GB9, cell numbers and Col I, BSP, ON, and
OC production were higher than on TCP and 352i.
These findings underline the capability of bioactive
glass 45S5 to induce osteoblast differentiation early
on. Furthermore, they are in agreement with previous
studies, which showed that bioactive glass 45S5
stimulates the osteoblast phenotype in vitro.28,30,36,50–53

This was due to surface-mediated28,30,36,44,50,53 as
well as solution-mediated effects.30,51–53

At 7 days, cells on GB9/25 displayed greater
expression of Col I and BSP than cells on TCP. This
pattern was maintained at 14 days and was accom-
panied by enhanced cellular proliferation compared
with the TCP surfaces. Moreover, at 21 days, similar
to GB9 and BG, GB9/25 surfaces displayed greater
cell numbers expressing higher protein levels of OP,
ON, OC, and BSP compared with cells on TCP. Since
these osteoblastic markers characterize the later
stages of osteoblast differentiation, this is suggestive
that GB9/25 may possess a higher potency to pro-
mote osteogenesis and matrix calcification than does
TCP. Furthermore, at 21 days also greater cell num-
bers and protein expression for Col I and BSP were
noted on GB9/25 compared with GB14, 352i, and BG,
suggesting that GB9/25 is also an excellent material
for promoting osteogenesis and bone regeneration.

At 7, 14, and 21 days GB14 showed greater protein
expression of ColI, ON, and BSP than TCP. This is
indicative that GB14 stimulates the expression of the
osteoblastic phenotype to a greater extent than TCP.

At 3 days, 352i induced greater ALP expression
than TCP. At 7 days, cell cultured on 352i expressed
significantly higher OP levels than cells on TCP,
while ALP and OC expression was similar. More-
over, at 14 days 352i showed greater protein expres-
sion of ColI and BSP than TCP, a pattern which was
maintained for BSP at 21 days, while at 14 and 21
days, cells on 352i expressed similar protein levels
for OP, OC, and ON compared with cells on TCP.
Cell numbers, however, were higher on 352i after 3
weeks of incubation. These findings suggest that this
novel calcium–alkali–orthophosphate material 352i is
capable of supporting the expression of the osteo-
blastic phenotype to a similar degree as TCP.

Apart from surface chemistry, another surface
property influencing cell–biomaterials interactions is
surface morphology. Although TCP, GB9, GB9/25,
GB14, and 352i displayed a similar surface rough-
ness, considerable differences were detected between
the amount of osteogenic markers expressed, when
identical cells were grown on these materials,
whereas osteoblastic phenotype expression of cells
on BG was greater compared to that of cells cultured
on 352i and TCP in spite of the lower surface rough-
ness of BG specimens. These observations suggest
that the differences in cellular differentiation might

be attributed to compositional features rather than to
differences in surface roughness.

Of the various bone substitute materials studied,
GB9 had the greatest stimulatory effect on osteoblas-
tic proliferation and differentiation This is suggestive
that this materials possesses the highest potency to
enhance osteogenesis and matrix calcification. Fur-
thermore, similar to bioactive glass 45S5, GB9/25
exhibited a stimulatory effect on osteoblastic pheno-
type expression, which indicates that GB9/25 is also
an excellent material for promoting osteogenesis and
bone regeneration. Our observations for GB14 sug-
gest that this material is capable of eliciting greater
osteoblast differentiation than TCP. These observa-
tions are in agreement with a previous study in
which primary human bone derived cells were
employed,31 as well as with in vivo findings after
implantation of GB14 particles in the rabbit femur.
Histomorphometric analysis revealed significant
higher bone contact after 7, 28, and 84 days of im-
plantation compared with different bioactive glass
particles 45S5, 52S, 55S, and also higher degree of
degradation after 84 days of implantation. The GB14
particles displayed a high degradation rate due to
different processes, mainly leaching and particulate
degradation leading to a GBR by meeting the
balance between degradation and osteogenesis54,55

After 84 days of implantation, GB14 particles showed
more than 84% bone contact at the interface, i.e.
good bone-bonding behavior.54,55 Since 352i sup-
ported the expression of the osteoblastic phenotype
mostly to the same degree as cells grown TCP, this
novel bioceramic can be regarded as potential bone
substitutes. As a result, these data provide evidence
for the biocompatibility of this novel calcium–alkali–
orthophosphate-material at a molecular level.

These findings are clinically very significant, as
histological evaluation of biopsies, sampled from
patients 6 months after augmentation of the sinus
floor using TCP particles, have shown that TCP par-
ticles supported bone regeneration16–19,56,57 and had
a stimulatory effect on osteoblastic differentiation. It
was demonstrated that by 6 months TCP particles
attracted osteoprogenitor cells that migrated into the
interconnecting micropores of the bone substitute
material.17,18 These cells differentiated into osteo-
blasts and thus brought about bone deposition. Fur-
thermore, good bone-bonding behavior as well as
bone formation within the degrading particles has
been observed, as well expression of the osteogenic
markers Col I, BSP, and OC in the newly formed
bone matrix in contact with the TCP particles.56,57

The histologic data also indicated that the TCP par-
ticles degraded by chemical dissolution, and that the
role played by osteoclasts was only minor.19

Calcium phosphate ceramics and glasses are
known to stimulate bone tissue formation.30,44,45
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However, the underlying mechanisms are not fully
understood. To obtain a fundamental understanding
of the mechanisms by which bone tissue formation
is stimulated, the atomic and molecular phenomena
occurring at the materials surface and their effects
on the reaction and signaling pathways of cells and
tissues must be elucidated.30 This implies any of the
cellular activities leading to tissue formation, in-
cluding cell attachment, differentiation, and extracel-
lular-matrix formation. With bioactive ceramics,
solution-mediated surface reactions take place after
immersion in biological fluids. These reactions in-
clude dissolution, reprecipitation, and ion-exchange
phenomena in combination with protein adsorption
events occurring at the bioactive ceramic sur-
face.30,35,58 A key element of bone bioactive behavior
is the development of a carbonated apatite surface
after immersion in biological fluids.30,58,59 It is also
an important aspect that the biomaterial surface
composition and structure influences serum protein
adsorption. There is support for the view that the
enhanced cellular and tissue responses to bioactive
ceramics are related to enhanced fibronectin adsorp-
tion at their surfaces.37,60 Also it is noteworthy that
surface chemistry of the biomaterial surface modu-
lates the structure and activity of adsorbed fibronec-
tin.61 The cellular interactions between osteoblasts
and the biomaterial surface are thought to be medi-
ated primarily by membrane-associated adhesion
receptors belonging to the integrin superfamily.61–64

In addition to their role as adhesion receptors, integ-
rins are also involved in transducing signals from
the extracellular matrix to the interior of the cell65

resulting in the activation of signaling molecules and
regulation of gene expression, thus modulating
cellular migration, proliferation, differentiation, and
apoptosis.62–66 Thus, to decipher the complexity of
the reactions at the bioactive ceramic–bone interface,
it is logical to first analyze the surface transformation
and protein adsorption events, and then to study the
osteoblast responses to these bioactive surfaces.
Although numerous studies have investigated cellu-
lar responses to bioactive ceramics, little is known
about the intracellular events that take place in osteo-
blasts at these bioceramic surfaces. In our study, con-
siderable differences were detected between the
amount of osteogenic markers expressed, when iden-
tical cells were grown on the different test materials.
Furthermore, we were able to show that several
of the rapidly resorbable calcium–alkali–ortho-
phosphate ceramics tested were able to stimulate
osteoblast differentiation. However, the intracellular
signaling events that follow osteoblast attachment to
these bioactive ceramics, leading to differences in
osteoblast activity, are not known. Because cell sig-
naling affects cell proliferation and differentiation, it
is important to understand the cell signaling path-

ways induced by osteoblast–implant material inter-
actions.63 Interaction between osteoblasts and bone
matrix components via integrins leads to a rear-
rangement of cytoskeletal components and activation
of specific signaling proteins localized at focal adhe-
sions and focal adhesion kinase (FAK).63 Recent
studies have demonstrated that osteoblast adhesion
to titanium alloy and fibronectin resulted in activa-
tion of FAK and the mitogen-activated protein
kinase signal transduction pathway, which modu-
lates cellular differentiation.63 Furthermore, the effect
on apoptosis is of importance.66 Activation of the
PI3K/Akt (phosphatidylinositol-3-kinase/protein ki-
nase B) survival pathway results in depression of
apoptosis.67 Consequently, activation of this pathway
would be expected by biomaterials, which stimulate
osteogenesis. The effect of bioactive bone substitute
materials interacting with bone tissue on these sig-
naling pathways in osteoblast function and differen-
tiation is at present not understood. Developing this
understanding has been hampered by the inad-
equacy of the experimental techniques that could be
used. Adequate techniques to study integrin-medi-
ated adhesion and the subsequently activated intra-
cellular differentiation and cell survival pathways
have been established only recently.62–64,66–68 In
addition, over the last decade, advanced surface
analysis methods have been developed and
combined with molecular techniques, in order to
facilitate a better understanding of the surface trans-
formations of bioactive, resorbable ceramics and the
protein adsorption events associated with immersion
in biological fluids.28,30,35,60,69 Consequently, studies
combining these two powerful analytical methodolo-
gies (advanced surface analysis methods and techni-
ques to examine integrin-mediated cell adhesion and
signaling mechanisms) to elucidate the mechanisms
by which some of these rapidly resorbable bone sub-
stitute materials induce enhanced osteoblastic differ-
entiation are currently underway. These studies
involve SEM/EDX and FTIR analyses as well as
immersion experiments in fluids with and without
serum and characterization of protein adsorption
applying ELISA and Western blotting techniques.

Furthermore, the correlation between the in vitro
data with in vivo phenomena is important, since it is
hypothesized that enhanced osteoblastic cell differ-
entiation in vitro leads to more and more expeditious
bone formation at the bone–biomaterial interface
in vivo. In order to test this hypothesis, correlation of
the in vitro and in vivo data is required. This includes
(1) correlating quantitative gene and protein expres-
sion of the osteogenic markers in vitro with the
amount of bone formed after biomaterials implanta-
tion. (This is in addition to determining the decrease
in particle size.) (2) Quantifying the expression of
these markers in histological sections obtained from
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in vivo experiments is critical to comparing the
expression of the various markers in vitro and
in vivo. To this end, an in vivo study has been per-
formed, in which the bone substitute materials
described in the current study were implanted in the
sheep mandible and sinus floor to regenerate mem-
brane-protected critical size defects.5,70 Histological
assessment is currently underway. Histological eval-
uation of the bone–biomaterial interface requires
undecalcified PMMA sections. Only recently have
novel embedding resins and embedding techniques
become available that permit performing immuno-
histochemistry on undecalcified sections.71,72 More-
over, a methodology has been developed that
facilitates immunohistochemical analysis of osteo-
genic markers on PMMA-embedded sawed sections
of bone which contain bone substitute materi-
als.56,70,72 Correlating in vivo results with the data
from the in vitro studies, which elucidate the mec-
hanisms by which these rapidly resorbable bone
substitute materials induce enhanced osteoblastic
differentiation would be of great value, since taken
together, these studies would facilitate characterizing
the tissue response at the bone–biomaterial interface
in vitro and in vivo at a molecular level and, thus,
could contribute significantly to obtaining a funda-
mental understanding of the processes involved in
tissue integration of bioactive implant materials.

In conclusion, all calcium phosphate materials
studied significantly affected cellular growth and the
expression of the osteoblastic phenotype by SaOS-2
cells. Of the various bone substitute materials stud-
ied, GB9 had the greatest stimulatory effect on osteo-
blastic proliferation and differentiation, suggesting
that this material possesses the highest potency to
enhance osteogenesis. Furthermore, similar to bioac-
tive glass 45S5, GB9/25 displayed a stimulatory
effect on osteoblastic proliferation and phenotype
expression, which indicates that GB9/25 is also an
excellent candidate bone substitute material for pro-
moting osteogenesis and bone regeneration. Since
GB14 and 352i supported the expression of these
osteoblastic phenotype to the same or a higher degree
than cells grown on TCP, these novel bioceramics
can be regarded as potential bone substitutes. As a
result, these data provide evidence for the biocom-
patibility of these novel calcium–alkali–orthophos-
phate-materials at a molecular level. Further research
exploring the material dependent effects reported
here is currently underway. These research efforts
involve the study of cell adhesion mechanisms and
the intracellular signal transduction pathways, which
lead to the observed differences in osteoblastic
phenotype expression. Equally important is the
correlation between in vitro data with in vivo
phenomena, by focusing on the detection of the
same osteogenic markers in the tissue surrounding

the present bone substitute materials subsequent to
implantation in the sheep mandible. Such measure-
ments are currently made on the same specimens
as those used for quantifying the bone biomaterial
contact.
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