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ABSTRACT
In this paper, we address the problem of finding the min-
imal number of viewpoints outside a polyhedron in two or
three dimensions such that every point on the exterior of the
polyhedron is visible from at least one of the chosen view-
points. This problem which we call the minimum fortress
guard problem (MFGP) is the optimization version of a vari-
ant of the art-gallery problem (sometimes called the fortress
problem with point guards) and has practical importance
in surveillance and image-based rendering. Solutions in the
vision and graphics literature are based on image quality
constraints and are not concerned with the number of view-
points needed. The corresponding question for art galleries
(minimum number of viewpoints in the interior of a polygon
to see the interior of the polygon) which we call the min-
imum art-gallery guard problem (MAGP) has been shown
to be NP-complete. A simple reduction from this prob-
lem shows the NP-completeness of MFGP. Instead of re-
lying on heuristic searches, we address the approximability
of the camera placement problem. It is well known (and
easy to see) that this problem can be cast as a hitting set
problem. While the approximability of generic instances of
the hitting set problem is well understood, Brönnimann and
Goodrich[3] presented improved approximation algorithms
for the problem in the case that the input instances have
bounded Vapnik-Chervonenkis (VC) dimension.

In this paper we explore the VC-dimension of set systems
associated with the camera placement problem described
above. We show a constant bound for the VC dimension
in the two dimensional case but a tight logarithmic bound
in the three dimensional case. In the two dimensional case
we are also able to present an algorithm that uses at most
one more viewpoint than the optimal in the case that the
viewpoints are restricted to be on a circumscribing circle —
a restriction that is justified in practice.

1. INTRODUCTION
The problem of placing guards in the exterior of a polygon
so as to see the entire boundary of the polygon has been
called the fortress problem [11]. An important question is
to determine the minimum number of guards needed in a
given instance of the fortress problem.

Because of its close relationship to the art gallery problem
this question can be shown to be NP-hard. Indeed, this is
shown by transforming instances of MAGP to instances of
MFGP by simply bounding the polygon by a bounding box
and then “eviscerating” the polygon, so that what was the
interior of the polygon becomes part of the exterior, and so
that the boundary of the polygon is not visible from the rest
of the exterior. A more precise description of this reduction
is given in Section 2.3.

In this paper we examine the problem of finding an approx-
imation algorithm for this problem in two and three dimen-
sions. Bounds on approximation ratios have been derived
for several variations of the art-gallery problem in the past.
For a survey see [4].

In an instance of the minimum fortress guard problem (MFGP)
in two dimensions (resp. 3D) we are given a polygon P
(resp. polyhedron P ) and a set of possible viewpoint (or
camera) positions. Some possible sets of camera positions
we consider are the following: (1) cameras permitted any-
where in the exterior of P ; (2) cameras restricted to be on a
circumscribing circle (resp. sphere) around P ; (3) cameras
restricted to be outside the convex hull of P . In all cases we
assume that the boundary of P is visible from at least one of
the allowable camera positions since otherwise the problem
is insoluble.

In the decision version of MFGP we are also given an integer
k and asked whether it is possible to locate k cameras so
that they can see all of the exterior of P . In the optimization
version we want to find the minimum number (and location)
of cameras needed to see the exterior of P .

The decision version of the well-known hitting set problem
is the following: We are given a set X and a collection of
sets R where each R ∈ R is a subset of X. We are also
given a number k. The question is whether there is a subset



H ⊂ X such that |H | ≤ k and for each R ∈ R R ∩ H �= ∅.
This problem is known to be NP-complete. The hitting
set problem is the dual of the even better known set cover
problem which is also NP-complete. Under the assumption
that P �= NP it is known that both hitting set and set cover
can be approximated to within a log factor of the maximum
set sizes (in either the primal or the dual system) and not
much better [15].

MFGP can be seen to be a particular case of the hitting set
problem. The set X is the set of possible camera locations.
For each point p on the boundary of the polyhedron P , there
is a set Rp consisting of all camera locations that can see p.
The hitting set problem assumes a finite set X and we have
to implicitly deal with this issue when we attempt to pose
MFGP as such a problem.

As stated earlier the general hitting set problem cannot be
approximated to better than a log factor. However [3] shows
that if the VC dimension can be bounded by d and the opti-
mal hitting set has size c, then we can produce an O(d log cd)
approximation. Thus we need to examine the VC-dimension
of hitting set instances that can be produced from MFGP.

We are able to determine the VC-dimension both in 2D and
in 3D. Surprisingly while in 2D the VC-dimension (for all
three restrictions on camera placements) is bounded by a
constant, in 3D the VC-dimension is Θ(log n) where n is
the number of vertices in the input polyhedron to MFGP.
This means that the algorithm in [3] does not provide an
improved approximation over the greedy algorithm in 3D.
On the other hand, in 2D, we are able to get much better
approximations in the case where camera placements are
restricted to a circumscribing circle. In this case, we pro-
duce a solution that uses at most one more camera than the
optimal solution!

The particular scenarios we are addressing are surveillance,
object inspection, and image based rendering. In the case
of surveillance, we need a complete coverage at any time so
that no event will be missed. This is the reason why cov-
erage with one mobile guard is not applicable. In case of
object inspection, we know the prior geometry of an object,
and we need the minimal number of views so that the object
will be checked regarding defects. In this scenario, the ob-
ject might be placed on a turntable and we ask then for the
minimal number of rotations. The objects might be medical
organs which have to be imaged from very few viewpoints
of an endoscope guided by a robot manipulator. In the case
of image based rendering, we have a prior map of the en-
vironment but we need to obtain a detailed reconstruction
with a range sensor or we need just the appearance of the
environment for visualization. This is very important for
telepresence and immersive environments: After the envi-
ronment has been captured and an immersed user changes
her viewpoint any hole would cause a break in the sense of
presence.

2. PRELIMINARIES
A set system is a pair (X,R) where X is a set and R is
a collection of subsets R ⊆ X. Given a set system, the
minimum set cover problem asks for a minimum cardinality
set S ⊆ R such that

⋃
R∈S R = X.

As is well known the greedy algorithm finds an approximate
solution to set cover with approximation factor equal to the
log of the maximum cardinality of a set in R. Dually, an
algorithm due to Hochbaum[8] achieves an approximation
factor which is the logarithm of the maximum number of sets
that any element in X occurs in. These are essentially the
best achievable approximations under reasonable complexity
theoretic assumptions.

Given a set system (X,R) one can define a dual set system
(Y,S) where Y = {R|R ∈ R} and S consists of a set Sx

for each x ∈ X where Sx = {R|x ∈ R}. The set cover
problem in (Y,S) is the hitting set problem in (X,R). The
hitting set problem seeks the smallest subset H of X such
that every set R ∈ R contains an element from H . From
the symmetry of the approximation bounds given above, it is
clear that the hitting set problem and the set cover problem
are approximable to the same factor.

The camera placement problem has several variations but
the general form of the problem is the following: We are
given an object P and a set of allowable camera positions
C. We would like to choose a subset of camera positions
such that every point in P is visible from one of the chosen
camera positions. Except for the possibility that infinite set
systems arise in this formulation, it is easy to see that the
camera placement problem can be modeled as a set cover
problem. Each camera position represents a subset of P
that is covered and we want to pick as few camera positions
as possible to cover all of P . Dually, this problem can also
be viewed as a hitting set problem. each point p ∈ P defines
a set of camera positions Cp that can see this point. The
task is to pick a set of camera positions that hits the sets
Cp ∀p.

In this paper the object P will always be the boundary of a
polygon in two dimensions or a polyhedron in three dimen-
sions. The set of allowable camera positions will be either a
circumscribing circle/sphere around P or the entire exterior
outside of the convex hull of P . Note that unless arguments
can be made that only finitely many points on P need to
be considered and that only finitely many camera positions
need to be considered, the set systems that arise are typi-
cally infinite set systems.

Although one cannot expect a better approximation factor
than O(log n) for the general set-cover problem[15, 5], the
camera placement problem is far from being general due to
the underlying geometric constraints. One such constraint
is the Vapnik-Chervonenkis(VC) Dimension[17].

2.1 VC-Dimension and Camera Placement
The concept of Vapnik-Chervonenkis Dimension, VC Di-
mension for short, was introduced by Vapnik and Cher-
vonenkis in [17] and has applications in statistics, learning
theory, computational geometry and complexity theory (see
[10] for references). The VC-Dimension of a set system is
defined as follows:

Definition 2.1. Given a set system (X,R), let A be a
subset of X. We say A is shattered by R if ∀Y ⊆ A ∃R ∈ R
such that R ∩ A = Y . The VC-dimension of (X,R) is the



cardinality of the largest set that can be shattered by R.

The VC-Dimension of a set system reveals a lot of informa-
tion about properties of the set system. For example, if the
set system (X,R) has a constant VC-Dimension d, a small
number, O( d

ε
log 1

ε
), points sampled from X intersects all the

subsets in R whose sizes are greater than ε · |X| with high
probability. Another useful property is that if (X,R) has a
constant VC-Dimension d, then the number of subsets in R
is bounded by nd as opposed to 2n where n = |X|. A nice
presentation of these results can be found in [9].

Perhaps the most crucial result for constant VC-Dimension
systems from a camera placement perspective is the algo-
rithm presented by Bronnimann and Goodrich in [3], that
returns O(log d) solutions to the set-cover of systems with
bounded VC-Dimension where d is the optimal set-cover for
the system. This is a significant improvement on the previ-
ous log n-approximation, when n is large but the optimal is
small.

The VC-Dimension of set systems plays a very important
role in randomized and geometric algorithms. The reader is
referred to the surveys [10, 1] for further information.

In this paper we will address the problem of covering the
boundary of a polygon P with as few cameras as possible.
An instance of the camera placement problem is: Given
P and a specification of possible camera locations find a
minimum set cover of the system (P, {V (ci)}), where V (ci)
is the set of points visible on P from camera ci and the index
i varies over all possible camera locations. The definition of
V (ci) can capture any optical constraints on what a camera
can see. We will refer to the specification of possible camera
locations as a setup. We say a set S of cameras cover P if⋃

ci∈S V (ci) = P .

Throughout this paper we will represent cameras with their
projection centers ci and say that ci sees the point p ∈ P if
the only intersection of the line segment pci with P is p. We
extend the notion of visibility to sets as follows: We say that
a camera sees a set of points ω if it can see all the points in
ω. The following notation will be useful for VC-Dimension
proofs. Let Pm = {p1, . . . , pm} be m points. We say that
camera c sees the subset ω ⊆ Pm if c can see all points in ω
but no point in Pm \ ω.

By the VC-Dimension of a setup, we will refer to the VC-
Dimension of the maximum number of points that can be
shattered over all instances of the camera placement problem
for a specific setup. For example, if there are no restrictions
on cameras and we want to cover simple polygons, we would
like to find the VC-Dimension of the set system (P, {V (ci)})
as P varies over the set of all simple polygons. Therefore,
in order to give a lower bound m on the VC-Dimension of a
setup it suffices to present one instance where m points are
shattered, but for an upper bound one needs to show that
there exists no instance such that m points can be shattered.

2.2 Previous work on visibility and VC-Dimension
There is quite a rich literature on the Art Gallery Theorem
which states: �n

3
� guards are occasionally necessary and al-

ways sufficient to cover a polygon of n vertices[11, 14, 12]. A
different version of the art gallery problem, known as Min-
imal Art Gallery Guarding Problem (MAGP) is: Given a
particular polygon, what is the minimum number of guards
necessary to cover the polygon? It has been shown that
MAGP is NP-hard. All these results can be found in [12].

Approximation algorithms for Minimum Guard Coverage
have been considered [6, 4, 7] for different versions of the
problem, however there is still a gap between the inapprox-
imability results and existing algorithms. For a survey of
the approximation results see [4].

The VC-Dimension of 2D visibility systems have also ap-
peared in the literature. For example in [16], Valtr proved
that the VC-Dimension of the system (P, {V (x) | ∀x ∈ P}),
where P is a simple polygon and V (x) is the visibility poly-
gon of point x in P , is somewhere between 6 and 23. He
also established a O(log(h)) bound for polygons with holes
where h is the number of holes. Recently, in [7] Banos et. al.
showed a loose bound of the log(n + h) bound for the dual
of a system similar to the one considered in [16] where n is
the number of vertices of the polygon and h is the number
of holes. However, to the best of our knowledge, there are
no results for the VC-Dimension of visibility systems in 3D.

2.3 NP-completeness of MFGP
The NP-completeness of MFGP (minimal fortress guard prob-
lem) follows immediately by a reduction from MAGP by an
“evisceration” technique whereby the interior of a polygon
is more or less transformed into its exterior. The following
figure illustrates the transformation.

(x+y+z)(x’+y+z’)...

P’

P

p1

p2

Figure 1: MFGP is NP-hard

Instances of MAGP that arise in the reduction from 3-SAT
that proves the NP-completeness of MAGP have the form
of the polygon P . Clearly if it takes k guards to guard the
interior of P , it will take exactly k + 2 exterior guards to
guard the exterior of the eviscerated polygon. This proves
the NP-completeness of MFGP.

3. 3D SETTING



In this section, we consider the following setup which arises
in typical tele-immersive applications:

Definition 3.1. We define 3DSPHERE as a setup where
we are given a polyhedron P, and a viewing sphere S such
that P is totally contained in S.

We show that even under these restrictions there are poly-
hedra with n vertices such that Θ(log n) points can be
shattered from the viewing sphere. Namely, we prove the
following theorem:

Theorem 3.2. The VC-Dimension of 3DSPHERE is Θ(log n)
where n is the number of vertices of the polyhedron P for the
set system (P , {V (ci}) such that the centers of cameras ci

are restricted to lie on a viewing sphere S that contains P.

In the next two subsections, we present the upper and lower
bounds for the VC-Dimension of 3DSPHERE, in lemmata
3.3 and 3.4 respectively.

The implication of theorem 3.2 is that it is not likely that
the algorithm in [3] helps for the camera placement problem.

3.1 Upper Bound
In this section we present an upper bound on the VC-Dimenion
of 3DSPHERE.

Lemma 3.3. Let d be the VC-Dimension of 3DSPHERE.
d = O(log n) where n is the number of vertices of the poly-
hedron we want to cover.

Proof. In [13], Platinga and Dyer define aspects as changes
in the topology of the image of a polyhedron. After present-
ing a catalogue of events that can change the aspects, they
construct the viewing space partition, VSP, which is a par-
tition of the viewpoint space into maximal regions of con-
stant aspect and they present tight bounds for the number
of regions in VSP. They show that the size of the VSP for
a general(i.e. non-convex) polyhedron under orthographic
projection is Θ(n6) and their model for the orthographic
projection is exactly the same as 3DSPHERE with S at in-
finity.

Let Pm = {p1, . . . , pm} be any m points to be shattered on a
polyhedron. If we define an aspect as appereance/disappereance
of pi, i = 1, . . . , m, and restrict the camera locations to a
sphere that contains the polyhedron, we can use the cata-
logue of events in [13] to show that the size of the VSP for
this new notion of aspects is still Θ(n6). However, in order
to shatter m points, one needs 2m distinct partitions. Since
we must have n6 ≥ 2m, we have m = O(log n) which gives
us the desired upper bound.

3.2 Lower Bound
In this section we show that the upper bound log n on the
VC-Dimension of 3DSPHERE is indeed tight, our main re-
sult as stated in the following lemma for theorem 3.2.

Lemma 3.4. For any given m, there exists a polyhedron P
with Θ(2m) vertices that is contained in a cone with base B
and height proportional to m such that there are m marked
points on P that can be shattered from 2m cameras lying in
2m disjoint connected viewing regions on the viewing sphere
S.

Proof. By induction on m. For the base case when
m = 1 we start with the polyhedron in figure 2 which con-
tains a point p1, at height 1 from the base B. p1 is connected
to the base using a pedestal, which is in fact an infinitesi-
mal pyramid whose shadow on S can be ignored. Then, we
create a region on the sphere that cannot see p1 by using a
rectangular block O and we connect O to B using another
pedestal (see figure 3). It is easy to see that the polyhedron
satisfies the properties in theorem 3.4 with p1 marked for
m = 1.

We will maintain the following inductive hypothesis: There
exists a polyhedron P contained in a cone with base B and
height km, where k is a constant. There are m points Pm =
{p1, . . . , pm} marked on P at heights k/2, 3k/2, 5k/2, . . . re-
spectively, such that for any subset ω ⊆ Pm, there exists a
connected region Vω from which all points in ω are visible,
but no point in Pm \ ω is.

First, we introduce a new point pm+1 at height k/2 above
the tip of the surrounding cone. Note that all the viewing re-
gions Vω can see pm+1 because they lie in the (say) northern
hemisphere. We split each Vω into two connected regions,
V +

ω and V −
ω (see figure 4) as follows: We consider the largest

inscribed rectangle in Vω and ensure that V +
ω and V −

ω each
contain half of this rectangle. (We ignore the rest of Vω.)
Next, for each V −

ω , we put a rectangular obstacle, that will
block the visibility of pm+1 from V −

ω . This obstacle will be
placed at a small distance ε from pm+1 and will have an

area that is ε2

2Θ(m) . This will ensure that V −
ω has an area of

R2

2Θ(m) as will V +
ω . (The constant of proportionality in the Θ

here comes from the fact that our areas are getting smaller
because we discard portions of Vω at each stage. Thus this
constant is greater than 1.)

Again, we place the obstacles so that they lie inside the cone
with base B and height k(m + 1) and connect them using
small pedestals to P . While the obstacles were added to
block pm+1 from various regions on S , they could have the
unintended effect of blocking the visibility of other marked
points from the viewing sphere. Later we will choose k and
argue that the small size of the obstacles and their distance
from other marked points makes this effect negligible.

We now have 2 ·2m = 2m+1 viewing regions that can shatter
the set Pm+1 = {p1, . . . , pm, pm+1} marked on the polyhe-
dron P ′ which contains P , pm+1, the obstacles and pedestals
used during the construction. Also, during the construction
we add a constant number c1 of vertices for each 2m viewing
regions. By the inductive hypothesis suppose that P had at
most c2 · 2m vertices, for a constant c2 ≥ c1. Therefore, P ′

has at most c1 · 2m + c2 · 2m ≤ 2c22
m = c22

m+1 vertices
proving the inductive hypothesis.

We return to the assumption that an obstacle does not sig-



nificantly block marked points that it was not intended to
block. Let A be the total area of all obstacle placed at stage
m + 1 and A′ be the area of their shadow with respect to
point pi for i ∈ [1..m]. Note that the distance from pi to
these obstacles is m + 1 − i and that the distance from pi

to the viewing region is at most 2R. (See figure 5). Using
similarity, we obtain:

A′

A
≤ (

2R

m + 1 − i
)2 (1)

A′ ≤ A(
2R

m + 1 − i
)2 (2)

Let Δ be the total area of the shadows the obstacle casts
for all points pi. Then:

Δ ≤ A(
2R

k
)2(1 +

1

22
+ · · · + 1

m2
) ≤ A(

2R

k
)2

π2

6
(3)

The second inequality follows from the fact that
∑∞

i=1
1
i2

=
π2

6
.

Using the fact that A = O(ε2), we get the total size of the
shadow is O(( εR

k
)2). By choosing k big enough and letting

ε = 1/R we ensure that these shadows are indeed negligible
as claimed.

B

k / 2

k
p1

Figure 2: The base for the construction

B

k / 2

k

O

Figure 3: Introducing obstacles to block visibility

Proof of theorem 3.2. Theorem 3.2 is a direct conse-
quence of lemmata 3.3 and 3.4.

B

km

k / 2

Vω

V −
ω

V +
ω

Figure 4: Inductive step

k h
A

A’

pm+1

pm

Figure 5: The obstacle introduced at step m may
block the visibility of other points

4. RESULTS ON PLANAR CONFIGURATIONS
In this section we consider various settings where the camera
locations are restricted and we decrease the existing upper
bound of 23 on VC-Dimension under such restricted settings.
First we restrict the camera locations to a circle around the
polygon and obtain the exact VC-Dimension of 2. Then,
we relax the restriction on camera locations and we allow
cameras anywhere outside the convex hull of the polygon.
In this case the VC dimension is bounded between 4 and 6.

4.1 Cameras restricted to a circle around a
simple polygon

Consider a setup in which we want to cover the polygon P
using cameras restricted to a circle C around P .

Definition 4.1. We define 2DCIRCLE as a setup where
a set of cameras whose locations are restricted to a circle C
are to cover a simple polygon that is contained in C.

We need the following technical lemma before proving our
main theorem.



Lemma 4.2. Each point p on P is visible along a contin-
uous arc on the circle C and nowhere else.

Proof. Let p be a point on P and let c be a camera
located on the visibility circle C that can see p. As c moves
from p clockwise along C, there will come a time when the
ray R starting from p and passing from c intersects P . Let
b be the location of c at this time. Similarly, if c moves
counterclockwise from its initial location, the ray L starting
from p and passing from c will intersect P . Call this location

a. Clearly all the points on the arc âb can see p.

Now suppose that p is also visible from points outside of the

arc âb. Let c′ be the first such point counterclockwise of a
and c′′ be the first such point clockwise of b. This means

that in the regions ĉ′a and b̂c′′ p is not visible. There must
be points q and r in the boundary of P that lie in the sectors

formed by p with ĉ′a and b̂c′′ respectively. Traversing the
boundary of P in order to go through p, q, r we find that the
boundary must cut through one of the lines of visibility of
p, a contradiction.

We now prove the following theorem.

Theorem 4.3. The VC-Dimension of 2DCIRCLE is ex-
actly 2.

Proof. Let ci be a camera that sees a point p on P . If
we move ci clockwise along the circle, p will be visible to ci

until it reaches the intersection of the half-line LR
p with the

circle and it will remain invisible afterwards until ci reaches
LL

p . Therefore for each point p, there exists an arc A on C
such that p is visible on the arc and invisible otherwise.

Now, consider m points Pm = {p1, . . . , pm} that can be
shattered. We must identify 2m points cω on the circle cor-
responding to each subset ω of Pm such that cω can see
all points in ω but no point in Pm \ ω. As we discussed
above, for each pi there is an arc Ai from which pi is visi-
ble. In general, some of these arcs will be overlapping. The
2m endpoints of Ai, i = 1, . . . , m divide C into 2m arcs
A′

j , j = 1, . . . , 2m such that A′
j are disjoint and within

an A′
j only a fixed subset of Pm is visible. Therefore each

camera cwi , i = 1, . . . , 2m; ωi ∈ Pm must lie on a differ-
ent A′

j , j = 1, . . . , 2m. But this implies that 2m must be
greater than or equal to 2m which is only true for m less
than 3. Thus the VC dimension is upper bounded by 2.

The lower bound is proved by the example in Figure 6
where the points p1 and p2 are shattered by the 4 cameras
shown.

4.2 Cameras restricted to remain outside the
convex hull of a simple polygon

Let us now relax the restriction on camera locations so that
we allow cameras anywhere outside the convex hull of the
polygon.

{ P2 }

{ P1 }

A

C

B

{ P1, P2 }

{}

p1

p2

Figure 6: p1 and p2 can be shattered by four cameras.
Each camera is labeled with the subset it can see.
In this figure the polygon P is �ABC.

Definition 4.4. We define 2DCONVEX as a setup where
a set of cameras located outside the convex hull of a simple
polygon P are to cover P .

The upper bound on the VC-Dimension of 2DCONVEX
slightly increases but it is still a small constant significantly
less than the upper bound for the general case, 23.

Proposition 4.5. The VC-Dimension of 2DCONVEX is
less than or equal to 6.

Proof. If Pm = {p1, . . . , pm} are m points to be shat-
tered on the polygon P , then for each pi there are two lines
LL

pi
and LR

pi
such that pi is visible from the region lying

between LL
pi

and LR
pi

in a clockwise scan. Note that we
restricted the cameras to lie outside the convex hull of P ,
otherwise there could be many lines Li such that the visi-
bility of a point p changes as we cross Li. This is illustrated
in figure 7.

Consider the arrangement of the 2m lines {LL
pi

, LR
pi

| i =
1, . . . , m} as in the proof of lemma 4.2. For contradiction’s
sake assume that there are two cameras cω and cω′ located
in the same face 1 of the arrangement, such that cω can see
all points in ω ⊆ Pm but no point in Pm \ ω and similarly
for cω′ . If ω and ω′ are two different subsets, as we move
from cω to cω′ on the line defined by them either a point
q ∈ ω \ ω′ disappears or a point q ∈ ω′ \ ω becomes visible.
But the only reason of this visual event can be crossing LL

q

or LR
q , which contradicts with the fact that cω and cω′ are

in the same face of the arrangement. Therefore, each of the
2m cameras cω, ω ⊆ Pm must lie in a different face of the
arrangement. It is well known that an arrangement of 2m
lines has at most

(
2m+1

2

)
+1 faces therefore we must have(

2m+1
2

)
+1 ≥ 2m which is only true for m up to 7. Hence the

VC-Dimension of this system is at most 6.

1The faces of an arrangement of lines are the connected
regions on the plane remaining after the removal of the lines
from the plane.



p

L1
L2

L3

L4

Figure 7: The effect of restricting the cameras to lie
outside the convex hull for the setup 2DCONVEX:
Only lines L2 and L3 are relevant to the visibility of
point P.

Note that relaxing the camera locations from 2DCIRCLE to
2DCONVEX indeed increases the VC-Dimension, as we see
in the following proposition.

Proposition 4.6. The VC-Dimension of 2DCONVEX is
greater than or equal to 4.

Proof. Again, we present an instance where four points
can be shattered from 16 cameras. In figure 8, the points
{A, B, C, D} can be by sixteen cameras lying outside the
convex hull. See caption for details.

1
23

4 5

6

7

8

9 10

11

12 13

14

15

16

A

B C

D

Figure 8: In the setup 2DCONVEX one can shat-
ter a bigger subset than in 2DCIRCLE. The set
{A, B, C, D} can be shattered by the 16 cameras.
Numbers in the figure correspond to the follow-
ing subsets: 1.{A, B, C, D}, 2.{A, B, C}, 3.{A, B, D},
4.{B, C, D}, 5.{A, C, D}, 6.{A, B}, 7.{A, C}, 8.{A, D},
9.{B, C}, 10.{B, D}, 11.{C, D}, 12.{A}, 13.{B}, 14.{C},
15.{D}, 16.{} .

Remark 4.7. If we further remove the restriction that the
cameras are outside the convex hull, then the best known
bound is 23 and the reader is referred to [16].

4.3 Discussion: Bounded Number of Obsta-
cles

What happens if the number of obstacles we would like to
cover is more than one? This is related to art gallery theo-
rems for polygons with holes and there are sufficiency results
available for such settings [11]. In addition, the number of
views of such systems have also been studied [2]. Unfortu-
nately, the VC-Dimension of such systems is no longer con-
stant [16, 7] but bounded by 2log(h) + 4log(log(h)) + o(1),
where h is the number of holes (or number of objects for
external visibility) of the polygon. This suggests that if the
number of polygons in the scene is bounded, it is possible to
come up with scenarios where the VC-Dimension is bounded
for the value 2log(h) + 4log(log(h))+ o(1) will evaluate to a
constant.

For example, consider k polygons on the plane and cameras
restricted to lie on a circle that contains all the polygons.
We can extend the discussion for 2DCIRCLE as follows.
Consider a point pi ∈ Pm, where Pm = {p1, . . . , pm} is the
set to be shattered, located on one of the polygons. As we
discussed in the case of 2DCIRCLE, if there were no other
objects there would be an arc from which pi is visible. Let us
introduce the k-1 polygons one by one. We can have either,

1. the polygon introduced at step i totally blocks an arc,
or,

2. the size of an arc is reduced, or,

3. an arc is split into 2, or,

4. an arc is not affected at all.

In addition, if there exists an arc that is split into 2, there
can be no other arcs associated with pi that splits. There-
fore, at each step the number of visibility arcs that can see
pi increases by at most 1. This implies that for each pi there
will be at most k arcs on the circle such that visibility of pi

changes as you move in and out of these arcs. Again, us-
ing the endpoints we can divide the viewing circle into 2mk
arcs, such that any camera cω that sees ω ⊆ Pm must lie in
a different arc. Therefore we must have 2mk ≥ 2m, which
is true only up to a constant that depends on k.

Therefore when we know that there are bounded number of
objects in the scene, the algorithm for systems with bounded
VC-Dimension is still beneficial to find an optimal placement
of cameras.

5. CIRCLE GUARDS
Definition 5.1. Let P be a simple polygon totally con-

tained in a circle C such that every point on the boundary
of P is visible from some point on C. The Guard Placement
problem is to find a minimum cardinality set G of points on
C such that G covers P .

As shown in Lemma 4.2 the region of C from which any
particular point p on P is a continuous arc.

Definition 5.2. Let q be a point on P . The visibility arc
of q, Aq, is the set of points on C that can see q. Aq is called



a minimal arc if there is no point p on P such that the arc
Ap is properly contained in Aq.

Alternatively, the guard placement problem can be viewed
as the problem of hitting the set of minimal arcs.

The following subroutine for finding an optimal hitting set
for intervals on a line will be useful.

IntervalHittingSet(S)

Input: A set S of intervals on a line.

Output: A minimum cardinality set of points, P , such that
for each interval s ∈ S, there exists a point in P contained
in s.

G ← ∅
Sort the intervals in S according to their right ends
while S is not empty

Let [a, b] be the interval that
has the leftmost right end

P ← P ∪ {b}
Remove all intervals that intersect b from S

Lemma 5.3. IntervalHittingSet returns a minimum car-
dinality set in polynomial time.

Proof. The lemma is proved trivially by induction. The
first guard we place is not to the left of the first guard in any
feasible solution and hence covers at least the set of intervals
covered by the first guard in any solution.

5.1 Overview of the Algorithm
Start with an arbitrary point on c which moves clockwise on
C. We will maintain two lists:

• Covered: Contains all the portion of the boundary of
P that is currently covered. Initially empty.

• Active: The parts of the boundary that have been
seen by c but not currently covered. Initially contains
the segments observed from the initial position of c.

For now, assume continuous motion of c. The algorithm
proceeds as follows:

1. When c moves to the point c′ on V

2. If new boundary becomes visible from c′, add it to
Active.

3. If a point in Active is not visible from c′,

• Place guard g at c′.

• Add the part of the boundary visible from g to
Covered.

• Remove the part of the boundary visible from g
from Active.

4. c ← c′

5. Repeat until Covered = P .

Obviously, we can not move c to all the points on C. The
main challenge in this algorithm is to find a small finite
set of “events” of interest along C. Let us define appear-
ance/disappearance of a point p on P as c moves in clockwise
direction as a visual event. In the next section we show that
some visual events necessarily occur before others. There-
fore we can consider finitely many locations of c.

5.2 Visual Events
By Lemma 4.2 for each point p there is an arc Ap = âb on
which p is visible. a is called the entrance of the arc and b
is called the exit.

Definition 5.4. Let e be a line segment (either an edge
or a portion of an edge) on the boundary of P . Then the
weak visibility region of e is defined as

⋃
p∈e Ap.

Let e be a line segment on the boundary of P . We can
rotate P so that e is horizontal and the exterior of P is
locally above e. We will call this the canonical orientation
of P with respect to e. It is clear that in this orientation,
the interior of e can only be seen above the horizon defined
by e. For two points a, b on the viewing circle C and above
this horizon we say that a ≤ b if a appears clockwise of or
coincides with b.

Lemma 5.5. Let P be oriented canonically with respect
to line segment e on the boundary. Let p, p′ be points in

the interior of e with p to the left of p′. Let Ap = âb and

Ap′ = ĉd. Then c ≤ a and d ≤ b.

Proof. Suppose for contradiction that a < c. Then there
is a point a′ between a and c that can see p but cannot see
p′. Clearly the boundary of the polygon must intersect the
segment a′p′. By definition the boundary of the polygon
cannot intersect the wedge formed by c, d, and p′ which lies
to the right of this segment. Thus the boundary of P must
intersect a′p′ from the left. This will force it to first inter-
sect the segment a′p contradicting the assumption that p is
visible from a′. Thus we have a contradiction. A symmetric
argument shows that d ≤ b.

A useful corollary of Lemma 5.5 is that if [p, q] is a segment
on the boundary of P , then in any clockwise traversal start-
ing from some point that does not see [a, b], b appears before
any point in (a, b) and a disappears after all points in (a, b).

Lemma 5.6. The weak visibility region of a line segment
on P is a continuous arc.



Proof. Let p and p′ be two points on a line segment on
the boundary of P . Assume that we have canonical orien-
tation and p lies to the left of p′. We show the lemma by
showing that one of the following must hold: Either Ap and
Ap′ intersect or, for any point x on C which lies strictly be-
tween Ap′ and Ap x can see some point on e between p and
p′.

Suppose Ap and Ap′ do not intersect. Then by Lemma 5.5

Ap′ = ĉd is to the left of Ap. Let the segments dp′ and ap

intersect at point o1 and the segments cp′ and bp intersect
at point o2. Suppose x is point between d and a and x is
completely blocked from seeing the segment pp′. Then ei-
ther there is a portion of the boundary of P in the sector
defined by d, a, and o1 or there is a portion of the bound-
ary of P in the sector defined by p, p′, and o2. Either of
these possibilities leads to a contradiction with respect to
the known visibilities.

6. THE ALGORITHM
In this section we present the algorithm PlaceGuards that
mimics the algorithm outlined in the previous section.

PlaceGuards(C, P)

Input: A circle C and a polygon P

Output: a set of points, G, on C such that G covers P .

G ← ∅
pick an arbitrary point p on C
Active ← {chains on P visible from p}
Covered ← ∅
Qa ← ∅
For each vertex v of P

Find the visibility arc Av of v
Qa ← Qa ∪ {Av}

Sort Qa according to their exits
(*from now on we keep Qa always sorted*)
While Covered �= P

For each chain s ∈ Active
Let a, b be the endpoints of s
Find the visibility arcsAa and Ab

Qa ← Qa ∪ {Aa, Ab}
p ← Head(Qa).exit
G ← G ∪ {p}
remove all the arcs that intersect p form Qa

add the portions of boundary visible from p
to Covered.

Theorem 6.1. PlaceGuards uses at most one more guard
than optimal.

Proof. After PlaceGuards has placed the first guard at
point a on C we remove all arcs that pass through a. At
this point the C can be “opened” at a and the remaining
arcs can be viewed as intervals on a line. PlaceGuards now
mimics the IntervalHittingSet algorithm which is optimal
for this problem.

6.1 Analysis
In this section, we show that the running time of Place-
Guards is polynomial by showing that the number of line
segments in the lists Covered and Active is bounded by a
polynomial.

Definition 6.2. We say a guard g splits a line segment
s if s splits into two disjoint line segments s1 and s2 after
the removal of the portion of s visible from g. s1 and s2 are
called the children of s.

Lemma 6.3. Let e be an edge of P . During the course of
the algorithm PlaceGuards e may be split at most once and
none of the children of e is split afterwards.

Proof. Initially an edge may be split if the locations of
the current set of guards do not intersect the visibility arcs of
its endpoints. However, as the algorithm proceeds clockwise,
none of the children will be split due to lemma 5.5.

Corollary 6.4. At any instance of the algorithm Place-
Guards size of the list that contains visible line segments is
at most 2n.
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