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The internal configurational entropy of point defect clusters in crystalline silicon is studied in detail by
analyzing their potential energy landscapes. Both on-lattice and off-lattice calculation approaches are employed
to demonstrate the importance of off-lattice configurational states that arise due to a large number of inherent
structures (local minima) in the energy landscape generated by the interatomic potential function. The resulting
cluster configurational entropy of formation is shown to exhibit behavior that is qualitatively similar to that
observed in supercooled liquids and amorphous solids and substantially alters the thermodynamic properties of
point defect clusters in crystals at high temperature. This behavior is shown to be independent of interatomic
potential and cluster type, and suggests that defects in crystals at high temperature should be generally de-
scribed by a quasicontinuous collection of nondegenerate states rather than as a single ground state structure.
The modified thermodynamic properties of vacancy clusters at high temperature are found to explain a long-
standing discrepancy between simulation predictions and experimental measurements of vacancy aggregation

dynamics in silicon.
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I. INTRODUCTION

Clustering of point defects and impurity atoms in crystal-
line materials is a ubiquitous phenomenon that affects a host
of material properties. The growth and processing of crystal-
line semiconductor materials such as silicon, silicon alloys,
and gallium arsenide, for example, is almost completely
dominated by rules aimed at minimizing the number of de-
fects such as point defect clusters,? dislocations,? and stack-
ing faults.* Similarly, in metal alloy systems, the microscopic
distribution of the component species can often critically af-
fect the mechanical and chemical properties of the alloy.’
Given the importance of nucleation and growth of clusters in
materials processing, there has been much effort aimed at the
development of simulation tools for predicting the relation-
ship between processing conditions and the resultant proper-
ties (i.e., cluster size distribution) of a material.® Most such
tools require as input the thermodynamic properties of the
various species in a system as a function of temperature,
cluster size and composition.

The properties of small atomic clusters, however, are ex-
tremely difficult to measure experimentally. As a result, there
has been substantial effort aimed at the structural and ther-
modynamic characterization of clusters using atomistic
simulations; for example self-interstitial and vacancy clusters
in silicon have been studied extensively with empirical
potentials,”® tight-binding potentials,>!? and density func-
tional theory.'""'> Much of the atomistic simulation work on
cluster characterization has focused exclusively on minimum
energy configurations in order to make a thermodynamic and
structural description tractable. On the other hand, process-
ing in both metallic and semiconductor systems is often ac-
complished at elevated temperature where entropy can be
important, particularly vibrational and configurational en-

tropy.
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In this paper we compute the total free energy of point
defect clusters in crystalline silicon at finite temperature
based on an analysis of the potential energy landscapes'!4
created by the clusters. The configurational entropy of small
clusters is found to be surprisingly large and leads to signifi-
cant corrections to the free energies of defect clusters. We
focus primarily on the study of vacancy clusters in silicon
using the environment-dependent interatomic potential'>!6
(EDIP) but show that our results and conclusions are appli-
cable to other types of clusters and (classical) potential sys-
tems and therefore could have broad implications for the
thermodynamic analysis of defects in solids. Two different
computational frameworks for calculating cluster free ener-
gies are used. The first is based on Monte Carlo simulations
in a discrete, on-lattice representation of the system, while in
the second continuous-space molecular dynamics simula-
tions are employed.

The remainder of the paper is organized as follows. In the
next section, the general thermodynamic framework for
computing the free energy (including the configurational en-
tropy) of clusters is outlined. An on-lattice model for va-
cancy cluster thermodynamics is presented in Sec. III, fol-
lowed by an off-lattice treatment in Sec. IV. Extensions to
self-interstitial clusters and other interatomic potentials are
discussed in Sec. V and conclusions are presented in Sec. VI.

II. THERMODYNAMICS OF AGGREGATION

Single species aggregation is generally described by a se-
ries of coupled, reversible interactions between clusters of
different sizes

K(i.j)
Xi+X; — Xiyj, (1)

F(i.j)
where X; is the concentration of clusters of size i, and K(i, )
and F(i,j) are the coalescence and fragmentation kernels,
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FIG. 1. Hexagonal ring clusters (HRCs) containing (a) 6, (b) 10,
and (c) 14 vacancies.

respectively. Coalescence and fragmentation rates depend on
both kinetic and thermodynamic factors, i.e.,

B
Gi+j—»(i+j)) ’ (2)

K(i,j) =Aij(Di+Dj)eXp<_ T
B

where A;; is a size and morphology dependent geometric
factor, D, is the mobility of cluster i, and Gﬁrjﬂ(i 4 1s the free
energy barrier associated with the coalescence of clusters i
and j. The latter is usually expressed as'’

Q
Gl 14y =AGiy = AG,— AG, - len(Q—2> ., 3
1

where AG; is the formation free energy of a cluster of size i.
The last term in Eq. (3) represents the change in the transla-
tional entropy of the system.'® As defined here, the transla-
tional entropy only includes configuration space associated
with the cluster centers of mass.

The free energy of formation of an atomic cluster in a
crystal contains several thermodynamic contributions,

AG =(AE) = T{AS,ip) = TS conp (4)

where AFE is the formation enthalpy, AS,;, is the vibrational
entropy of formation,'**! and S, is the cluster configura-
tional entropy. The () indicate averaging over all the indi-
vidual configurations that the cluster can possess.

The cluster configurational entropy is the number of dis-
tinguishable configurations that a particular cluster can pos-
sess per lattice site. Note that the cluster configurational en-
tropy is fully excluded from the translational entropy as
defined above and therefore the total number of ways of
distributing clusters in a lattice is given by €,
=, 1Q5Y, where the product index is over all clusters
in the system. This configurational entropy is often neglected
because it is difficult to estimate analytically except for very
simple structures.

A. Vacancy clusters in silicon

Most continuum models for aggregation that require clus-
ter thermodynamics as input assume that the ground state
morphology is a good representation. For vacancies in sili-
con the ground state morphology is the so-called hexagonal
ring cluster (HRC) configuration, which is formed by maxi-
mizing the number of complete hexagonal vacancy rings.>>
Examples of HRC structures are shown in Fig. 1. The HRC
morphology naturally evolves into regular octahedral struc-
tures with (111)-oriented surfaces at larger sizes,?® and in this
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case the cluster configurational entropy can be assumed to be
negligible.

While the HRC morphology is a reasonable representa-
tion of large clusters at low temperatures, much of semicon-
ductor processing takes place at high temperatures. Our pre-
vious atomistic simulations'® employing the classical EDIP
potential demonstrate that vacancy clusters at elevated tem-
perature spend a majority of the time in spatially extended
configurations that are much higher in energy than the
ground state. The fact that vacancy clusters can assume these
extended configurations arises from the large vacancy-
vacancy interaction distance, which has been shown to ex-
tend up to about 7.8 A, corresponding to the 4th neighbor
shell along the (110) direction (4NN-110), or the 8th-nearest
neighbor shell overall.!®

B. Cluster formation thermodynamics from the potential
energy landscape

In the following discussion we employ the concept of
inherent structures (IS) in a potential energy landscape
(PEL). Inherent structures, as introduced by Stillinger and
Weber,>* are local minimum configurations in the 3N-
dimensional potential energy surface,'® defined by the coor-
dinates of an N-atom system. A basin is defined as the set of
points in phase space that map to the same IS when the
system is quenched using local energy minimization. The
basin construct is useful because it partitions the total phase
space of the system into a set of non-overlapping local
minima connected by saddle points.

The concepts of inherent structures and potential energy
landscapes have existed for a long time'? and have recently
been successfully applied to the study of configurational en-
tropy in supercooled liquids and glasses.>>?® On the other
hand, the IS/PEL framework has not yet been applied to the
study of defect formation properties in crystals because small
defect clusters in crystals are not associated with substantial
configurational entropy. In the following discussion, we
briefly outline the IS/PEL thermodynamic framework as ap-
plied to the formation properties of defect clusters in crys-
tals. Note that all simulations in this paper are performed at
zero pressure and no distinction is made between the Helm-
holtz and Gibbs free energies.

In general, the free energy of a system in the canonical
ensemble is given by

G=—kzT'InZ, (5)
where Z is the canonical partition function:

11

Z= AN f exp(= V(rM)/kzT)dr" . (6)
In Eq. (6), A=(h*/2mmkgT)"? is the thermal de Broglie
wavelength that arises from integration of the kinetic portion
of the partition function, and V(r") is the potential energy of
the system, which depends only on the 3N-dimensional po-
sition vector, r". Applying the IS picture introduced above,
the partition function can be rewritten as

014119-2



ROLE OF CONFIGURATIONAL ENTROPY IN THE...

1
Z= o exp(— ﬁVa)fR exp(— BAV (x")ar", (7)
where B=1/kgT, V, is the minimum potential energy in ba-
sin @, AV,(r") is the potential energy relative to the mini-
mum for a particular configuration in basin «, and R, is the
set of configurational phase space points contained in basin
«. Further assuming that basins are uniquely characterized
by their minimum energy, V,, Eq. (7) can be rewritten as>*2°

Z g(Va)eXp(_ ﬁva)exp(_ BGvib(B9 Va))dva,

(8)

where g(V,) is the density-of-states function (DOS) for the
distribution of basin energy minima. The temperature-
dependent quantity G,;(8,V,) represents the (vibrational)
free energy of a basin with minimum energy V, i.e.,
Gyip(B, Vo) ==TS,3(V,), and S,;,(Vy)=kgIn N, where
N, 1s the number of vibrational states in a basin. Therefore,
Eq. (8) can be rewritten as

:ATV

Zz G(Va)exp(_ [))Va)dva' (9)

The DOS function G(V,) represents the distribution of both
configurational —and vibrational states, ie., G(V,)
=N,;,¢(V,). Assuming that in a perfect crystal system only a
single configurational state exists, the free energy is then
given by

G, =—kgT In|N%,/A*N exp(- BV,)]
=3NkgTIn A +V,-TS,. (10)
For a system containing a feature such as a vacancy clus-

ter, the density-of-states function also must account for mul-
tiple configurational states:

G,=-kyT1n f G(V NN JAPN exp(= BV AV,

(11)

where the superscript “ref” indicates a reference configura-
tion for each cluster (to be defined) and the “tilde” notation
indicates that the density of states is normalized so that it is
unity at the reference state, i.e., (~}(Va):G(VD,)/G(Vfo ). Em-
ploying the definition of vibrational entropy given above, Eq.
(11) can be rewritten as

Gy=—TS") —kT'In J G(V N AN exp(= BV,)dV,,.
(12)

Note that in Egs. (11) and (12), N represents the number of
atoms in the defected system. For the specific case of va-
cancy clusters, the formation free energy of a cluster contain-
ing Ny vacancies is
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M/) (13)

AG = Gd—G,,< N
h

where N, is the number of atoms in the perfect crystal refer-
ence system. Combining Egs. (10), (12), and (13), the for-
mation free energy for a vacancy cluster is given by

0

AG =—TAS™} - ksT'In f G(AE)N, ;exp(- BAE)d(AE),

(14)

where AE is the formation enthalpy of a cluster and is ap-
proximately independent of temperature. A similar expres-
sion can be written for any type of cluster and Eq. (14) is the
fundamental starting point for our free energy calculations.
Finally, the probability distribution function p(AE)
=G(AE)exp(—BAE) can be directly sampled with equilib-
rium molecular dynamics. For discrete, on-lattice systems,
g(AE) can be computed directly as shown in the following
section.

III. ON-LATTICE CALCULATIONS OF CLUSTER FREE
ENERGY

The IS/PEL framework generally has been applied to con-
tinuous space systems. Here, we extend its application to a
discrete on-lattice model for vacancy clusters. On-lattice va-
cancy clusters are defined as clusters that are formed by re-
moving a set of atoms from a perfect crystal lattice, followed
by lattice relaxation with molecular statics. The PEL in dis-
crete space is similar to one in continuous space at zero
temperature and consists of a collection of infinitely narrow
basins separated by inaccessible phase space. Sampling of
this space must be accomplished by moves designed to hop
directly from basin to basin. Equation (14) from the previous
section is directly applicable to this situation except that the
vibrational entropy contribution associated with each dis-
crete configuration must be computed separately.

The recently developed Wang-Landau Monte Carlo®’
(WLMC) method was used to investigate the thermodynam-
ics of on-lattice vacancy clusters and generate a density-of-
states function for each cluster. The WLMC approach was
used because of the large energy differences between the
various cluster configurations, which would lead to severe
sampling bottlenecks in a standard Metropolis Monte Carlo
simulation.

First, an n-vacancy cluster was generated by removing n
atoms from a perfect crystal lattice. The configurational
density-of-states function for the formation energy, g(AE),
and the visit histogram, h(AE), were initialized to unity and
zero, respectively. Both g(AE) and h(AE) were discretized
using 0.1 eV energy bins. A cluster was defined as connected
based on the Stillinger criterion?® and an interaction range of
up to 7.8 A was assumed. The vacancy positions were iden-
tified by comparison of the quenched lattice to a reference
perfect lattice at the same density. The positions of reference
atoms that were unmatched by corresponding atoms in the
actual lattice were assigned to vacancies.

Monte Carlo (MC) moves were performed by moving a
single randomly selected atom (vacancy) to another location
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picked at random from all sites that were within the interac-
tion distance to at least one of the other atoms (vacancies).
Note that this is a biased move basis because not all the
possible destination sites are considered in the selection. We
discuss the bias correction below. In addition, moves that led
to fragmented cluster configurations (based on the Stillinger
definition) were rejected without further evaluation. For the
remaining cases, the formation energy of the cluster configu-
ration was calculated by relaxing the lattice statically at con-
stant volume using a conjugate gradient energy minimization
scheme?® and then applying Eq. (13).

The WLMC acceptance/rejection criterion for accepting a
move from formation energy level AE, to AE, is given by

$(AE) 1]
g(AEy) |

p(AE, — AE,) = min[ (15)
Each time a formation energy level AFE is visited the current
density-of-states value is multiplied by a factor f>1 so that
g(AE)=g(AE)f. The multiplicative factor f is initially set to
a value of exp(1) in our simulations, i.e., f;=2.718282. Con-
currently, the visit histogram is updated by adding one to the
value at that energy level so that h(AE)=h(AE)+1. The
simulation proceeds until a minimum flatness criterion is
achieved in the function A(AE), which is taken here to be
85%. Once this criterion is achieved, the value of f is re-
duced according to the schedule f;,,=\f;, where, i represents
the number of simulation “stages,” and h(AE) is reset to
zero. Our simulations were executed until f;=1.000001.

The WLMC simulation only provides the density-of-
states function up to an arbitrary multiplicative constant. In
order to compute an absolute free energy from Eq. (14) it is
necessary to specify the absolute number of states in at least
a single energy interval and thereby anchor the g(AE) func-
tion. The reference state used in all the ensuing calculations
in this paper is the HRC configuration because it is relatively
easy to isolate and possesses relatively few configurations,
which can be counted directly.

A special note should be made regarding the simulation
cell sizes used throughout this work. In principle, there is an
extremely wide variation in the cluster sizes possible for a
given number of vacancies, ranging from a compact sphere,
all the way to a linear chain at maximum extension between
the vacancies (8NN). It is not computationally practical to
set the system size based on the theoretical maximum sized
cluster because this would require extremely large simulation
cells. However, because of the very low probability that such
clusters will be encountered; a much smaller cell can usually
be used. In all cases, the system size was chosen so that no
size effects were apparent in the results. For 8NN-connected
clusters we used cells ranging from 512 atoms for 2 vacan-
cies to 5832 atoms for 35 vacancies.

A. Validation of the WLMC approach

The WLMC algorithm was validated by comparison to a
direct counting approach. Obviously, the direct counting ap-
proach is limited because of the relatively small number of
configurations that can be stored in memory. A comparison
between the direct counting and WLMC predictions for the
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FIG. 2. DOS for a Ist-nearest neighbor connected 6-vacancy
cluster calculated using (a) WLMC (diamonds) and (b) direct count-
ing (circles). Also shown are the results from a corrected-bias
WLMC (squares).

DOS of a nearest-neighbor-connected 6-vacancy (6V) cluster
(i.e., the Stillinger interaction distance is set to the Ist-
nearest neighbor distance) is shown in Fig. 2. Both ap-
proaches show a three state DOS function where the lowest
energy state is the HRC configuration (6-atom ring) that has
two orientations per lattice site. The other two states are
substantially higher in energy but possess about 32X 10?
equivalent orientations.

A systematic discrepancy is apparent between the results
of the direct counting and WLMC calculations, which does
not disappear as the visit histogram flatness criterion is in-
creased. The discrepancy arises because of the way the des-
tination sites are selected. In general, all empty sites must be
considered in the selection of a destination site for a hop.
However, the vast majority of moves performed in this way
would lead to infeasible structures that do not contribute to
the cluster density of states, and the simulation would be
prohibitively expensive due to the high rejection rate. The
constraint that cluster connectivity be preserved during sam-
pling implies that the number of transitions possible from
any given configuration is not uniform. For example, a linear
cluster with all monomers arranged at maximum interaction
distance can only accommodate moves through its end at-
oms. On the other hand, a more spherical cluster has many
more redundant connections and therefore many more pos-
sible “outbound” transitions.

A bias-corrected WLMC algorithm was generated by
modifying the acceptance probability of a transition [Eq.
(15)] so that

AE
DAE, — ALy = L in[g( )

Cmax g(AE2) ’

where C; is the number of possible outbound transitions
from the state “1” and C,,,, is the maximum number of out-
bound transitions for any state in the system.

The number of possible transitions is computed by loop-
ing over each atom in the cluster and finding the number of
locations that it can be moved to while preserving the cluster
connectivity. The maximum is estimated at the beginning of

1 s
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FIG. 3. DOS for 6V cluster as a function of vacancy-vacancy
interaction distance. Lower dashed: 2NN; thin solid: 3NN; upper
dashed: 6NN; thick solid: 8NN.

the simulation—note that overestimation of this number does
not affect the results but only reduces the efficiency of the
simulation by leading to more rejections. The bias-corrected
WLMC simulation results for the 6V-INN cluster are also
shown in Fig. 2 and show excellent agreement with the direct
counting results.

B. Dependence of the DOS on interaction distance

The effect of increasing the interaction range between va-
cancies on the DOS function for the 6V cluster is shown in
Fig. 3. The DOS function is seen to rise dramatically with
increasing interaction range and for the 8th-nearest neighbor
case has a value of 3 X 10% at 19.5 eV, which is 10 eV higher
than the ground state. Obviously, it is not practical to use the
direct counting approach for this case. Also note that as the
interaction distance increases the form of the DOS function
becomes more easily discernable as an exponentially increas-
ing function.

The periodic peaks are due to the sudden increase in states
as each additional particle is moved away from the cluster
core. Also note that as the interaction distance increases, the
DOS exponent also increases—the significance of this fea-
ture will be discussed in more detail in Sec. I'V. Finally, the
decay in the DOS at the end is due to the fact that fewer
states are available for stretched configurations.

C. Probability distribution functions for on-lattice vacancy
clusters

The probability distribution function (PDF) for the on-
lattice system is given by

P(AE) = G(AE)exp(- BAE)
= 8(AE)exp(= BAE)exp(S,i(AE)K).  (17)

Note that the vibrational entropy dependence has to incorpo-
rated explicitly because the different vibrational states asso-
ciated with each configuration are not sampled with the on-
lattice WLMC simulations. Calculations of the vibrational
entropy of formation as a function of cluster configuration
and energy are discussed further in Sec. IV B. The distribu-
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FIG. 4. Probability distribution functions for the 6V cluster at
(a) 1600 K (squares), (b) 1300 K (circles), and (c) 1000 K (tri-
angles) and the 10V cluster (diamonds) at 1600 K.

tion function in Eq. (17) can be interpreted as the probability
distribution of states obtained from a molecular dynamics
simulation that is restricted to only sample on-lattice cluster
configurations.

The probability distribution, p(AE), for the 6V cluster at
1000 K, 1300 K, and 1600 K is shown in Fig. 4. All distri-
butions are arbitrarily anchored so that the probability distri-
bution function is unity at the ground state. While the rela-
tive importance of higher energy states increases with
increasing temperature, the ground state (corresponding to
the HRC configuration) is dominant even at 1600 K, which
is close to the melting temperature of silicon. The 2nd-lowest
energy state (~11 eV) is about 100 times less probable at
1600 K and 1X10° times less probable at 1000 K. States
with higher energies are progressively less represented. In
other words, even the combination of both the vibrational
and on-lattice configurational entropy near the melting tem-
perature is still not sufficient to compensate for the higher
energy of any state relative to the HRC configuration.

Also shown in Fig. 4 is the probability distribution for the
10V cluster at 1600 K, which leads to a similar picture, al-
though the decay of the probability distribution function is
slower than that for the 6V case, reflecting the faster expo-
nential increase in the DOS function for the 10V cluster.
Simulations for clusters up to size 30V fail to show any
appreciable impact from non-ground state configurations at
all temperatures up to 1600 K. Based on these results the
total free energy of formation for EDIP vacancy clusters is
adequately represented by the free energy of the HRC con-
figuration for all cluster sizes and at all temperatures. In
other words, while the on-lattice potential energy landscape
does contain a large number of states, the density is not high
enough to appreciably contribute to the free energy.

IV. OFF-LATTICE CALCULATIONS OF CLUSTER FREE
ENERGY

Extended EDIP molecular dynamics simulations at
1600 K (and to a lesser extent at lower temperatures) show
that vacancy clusters spend a majority of time in states that
are of much higher energy than the HRC configuration. This
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FIG. 5. Probability distribution function for a 6-vacancy cluster
at 1600 K obtained directly from MD. Inset: Spheres represent at-
oms displaced by more than 10% of a bond length.

is particularly significant given the predicted high binding
energy of the HRC configuration for the 6V vacancy cluster
in silicon. Very long NVT-ensemble (zero pressure) MD tra-
jectories of a 1000-lattice site cell containing a 6V cluster
were periodically quenched (approximately every 100-200
time steps) to the local energy minimum and the formation
energies collected into bins as in the on-lattice WLMC cal-
culation described in the previous section.

The resulting PDF is shown in Fig. 5 and exhibits several
fundamental differences relative to the on-lattice MC case.
Most importantly, the dominant states are now located at
approximately 11.8 eV while the HRC ground state is never
observed during the simulation which was run for about 8
X 107 time steps or about 50 ns of real time. The distribution
also is now much shallower than for the discrete case, which
implies that a larger number of configurations contribute to
the average thermodynamic properties. Finally, many of the
unoccupied bins in the on-lattice case (e.g., states between
9.5 eV and 11.0 eV) are now populated and the distribution
appears to be almost continuous. In fact, the energy spacing
between states is less than 0.01 eV in some regions of prob-
ability distribution function.

An example (quenched) configuration of the simulation
lattice in the neighborhood of the 6V cluster is shown in the
inset of Fig. 5. The configuration possesses formation energy
in the region of the peak of the distribution (11.8 eV). Sev-
eral neighboring atoms are significantly displaced from their
lattice positions to the extent that it is no longer possible to
definitively assign vacancies to particular lattice sites. Other
configurations found in the MD simulation show similar off-
lattice character and spatial extension, with the higher energy
structures becoming increasingly disordered and extended.
The increased stability of higher energy structures arises
from the tremendous number of possible configurations if
substantial off-lattice rearrangements are allowed. Although
off-lattice relaxations were permitted in the WLMC calcula-
tions during the energy minimizations, these were only suf-
ficient to sample the /ocal minimum in the potential energy
surface near an on-lattice configuration.

The fact that each configuration sampled using the above
procedure corresponds to a well-defined local minimum in
the potential energy surface was confirmed by repeated co-
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FIG. 6. Potential energy surface experienced by a single hop-
ping atom in a crystal (a) without lattice rearrangements and (b)
with lattice rearrangements.

ordinate perturbation followed by reminimization. Even
states that were separated by less than 0.01 eV (the tolerance
of our CG minimizations) were reproducibly isolated by en-
ergy minimization following coordinate perturbation. Of
course, this robustness was observed only if the perturbations
did not exceed a certain critical value (about 2-3 % of a
bond length)—perturbation magnitudes above this value led
to relaxations into different local minima. In general, these
local minima possessed substantially different energies (up to
~1 eV) from the original value. Conversely, states with ad-
jacent formation energies were generally found to corre-
spond to substantially different atomic configurations.

The results above indicate that the potential energy sur-
face contains a large enough density of local minima to sub-
stantially alter the thermodynamics of vacancy clusters. This
view is schematically represented in Fig. 6, which contrasts
the conventional view (a) of a smooth potential surface ex-
perienced by a hopping point defect in a crystal and the
present picture (b). The situation in (b) is not unlike the
potential energy surface expected in an amorphous solid or
supercooled liquid, but here is localized to the vicinity of the
defect. Note that these states are introduced into the system
by the presence of the point defect and would not otherwise
exist in the perfect lattice. In other words they are a property
of the defect and therefore modify its thermodynamic prop-
erties. The defect clusters therefore act as strong sources of
amorphization within the lattice, an idea that has been quali-
tatively suggested in the literature for many years’® but has
not yet been quantitatively analyzed.

We note here that multiple off-lattice configurations for
defect clusters have been found and analyzed in recent tight-
binding MD calculations, specifically for small self-
interstitial clusters in silicon.’! However, the enormous num-
ber of distinct configurations located in the present work
leads to a fundamentally different physical picture in which
the cluster thermodynamics are qualitatively altered as will
be shown in the subsequent sections. In Refs. 31 and 32,
only a few structures were isolated which would not lead to
a significant configurational entropy contribution, but do
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FIG. 7. Probability distribution function for vacancy clusters at
1600 K obtained directly from MD.

have important effects on the diffusion path as shown in
Ref. 32.

A. Absolute probability distributions and density-of-states
functions

The PDFs for several other vacancy clusters containing
2-35 vacancies were also generated using direct MD; ex-
amples are shown in Fig. 7. All distributions have been arbi-
trarily normalized to unit area. As the cluster size increases,
the range of energies sampled by the cluster also increases
and, for the 35-vacancy cluster, the difference between the
energy at the distribution peak and the HRC structure is
about 10 eV or 75 kgT. Except for dimers and trimers, the
distributions are observed to be almost continuous across the
entire range of sampled formation energies, with well-
defined peaks at intermediate values. For clusters containing
more than 4 vacancies, the HRC configuration was never
observed at 1600 K, while in the dimer and trimer cases the
clusters were observed to revisit the HRC configuration mul-
tiple times.

The PDFs in Fig. 7 are known only to within a multipli-
cative constant, which must be determined before they can
be used to compute absolute free energies. As in the discrete
case, anchoring of a PDF requires knowing the state count in
at least one energy bin within the distribution, and in the
on-lattice simulations the HRC configuration was used for
this purpose. While the HRC configuration is still a natural
anchor for the off-lattice distributions, it is more difficult to
utilize it because the 1600 K MD simulations do not visit
this state as discussed above.

This difficulty was resolved using a second MD simula-
tion at lower temperature in which the HRC structure was
sampled adequately while maintaining sufficient overlap
with the 1600 K distribution. This approach is conceptually
similar to umbrella sampling® in which distributions across
different energy subintervals are overlapped to create a com-
plete one. The optimal temperature for the second simulation
was determined by balancing the requirement that the HRC
configuration be sampled adequately with the need to maxi-
mize the overall transition rates to produce a distribution
with sufficient statistics in a reasonable amount of CPU time.
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FIG. 8. Overlap between probability distributions sampled at
two different temperatures for the 6V and 18V clusters. Solid sym-
bols: low T; open symbols: high T. All data shown is scaled to the
lower temperature (1400 K for 6 V; 1050 K for 18 V).

In fact, the low temperature “anchor” simulations accounted
for most the overall computational effort in this study. The
high temperature simulations are still required because they
sample the cluster configurations much more rapidly and
provide better overall statistics over most of the energy
range.

Examples of the two-temperature approach are shown in
Fig. 8 for the 6V and 18V clusters. In the 6V case, the low
temperature simulation was performed at 1400 K while for
the 18V cluster a temperature of 1050 K was used. Note that
for both the 6V and 18V clusters, the distributions are plotted
at the low temperature; i.e., the 6V distributions are shown at
1400 K and the 18V distributions at 1050 K. While almost
full overlap between the low and high temperature distribu-
tions could be achieved in the 6V case, the large temperature
difference between the two simulations used for the 18V case
implied that only a relatively small part of the distributions
overlapped (~3-4 eV in the formation energy range) and
could be used for anchoring the 1600 K data.

The corresponding absolute density-of-states functions
(obtained by sampling at 1600 K) for the various cluster
sizes are shown in Fig. 9. The solid black circle symbols are
the (directly counted) density of states for the HRC configu-
rations. Also shown for the 6V and 18V clusters are DOS
functions obtained from the low-temperature simulations,
which are seen to overlap extremely well with the corre-
sponding high-temperature data. Each of the DOS functions
rises exponentially after an initial deviation, and appears to
be unbounded. This exponential growth in the DOS func-
tions is not inconsistent with the concept of a thermodynami-
cally stable cluster because the distributions in Fig. 7 are
bounded. In other words, even though DOS functions grow
exponentially, the magnitude of the Boltzmann factor expo-
nent is larger. Physically, the unbounded DOS functions
point to the fact that each cluster can spawn an infinite num-
ber of higher energy states—in fact, the states near the tail
end of the DOS functions in Fig. 7 possess energies that are
higher than a completely dissociated cluster, even though
they represent valid Stillinger clusters. These configurations
correspond to the formation of additional defect structures
such as Frenkel pairs (interstitial-vacancy pairs)** and other
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FIG. 9. Absolute density-of-states functions. Small squares: data
derived from sampling at 1600 K; solid circles: directly counted
HRC degeneracy; large open circles: DOS sampled at 1400 K (6V)
and 1050 K (18V); thin solid lines: exponential fits.

types of disordered states, and suggest a mechanism for
amorphization and even crystal melting.

A plot of the DOS exponents as a function of cluster size
is shown in Fig. 10 in which the exponents have been ex-
pressed as  effective  temperatures, i.e., G(AE)
~exp(B,rAE), where B,;= 1/kT 4 is the fitted exponent for
a given DOS. For effective temperatures above the crystal
melting temperature (~ 1520 K), the probability distribution,
P(AE)=G(AE)exp(-BAE) is bounded and the crystal is
stable. As shown in Fig. 10, the effective temperature ap-
pears to approach this limit as a power law in the cluster size
over the range studied, although larger cluster sizes would be
required to completely determine the limiting behavior. In
other words, the additional states introduced by clusters pro-
vide a path for crystal melting to occur, and larger clusters
produce a higher state density.

B. Total cluster free energy calculations

The distribution functions shown in Figs. 7 and 9 were
used to compute free energies of formation for each of the
clusters, which are a critical ingredient in continuum simu-
lations of aggregation. The formation free energies were

1900
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PR I 1 TR ST
1500 10 20 30 30
nVv

FIG. 10. DOS exponent dependence on cluster size. Line is a
power-law fit.
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FIG. 11. Temperature and size dependence of the total effective
surface free energy (o) of vacancy clusters predicted using the
EDIP potential. Lower surface: current results including configura-
tional entropy; upper surface: HRC calculations with vibrational
entropy only.

computed as a function of cluster size and temperature using
Eq. (14). Details of the vibrational entropy calculation for the
HRC configuration are given below in Sec. IV C.

The temperature and size dependence of AG(n,T) is
shown explicitly in Fig. 11 (lower plane) by defining an ef-
fective surface free energy as o=AG(n,T)/an*?, where a
=2.224 for a sphere.?® Also shown is the surface free energy
obtained using conventional ground state calculations in
which the enthalpy and vibrational entropy of formation for
the HRC are computed as functions of temperature (upper
plane). Several observations can be made. First, the surface
energies computed using both approaches converge at low
temperature where the configurational entropy is negligible.
The agreement at low temperature provides a good consis-
tency check because the present results are extrapolated from
high temperature using the density-of-states function. At
high temperatures, a substantial deviation between the pre-
dicted surface energies is apparent because the surface en-
ergy predicted by including the configurational entropy de-
creases more strongly with temperature than the HRC curve.
The deviation is greatest for small clusters because the rela-
tive effect of configurational entropy is greatest for these
sizes.

Interestingly, at high temperatures the effective surface
energy predicted in the present work is approximately con-
stant over the size interval 2 <<n <35, implying that the free
energy of formation scales as n*> for all cluster sizes con-
sidered. In addition, based on previous analyses, the 35-
vacancy cluster is fully representative of the continuum limit
because it is the smallest structure that can assume a perfect
(111) faceted octahedral shape.'® As a result, the present cal-
culations indicate that the surface free energy scales as n*?
for all sizes at elevated temperatures. At lower temperatures,
however, the smallest clusters clearly possess higher effec-
tive surface free energy and deviate from the n*3 scaling law
(for both sets of calculations). The observed deviation for
small clusters arises because at low temperatures the effect
of configurational entropy is negligible and the atomistic
(discrete) nature of the clusters leads to a higher effective
surface free energy as observed in previous thermodynamic
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FIG. 12. (a) Difference ratio, (oyrc—0rFyrr)! Opyrr, between
current (opy;;) and HRC (opge) surface free energies as a function
of EDIP temperature and vacancy cluster size; (b) relevant physical
phenomena as a function of temperature and vacancy cluster size.

analyses.18 By contrast, in the HRC calculations, the increase
in effective surface free energy for small clusters is present at
all temperatures because the atomic discreteness of the HRC
structure is preserved (by construction).

A more direct comparison between the present calcula-
tions and the HRC results is shown in Fig. 12(a). The con-
tour lines represent the difference between the ground state
HRC and total surface free energy calculations from this
work, defined as (opgre—0ryrr) ! Opyrr- At low temperatures
the configurational entropy is negligible for all but the small-
est cluster sizes and a ground state analysis is appropriate,
i.e., the error is less than 2%. At temperatures above about
1100 K, the deviation between the two approaches increases
especially for small clusters: the difference for 2<n<<6 at
1600 K is larger than 20%. In addition, a persistent error of
about 12% appears for larger sizes at 1600 K. As mentioned
earlier, because the 35-vacancy cluster is a perfect octahe-
dron [comprised entirely of (111) surfaces] this difference is
expected to apply to all subsequent sizes.

The “phase” plot in Fig. 12(b) provides a comprehensive
view of the effect of configurational entropy in size and tem-
perature space. The maximum discrepancy for small clusters
at high temperature is critically important because small
clusters are the primary species present during the early, high
temperature stages of nucleation and growth of aggregates
during silicon crystal growth (see below). Thus a ground
state analysis of the thermodynamics of these species is in-
correct at the temperatures relevant to nucleation.

At temperatures above about 1300 K the difference be-
tween the ground state analysis and the present one persists
at all sizes as mentioned above. The reason for this discrep-
ancy is due to surface melting. Larger vacancy clusters are
well approximated by internal (111) surfaces, which melt at a
temperature substantially below the bulk melting tempera-
ture of 1685 K. The (111) surface melting temperature pre-
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dicted by the EDIP is approximately 1200-1300 K, and
above this temperature, a vacancy cluster at any size will
exhibit some surface melting because of the extremely high
density of states associated with off-lattice disorder created
by this process. Surface melting at temperatures below the
bulk melting temperature has important implications during
the processing of the silicon wafers because it provides a
pathway for cluster dissolution during wafer thermal anneal-
ing.

1. Connections to experimental data

The heretofore-neglected contribution of the configura-
tional entropy to vacancy cluster free energy is obviously
important in the context of modeling microvoid formation
during Czochralski (CZ) crystal growth. During this process,
vacancy aggregation is initiated at high temperature because
of vacancy supersaturation that results from crystal cooling.
Continuum models for void formation have shown unequivo-
cally that low (i.e., ~0.75-0.85 J/m?) values of o are nec-
essary to predict the correct nucleation onset temperature
[approx. 1350—1400 K (Ref. 36)]. On the other hand, it has
been difficult to reconcile this range of values for the cluster
surface free energy with experimental measurements of the
(111) surface energy at 77 K, which are clustered around
1.25J/m?37 As mentioned earlier, the (111) surface is
widely considered as a good basis for estimating the free
energy of experimentally observed octahedral voids, which
consist almost entirely of (111)-oriented surfaces.** Our pre-
diction for the effective surface free energy of the 35V clus-
ter, which is entirely comprised of (111) surfaces, decreases
from about 1.24 J/m? at 77 K to 0.82 J/m? at 1600 K.

Based on the present results, it is now possible to consoli-
date both values with a single result. The large clusters that
are experimentally observed in commercial single-crystal
silicon after cooling are unaffected by configurational en-
tropy, and are well described by the (111) surface energy
model (upper left region in Fig. 12). However, early during
the nucleation process, small clusters at high temperature are
spatially extended due to a combination of configurational
and vibrational entropy and are therefore characterized by a
much smaller effective surface free energy (lower right re-
gion in Fig. 12). A single experimental data point available in
the literature at the melting temperature of silicon (1685 K)
(Ref. 41) provides a lowered (111) surface free energy
(0.89 J/m?) and further supports the validity of the present
picture.

It should be noted that the excellent quantitative agree-
ment between EDIP predictions and the experimental mea-
surements in Refs. 37-39 and 41 is likely to be partially
fortuitous. EDIP underpredicts the melting temperature of
silicon by about 10%, which may lead to comparable uncer-
tainty in the predicted temperature dependence. In fact,
1600 K is slightly above the thermodynamic melting tem-
perature (but substantially below the mechanical melting
point) of the EDIP potential, which is about 1530—1560 K.
Therefore, properties computed with EDIP between 1550 K
and 1600 K roughly correspond to those of real silicon at its
experimental melting temperature.
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The interest in Si(111) surface free energies has been fu-
eled by the need for predictive continuum scale simulators to
calculate the size distribution and density of voids in com-
mercial Czochralski-grown silicon crystals. The impact of
vacancy cluster configurational entropy on such models was
investigated in detail by applying the physics obtained in this
work to an existing void dynamics simulator.”> We find that
the simulator is now able to simultaneously predict, for the
first time, correct void sizes, densities, and nucleation tem-
peratures for a very wide range of crystal growth operating
conditions. Most importantly, this was achieved with no pa-
rameter fits that have been the hallmark of previous studies.
These findings are beyond the scope of the current paper and
are presented in detail in Ref. 42.

C. Explicit calculation of the cluster configurational entropy

While the configurational entropy is intrinsically taken
into account in Eq. (14), it is not possible to directly compute
it from the total free energy. Rearranging Eq. (4), the con-
figurational entropy for a cluster is given by

TSconf= <AE> - T<ASvib> - AG, (18)

which requires that the configurationally averaged formation
energy and vibrational entropy be calculated. The former is
directly obtained from the probability distribution functions.
As mentioned in Sec. II, the vibrational entropy of a given
configuration was determined using the quasiharmonic
approximation'® following static relaxation at constant vol-
ume. The QHA was performed at 1000 K for all configura-
tions, although it was determined that the QHA computed
vibrational entropy did not depend on temperature over a
large range.

The configurationally averaged vibrational entropy of for-
mation was computed by repeated QHA analysis for a wide
range of configurations (and formation energies) at each
cluster size. The resulting formation entropies for each clus-
ter size were then fitted to linear functions of formation en-
ergy and the configurational average computed as

(AS,;) = 2 ASL(AE) X p'(AE), (19)

where p’(AE;) is the normalized probability distribution
function for the formation energies and AS' , (AE,) represents
the functional dependence of the formation vibrational en-
tropy on the formation energy. The temperature dependence
of the configurational entropy contribution to the free energy
is shown in Fig. 13 for several cluster sizes. As the cluster
size increases, the temperature dependence becomes stron-
ger. Note that at low temperatures, the total configurational
entropy for the smaller clusters is larger than that of the
larger clusters, but the trend is reversed at high temperature
because of the stronger temperature dependence. In fact, in
the case of the 35V clusters the entropic contribution to the
free energy is negligible below about 1000 K.

These trends can be explained by the fact that although
larger clusters require more thermal energy to substantially
fragment because they are more tightly bonded they have a
much larger configurational space to explore once sufficient
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FIG. 13. Configurational entropy contribution to the free energy
of formation as a function of temperature for various cluster sizes.
Dashed line: limiting behavior for (111) surface melting.

energy is provided. Also shown in Fig. 13 is the expected
limiting behavior for large clusters. The onset of the sudden
explosion in the configurational entropy corresponds to the
melting of the internal (111) surfaces. This picture further
supports the hypothesis presented in Sec. IV B.

D. The single vacancy

The thermodynamics of the single silicon vacancy have
been studied numerous times using a wide variety of com-
putational methods. Here we demonstrate that the configura-
tional entropy picture presented in the previous sections can
even influence the properties of single point defects. This is a
surprising result because the single vacancy thermodynamic
properties are generally assumed to be well described by a
single ground state. The single-vacancy probability distribu-
tion and density-of-states functions for the formation energy
are shown in Fig. 14. As in the cluster case, a distribution of
formation energies are found, ranging from the ground state
value of 3.25 eV found in earlier work with the EDIP
potential,!® to values as high as 8 eV which correspond to
the additional formation of an interstitial-vacancy complex.
While the probability distribution is strongly peaked at the
ground state configuration, the total contribution of the first
few higher energy states is about 20% of the ground state

FIG. 14. DOS (circles) and PDF (squares) at 1600 K for the
single vacancy.
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FIG. 15. Probability distribution function for the 10-interstitial
cluster in EDIP silicon.

free energy. This corresponds to a temperature dependent
shift in the predicted equilibrium concentration of about
100% at 1600 K. Given that the contributing excited states
are at only slightly higher energy relative to the ground state,
this effect persists as the temperature is lowered.

These results suggest that many defects at high tempera-
ture should be characterized thermodynamically as a collec-
tion of nondegenerate states, rather than a single ground-state
structure. The dense PEL induced by larger structures leads
to substantial amorphization, but even single point defects
introduce enough states to cause deviation from ground state
thermodynamics. In fact, the present approach even can be
applied to the perfect crystal, which can be considered to be
the ground state configuration in a sequence of progressively
higher energy states. This was examined by performing ex-
tended MD simulations of a perfect crystal with periodic
minimizations. The DOS for the perfect crystal (not shown)
indicates that at least one excited state (2.5 eV above the
ground state) is accessible by direct MD at 1600 K. Inspec-
tion of the lattice corresponding to this configuration shows
that the local minimum corresponds closely to the so-called
fourfold coordinated defect recently identified with DFT
calculations,** which was also found to have formation
energy of 2.5 eV. This correspondence serves to highlight
the generality of the physical picture presented here as well
as ability of the EDIP potential to accurately identify and
model bulk defects in silicon.

V. EXTENSION TO OTHER POTENTIAL MODELS

The applicability of our results to other systems was in-
vestigated further by considering a self-interstitial cluster us-
ing the EDIP potential and vacancy clusters using the Tersoff
potential for silicon.*3-4¢

A. Self-interstitial clusters in EDIP silicon

The probability distribution function for the 10-interstitial
cluster at 1600 K is shown in Fig. 15. Clearly, the same
general trends observed for the vacancy cluster cases also are
seen here, namely that the ground state (~21 eV) is not rel-
evant for describing the thermodynamic properties of the
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FIG. 16. Probability distribution function for the 10V cluster. (a)
Solid squares: Tersoff potential at 2700 K; (b) open diamonds: Ter-
soff potential at 2650 K; (c) open circles: EDIP potential at 1600 K.

cluster. The peak in the distribution is located at 26 eV. In
principle, the calculation of formation free energies from this
distribution is identical to the vacancy case. However, an
additional difficulty arises in the anchoring of the distribu-
tion because, unlike the vacancy case, the ground state for
self-interstitial clusters is morphologically complicated and
cannot be counted directly. The general problem of distribu-
tion anchoring for complex defect structures is not trivial and
further work is needed to extend the present approach to such
species.

B. Vacancy clusters in Tersoff silicon

A final test of the generality of our results was performed
using the Tersoff potential for silicon. The probability distri-
bution function for the 10V cluster at 2700 K in Tersoff sili-
con is shown in Fig. 16 (solid squares). This temperature
corresponds very roughly to 1600 K within the EDIP frame-
work as determined by matching single vacancy diffusion
coefficients. A similar picture is obtained in which the cluster
is characterized by a distribution of states that are signifi-
cantly higher in energy than the ground state configuration.

Also shown in Fig. 16 (open symbols) is the EDIP prob-
ability distribution function at 1600 K and the Tersoff distri-
bution function rescaled to a temperature of 2650 K. Note
how the small temperature shift leads to a large change in the
probability distribution function and that the Tersoff distribu-
tion function at 2650 K is now very close to the EDIP curve,
confirming the reproducibility of the physics across inter-
atomic potentials. On the other hand, it is difficult to resolve
differences in vacancy diffusion coefficients at 2650 K and
2700 K because of the scatter in the measurements. In other
words, temperature matching using the single vacancy diffu-
sion coefficient essentially gives the same result as matching
the probability distribution curves and in fact demonstrates
the universality of the present results with respect to choice
of interatomic potentials.

VI. CONCLUSIONS

We have demonstrated that configurational entropy is a
qualitatively important contribution to the thermodynamic
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properties of atomic clusters in crystalline solids, particularly
at elevated temperature. The magnitude of this entropic
source is strongly underestimated if a lattice-based approach
is used because of the presence of an unexpectedly large
number of off-lattice local minima in the potential energy
surface. The present calculations suggest that any lattice de-
fect should be interpreted as a dense collection of non-
degenerate states, in which the ground state may or may not
be relevant at high temperature, which is a fundamentally
different view than the traditional approach of basing finite
temperature property calculations on the minimum energy
structure.

The overall picture presented here for the crystalline sili-
con system is shown to be independent of the empirical po-
tential or the type of defect cluster, and suggests that the
computational approach and results presented here should be
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generally applicable to other solid-state systems. Our results
also have implications for multiscale modeling approaches in
which molecular dynamics simulations are used to compute
properties for coarser models such as on-lattice kinetic
Monte Carlo. The loss of degrees of freedom in the latter
implies that the configurational entropy associated with the
off-lattice states is lost and will substantially alter the ther-
modynamic properties of the system. The question of how to
effectively account for this lost entropy will be the subject of
future work.
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