
Distributed Path Computation without Transient Loops:
An Intermediate Variables Approach

Saikat Ray1, Roch Guérin1, and Rute Sofia2

1 Department of Electrical and Systems Engineering, University of Pennsylvania
2 Siemens AG Corporate Technology, Information and Communications, Munich, Germany?

Abstract. Paths with loops, even transient ones, pose significant stability prob-
lems in networks. As a result, much effort has been devoted over the past thirty
years to designing distributed algorithms capable of avoiding loops. We present a
new algorithm, Distributed Path Computation with Intermediate Variables (DIV),
that guarantees that no loops, transient or steady-state, can ever form. DIV’s nov-
elty is in that it is not restricted to shortest paths, can easily handle arbitrary
sequences of changes and updates, and provably outperforms earlier approaches
in several key metrics. In addition, when used with distance-vector style path
computation algorithms, DIV also prevents counting-to-infinity; hence further im-
proving convergence. The paper introduces DIV and its key properties. Simula-
tion quantifying its performance gains are also presented.

1 Introduction

Distributed path computation is a central problem in modern communication networks,
and has therefore received much attention. Its importance together with the lack of a
“generic” solution is what motivated this paper. In distributed path computations, end-
to-end paths are formed by concatenating individual node decisions, where for each
destination a node chooses one or more successors (next-hop) based only on local in-
formation and so as to optimize some global objective function. The use of inconsistent
information across nodes can then have dire consequences, including possible forma-
tion of transient routing loops1. Loops can severely impact performance, especially in
networks with no or limited loop mitigation mechanisms (such as Time-to-Live (TTL)),
where a routing loop often triggers network-wide congestion. The importance of avoid-
ing transient routing loops remains a key requirement for path computation in both
existing and emerging network technologies, e.g., see [1] for recent discussions, and is
present to different extents in both link-state and distance-vector algorithms.

Link-state algorithms (e.g., OSPF [2]) decouple information dissemination and path
computation, so that routing loops, if any, are short-lived, but the algorithms overhead is
high in terms of communication (broadcasting updates), storage (maintaining a full net-
work map), and computation (changes anywhere in the network trigger computations
at all nodes). By combining information dissemination and path computation, distance-
vector algorithms (cf. RIP [3], EIGRP [4]) avoid several of these disadvantages, which
make them attractive, especially in situations of frequent local topology changes and/or
when high control overhead is undesirable. However, they can suffer from frequent and

? Research supported in part by a gift to the University of Pennsylvania by the Siemens AG
Corporate Technology, Information and Communications, Munich, Germany.

1 By “routing” we mean creation of forwarding tables, irrespective of their “layer,”e.g., 2 or 3.

long lasting routing loops and slower convergence (cf. the counting-to-infinity prob-
lem [5]). Thus, making distance-vector based solutions attractive, calls for overcoming
these problems. Since the 70’s, several works [6–10] have targeted this goal in the con-
text of shortest path computations (cf. Section 2), but the problem remains fundamental
and timely (e.g., see the efforts for introducing distributed shortest path algorithms in
lieu of a distributed spanning tree algorithm [11]). Furthermore, as we briefly allude
to in Section 3.4, extending this capability to other types of path computation is also
becoming increasingly important.

In this paper, we introduce the Distributed Path Computation with Intermediate
Variables (DIV) algorithm which enables generic, distributed, light-weight, loop-free
path computation. DIV is not by itself a routing protocol; rather it can run on top of
any routing algorithm to provide loop-freedom. DIV generalizes the Loop Free Invari-
ant (LFI) based algorithms [9, 10] and outperforms previous solutions including known
LFI and Diffusing Computation based algorithms, such as the Diffusing Update Algo-
rithm [8]2:

1. Applicability: DIV is not tied to shortest path computations. It can be integrated
with other distributed path computation algorithms, e.g., the link-reversal mecha-
nisms of [12, 13] or algorithms targeting path redundancy or distributed control as
outlined in Section 3.4.

2. Frequency of Synchronous Updates: When applied to shortest path computations,
DIV triggers synchronous updates less frequently as well as reduces the propa-
gation of synchronous updates (cf. Theorem 4), where synchronous updates are
updates that potentially must propagate to all upstream3 nodes before the origina-
tor is in a position to update its path. They are time and resource consuming. Thus,
the less frequent the synchronous updates, the better the algorithm.

3. Maintaining a path: A node can potentially switch to a new successor without form-
ing a loop provably faster with DIV than with earlier algorithms (cf. Section 3.2).
This is especially useful when the original path is lost due to a link failure.

4. Convergence Time: When a node receives multiple overlapping updates4 from neigh-
bors, DIV allows the node to process them in an arbitrary manner. Thus, in DIV,
the node can respond only to the latest or the best update, converging potentially
faster. (cf. Theorem 2).

5. Robustness: DIV can tolerate arbitrary packet reordering and losses without sacri-
ficing correctness (cf. Theorem 3).

Finally, the rules and update mechanism of DIV and their correctness proofs are rather
simple, which hopefully will facilitate correct and efficient implementations.

2 The authors gratefully acknowledge J.J. Garcia-Luna-Aceves for introducing them to the LFI-
based algorithms.

3 Upstream nodes of a node x for destination z are the nodes whose path to z includes x.
4 Two updates are overlapping if the latter appears before the algorithm has converged in re-

sponse to the first.

2 Previous Works

The Common Structure The primary challenge in avoiding transient loops lies in
handling inconsistencies in the information stored across nodes. Otherwise, simple
approaches can guarantee loop-free operations at each step [12, 14]. Most previous
distance-vector type algorithms free from transient loops and convergence problems
follow a common structure: Nodes exchange update-messages to notify their neigh-
bors of any change in their own cost-to-destination (for any destination). If the cost-
to-destination decreases at a node, the algorithms allow updating its neighbors in an
arbitrary manner; these updates are called local (asynchronous) updates. However, fol-
lowing an increase in the cost-to-destination of a node, these algorithms require that the
node potentially update all its upstream nodes before changing its current successor;
these are synchronous updates.

The algorithm proposed in [6] follows the above broad structure and is one of the
earliest work guaranteeing loop-free operations with inconsistent information. For han-
dling multiple overlapping updates, it relies on unbounded sequence numbers that mark
update epochs. An improvement to this algorithm is presented in [7], which handles
multiple overlapping updates by maintaining bit vectors at each node.

Diffusing Update Algorithm (DUAL) DUAL, a part of CISCO’s widely used EIGRP
protocol, is perhaps the best known algorithm. In DUAL, each node maintains, for each
destination, a set of neighbors called the feasible successor set. The feasible succes-
sor set is computed using a feasibility condition involving feasible distances at a node.
Several feasibility conditions are proposed in [8] that are all tightly coupled to the com-
putation of a shortest path. For example, the Source Node Condition (SNC) defines the
feasible successor set to be the set of all neighbors whose current cost-to-destination is
less than the minimum cost-to-destination seen so far by the node. A node can choose
any neighbor in the feasible successor set as the successor (next-hop) without having to
notify any of its neighbors and without causing a routing loop regardless of how other
nodes in the network choose their successors, as long as they also comply with this rule.

If the neighbor through which the cost-to-destination of the node is minimum is in
the feasible successor set, then that neighbor is chosen as the successor. If the current
feasible successor set is empty of does not include the best successor, the node initiates
a synchronous update procedure, known as a diffusing computation (cf. [15]), by send-
ing queries to all its neighbors and waiting for acknowledgment before changing its
successor. Multiple overlapping updates—i.e., if a new link-cost change occurs when a
node is waiting for replies to a previous query—are handled using a finite state machine
to process these multiple updates sequentially.

Loop Free Invariance (LFI) Algorithms A pair of invariances, based on the cost-
to-destination of a node and its neighbors, called Loop Free Invariances (LFI) are in-
troduced in [9] and it is shown that if nodes maintain these invariances, then no tran-
sient loops can form (cf. Section 3.2). Update mechanisms are required to maintain
the LFI conditions: [9] introduces Multiple-path Partial-topology Dissemination Algo-
rithm (MPDA) that uses a link-state type approach whereas [10] introduces Multipath
Distance Vector Algorithm (MDVA) that uses a distance vector type approach. Similar
to DUAL, MDVA uses a diffusing update approach to increase its cost-to-destination,

thus it also handles multiple overlapping cost-changes sequentially. The primary con-
tribution of LFI based algorithms such as MDVA or MPDA is a unified framework ap-
plicable to both link-state and distance-vector type approaches and multipath routing.

Comparative Merits of Previous Algorithms DUAL supersedes the other algorithms
in terms of performance. Specifically, the invariances of MPDA and MDVA are based
directly on the cost of the shortest path. Thus, every increase in the cost of the shortest
path triggers synchronous updates in MDVA or MPDA. In constrast, the feasibility
conditions of DUAL are indirectly based on the cost of the shortest path. Consequently,
an increase in the cost of the shortest path may not violate the feasibility condition of
DUAL, and therefore may not trigger synchronized updates—an important advantage
over MDVA or MPDA. Because of the importance of this metric, we consider DUAL
the benchmark against which to compare DIV (cf. Section 4).

DIV combines advantages of both DUAL and LFI. DIV generalizes the LFI con-
ditions, is not restricted to shortest path computations and, as LFI-based algorithms,
allows for multipath routing. In addition, DIV allows for using a feasibility condition
that is strictly more relaxed than that of DUAL, hence triggering synchronous updates
less frequently than DUAL (and consequently, than MPDA or MDVA) as well as lim-
iting the propagation of any triggered synchronous updates. The update mechanism of
DIV is simple and substantially different from that of previous algorithms, and allows
arbitrary packet reordering/losses. Last but not least, unlike DUAL or LFI algorithms,
DIV handles multiple overlapping cost-changes simultaneously without additional ef-
forts resulting in simpler implementation and potentially faster convergence.

3 DIV

3.1 Overview
DIV lays down a set of rules on existing path computation algorithms to ensure their
loop-free operation at each instant. This rule-set is not predicated on shortest path com-
putation, so DIV can be used with other path computation algorithms as well.

For each destination, DIV assigns a value to each node in the network. To simplify
our discussion and notation, we fix a particular destination and speak of the value of a
node. The values could be arbitrary—hence the independence of DIV from any under-
lying path computation algorithm. However, usually the value of a node will be related
to the underlying objective function that the algorithm attempts to optimize and the
network topology. Some typical value assignments include: (i) in shortest path compu-
tations, the value of a node could be its cost-to-destination; (ii) as in DUAL, the value
could be the minimum cost-to-destination seen by the node from time t = 0; (iii) as in
TORA [13], the value could be the height of the node; etc.

As in previous algorithms, the basic idea of DIV is to allow a node to choose a
neighbor as successor only if the value of that neighbor is less than its own value: this is
called the decreasing value property of DIV, which ensures that routing loop can never
form. The hard part is enforcing the decreasing value property when network topology
changes. Node values must be updated in response to changes to enable efficient path
selection. However, how does a node know the current value of its neighbors to maintain

the decreasing value property? Clearly, nodes update each other about their own current
value through update messages. Since update messages are asynchronous, information
at various nodes may be inconsistent, which may lead to the formation of loops. This
is where the non-triviality of DIV lies: it lays down specific update rules that guarantee
that loops are never formed even if the information across nodes is inconsistent.

3.2 Description of DIV

There are four aspects to DIV: (i) the variables stored at the nodes, (ii) two ordering
invariances that each node maintains, (iii) the rules for updating the variables, and (iv)
two semantics for handling non-ideal message deliveries (such as packet loss or re-
ordering). A separate instance of DIV is run for each destination, and we focus on a
particular destination.

The Intermediate Variables Suppose that a node x is a neighbor of node y. These two
nodes maintain intermediate variables to track the value of each other. There are three
aspects of each of these variables: whose value is this? who believes in that value? and
where is it stored? Accordingly, we define V (x; y|x) to be the value of node x as known
(believed) by node y stored in node x; similarly V (y;x|x) denotes value of node y as
known by node x stored in node x.

Thus, node x with n neighbors, {y1, y2, . . . , yn}, stores, for each destination:

1. its own value, V (x;x|x);
2. the values of its neighbors as known to itself, V (yi;x|x) [yi ∈ {y1, y2, . . . , yn}],
3. and the value of itself as known to its neighbors V (x; yi|x) [yi ∈ {y1, y2, . . . , yn}].

That is, 2n+1 values for each destination. The variables V (yi;x|x) and V (x; yi|x) are
called intermediate variables since they endeavor to reflect the values V (yi; yi|yi) and
V (x;x|x), respectively. In steady state, DIV ensures that V (x;x|x) = V (x; yi|x) =
V (x; yi|yi).

The Invariances DIV requires each node to maintain at all times the following two
invariances based on its set of locally stored variables.

Invariance 1 The value of a node is not allowed to be more than the value the node
thinks is known to its neighbors. That is,

V (x;x|x) ≤ V (x; yi|x) for each neighbor yi. (1)

Invariance 2 A node x can choose one of its neighbors y as a successor only if the
value of y is less than the value of x as known by node x; i.e., if node y is the successor
of node x, then

V (x;x|x) > V (y;x|x). (2)

Thus, due to Invariance 2, a node x can choose a successor only from its feasible succes-
sor set {yi|V (x;x|x) > V (yi;x|x)}. The two invariances reduces to the LFI conditions
if the value of a node is chosen to be its current cost-to-destination.

Update Messages and Corresponding Rules There are two operations that a node
needs to perform in response to network changes: (i) decreasing its value and (ii) in-
creasing its value. Both operations need notifying neighboring nodes about the new
value of the node. DIV uses two corresponding update messages, Update::Dec and Up-
date::Inc, and acknowledgment (ACK) messages in response to Update::Inc (no ACKs
are needed for Update::Dec). Both Update::Dec and Update::Inc contain the new value
(the destination), and a sequence number5. The ACKs contain the sequence number
and the value (and the destination) of the corresponding Update::Inc message. DIV lays
down precise rules for exchanging and handling these messages which we now describe.

Decreasing Value Decreasing value is the simpler operation among the two. The fol-
lowing rules are used to decrease the value of a node x to a new value V0:

– Node x first simultaneously decreases the variables V (x;x|x) and the values V (x; yi|x)
∀i = 1, 2, . . . , n, to V0,

– Node x then sends an Update::Dec message to all its neighbors that contains the
new value V0.

– Each neighbor yi of x that receives an Update::Dec message containing V0 as the
new value updates V (x; yi|yi) to V0.

Increasing Value In the decrease operation a node first decreases its value and then
notifies its neighbors; in the increase operation, a node first notifies its neighbors (and
wait for their acknowledgments) and then increases its value. In particular, a node x

uses the following rules to increase its value to V1:
– Node x first sends an Update::Inc message to all its neighbors.
– Each neighbor yi of x that receives an Update::Inc message sends an acknowl-

edgment (ACK) when able to do so according to the rules explained in details be-
low (Section 3.2). When yi is ready to send the ACK, it first modifies V (x; yi|yi),
changes successor if necessary (since the feasible successor set may change), and
then sends the ACK to x; the ACK contains the sequence number of the correspond-
ing Update::Inc message and the new value of V (x; yi|yi). Note that it is essential
that node yi changes successor, if necessary, before sending the ACK.

– When node x receives an ACK from its neighbor yi, it modifies V (x; yi|x) to V1.
At any time, node x can choose any value V (x;x|x) ≤ V (x; yi|x)∀i = 1, 2, . . . , n.

Rules for Sending Acknowledgment Suppose node yi received an Update::Inc message
from node x. Recall that node yi must increase V (x; yi|yi) before sending an ACK.
However, increasing V (x; yi|yi) may remove node x from the feasible successor set at
node yi. If node x is the only node in the feasible successor set of node yi, node yi may
lose its path if V (x; yi|yi) is increased without first increasing V (yi; yi|yi). Node yi

then has two options: (i) first increase V (yi; yi|yi), increase V (x; yi|yi), and then send
the ACK to node x; or (ii) increase V (x; yi|yi), send ACK to node x, and then increase
V (yi; yi|yi). We call option (i) the normal mode, and option (ii) the alternate mode.

In the normal mode, node yi keeps the old path while it awaits ACKs from its neigh-
bors before increasing V (yi; yi|yi), since it keeps x in the feasible successor set until

5 For simplicity, sequence numbers are assumed large enough so that rollover is not an issue.

then. Thus the update request propagates to upstream nodes in the same manner as in
DUAL and other previous works. However, note that DIV allows a node to respond with
an ACK in response to Update::Inc messages sent its neighbors, if there is any, with-
out the fear of any loop creation. This guarantees that DIV never enters any deadlock
situations.

In the alternate mode, node yi may have no successor for a period of time (until
it is allowed to increase its value). At a first glance, it may seems unwise to use the
alternate mode. However, note that if node x originated the value-increase request in
the first place because the link to its successor was down (as opposed to only a finite
cost change), then the old path does not exist and the normal mode has no advantage
over the alternate mode in terms of maintaining a path. In fact, in the alternate mode,
the downstream nodes get ACKs from their neighbors more quickly and thus can switch
earlier to a new successor (which hopefully has a valid path) than in the normal mode.

Semantics for Handling Message Reordering We maintain the following two semantics
that account for non-zero delays between origination of a message at the sender and its
reception at the receiver and possible reordering of messages and ACKs.

Semantic 1 A node ignores an update message that comes out-of-order (i.e., after a
message that was sent earlier).

Semantic 2 A node ignores outstanding ACKs after issuing an Update::Dec message.

These semantics are enforced using the embedded sequence numbers in update mes-
sages (an ACK includes the sequence number of the Update::Inc that triggered it).

3.3 Properties of DIV

The two main properties of DIV are: (i) it prevents loops at every instant, and (ii) it pre-
vents counting-to-infinity in the normal mode. Due to space constraint, we only prove
Property (i) (see [16] for details). Note that even in the specific case of shortest path
computations where the value of a node is set to its current cost-to-destination, these
properties of DIV cannot be deduced from those for the LFI conditions since DIV op-
erates without any assumption on packet reordering, delay or losses.

������������������

PPPPPPPPPPPPPPPPq

S
S

SSw

�
�7

? ?

y x

t0

ACK

Update::Dec

Time

t4 t4

PPPPPPPPPPPPPPPPq�
�7

?

������������������

S
S

SSw

?

y x

ACK

Time

Update::Dec

t4

t1

t2

t3
t4

(a) (b)

Fig. 1. Two cases of possible message exchanges between
two neighboring nodes which would violate Eq. (3). Both
cases are shown to be contradictory.

��
��

��
��

��
��

��
��

��
��

��
��

��
����

��

�
�
�
�
�
�
�
�
��

�
�

�
�

�
��3

-

S
S

S
S

S
SSw

?

�@
@

@
@

@
@

@
@I

�
�	

...........
...........

........
............

............
.....

...........
...........

...

A2

A3

A4 A5

A6

A7

AnA1

Fig. 2. A possible loop in the suc-
cessor graph.

Loop-free Operation at Every Instant The following is the key proposition based on
which our result follows.

Proposition 1 For any two neighboring nodes x and y, we always have

V (x; y|x) ≤ V (x; y|y) (3)

Proof. The proof is by contradiction. Suppose at time t = 0 condition (3) is satisfied
and at time t = t4 condition (3) is violated for the first time. I.e., at time t = t4, we have
V (x; y|x) = V1 and V (x; y|y) = V0 with V1 > V0. Thus, at time t4 either V (x; y|y)
decreases or V (x; y|x) increases. We consider these two cases separately.

Case (i): V (x; y|y) decreases at time t4 to V0. Thus node y receives an Update::Dec
message from node x at time t4. As shown in Fig. 1(a), suppose that this message
originated at node x at time t0. Therefore, at time t0, we have V (x; y|x) = V0. But
as per our assumption, V (x; y|x) = V1 > V0 at time t4. Thus, node x must receive
an ACK from node y that increases V (x; y|x) during the period (t0, t4) (cf. Fig. 1(a)).
Suppose t2 denotes the time when node x sent the update message that triggered this
ACK. We then have two cases:

– t2 < t0 < t4: In this case, the Update::Inc message that triggered the ACK was
outstanding at t0; the time when node x sent an Update::Dec message. Thus node x

would disregard this ACK due to Semantic 2, and therefore not increase V (x; y|x).
– t0 < t2 < t4: In this case, the Update::Inc message that triggered the ACK was

sent by node x after the Update::Dec message, but node y received the Update::Inc
message before the Update::Dec message; i.e., the Update::Dec message arrived
node y out of order and thus node y would disregard the Update::Dec message due
to Semantic 1, and therefore not decrease V (x; y|y).

We therefore have a contradiction in both the cases.
Case (ii): V (x; y|x) increases at time t4 to V1. Thus node x receives an ACK from

node y at time t4. As shown in Fig. 1(b), suppose that this ACK originated at node y at
time t2. Thus, we have V (x; y|y) = V1 at time t2. But by assumption, V (x; y|y) = V0

at time t4. Thus, node y must receive an Update::Dec message during the period (t2, t4),
say at time t3. Suppose that node x originated this Update::Dec message at time t1 (cf.
Fig. 1(b)). Moreover, suppose node x originated at time t0 the Update::Inc message that
triggered the ACK it receives from node y at time t4. Then, there are two possibilities:

– t0 < t1 < t4: In this case, the Update::Inc message that triggered the ACK was
outstanding at t1; the time when node x sent an Update::Dec message. Thus node
x would disregard this ACK due to Semantic 2, and not increase V (x; y|x) to V1 at
time t4.

– t1 < t0 < t4: In this case, the Update::Inc message that triggered the ACK was
sent by node x after the Update::Dec message, but node y received the Update::Inc
message before the Update::Dec message; i.e., the Update::Dec message arrived
node y out of order and thus node y would disregard the Update::Dec message due
to Semantic 1, and not decrease V (x; y|y) to V0 at time t3.

We therefore again have a contradiction in both the cases.
Thus we have shown that both case (i) and case (ii) lead to contradictions. Hence,

we conclude that it is not possible to violate Eq. (3). ut

Theorem 1 The successor graph created following DIV’s update algorithm is an acyclic
graph at each instant.

Proof. The proof is again by contradiction. Suppose at some instant of time there is a
loop in the successor graph, as shown in Fig. 2. Since the number of nodes in this loop
is finite, there is a node in this loop whose value is smaller than or equal to the value
of its successor. Without any loss of generality, let An be this node and let A1 be its
successor. Thus,

V (A1;A1|A1) ≥ V (An;An|An). (4)

But since node A1 maintains the first invariance, we have

V (A1;A1|A1) ≤ V (A1;An|A1). (5)

Also since node An maintains the second invariance, we have

V (An;An|An) > V (A1;An|An). (6)

But equations (4), (5) and (6) together imply that V (A1;An|A1) > V (A1;An|An),
which contradicts Proposition 1. ut

Multiple Overlapping Updates and Packet Losses Unlike earlier algorithms [6–10],
DIV can handle multiple updates without additional efforts. A node can send multiple
Update::Inc or Update::Dec messages in any order; a neighbor can hold on to sending
an ACK for an arbitrary time—e.g., use a hold-down timer—and when replying with an
ACK, it can choose to respond to only a subset of pending updates—even just one; none
of these actions results in routing loops. This is because these handling f multiple over-
lapping updates still preserve the Semantics and the Invariances. Semantics are satisfied
at each node using the sequence numbers of updates, and invariances depend only on
the locally stored variables. Thus they are never violated. We summarize this important
property in the following theorem, which establishes the tremendous flexibility DIV
gives in choosing policies for replying with ACKs to optimize different criteria.

Theorem 2 The correctness of DIV remains valid under arbitrary policies for handling
multiple overlapping updates.

DIV can also handle an arbitrary sequence of lost packets without jeopardizing
its correctness. If an Update::Dec message sent by node x to neighbor y is lost, then
V (x; y|x) is lowered (by x), but not V (x; y|y); i.e., we have V (x; y|x) < V (x; y|y).
But this still satisfies Proposition 1, hence does not affect DIV’s correctness. If an Up-
date::Inc message sent by node x to neighbor y is lost, then node x cannot increase
its value, but the invariances remains valid. Finally, if an ACK is lost, then V (x; y|y)
is increased (by y), but not V (x; y|x); i.e., we have V (x; y|x) < V (x; y|y). Again,
this satisfies Proposition 1 and DIV remains correct. When combined with the fact that
Semantics 1 and 2 handle arbitrary reordering and delay of messages, this leads to the
following important property of DIV:

Theorem 3 The correctness of DIV remains valid under arbitrary sequence of loss,
reordering or delay of messages.

Frequency of Synchronous Updates: A Comparison with DUAL

Claim. Suppose x and y are neighbors. If SNC is true at x through y, then with DIV x

can choose y as a successor.

Proof. We need to show that SNC is true at x through y implies V (x;x|x) > V (y; y|y).
From the definition of SNC (cf. Section 2), since SNC is satisfied, we have the minimum
cost-to-destination of x, V (x;x|x), is more than the current cost-to-destination of y.
However, the current cost-to-destination of y is clearly as large as the minimum cost-
to-destination of y, V (y; y|y); i.e., V (x;x|x) > V (y; y|y). ut

However, the other direction is clearly not true. Suppose V (x;x|x) = 2, V (y; y|y) =
1 and the current cost-to-destination of y is 3. Then SNC is not satisfied, but with DIV,
x can still choose y as its successor. Since the condition of DIV is strictly more relaxed
than SNC, and a synchronous update is issued only when the condition of DIV (or SNC
for DUAL) is not satisfied, we have

Theorem 4 DIV issues synchronous updates less frequently than DUAL under SNC.

Note that this cannot be remedied simply by replacing SNC in DUAL with the condi-
tions of DIV since without DIV’s update mechanisms, these are not sufficient to guar-
antee loop-free operation.

Theorem 4 is stated in terms of SNC as it is the most common condition used
in practice (e.g., it is used in EIGRP). However, the theorem remains true if SNC is
replaced by other conditions of DUAL, such as CSC or DIC [8]; the proof is similar.

3.4 Other Applications of DIV

By decoupling loop-freedom from the path computation metric (e.g., shortest-path),
DIV opens up new possibilities. Due to space limitations, we only mention two such
applications; these are discussed further in [16].

Redundant-Path Routing An assignment of values (along with the Invariances) in-
duces an acyclic successor graph (i.e., a routing), and if each node other than the desti-
nation has at least one outgoing link, the destination is reachable from every node. By
an appropriate choice of values, DIV can be used to maximize a measure of the mul-
titude of paths to the destination. This can be appealing when bandwidth is cheap and
reliability takes a higher priority.

Distributed Vehicular Formation Forming rigid patterns, e.g., of unmanned aerial
vehicles, using localized sensing is an important problem. It is known that stabilizing
the pattern is easy if the underlying formation graph is acyclic [17]. DIV, especially its
alternate mode, can be used to ensure acyclicity of the formation graph in a distributed
fashion under dynamic environments.

Nodes 10 20 30 40 50
Tloop(s) 2.282 2.456 2.344 2.702 2.108

Conf. (s) 0.259 0.365 0.259 0.391 0.276

Nodes 60 70 80 90 —
Tloop(s) 2.126 2.339 2.290 2.354 —

Conf. (s) 0.237 0.273 0.311 0.250 —

Fig. 3. Average loop-retention time, Tloop, in
seconds.

Nodes 10 20 30 40 50
Fraction 0.717 0.784 0.823 0.843 0.846

Nodes 60 70 80 90 —
Fraction 0.832 0.843 0.846 0.840 —

Fig. 4. Fraction of times DIV is satisfied given
that SNC is not.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Mean convergence time

Number of Nodes

A
ve

ra
ge

 C
on

ve
rg

en
ce

 T
im

e
(s

ec
)

DBF

DUAL DIV

Fig. 5. Mean convergence time.

4 Performance Evaluation

This section presents simulation results comparing the performances of DIV (with nor-
mal mode used with DBF to compute shortest paths) in terms of routing loops, conver-
gence times and frequency of synchronous updates against DUAL (cf. Section 2). The
performance of DBF without DIV is also presented as a reference. The simulations are
performed on random graphs with fixed average degree of 5. The number of nodes are
varied from 10 to 90 in increments of 10. For each graph-size, 100 random graphs are
generated. Link costs are drawn from a bi-modal distribution: with probability 0.5 a link
cost is uniformly distributed in [0,1]; and with probability 0.5 it is uniformly distributed
in [0,100]. For each graph, 100 random link-cost changes are introduced, again drawn
from the same bi-modal distribution. All three algorithms are run on the same graphs
and sequence of changes. Processing time of each message is random: it is 2 s with
probability 0.0001, 200 ms with probability 0.05, and 10 ms otherwise.

The table in Fig. 3 shows the average loop-retention time in seconds, Tloop—the
time from when a routing loop is detected to when it eventually subsides—given that a
loop is formed, as the size of the graphs varies. As expected, no loops were found with
DUAL or DIV, so the table only shows results for DBF, which illustrate that without
loop-prevention mechanisms, loops can be retained for a significant time.

Fig. 5 shows average convergence times—the time from a cost change to when no
more updates are exchanged—for all three algorithms as the size of the graphs varies.
The vertical bars show standard deviations. Both DIV and DUAL converge faster than
DBF; however, DIV performs better, especially for larger graphs. This is because DIV’s
conditions are satisfied more easily, so that synchronous updates often complete earlier
(recall that a node with a feasible neighbor replies immediately). This is supported by
the table in Fig. 4, which shows the fraction of times the condition of DIV is satisfied
given that SNC is not satisfied; this fraction exceeds 80% for larger graphs.

5 Conclusion

Distance-vector path computation algorithms are attractive candidates not only for short-
est path computations, but also in several important areas involving distributed path

computations due to their simplicity and scalability. Leveraging those benefits, how-
ever, calls for eliminating several classical drawbacks such as transient loops and slow
convergence. The algorithm proposed in this paper, DIV, meets these goals, and which
unlike earlier solutions is not limited to shortest path computations. In addition, even in
the context of shortest path computations, DIV outperforms earlier approaches in sev-
eral key performance metrics, while also providing greater operational flexibility, e.g.,
in handling lost or out-of-order messages. Given these many benefits and the continued
and growing importance of distributed path computations, we believe that DIV can play
an important role in improving and enabling efficient distributed path computations.

References

1. P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-second IGP conver-
gence in large IP networks,” ACM SIGCOMM Computer Communication Review, July 2005.

2. J. Moy, “OSPF version 2,” Internet Engineering Task Force, RFC 2328, Apr. 1998. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2328.txt

3. G. Malkin, “RIP version 2,” Internet Engineering Task Force, RFC 2453, Nov. 1998.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2453.txt

4. R. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle, “EIGRP–A fast routing protocol
based on distance vectors,” in Proceedings of Network/Interop, Las Vegas, NV, May 1994.

5. D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall, 1991.
6. P. M. Merlin and A. Segall, “A failsafe distributed routing protocol,” IEEE Transactions on

Communications, vol. COM-27, no. 9, pp. 1280–1288, September 1979.
7. J. M. Jaffe and F. M. Moss, “A responsive routing algorithm for computer networks,” IEEE

Transactions on Communications, vol. COM-30, no. 7, pp. 1768–1762, July 1982.
8. J. J. Garcia-Lunes-Aceves, “Loop-free routing using diffusing computations,” IEEE/ACM

Transactions on Networking, vol. 1, no. 1, pp. 130–141, February 1993.
9. S. Vutukury and J. J. Garcia-Luna-Aceves, “A simple approximation to minimum-delay rout-

ing,” in Proceedings of ACM SIGCOMM, Cambridge, MA, September 1999.
10. ——, “MDVA: A distance-vector multipath routing protocol,” in Proceedings of IEEE IN-

FOCOM, Anchorage, AK, April 2001.
11. K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “On count-to-infinity induced forwarding loops in

Ethernet networks,” in Proceedings of IEEE INFOCOM, Barcelona, Spain, April 2006.
12. E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-free routes in net-

works with frequently changing topology,” IEEE/ACM Transactions on Communications,
January 1981.

13. V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm for
mobile wireless networks,” in Proceedings of IEEE INFOCOM, 1997. [Online]. Available:
citeseer.ifi.unizh.ch/park97highly.html

14. R. G. Gallager, “A minimum delay routing algorithm using distributed computation,” IEEE
Transactions on Communications, January 1977.

15. E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing computations,” In-
formation Processing Letters, vol. 11, no. 1, pp. 1–4, August 1980.

16. S. Ray, R. Guérin, and S. Rute, “Distributed path computation without transient loops: An
intermediate variables approach,” University of Pennsylvania, Tech. Rep., 2006. [Online].
Available: http://www.seas.upenn.edu/∼saikat/loopfree.pdf

17. J. Baillieul and A. Suri, “Information patterns and hedging Brockett’s theorem in controlling
vehicle formations,” in Conference on Decision and Control, Maui, Hawaii, December 2003.

