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Potential Fields for Maintaining Connectivity
of Mobile Networks

Michael M. Zavlanos, and George J. Pappas

Abstract—The control of mobile networks of multiple agents raises fun-
damental and novel problems in controlling the structure of the resulting
dynamic graphs. In this paper, we consider the problem of controlling a
network of agents so that the resulting motion always preserves the connec-
tivity property of the network. In particular, the connectivity condition is
translated to differentiable constraints on individual agent motion by con-
sidering the dynamics of the Laplacian matrix and its spectral properties.
Artificial potential fields are then used to drive the agents to configurations
away from the undesired space of disconnected networks while avoiding
collisions with each other. We conclude by illustrating a class of interesting
problems that can be achieved while preserving connectivity constraints.

Index Terms—Dynamic graphs, graph connectivity, Laplacian matrix,
potential fields.

I. INTRODUCTION

Controlling dynamic graphs has recently emerged as a fundamental
problem in the area of multiagent and multirobot systems. Motiva-
tions come from the area of controlling formations of ground or aerial
vehicles with applications in air traffic control, satellite clustering, au-
tomatic highways, mobile robotics, and mobile sensor networks. One
of the main goals in this area is to achieve a coordinated objective
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while using only relative information concerning positions and veloci-
ties. In this paper, the objective is to investigate the maintainenance of
connectivity of the underlying graph.

Due to their frequent appearance in the area of multiagent sys-
tems, dynamic graphs have already received considerable attention.
In [2], a measure of local connectedness of a network, which under
certain conditions is sufficient for global connectedness, is introduced.
This approach is distributed in the sense that this measure depends
on neighbor-to-neighbor communication only. Motivated by a class of
problems associated with control of distributed dynamic systems is
also [3], where the authors consider a controllability framework for
state-dependent dynamic graphs. In [4], the problem of finding the
graph that corresponds to the maximum second smallest eigenvalue
of its Laplacian is investigated. The authors propose a method that
searches the graph space towards the direction that maximizes the
second smallest eigenvalue of the graph Laplacian, and prove local
convergence of their method. The second smallest eigenvalue of the
graph Laplacian has also emerged as an important parameter in many
system and control problems defined over networks [5]-[7]. In fact, it
has been observed recently that this eigenvalue is a measure of stability
and robustness of the networked dynamic system [6], [7].

Other research areas closely related to the problems discussed in this
paper are formation stabilization [5]-[17], and in particular, consensus
seeking by autonomous agents [5]-[7], as well as coverage tasks [18].
One of the main goals in formation stabilization and consensus prob-
lems is convergence of the agents to a common velocity. Various ap-
proaches have been studied, such as, control laws that involve graph
Laplacians for the fixed (or switched) associated neighborhood graphs
and artificial potential functions [7] or Lyapunov function methods [9],
where the notion of “formation feedback” as a means to regulate agent
motion in order to satisfy the global formation constraints, was also
introduced. Navigation functions for distributed formation stabiliza-
tion with collision avoidance constraints are used in [10] and [11],
whereas necessary and sufficient conditions for achieving consensus
are investigated in [6].

Motivated by the importance of connectivity in mobile sensor net-
works, as well as the connectivity assumption often made in formation
stabilization or consensus problems, in this paper, we consider graph
connectivity as our primary objective. As in our previous work [1], we
consider the problem of designing controllers for multiagent systems
that maintain connectivity of their underlying graphs. In contrast to
the open loop controllers based on the solution of optimization prob-
lems [1], [4], we propose a centralized feedback control framework
based on artificial potential fields. In the absence of agent failures and
under the assumption that the initial graph is connected, graph con-
nectivity is guaranteed for all time. The idea is to model connectivity
as an imaginary obstacle in the free space, and use artificial potential
fields to avoid collisions with it. Instead of the adjacency matrix and its
dynamics [1], we use the Laplacian matrix of a graph and its spectral
properties as a model for connectivity. Due to its closed-loop nature,
our potential fields approach to maintain graph connectivity is more ro-
bust and easily extendible to accounting for secondary objectives, such
as collision avoidance between the agents or the presence of formation
leaders in the group.

The rest of this paper is organized as follows. In Section II, we define
the network connectivity problem, and develop the necessary graph-
theoretic background. In Section III, we deal with the technical issues
of our approach, and propose the potential fields-based solution to the
problem of maintaining connectivity of mobile networks. Finally, in
Section IV, we discuss secondary objectives, such as collision avoid-
ance and tracking leaders, and verify various connectivity tasks that
illustrate the setting we have developed through computer simulations.

1094-6977/$25.00 © 2007 IEEE
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II. PROBLEM FORMULATION
A. Graph-Theoretic Formulation

Consider n nodes in an m-dimensional space R™. We denote
by z;(t) € R™ the coordinates of the ith node at time ¢, where
by convention, x; is considered an m x 1 column vector, and by
x(t) = [T (#)...2T(¢)]T, the mn x 1 vector resulting from stacking
the coordinates of the nodes into a single vector. Suppose that the
dynamics of the ith node, for all i € {1,2,...,n}, are given by
Z;(t) = u;(t), where u; (t) is the control vector taking values in some
set U C R™. In vector notation, the system dynamics become

x(t) = u(t) (1)

where x(t)=[2T(t)...27(1)]T and u(t) =[uf (t)...ul(t)]T are
mn X 1 vectors, respectively. The network of agents described by
system (1), gives rise to a dynamic graph G(x(t)).!

Definition 2.1: We call G(x(t)) = (V,E(X(t))) a dynamic graph
consisting of

® a set of vertices V = {1,...,n} indexed by the set of mobile
agents; and
® a set of edges E(x(t)) ={(¢,J)|di;(x(t)) <}, with

d;; (x(t)) = ||lzs(t) — x;(¢)||2 as the Euclidean distance between
agents ¢ and j, and § > O as a constant.

Since we have control over the node (or vertex) dynamics, the ques-
tion that naturally arises is whether we can control the motion of the
agents, so that G(x(t)) satisfies a graph-theoretic property of interest
for all time ¢ > 0. In particular, we are interested in the connectivity
property of a graph.

Definition 2.2 (Graph Connectivity): We say that a graph G is con-
nected if there exists a path, i.e., a sequence of distinct vertices such
that consecutive vertices are adjacent, between any two vertices in G.

We denote by C,, the set of all connected graphs on n vertices, and
we address the problem of whether we can control the motion of all
agents so that G(x(t)) always lies in the desired set C,, of connected
graphs. More formally,

Problem 1 (Graph-Theoretic Formulation): Let C,, be the set of
connected graphs, and assume any input to the graph G(x(t)) in the
form of node motion. Given C,,, determine a control law u(¢) so that
if G(x(0)) € C,, then G(x(t)) € C,, forall ¢ > 0.

In other words, we would like the set C, to be an invariant of
motion for system (1). We achieve this goal by choosing an equivalent
formulation using the algebraic representation of the dynamic graph

g(x(t))-

B. Algebraic Formulation

The edge set of any dynamic graph can be associated with a set
of weights such that for all (¢, j) € £(x(t)) the corresponding weight
equals 1 and for all (¢, j) ¢ £(x(t)) the corresponding weight equals
0. In matrix form, these weights consist the weighted adjacency matrix
of a graph. The 01 nature of these weights can be relaxed to allow for
any positive weight for all (¢, j) € £(x(¢)). This relaxation enables us
to define smooth weight functions in our potential fields model. Hence,
we have the following definition.

Definition 2.3 (Weighted Adjacency Matrix): Given a graph G with
vertices V = {v1,...,v,} and edges in the set £, we define the
weighted adjacency matrix of G to be the matrix A = (a;;) such that
a;; > 0if (v;,v;) € &, and a;; = 0 otherwise. Since we do not allow
self-loops, for every i € {1,2,...,n} we define a;; = 0.

!In the literature also referred to as a proximity graph due to the definition of
the edge set.

Fig 1. Weight function a;; (x) = o4 (€ — d;; (x)) for 6 = 0.8 and parameter
values w1 = 20, €1 = 0.4547 and wg = 50, e2 = 0.6619.

Note that if A is an adjacency matrix of an undirected graph, as is
the case we will be dealing with, then A = AT. In order to capture
the dependence of the edge set £(x(¢)) on the state x(¢), we need to
introduce a dynamic adjacency matrix

A(x(t) = (ai; (x(t))) (@)

where a;; (x(t)) = 0., (€ — dij (x(t))),and 0, (y) = 1/(1 + e ™¥) is
the sigmoid function with w > 0 a constant (Fig. 1).2 Clearly, for
any ¢ > 0 in Definition 2.1, there exist constants w, e > 0 such that
a;;(x(t)) > 0 for d;;(x(t)) < d and a;;(x(t)) — 0 for d;;(x(t)) >
0. Hence, (2) is, pointwise in x(t), consistent with Definition 2.3 of
a weighted adjacency matrix. Moreover, since d;; (x(t)) = d;; (x(¢)),
we have that a;; (x(t)) = a;;(x(t)), and so A(x(¢)) is symmetric.

Another way to represent the structure of a graph G(x(t)) is by a
weighted Laplacian matrix

L(x(t) = Ax(t)) — A(x(1)) )

where A(x(t)) = diag(z:?:1 a;;(x(t))) is the valency matrix. The
spectral properties of the Laplacian matrix are closely related to graph
connectivity. In particular,

Lemma 2.4 ( [19]): Let A (x(¢)) < ... < A, (x(t)) be the ordered
eigenvalues of the Laplacian matrix L(x(t)). Then

a) Ai1(x(t)) = Oforall x(¢) € R*™, with corresponding eigenvec-

tor 1, i.e., the vector of all entries equal to 1;

b) Aa(x(t)) > 01if and only if G(x(t)) is connected.

Using Lemma 2.4(b) we can define the set X, of desired states
corresponding to graphs in C,, as

Xe, = {x(t) € R"™ | Aa(x(t)) > 0}. )

So Problem 1 can be reformulated as

Problem 2 (Algebraic Formulation): Let X¢, be the desired set of
states, and assume any input to the graph G(x(t)) in the form of node
motion. Given A¢, , determine a control law u(t) so thatif x(0) € A, ,
then x(t) € X, forallt > 0.

2Note that any other smooth function with similar properties can be used.
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III. POTENTIAL FIELD FOR GRAPH CONNECTIVITY

Let G(x(t)) be a dynamic graph and L(x(t)) its weighted Laplacian
matrix as defined in (3). Let P be a fixed n X (n — 1) matrix with
column structure P = [p; p2 ... p,] such thatpTp; = Oforalls,j =
1,...,n and pf'1 =0 for all i = 1,...,n, where 1 denotes an n-
dimensional vector with all entries equal to 1.> By Lemma 2.4(a),
L(x(t)) is positive semidefinite for all x(¢) € R*™, and hence, we
have the following result for the expression PT L(x)P.4

Proposition 3.1: PTL(x)P = 0 for all x € R"™,

Proof: Let z € R"!, and consider the quadratic form
zT PT L(x)Pz = (Pz)T L(x) Pz. Let w = Pz. Since P is full rank,
w = Pz defines an injective mapping between R”~! and R"; and
since w? L(x)w > 0 for all w € R" and all x € R"™, we conclude
that zZ PT L(x)Pz > 0 for all z € R""!, and all x € R*™ which

completes the proof. |
The following proposition characterizes the eigenvalues of
PTL(x)P.

Proposition 3.2 : Let 0 = A1(x) < Az(x) < ... < A,(x) be the
ordered eigenvalues of the Laplacian matrix L(x). Then, Az(x) <

. < An(x) are the eigenvalues PT L(x)P.

Proof: The proof of this result is based on the relation between the
characteristic polynomials of L(x) and PT L(x)P. Since

Lo | [P =

(M

we have that,

PT
det (L(x) —sI) =det |
T‘l

= det {PT(L(X())SI)P _05}

= —sdet PT(L(x) — sI)P

which completes the proof. [ |

A sufficient condition that guarantees that x(t) € X, for all
t >0 is to choose u(t) so that Ao(x(t)) is maximized over time.
This approach is followed in [4] where the authors discretize the
problem, and at every time step, solve the semidefinite program
max{e|PTL(x(t))P = eI, }. In this paper, we choose a different
approach, and construct a potential field that “blows up” when the
state x(t) approaches the boundary of the free space X, defined as
0Xc, = {x(t) € R")|Ao2(x(t)) = 0}. Since Ao(x(t)) is not a dif-
ferentiable function,’ we use the fact that A»(x(t)) is positive if and
only if the determinant of the matrix PT L(x(¢)) P is positive, which
enables us to equivalently represent the set of desired states ¢, in (4)
as

X, = {x(t) € R™™ | det (PT L(x(t))P) > 0}.

Hence, we can define a potential field on the set A¢, , and use its
negative gradient as the control input to navigate the multiagent system

3A possible choice for P could be the matrix I,, — % 117 where I,, is the
n-dimensional identity matrix. Observe that rank(I,, — %IIT) =mn—1and
(In — %llT)l = 0. Hence, the columns of I,, — %llT span the space 1+
and we can use Gram—Schmidt orthonormalization to get P.

4To simplify notation, we drop the dependence of the state x on time t.

By Propositions 3.1 and 3.2, A2(x) can be written as

T pT
i 2 P ql:(x)Pz-
z#0 z"z

Ao(x) = inf z Ax)z_
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away from the undesired set 0X¢, . In particular, we have the following
proposition.
Proposition 3.3: Define the potential field

1
(x(1)) = 5
¢ = G (PTL =) P))" ®)
where a is any positive constant. Then, the control u.(t) =

—Vxd(x(t)) guarantees that x(t) € X, forall ¢t > 0.

Proof: By Proposition 3.2, we have that det(PTL(x)P) =
[T_, %i(x), and hence, A5(x) > Oif and only if det (P” L(x)P) > 0
by positive semidefiniteness of PT L(x)P. Clearly, ¢.(dX, ) = oo
and ¢.(AXc, ) < co. Hence, ¢.(Xe, ) < ¢.(0X, ), and since for all
x € X, we have that ¢, (x) = —|| Ve (x)||2 < 0, we conclude that
the set X¢,, is an invariant of motion for the multiagent system, i.e., the
graph will always remain connected. |

In other words, we treat graph connectivity as an obstacle in the free
space, and move in the direction of the negative gradient of the poten-
tial field. Note, that the controller in Proposition 3.3 guarantees that
Aa(x) > 0 for all time but not that A2 (x) will also be maximized as is
the case in [4], since even if det (P L(x)P) = []_, A;(x) increases,
A2(x) can decrease. On the other hand, observe that Ao (x) will attain
its global maximum if and only if det (P L(x)P) will also attain its
global maximum.® However, since L(x) is a function of the state vec-
tor x through the sigmoid function [see (2)—(3)], det (PT L(x)P) is
not a concave function of the state x, and so only convergence to a
local maximum is guaranteed. We conclude this section by providing
a closed form expression for the controller in Proposition 3.3.

Proposition 3.4: The control law

tr [ M1 (x(8)) 72 M(x(2))]

dxq
a
2:() = G d ()" : ©
tr [M’l (x(t)) %M(x(t))]
where M (x) = PT L(x) P, guarantees that the multiagent closed loop

system X(t) = u.(t) always remains in the set X, corresponding to
connected graphs in C,,.

Proof: Let M (x) = PT L(x)P, and denote by c;;(x) the cofactor
of the entry m;; (x) of the matrix M (x). Let C'(x) denote the cofactor
matrix and c¢};(x) denote the i, jth entry of C7'(x), i.e., ¢/ (x) =
¢;i(x). Since the determinant is a differentiable function of matrix
entries, in particular, it is a sum of products of entries, the chain rule
gives

n—1 n-1
d d
—det M (x g E det M ;
dmk ¢ 1 1 <8m,7 ¢ ( )> dx km](X)
i=1 j=
For all j=1,...,n—1, computation of the Laplace expan-

sion of the determinant along the jth column gives det M(x) =
Z::ll ¢ (x)m;; (x), and hence, --2—det M (x) = ¢;;(x). Therefore,

’ am

n—1n-1

n—1n-1 d
_ZZ m”( x)=tr |:CT(x)dka(x:|.

j=1 i=1

A direct consequence of the Laplce expansion of the determinant is the
identify I det M (x) = M (x)C” (x). Proposition 3.3 guarantees that

SNote that the eigenvalues of the Laplacian matrix are upper bounded, and
hence, so is the determinant.
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Ao (x(t)) > Oforall time, and so det M (x) > O forallx € R™™ . Thus,
M (x) is always positive definite, and hence, invertible. Therefore,
by left multiplication of the previous identify by M~!(x), we get
M~Y(x)det M (x) = CT(x), and substituting in the expression for
7o-det M (x) we get

%detM(x) —tr [(detM(x))M’l(x)ﬁM(x)}

d
= det M (x)tr {M’l (x) —M(x)}
d.’IZk
where M~'(x) = (PTL(x)P) " and ;4 M(x) = PT ;- L(x)P.
and the result follows directly from Proposition 3.3 and a simple appli-
cation of the chain rule. |

IV. CONNECTIVITY TASKS

In Section III, we developed a controller based on artificial potential
fields that by construction, guarantees that the network of agents re-
mains connected for all time. Due to its feedback nature, our controller
is more robust and more flexible to account for secondary objectives,
in contrast to optimization-based approaches [1], [4]. In particular, de-
pending on whether the objective is “repulsive” (collision avoidance)
or “attractive” (convergence to a point), it can be, in general, included
in the denominator or the numerator of the modified potential function,
respectively. However, any modified controller should be studied to see
whether it has guaranteed properties. For particular cases, such as sta-
tionary obstacle avoidance, this could be a challenging process. In this
section, we first show that our controller maintains (and in particular
increases) connectivity of the multiagent system, and then, consider a
nontrivial connectivity task involving collision avoidance and single
leader tracking objectives.

A. Maintaining Connectivity

In this connectivity task we consider a group of n = 20 agents
(dots), that are initially, randomly distributed in the plane, so that
the initial underlying graph is connected. Whenever two agents are
adjacent in the corresponding graph, an edge is drawn between them.
Under the control law in (6), the connectivity of the multiagent system
is maintained, and in particular, is increased leading to a closed loop
solution to the rendezvous problem [15], [16]. However, as discussed
in Section III, the gradient descent controller (6) does not provide
guarantees for rendezvous. These results are illustrated in Fig 2.

B. Tracking a Leader with Collision Avoidance Constraints

1) Collision Avoidance: Many potential field approaches have been
proposed in the literature that guarantee collision avoidance for mul-
tiagent systems [10], [11]. In this paper, we choose to adopt the one
introduced in [10] due to its “local” nature. This is because, unlike con-
nectivity maintenance, which imposes maximum distance constraints
on the agents, collision avoidance imposes minimum distance con-
straints on the agents. Hence, we are dealing with two conflicting
objectives; and in order to resolve this problem, we need to make the
collision avoidance objective ineffective once the agents are sufficiently
far from one another. In particular, for every pair (¢, j) of agents, the
authors in [10], define the function (Fig. 3)

(i (t) — 2 ()| — d2)*
1+ (i) — 2;(0))12 - d2)°

where = (14 d*)/d* and p = [1 — sign(||z;(t) — z; (t)||—d)]/2.
This function varies in the interval [0, 1], becoming 0 when the dis-
tance ||z;(¢) — x;(t)]| is 0, and attaining its maximum value 1 when

P
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Fig. 3.

Plot of the function 3;; (||z; (t) — x; (¢)||) for d = 0.5.

lz;(t) — 2;(t)]| is larger than d. In this way, the presence of other
agents on the motion of an agent remains “local,” within a region of
radius d. Then, the net effect of all neighboring distances in the multi-
agent system is captured in the function 3(x(t)) = H” Bij (x(¢)).
Hence, we can define the potential field for collision avoidance
da (x(t)) =1/[8(x(t))*], with k > 0 a constant, which composed with
the connectivity potential field of Proposition 3.3 gives rise to the con-
trol law
u(t) = ~Ved(x(8) = ~Vi(@e(x(1) + 6a(x(1)) ()

Clearly, ¢(x(t)) — oo whenever A(x(t)) — 0 or 8(x(t)) — 0, and
thus, moving in the direction of the negative gradient of ¢(x(t)), guar-
antees that the graph will remain connected and collisions between the
agents will be avoided.

2) Tracking a Leader: Consider now the case where agent ¢ is
a leader for a group of n agents, with dynamics independent of the
other n — 1 agents. We show, that under the control law (7), the agents
track the leader and maintain a connected formation while avoiding
collisions with each other. The following simulation demonstrates the
aforementioned connectivity task. We consider a network of n =9
agents with a leader labeled “L,” having dynamics of the form

3 3
1+ xL72(1 - 53:L12) — Ty 4

uy =
2 3,.2
1 f:vL,l(l +xL,1) — 5279
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The remaining eight agents have controllers defined as in (7). Ini-
tially, all agents (dots) are randomly distributed in the plane so that
the initial network is connected, and an edge is drawn between any
two connected agents. Figs. 4 and 5 illustrate our results for connec-
tivity parameters € = 0.25 and w = 10 and collision avoidance radius
d = 0.1. Observe that the imposed system specifications are always
satisfied.

V. CONCLUSION

In this paper, we considered the problem of controlling the struc-
ture of dynamic graphs so that the resulting motion always preserves
connectivity and collision avoidance properties. The idea was to de-
fine artificial potential fields where both objectives were modeled as
obstacles in the free space and move in the direction of their nega-
tive gradient. Connectivity was captured by the smallest eigenvalue of
the projected graph Laplacian matrix to the space perpendicular to the
Laplacian eigenvector of ones. Compared to our previous work [1], this
approach is more robust due to its feedback nature and more amenable
in accounting for secondary objectives.
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