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ABSTRACT

ESSAYS ON ASSET PRICING AND PORTFOLIO CHOICE

Hsin-hung Jerry Tsai

Jessica A. Wachter

The first chapter “Rare Disasters and the Term Structure of Interest Rates” offers an

explanation for the properties of the nominal term structure of interest rates and time-

varying bond risk premia based on a model with rare consumption disaster risk. In the

model, expected inflation follows a mean reverting process but is also subject to possible

large (positive) shocks when consumption disasters occur. The possibility of jumps in

inflation increases nominal yields and the yield spread, while time-variation in the inflation

jump probability drives time-varying bond risk premia. Predictability regressions offer

independent evidence for the model’s ability to generate realistic implications for both the

stock and bond markets.

The second chapter “Rare booms and disasters in a multi-sector endowment economy”

studies the cross-section of stock returns. Why do value stocks have higher expected returns

than growth stocks, in spite of having lower risk? Why do these stocks exhibit positive

abnormal performance while growth stocks exhibit negative abnormal performance? This

paper offers a rare-events based explanation, that can also account for facts about the

aggregate market. Patterns in time-series predictability offer independent evidence for the

model’s conclusions.

The third chapter “Dynamic Asset Allocation with Learning” studies an asset allocation

problem. It shows that learning about the parameters of the return process induces a large

negative hedging demand in an investor who is optimally rebalancing her portfolio, even

after she has observed 83 years of market asset data. For example, an investor with a 5-year

investment horizon decreases the percentage of wealth she allocates to the stock index by
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over 20 percent when she takes learning into account. Furthermore, I show that the initial

estimation sample length needs to be at least 500 years in order for the effect of learning to

vanish.
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CHAPTER 1 : Rare Disasters and the Term Structure of Interst Rates

1.1. Introduction

Empirical work has documented the failure of the expectations hypothesis. The average

nominal term structure of interest rates on government bonds is upward-sloping, and the

excess bond returns are predictable by variables such as yield spread. This indicates that

bond risk premia are on average positive and vary over time. This paper presents a repre-

sentative agent asset pricing model in which the aggregate endowment is subject to large

negative shocks (disasters). Earlier work has shown that models with time-varying disaster

risk can account for the high equity premium, high stock market volatility and aggregate

market return predictability observed in the aggregate stock market.1 In addition to the

aggregate market results shown in previous work, my model accurately captures the shape

of the nominal yield curve and the time-varying bond risk premia.

This paper provides an explanation for these features of the nominal bonds in a time-varying

rare disaster model. In particular, consumption disasters may co-occur with high inflation,

implying that nominal bonds are risky because their real values during bad times can be

very low. Table 1.1 provides evidence for the co-occurrence of consumption disaster and

high inflation. In this paper, a consumption disaster is defined as a consumption decline

of more than 10%, and I consider a period as having high inflation if the average annual

inflation rate during the period is greater than 10%. In recorded history, 17 of the 53

consumption disasters in OECD countries, and 30 of the 89 consumption disasters among

all countries, were accompanied by inflation rates greater than 10%.2 Furthermore, in 18 of

the 30 inflation disasters, inflation rates exceeded the real consumption declines.3 Figure 1.1

1For example, Rietz (1988), Longstaff and Piazzesi (2004), and Barro (2006) obtain high equity premium,
Gabaix (2012), Gourio (2008), and Wachter (2012) also obtain high volatility and predictability.

2One might argue that consumption disasters are accompanied by large deflation. However, only 10 of
the OECD disasters, and 17 of all disasters coincide with deflation. Furthermore, none of these disasters
had an abnormally large annual deflation rate; for example, the Great Depression had an annual deflation
rate of 6.4%.

3One of the most extreme examples is the hyperinflation that occurred in Germany after World War I.
Between 1922 and 1923, real consumption declines by 12.7%, but the inflation rate in the corresponding
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shows that the historical distribution of annual inflation rates has a fat tail. Furthermore,

these jumps in inflation rates do not happen all at once, they were gradual processes that

lasted a number of years.

Motivated by this evidence, I model the aggregate endowment in the model as subject

to two types of disasters. These disasters are modeled as negative jumps in the realized

consumption process. When the first type of disaster occurs, aggregate endowment drops,

but expected inflation is unaffected. When the second type of disaster occurs, not only does

aggregate endowment drop, but expected inflation increases. There were no consumption

disasters in the United States in the period following World War II. In the 1970s, however,

the U.S. experienced a period of high inflation. To accommodate this possibility in the

model, I allow for a third type of jump, one which affects expected inflation but not aggregate

consumption growth.

Because government bonds are nominally denominated, they are subject to inflation jump

risks. Investors require compensation for bearing these risks. The shape of the nominal

yield curve in the model is mostly determined by the inflation jump risk since bonds with

longer maturities are more sensitive to these risks. In particular, the yield spread increases

in inflation jump risks, thus the model accurately predicts an upward-sloping nominal yield

curve. Furthermore, the time-varying nature of disaster probability implies a time-varying

bond risk premium.

This paper makes two main contributions to the existing literature. First, it provides a

parsimonious model that jointly explains the stock and bond markets. Second, it can

account for the time-series behavior of the bond premium and its relation to the equity

premium. While the model is only calibrated to match aggregate consumption growth,

inflation, and aggregate stock market moments, it generates realistic implications for the

nominal term structure. Similar to the findings of Litterman and Scheinkman (1991),

the first three principal components explain almost all the variations in nominal yields in

period is 3450%.
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the model, furthermore, each of these three principal component is highly correlated with

one of the three state variables in the model. This model also generates bond premium

predictability because bond premium are mainly affected by the time-varying risk of the

co-occurrence of a consumption disaster and high inflations. In particular, this model is able

to reproduce the findings in Campbell and Shiller (1991) and Cochrane and Piazzesi (2005).

Nominal bond excess returns are predictable by the yield spread and a linear combination

of forward rates.

Besides the shape of the nominal term structure and the time-series behavior of the bond

risk premium, this model can also account for the interaction between the stock and nominal

bond markets. Duffee (2012) suggests that while term structure variables can predict the

bond premium, they are not good predictors for the equity premium. In particular, I show

that the price-dividend ratio predicts excess returns on the aggregate market (Campbell

and Shiller (1988)) and that it has some predictive power for excess returns on the bond

market. Term structure variables predict excess returns on the nominal bond market (Fama

and Bliss (1987)) yet they are less effective at predicting excess returns on the aggregate

market. In this model, the prices of risk have a two-factor structure, and the model is thus

capable of explaining these results.

Several other papers also provide joint explanations for stock and bond market prices.

Gabaix (2012) also considers a model with rare disasters. In that model, rather than time-

variation in the disaster probability, it is time-variation in the expected size of an inflation

jump that drives the bond premium. Furthermore, I allow fewer degrees of freedom in the

calibration so that none of the parameters are chosen to match the yield curve. Wachter

(2006), Bekaert et al. (2010) and Buraschi and Jiltsov (2007) consider extensions to the

model with external habit formation (Campbell and Cochrane (1999)).Bakshi and Chen

(1996) study monetary models in which the money supply directly enters the utility function.

The economic mechanisms behind this model differ from those in the papers mentioned here.

The shape of the nominal term structure is driven by the time-varying probability of the

3



co-occurrence of a large consumption decline and high inflations. Furthermore, this paper

provides evidence of the interaction between stock and bond markets by studying cross-

market predictability. It is likely that the term structure of interest rates and bond premia

are affected by multiple mechanisms, and this paper provides another possible way to jointly

explain the aggregate market and bond market in a single model.

This paper is also related to a stream of literature that focuses on the term structure of

interest rates, but does not address equity prices. Piazzesi and Schneider (2006) focus

on the negative effects of surprise inflation on future consumption growth. Bansal and

Shaliastovich (2013) build on the Bansal and Yaron (2004) long-run risk framework with

stochastic volatility. Similar to Piazzesi and Schneider (2006) and Bansal and Shaliastovich

(2013), in this model, when the risk of the co-occurrence of a consumption disaster and

high inflations is high, expected consumption growth is low and expected inflation is high.

However, high inflations and low consumption growth only co-occur when this type of

consumption disasters are realized. Bekaert et al. (2001) evaluate the violation of the

expectations hypothesis using a Peso problem explanation. Ehling et al. (2012) study the

effect of differences in beliefs about expected inflation when investors have habit-formation

preferences.

Finally Dai and Singleton (2002) study three-factor term structure models in the essentially

affine class (Duffee (2002)) and show that a statistical model of the stochastic discount factor

can resolve the expectations hypothesis puzzle. Many other recent papers also consider the

role of macroeconomic variables in the term structure by introducing macroeconomic time

series into the stochastic discount factor (Ang and Piazzesi (2003), Ang et al. (2007), Bikbov

and Chernov (2010), Duffee (2006), and Rudebusch and Wu (2008)).

The remainder of the paper is organized as follows. Section 2 describes and solves the

model. Section 3 discusses the quantitative results of the model. Section 4 concludes.
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1.2. Model

1.2.1. Endowment, inflation, and preferences

The economy is populated with a representative agent. Assume that aggregate real con-

sumption solves the following stochastic differential equation:

dCt
Ct−

= µdt+ σC dBCt + (eZct − 1) dNct + (eZcq,t − 1) dNcq,t,

where BCt is a standard Brownian motion. Aggregate consumption is subject to two types

of large shocks, and the arrival times of these shocks have a Poisson distribution, given by

Nct and Ncq,t. I will discuss the size and intensity of these Poisson jumps after I specify the

inflation process.

To model nominal assets, I assume an exogenous process for the price level:

dPt
Pt−

= qt dt+ σP dBPt, (1.1)

where BPt is a standard Brownian motion, that is independent of BCt.

The expected inflation process, qt, is time-varying. Specifically, it follows

dqt = κq (q̄ − qt) dt+ σq dBqt − Zcq,t dNcq,t − Zqt dNqt, (1.2)

whereBqt is a standard Brownian motion, that is independent ofBCt andBPt. The expected

inflation process is also subject to two types of large shocks, and the arrival time of these

shocks follow Poisson distributions, given by Ncq,t and Nqt.

The magnitude of an Nc–type jump is determined by Zc, the magnitude of an Ncq–type

jump is determined by Zcq, and that of an Nq–type jump is determined by Zq. I will

consider all three types of Poisson shocks to be negative, that is Zc < 0, Zcq < 0, and

Zq < 0; furthermore, these jump sizes are random and have time-invariant distributions νc,

5



νcq, and νq, respectively. In what follows, I use the notation Eνj to denote expectations

taken over the distribution νj for j ∈ {c, cq, q}. The intensities of these Poisson shocks

are time-varying, and each follows a square-root process as in Cox et al. (1985). In what

follows, I will assume that inflation spike probability is perfectly correlated with inflation

disaster probability.4 Specifically, for j ∈ {c, cq}, the intensity for Nj is denoted by λjt, and

it is given by

dλjt = κλj (λ̄j − λjt) dt+ σλj
√
λjt dBλjt.

Bλct and Bλcq,t are independent Brownian motions, and each is independent of BCt, BPt,

and Bqt. Furthermore, assume that the Poisson shocks are independent of each other, and

of the Brownian motions. Define λt = [λct, λcq,t]
>, λ̄ = [λ̄c, λ̄cq]

>, κλ = [κλc , κλcq ]
>,

Bλt = [Bλct, Bλcqt]
>, and Bt = [BCt, BPt, Bqt, B

>
λt]
>.

In what follows, a disaster (or consumption disaster) is a Poisson shock that affects realized

consumption growth. In particular, I will refer to the Nc–type shock as a non-inflation

disaster and the Ncq–type shock as an inflation disaster. The Nq–type shock only affects

expected inflation and I refer to it as an inflation spike. Furthermore, I will refer to λc as

the non-inflation disaster probability and λcq as the inflation disaster probability. Though

the latter also governs the intensity of inflation spikes, the majority of its effects comes from

inflation disasters rather than inflation spikes.

Following Duffie and Epstein (1992), I define the utility function Vt for the representative

agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (1.3)

4Inflation spikes in this model attempt to speak to the period of high inflation in the 1970s and early
1980s. During this period, consumption growth was low, and the outlook for future consumption growth
was uncertain. Therefore not modeling inflation spike probability as an independent process is realistic. To
simplify the model, I assume that the inflation spike probability equals inflation disaster probability.

6



where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log ((1− γ)Vt)

)
. (1.4)

The above utility function is the continuous-time analogue of the recursive utility defined

by Epstein and Zin (1989) and Weil (1990), which allows for preferences over the timing

of the resolution of uncertainty. Furthermore, equation (1.4) is a special case when the

elasticity of intertemporal substitution (EIS) equals one. In what follows, γ is interpreted

as risk aversion and β as the rate of time preference. I assume γ > 0 and β > 0 throughout

the rest of the paper.

1.2.2. The value function and risk-free rates

Let J(Wt, λt) denote the value function, where Wt denotes the real wealth of the represen-

tative agent. In equilibrium J(Wt, λt) = Vt.

Theorem 1.1. Assume

(κλc + β)2 > 2σ2
λcEνcq

[
e(1−γ)Zc − 1

]
and

(
κλcq + β

)2
> 2σ2

λcqEνcq

[
e(1−γ)Zcq − 1

]
. (1.5)

The value function J takes the following form:

J(Wt, λt) =
W 1−γ
t

1− γ
I(λt), (1.6)

where

I(λt) = exp {a+ bcλc + bcqλcq} . (1.7)

The coefficients a and bj for j ∈ {c, cq} take the following form:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β +

1

β
b>
(
κλ ∗ λ̄

)
, (1.8)

bj =
κλj + β

σ2
λj

−

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

, (1.9)
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Here and in what follows, we use ∗ to denote element-by-element multiplication of vectors

of equal dimension. The signs of bc and bcq determine how disaster probabilities λc and λcq

affect the investor’s value function. The following corollary shows that the investor is made

worse by an increase in the disaster probabilities.

Corollary 1.1. For j ∈ {c, cq}, if Zj < 0, then bj > 0.

The following two corollaries provide expressions for the real and nominal risk-free rates in

this economy.

Corollary 1.2. Let rt denote the instantaneous real risk-free rate in this economy, rt is

given by

rt = β + µ− γσ2 + λctEνc
[
e−γZc(eZc − 1)

]︸ ︷︷ ︸
non-inflation disaster risk

+λcq,tEνcq
[
e−γZcq(eZcq − 1)

]︸ ︷︷ ︸
inflation disaster risk

. (1.10)

The terms multiplying λct and λcq,t in (1.10) arise from the risk of a disaster. For Zj < 0,

the risk-free rate falls in λj : Recall that both non-inflation and inflation disasters affect

consumption, therefore high disaster risk increases individuals’ incentive to save, and thus

lowers the risk-free rate.

Corollary 1.3. Let r$
t denote the instantaneous nominal risk-free rate on the nominal bond

in the economy, r$
t is given by

r$
t = rt + qt − σ2

P . (1.11)

The nominal risk-free rate is affected by expected inflation; when expected inflation is high,

investors require additional compensation to hold the nominal risk-free asset.

1.2.3. Nominal government bonds

This section provides expressions for the prices, yields, and premia for nominal zero-coupon

government bonds.
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Prices and yields

Nominal bond prices are determined using no-arbitrage conditions and the state-price den-

sity. Duffie and Skiadas (1994) show that the real state-price density, πt, equals

πt = exp

{∫ t

0
fV (Cs, Vs) ds

}
fC (Ct, Vt) , (1.12)

and nominal state-price density, π$
t , is given by5

π$
t =

πt
Pt
. (1.13)

Let L
$,(τ)
t = L$(qt, λt, τ) denote the time t nominal price of a nominal government bond

that pays off one nominal unit at timet+ τ . Then

L$(qt, λt, s− t) = Et

[
π$
s

π$
t

]
.

The price L
$,(τ)
t can be solved up to four ordinary differential equations. The following

corollary is a special case of Theorem A.2 in Appendix A.1.26.

Corollary 1.4. The function L$ takes the following form:

L$(qt, λt, τ) = exp
{
a$
L(τ) + b$Lq(τ)qt + b$Lλ(τ)>λt

}
, (1.14)

where b$Lλ(τ) =
[
b$Lλc(τ), b$Lλcq(τ)

]>
. The function b$Lq takes the form

b$Lq(τ) = − 1

κq

(
1− e−κqτ

)
, (1.15)

5Consider a nominal asset that has nominal payoff X$
s at time s > t, the time t nominal price of the

asset, X$
t , can be written as X$

t = Et[
πt
πs

Ps
Pt
X$
s ] = Et[

π$
s

π$
t

X$
s ]. Therefore, π$

t = πt
Pt

.
6This paper focuses on inflation risk, but it can be easily extended to incorporate (outright) default risk

(see Appendix) and potential government default introduce another source of risk that effect the nominal
yield curve through the real yield curve.
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the function b$Lλc solves

db$Lλc
dτ

=
1

2
σλcb

$
Lλc

(τ)2 +
(
bcσ

2
λc − κλc

)
b$Lλc(τ) + Eνc

[
e−γZct(1− eZct)

]
, (1.16)

the function b$Lλcq solves

db$Lλcq
dτ

=
1

2
σλcqb

$
Lλcq

(τ)2 +
(
bcqσλcq − κλcq

)
b$Lλcq(τ)

+ Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − e(1−γ)Zcq,t

]
+ Eνq

[
e−b

$
Lq(τ)Zqt − 1

]
, (1.17)

and the function a$
L solves

da$
L

dτ
= −β − µ+ γσ2 + σ2

P +
1

2
σ2
qb

$
Lq(τ)2 + b$Lq(τ)κq q̄ + b$Lλ(τ)>(κλ ∗ λ̄), (1.18)

with boundary conditions a$
L(0) = b$Lq(0) = b$Lλc(0) = b$Lλcq(0) = 0.

Corollary 1.4 shows how prices respond to innovations in expected inflation and in changing

disaster probabilities. Equation (1.15) shows that innovations to expected inflation lower

prices for nominal bonds of all maturities. Furthermore, the effect will be larger the more

persistent it is, that is, the lower is κq.

Higher non-inflation disaster probability has a non-negative effect on prices. Consider the

ordinary differential equation (1.16); without the last term Eνc
[
e−γZct(1− eZct)

]
, the func-

tion b$Lλc is identically zero. Therefore, this term determines the sign of b$Lλc . This term

can be rewritten as: Eνc
[
e−γZct(1− eZct)

]
= −Eνc

[
e−γZct(eZct − 1)

]
, which multiplies λct

in the equation for the nominal risk-free rate (1.11). Because higher discount rates lower

the price, the risk-free rate effect enters with a negative sign. With the boundary con-

dition b$Lλc(0) = 0, this implies that b$Lλc(τ) is strictly positive and increasing for all τ .

The intuition is straightforward: Non-inflation disaster risks only affect the nominal bonds

through the underlying real bonds, and since the real bonds in this economy pay off during

consumption disaster periods, they have negative premia.
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Unlike non-inflation disasters, the effect of changing inflation disaster probability on bond

valuation is more complicated. Recall that this process governs both the probability of an

inflation disaster and the probability of an inflation spike. Similarly to the previous argu-

ment, the last two terms in ODE (1.17) determine the sign of b$Lλcq . The first expectation

arises from inflation disasters, and it can be rewritten as:

Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − e(1−γ)Zcq,t

]
= −Eνcq

[
e−γZcq,t(eZcq,t − 1)

]︸ ︷︷ ︸
Risk-free rate effect (–)

− Eνcq
[
(e−γZcq,t − 1)(1− e−b

$
Lq(τ)Zcq,t)

]
︸ ︷︷ ︸

Risk premium effect (+)

+Eνcq

[
e−b

$
Lq(τ)Zcq,t − 1

]
︸ ︷︷ ︸

Nominal price effect (–)

. (1.19)

The first component is the risk-free rate effect; as previously discussed, this term is multi-

plied by a negative sign. The second component is part of the bond premium: The nominal

bond price drops during periods of inflation disaster, when marginal utility is high; this term

captures the premium investors require for bearing these jump risks. This risk premium

effect is also multiplied by a negative sign since an increase in the discount rate lowers the

bond price. The last term is the nominal price effect, which represents the effect of change

in λcq on expected nominal bond prices through inflation. More specifically, it is the percent

change in the price of a nominal bond with maturity τ in the event of an inflation disaster.

Because a higher expected bond value raises the price, this term is multiplied by a positive

sign.

Given γ > 0 and Zcq < 0, the risk-free rate effect is negative, the risk premium effect is

positive and increasing in maturity τ for τ > 0, and the nominal price effect is negative and

decreasing in maturity τ for τ > 0. The effect of changing inflation disaster probabilities

on bond value depends on the sum of these three effects. Notice that when τ = 0, only the

risk-rate effect is non-zero. Together with the boundary condition b$Lλq(0) = 0, this implies

that b$Lλq(τ) > 0 for some small τ : An increase in inflation disaster probability raises prices

on bonds with short maturity. As maturity increases, however, risk premium and nominal

price effect prevail over the risk-free rate effect, implying that prices on bonds with longer
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maturity decrease with inflation disaster probability.

The last term in ODE (1.17) arises from inflation spike risks. Notice that this term repre-

sents the nominal price effect, and it enters with a positive sign. Furthermore, it is negative

and decreasing in maturity τ for τ > 0; implying that an increase in the chance of an

inflation spike lowers nominal bond prices and the effect is stronger for bonds with longer

maturity.

Before moving on to discuss bond premia, the following definition and corollary provides

expression for the nominal bond yield in the model:

Definition 1.1. The yield to maturity for a nominal bond with maturity τ at time t, denoted

by y
$,(τ)
t , is defined as:

y
$,(τ)
t =

1

τ
log

(
1

L
$,(τ)
t

)
. (1.20)

Corollary 1.4 implies that the yield to maturity in this economy takes a particularly simple

form:

Corollary 1.5. The nominal yield to maturity for a nominal bond with maturity τ at time

t, y
$,(τ)
t , is given by

y
$,(τ)
t = −1

τ

(
a$
L(τ) + b$Lq(τ)qt + b$Lλ(τ)>λt

)
, (1.21)

where the coefficients a$
L(τ), b$Lq(τ), and b$Lλ(τ) are given by (1.15) - (1.18).

The bond premium

This section provides an expression for the instantaneous bond premium and discusses its

properties. For notation simplicity, I will first define the jump operator, which denotes how

a process responds to the occurrence of a jump. Let X be a jump-diffusion process. Define

the jump operator of X with respect to the jth type of jump as the following:

Jj(X) = Xtj −Xtj− j ∈ {c, cq, q},
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for tj− such that a type-j jump occurs. Then define

J̄j(X) = Eνj
[
Xtj −Xtj−

]
j ∈ {c, cq, q}.

The instantaneous nominal expected return on a nominal bond with maturity τ is simply

the expected percent change in nominal prices. Let L
$,(τ)
t = L$(qt, λt, τ) be the time-t price

of a τ -year nominal bond, by Ito’s Lemma:

dL
$,(τ)
t

L
$,(τ)
t−

= µL$,(τ),t dt+ σL$,(τ),t dBt

+
1

L
$,(τ)
t

(
Jc(L$,(τ)

t )dNct + Jcq(L$,(τ)
t )dNcq,t + Jq(L$,(τ)

t )dNqt

)
.

Then the instantaneous expected return can be written as:

r
$,(τ)
t = µL$,(τ),t +

1

L
$,(τ)
t

(
λctJ̄c(L$,(τ)

t ) + λcq,t

(
J̄cq(L$,(τ)

t ) + J̄q(L$,(τ)
t )

))
. (1.22)

Corollary 1.6. The bond premium relative to the risk-free rate r$ is:

r
$,(τ)
t − r$

t = −λ>t
(
b$Lλ(τ) ∗ b ∗ σ2

λ

)
+ λcq,tEνcq

[
(e−γZcq,t − 1)(1− e−b

$
Lλq

(τ)Zcq,t)

]
(1.23)

The first term in (1.23) arises from time-varying non-inflation and inflation disaster proba-

bilities (time-varying probability adjustment). Recall that bj > 0 for j ∈ {c, cq}, b$Lλc(τ) > 0

for all τ , b$Lλcq(τ) > 0 for small τ and b$Lλcq(τ) < 0 for larger τ . Therefore, the time-varying

non-inflation disaster probability adjustment is negative because the underlying real bond

provides a hedge against consumption disasters. On the other hand, the time-varying in-

flation disaster probability adjustment is negative for bonds with shorter maturities and

positive for bonds with longer maturities. The second term arises from the co-movement

in nominal bond prices and marginal utility when a disaster occurs. Notice that this term

depends on b$Lq: When an inflation disaster occurs, expected inflation rises, which pushes
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future bond prices down. Given that b$Lq < 0 and the assumption that γ > 0, Zqt < 0, the

second term is positive.

In a sample without disasters, but possibly with inflation spikes, the observed return is

r
$(τ)
nd,t = µL$,(τ),t +

1

L
$,(τ)
t

λcq,tJ̄cq(L$,(τ)
t ),

where the subscript “nd” is used to denote expected returns in a sample without consump-

tion disasters. The following corollary calculates these expected returns.

Corollary 1.7. The observed expected bond excess returns in a sample without disaster is:

r
$(τ)
nd,t − r

$
t = −λ>t

(
b$Lλ(τ) ∗ b ∗ σ2

λ

)
+ λcq,tEνcq

[
e−γZcq,t(1− e−b

$
Lq(τ)Zcq,t)

]
. (1.24)

1.2.4. The aggregate market

Let Dt denote the dividend on the aggregate market. Assume that total dividends in the

economy evolve according to

dDt

Dt
= µD dt+ φσ dBCt + (eφZct − 1) dNct + (eφZqt − 1) dNcq,t. (1.25)

Under this process, aggregate dividend responds to disasters by a greater amount than

aggregate consumption does (Longstaff and Piazzesi (2004)). The single parameter, φ,

determines how aggregate dividend responds to both normal and disaster shocks. In what

follows, φ is referred to as leverage as it is analogous to leverage in Abel (1999).

Let H (Dt, λt, τ) denote the time t price of a single future dividend payment at time t+ τ .

Then

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
,

where π is the real state-price density defined by (1.12). The price H can be solved in

closed-form up to three ordinary differential equations, and the following corollary is a
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special case of Theorem A.1 in Appendix A.1.2.

Corollary 1.8. The function H takes the following form:

H(Dt, λt, τ) = Dt exp
{
aφ(τ) + λ>t bφλ(τ)

}
, (1.26)

where bφλ = [bφλcbφλcq ]
>. For j ∈ {c, cq}, function bφj takes the following form:

bφj (τ) =
2Evj

[
e(1−γ)Zjt − e(φ−γ)Zjt

] (
1− e−ζbj τ

)
(
ζbj + bjσ2

j − κj
)(

1− e−ζbj τ
)
− 2ζbj

, (1.27)

where

ζbj =

√(
bjσ2

j − κj
)2

+ 2σ2
jEνj

[
e(1−γ)Zjt − e(φ−γ)Zjt

]
. (1.28)

Function aφ(τ) takes the following form:

aφ(τ) =

(
µD − µ− β + γσ2 (1− φ)

−

(
κλc λ̄c
σ2
λc

(ζbc + bcσ
2
λc − κλc) +

κλcq λ̄cq

σ2
λcq

(ζbcq + bcqσ
2
λcq − κλcq)

))
τ

−
(

2κλc λ̄c
σ2
λc

log

(
(ζbc + bcσ

2
λc
− κλc)(e−ζbcτ − 1)

2ζbc

)

+
2κλcq λ̄cq

σ2
λcq

log

(
(ζbcq + bcqσ

2
λcq
− κλcq)(e

−ζbcq τ − 1)

2ζbcq

))
. (1.29)

Let F (Dt, λt) denote the time t price of the claim to the entire future dividend stream.

Then

F (Dt, λt) =

∫ ∞
0

H (Dt, λt, τ) dτ.

Equation (1.27) shows that bφj(τ) < 0 for j ∈ {c, cq}; therefore the price-dividend ratio,

G (λt) =

∫ ∞
0

exp
{
aφ(τ) + λctbφλc(τ) + λcq,tbφλcq(τ)

}
dτ, (1.30)
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decreases in both non-inflation and inflation disaster probability.

1.3. Quantitative results

The model is calibrated to match aggregate consumption growth, inflation, and aggregate

market moments. To evaluate the quantitative implication of the model, I simulate monthly

data for 60,000 years. Furthermore, I simulate 10,000 60-year samples. For each of these

small-samples, the initial values of λct and λcq,t are drawn from their stationary distribu-

tions, and the initial value of qt is set equal to its mean, q̄. In each of the tables that follow,

I report the data and population value for each statistic. In addition, I report the 5th-,

50th-, and 95th-percentile values from the small-sample simulations (labelled “All Simula-

tions” in the tables), and the 5th-, 50th-, and 95th-percentile values for the subset of the

small-sample simulations that do not contain disasters (labelled “No-Disaster Simulations”

in the tables). Samples in this subset do not contain any jumps in consumption, but they

may contain jumps in expected inflation.

In the past 60 years, the U.S. did not experience any consumption disasters; however, it

experienced a period of high inflation in the late 1970s and early 1980s. The No-Disaster

subset from the simulation accommodates the possibility that there was an inflation jump in

the country’s postwar history; statistics from this subset therefore offer the most interesting

comparison for the U.S. postwar data. With this calibration, about 23% of the samples

do not experience any type of consumption disaster, and about one-third of these samples

contain at least one jump in expected inflation.

1.3.1. Calibration

Data

The data on bond yields are from the Center for Research in Security Prices (CRSP).

Monthly data is available for the period between June 1952 and December 2011. The yield

on the three-month government bills is from the Fama risk-free rate, and yields on zero-
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coupon bonds with maturities between one and five year are from the Fama-Bliss discount

bond dataset.

The market return is defined as the gross return on the CRSP value-weighted index. The

dividend growth rate is from the dividends on the same index. To obtain real return and

dividend growth, I adjust for inflation using changes in the consumer price index, which

is also available from CRSP. The price-dividend ratio is constructed as the price divided

by the previous 12 months of dividends. The government bill rate is the inflation-adjusted

three-month Treasury Bill return. All data are annual. I use data from 1947 to 2010; using

only postwar data provides a comparison between U.S. data and the simulated samples

without consumption jumps.

Parameter values

Table 1.2 reports the parameter values. Mean consumption growth and the volatility of

consumption growth are both about 2%, which equal their postwar data counterparts. Mean

dividend growth is set to 3.48%; it is chosen to match the price dividend ratio instead of

the dividend growth in the data: CRSP dividends do not include repurchases; presumably

these imply that dividends are likely to be higher sometime in the future, and that the

sample mean is not a good indicator of the true mean.

The leverage parameter φ governs both the ratio between the volatility of log dividends and

the volatility of log consumption, and how dividends response to consumption disasters. In

the data, the former ratio suggests leverage to be 4.66; however, I choose a smaller value,

φ = 3, so that dividends have a more conservative response to consumption disasters. Rate

of time preference β is set to be low to obtain a realistic short-term government bill rate.

Relative risk aversion γ is set equal to 3.

Mean expected inflation is set to 2.7%; with this value, the median value of the realized

inflation among the simulations with no consumption disaster is 3.65%, the value in the

data is 3.74%. The volatility of non-expected inflation σp equals 0.8% to match the realized
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inflation volatility in the data; the median value among the simulations with no consumption

disaster is 2.89%, and the value in the data is 3.03%. The volatility of expected inflation σq

equals 1.3% to match the volatility of short-term bond yield; the volatility of three-month

Treasury Bill yield is 3.01% in the data, and the median value among the simulations with

no consumption disaster is 2.99%. The mean reversion parameter in the expected inflation

process governs the persistence of the inflation process, which is highly persistent and the

autocorrelation decays slowly. This parameter it is set to 0.09 to obtain a reasonable first

order autocorrelation of the inflation process.

Barro and Ursua (2008) calibrated the average probability of a consumption disaster for

OECD countries to be 2.86%, implying that λ̄c + λ̄cq = 2.86%.7 In the data, about one-

third of the disasters are accompanied by high inflation (Table 1.1), therefore I set λ̄c to

equal 1.83% and λ̄cq to equal 1.03%. The persistence in the price-dividend ratio is mostly

determined by the persistence in the disaster probability. I therefore choose a low rate of

mean reversion for both inflation and non-inflation disaster probabilities: κλc = κλcq = 0.11.

With this choice, the median value of the persistence of the price-dividend ratio among

the simulations with no consumption disaster is 0.73; the value in the data is 0.92. The

volatilities σλc = 0.112 and σλcq = 0.103 lead to a reasonable volatility for the aggregate

market.

The disaster distributions Zc and Zcq are chosen to match the distribution of consumption

declines. I consider 10% as the smallest possible disaster magnitude and I assume that Zc

and Zcq follow power law distributions. For non-inflation disasters, I set the power law

parameter to equal 10, and for inflation disasters, I set the power law parameter to equal 8.

Table 1.2 plots these power law distributions along with distributions of large consumption

declines. In particular, I compare the power law distribution with parameter 8 to the

distribution of large consumption declines that are accompanied by high inflation, and the

7In this calibration, I calibrate the disaster probability to the OECD subsample but the size of jumps
to the full set of samples. This is a more conservative approach as OECD countries have disasters that are
rarer but more severe.
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power law distribution with parameter 10 to the distribution of large consumption declines

that are not accompanied by high inflation. In addition, I will assume that Zq follows the

same distribution as Zcq.

1.3.2. Yield curves and expected returns as functions of the state variables

Yield curves

It is helpful to understand how the state variables affect the nominal yield curves in order

to better understand the simulation results. Equation (1.21) shows that nominal yields on

nominal bonds depend on expected inflation, q; on non-inflation disaster probability, λc; and

on inflation disaster probability, λcq. Furthermore, the coefficients on these state variables

are functions of maturity τ . Figure 1.3 shows the term in the expression for the nominal

bond yield (1.21). In particular, it shows the loading on expected inflation, −bLq/τ ; on non-

inflation disaster probability, −bLλc/τ ; and on the inflation disaster probability, −bLλcq/τ ;

all as functions of maturity τ .

The loading on expected inflation is positive and decreases with maturity: High expected

inflation lowers bond values and raises bond yields; due to mean-reversion, the effect is larger

on bonds with shorter maturities. The loading on inflation spike probability is also positive

but increases with maturity: High probability of an expected inflation jump lowers bond

values and raises bond yields, and the effect is stronger on bonds with longer maturities.

What is more interesting is the stark distinction between the loading on non-inflation disas-

ter and inflation disaster probabilities. The loading on non-inflation disaster probability is

negative and decreases with maturity. While the loading on the inflation disaster probability

is also negative for short maturity bonds, it increases with maturity and becomes positive.

Disasters in the model affect the nominal yield curves through two channels: They affect

realized consumption growth and (possibly) expected inflation. Non-inflation disasters only

affects consumption growth, thus high non-inflation disaster risks lower the risk-free rate,

which leads to higher bond prices and lower bond yields. Therefore, the coefficient on the
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non-inflation disaster probability is negative and decreasing with maturity. On the contrary,

inflation disaster probability affects the nominal yield curve through both channels, and in-

vestors require positive compensation for bearing the risk of jumps on expected inflation.

The bottom-right panel of Figure 1.3 shows that the former effect dominates for bonds with

shorter maturity while the latter effect dominates for bonds with longer maturity. Notice

that inflation spike risk also affects the shape of the loading on inflation disaster probabil-

ity: Inflation spike risks further lower bond values and raise bond yields, and the effect is

stronger on bonds with longer maturities. Thus the presence of inflation spike risks leads

to an even steeper −bLλcq/τ , though the shape is mostly determined by inflation disaster

risks.

Figure 1.4 shows how the yield curve responds to changes in each of the three state variables.

In each of the panels, the dashed line represents the yield curve when all state variables are

at their means. I then increase the value of one state variable at a time and plot the resulting

yield curve. The solid line in the top-left panel shows the yield curve when expected inflation

is increased by σq: High expected inflation shifts the nominal yield curve up, and the effect

is slightly stronger for bonds with short maturities. The solid line in the top-right panel

shows the yield curve when non-inflation disaster probability is increased by one standard

deviation: High non-inflation disaster probability shifts the nominal yield curve down (the

risk-free rate effect), and the effect is slightly stronger for bonds with long maturities. The

solid line in the bottom-left panel shows the yield curve when inflation disaster probability is

increased by one standard deviation: High inflation disaster probability changes the shape

of the nominal yield curve. The yields for short maturity bonds become lower (risk-free

rate effect) and the yields for long maturity bonds become higher (risk-premium effect and

nominal price effect). The risk of inflation spikes further increases the nominal bond yield

(nominal price effect).

From this figure, one can also observe that the primary effect of expected inflation and non-

inflation disaster probability is on the level of the yield curve, while non-inflation disaster
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probability also affects the slope of the yield curve. Furthermore, most of the variations

in the term structure variables such as the yield spreads and forward rates come from

variations in the probabilities of inflation disasters and inflation spikes.

Risk premia

Figures 1.5 and 1.6 plots the bond risk premia as functions of non-inflation disaster proba-

bility, λc, and inflation disaster probability, λq, using Equation (1.23). Expected inflation q

is set equal to 2.8% in all cases. To illustrate the impact of changes in disaster probabilities

on bonds with different maturities, I compare the risk premia on one- and five-year bonds.

Figure 1.5 shows that risk premia decrease with non-inflation disaster probability, and also

that bonds with longer maturities are more sensitive to these changes. Equation (1.23)

shows that non-inflation disaster probability implies a negative premium, and that the

absolute magnitude of this premium increases with maturity. Figure 1.6 shows that risk

premia increase as a function of the inflation disaster probability and that bonds with longer

maturities are more sensitive to these changes. The co-movement of marginal utility and

bond prices in inflation disaster periods generates a positive premium for all nominal bonds,

and this premium increases with maturity. Time-varying inflation disaster risks generate a

small negative premium for short maturity bonds, and this premium increases with maturity

and becomes positive when the maturity is longer. Comparing Figures 1.5 and 1.6, one can

see that bond risk premia are more sensitive to inflation disaster risks than to non-inflation

disaster risks, furthermore, one can also see that long-term bonds are more sensitive to

these risks than short-term bonds.

Figure 1.4 – 1.6 provide evidence of predictable bond premia in the model. Figure 1.5 and

1.6 imply that bond excess returns are high when inflation disaster risk is high, or when non-

inflation disaster risk is low. Figure 1.4 shows that yield spread is also high when inflation

disaster risk is high, or when non-inflation disaster risk is low. Therefore, one should expect

yield spread to have some predictive power on bond excess returns. Furthermore, since
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excess returns on long-term bonds are more sensitive to these disaster probabilities than

excess returns on short-term bonds are, long-term bond excess returns should be more

sensitive to changes in yield spreads than excess returns of short-term bonds are.

1.3.3. Simulation results

Nominal yields

Figures 1.7 and 1.8 show the first two moments of yields for nominal bonds with different

maturities. Figure 1.7 plots the data and model-implied average nominal bond yields,

and Figure 1.8 plot the data and model-implied volatility of nominal bond yields, both

as functions of time to maturity. In each figure, I plot the median, the 25th-, and 75th-

percentile values drawn from the subset of small-sample simulations that do not contain

any consumption disasters. Table 1.5 reports the data and all model-implied statistics of

mean and volatility of yields for nominal bonds with one, two, three, four, and five years to

maturity.

The model is capable of explaining the average nominal yield curve. The median values

among the simulations with no consumption disasters are close to their data counterparts.

Furthermore, the median values increase with time to maturity, implying an upward-sloping

average yield curve in the model. The median small-sample value of the mean increases

from 5.67% for one-year bonds to 6.03% for five-year bonds; in the data, the average bond

yields increase from 5.20% for one-year bonds to 5.82% for five-year bonds. In addition to

the first moment, the model also generates realistic implications for the volatility of bond

yields. The median values among the simulations having no consumption disasters decreases

from 2.79% for one-year bond to 2.61% for five-year bond; in the data, it decreases from

3.02% for one-year bond to 2.78% for five-year bond. Notice that the nominal yields are

on average higher and more volatile in the full set of simulations and in population. This

is because more jumps in expected inflation (inflation disasters) are realized, and expected

inflation are on average higher in these samples.
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This model is able to match both the first two moments of the nominal yield curve, while

previous literature successfully capture the upward-sloping shape of the nominal yield curve,

they do not generate realistic implication for the second moment. In both Piazzesi and

Schneider (2006) and Bansal and Shaliastovich (2013), short-term bond yields are also

more volatile than long-term bond yields, but the levels are much lower than the data

counterparts. The habit formation model in Wachter (2006) implies that short-term yields

are more volatile than long-term yields, which is counterfactual. Comparing with the three

models, this model also impose a potentially more reasonable requirement on the utility

function of the representative agent. In the current calibration, relative risk aversion is set

equal to 3. In contrast, Piazzesi and Schneider (2006) set it equal to 43 and Bansal and

Shaliastovich (2013) estimate it to be 20.90. The habit formation model in Wachter (2006)

assumes a time-varying risk aversion, which is greater than 30 when the state variable is at

its long-run mean.

One concern is that if consumption disasters co-occur with deflations instead of inflations,

then it will change the implication of the model. However, deflation disasters in the data are

less significant, for example, the average annual deflation rate during the Great Depression

was 6.4%. Furthermore, comparing the right panel of Table 1.1 to the bottom-right panel

of Table 1.2, one can see that using a power law distribution instead of the empirical distri-

bution for jumps in inflation rates truncate the right tail of the inflation rates distribution

significantly. In fact, the results do not change much if one calibrate the inflation disasters

using the empirical distributions of consumption decline and inflation rates and take into

account events that are associated with deflation.

Principal component analysis

Litterman and Scheinkman (1991) find that most of the variations in yield curve can be

explained by a three-factor model. Specifically, the first factor affects the level of the yield

curve, the second factor affects the slope, and the third factor affects the curvature. To
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evaluate whether the model also exhibits this feature, I perform a principal component

analysis on the data and model-simulated yields. Figure 1.11 reports the results. For the

model, I only report the median values drawn from the subset of small-sample simulations

that does not contain any disasters. I plot the loadings on yields with different maturities on

each of the first three principal components. Similar to Litterman and Scheinkman (1991), a

shock to the first principal component has similar effects across yields of different maturities

(level factor); a shock to the second principal component raises yields on short-term bonds

and reduces yields on long-term bonds (slope factor); and a shock to the third principal

component raises yields on bonds with median maturity, but lowers yields on short- and

long-term bonds (curvature factor). In addition, the bottom-right panel also shows that

almost all the variations in yield curve are explained by the first three principal components,

both in the data and in the model.

Given the three-factor structure of the model, it is natural to ask how these three factors

relate to the three state variables in the model. Table 1.6 reports the correlation between

each of the three state variables in the model and each of the three principal components.

The level factor is mostly correlated with expected inflation; consistent with Figure 1.4, an

increase in expected inflation or inflation disaster probability raises the yield curve, while an

increase in non-inflation disaster probability lowers it. The slope factor is highly negatively

correlated with the inflation disaster probability, and slightly positively correlated with

expected inflation and non-inflation disaster probability.8 The curvature factor is mostly

correlated with non-inflation disaster risks; a shock to non-inflation disaster risks (also

expected inflation and inflation disaster risks) increase the curvature of the yield curve.

Collin-Dufresne and Goldstein (2002) provide evidence of unspanned volatility using data

on fixed income derivative. Their findings suggest that interest rate volatility risk cannot be

hedged by bonds. Following Collin-Dufresne et al. (2009), I simulate the model to obtain

13-year samples at daily frequency. I then regress realized volatility of 6-month yields,

8Note that the loadings on the second principal component decrease with maturity, so a positive shock
to this factor reduces the slope.
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constructed using five daily data, on the first three principal components at the beginning

of the period. Similar to Collin-Dufresne et al. (2009), these regressions yield low R2-

statistics. For example, the median value in the subset of small-samples with out disaster is

around 0.03, with the 95th percentile value around 0.19, and Collin-Dufresne et al. (2009)

find the R2 to be 0.155 using data from 1990 to 2002. This suggests that the first three

principal components do not forecast volatility in the model and in the data.

Time-varying bond risk premia

First I consider the “long-rate” regression in Campbell and Shiller (1991):

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h

(
y

$,(n)
t − y$,(h)

t

)
+ error, (1.31)

where n denotes bond maturity and h denotes the holding period. In what follows, I will

consider this regression at quarterly frequency, h = 0.25, from June 1952 to December 2011.

Table 1.7 reports the results for regression (1.31). I consider long-term bonds with maturities

of one, two, three, four, and five years, and report the data and model-simulated coefficient

of the above regression. Under the expectations hypothesis, excess returns on long-term

bonds are unpredictable, which implies that βn should equal one for all n. As in Campbell

and Shiller, the coefficient βn’s are negative and decreasing in maturity n, implying that

bond excess returns are predictable by yield spread, and a high yield spread predicts a

higher excess return for bonds with longer maturity. The model is capable of capturing

this feature. The median value of these coefficients among the simulations that contain no

consumption disasters is also negative and decreasing with maturity n, furthermore, the

data values are all above the 5th percentile of the values drawn from the model. In what

follows, I will discuss how the mechanism drives the model’s ability to explain the failure

of the expectations hypothesis.

Bond risk premia are not constant in this model; (1.23) and (1.24) show that higher inflation

25



disaster risks lead to a higher bond risk premium, and that this premium increases with

maturity. Furthermore, Figure 1.4 shows that variations in inflation disaster risk have a

large effect on yield spread, and higher inflation disaster risks lead to higher yield spreads.

These imply that bond premia are expected to be high when yield spread is large.9 However,

higher inflation disaster risks also lead to a higher probability of expected inflation jumps,

and once these jumps are realized, bond prices drop and realized excess returns also fall.

In summary, when the variations in yield spread arise from variations in non-inflation and

inflation disaster probabilities – and conditional on inflation jumps are not being realized

– one should expect a high yield spread to be followed by high bond premia. Furthermore,

a high yield spread predicts a larger premium for long-term bonds than it does for short-

term bonds. Variations in expected inflation, however, have the opposite effect on the

coefficient βn’s. An increase in expected inflation leads to a lower yield spread (Figure 1.4);

furthermore, it leads to a higher bond premium. Therefore, if the variations in yield spread

arise from variations in expected inflation, it will have a positive effect on these coefficient

βn’s.

In Table 1.7, one can see that while the median values drawn from the subset of small-

sample simulations containing no consumption disasters are negative, the median values

among the full set of simulations are positive. This is because there are substantially more

inflation jumps among all the small-samples. While the effects of variations in λc and λcq

dominate in the subset without disasters, the realizations of inflation jumps and variations

in expected inflation dominate among the full set of small-samples.

In addition to the long-rate regressions, I also consider the forward rate regressions per-

formed by Cochrane and Piazzesi (2005) to evaluate the model’s success in capturing time-

varying bond risk premia. In what follows, I consider the annual forward rate. I denote the

9Non-inflation disaster risks decrease both yield spread and bond premium, which also implies that bond
premia will be high when yield spread is high.
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n-year forward rate at time t for a loan from time t+ n to time t+ n+ 1 by fnt , defined as:

fnt = logL
$,(n−1)
t − logL

$,(n)
t .

As in Cochrane and Piazzesi, these forward rate regressions are done in two steps. First I

regress the average annual excess returns on two-, three-, four-, and five-year nominal bonds

on all available forward rates:

1

4

5∑
n=2

r
e,(n)
t+1 = θ>ft + error, (1.32)

where r
e,(n)
t+1 = r

$,(n)
t+1 − r

$,(1)
t+1 is the excess return of a bond with maturity n and ft denotes

the vector of all forward rates available at time t.

The second step is to form a single factor ĉpt+1 = θ̂>ft and regress the excess returns of

bonds with different maturities on this single factor:

r
e,(n)
t+1 = constant + ρnĉpt+1 + error. (1.33)

I consider monthly overlapping annual observations from June 1952 to December 2011. In

the data, I construct one-, two-, three-, four-, and five-year forward rates. In the model,

however, I can only construct three independent forward rates since the model only has

three factors. Therefore, I will use all five forward rates in the data, but only one-, three-,

and five-year forward rates in the model.

Table 1.8 reports the results from the second stage regression, (1.33). In the data the

single forward rate factor predicts bond excess returns with an economically significant

R2, furthermore, the coefficient on this factor increases with bond maturity. The model

successfully generates these findings: The median values of the R2 drawn from the subset of

the small-sample simulations containing no consumption disasters are slightly smaller than

those in the data, but still economically significant. For example, the single forward rate
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factor predicts excess returns on five-year nominal bonds with R2 = 0.18, and the median

values drawn from the subset of samples containing no disasters is 0.17. The median value

of the coefficients in these samples increases from 0.40 for one-year bonds to 1.59 for five-

year bonds, in the data it increases from 0.44 to 1.47. In the full set of small-samples, the

R2 are lower, but still economically meaningful. The small-sample bias in these regressions,

however, is significant: The R2-statistics are almost zero in population.

One other finding of Cochrane and Piazzesi (see also Stambaugh (1988)) is that in the

first stage regression (1.32), the coefficients exhibit a tent-shaped pattern as a function of

maturity. This model is also able to generate these tent-shaped patterns. In about 35%

of the subset that contain no consumption disasters, the coefficients from the first stage

regression (1.32) exhibit a tent-shaped pattern. Figure 1.10 reports the average of these

coefficients.

The aggregate market

This model is also successful in matching moments in the aggregate market. Table 1.9

reports the simulation results. The model is able to explain most of the equity premium,

which is 7.25% in the data; the median value from the small-sample containing no con-

sumption disasters is 5.06%, and the data is below the 95th percentile of the values drawn

from the model.

To calculate the real three-month Treasury Bill returns, I calculate the realized returns on

the nominal three-month Treasury Bill, then adjust them by realized inflation. This model

generates reasonable values for the short-term interest rate; this value in the data is 1.25%,

and the median value from the small-sample containing no consumption disasters is 2.03%.

Furthermore, the data value is above the 5th percentile of the values drawn from the model,

indicating that we cannot reject the model at the 10% level.

The model, however, only has limited ability to explain the volatility of the price-dividend

ratio. As discussed in Bansal et al. (2012) and Beeler and Campbell (2012), this is a
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limitation shared by models that explain aggregate prices using time-varying moments but

parsimonious preferences. Time-varying moments imply cash flow, risk-free rate, and risk

premium effects, and one of these generally acts as an offset to the other two, thus limiting

the effect time-varying moments have on prices.

Interactions between the aggregate and bond market

In this section, I study the model’s implications for the interaction between the aggregate

market and the term structure of interest rates. Previous works have shown that variables

that predict excess returns in one asset class often fail in another. For example, Duffee

(2012) showed that while term structure variables predict bond excess returns, they do not

predict stock market excess returns. In this section, I consider two predictor variables, the

price-dividend ratio and the linear combination of forward rates that best predicts bond

returns. I also consider two excess returns, the aggregate market returns over short-term

bonds, and the average long-term bond returns over short-term bonds. The average long-

term bond return is defined as the average of the returns on one-, two-, three-, four- and

five-year nominal bonds. I calculate the predictive regressions of each excess returns on

each predictor variable. Data are annual from 1953 to 2010. Tables 1.10 – 1.13 report the

results from these predictive regressions.

Tables 1.10 and 1.12 show the results of regressing aggregate and bond market excess

returns on the price-dividend ratio. It is well known that price-dividend ratio predicts

aggregate market excess returns in the data (e.g. Campbell and Shiller (1988), Cochrane

(1992), Fama and French (1989) and Keim and Stambaugh (1986)). Equation (1.30) shows

that the price-dividend ratio in the model is governed by both non-inflation and inflation

disaster probabilities. In particular, a high disaster probability lowers the price-dividend

ratio. Furthermore, investors require a higher-than-average premium when the total disaster

risk is high, implying that on average, a high total disaster probability is followed by high

returns. Notice that predictability still exists in the full set of simulations, though the
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R2-statistics are smaller. This is because realized returns are much lower when disasters

actually occur. In population, the predictability is even smaller, reflecting the well-known

small-sample bias in predictive regressions.

In the data, the price-dividend ratio also has some predictive power on long-term bond

excess returns, though the t-statistics are not significant and R2 values are low, as shown in

Tables 1.10 and 1.12. The model generates similar implications. An increase in either non-

inflation or inflation disaster probability leads to a low price-dividend ratio; bond excess

return, however, is governed mainly by inflation disaster probability. Therefore, investors

require a higher-than-average bond premium only when inflation disaster risk is high, im-

plying that on average, high inflation disaster probability is followed by high bond returns.

Furthermore, a high non-inflation disaster probability lowers the expected bond excess re-

turns; nonetheless, this effect is substantially smaller. Therefore, if the variation in the

price-dividend ratio comes from the inflation disaster probability, then the price-dividend

ratio predicts long-term bond excess returns with a negative sign. On the other hand, if the

movement in the price-dividend ratio comes from the non-inflation disaster probability, then

the price-dividend ratio predicts long-term bond excess returns with a small but positive

sign. Notice that predictability still exists in the full set of simulations, but disappears in

population.

As shown in previous section, long-term bond excess returns can be predicted using a linear

combination of forward rates. Tables 1.11 and 1.13 report the results of the long-horizon

regression. Unsurprisingly, the model successfully generates the long-term bond excess

return predictability found in the data. In the model, both the shape of the term structure

and bond excess returns are largely determined by the inflation disaster probability: A

high inflation disaster probability leads to a steeper term structure and also a higher bond

premium.

On the other hand, the linear combination of forward rates has less predictive power on the

aggregate market excess returns (Duffee (2012)). In the full sample from 1953 to 2010, the
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linear combination of forward rates appears to have no predictive power.10 In the model,

forward rates depend on inflation disaster probability, and high inflation disaster probability

is, on average, followed by high returns. Therefore, the linear combination of forward rates

still predicts aggregate market excess returns. However, comparing Panel A and Panel B of

Tables 1.11 and 1.13, one can see that the linear combination of forward rates predicts the

long-term bond excess returns with a much higher R2 value than for the aggregate market

excess returns, implying that the forward rate factor has a stronger predictive power on

bond excess returns.

Lettau and Wachter (2011) also consider these regressions; the single forward rate factor in

their model predicts bond excess returns and aggregate market excess returns with similar

R2 values. In the data, even though the R2 depends on the sample period, the forward rate

factor has a stronger predictive power on bond excess returns. Wachter (2006) and Gabaix

(2012) also study both the stock and bond markets. The model of Wachter (2006), however,

implies that the risk premia on stocks and bonds move together. In Gabaix (2012), the time-

varying risks in stock and bond market are unrelated, where in this paper, the underlying

risks are the same, but they have different effect on the premia. The model in this paper

is able to generate more realistic implications for these predictive regressions because the

prices of risks in the model have a two-factor structure, and these factors have differential

effects on the stock and bond markets.

1.4. Conclusion

Why is the average term structure upward-sloping? Why are excess returns on nominal

bonds predictable? This paper provides an explanation for these questions using a model

with time-varying rare disaster risks. Previous research has shown that a model that in-

cludes time-varying disaster risks can generate high equity premium and excess returns

10The magnitude of the R2-statistics depends on the subsample. For example, Cochrane and Piazzesi
(2005) find that the linear combination of forward rates predicts one-year aggregate market excess returns
with an R2 = 0.07 in the sample from 1964 through 2003. In the corresponding period, the R2 is 0.36 for
one-year nominal bond excess returns.
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volatility. Motivated by historical data, disasters in this model affect not only aggregate

consumption, but also expected inflation. A jump in expected inflation pushes down the

real value of nominal bonds, and investors require compensation for bearing these inflation

disaster risks. Furthermore, this premium increases with bond maturity, which leads to

an upward-sloping nominal term structure. Time-varying bond risk premia arise naturally

from time-varying disaster probabilities, and prices of risk in this model follow a two-factor

structure.

The model is calibrated to match the aggregate consumption, inflation, and equity market

moments, and the quantitative results show that this model produces realistic means and

volatilities of nominal bond yields. The three state variables in the model are highly corre-

lated with the first three principal components, which explain almost all of the variations

in the nominal yield curve both in the model and in the data. This model can also account

for the violation of the expectations hypothesis. In particular, I show that the yield spread

and a linear combination of forward rates can predict long-term bond excess returns. Fur-

thermore, the model is capable of capturing the joint predictive properties of the aggregate

market returns and of the bond returns. Aggregate market variables have higher predictive

powers for equity excess returns while the term structure variables have higher predictive

powers for bond excess returns.
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Figure 1.1: Inflation disasters: Distribution of consumption declines and inflation rates
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Notes: Histograms show the distribution of large consumption declines (peak-to-trough

measure) and high inflation (average annual inflation rate) in periods where large consump-

tion declines and high inflation co-occur. These figures exclude eight events in which average

annual inflation rates exceeded 100%. Data from Barro and Ursua (2008).
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Figure 1.2: Data vs. model consumption declines
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Notes: This figure plots the distributions of large consumption declines in the data and the

power law distribution used in the model. The top-left panel plots the distributions of large

consumption declines that do not co-occur with high inflation and the top-right panel plots

the power law distribution with parameter 10. The bottom-left panel plots the distributions

of large consumption declines that co-occur with high inflation and the bottom-right panel

plots the power law distribution with parameter 8. Data from Barro and Ursua (2008).
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Figure 1.3: Solution for the nominal bond yield
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.

The top-left panel plots the constant term, the top-right panel plots the coefficient mul-

tiplying qt (expected inflation), the bottom-left panel plots the coefficient multiplying λc

(non-inflation disaster probability), and the bottom right panel plots the coefficient multi-

plying λcq (inflation disaster probability). All are plotted as functions of years to maturity

(τ).
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Figure 1.4: Yield curve as functions of the state variables
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Notes: The figure plots the responses of the nominal yield curve to a shock of standard

deviation on each of the three state variables. The dashed line represents the yield curve

when all variables are fixed at their means. The solid line in the top-left panel represents

high expected inflation; the solid line in the top-right panel represents high non-inflation

disaster probability; and the solid line in the bottom-left panel represents high inflation

disaster probability.
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Figure 1.5: Risk premiums as a function of non-inflation disaster probability
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Notes: This figure shows the instantaneous expected nominal return on a one-year nominal

zero coupon bond above the nominal risk-free rate (solid line) and the analogous premium

for the five-year nominal zero coupon bond (dashed line). Premiums are shown as a function

of the non-inflation disaster probability, λ1, while λ2 is fixed at its mean of 1.03%. Premiums

are in annual terms.
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Figure 1.6: Risk premiums as a function of inflation disaster probability
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Notes: This figure shows the instantaneous expected nominal return on a one-year nominal

zero coupon bond above the nominal risk-free rate (solid line) and the analogous premium

for the five-year nominal zero coupon bond (dashed line). Premiums are shown as a function

of the disaster probability, λ2, while λ1 is fixed at its mean of 1.83%. Premiums are in annual

terms.
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Figure 1.7: Average bond yield
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Notes: This figure plots the data and model-implied average nominal bond yield as a func-

tion of years to maturity. The solid line plots the average nominal bond yields in the data.

The dashed line plots the median average bond yields in the small sample containing no

consumption disasters, and the dotted lines plot the 25% and 75% bounds. Data moments

are calculated using monthly data from 1952 to 2011. Data are constructed using the

Fama-Bliss dataset from CRSP. All yields are in annual terms.
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Figure 1.8: Volatility of bond yield
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Notes: This figure plots the data and model-implied volatility of nominal bond yield as a

function of years to maturity. The solid line plots the volatility of nominal bond yields in

the data. The dashed line plots the median volatility of bond yields in the small-samples

containing no consumption disasters, and the dotted lines plot the 25% and 75% bounds.

Data moments are calculated using monthly data from 1952 to 2011. Data are constructed

using the Fama-Bliss dataset from CRSP. All yields are in annual terms.
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Figure 1.9: Campbell-Shiller long rate regression
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Notes: This figure reports the coefficients of the Campbell-Shiller regression.
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where h = 0.25. The solid line plots the coefficients in the data. The dash-dotted line plots

the coefficients under the expectation hypothesis. The dashed line plots the median value

of the coefficients in the small-samples containing no consumption disasters, and the dotted

lines plot the 5% and 95% bounds. Data moments are calculated using monthly data from

1952 to 2011. Data are constructed using Fama-Bliss dataset from the CRSP.
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Figure 1.10: Forward rate regression - First stage estimates
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Notes: This figure plots the coefficient from regressing average excess bond returns on

forward rates in the model. Average annual returns on two-, three-, four-, and five-year

nominal bonds, in excess of the return on the one-year bond, are regressed on the one-, three-

, and five-year forward rates. The figure shows the resulting coefficients as a function of

the forward-rate maturity. About 35% of the small-sample having no consumption disaster

have coefficients that form a tent shape, and this figure plots the average of the coefficients

in these samples.
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Figure 1.11: Principal component analysis
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Notes: This figure plots the results from the principal component analysis. I report the

median values from the subset of small-sample simulations that do not contain any disasters.

The top-left panel plots the loadings on the first principal component, the top-right panel

plots the loadings on the second principal component, and the bottom-left panel plots the

loadings on the third principal component. The bottom-right panel shows the percentage

of variance explained by each of the principal components. Data are available at monthly

frequency from June 1952 to December 2011.
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Table 1.1: Summary statistics of consumption disasters

Panel A: All countries

Number of consumption disasters 89

Number of consumption disasters with high inflation 30

Percentage of consumption disasters with high inflation (%) 33.71

Panel B: OECD countries

Number of consumption disasters 53

Number of consumption disasters with high inflation 17

Percentage of consumption disasters with high inflation (%) 32.08
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Table 1.2: Parameters

Panel A: Basic parameters

Average growth in consumption (normal times) µ̄ (%) 2.02

Average growth in dividend (normal times) µD (%) 3.48

Volatility of consumption growth (normal times) σ (%) 2.00

Leverage φ 3.0

Rate of time preference β 0.010

Relative risk aversion γ 3.0

Panel B: Inflation parameters

Average inflation q̄ (%) 2.70

Volatility of expected inflation σq (%) 1.30

Volatility of realized inflation σp (%) 0.80

Mean reversion in expected inflation κq 0.09

Panel C: Non-inflation disaster parameters

Average probability of non-inflation disaster λ̄c (%) 1.83

Mean reversion in non-inflation disaster probability κλc 0.11

Volatility parameter for non-inflation disaster σλc 0.112

Minimum non-inflation disaster (%) 10

Power law parameter for non-inflation disaster 10

Panel D: Inflation disaster parameters

Average probability of inflation disaster λ̄cq (%) 1.03

Mean reversion in inflation disaster probability κλcq 0.11

Volatility parameter for inflation disaster σλcq 0.103

Minimum inflation disaster (%) 10

Power law parameter for inflation disaster 8
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Table 1.3: Log consumption and dividend growth moments

Panel A: Consumption growth

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.91 1.57 2.00 2.42 −0.19 1.45 2.22 1.29

standard deviation 1.41 1.68 1.99 2.29 1.85 3.86 9.02 5.05

skewness −0.48 −0.51 −0.01 0.49 −6.06 −3.20 0.22 −6.61

kurtosis 3.49 2.22 2.82 3.97 2.50 16.18 43.29 69.83

Panel B: Dividend growth

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.78 2.01 3.29 4.56 −3.28 1.64 3.97 1.16

standard deviation 6.57 5.05 5.97 6.86 5.56 11.57 27.06 15.14

skewness −0.01 −0.51 −0.01 0.49 −6.06 −3.20 0.22 −6.61

kurtosis 5.26 2.22 2.82 3.97 2.50 16.18 43.29 69.83

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating data from the model at a monthly frequency for

60,000 years and then aggregating monthly growth rates to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

consumption disasters occur.
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Table 1.4: Inflation moments

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

Mean 3.74 0.27 3.65 12.59 0.91 6.12 28.51 11.16

Standard deviation 3.03 1.77 2.89 13.55 1.92 5.54 31.34 20.63

AC(1) 0.66 0.61 0.84 0.93 0.65 0.87 0.95 0.95

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating data from the model at a monthly frequency for

60,000 years and then aggregating monthly growth rates to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

consumption disasters occur. All numbers are in annual level terms.
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Table 1.5: Nominal Yield Moments

Panel A: Average nominal bond yield

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year 5.20 2.39 5.67 13.09 2.49 7.39 23.26 10.86

2-year 5.40 2.66 5.80 13.06 2.71 7.51 23.27 10.92

3-year 5.58 2.88 5.88 12.93 2.89 7.60 23.15 10.92

4-year 5.72 3.03 5.96 12.85 3.03 7.65 22.97 10.89

5-year 5.82 3.18 6.03 12.71 3.14 7.67 22.68 10.83

Panel B: Volatility of nominal bond yield

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year 3.02 1.67 2.79 10.96 1.90 5.09 20.67 12.97

2-year 2.97 1.62 2.69 10.51 1.83 4.96 20.18 12.72

3-year 2.90 1.58 2.65 10.22 1.80 4.88 19.59 12.46

4-year 2.84 1.56 2.63 9.87 1.77 4.80 19.13 12.20

5-year 2.78 1.54 2.61 9.58 1.76 4.73 18.67 11.93

Notes: Panel A reports the average nominal bond yield and Panel B reports the volatility

of the nominal bond yield. Data moments are calculated using monthly data from 1952 to

2011. Population moments are calculated by simulating data from the model at a monthly

frequency for 60,000 years. I also simulate 10,000 60-year samples and report the 5th-, 50th-

and 95th-percentile for each statistic both from the full set of simulations and for the subset

of samples for which no consumption disasters occur. All yields are in annual terms.
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Table 1.6: Correlation between principal components and state variables

PC1 PC2 PC3

expected inflation 0.92 0.09 0.11

non-inflation disaster risks −0.05 0.07 0.82

inflation disaster risks 0.06 −0.90 0.07

Notes: This table reports the correlation between each principal component and each state

variable in the model. I report the median value drawn from the subset of small-sample

simulations having no consumption disasters.
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Table 1.7: Campbell-Shiller long rate regression

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year −0.57 −1.02 −0.18 2.80 −0.93 0.31 3.65 0.44

2-year −0.74 −1.18 −0.31 2.90 −1.08 0.30 3.76 0.57

3-year −1.14 −1.43 −0.42 2.95 −1.31 0.27 3.87 0.67

4-year −1.44 −1.71 −0.54 2.96 −1.56 0.25 3.93 0.74

5-year −1.68 −2.01 −0.64 2.98 −1.80 0.23 3.96 0.79

Notes: This table reports the coefficients of the Campbell-Shiller regression.

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h

(
y

$,(n)
t − y$,(h)

t

)
+ error,

where h = 0.25 and each row represents a bond with a different maturity (n). Data moments

are calculated using quarterly data from June 1952 to December 2011.
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Table 1.8: Cochrane-Piazzesi forward rate regression

Panel A: Coefficient

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.44 0.32 0.40 0.48 0.33 0.41 0.49 0.54

3-year 0.83 0.73 0.80 0.87 0.74 0.81 0.88 0.90

4-year 1.26 1.19 1.20 1.21 1.19 1.20 1.21 1.17

5-year 1.47 1.46 1.59 1.73 1.44 1.57 1.71 1.39

Panel B: R2-statistics

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.16 0.02 0.15 0.48 0.01 0.11 0.41 0.01

3-year 0.17 0.03 0.16 0.47 0.02 0.11 0.41 0.01

4-year 0.20 0.03 0.16 0.44 0.02 0.12 0.39 0.01

5-year 0.18 0.03 0.17 0.41 0.02 0.12 0.37 0.01

Notes: This table reports the results from the second stage of the Cochrane-Piazzesi single

factor regression. It reports the coefficient on the linear combination of forward rates on

nominal bonds and the R2-statistics from regressing excess bond return on the single forward

rate factor. I consider bonds with maturities of two, three, four and five years. Data are

monthly from 1952 to 2011.
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Table 1.9: Market moments

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[R(0.25)] 1.25 1.03 2.03 2.54 −0.56 1.57 2.40 1.35

σ(R(0.25)) 2.75 0.90 1.26 2.13 0.98 1.64 3.29 2.15

E[Rm −R(0.25)] 7.25 3.12 5.06 7.87 2.09 4.78 8.57 5.04

σ(Rm) 17.79 9.68 13.75 19.91 11.21 17.80 27.44 18.91

Sharpe ratio 0.41 0.25 0.37 0.50 0.11 0.28 0.45 0.27

exp(E[p− d]) 32.51 30.71 36.13 39.06 24.48 33.77 38.35 32.66

σ(p− d) 0.43 0.07 0.15 0.30 0.09 0.21 0.44 0.29

AR1(p− d) 0.92 0.46 0.73 0.90 0.53 0.79 0.92 0.88

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating monthly data from the model for 60,000 years and

then aggregating to an annual frequency. We also simulate 10,000 60-year samples and

report the 5th-, 50th-, and 95th-percentile for each statistic from the full set of simulations

and for the subset of samples for which no disasters occur. R(0.25) denotes the three-month

Treasury Bill return where R(0.25) = R
$,(0.25)
t

Pt+1

Pt
. Rm denotes the return on the aggregate

market, and p− d denotes the log price-dividend ratio.
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Table 1.10: Long-horizon regressions of returns on the price-dividend ratio (One-year hold-
ing period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.12 [−1.89] −0.63 −0.34 −0.17 −0.53 −0.23 0.03 −0.13

R2 0.07 0.07 0.17 0.29 0.00 0.08 0.23 0.04

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.02 [1.19] −0.15 −0.00 0.13 −0.13 0.02 0.18 0.02

R2 0.02 0.00 0.03 0.23 0.00 0.02 0.19 0.00

Notes: This table reports the results from regressing one-year aggregate market excess

returns and average nominal bond excess return on the price-dividend ratios. Data are

annual from 1953 to 2010. For the data coefficients, I report t-statistics constructed using

Newey-West standard errors. Population moments are calculated by simulating monthly

data from the model for 60,000 years and then aggregating to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic from the full set of simulations and for the subset of samples for which no disasters

occur.
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Table 1.11: Long-horizon regressions of returns on the linear combination of forward rates
(One-year holding period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.72 [0.48] −3.14 0.39 2.84 −3.06 0.54 3.24 −0.28

R2 0.00 0.00 0.03 0.16 0.00 0.02 0.14 0.00

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.03 [3.19] 0.86 1.17 1.55 0.81 1.20 1.68 1.59

R2 0.20 0.02 0.17 0.45 0.01 0.12 0.40 0.01

Notes: This table reports the results from regressing one-year aggregate market excess re-

turns and average nominal bond excess return on the linear combination of forward rates.

Data are annual from 1953 to 2010. For the data coefficients, I report t-statistics con-

structed using Newey-West standard errors. Population moments are calculated by simu-

lating monthly data from the model for 60,000 years and then aggregating to an annual

frequency. I also simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-

percentile for each statistic from the full set of simulations and for the subset of samples

for which no disasters occur.
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Table 1.12: Long-horizon regressions of returns on the price-dividend ratio (Five-year hold-
ing period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.28 [−2.87] −1.55 −1.05 −0.57 −1.51 −0.84 0.13 −0.52

R2 0.13 0.13 0.44 0.69 0.01 0.25 0.61 0.12

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.07 [1.83] −0.54 0.00 0.43 −0.51 0.08 0.62 0.07

R2 0.09 0.00 0.07 0.47 0.00 0.06 0.46 0.01

Notes: This table reports the results from regressing five-year aggregate market excess

returns and average nominal bond excess return on the price-dividend ratios. Data are

annual from 1953 to 2010. For the data coefficients, I report t-statistics constructed using

Newey-West standard errors. Population moments are calculated by simulating monthly

data from the model for 60,000 years and then aggregating to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic from the full set of simulations and for the subset of samples for which no disasters

occur.
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Table 1.13: Long-horizon regressions of returns on the linear combination of forward rates
(Five-year holding period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 2.02 [0.68] −11.03 0.97 8.61 −11.61 1.41 10.89 −1.21

R2 0.01 0.00 0.08 0.45 0.00 0.07 0.40 0.00

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.83 [2.53] 1.04 3.37 5.83 0.84 3.66 7.18 6.45

R2 0.11 0.02 0.26 0.65 0.01 0.24 0.64 0.05

Notes: This table reports the results from regressing five-year aggregate market excess re-

turns and average nominal bond excess return on the linear combination of forward rates.

Data are annual from 1953 to 2010. For the data coefficients, I report t-statistics con-

structed using Newey-West standard errors. Population moments are calculated by simu-

lating monthly data from the model for 60,000 years and then aggregating to an annual

frequency. I also simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-

percentile for each statistic from the full set of simulations and for the subset of samples

for which no disasters occur.
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CHAPTER 2 : Rare Booms and Disasters in a Multi-sector Endowment Economy

(with Jessica A. Wachter)

2.1. Introduction

This paper introduces a representative agent asset pricing model in which the endowment

and the aggregate dividend are subject to larges rare negative shocks (disasters) and large

rare positive shocks (booms). We consider a two-sector model for the economy: the growth

sector is the claim to the stream of dividends arising from the rare booms, while the value

sector is the claim to the remaining dividend stream. The two sectors add up to the

aggregate market. We show that this parsimonious model can explain important features of

stock market data. As shown in earlier work, a time-varying probability of rare disasters can

account for the high equity premium, high stock market volatility and return predictability

exhibited by the aggregate market.1 Beyond addressing these earlier points, our work also

explains the cross-section of stock returns.

The possibility of rare booms has been little studied in comparison to rare disasters. This

may be because the implications of rare booms for the equity premium, a focus of earlier

work, are relatively minor. Because of decreasing marginal utility, the representative agent

requires little compensation for bearing the risk of rare booms, even if they are large.2

However, when assets have varying exposure to the booms, the impact on the cross-section

can be substantial. The model implies that investors are willing to hold the growth portfolio

1For the equity premium result, see Rietz (1988), Longstaff and Piazzesi (2004), Veronesi (2004) and
Barro (2006). For the volatility and predictability results, see Gabaix (2012), Gourio (2012) and Wachter
(2012).

2An exception is the literature on technological innovations. Pastor and Veronesi (2009) show how the
transition from idiosyncratic to systematic risk can explain time series patterns of returns in innovative
firms around technological revolutions. In the present paper, we assume for simplicity that the risk of the
technology is systematic from the start. Jovanovic and Rousseau (2003) show how technological revolutions
can have long-lived effects, in that the firms that capitalize on such revolutions continue to have high market
capitalization in a manner consistent with our model. These papers do not study the value premium. In
recent work, Bekaert and Engstrom (2010) propose a model in which the economy is also subject to shocks in
which bad events predominate and shocks in which good events predominate. Their model differs from ours
in that they focus on explaining aggregate market and consumption moments with an agent with habit-like
preferences.
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despite its low return because of the small possibility of a high payout. The growth portfolio

has a high covariance with the market because it is subject to a time-varying risk of booms as

well as a time-varying risk of disaster; once a boom occurs the resulting dividend stream has

the same disaster exposure as the rest of the economy. In fact, the model accurately predicts

that the growth portfolio has a market beta greater than one while the value portfolio has

a market beta less than one. This combination of high betas with low expected returns

allows the model to explain the striking failure of the Capital Asset Pricing Model (CAPM)

observed in the data (Fama and French (1992)).

Our model introduces several innovations beyond those described above. First, we model

disasters and booms as influencing the drift rate of fundamentals, rather than fundamentals

directly. This allows our model to capture the fact that disasters and booms unfold slowly,

as emphasized by Constantinides (2008). The assumption of recursive utility implies that

there is still a substantial equity premium.3 Second, we introduce a novel way to model

value and growth assets that allows the dividends on value to grow more slowly than those

of the aggregate market, but still implies value and growth add up to the market, and price

ratios are stationary.

A number of other papers also offer risk-based explanations for the relatively high expected

returns on value stocks (the value premium).4 It is likely that the value premium has

multiple causes, and it is not the purpose of this article to rule out other explanations. One

difficulty with these risk-based explanations is that a value premium arises because returns

on the value portfolio are more risky than the growth portfolio. This, however, is not the

case in the data. In our model, growth is in fact more risky. We break the link between risk

3Bansal et al. (2010) also model large shocks to the growth rate in a setting with a constant probability
of disaster. Like the present paper, Nakamura et al. (2011) address the Constantinides (2008) critique; the
focus of their empirical paper is to accurately capture the disaster distribution in complex setting where only
numerical solutions are available. In contrast, the focus of this paper is to account for the aggregate market
and cross-sectional moments using a relatively simple model with analytical solutions. Another strand of the
literature incorporates non-normal shocks into the drift and volatility of the endowment process to model
multifrequency or business-cycle fluctuations: see Calvet and Fisher (2007, 2008), Lettau et al. (2008) and
Bhamra et al. (2010).

4For example, Ai and Kiku (2013), Berk et al. (1999), Carlson et al. (2004), Gârleanu et al. (2012), Gomes
et al. (2003), Hansen et al. (2008), Novy-Marx (2010), Santos and Veronesi (2010) and Zhang (2005).
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and return in two ways: first, while population returns on growth may be higher, in any

given sample, it is not unlikely that a value premium will be observed in the data. Second,

the risk in growth arises from rare booms, which occur in times of low marginal utility.

Hence investors do not require compensation for bearing this risk.5

Besides addressing the sign and magnitude of the value premium, our model can also account

for the time-series behavior of the value premium and its relation to the equity premium. As

is well-known, the price-dividend ratio can predict excess returns on the aggregate market,

implying that the equity premium is varying over time (Campbell and Shiller (1988)).

The value spread can predict the return on the value-minus-growth portfolio, implying

that it, too, has a time-varying risk premium (Cohen et al. (2003)). However, these risk

premiums appear to have little to do with one-another; the price-dividend ratio has almost

no predictive power for the value spread. In our model, a two-factor structure for risk

premia arise naturally, and it is thus capable of explaining this result.

The remainder of the paper is organized as follows. Section 2.2 describes and solves the

model. Section 2.3 discusses the quantitative fit of the model to the data. Section 2.4

concludes.

2.2. Model

2.2.1. Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Aggregate

consumption (the endowment) follows a diffusion process with time-varying drift:

dCt
Ct

= µCt dt+ σdBCt, (2.1)

5Other studies succeed in breaking the link between risk and return using mechanisms other than what
we consider here. These include Campbell and Vuolteenaho (2004) and Campbell et al. (2010), who model
growth and value in an ICAPM setting, and Lettau and Wachter (2007), who assume an exogenous stochastic
discount factor. These studies, however, do not assume a representative agent pricing assets in equilibrium
in which cash flows must add up to the market.
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where BCt is a standard Brownian motion. The drift of the consumption process is given

by

µCt = µ̄C + µ1t + µ2t, (2.2)

where

dµjt = −κµjµjtdt+ ZjtdNjt, (2.3)

for j = 1, 2. This model allows expected consumption growth to be subject to two types of

(large) shocks. The rare events Njt each follow a Poisson process (that is, for a given t, Njt

has a Poisson distribution). In what follows, we will consider the first type (j = 1) to be

disasters, so that Z1t ≤ 0 and the second type (j = 2) to be booms, so that Z2t ≥ 0. When

a disaster occurs, the process µ1t jumps downward. It then mean-reverts back (absent any

other bad shocks). Likewise, when a boom occurs, the process µ2t jumps upward. It too

reverts back. This model allows for smooth consumption (as in the data), that nonetheless

goes through periods of extreme growth rates in one direction or another. Writing down

two separate processes influencing expected consumption growth (as opposed to one process

with two types of shocks) simplifies pricing of different sectors and allows disasters to be

shorter-lived than booms, as the data suggest.

In what follows, the magnitude of the jumps will be random with a time-invariant distribu-

tion. That is, Zjt has distribution νj . We will use the notation Eνj to denote expectations

taken over the distribution νj . The intensity of the Poisson shock Nj is governed by λjt,

which is stochastic, and follows the process

dλjt = κλj (λ̄j − λjt) dt+ σλj
√
λjt dBλjt. (2.4)

where Bλjt, j = 1, 2 are independent Brownian motions, that are each independent of BCt.

Furthermore, we assume that the Poisson shocks Njt are independent of each other, and of

the Brownian motions. Define λt = [λ1t, λ2t]
>, µt = [µ1t, µ2t]

>, Bλt = [Bλ1t, Bλ2t]
> and
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Bt = [BCt, B
>
λt]
>.6

We assume the continuous-time analogue of the utility function defined by Epstein and

Zin (1989) and Weil (1990), that generalizes power utility to allow for preferences over the

timing of the resolution of uncertainty. The continuous-time version is formulated by Duffie

and Epstein (1992); we use the case that sets the parameter associated with the elasticity

of intertemporal substitution (EIS) equal to one. Define the utility function Vt for the

representative agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (2.5)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log((1− γ)Vt)

)
. (2.6)

We follow common practice in interpreting γ as risk aversion and β as the rate of time

preference. We assume throughout that γ > 0 and β > 0.

2.2.2. The value function

Let Wt denote the wealth of the representative agent and J(Wt, µt, λt) the value function.

In equilibrium, it must be the case that J(Wt, µt, λt) = Vt. The following describes the

value function and its properties. The proof of Theorem 2.1 is in Appendix A.2.2.

Theorem 2.1. Assume parameter values satisfy Assumption A.2. Then the value function

J takes the following form:

J(Wt, µt, λt) =
W 1−γ
t

1− γ
I(µt, λt), (2.7)

where

I(µt, λt) = exp
{
a+ b>µ µt + b>λ λt

}
, (2.8)

for vectors bµ = [bµ1 , bµ2 ]> and bλ = [bλ1 , bλ2 ]>. The coefficients a, bµj and bλj for j = 1, 2

6We assume throughout that κµj, κλj , λ̄j and σλj , for j = 1, 2, are strictly positive.
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take the following form:

a =
1− γ
β

(
µ̄C −

1

2
γσ2

)
+ (1− γ) log β +

1

β
b>λ (κλ ∗ λ̄) (2.9)

bµj =
1− γ
κµj + β

, (2.10)

bλj =
1

σ2
λj

(
β + κλj −

√(
β + κλj

)2 − 2Eνj

[
ebµjZjt − 1

]
σ2
λj

)
. (2.11)

Here and in what follows, we use the notation ∗ to denote element-by-element multiplication

of vectors of equal dimension.

As the next corollary shows, an investor is made better off (as measured by the value

function), by an increase in the components of expected consumption growth or by an

increase in the probability of a boom. The investor is made worse off by an increase in the

probability of disaster.

Corollary 2.1. The value function is increasing in µjt for j = 1, 2, decreasing in λ1t, and

increasing in λ2t.

Proof To fix ideas, consider γ > 1. It suffices to show bλ1 > 0, bλ2 < 0, and bµj < 0 for

j = 1, 2. It follows immediately from (2.10) that bµj < 0. Because Z1 < 0 and bµ1 < 0,

Eν1

[
ebµ1Z1t − 1

]
> 0. Therefore,

√
(β + κλ1)2 − 2Eν1

[
ebµ1Z1t − 1

]
σ2
λ1
< β + κλ1 .

It follows that bλ1 > 0. Because Z2 > 0 and bµ2 < 0, Eν2

[
ebµ2Z2t − 1

]
< 0. Therefore,

√
(β + κλ2)2 − 2Eν2

[
ebµ2Z2t − 1

]
σ2
λ2
> β + κλ2

and bλ2 < 0.

The riskfree rate takes a particularly simple form:

Corollary 2.2. Let rt denote the instantaneous risk-free rate in this economy, then rt is
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given by

rt = β + µCt − γσ2. (2.12)

2.2.3. The aggregate market

Let Dt denote the dividend on the aggregate market. Assume that dividends follow the

process

dDt

Dt
= µDt dt+ φσ dBCt, (2.13)

where

µDt = µ̄D + φµ1t + φµ2t.

This structure allows dividends to respond by a greater amount than consumption to booms

and disasters (this is consistent with the U.S. experience, as shown in Longstaff and Piazzesi

(2004)). For parsimony, we assume that the parameter, namely, φ, governs the dividend

response to normal shocks, booms and disasters. This φ is analogous to leverage in the

model of Abel (1999), and we will refer to it as leverage in what follows.

Prices

We price equity claims using no-arbitrage and the state-price density. Duffie and Skiadas

(1994) show that the state-price density πt equals

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (2.14)

Let H (Dt, µt, λt, τ) denote the time t price of a single future dividend payment at time

t+ τ . Then

H(Dt, µt, λt, s− t) = Et

[
πs
πt
Ds

]
.

The following corollary gives the solution for H up to ordinary differential equations. This
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corollary is a special case of Theorem A.3, given in Appendix A.2.2.

Corollary 2.3. The solution for the function H is as follows

H(Dt, µt, λt, τ) = Dt exp
{
aφ(τ) + bφµ(τ)>µt + bφλ(τ)>λt

}
, (2.15)

where bφµ(τ) = [bφµ1(τ), bφµ2(τ)]> and bφλ(τ) = [bφλ1(τ), bφλ2(τ)]>. Furthermore, for

j = 1, 2,

bφµj (τ) =
φ− 1

κµj

(
1− e−κµj τ

)
, (2.16)

while bφλj (τ) (for j = 1, 2) and aφ(τ) satisfy the following:

dbφλj
dτ

=
1

2
σ2
λj
bφλj (τ)2 +

(
bλjσ

2
λj
− κλj

)
bφλj (τ) + Eνj

[
ebµjZjt

(
e
bφµj (τ)Zjt − 1

)]
(2.17)

daφ
dτ

= µ̄D − µ̄C − β + γσ2 (1− φ) + bφλ(τ)>
(
κλ ∗ λ̄

)
(2.18)

with boundary conditions bφλj (0) = aφ(0) = 0.

Let F (Dt, µt, λt) denote the value of the market portfolio (namely, the price of the claim to

the entire future dividend stream). Then

F (Dt, µt, λt) =

∫ ∞
0

H (Dt, µt, λt, τ) dτ.

Corollary 2.3 implies that the price-dividend ratio, which we will denote by a function G,

can be written as

G(µt, λt) =

∫ ∞
0

exp
(
aφ(τ) + bφµ(τ)>µt + bφλ(τ)>λt

)
dτ. (2.19)

The expressions in Corollary 2.3 show how prices respond to innovations in expected con-

sumption growth and in changing disaster probabilities. Because φ > 1, (2.16) shows that

innovations to expected consumption growth increase the price-dividend ratio. The presence

of the φ− 1 term shows that this is a trade-off between the effect of expected consumption
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growth on the riskfree rate and on dividend cash flows. In our recursive utility model,

the cash flow effect dominates and asset prices fall during disasters and rise during booms.

Moreover, the more persistent is the process for the mean (the lower is κµj ), the greater is

the effect of a change in µjt on prices.7 Finally, an increase in the probability of a disaster

lowers the price-dividend ratio, while an increase in the probability of a boom raises it.

These effects are summarized in the following corollary.

Corollary 2.4. The price-dividend ratio G(µt, λt) is increasing in the components of ex-

pected consumption growth µjt (for j = 1, 2), decreasing in the probability of a disaster λ1t

and increasing in the probability of a boom λ2t.

The fact that G(µt, λt) is increasing in µjt follows immediately from the form of (2.16). The

results for λ1t and λ2t are less obvious. We give a full proof in Appendix A.2.2 and discuss

the intuition here. Consider the ODE (2.17). The functions bφλj (τ) would be identically

zero without the last term Eνj

[
ebµjZjt

(
e
bφµj (τ)Zjt − 1

)]
. It is this term that determines

the sign of bφλj (τ), and thus how prices respond to changes in probabilities.

To fix ideas, consider disasters (j = 1). The last term in (2.17) can itself be written as a

sum of two terms:

Eν1

[
ebµ1Z1t

(
ebφµ1

(τ)Z1t − 1
)]

=

− Eν1

[(
ebµ1Z1t − 1

)(
1− ebφµ1

(τ)Z1t

)]
︸ ︷︷ ︸

Risk premium effect

+ Eν1

[
ebφµ1

(τ)Z1t − 1
]

︸ ︷︷ ︸
Cash flow and riskfree rate effect

(2.20)

The first of the terms in (2.20) is one component of the equity premium, indeed it is what

we will refer to as the static disaster premium, terminology that we discuss in more detail in

the next section.8 When the risk of a disaster increases, the static equity premium increases.

Because an increase in the discount rate lowers the price-dividend ratio, this term appears in

(2.20) with a negative sign. The second term in (2.20) is the expected price response in the

7The derivative of (2.16) with respect to κµj equals (κµj τ + 1)e
−κµj τ − 1 which is negative, because

e
κµj τ > κµj τ + 1.

8More precisely, this is the static disaster premium for zero-coupon equity with maturity τ .
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event of a disaster.9 It represents the combined effect of the disaster on cash flows and on

the riskfree rate. The net effect is negative, as described above. Thus the response of equity

values to changes in the probability of a disaster is determined by a risk premium effect,

and a (joint) cash flow and riskfree rate effect. Both effects turn out to be negative; our

calibration implies that they are roughly of equal magnitude (the full risk premium however

is of much greater magnitude since it also includes compensation for time-varying λ1t). A

similar structure holds for booms. However, in the case of booms, the joint riskfree-rate

and cash flow effect is positive, and it dominates the risk premium effect.10

The equity premium

Here, we give an expression for the instantaneous equity premium and discuss its properties.

This will be useful in understanding the quantitative results in Section 2.3.

First, we define the jump operator, which denotes how a process responds to an occurrence

of a rare event. Namely, let Xt be any pure diffusion process (Xt can be a vector), and

let µjt, j = 1, 2 be defined as above. Consider a scalar, real-valued function h(µ1t, µ2t, Xt).

Define the jump operator J as follows:

J1(h(µ1t, µ2t, Xt)) = h(µ1 + Z1, µ2, Xt)

J2(h(µ1t, µ2t, Xt)) = h(µ1, µ2 + Z2, Xt).

Further, define

J̄j(h(µ1t, µ2t, Xt)) = EνjJj(h(µ1t, µ2t, X))

for j = 1, 2, and

J̄ (h(µ1t, µ2t, Xt)) =
[
J̄1(h(µ1t, µ2t, Xt)), J̄2(h(µ1t, µ2t, Xt)

]>
.

9Again, more precisely, it is the price response of zero-coupon equity with maturity τ .
10The relative magnitude of these terms can be seen by comparing the risk premiums with the observed

expected returns in samples when no jumps occur (namely Figures 2.5 and 2.7 with Figures 2.9 and 2.10).
The term on the left hand side of (2.20) corresponds to the observed static premium in no-jump samples
while the first term on the right hand side corresponds to the static premium in population.
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Using Ito’s Lemma and the definition above, we can write the process for the aggregate

stock price Ft = F (Dt, µt, λt) as follows:

dFt
Ft−

= µF,t dt+ σF,t dBt +
∑
j

Jj(Ft)
Ft−

dNjt.

The instantaneous expected return is the expected change in price, plus the dividend yield:

rmt = µF,t +
Dt

Ft
+

1

Ft
λ>t J̄ (Ft). (2.21)

Corollary 2.5. The equity premium relative to the risk-free rate r is

rmt − rt = φγσ2 −
∑
j

λjtEνj

[(
ebµjZjt − 1

) Jj(Gt)
Gt

]
︸ ︷︷ ︸

static rare event premium

−
∑
j

λjt
1

Gt

∂G

∂λj
bλjσ

2
λj︸ ︷︷ ︸

λ-premium

. (2.22)

As Corollary 2.5 shows, the equity premium is the sum of three terms. The first is the

standard term arising from the consumption Capital Asset Pricing Model (CCAPM) of

Breenden (1979). The second term is the premium directly attributable to rare events. It

arises from the co-movement in prices and in marginal utility when one of these events

occurs. We will call this term the static rare event premium (we include the negative sign

in the definition of the premium). This term can itself be divided into the static disaster

premium and the static boom premium:

static disaster premium: −λ1tEν1

[(
ebµ1Z1t − 1

) J1(Gt)

Gt

]
static boom premium: −λ2tEν2

[(
ebµ2Z2t − 1

) J2(Gt)

Gt

]

If a rare event occurs, instantaneous current dividends do not change, but future dividends

do. This is why the formulas above contain the price dividend ratio Gt (it would also be

correct to substitute Gt with Ft). Note that this is the premium that would obtain if the

probability of the rare event λjt were constant. It is for this reason that we refer to these
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terms as the static rare event premium.11

Finally, the third term in (2.22) represents the compensation the investor requires for bear-

ing the risk of changes in the rare event probabilities (again, the definition should be viewed

as including the negative sign). Accordingly, we call this the λ-premium. This term can also

be divided into the compensation for time-varying disaster probability (the λ1-premium)

and compensation for time-varying boom probability (the λ2-premium). Note that under

power utility, only the CCAPM term would appear in the risk premium. This is because,

in the power utility model, only the instantaneous co-movement with consumption matters

for risk premia, not changes to the consumption distribution.

We next address the question of how these various terms contribute to the equity premium.

The following corollary describes the signs of these terms:

Corollary 2.6. 1. The static disaster and boom premiums are positive.

2. The λ1-premium (the premium for time-varying disaster probability) is positive. The

λ2-premium (the premium for time-varying boom probability) is also positive.

Proof To show the first statement, recall that bµj < 0 for j = 1, 2 (Corollary 2.1). First

consider disasters (j = 1). Note Z1 < 0, so ebµ1Z1t − 1 > 0. Furthermore, because G is

increasing in µ1 (Corollary 2.4), J1(Gt) < 0. It follows that the static disaster premium

is positive. Now consider booms (j = 2). Because Z2 > 0, ebµ2Z2t − 1 < 0. Because G is

increasing in µ2, J2(Gt) > 0. Therefore the static boom premium is also positive.

To show the second statement, first consider disasters (j = 1). Recall that bλ1 > 0 (Corol-

lary 2.1). Further, ∂G/∂λ1 < 0 (Corollary 2.4). For booms (j = 2), each of these quantities

takes the opposite sign. The result follows.

The intuitive content of Corollary 2.6 is that both booms and disasters increase the risk of

equities for the representative agent. They do so both because of the direct (static) effect

11However, the term “static premium” is somewhat of a misnomer here, since even the direct effect of rare
events on the price-dividend ratio is a dynamic one.
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stemming from happens to equities in these events, and because of an indirect (dynamic)

effect, due to what happens to equities (as a result of rational forecasts of what would

happen in these events) during normal times.

It is also useful to consider the return the econometrician would observe in an sample

without rare events. We will distinguish these expected returns using the subscript nj (“no

jump”). This expected return is simply given by the drift rate in the price, plus the dividend

yield

rmnj,t = µF,t +
Dt

Ft
.

Based on this definition, the fact that J̄ (Ft)
Ft

= J̄ (Gt)
Gt

and on Corollary 2.5, these expected

returns can be calculated as follows:

Corollary 2.7. The observed expected excess return in a sample without jumps is

rmnj,t − rt = φγσ2 −
∑
j

λjtEνj

[
ebµjZjt

Jj(Gt)
Gt

]
−
∑
j

λjt
1

Gt

∂G

∂λj
bλjσ

2
λj (2.23)

This expression differs from (2.22) in that the contribution directly due to rare events is

equal to −
∑

j λjtEνj

[
ebµjZjt

Jj(Gt)
Gt

]
as opposed to −

∑
j λjtEνj

[(
ebµjZjt − 1

)
Jj(Gt)
Gt

]
. We

will refer to the j = 1 term as the observed static disaster premium in a sample without

jumps and the j = 2 term as the observed static boom premium in a sample without jumps.

Corollary 2.8. The observed static disaster premium in a sample without jumps is positive.

The observed static boom premium in a sample without jumps is negative.

Proof The result follows from the fact that G is increasing in µ1 and µ2, and hence J1(G) <

0 and J2(G) > 0.

Note that the observed disaster premium is positive, just like the true disaster premium.

However, the observed boom premium is negative, the oppose sign to the true boom pre-

mium.12

12We refer to these as the observed premiums to distinguish them from the true risk premiums (note that,
unlike true risk premiums, they do not in fact represent a return for risk). In practice, it will be nearly
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2.2.4. Growth and value sectors

The value sector is defined as the claim to cash flows that are not subject to the positive

jumps, but are otherwise identical to those of the market. We will use the superscript v to

denote processes related to the value sector and the subscript g to denote processes related

to the growth sector. The dividend process for the value sector is as follows:

dDv
t,s

Dv
t,s

= µvDsds+ φσdBCs, (2.24)

where µvDt = µ̄D +φµ1t, and with the boundary condition Dv
t,t = Dt. The price of the value

sector claim can be determined in the same way as the price of the claim to the aggregate

market (see Corollary 2.9 below).

The growth sector is defined as the residual. Let Dg
t,s = Ds − Dv

t,s. Define F gt,s to be the

price of the growth claim. Then, by the absence of arbitrage,

F gt,s = Fs − F vt,s.

As long as there are no positive jumps, the dividend on the value claim and the aggregate

market are identical. However, when a positive jump takes place, the market dividend

begins to diverge permanently from the value dividend. The dividend on the value sector

will henceforth grow at a lower rate than the aggregate dividend, with the dividend on the

growth claim comprising the difference.

In this setting, thinking of the value and the growth claim as long-lived assets would imply

a value claim that makes up a vanishingly small portion of the aggregate market as time

passes. The asset pricing implications of defining the value claim in this way would not be

very interesting. Therefore, we do not think of the value claim as being a long-lived asset

(indeed, because markets are complete, the actual assets that are specified do not affect the

impossible to distinguish the separate terms in (2.23). The terminology “observed static disaster premium”
and “observed static boom premium” is used for convenience, not to suggest that these terms can in fact be
observed separately from other parts of the expected excess return.
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equilibrium). If one wishes to think of long-lived assets, the following interpretation may be

helpful (though note that given that the value and growth claim are priced by no-arbitrage,

this interpretation is not necessary): Every time there is a positive jump, the growth sector

is disbanded. Some of the capital is used to start a new growth sector, and some goes into

the rest of the economy. The value of the claims to the new growth and value sectors are

adjusted so that the owners of the previous growth sector still receive the value of the claim

to the (previous) growth dividends. In effect, the owners of the growth sector are diluting

the owners of the value sector in the event of a positive jump.

Prices

Let Hv
(
Dv
t,s, µs, λs, τ

)
denote the time t price of a single future value sector dividend

payment at time s+ τ . Recall that πt is the state-price density, defined in (2.14). As in the

case of the aggregate market,

Hv(Dv
t,s, µs, λs, u− s) = Es

[
πu
πs
Dv
t,u

]
.

Furthermore,

F v
(
Dv
t,s, µs, λs

)
=

∫ ∞
0

Hv
(
Dv
t,s, µs, λs, τ

)
dτ. (2.25)

The following corollary is a special case of Theorem A.3, given in Appendix A.2.2.

Corollary 2.9. The solution for the function Hv is as follows:

Hv
(
Dv
t,s, µs, λs, τ

)
= Dv

t,s exp
{
avφ(τ) + bvφµ(τ)>µs + bvφλ(τ)>λs

}
,

where bvφµ(τ) = [bvφµ1
(τ), bvφµ2

(τ)]> and bvφλ(τ) = [bvφλ1
(τ), bvφλ2

(τ)]>. Furthermore,

bvφµ1
(τ) =

φ− 1

κµ1

(
1− e−κµ1τ

)
(2.26)

bvφµ2
(τ) = − 1

κµ2

(
1− e−κµ2τ

)
, (2.27)
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while bvφλj (τ) (for j = 1, 2) and aφ(τ) satisfy

dbvφλj
dτ

=
1

2
σ2
λj
bvφλj (τ)2 +

(
bλjσ

2
λj
− κλj

)
bvφλj (τ) + Eνj

[
ebµjZjt

(
e
bvφµj

(τ)Zjt − 1
)]
,

(2.28)

davφ
dτ

= µ̄D − µ̄C − β + γσ2 (1− φ) + bvφλj (τ)>(κλ ∗ λ̄) (2.29)

with boundary conditions bφλj (0) = aφ(0) = 0.

It follows from (2.25) and Corollary 2.9 that the price-dividend ratio on the value sector is

Gv(µt, λt) =

∫ ∞
0

exp
(
avφ(τ) + bvφµ(τ)>µt + bvφλ(τ)>λt

)
dτ. (2.30)

The dynamics of this price-dividend ratio are given by the following:

Corollary 2.10. The price-dividend ratio for the value claim Gv(µt, λt) is increasing in

µ1t, decreasing in µ2t, and decreasing in the probability of a rare event λjt, for j = 1, 2.

Though the dividends on the value sector are not exposed to positive jumps, the value sector

still depends on µ2t and therefore on λ2t because of the effect of µ2t on the riskfree rate.

Risk premia

Risk premia on the value claim can be derived similarly to those on the aggregate market.

As we will see, however, they behave quite differently.13

Corollary 2.11. The value sector premium relative to the risk-free rate r is

rvt − rt = φγσ2 −
∑
j

λjtEνj

[(
ebµjZjt − 1

) Jj(Gvt )
Gvt

]
−
∑
j

λjt
1

Gvt

∂Gv

∂λj
bλjσ

2
λj (2.31)

The three terms in (2.31) have an analogous interpretation to those for the market premium,

and can also be signed.

13The proofs of these results are directly analogous to those for the market, and therefore we do not repeat
them.
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Corollary 2.12. 1. The static disaster premium for the value sector is positive.

2. The static boom premium for the value sector is negative.

3. The λ1-premium on the value sector is positive.

4. The λ2-premium on the value sector is negative.

Finally, the following corollary characterizes the observed expected return in a sample with-

out jumps

Corollary 2.13. The observed expected excess return on the value sector in a sample with-

out jumps is

rvnj,t − rt = φγσ2 −
∑
j

λjtEν1

[
ebµjZjt

J (Gvt )

Gvt

]
−
∑
j

λjt
1

Gvt

∂Gv

∂λj
bλjσ

2
λj (2.32)

Both the terms corresponding to disaster and boom risk in this expression are positive. As

in the case of the aggregate market, the sign of the disaster component is the same as in

the risk premium, while the sign of the boom component is reversed.

Corollary 2.14. In a sample without jumps, the observed disaster and boom premiums for

the value sector are positive.

The corollaries in this section state that the premiums related to disaster risk (the static

disaster premium and the λ1-premium) are positive for the value sector, just as they are

for the aggregate market. The premiums related to boom risk (the static boom premium

and the λ2-premium) are negative for the value sector, though they are positive for the

aggregate market. In population, the expected returns on the value sector will therefore

be lower than those on the aggregate market. In a sample without jumps, however, this

effect may be (and, for reasonable parameter values, will be) reversed. The reason is that

the static boom premium switches signs: in a sample without booms, it is negative for the

aggregate market, but positive for the value sector. This will produce an observed value

premium.
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2.3. Quantitative results

2.3.1. Calibration

Data

To calibrate the rare events, we use international consumption data described in detail in

Barro and Ursua (2008), and updated by Barro and Ursua to include data on 43 countries.

These data contain annual observations on real, per capita consumption; start dates vary

from early in the 19th century to the middle of the 20th century.

Our aggregate market data come from CRSP. We define the market return to be the gross

return on the value-weighted CRSP index. Dividend growth is computed from the divi-

dends on this index. The price-dividend ratio is price divided by the previous 12 months

of dividends to remove the effect of seasonality in dividend payments (in computing this

dividend stream, we assume that dividends on the market are not reinvested). We compute

market returns and dividend growth in real terms by adjusting for inflation using changes

in the consumer price index (also available from CRSP). For the government bill rate, we

use real returns on the 3-month Treasury Bill. We also use real, per capital expenditures

on non-durables and services for the U.S., available from the Bureau of Economic Analysis.

These data are annual, begin in 1947, and end in 2010. Focusing on post-war data allows

for a clean comparison between U.S. data and hypothetical samples in which no rare events

take place.

Data on value and growth portfolio are from Ken French’s website. CRSP stocks are sorted

annually into deciles based on their book-to-market ratios. Our growth claim is an extreme

example of a growth stock; it is purely a claim to positive extreme events and nothing else.

In the data, it is more likely that growth stocks are a combination of this claim and the

value claim. To avoid modeling complicated share dynamics, we identify the growth claim

with the decile that has the lowest book-to-market ratio, while the value claim consists of a
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portfolio (with weights defined by market equity) of the remaining nine deciles. A standard

definition of the value spread is the log book-to-market ratio of the value portfolio minus the

log book-to-market ratio of the growth portfolio (Cohen et al. (2003)). In our endowment

economy, book value can be thought of as the dividend. However, the dividend on the

growth claim is identically equal to zero (though of course this claim has future non-zero

dividends), and for this reason, there is no direct analogue of the value spread. We therefore

compute the value spread in the model as the log dividend-price ratio on the value portfolio

minus the log dividend-price ratio on the aggregate market. For comparability, we compute

the same quantity in the data. Where our non-standard definition might be an issue is our

predictability results; we have checked that these results are robust to the more standard

data definition.

Parameter values

We report parameter values in Table 2.1. Average consumption growth and the volatility

of consumption growth equal their post-war averages over a set of developed countries as

in Barro (2006). These are both about 2%. We calibrate dividend growth to be slightly

higher: 3.55%. Given the construction of CRSP dividends, there no reason to assume that

dividends and consumption should grow at the same rate. Indeed, CRSP dividends do not

include repurchases; presumably these imply that dividends are likely to be higher some

time in the future, and that the sample mean is not a good indicator of the true mean. For

this reason, we choose the mean of the dividend growth distribution that is implied by the

level of the price-dividend ratio in the data.

Leverage, φ, is chosen to be 3.5. This implies that the volatility of log dividends is 3.5 times

that of log consumption. In our data, the ratio is 4.66. However, this value would most

likely imply too great a response of dividends to consumption disasters; we therefore choose

a smaller and more conservative value. We choose a low rate of time preference to obtain

a realistic government bill rate.14 Relative risk aversion is equal to 3.

14Further lowering this value leads there to be no solution to the investor’s optimization problem.
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The average probability of a disaster is chosen to be 2.86%, which is the value calibrated by

Barro and Ursua (2008) for OECD countries.15 The persistence in the price-dividend ratio

is nearly entirely determined by the persistence in the disaster probability. We therefore

choose a low rate of mean reversion: κλ1 = 0.11. With this choice, the median small-sample

value of the persistence of the price-dividend ratio is 0.78; the value in the data is 0.92.

This suggests the possibility of lowering κλ1 still further (which would increase the effect

of disaster risk on the equity premium and volatility); however, insisting that the model

fit the very large degree of persistence in the data greatly widens the parameter range at

which the value function fails to exist. The volatility σλ1 is chosen to be 9.4%, which leads

to a realistic volatility for the aggregate market.

The disaster distribution, and the mean reversion in the disaster component of the expected

consumption growth (κµ1) are chosen to fit the distribution of consumption declines, re-

ported in Table 2.2 and the left panels Figures 2.1 and 2.2. These results suggest that the

consumption growth reverts to its normal level relatively quickly, suggesting a high value for

κµ1 (we choose 1.0). To calculate the size of the jumps, we assume a power law distribution

(see Gabaix (2009) for a discussion of the properties of power law distributions). Following

Barro and Ursua (2008), we consider 10% as the smallest magnitude of the disaster. Our

calibration procedure suggests a power law parameter of 7 (the lower this parameter, the

heavier the tail of the power law). Barro and Jin (2011) find similar results using maxi-

mum likelihood.16 Table 2.2 also reports the distribution of declines in a model in which

all the decline takes place immediately. This model fits the data less well, substantially

over-predicting the number of large declines at the one-year horizon.

We follow a similar strategy for booms (data for large positive consumption events are

reported in Table 2.3 and the right panels of Figures 2.1 and 2.2). Parameter values for the

15We calibrate the size of the disasters to the full set of samples and the average probability to the OECD
subsample. In both cases, we are choosing the more conservative measure, because the OECD sub-sample
has rarer, but more severe disasters.

16Barro and Jin (2011) estimate that the power law parameter is 6.86%. They also argue that the
distribution is better characterized by a double power law, with a lower exponent for larger disasters. In
this sense our choice of a single power with a coefficient of 7 is conservative.
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λ2t process are chosen to fit the mean, volatility, and mean reversion in the value spread as

reported in Table 2.7. Booms in the data do not seem to be as heavy-tailed as disasters, but

they die out somewhat more slowly. We choose a minimum value of 5%, a mean reversion

coefficient of 0.60, and a power law parameter of 20. Our results are not sensitive to the

precise choices of these parameter values.

2.3.2. Prices and expected returns as functions of the state variables

Prices

Figures 2.3 and 2.4 show terms in the expressions for the price-dividend ratio on the market

(2.19) and the corresponding quantity for the value claim (2.30). These expressions are an

integral of exponential-linear terms. Each of these terms can be interpreted as the ratio

of the price of a zero-coupon equity claim to the current dividend. The integral is over τ ,

which can be interpreted as the maturity of these claims. Figure 2.3 shows the functions

bφµj (τ) and bvφµj (τ) as a function of τ , and Figure 2.4 does the same for the functions bφλj (τ)

and bvφλj (τ). The persistence of the state variables, combined with the effect of the duration

of the claims implies that the magnitude of these functions is increasing in τ , as the figures

show.

We first discuss the effect of variation in the mean of consumption on the price-dividend

ratios. It is useful to discuss this first, because the effect of µ on the price is ultimately

what determines the effect of λ. Note that both bφµ1(τ) and bφµ2(τ) are positive, reflecting

the fact that the market is exposed to both positive and negative jumps in dividend growth.

Greater average dividend growth, whether it arises from the absence of a disaster or the

presence of a boom, increases the price-dividend ratio. Both terms converge to their limits

in a relatively short time, reflecting the fact that neither booms nor disasters are highly

persistent in the model. The fact that bφµ2(τ) takes longer to converge reflects the greater

persistence of booms than disasters, as does the fact that bφµ2(τ) is larger in magnitude

that bφµ1(τ) (because in fact the distribution of immediate responses is larger for disasters
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than for booms).

The response of the value claim to disasters, reflected in bvφµ1
(τ) is nearly the same as that

of the market as a whole. However, the response to booms is quite different. The reason,

of course, is that the cash flows on the value claim are not exposed to booms. Indeed, the

price of the value claim is decreasing in µ2t because of the effect of µ2t in interest rates. As

explained above, the price response to µjt is determined by the tradeoff between the cash

flow effect and the interest rate effect. Because φ > 1, the cash-flow effect dominates for

both types of shocks for the aggregate market. For the value claim, the cash-flow effect

dominates for µ1t. However, there is no cash flow effect for µ2t on the value claim (this

can be seen by comparing Equation 2.26 with 2.27; the first of these terms has a φ while

the second does not). Thus the riskfree rate effect implies than an increase in expected

consumption growth arising from booms decreases the price of the value claim.

Figure 2.4 shows the functions bφλj (τ) (which multiply λjt in the expression for the market

price-dividend ratio) and bvφλj(τ) (which multiply λjt in the expression for the price-dividend

ratio on the value claim). bφλ1(τ) and bvφλ1
(τ) are negative, implying that an increase in the

probability of a disaster lowers prices. These coefficients are similar, though slightly greater

in magnitude for the market portfolio because of the greater duration of this claim.

Note first that bφλ2(τ) is positive, implying that an increase in the probability of a boom

increases the value of the market. The magnitude of this effect is about half the size of

that of disasters. The reason is that there is asymmetry in the value function regarding

booms and disasters. Consider the last term in (2.17): Eνj

[
ebµjZjt

(
e
bφµj (τ)Zjt − 1

)]
. The

magnitude of this function is determined in large part by this relatively simple expression.

For booms, the term bµjZjt is negative, implying that the immediate effect of a positive

jump on prices, given by e
bφµj (τ)Zjt − 1, is scaled down.17 For disasters, however, bµjZjt is

positive, implying that the effect of a negative jump is scaled up. Finally, an increase in

17The expression e
bφµj

(τ)Zjt −1 gives the percent change in the price of zero-coupon equity with maturity
τ .
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the probability of a boom decreases the price of the value claim, because of the riskfree rate

effect described above.

Risk premia

Figures 2.5–2.10 decompose risk premia into the compensation for the various sources of

risk in the economy. These results are useful for understanding the simulation results that

follow. Figure 2.5 shows the equity premium (left panel) and the risk premium on the value

claim (right panel) as a function of the probability of a disaster. The risk premium (defined

in Section 2.2.3) represents the expected instantaneous return on the asset less the riskfree

rate.

In both panels, the solid line shows the full risk premium. This can be decomposed into

the static rare event premium and the λ-premium (the compensation for time-varying risk

of rare events). The static rare event premium is shown by the dashed line. The static

rare event premium can itself be decomposed into the static boom premium and the static

disaster premium. The static disaster premium is shown by the dashed-dotted line. Finally,

there is the premium for risk in consumption in normal times, as would obtain in the

CCAPM (dashed line).

As Figure 2.5 shows, the CCAPM premium is negligible, not surprisingly, given the low value

of risk aversion. Both the static rare event premium and the full premium are increasing

in the probability of a disaster. While the static rare event premium is substantial, the full

premium is more than twice as large, indicating that the risk of time-varying rare event

risk is important. For the market portfolio, the static disaster premium lies below the rare

event premium, indicating that the static boom premium is positive; however for the value

claim it is negative. In both cases, it is small in comparison with the other components (at

least when the probability of a boom is fixed at its mean). The static boom premium arises

from the co-movement of marginal utility and prices during rare events. Holding all else

equal, marginal utility changes less in response to a boom than to a disaster.
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Figure 2.6 shows the total λ-premium and the disaster component, the λ1-premium. As this

figure shows, nearly the entire λ-premium is accounted for by disaster risk. The λ2-premium

is negligible. Why this difference? Recall that the λ1-premium is given by

−bλ1︸ ︷︷ ︸
price of risk

× 1

G

∂G

∂λ1
σ2
λ1λ1t︸ ︷︷ ︸

risk loading

.

An analogous expression holds for the λ2-premium. From evaluating the terms in this

expression, we see that two forces contributing to make the compensation for time-varying

disasters much greater than for booms. First, the price of risk for time-varying disasters is

much larger in magnitude; bλ1 is 11.7, while bλ2 is -3.9. Second, changes in the probability

of disaster have a much greater effect on the price-dividend ratio than do changes in the

probability of a boom (that is, ∂G/∂λ1 is about twice the magnitude of ∂G/∂λ2).

Figures 2.7 and 2.8 repeat Figures 2.5 and 2.6, except that risk premia are shown as functions

of the probability of a boom. The main conclusion from these figures is the same; except

when the probability of a boom is very high, the booms have little contribution to risk

premiums.

It is tempting to conclude from this analysis that the presence of booms will have little

impact on the cross-section of asset returns. However, while booms have a relatively small

impact on true risk premia, their impact on observed risk premia can be large. Whether the

sample contains jumps or not makes little difference for disasters, as comparing Figure 2.5

with Figure 2.9 shows. However, for booms, the difference is substantial. Because the λ2-

premium is the same (for a given value of the state variables) regardless of whether booms

take place or not, the entire difference must arise from the static boom premium. As shown

in Sections 2.2.3 and 2.2.4, the static boom premium switches sign, depending on whether

booms are observed are not: In population, the boom premium is positive. However, this

value is more than entirely due to the realized return should a boom take place. In normal

times, the investors receive a lower-than-average return. Figure 2.10 shows that, for the
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market, the premium for booms lowers the equity premium by 1% (per annum) when the

probability is at its average value, and possibly much more as the probability of a boom

increases. Because the value claim is only exposed to boom risk through the effect on

discount rates, the effect is much smaller and in the opposite direction.

2.3.3. Simulation results

In what follows, we consider the population and small-sample properties of the model. Both

require a stationary distribution for the rare event probabilities. We show this stationary

distribution in Figure 2.11. The solid line shows the probability density function for the

disaster probability λ1, while the dashed line shows the probability density function for

the boom probability λ2. The mean of the disaster probability is greater, as can be seen

from the fact that the solid line lies above the dotted line for most of the relevant range.

However, the boom probability is more skewed; the chance of unusually high values of the

probability is greater for booms than for disasters. This can be seen from the fact that, for

the tail of the distribution, the dashed line lies above the solid line.18

To evaluate the quantitative succes of the model, we simulate monthly data for 600,000

years, and also simulate 10,000 60-year samples. For each sample, we initialize the λjt

processes using a draw from the stationary distribution. In the tables, we report population

values for each statistic, percentile values from the small-sample simulations, and percentile

value for the subset of small-sample simulations that do not contain jumps. It is this subset

of simulations that is the most interesting comparison for postwar data.

The aggregate market

Table 2.4 reports moments of log growth rates of consumption and dividends. There is

little skewness or kurtosis in postwar annual consumption data.19 Postwar dividend growth

18As Cox et al. (1985) discuss, the stationary distribution for λjt is Gamma with shape parameter
2κj λ̄j/σ

2
λj

and scale parameter σ2
λj
/(2κj). This characterization simplifies drawing from the stationary

distribution.
19In the definition of kurtosis that we use, three is the value for the normal distribution.
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exhibits somewhat more skewness and kurtosis. The simulated paths of consumption and

dividends for the no-jump samples are, by definition, normal, and the results reflect this.

However, the full set of simulations does show significant non-normality; the median kurtosis

is seven for consumption and dividend growth. Kurtosis exhibits a substantial small-sample

bias. The last column of the table reports the population value of this measure, which is

37.

Table 2.5 reports simulation results for the aggregate market. The model is capable of

explaining most of the equity premium: the median value among the simulations with no

disaster risk is 4.8%; in the data it is 7.2%. Moreover, the data value is below the 95th

percentile of the values drawn from the model indicating the data value is not high enough

to reject the model at the 10% level.

Several other recent papers note that the equity premium can be explained by allowing for

consumption disasters. However, this paper departs from most of the literature in that the

disasters are to expected rather than realized consumption growth. Our results thus speak

to a debate concerning whether properly accounting for the smoothness of consumption

growth, and the multiperiod nature of disasters, greatly reduces their effect. Barro (2006)

calibrates the disaster sizes using a peak-to-trough measure of disasters. In the data, these

disasters typically unfold over several years. Barro’s model, and that used by a number of

subsequent papers treats the disasters as occurring instantaneously. Constantinides (2008)

and Julliard and Ghosh (2012) show that if instead the annual declines in consumption are

used, the disasters explain only a small portion of the equity premium. In effect, converting

the disasters to annual from multiperiod increases their frequency, but greatly reduces their

size. Further increasing the frequency to monthly and beyond further reduces the effect.

This debate recalls earlier concerns raised in response to the rare disaster model of Rietz

(1988) (see Mehra and Prescott (1988)).

To understand this debate, it is necessary to distinguish between two different ways of con-

fronting the problem of the different frequency of consumption and returns. One response
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is to model both the consumption data and the returns as occurring at the same frequency.

Indeed, Barro (2006) notes that changing the frequency at which returns are measured has

very little effect on the model’s ability to explain the equity premium. That is, if one’s goal

is to explain long-horizon returns using long-horizon consumption growth, the disaster risk

model is successful.20 There are some drawbacks, however. Most of the literature focuses

on the equity premium that is observable at short horizons. More importantly, explaining

long-horizon returns in this way implicitly assumes a decision interval for agents that spans

several years. This is not realistic.

A second response is to explicitly model the consumption declines as taking place over

several periods, while allowing a realistically short decision interval. If one assumes that

consumption growth is iid, but that there are more, smaller, disasters, then certainly it is

difficult to explain the equity premium as noted above. If one considers these consumption

declines as happening together, a power utility model with leverage below risk aversion

would actually have greater difficulty in explaining the equity premium than in the iid case,

because prices rise when further consumption declines become more likely. Equity thereby

becomes a disaster hedge.21

How can one reconcile the fact that the model can explain multi-year returns (assuming

a buy-and-hold investor) but not single-year returns (assuming an investor who can trade

at realistic intervals)? Moreover, it seems odd, intuitively, that agents would not somehow

take into account that disaster-years occur together. In fact, this result is a knife-edge

property of power utility. Moving beyond power utility, even slightly (as in this paper; risk

aversion and the EIS are not very different) implies that the agent takes more than just the

instantaneous innovation to consumption growth into account when pricing assets. Indeed

as Hansen (2012) notes, the recursive utility investor takes the long run into account when

20Constantinides (2008) discusses this precise issue. However, in his equation that addresses the long-
horizon return and consumption growth problem, he does not take into account the fact that reducing
the frequency raises the probability of disasters; for example, going from one to three years increases the
probability of a disaster by a factor of three.

21This point is made in various contexts by Gourio (2008), Nakamura et al. (2011) and Wachter (2012).
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pricing assets, similarly to the power utility investor with a long decision interval. Thus by

making consumption smooth and allowing disasters to unfold slowly, we offer a plausible

description of consumption dynamics that confronts the problem raised by Constantinides

(2008) and others, but we can still explain a substantial fraction of the equity premium.

Before moving on to the cross-section, we note two limitations to the model’s fit to the

data. First, the government bond yield in the model is higher than in the data (2.9%

vs. 1.25%). This fit could be improved by allowing a fraction of the disaster to hit con-

sumption immediately (or a larger fraction than in the present calibration to hit within the

first three months). In fact, results reported in Table 2.2 suggest that this might better fit

the behavior of disasters in the data, and, provided that the fraction of the disaster that hits

instantaneously would be relatively small, would not raise concerns regarding the discussion

of consumption smoothness above. This effect would be straightforward to implement in the

model, but would substantially complicate the notation and exposition without changing

any of the underlying economics. We should also note that Treasury bill returns may in part

reflect liquidity at the very short end of the yield curve (Longstaff (2000)); the model does

a better job of explaining the return on the one-year bond.22 Second, while the model can

account for a substantial fraction of the volatility of the price-dividend ratio (the volatility

puzzle, reviewed in Campbell (2003)), it cannot explain all of it, at least if we take the

view that the postwar series in a sample without rare events. This is a drawback that the

model shares with other models attempting to explain aggregate prices using time-varying

moments (see the discussion in Bansal et al. (2012) and Beeler and Campbell (2012)) but

parsimoniously-modeled preferences. It arises from strong general equilibrium effects: time-

varying moments imply cash flow, riskfree rate, and risk premium effects, and one of these

generally acts as an offset to the other two, limiting the effect time-varying moments have

on prices. One possible response is that some behavior of the prices (i.e. the “bubble” in

the late 1990s) may be beyond the reach of this type of model. Certainly this is a fruitful

22The model predicts a near-zero volatility for returns on this bill in samples without disasters. This is
not a limitation, since the volatility in returns in the data is due to inflation, which is not captured in the
model.
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area for further research.

Unconditional moments of value and growth portfolios

Table 2.6 reports cross-sectional moments. Recall that the data moments are constructed

using the growth portfolio as the top decile formed by sorting on book-to-market and the

value portfolio as the remaining nine deciles. The resulting difference between the value

and the growth portfolio is 1.34%. In samples without jumps, the model easily accounts

for this difference; the median value is in fact 2.16%. The higher expected return does

not come about because of an increase in volatility: the standard deviation of returns on

the value portfolio in the model is in fact far lower than the standard deviation of growth

returns. Moreover, the model correctly captures the relative Sharpe ratios of value and

growth, as well as the Sharpe ratio on the value-minus-growth strategy. In population, the

value premium is negative because growth stocks are in fact more risky than value in the

model. However, this population number is not necessarily relevant for calibration in a rare

events model; among the full set of simulated paths, the 95 percent critical value of the value

premium is 3.35%, far above what is measured in the data. If the value premium does not

represent a return for risk, what in the model makes it arise? As explained in Sections 2.2.4

and 2.3.2, it is because investors are willing to accept a lower return on growth in most

periods, in return for an occasional very high payout.23

While we have chosen to match the data for the top growth portfolio and the remaining

nine value deciles, our results can explain much of the more traditional value premium

when value is the top decile and growth is the bottom decile. The 95% critical value in

our no-jump simulations is 4%, close to the 6% observed in the data. A realistic extension

of the model might involve value stocks having greater declines in disasters than growth

stocks. This would of course increase the value premium. In most models, it would also,

counterfactually, lead value stocks to have higher betas and higher volatilities than growth

23A value premium can also be observed in many, but not all developed economies, as reported by Fama
and French (1992). Over their relatively short sample period, as in the U.S., these countries do not appear
to have experienced large booms.

85



stocks. In the present model this need not be the case, as the main mechanism of the model

counteracts this effect.

The focus of this manuscript is not so much on the raw expected returns but on the alphas

and betas for value and growth stocks. As Table 2.6 shows, the model exhibits negative

alphas for the growth portfolio and positive alphas for the value portfolio. Moreover, the

beta on the value portfolio is below one, and the beta on the growth portfolio is above

one, just as in the data. Indeed, the result is more extreme than in the data, reflecting the

highly convex nature of growth returns in our model. Interestingly, the pattern for alphas

and betas does not just characterize the median sample in the no-jump simulations, it also

characterizes the median sample in the full set of simulations, as well as in population. Thus,

unlike previous models of the value premium, our model is able to explain the patterns in

betas on growth and value in the data. It does so in a way that is consistent with the

patterns in expected returns.

The discussion of prices and risk premia in Sections 2.3.2 and 2.3.2 is useful in understanding

why the betas on growth stocks are above one, and why the alphas are negative. First note

that growth stocks are quite volatile because they account for the entire market’s loading

on the risk of booms. In the model, growth represents a highly levered claim on the

innovations of the economy. Risk premia, on the other hand, arise almost entirely from

disasters. They arise both from the co-movement of marginal utility and asset prices during

disasters themselves, and from the covariance of asset prices with the risk of disasters during

normal times. There is a large endogenous asymmetry between the effects of disasters and

booms, stemming from the fact that the investor’s marginal utility is relatively insensitive

to positive events. Thus growth stocks have high volatility, but not the kind of volatility

that leads to risk premia.
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Return predictability

In a recent survey, Cochrane (2011) notes that time-varying risk premia are a common

feature across asset classes. However, variables that predict excess returns in one asset

class often fail in another, suggesting that more than one economic mechanism lies behind

this common predictability.24 For example, as the tables below show, the price-dividend

ratio is a significant predictor of aggregate market returns, but fails to predict the value-

minus-growth return. On the other hand, the value spread predicts the value-minus-growth

return, but it is less successful than the price-dividend ratio at predicting the aggregate

market return.

Table 2.8 shows the results of regressing the aggregate market portfolio return on the

price-dividend ratio in the actual and simulated data. Not surprisingly given earlier work

(Wachter (2012)), the model can reproduce the data finding that the price-dividend ratio

predicts excess returns. This result arises from the fact that a high value of the disaster

probability is followed, on average, high returns, because a higher than average premium

compensates investors for taking on greater risk. As described above, a high disaster proba-

bility also pushes down the price-dividend ratio. A time-varying boom probability lowers the

effect of predictability, since in a sample without jumps, times of higher-than-average boom

probabilities signify lower-than-average returns. However, this effect is not large enough to

overturn the effect of disasters. Note that in the full set of simulations, predictability is

still present, but it is smaller. This is because more of the variance of stock returns arises

from the (more volatile) realized dividends during these periods. In population, the mag-

nitude of predictability is smaller, reflecting the well-known small-sample bias in predictive

regressions.

In the data, the market return can also be predicted by the value spread, though with

substantially smaller t-statistics and R2 values (Table 2.9). The model also captures the

24Lettau and Wachter (2011) show that if a single factor drives risk premia, then population values of
predictive coefficients should be proportional across asset classes.
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sign and the relative magnitude of this predictability; in a sample without jumps, the

median R2 is 3% at the 1-year horizon, compared with a data value of 5%. The coefficient

implies that high realizations of the value spread are associated with low future market

returns. Like the price-dividend ratio, the value spread is a function of the probability of

disaster, so the intuition above goes through in this case. The reason is that the market is

somewhat more sensitive to changes in disaster risk than the value spread (though the cash

flow effects are similar) because of its greater duration. Thus the price of the value claim

declines by less than the price of the market when the risk of a disaster rises. Of course,

the value spread is also determined by the boom probability, which has minimal effects on

the market expected return. This is why the R2 values are much lower in this case.

Table 2.10 shows that, in contrast to the market portfolio, the value-minus-growth return

cannot be predicted by the price-dividend ratio. The data coefficient is positive and in-

significant. This fact represents a challenge for models that seek to simultaneously explain

market returns and returns in the cross-section since the forces that explain time-variation

in the equity premium also lead to time-variation in the value premium (e.g. Lettau and

Wachter (2011), Santos and Veronesi (2010)); this reasoning would lead the coefficient to

be negative. The present model does, however, predict a positive coefficient. A high value

of the price-dividend ratio on the market indicates a relatively high probability of a boom.

In samples without rare events, the return on growth will be lower than the return on value

when the boom probability is high. In the population, the coefficient is negative (and quite

small); times of high λ2 precede periods of high returns on growth when jumps occur with

their proper frequency.25

One might think that the reason that the value-minus-growth return cannot be predicted

25 The median coefficient across all simulations is also positive, on account of small-sample bias. This
bias arises from the negative correlation between shocks to the price-dividend ratio and shocks to the value-
minus-growth return. Shocks to the disaster probability decrease the price-dividend ratio; both value and
growth returns fall, but growth falls by more because of its higher duration. Shocks to the boom probability
increase the price-dividend ratio; value returns fall but growth returns rise. This bias is conceptually the
same as for regressions of the market portfolio on the price-dividend ratio (see Stambaugh (1999)), but,
because the correlation is negative rather than positive, it is in the opposite direction.
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by the price-dividend ratio is that it is not very predictable. This is, however, not the case.

Table 2.11 shows that, as in the data, the value spread predicts the value-minus-growth

return with a positive sign in samples without jumps. The median R2 value at a 1-year

horizon is 9%, compared with a data value of 10%. At a 5-year horizon, the value in the

model is 34%, it is 21% in the data. The intuition is the same as for the regressions on

the price-dividend ratio. When the probability of a boom is high (but the boom does not

occur), the realized return on value is high relative to growth. The R2 values are much

higher than for the price-dividend ratio because the value spread is primarily driven by the

probability of a boom, while the price-dividend ratio is only driven by this probability to a

small extent.26

To summarize, the joint predictive properties of the price-dividend ratio and the value

spread would be quite difficult to explain with a model in which single factor drives risk

premia; they therefore constitute independent evidence of a multiple-factor structure of the

kind presented here.

2.4. Conclusion

This paper has addressed the question of how growth stocks can have both low returns and

high risk, as measured by variance and covariance with the market portfolio. It does so

within a framework that is also consistent with what we know about the aggregate market

portfolio; namely the high equity premium, high stock market volatility, and time-variation

in the equity premium. The problem can be broken into two parts: why is the expected

return on growth lower, and why is the abnormal return relative to the CAPM negative?

This latter question is important, because one does not want to increase expected return

through a counterfactual mechanism.

This paper answers the first of these questions as follows: Growth stocks have, in population,

26In population, the effect works in the opposite direction because high values of the boom probability
predict low returns on value relative to growth. The resulting R2 coefficients are very small. For the set
of all simulations, the median coefficient is again positive because of small-sample bias, as explained in
footnote 25.
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a slightly higher expected return. In finite samples, however, this return may be measured as

lower. The answer to the second question is different, because the abnormal return relative

to the CAPM appears both in population and samples characterized by a value premium.

The abnormal return result arises because risk premia are determined by two sources of

risk, each of which is priced very differently by the representative agent. Covariance during

disasters, and covariance with the changing disaster probability is assigned a high price by

the representative agent because marginal utility is low in these states. However, growth

stock returns are highly influenced by booms, and by the time-varying probability of booms.

Because marginal utility is low in boom states, the representative agent does not require

compensation for holding this risk. This two-factor structure is also successful in accounting

for the joint predictive properties of the market portfolio and of the value-minus-growth

return.

A number of extensions of the present framework are possible. In this paper, we have

specified the growth and the value claim in a stark manner. Extending our results to a

setting with richer firm dynamics would allow one to answer a broader set of questions.

Further, we have chosen a relatively simple specification for the latent variables driving the

economy. An open question is how the specification of these variables affects the observable

quantities. We leave these interesting topics to future research.
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Figure 2.1: Tails of the one-year consumption growth rate distribution
Panel A: Model

Disaster Boom
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Note: This figure shows histograms of one-year consumption growth rates. The right panel

considers growth rates above 15%. The left panel considers growth rates below -15%. The

frequency is calculated by the number of observations within a range, divided by the total

number of observations in the sample. Panel A shows results from simulated data from the

model. Panel B shows results from the data. Data are from Barro and Ursua (2008). For

the consumption booms, we exclude observations between 1944 and 1953.
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Figure 2.2: Tails of the five-year consumption growth rate distribution

Panel A: Model
Disaster Boom
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Notes: This figure shows histograms of five-year consumption growth rates. The right

panel considers growth rates above 45%. The left panel considers growth rates below -45%.

Panel A shows results from simulated data from the model. Panel B shows results from

the data. Data are from Barro and Ursua (2008). For the consumption booms, we exclude

five-year periods beginning between 1940 and 1948.
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Figure 2.3: Solution for the price-dividend ratio: Coefficients on terms in the expected
growth rate

Market Value
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Notes: The left panel shows the coefficients multiplying µ1t and µ2t in the price-dividend

ratio for the market. The right panel shows the analogous coefficients for the value claim.

The scales on the right and left for bφµ2 differ.
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Figure 2.4: Solution for the price-dividend ratio: Coefficients on the jump probabilities
Market Value
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Notes: The left panel shows the coefficients multiplying λ1t (the probability of a disaster)

and λ2t (the probability of a growth miracle) in the price-dividend ratio for the market.

The right panel shows the analogous coefficients for the value claim. The scales on the right

and the left for bφλ2(τ) differ.
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Figure 2.5: Risk premiums as functions of the probability of disaster
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Notes: The figure shows components of the equity premium (left figure) and of the risk

premium on the value claim (right figure). The solid line represents the full premium, the

dotted line the CCAPM premium, the dashed-dotted line the static disaster premium and

the dashed line the static rare event premium (namely, the static disaster premium plus the

static boom premium). Premiums are shown as a function of the disaster probability, λ1,

while the boom probability, λ2, is fixed at its mean of 2.5%. The vertical line represents

the mean of the disaster probability. Premiums are defined relative to the riskfree rate and

are in annual terms.

95



Figure 2.6: λ-premiums (compensation for changing rare event probabilities) as functions
of the probability of disaster.

Market Value
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Notes: The solid line shows the component of the equity premium (left figure) and of the

risk premium on the value claim (right figure) that compensates for the risk of changing

rare event probabilities. This term, referred to as the λ-premium, can be divided into the

compensation for disaster probabilities (λ1-premium; shown by the dashed line) and the

compensation for boom probabilities (λ2-premium). Premiums are shown as a function of

the disaster probability, λ1, while the boom probability, λ2, is fixed at its mean of 2.5%.

The vertical line represents the mean of the disaster probability. Premiums are defined

relative to the riskfree rate and are in annual terms.
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Figure 2.7: Risk premiums as functions of the probability of a boom

Market Value
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Notes: The figure shows components of the equity premium (left figure) and of the risk

premium on the claim (right figure). The solid line represents the full premium, the dotted

line the CCAPM premium, the dashed-dotted line the static boom premium and the dashed

line the static rare event premium (namely, the static disaster premium plus the static boom

premium). Premiums are shown as a function of the boom probability, λ2, while the disaster

probability, λ1, is fixed at its mean of 2.86%. The vertical line represents the mean of the

boom probability. Premiums are defined relative to the riskfree rate and are in annual

terms.
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Figure 2.8: λ-premiums (compensation for changing rare event probabilities) as a function
of the probability of a boom.
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Notes: The solid line shows the component of the equity premium (left figure) and of the

risk premium on the value claim (right figure) that compensates for the risk of changing

rare event probabilities. This term, referred to as the λ-premium, can be divided into

the compensation for disaster probabilities (λ1-premium) and the compensation for boom

probabilities (λ2-premium; shown by the dashed line). Premiums are shown as a function

of the boom probability, λ2, while the disaster probability, λ1, is fixed at its mean of 2.86%.

The vertical line represents the mean of the boom probability. Premiums are defined relative

to the riskfree rate and are in annual terms.
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Figure 2.9: Observed expected excess returns in a sample without jumps as a function of
disaster probability
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Notes: This figure shows expected realized returns in excess of the riskfree rate in a sample

without jumps. The left panel shows expected excess returns on the market, while the right

panel shows expected excess returns on the value claim. The solid line represents the full

premium, the dotted line the CCAPM premium, the dashed-dotted line the static disaster

premium (observed in a sample without jumps) and the dashed line the static rare events

premium (also observed in a sample without jumps; this is the sum of the static disaster

premium and the static boom premium). Premiums are shown as a function of the disaster

probability, λ1, while the boom probability, λ2, is fixed at its mean of 2.5%. The vertical

line represents the mean of the disaster probability. Premiums are defined relative to the

riskfree rate and are in annual terms.
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Figure 2.10: Observed expected excess returns in a sample without jumps as a function of
boom probability
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Notes: This figure shows expected realized returns in excess of the riskfree rate in a sample

without jumps. The left panel shows expected excess returns on the market, while the right

panel shows expected excess returns on the value claim. The solid line represents the full

premium, the dotted line the CCAPM premium, the dashed-dotted line the static disaster

premium (observed in a sample without jumps) and the dashed line the static rare events

premium (also observed in a sample without jumps; this is the sum of the static disaster

premium and the static boom premium). premiums are shown as a function of the boom

probability, λ2, while the disaster probability, λ1, is fixed at its mean of 2.86%. The vertical

line represents the mean of the boom probability. Premiums are defined relative to the

riskfree rate and are in annual terms.
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Figure 2.11: Stationary distributions of rare event probabilities
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Notes: The figure shows the probability density function of the disaster probability λ1 and

the boom probability λ2. The probabilities are in annual terms. The vertical solid line

shows the location of the mean of the disaster probability while the vertical dashed line

shows the location of the mean of the boom probability.
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Table 2.1: Parameter values

Panel A: Basic parameters

Average growth in consumption (normal times) µ̄C (%) 2.02

Average growth in dividend (normal times) µ̄D (%) 3.55

Volatility of consumption growth (normal times) σ (%) 2.00

Leverage φ 3.5

Rate of time preference β 0.012

Relative risk aversion γ 3.0

Panel B: Disaster parameters

Average probability of disaster λ̄1 (%) 2.86

Mean reversion in disaster probability κλ1
0.11

Volatility parameter for disasters σλ1
0.094

Mean reversion in expected consumption growth κµ1 1.00

Minimum consumption disaster (%) 10

Power law parameter for consumption disaster 7

Panel C: Boom parameters

Average probability of boom λ̄2 (%) 2.50

Mean reversion in boom probability κλ2 0.05

Volatility parameter for booms σλ2
0.070

Mean reversion in expected consumption growth κµ2 0.60

Minimum consumption boom (%) 5

Power law parameter for consumption booms 20

Notes: Parameter values for the main calibration, expressed in annual terms.
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Table 2.2: Extreme negative consumption events in the model and in the data

Panel A: 1-year rates of decline

Growth rate 5− 15 15− 25 25− 35 35− 45 > 45

Data 6.89 1.22 0.28 0.12 0.08

Model 1 2.71 0.68 0.20 0.08 0.05

Model 2 0.92 0.80 0.44 0.27 0.33

Panel B: 5-year rates of decline

Growth rate 35− 45 45− 55 55− 65 65− 75 > 75

Data 0.44 0.23 0.15 0.17 0.25

Model 1 0.65 0.41 0.27 0.17 0.25

Model 2 0.83 0.52 0.33 0.20 0.34

Notes: This table reports frequencies of rates of decline in consumption in the Barro and

Ursua (2008) data and in data simulated from the model, for periods of lengths 1 and 5 years.

Model 1 refers to the model presented in the text, with jumps in expected consumption

growth. Model 2 refers to a model with jumps of the same size in realized consumption,

but that is otherwise identical. We compute (Ct − Ct+h)/Ct, where C is consumption and

h is the relevant horizon. In both the model and in the data, growth rates are computed

using overlapping annual observations. Frequencies are calculated by taking the number of

observations within the given range divided by the total number of observations. Frequencies

are expressed in percentage terms; for example, 1.22 refers to 1.22% of the observations.
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Table 2.3: Extreme positive consumption events in the model and in the data

Panel A: 1-year growth rates

Growth rate 5− 15 15− 25 25− 35 35− 45 > 45

Data 18.14 1.11 0.16 0.08 0.02

Model 10.44 0.28 0.02 0.00 0.00

Panel B: 5-year growth rates

Growth rate 35− 45 45− 55 55− 65 65− 75 > 75

Data 2.13 0.55 0.11 0.02 0.00

Model 1.10 0.39 0.15 0.06 0.04

Notes: This table reports frequencies of growth rates in consumption in the Barro and

Ursua (2008) data and in data simulated from the model, for periods of lengths 1 and 5

years. Namely, we compute (Ct+h − Ct)/Ct, where C is consumption and h is the relevant

horizon. In both the model and in the data, growth rates are computed using overlapping

annual observations. Frequencies are calculated by taking the number of observations within

the given range divided by the total number of observations. Frequencies are expressed in

percentage terms; for example, 1.11 refers to 1.11% of the observations. For the data, we

exclude years following World War II as described in Figures 2.1 and 2.2.
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Table 2.4: Log consumption and dividend growth moments

Panel A: Consumption growth

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.95 1.59 2.00 2.44 −0.10 1.78 3.15 1.70

standard deviation 1.45 1.69 1.99 2.28 1.94 3.32 6.96 4.19

skewness −0.37 −0.49 0.01 0.48 −3.81 −0.91 1.42 −3.30

kurtosis 3.22 2.17 2.81 3.96 2.62 6.96 21.71 36.57

Panel B: Dividend growth

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.67 1.85 3.30 4.83 −4.04 2.54 7.32 2.25

standard deviation 6.46 5.93 6.97 7.99 6.79 11.63 24.37 14.67

skewness 0.10 −0.49 0.01 0.48 −3.81 −0.91 1.42 −3.30

kurtosis 4.66 2.17 2.81 3.96 2.62 6.96 21.71 36.57

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating data from the model at a monthly frequency for

600,000 years and then aggregating monthly growth rates to an annual frequency. We also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

jumps occur.
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Table 2.5: Aggregate market moments

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.25 2.67 2.93 3.06 0.90 2.70 3.97 2.60

σ(Rb) 2.75 0.10 0.22 0.43 0.24 2.40 5.76 3.28

E[Rm −Rb] 7.25 2.57 4.83 7.36 2.11 5.48 11.37 5.95

σ(Rm) 17.8 11.1 15.1 21.7 13.5 21.3 37.6 25.6

Sharpe ratio 0.41 0.19 0.32 0.45 0.10 0.26 0.41 0.23

exp(E[p− d]) 32.5 26.6 32.1 35.9 21.3 31.0 40.9 30.5

σ(p− d) 0.43 0.09 0.18 0.32 0.13 0.28 0.54 0.39

AR1(p− d) 0.92 0.55 0.78 0.90 0.55 0.79 0.92 0.87

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating monthly data from the model for 600,000 years

and then aggregating to an annual frequency. We also simulate 10,000 60-year samples

and report the 5th-, 50th- and 95th-percentile for each statistic both from the full set

of simulations and for the subset of samples for which no jumps occur. Rb denotes the

government bond return, Rm denotes the return on the aggregate market and p−d denotes

the log price-dividend ratio.
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Table 2.6: Cross-sectional moments

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rv −Rb] 7.95 3.18 5.36 7.90 1.67 4.57 7.73 4.59

E[Rg −Rb] 6.62 0.34 3.32 7.07 0.43 7.54 25.94 9.67

E[Rv −Rg] 1.34 -0.36 2.16 3.90 -21.58 -2.70 3.35 -5.07

σ(Rv) 17.0 10.4 14.0 19.9 11.8 17.9 26.3 18.8

σ(Rg) 21.0 18.2 25.5 37.0 23.1 42.8 120.1 66.9

σ(Rv −Rg) 11.7 12.6 18.4 26.2 15.2 36.3 120.3 64.0

Sharpe ratio, value 0.48 0.25 0.38 0.53 0.09 0.27 0.44 0.24

Sharpe ratio, growth 0.32 0.02 0.13 0.23 0.02 0.17 0.30 0.14

Sharpe ratio, value-growth 0.11 -0.01 0.12 0.27 -0.22 -0.07 0.20 -0.08

alpha, value 1.26 0.77 1.25 2.38 0.15 1.30 6.05 1.57

alpha, growth -1.26 -6.97 -4.91 -3.03 -13.68 -3.93 0.70 -2.97

alpha, value-growth 2.53 4.01 6.16 8.86 -0.35 5.37 18.66 4.54

beta, value 0.92 0.77 0.91 0.97 0.14 0.79 0.96 0.51

beta, growth 1.09 1.18 1.44 1.73 1.21 1.63 3.34 2.12

beta, value-growth -0.16 -0.94 -0.54 -0.22 -0.35 5.37 18.66 -1.62

Note: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating monthly data from the model for 600,000 years

and then aggregating to an annual frequency. We also simulate 10,000 60-year samples

and report the 5th-, 50th- and 95th-percentile for each statistic both from the full set of

simulations and for the subset of samples for which no jumps occur. Rv denotes the gross

return on the value sector, Rg denotes the gross return on the growth sector, alpha denotes

the loading of the constant term of the CAPM regression and beta denotes the loading on

the market equity excess return of the CAPM regression. In the data, the growth portfolio

is the lowest book-to-market decile. The remaining nine deciles comprise the value portfolio.
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Table 2.7: Value spread moments

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

exp(E[log(value spread)]) 1.23 1.16 1.20 1.32 1.16 1.26 1.71 1.32

σ(log(value spread)) 0.08 0.02 0.05 0.14 0.03 0.11 0.34 0.23

Value spread autocorrelation 0.79 0.57 0.80 0.93 0.55 0.78 0.92 0.89

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating monthly data from the model for 600,000 years

and then aggregating to an annual frequency. We also simulate 10,000 60-year samples

and report the 5th-, 50th- and 95th-percentile for each statistic both from the full set of

simulations and for the subset of samples for which no jumps occur. The value spread is

defined as the log of the book-to-market ratio for the value sector minus the book-to-market

ratio for the aggregate market in the data, and as log price-dividend ratio for the aggregate

market minus the log price-dividend ratio for the value sector in the model. In the data, the

growth portfolio is the lowest book-to-market decile. The remaining nine deciles comprise

the value portfolio.
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Table 2.8: Long-horizon regressions of aggregate market returns on the price-dividend ratio

Panel A: 1-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.12 [−2.41] −0.56 −0.30 −0.16 −0.43 −0.16 0.03 −0.08

R2 0.09 0.06 0.15 0.27 0.00 0.05 0.19 0.01

Panel B: 3-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.29 [−3.37] −1.17 −0.73 −0.40 −1.00 −0.43 0.10 −0.20

R2 0.22 0.10 0.33 0.55 0.00 0.11 0.43 0.04

Panel C: 5-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.41 [−3.37] −1.54 −0.99 −0.52 −1.35 −0.63 0.16 −0.31

R2 0.27 0.11 0.42 0.69 0.00 0.16 0.55 0.05

Notes: The table reports coefficients and R2-statistics from predictive regressions of con-

tinuously compounded aggregate market returns in excess of the continuously compounded

government bill rate. The predictor variable is the log of the price-dividend ratio on the

market. Coef. refers to the coefficient on the predictor variable. Data are annual, from

1947 to 2010. For the data coefficients, we report t-statistics constructed using Newey-West

standard errors. Population moments are calculated from simulating monthly data from

the model for 600,000 years and then aggregating to an annual frequency. We also simulate

10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each statistic both

from the full set of simulations and for the subset of samples for which no jumps occur.

109



Table 2.9: Long-horizon regressions of aggregate market returns on the value spread

Panel A: 1-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.50 [−1.86] −1.55 −0.36 0.04 −1.24 −0.12 0.22 −3× 10−3

R2 0.05 0.00 0.03 0.12 0.00 0.01 0.09 7× 10−6

Panel B: 3-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −1.18 [−2.28] −3.85 −0.93 0.21 −3.15 −0.33 0.62 −5× 10−3

R2 0.12 0.00 0.07 0.29 0.00 0.03 0.22 8× 10−6

Panel C: 5-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −1.28 [−3.13] −5.53 −1.31 0.44 −4.76 −0.50 1.03 −4× 10−3

R2 0.09 0.00 0.09 0.39 0.00 0.04 0.31 4× 10−6

Notes: The table reports coefficients and R2-statistics from predictive regressions of con-

tinuously compounded aggregate market returns in excess of the continuously compounded

government bill rate. The predictor variable is the value spread, defined in the model

as the log price-dividend ratio of the aggregate market minus log price-dividend ratio of

the value sector and in the data as the log book-to-market of the value sector minus log

book-to-market of the aggregate market. Coef. refers to the coefficient on the predictor vari-

able. Data are annual, from 1947 to 2010. For the data coefficients, we report t-statistics

constructed using Newey-West standard errors. Population moments are calculated from

simulating monthly data from the model for 600,000 years and then aggregating to an an-

nual frequency. We also simulate 10,000 60-year samples and report the 5th-, 50th- and

95th-percentile for each statistic both from the full set of simulations and for the subset of

samples for which no jumps occur.
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Table 2.10: Long-horizon regressions of value-minus-growth returns on the price-dividend
ratio

Panel A: 1-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.01 [0.37] −0.04 0.14 0.48 −0.12 0.06 0.38 −5× 10−3

R2 0.00 0.00 0.02 0.11 0.00 0.01 0.09 4× 10−5

Panel B: 3-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.05 [0.51] −0.11 0.36 1.10 −0.32 0.16 0.96 −1× 10−2

R2 0.01 0.00 0.06 0.27 0.00 0.03 0.21 1× 10−4

Panel C: 5-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.09 [0.76] −0.14 0.53 1.62 −0.50 0.26 1.40 −2× 10−2

R2 0.02 0.00 0.09 0.38 0.00 0.04 0.30 2× 10−4

Notes: The table reports coefficients and R2-statistics from predictive regressions of con-

tinuously compounded returns on the value portfolio in excess of continuously compounded

returns on the growth portfolio. The predictor variable is the log of the price-dividend

ratio on the market. Coef. refers to the coefficient on the predictor variable. Data are an-

nual, from 1947 to 2010. For the data coefficients, we report t-statistics constructed using

Newey-West standard errors. Population moments are calculated from simulating monthly

data from the model for 600,000 years and then aggregating to an annual frequency. We

also simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

jumps occur.
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Table 2.11: Long-horizon regressions of value-minus-growth returns on the value spread

Panel A: 1-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.46 [2.52] 0.19 0.86 2.41 −0.13 0.26 1.70 −1× 10−2

R2 0.10 0.01 0.09 0.22 0.00 0.02 0.15 2× 10−4

Panel B: 3-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.13 [2.44] 0.56 2.23 5.18 −0.37 0.76 3.98 −4× 10−2

R2 0.19 0.05 0.23 0.47 0.00 0.05 0.36 4× 10−4

Panel C: 5-year horizon

No-Jump Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.48 [2.37] 1.02 3.39 6.47 −0.61 1.24 5.44 −6× 10−2

R2 0.21 0.07 0.34 0.60 0.00 0.09 0.49 6× 10−4

Notes: The table reports coefficients and R2-statistics from predictive regressions of con-

tinuously compounded returns on the value portfolio in excess of continuously compounded

returns on the growth portfolio. The predictor variable is the value spread, defined in the

model as the log price-dividend ratio of the aggregate market minus log price-dividend ratio

of the value sector and in the data as the log book-to-market of the value sector minus log

book-to-market of the aggregate market. Coef. refers to the coefficient on the predictor vari-

able. Data are annual, from 1947 to 2010. For the data coefficients, we report t-statistics

constructed using Newey-West standard errors. Population moments are calculated from

simulating monthly data from the model for 600,000 years and then aggregating to an an-

nual frequency. We also simulate 10,000 60-year samples and report the 5th-, 50th- and

95th-percentile for each statistic both from the full set of simulations and for the subset of

samples for which no jumps occur.
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CHAPTER 3 : Dynamic Asset Allocation with Learning

3.1. Introduction

Standard market models under the efficient market hypothesis are based on the premise that

financial markets are informationally efficient and thus assumed constant expected returns.

Empirical work beginning with Shiller (1984) and Summers (1986), however, shows that

stock returns are predictable. In particular, several papers including Campbell and Shiller

(1988), and Fama and French (1989) demonstrate that investors can use predictor variables

such as the dividend-price ratio to predict excess returns in the market. The advent of

empirical evidence of return predictability has significant consequences for practical issues

in portfolio choice theory, particularly for the role of learning.

Return predictability suggests that investors can use past and present data to inform their

portfolio allocations at any given time of trade. While many portfolio choice papers ac-

knowledge that investors learn from past data, few explicitly model this mechanism of

learning dynamically. Nevertheless, if investors are able to learn, they not only learn from

the past but must also account for the fact that they will continue to learn in the future

when making their portfolio decisions. Still, intuitively one might think that if the historical

data an investor observes is sufficiently long, accounting for her learning in the subsequent

periods should likely have a minimal effect on the optimal portfolio decision.

This paper shows that even after the investor observes a full sample of historical data,

accounting for learning in the future still has a large effect on her optimal portfolio decision.

In particular, I find that dynamic learning induces a large negative hedging demand that

increases with the investment horizon. Specifically, an investor with a 5-year investment

horizon should decrease the percentage of wealth she allocates to the stock index by over

20 percent even after observing 83 years of data.

This paper is most related to recent work by Brandt et al. (2005) and Skoulakis (2007).
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These papers also find that learning induces a negative hedging demand, but disagree on the

magnitude of its effect on the investor’s portfolio choice. Brandt et al. (2005) find that the

negative hedging demand completely eliminates the positive hedging demand from time-

varying investment opportunities, whereas Skoulakis (2007) finds that the negative effect

induced by learning is not strong enough to drive out the positive hedging demand. Both

of these papers, however, use relatively short sample periods. Brandt et al. (2005) choose

one short sample period from 1986 to 1995, while Skoulakis (2007) uses several twenty-year

sample periods with various starting years. Realistically, investors have access to a much

longer sample period of data. Historical data on stock market returns and dividend yields

are available from the 1920s onward. Limiting the sample period discards potentially vital

information for the investor’s portfolio choice decision, and may magnify or disguise the true

role of learning. Furthermore, returns are likely to behave differently in a particular ten-

or twenty-year sample. Using a shorter sample period may simply pick up the dynamics of

the selected ten or twenty years and misrepresent the true dynamics of the return process

to the investor.

Additionally, these two papers implement different numerical methods. Skoulakis (2007)

uses standard backward induction and employs a feedforward neural network to approximate

the value function, while Brandt et al. (2005) develop a less traditional method. The

authors first Taylor approximate the value function, then simulate the sample path and use

regression to calculate the conditional expectations in the value function. One criticism is

that this method may not be accurate when the set of state variables is of high dimension,

such that the numerical method drives the results.

To address this concern, I use Skoulakis (2007)’s numerical method to examine the effect of

learning using the same predictor variable and ten-year sample period employed by Brandt

et al. (2005). I find that learning induces a large negative hedging demand, and that the

investor’s allocation to the stock index decreases with her investment horizon. Learning

plays an important role regardless of the type of numerical method used.
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In this paper, I examine the effect of learning on an investor’s asset allocation decision

after she observes a full sample of data from 1927 to 2009. A criticism of this approach is

that historical data may contain structural breaks that may artificially magnify the role of

learning. Consequently, I construct the investor’s optimal portfolio choice using simulated

data and fix the parameters in the underlying processes to eliminate any concerns of a

structural break. I not only find that learning still has a large effect on the investor’s

portfolio choice, but also that she needs to base her initial estimation on a data sample of

more than 500 years before the effect of learning begins to diminish. Given that investors

only have 83 years of data to draw from, this result only further emphasizes the fact that

the dynamic role of learning cannot be ignored in the investors’ portfolio choice problem.

The organization of the rest of the paper is as follows. Section 2 describes the investor’s

problem and the Bayesian updating framework. Section 3 provides the main empirical

results. Section 4 addresses criticisms of the paper with extended results. Section 5 discusses

the implications for the dynamic portfolio choice literature.

3.2. Portfolio choice problem with predictable returns

This section describes the framework of the Bayesian investor’s portfolio choice problem.

The investor has an investment horizon of more than one period and is able to rebalance

her portfolio periodically.1 While returns are viewed as predictable, the investor is also has

uncertain about the true extent of the predictability of returns. Following the seminal work

by Barberis (2000) and others in this literature, the model uses a Bayesian approach to

incorporate this parameter uncertainty.

3.2.1. Dynamic asset allocation framework

I consider a simple investment opportunity set of two assets: a risk-free asset with contin-

uously compounded risk-free return rf and the stock index with continuously compounded

1The original contributions to the dynamic portfolio choice problem are Merton (1971) and Samuelson
(1969). Campbell and Viceira (2002), Brandt (2010), and Wachter (2010) provide survey of portfolio choice
literature.

115



excess return rt over period t. There are short-sale constraints on both the risk-free asset

and the stock index.

The investor observes data up to initial decision time T0, and will observe new data every

subsequent period. She has an investment horizon of T̂ periods, and can only rebalance

every L periods. Let K = T̂ /L, where K denotes the number of times she rebalances her

portfolio during the T̂ periods. Specifically, the investor’s time horizon is divided into K

intervals, [t0, t1] , · · · , [tK−1, tK ] where tk = T0 + kL for k = 0, · · · ,K − 1, and tK = T0 + T̂ .

The investor rebalances at time tk, while ωk, k = 0, · · · ,K − 1 denotes the corresponding

portfolio weight in the stock index. To make the notations simpler, I use Wk in place of

Wtk to denote the investor’s wealth at time tk.

The investor has CRRA utility and maximizes the expected utility of wealth at the terminal

date:

max
ω0,··· ,ωK−1

ET

[
W 1−γ
K

1− γ

]
,

where γ is the coefficient of relative risk aversion.

The wealth process from time tk to tk+1 is represented by:

Wk+1 = WkRp,k+1.

Rp,k+1 is the investor’s portfolio return from tk to tk+1, which can be expressed as

Rp,k+1 = (1− ωk) exp (rfL) + ωk exp
(
rfL+ rek+1

)
, (3.1)

where

rek+1 = rtk+1 + · · ·+ rtk+1

is the cumulative excess return on the stock index over the L periods from tk to tk+1.

The set of state variables at time t is denoted by S(t), which characterizes the posterior
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distribution.2 Define the derived utility of wealth as

J (Wk, S (tk) , tk) = max
ωk,··· ,ωK−1

Etk

[
W 1−γ
K

1− γ

]
.

The Bellman equation of optimality is

J (Wk, S (tk) , tk) = max
ωk

Etk [J (Wk+1, S (tk+1) , tk+1)] .

By the homotheticity of the utility function, this becomes

J (Wtk , S (tk) , tk) =
W 1−γ
tk

1− γ
V (S (tk) , tk) .

When risk aversion γ > 1, the Bellman equation can be written as

V (S (tk) , tk) = min
ωk

Etk

{
R1−γ
p,k+1 × V (S (tk+1) , tk+1)

}
, (3.2)

with terminal condition V (S (tK) , tK) = 1.

Equation (3.2) is the investor’s value function. I solve this problem using standard backward

induction. I first specify the return process and the Bayesian framework in order to compute

the expectation numerically by drawing from the posterior.

In the empirical work of this paper, I assume that the investor observes quarterly data, but

can only rebalance annually.

3.2.2. Bayesian framework – predictable returns

Similar to Barberis (2000), Brandt et al. (2005), and Skoulakis (2007), the excess returns

rt+1 are predictable by some predictor variable xt which follows an AR(1) process. Frequent

2For example, in the case of normally distributed i.i.d. returns with known variance, the historical mean
of returns is the only state variable. The state variable could potentially be of infinite dimension if the
data generating process is more complicated, and solving the investor’s problem would become infeasible.
This paper considers a data generating process based on Gaussian disturbances, therefore S(t) has finite
dimension.
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choices of xt include dividend yield, term spread, and payout yield. Following Brandt et al.

(2005), this paper uses dividend yield as the choice of predictor.3 Specifically, the data

generating process is:

rt+1 = α+ βxt + ut+1 (3.3)

xt+1 = θ + ρxt + vt+1, (3.4)

where  ut+1

vt+1

 | xt, · · · , x0, rt, · · · , r1 ∼ N (0, Σ) ,

and

Σ =

 σ2
u σuv

σuv σ2
v

 .
This data generating process can be rewritten as

Yt = ZtΘ + Et,

where

yt = [rt, xt]
> , zt = [1, xt]

> ,Θ =

 α θ

β ρ

 , εt = [ut, vt]
>

Yt = [y1, · · · , yt]> , Zt = [z0, · · · , zt−1]> , Et = [ε1, · · · , εt]> .

Parameters (Θ,Σ) are the unknown to the investor. Zellner and Chetty (1965), Klein and

Bawa (1976), Brown (1979), and Bawa et al. (1979) show that the investor should use

3A vast amount of literature has documented predictability in excess returns. Examples include Fama
and Schwert (1977), Keim and Stambaugh (1986), Hodrick (1992) Lettau and Ludvigson (2001), Lewellen
(2004), Ang and Bekaert (2007), and Boudoukh et al. (2007). This paper does not attempt to contribute
to the debate of the existence of predicability (or the choice of predictor variable), rather this paper takes
this process as given and investigates how parameter uncertainty and learning affect the investor’s portfolio
choice.
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the subjective posterior return distribution to maximize her expected utility when facing

parameter uncertainty. Kandel and Stambaugh (1996) implement this idea in a single-

period problem where the return process is given by (3.3) and (3.4) and show that the

estimation risk can significantly decrease the optimal allocation to stock. In this paper,

I also use a Bayesian approach to incorporate parameter uncertainty into a multi-period

problem. Because the investor’s posterior beliefs reflect information in the historical data

and her prior beliefs about the parameters, I first need to specify the prior and the likelihood

function. I assume the investor has standard diffuse prior beliefs about the parameters

(Θ,Σ) (Jeffreys (1961)):

p (Θ,Σ) ∝ |Σ|−
3
2 . (3.5)

Furthermore, treating the initial observation of the regressor x0 as non-stochastic,4 the

likelihood function of data up to time t is given by

p (Dt | Θ,Σ, x0) = (2π |Σ|)−
T
2 exp

{
−1

2
tr
[
(Yt − ZtΘ)> (Yt − ZtΘ) Σ−1

]}
. (3.6)

Combining (3.5) and (3.6) yields the posterior beliefs about the parameters:

p (Θ,Σ) ∝ |Σ|−
T+3

2 exp

{
−1

2
tr
[
(Yt − ZtΘ)> (Yt − ZtΘ) Σ−1

]}
p(Σ−1|D) ∼Wishart

(
T − 3, S−1

)
(3.7)

p(vec (Θ) |Σ, D) ∼ N
(

vec
(

Θ̂
)
, Σ⊗

(
Z ′Z

)−1
)
, (3.8)

where Θ̂ =
(
Z>Z

)−1
Z>Y and S =

(
Y − ZΘ̂

)> (
Y − ZΘ̂

)
.

The matrices Z>Z, Z>Y , and Y >Y characterize the posterior distribution. Skoulakis (2007)

shows that these matrices, and thus the posterior distribution, can be identified using eight

4Following Stambaugh (1999), I also consider the case where x0 is treated as stochastic (exact likelihood).
See Appendix A.3.3 for details.
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state variables, S = (s1, · · · , s8), where s8 is the current dividend yield.5

With these state variables and their laws of motion, one can evaluate the expectation Etk [·]

in the Bellman equation (3.2) with the following steps:

1. Given state variables S (tk), construct matrices Z>Z, Z>Y , and Y >Y .

2. With these matrices, draw a large number (I) of Σ and Θ using (3.7) and (3.8) to

obtain (Σ,Θ)i, i = 1, · · · , I.

3. Using each (Σ,Θ)i, simulate return and predictor data for the next L periods and

obtain (rtj+1, rtj+2, · · · , rtj+1)i and (xtj+1, xtj+2, · · · , xtj+1)i for i = 1, · · · , I.

4. With each simulated data, obtain an updated state Si (tk+1) and portfolio return Rp

using (3.1).

5. Then Etk

{
R1−γ
p,k+1 × V (S (tk+1) , tk+1)

}
= 1

I

∑I
i=1R

(i)1−γ
p,k+1 × V

(
S(i) (tk+1) , tk+1

)
.

I solve the investor’s portfolio choice problem numerically using backward induction.6 At

each point in time, I discretize each state space into n grids for a total of n8 grid points. At

each grid point Sj(t), j = 1, · · · , n8, I calculate the posterior distribution of the parameters

and use them to simulate a large number of return and dividend yield series. Finally,

I obtain an updated state with each simulated path. Starting from the last rebalancing

time tK−1, we know that V
(
S(i) (tK) , tK

)
= 1. Thus from Equation (3.2), we know that

V (Sj (tK−1) , tK−1) = min
ωk

1
I

∑I
i=1R

(i)1−γ
p,K × 1. Following Barberis (2000), I evaluate the

right hand side at ω = [0, 1, · · · , 99] to find the optimal portion of wealth that should be

invested in the stock index ωK−1 and the value V (Sj(tK−1), tK−1).

5Appendix A.3.2 provides the complete derivation of the state variables and their laws of motion.
6Schroder and Skiadas (1999), Wachter (2002), Kim and Omberg (1996) and Liu (2007) obtain closed-

form solutions under certain assumptions about the parameters. Campbell and Viceira (1999) derive an
approximate analytical solution to a consumption-saving problem with infinitely-lived investors. Brennan
et al. (1997), Kogan and Uppal (2001), Das and Sundaram (2002), and Brandt et al. (2005) incorporate
other features into the dynamic portfolio choice problem and use different numerical and approximation
methods to solve it. This paper solves the dynamic problem by discretizing the state space. Balduzzi and
Lynch (1999), Brandt (1999), Barberis (2000), Dammon et al. (2001), and Skoulakis (2007) use a similar
method.
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I repeat this procedure at each grid point and solve backward. From period tK−2, we need

to approximate the value function numerically. If the S(i)(tK−1) obtained from simulation

does not fall on a grid point, one need an approximation for V
(
Si (tK−1) , tK−1

)
. In this

paper, I use the Feedforward Neural Network introduced by Skoulakis (2007) to approximate

the value function numerically.7 The advantage of this method is that it requires fewer grid

points for each state. In particular, for the results in this paper, I discretize each state into

two grid points and solve the problem multiple times to check for accuracy.

3.2.3. Data

I use quarterly data on stock index returns and dividend yield from January 1927 to

December 2009. The stock index is the value-weighted index of stocks traded on the

NYSE/AMEX/NASDAQ, from The Center for Research in Security Prices (CRSP). Three-

month Treasury Bill returns are provided by Ibbotson and Associates and are available on

Kenneth French’s website. Log excess return is defined by rt = rmt −rbt , where rm = log(Rm)

is the log market return and rb = log(Rb) is the log Treasury Bill return. Dividend yield in

month t is constructed by dividing the total dividends paid during months t− 11 through

t by the value of the index at the end of month t. Dividend yield in month t − 1 is used

to predict the return of the quarter spanning from month t to t + 2. Following Barberis

(2000), I set the continuously compounded risk-free return at 0.0108 per quarter (0.0036

per month), which corresponds to an annual risk-free rate of 4.4%.

3.3. Empirical results

In order to study the effect of learning on portfolio choice, this section considers two different

problems. The first one is the same problem studied in Barberis (2000), where the investor

acknowledges the parameter uncertainty but does not learn when new data are realized. In

this case, the variation in the investment opportunity set induces a positive hedging demand.

In the second case, the investor optimally learns about the return-generating process, this

7See Appendix A.3.1 for more detail.
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learning induces a large negative hedging demand.

3.3.1. Parameter uncertainty with no learning

Table 3.1 presents the parameter estimates using quarterly data from 1927 to 2009. I

form the posterior distribution by generating 300, 000 draws using Equations (3.7) and

(3.8). Table 3.2 presents the portfolio weights in the stock index. Each column in Table

3.2 represents a different current dividend yield (xT0) and each row represents a different

investment horizon T̂ . In this case, the investor acknowledges parameter uncertainty, but

her beliefs about the parameters are unchanged between the initial decision date T0 and

the terminal date T0 + T̂ .

The estimate for β is 0.94 with a standard deviation of 0.42, revealing that a higher current

dividend yield marginally predicts a higher excess return in the next period. The investor

can therefore time the market by allocating more wealth to the stock index when the current

dividend yield is high. Indeed, in Table 3.2 we see that for any given investment horizon,

the wealth allocated to the stock index increase with current dividend yield xT0 .

Dividend yield therefore governs the investment opportunity, and changes in dividend yield

lead to changes in future expected return. A risk-averse investor will want to hedge against

the risk of an unexpected drop in dividend yield. From Table 3.1, we see that excess

return innovations and dividend yield innovations are negatively correlated and statistically

significant (ρuv = −0.86 with a standard deviation of 0.01). In other words, excess returns

will be unexpectedly high (higher wealth) when the dividend yield is unexpectedly low (bad

investment opportunity, lower wealth). Thus the investor can hedge against future expected

return movement by allocating more wealth to the stock index. Furthermore, this hedging

demand increases with horizon, and we can see in Table 3.2 that for a given current dividend

yield xT0 , the portfolio weight in the stock index increases with the investment horizon.
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3.3.2. Learning

Table 3.3 contains the main results of this paper, where the investor’s decision incorporates

learning and parameter uncertainty. More specifically, the investment decision takes into

account that her posterior beliefs about the parameters change over time as new data

become available.

To solve the portfolio choice problem, I discretize each of the eight states by three grid points:

sdownj < smeanj < supj , j = 1, · · · , 8. In particular, for j = 1, · · · , 7, smeanj corresponds to

the value of the state variable j at the end of the sample period in 2009. The grid for

the last state variable s8 is set to be comparable to the previous case: (sdown8 , smean8 , sup8 )

= (0.02, 0.04, 0.06). Then I solve the problem twice, each time using a combination of

two different sets of grids. More specifically, the left panel labeled Specification 1 uses

the combination of (Sdown, Smean), and the right panel labeled with Specification 2 uses

(Smean, Sup), where Sj = (sj1, · · · , s
j
8). Columns labeled with an L are the portfolio weights

in the stock index when the investor takes learning into account, and the results are reported

for three different values of current dividend yield (xT0 or s8). Each of the other seven state

variables sj is fixed at smeanj . In order to demonstrate the effect of learning, Table 3.3

also shows the portfolio weights in the stock index when the investor ignores learning,

corresponding to the results in the columns labeled with an NL.

Table 3.3 shows that learning induces a large negative hedging demand, which significantly

decreases investor’s allocation to stocks. To see the effect of learning, I fix the current

dividend yield and compare the results with and without learning. One can see that the

portfolio weight in the stock index is almost flat along the investment horizon with learning,

and it increases with the investment horizon without learning. For example, the percentage

of wealth that an investor with a five-year investment horizon allocates to the stock index

drops between 23 to 43 percent (depending on the current dividend yield) when she takes

learning into account. These changes are significant. For example, if current dividend yield

is 4%, an investor who takes learning into account should invest 15% more of her wealth in
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the risk-free asset. Furthermore, from Table 3.3 one can see that even with learning, the

investor still attempts to time the market by investing more in the stock index when the

current dividend yield is high.

As the investment horizon becomes shorter, the effect of learning decreases and the difference

between the two allocation strategies diminishes. When the investment horizon is only one

year, there is no rebalance in the future the investor has no new information to learn. As

one would expect, the two strategies results in an identical portfolio allocation. Figure 3.1

shows the effect of learning by plotting the decline in percentage of wealth allocated to the

stock index, in percentage term.

The benefit of the above procedure is that it significantly reduces the number of grid points.

Furthermore, both of the specifications contain the set Smean, therefore we can have more

confidence if both specifications yield the same results for the case in which all state variables

are at their means. Indeed, one can see that when current dividend yield is 0.04, the results

of the two specifications are very close.8

It is easy to see how learning can introduce a negative hedging demand in the simple case

where excess returns are i.i.d. and investor only learns about the mean. Consider

rt+1 = µ+ εt+1, where εt+1 ∼ N(0, σ).

This case is also examined by Brennan (1998) and Barberis (2000). The only unknown is the

mean excess return µ, and its posterior µ̃t+1 governs the investment opportunity. Brennan

(1998) shows that an investor with power utility and relative risk aversion γ > 1 wishes

to hedge against learning that the investment opportunity is bad (low µ̃t+1). Since µ̃t+1 is

updated based on realized return rt+1, hedging against low µ̃t+1 means hedging against low

rt+1, and she can achieve this by simply allocating less wealth to the risky stock index.

8To further validate the accuracy of these results, I also solve the problem using three grid points for
each state, and the results are similar.
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Xia (2001) also considers predictable returns, however, in her model there is only uncertainty

about β. She finds that learning about predictability β induces a positive hedging demand

when the dividend yield is below its mean, a zero hedging demand when it is at its mean,

and a negative hedging demand when it is above its mean. In the present paper, the investor

learns about the full set of parameters simultaneously and I find the net hedging demand

to be negative, consistent with Brandt et al. (2005) and Skoulakis (2007).

3.4. Extensions

Section 3 shows that even after observing a long sample of data, learning still has a large

negative effect on the investor’s asset allocation decision. The question naturally arises is

that if 83 years of data is insufficient for the investor to learn the information she needs

to make the optimal investment decision, how many years are needed? In Section 4.1, I

simulate artificial data with various sample lengths and test how much data the investor

needs to observe before the effect of learning diminishes.

Previous literature agrees that learning induces a net negative hedging demand and de-

creases the weight of wealth the investor allocates to the stock index, but there is disagree-

ment on the magnitude of the effect. In Section 4.2 I try to reconcile the difference in

previous literature. In particular, I find that using data from 1986 to 1995 (the sample

used by Brandt et al. (2005)) leads to a larger negative effect of learning and long term

investment are even less attractive to the investor, which is consistent with their results.

3.4.1. Extending the sample length for initial estimation

Theoretically, as an investor sees more data, she should become more confident in her

estimates of the parameters of the data generating process. Thus, accounting for learning

in subsequent periods should have a minimal effect on her portfolio choice decision. Section

3.3 shows that data covering 83 years is not sufficient to diminish the effect of learning

on the investor’s portfolio allocation. The negative hedging demand induced by learning

eliminates most of the positive hedging demand that comes from the correlation between
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shocks to excess returns and shocks to dividend yields.

In this section, I simulate data with different sample lengths to investigate how long the

initial sample that the investor observes needs to be for the effect of learning to vanish.

Taking the parameter estimates in Table 1 as the true parameters of the underlying return-

generating process, I simulate data with different time spans between 100 and 1, 000 years.

The investor then makes her initial estimation based on the simulated data. Table 3.4 and

Figure 3.2 display the results found when 500 years of data are available for the initial

estimation. In Table 3.4 we can see that the allocation decisions with and without learning

are very close to each other. In other words, after observing 500 years of data, the investor

becomes much more confident about the information she learns in the historical data and

cares less about the information she will see in the subsequent periods. Unfortunately,

reliable asset market data is only available from the 1920s onward. Therefore, it is essential

for investors with long horizons to take into account the effect of learning when making

their investment decisions. Otherwise they are likely to end up with a suboptimal portfolio

that is over-allocated to the stock index.

This exercise also alleviates the concern that structural breaks in the data drive the results

in the previous section. If there was a structural break during the 83-year sample period, the

long sample of data would not help the investor to learn about the data generating process.

If a structural break exists, the investor might become even more uncertain about the

parameters because of the change in the underlying data generation process. Fortunately,

this is not a concern with simulated data since the parameters in the underlying data

generating process are fixed. The effect of learning is still very strong even in this case,

which shows that the results do not simply come from a structural break in the data.

3.4.2. Comparison with Brandt, Goyal, Santa-Clara, and Stroud (2005)

Brandt et al. (2005) and Skoulakis (2007) also solve similar portfolio choice problems.

Brandt et al. (2005) use an alternative numerical technique to approach this problem. In
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their paper, they first use a fourth-order Taylor expansion for the value function, and then

simulate the sample path and use regression to calculate the conditional expectations in the

value function. Using data from 1986 to 1995, they find that the negative hedging demand

induced by learning about the parameters in the return generating process prevails over

the positive hedging demand induced by the negative correlation between excess return and

dividend yield shocks. As a result, the investor allocates less wealth to the stock index

when she has a longer investment horizon. Skoulakis (2007) uses different risky asset re-

turns, predictors, and sample periods, and also finds a negative hedging demand induced by

learning. His paper, however, finds that the negative horizon effect is not strong enough to

eliminate the positive hedging demand arises from the negative correlation between shocks,

so the portion of wealth the investor allocates to the stock index still increases with the

investment horizon.

Skoulakis (2007) argues that the solution technique of Brandt et al. (2005) may not be

accurate under such a high dimensional state space. Applying the numerical method of

Skoulakis (2007) to the data sample and predictors from Brandt et al. (2005), however,

leads to results comparable to Brandt et al. (2005). After repeating the procedures above

with data from January 1986 to December 1995, I find that the negative effect of learning

dominates the positive hedging demand induced by time-varying investment opportunities.

Figure 3.3 shows that the investor’s optimal allocation to the stock index decreases with

the length of her investment horizon, as suggested by Brandt et al. (2005).9 Thus, this

inconsistency in results is more likely caused by the different small samples they choose to

form the initial estimation. Using a shorter sample period may simply pick up the dynamics

of the selected ten or twenty years and misrepresent the true dynamics of the return process

to the investor.

9My procedures are not identical to theirs as they allow for quarterly data observation and portfolio
rebalance whereas the present paper only allows the investor to adjust her portfolio annually. Furthermore,
they set the risk aversion parameter γ = 10, which might further amplify the negative effect compared to
the value of γ = 5 used in this paper.
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3.5. Conclusion

How much information does the past 83 years of asset market data convey? From a Bayesian

investor’s perspective, not so much. This paper finds that when excess returns are pre-

dictable and the long-horizon dynamic investor learns about the full set of parameters,

learning induces a large negative hedging demand and significantly decreases the portfolio

weight in the stock index.

Previous literature also finds this negative effect, but disagrees on its magnitude. I find

results comparable to Brandt et al. (2005) when using their sample periods. Furthermore,

using simulated data, I show that in order for the effect of learning to vanish, the investor

must observe data covering more than 500 years – far longer than the span of currently

available historical data. This simulation exercise also alleviates concerns that a structural

break in the sample drives the results, since the effect of learning remains strong when data

are generated from a fixed underlying process.

These results illustrate the importance of learning for investors who dynamically rebalance

their portfolios. If investors fail to acknowledge that more information will become available

between the initial decision date and the terminal date, they will over-allocate wealth to

the stock market and obtain a suboptimal portfolio allocation.
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Table 3.1: Parameter Estimates
Θ

-0.0220 0.0028

(0.0170) (0.0008)

0.9398 0.9255

(0.4183) (0.0208)

Σ

0.0116 -0.8637

(0.0009) (0.0140)

-0.8637 2.8× 105

(0.0140) (2.3× 10−6)

Notes: This table presents the initial estimation of the parameters. Quarterly data are

from January 1927 to December 2009. The bold numbers in Σ are the estimates of the

correlation between u and v (ρuv ≡ σuv√
σ2
u

√
σ2
v

). Θ =

 α θ

β ρ

 , and Σ =

 σ2
u ρuv

ρuv σ2
v

.
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Table 3.2: Portfolio Allocation to Risky Asset

Current d
p

Horizon (years) 0.02 0.04 0.06

1 8 39 69

2 9 43 77

3 11 47 83

4 13 51 87

5 15 54 91

6 17 56 95

7 18 59 96

8 20 60 98

9 20 65 99

10 21 65 99

Notes: This table presents the percentage of wealth allocated to the stock index when the

investor does not take into account the effect of future learning. Quarterly data are from

January 1927 to December 2009. The relative risk aversion coefficient γ = 5. Each column

denotes a different current dividend yield, xT0 , and each row denotes a different investment

horizon, T̂ .
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Table 3.3: Portfolio Allocation to the Stock Index - Historical Data
Specification 1 Specification 2

d/p 0.02 0.04 0.04 0.06

Horizon L NL L NL L NL L NL

1 9 9 41 41 41 41 70 70

2 10 10 41 45 40 45 70 77

3 11 12 41 48 43 48 71 83

4 9 14 40 52 41 52 69 87

5 9 16 42 55 41 55 70 91

Notes: This table reports the portfolio allocation results using historical data. The num-

bers represent the percentage of wealth the investor allocates to the stock index. Label

NL corresponds to parameter uncertainty without learning and label L corresponds to op-

timal learning. In specification 1, each state j is discretized into two grids, (sdownj , smeanj )

and in specification 2 each state j is discretized into two grids, (smeanj , supj ). In particu-

lar, (sdown8 , smean8 , sup8 ) = (0.02, 0.04, 0.06). The results are reported for different current

dividend yields. All other state variables are fixed at their means. Relative risk aversion

coefficient γ = 5. Horizon is in years. The initial estimation is based on quarterly data are

from January 1927 to December 2009.
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Table 3.4: Portfolio Allocation to the Stock Index - Simulation
Specification 1 Specification 2

d/p 0.02 0.04 0.04 0.06

Horizon L NL L NL L NL L NL

1 7 7 44 44 44 44 80 80

2 9 9 46 49 47 49 83 91

3 11 11 50 55 52 55 87 97

4 13 13 53 59 58 59 92 99

Notes: This table reports the portfolio allocation results using simulated data. The num-

bers represents the percentage of wealth the investor allocates to the stock index. Label

NL corresponds to parameter uncertainty without learning and label L corresponds to op-

timal learning. In specification 1, each state j is discretized into two grids, (sdownj , smeanj )

and in specification 2 each state j is discretized into two grids, (smeanj , supj ). In particu-

lar, (sdown8 , smean8 , sup8 ) = (0.02, 0.04, 0.06). The results are reported for different current

dividend yields. All other state variables are fixed at their means. Relative risk aversion

coefficient γ = 5. Horizon is in years. The initial estimation is based on 2, 000 quarters

(500 years) of simulated data using the parameter estimates in Table 3.1.
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Figure 3.1: Effect of Learning - Full Sample
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Notes: This figure plots the the percentage decline in portfolio weight on the stock index

when learning is taken into account. Quarterly data are from January 1927 to December

2009. The dash-dotted line is for d/p = 0.02, the solid line is for d/p = 0.04, and the dashed

line is for d/p = 0.06. For d/p = 0.04 , I plotted the average of the results from the two

specifications.
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Figure 3.2: Effect of Learning - Simulated Data
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Notes: This figure plots the the percentage decline in portfolio weight on the stock index

when learning is taken into account. 2,000 quarters of data are simulated using the param-

eter estimates in Table 3.1. The dash dotted line is for d/p = 0.02, the solid line is for

d/p = 0.04, and the dashed line is for d/p = 0.06. For d/p = 0.04 , I plotted the average of

the results from the two specifications.
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Figure 3.3: Comparison with Brandt et al. (2006)
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Notes: This figure plots the percentage of wealth allocated to the stock index against

investment horizon. Initial estimations for the parameters are formed using quarterly data

from January 1986 to December 1995. All state variables are at their means, current

dividend yield is set at 0.06.
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APPENDIX

A.1. Appendix for Rare Disasters and the Term Structure of Interst Rates

A.1.1. Model derivation

Notation

Definition A.1. Let X be a jump-diffusion process. Define the jump operator of X with

respect to the jth type of jump as the following:

Jj(X) = Xtj −Xtj− j ∈ {c, cq, q},

for tj− such that a type-j jump occurs. Then define

J̄j(X) = Eνj
[
Xtj −Xtj−

]
j ∈ {c, cq, q},

and

J̄ (X) = [J̄c(X), J̄cq(X), J̄q(X)]>.

The value function

Proof of Theorem 1.1 Let S denote the value of a claim to aggregate consumption, and

conjecture that the price-dividend ratio for the consumption claim is constant:

St
Ct

= l,

for some constant l. This relation implies that St satisfies

dSt = µSt−dt+ σSt−dBct + (eZct − 1)StdNct + (eZcq,t − 1)StdNcq,t. (A.1)
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Consider an agent who allocates wealth between S and the risk-free asset. Let αt be the

fraction of wealth in the risky asset St, and let ct be the agent’s consumption. The wealth

process is then given by

dWt =
(
Wtαt

(
µ− rt + l−1

)
+Wtrt − ct

)
dt+WtαtσdBct

+ αtWt

(
(eZct − 1)StdNct + (eZcq,t − 1)StdNcq,t

)
,

where rt denotes the instantaneous risk-free rate. Optimal consumption and portfolio

choices must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
αt,Ct

{
JW

(
Wtαt

(
µ− rt + l−1

)
+Wtrt − ct

)
+ κλc

(
λ̄c − λct

)
+ κλcq

(
λ̄cq − λcq,t

)
+

1

2
JWWW

2
t α

2
tσ

2 +
1

2

(
Jλcλcσ

2
λcλct + Jλcqλcqσ

2
λcqλcq,t

)
+ λctEνc

[
J
(
Wt

(
1 + αt

(
eZct − 1

))
, λt
)
− J (Wt, λt)

]
+ λcq,tEνcq

[
J
(
Wt

(
1 + αt

(
eZcq,t − 1

))
, λt
)
− J (Wt, λt)

]
+ f (ct, Vt)

}
= 0, (A.2)

where Jn denotes the first derivative of J with respect to variable n, for n equal to λi or

W , and Jnm denotes the second derivative of J with respect to n and m.

In equilibrium, αt = 1 and ct = Wtl
−1. Substituting these policy functions into (A.2)

implies

JWWtµ+ Jλcκλc
(
λ̄c − λct

)
+ Jλcqκλcq

(
λ̄cq − λcq,t

)
+

1

2
JWWW

2
t σ

2

+
1

2

(
Jλcλcσ

2
λcλct + Jλcqλcqσ

2
λcqλcq,t

)
+ λctEνc

[
J
(
Wte

Zct , λt
)
− J (Wt, λt)

]
+ λcq,tEνcq

[
J
(
Wte

Zcq,t , λt
)
− J (Wt, λt)

]
+ f (ct, Vt) = 0. (A.3)

By the envelope condition fC = JW , we obtain β = l−1. Given the consumption-wealth
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ratio, it follows that

f (ct, Vt) = f
(
Wtl

−1, J(Wt, λt)
)

= βW 1−γ
t

(
log β − log I(λt)

1− γ

)
. (A.4)

Substituting (A.4) and (1.6) into (A.3) and dividing both sides by W 1−γ
t I(λt), we find

µ+ I−1(1− γ)−1
(
Iλcκλc(λ̄c − λct) + Iλcqκλcq(λ̄cq − λcq)

)
− 1

2
γσ2

+
1

2
I−1

(
Iλcλcσ

2
λcλct + Iλcqλcqσ

2
λcqλcq,t

)
+ (1− γ)−1

(
λcEνc

[
e(1−γ)Zc − 1

]
+ λcqEνcq

[
e(1−γ)Zcq − 1

])
+ β

(
log β − log I(λt)

1− γ

)
= 0,

where Iλj denotes the first derivative of I with respect to λj and Iλjλj denotes the second

derivative for j ∈ {c, cq}.

Collecting terms in λjt results in the following quadratic equation for bj :

1

2
σ2
λj
b2j − (κλj + β)bj + Eνj

[
e(1−γ)Zj − 1

]
,

for j ∈ {c, cq}, implying

bj =
κλj + β

σ2
λj

±

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

,

Collecting constant terms results in the following characterization of a in terms of b:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β +

1

β
b>
(
κλ ∗ λ̄

)
.

Here and in what follows, I use ∗ to denote element-by-element multiplication of vectors of

equal dimension. Given the form of I(λ), Iλj = bjI and Iλjλj = b2jI for j ∈ {c, cq}. Because

there are no interaction terms, the solution takes the same form as when there is only a
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single type of jump. As in (Wachter, 2012, Appendix A.1) we take the negative root of the

corresponding equation for bj to find:

bj =
κλj + β

σ2
λj

−

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

.

Proof of Corollary 1.1 Since γ > 1, if Zj < 0, then the second term in the square root of

(1.9) is positive. Therefore the square root term is positive but less than
κj+β

σ2
j

, and bj > 0.

Similarly, if Zj > 0 then the second term in the square root of (1.9) is negative. Therefore

the square root term is positive and greater than
κj+β

σ2
j

, and bj < 0.

Proof of Corollary 1.2 The risk-free rate is obtained by taking the derivative of the

HJB (A.2) with respect to αt, evaluating at αt = 1, and setting it equal to 0. The result

immediately follows.

The state-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0
fV (Cs, Vs) ds

}
fC (Ct, Vt) ,

where fC and fV denote derivatives of f with respect to the first and second argument

respectively. Note that the exponential term is deterministic. From equation (1.4), I obtain

fC (Ct, Vt) = β (1− γ)
V

C
.

From the equilibrium condition Vt = J
(
β−1Ct, λt

)
, together with the form of the value

function (1.6), I get

fC (Ct, Vt) = βγC−γt I(λt). (A.5)
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Applying Ito’s Lemma to (A.5) implies

dπt
πt−

= µπtdt+ σπtdBt +
(
e−γZct − 1

)
dNct +

(
e−γZcq,t − 1

)
dNcq,t, (A.6)

where

σπt =
[
−γσ, 0, 0, bcσc

√
λct, bcqσcq

√
λcq,t

]
. (A.7)

It also follows from no-arbitrage that

µπt = −rt −
(
λctEνc

[
e−γZct − 1

]
+ λcq,tEνcq

[
e−γZcq,t − 1

])
= −β − µ+ γσ2 −

(
λctEνc

[
e(1−γ)Zct − 1

]
+ λctEνcq

[
e(1−γ)Zcq,t − 1

])
. (A.8)

From (A.6) we can see that in the event of a disaster, marginal utility (as represented by

the state-price density) jumps upward. This implies that investors require compensation

for bearing disaster risks. The first element of (A.7) implies that the standard diffusion risk

in consumption is priced; more importantly, changes in λjt are also priced as reflected by

the last two elements of (A.7).

The nominal state-price density π$ equals

π$
t =

πt
Pt
. (A.9)

The nominal state-price density follows

dπ$
t

π$
t−

= µ$
πtdt+ σ$

πtdBt +
(
e−γZct − 1

)
dNct +

(
e−γZcq,t − 1

)
dNcq,t, (A.10)

where

σ$
πt =

[
−γσ, −σP , 0, bcσλc

√
λct, bcqσλcq

√
λcq,t

]
, (A.11)
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and

µ$
πt = −β−µ+γσ2−qt+σ2

P −
(
λctEνc

[
e(1−γ)Zct − 1

]
+ λctEνcq

[
e(1−γ)Zcq,t − 1

])
. (A.12)

By comparing (A.11) to (A.7), we can see that the second element is no longer zero. This

implies that the diffusion risk in inflation is also priced in the nominal state-price density.

By comparing (A.12) to (A.8), we can see that the expected inflation and volatility of

realized inflation also affect the drift of the nominal state-price density.

Proof of Corollary 1.3 It follows from no-arbitrage that

µ$
πt = −r$

t −
(
λctEνc

[
e−γZct − 1

]
+ λcq,tEνcq

[
e−γZcq,t − 1

])
,

where µ$
πt is given by (A.12). Therefore the nominal risk-free rate on a nominal bond, r$

t is

r$
t = β + µ− γσ2 + qt − σ2

P + λctEνc
[
e−γZct

(
eZct − 1

)]
+ λqtEνcq

[
e−γZcq,t

(
eZcq,t − 1

)]
.

A.1.2. Pricing general zero-coupon equity

This section provides the price of a general form of a zero-coupon equity, both in real terms

and in nominal terms. The dividend on the aggregate market and the face value on the

bond market will be special cases.

Real assets

First I will consider the price of a real asset. Consider a stream of cash-flow that follows a

jump-diffusion process:

dDt

Dt−
= µD dt+ σD dBt + (eφD,cZct − 1) dND

ct + (eφD,cqZcq,t − 1) dND
cq,t. (A.13)
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This stream of cash-flow is subject to Poisson shocks dND
jt , j ∈ {c, cq}. The arrival time of

these Poisson shocks are linked to the arrival time of consumption disasters.

Assumption A.1. When a consumption disaster happens, this cash-flow stream experi-

ences a jump with probability pD; that is, for j ∈ {c, cq}.

• If dNjt = 0, then dND
jt = 0.

• If dNjt = 1, then

dND
jt =


1 with probability pD

0 otherwise.

With this assumption, φD,j denotes the jump multiplier for a type-j jump, for j ∈ {c, cq}.

Lemma A.1. Let H (Dt, λt, τ) denote the time t price of a single future cash-flow at time

s = t+ τ :

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
.

By Ito’s Lemma, we can write

dH(Dt, λt, τ)

H(Dt, λt, τ)
= µH(τ),tdt+σ>H(τ),tdBt+Jc(πtH(Dt, λt, τ))dNct+Jcq(πtH(Dt, λt, τ))dNcq,t.

for a scalar process µH(τ),t and a vector process σH(τ),t. Then, no-arbitrage implies that:

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt(τ)
λ>t J̄ real(πtH(Dt, λt, τ)) = 0. (A.14)

Proof No-arbitrage implies that H(Ds, λs, 0) = Ds and that

πtH(Dt, λt, τ) = Et [πsH(Ds, λs, 0)] .

To simplify notation, let Ht = H(Dt, λt, τ), µH,t = µH(τ),t, and σH,t = σH(τ),t. It follows
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from Ito’s Lemma that

dHt

Ht−
= µH,tdt+ σH,tdBt + (eφD,cZct − 1)dNct + (eφD,cqZcq,t − 1)dNcq,t.

Applying Ito’s Lemma to πtHt implies that the product can be written as

πtHt = π0H0 +

∫ t

0
πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s

)
+

∫ t

0
πsHs(σH,s + σπ,s)dBs∑

0<sci≤t

(
πsciHsci − πs−ciHs−ci

)
+

∑
0<scq,i≤t

(
πscq,iHscq,i − πs−cq,iHs−cq,i

)
, (A.15)

where sji = inf{s : Njs = i} (namely, the time that the ith time type-j jump occurs, where

j ∈ {c, cq}).

We use (A.15) to derive a no-arbitrage condition. The first step is to compute the expecta-

tion of the jump terms
∑

0<sji≤t

(
πsjiHsji − πs−jiHs−ji

)
. The pure diffusion processes are not

affected by the jump. Adding and subtracting the jump compensation terms from (A.15)

yields:

πtHt = π0H0+

∫ t

0
πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s +

1

πsHs

(
λcJ̄c(πsHs) + λcqJ̄cq(πsHs)

))
ds

+

∫ t

0
πsHs(σH,s + σπ,s)dBs +

∑
0<sci≤t

((
πsciHsci − πs−ciHs−ci

)
−
∫ t

0
πsHsλcJ̄c(πsHs)ds

)

+
∑

0<scq,i≤t

((
πscq,iHscq,i − πs−cq,iHs−cq,i

)
−
∫ t

0
πsHsλcqJ̄cq(πsHs)ds

)
(A.16)

Under mild regularity conditions analogous to those given in Duffie et al. (2000), the second

and the third terms on the right hand side of (A.16) are martingales. Therefore the first

term on the right hand side of (A.16) must also be a martingale, and it follows that the

integrand of this term must equal zero:

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt(τ)
λ>t J̄ real(πtH(Dt, λt, τ)) = 0.
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Theorem A.1. The function H takes an exponential form:

H(Dt, λt, τ) = Dt exp
{
aφ(τ) + λ>t bφλ(τ)

}
, (A.17)

where bφλ = [bφλc , bφλcq ]
>. Function bφλj for j ∈ {c, cq} solves

dbφλj
dτ

=
1

2
σ2
λj
bφλj (τ)2 +

(
bjσ

2
λj
− κλj

)
bφλj (τ)

+ pDEνj

[
e(φD,j−γ)Zjt − e(1−γ)Zjt

]
+ (1− pD)Eνj

[
e−γZjt − e(1−γ)Zjt

]
, (A.18)

and function aφ solves

daφ
dτ

= µD − µ− β + γσ (σ − σD) + bφλ(τ)>
(
κλj ∗ λ̄j

)
. (A.19)

The boundary conditions are aφ (0) = bφλc(0) = bφλcq(0) = 0.

Proof See proof of Theorem A.2.

Nominal asset

Similar no-arbitrage conditions can be derived for nominally denominated assets. Suppose

cash-flow that follows:

dD$
t

D$
t−

= µD$ dt+ σD$ dBt + (eφ
$
D,cZct − 1) dND

ct + (eφ
$
D,cqZcq,t − 1) dND

cq,t,

where the process ND
jt is given by Assumption A.1 and φ$

D,c and φ$
D,cq are the jump multi-

pliers for the Nc– and Ncq–type jumps, respectively.

Lemma A.2. Let H$(D$
t , qt, λt, τ) denote the time t price of a single future dividend pay-

ment at time t+ τ :

H$(D$
t , qt, λt, s− t) = Et

[
π$
s

π$
t

D$
s

]
.
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By Ito’s Lemma, we can write

dH$(D$
t , qt, λt, τ)

H$(D$
t , qt, λt, τ)

= µH$(τ),tdt+ σ>
H$(τ),t

dBt + Jc(π$
tH

$(D$
t , qt, λt, τ))dNct

+ Jcq(π$
tH

$(D$
t , qt, λt, τ))dNcq,t + Jq(π$

tH
$(D$

t , qt, λt, τ))dNqt.

for a scalar process µH$(τ),t and a vector process σH$(τ),t. Then, no-arbitrage implies that:

µπ$,t + µH$(τ),t + σπ$,tσ
>
H$(τ),t

+
1

π$
tH

$
t (τ)

(
λctJ̄c(π$

tH
$(D$

t , qt, λt, τ))

+ λcq,t

(
J̄cq(π$

tH
$(D$

t , qt, λt, τ)) + J̄q(π$
tH

$(D$
t , qt, λt, τ))

))
= 0, (A.20)

Proof See proof of Lemma A.1.

Theorem A.2. The function H$ takes an exponential form:

H$(D$
t , qt, λt, τ) = D$

t exp
{
aφ$(τ) + bφ$q(τ)qt + bφ$λ(τ)>λt

}
, (A.21)

where bφ$λ =
[
bφ$λc

, bφ$λcq

]
. Function bφ$q solves

dbφ$q

dτ
= −κqbφ$q(τ)− 1; (A.22)

function bφ$λc
solves

dbφ$λc

dτ
=

1

2
σ2
λcbLλc(τ)2 +

(
bcσ

2
λc − κλc

)
bφ$λc

(τ)

+ pDEνc

[
e(φ$

D,c−γ)Zct − e(1−γ)Zct
]

+ (1− pD)Eνc

[
e−γZct − e(1−γ)Zct

]
; (A.23)
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function bφ$λcq
solves

dbφ$λcq

dτ
=

1

2
σ2
λcqbφ$λcq

(τ)2 +
(
bcqσ

2
λcq − κλcq

)
bφ$λcq

(τ) + Eνq

[
e
−b

φ$q
(τ))Zqt − 1

]
+ pDEνcq

[
e

(
φ$
D,cq−(γ+b

φ$q
(τ))

)
Zcq,t − e(1−γ)Zcq,t

]
+ (1− pD)Eνcq

[
e
−(γ+b

φ$q
(τ))Zcq,t − e(1−γ)Zcq,t

]
; (A.24)

and function aL solves

daφ$

dτ
= µD−β−µ+γσ(σ−σD)+σ2

P +
1

2
σ2
qbφ$q(τ)2 +bφ$q(τ)κq q̄+bφ$λ(τ)>(κλ∗ λ̄). (A.25)

The boundary conditions are aφ$(0) = bφ$q(0) = bφ$λc
(0) = bφ$λcq

(0) = 0.

Proof It follows from Ito’s Lemma that

dH$
t

H$
t−

= µH$,tdt+ σH$,tdBt +
1

H$
t−

(
Jc(H$

t ) + Jcq(H$
t ) + Jq(H$

t )

)
,

where µH$ and σH$ are given by

µH$,t =
1

H$

(
∂H$

∂q
(q̄ − qt) +

∂H$

∂λc

(
λ̄c − λct

)
+
∂H$

∂λcq

(
λ̄c − λcq,t

)
− ∂H$

∂τ

+
1

2

∂2H$

∂q2
j

σ2
q +

1

2

(
∂2H$

∂λ2
c

σ2
λc +

∂2H$

∂λ2
c

σ2
λc

))
= bφ$q(τ)κq (q̄ − qt) + bφ$λc

(τ)κλc
(
λ̄c − λct

)
+ bφ$λcq

(τ)κλcq
(
λ̄cq − λcq,t

)
+

1

2
bφ$q(τ)2σ2

q +
1

2

(
bφ$λc

(τ)2σ2
λcλct + bφ$λcq

(τ)2σ2
λcqλcq,t

)
−

daφ$

dτ
+
dbφ$q

dτ
qt +

∑
j

dbφ$λj

dτ
λjt

 ,

(A.26)
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and

σH$,t =
1

L

(
∂H$

∂qt
[0, 0, σq

√
qt, 0, 0] +

∂H$

∂λc
[0, 0, 0, σλc

√
λct, 0] (A.27)

+
∂H$

∂λcq
[0, 0, 0, 0, σλcq

√
λcq,t]

)
=
[
0, 0, bφ$q(τ)σq

√
qt, bφ$λc

(τ)σλc
√
λct, bφ$λcq

(τ)σλcq
√
λcq,t

]
. (A.28)

Furthermore,

J̄c(π$
tH

$
t )

π$
tH

$
t

= pDEνc

[
e(φ$

D,c−γ)Zct − 1
]

+ (1− pD)Eνc
[
e−γZct − 1

]
, (A.29)

J̄cq(π$
tH

$
t )

π$
tH

$
t

= pDEνcq

[
e

(
φ$
D,cq−(γ+b

φ$q
(τ))

)
Zcq,t − 1

]
+ (1− pD)Eνcq

[
e
−(γ+b

φ$q
(τ))Zcq,t − 1

]
,

(A.30)

and

J̄q(π$
tH

$
t )

π$
tH

$
t

= Eνq

[
e
−b

φ$q
(τ))Zqt − 1

]
. (A.31)

Recall that λq = λcq. Substituting (A.26) – (A.30) along with (A.11) and (A.12) into the

no-arbitrage condition (A.20) implies that functions aφ$ , bφ$q, bφ$λc
, and bφ$λcq

solve the

following ordinary differential equation:

bφ$q(τ)κq (q̄ − qt) + bφ$λc
(τ)κλc

(
λ̄c − λct

)
+ bφ$λcq

(τ)κλcq
(
λ̄cq − λcq,t

)
+

1

2
bφ$q(τ)2σ2

q +
1

2

(
bφ$λc

(τ)2σ2
λcλct + bφ$λc

(τ)2σ2
λcλct

)
− β − µ+ γσ2 − qt + σ2

P

+ bφ$λc
(τ)bjσ

2
λcλct + bφ$λcq

(τ)bjσ
2
λcqλcq,t + pDλctEνc

[
e(φ$

D,c−γ)Zct − e(1−γ)Zct
]

+ (1− pD)λctEνc

[
e−γZct − e(1−γ)Zct

]
+ pDλcq,tEνcq

[
e

(
φ$
D,cq−(γ+b

φ$q
(τ))

)
Zcq,t − e(1−γ)Zcq,t

]
+ (1− pD)λcq,tEνcq

[
e
−(γ+b

φ$q
(τ))Zcq,t − e(1−γ)Zcq,t

]
+ λcq,tEνq

[
e
−b

φ$q
(τ))Zqt − 1

]
−
(
daφ$

dτ
+
dbφ$q

dτ
qt +

dbφ$λc

dτ
λct +

dbφ$λcq

dτ
λcq,t

)
= 0. (A.32)
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Collecting qt terms results in the following ordinary differential equation:

dbφ$q

dτ
= −κqbφ$q(τ)− 1;

collecting terms multiplying λc results in the following ordinary differential equation for

bφ$λc

dbφ$λc

dτ
=

1

2
σ2
λcbLλc(τ)2 +

(
bcσ

2
λc − κλc

)
bφ$λc

(τ)

+ pDEνc

[
e(φ$

D,c−γ)Zct − e(1−γ)Zct
]

+ (1− pD)Eνc

[
e−γZct − e(1−γ)Zct

]
;

collecting terms multiplying λcq results in the following ordinary differential equation for

bφ$λcq

dbφ$λcq

dτ
=

1

2
σ2
λcqbφ$λcq

(τ)2 +
(
bcqσ

2
λcq − κλcq

)
bφ$λcq

(τ) + Eνq

[
e
−b

φ$q
(τ))Zqt − 1

]
+ pDEνcq

[
e

(
φ$
D,cq−(γ+b

φ$q
(τ))

)
Zcq,t − e(1−γ)Zcq,t

]
+ (1− pD)Eνcq

[
e
−(γ+b

φ$q
(τ))Zcq,t − e(1−γ)Zcq,t

]
;

and collecting constant terms results in the following ordinary differential equation for aL:

daφ$

dτ
= µD − β − µ+ γσ(σ − σD) + σ2

P +
1

2
σ2
qbφ$q(τ)2 + bφ$q(τ)κq q̄ + bφ$λ(τ)>(κλ ∗ λ̄).

The boundary conditions are aφ$(0) = bφ$q(0) = bφ$λc
(0) = bφ$λcq

(0) = 0.

A.1.3. Nominal bond pricing

Proof of Corollary 1.5

y
$,(τ)
t =

1

τ
log

(
f$
t

L
$,(τ)
t

)
,

where L
$,(τ)
t is given by (1.14), then the results immediately follows.
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Proof of Theorem 1.6 By the no-arbitrage condition (A.20) and the definition of µπ$

(A.12), we can rewrite the premium in population (1.22) as

r
$,(τ)
t − r$

t = −σπ$,tσ
>
L,t − λct

 J̄c
(
π$
tL

$
t

)
π$
tL

$
t

− J̄c(π
$
t )

π$
t

− J̄c(L
$
t )

L$
t


− λcq,t

 J̄cq
(
π$
tL

$
t

)
π$
tL

$
t

− J̄cq(π
$
t )

π$
t

− J̄cq(L
$
t )

L$
t

− λqt
 J̄q

(
π$
tL

$
t

)
π$
tL

$
t

− J̄q(π
$
t )

π$
t

− J̄q(L
$
t )

L$
t

 .

From (A.10), we know that for j ∈ {c, cq},

J̄j(π$
t )

π$
t

= Eνj
[
e−γZjt − 1

]
,

and
J̄q(π$

t )

π$
t

= 0. Furthermore, recall that the Nq type of jump (inflation spike) does not

affect π$, therefore;
J̄q(π$

tL
$
t )

π$
tL

$
t

=
J̄q(L$

t )
L$
t

. From (A.29) – (A.30) we know that

J̄c
(
π$
tL

$
t

)
π$
tL

$
t

= pDEνc

[
e(1−γ)Zct − 1

]
+ (1− pD)Eνc

[
e−γZct − 1

]
,

J̄cq
(
π$
tL

$
t

)
π$
tL

$
t

= pDEνcq

[
e

1−(γ+b
L$q

(τ))Zcq,t − 1
]

+ (1− pD)Eνcq

[
e
−(γ+b

L$q
(τ))Zcq,t − 1

]
.

Furthermore,

J̄c
(
L$
t

)
L$
t

= pDEνc
[
eZct − 1

]
,

J̄cq
(
L$
t

)
L$
t

= pDEνcq

[
e

1−b
L$q

(τ)Zcq,t − 1
]

+ (1− pD)Eνcq

[
e
−b

L$q
(τ)Zcq,t − 1

]
.
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Together with (A.11) and (A.28), we obtain:

r
$(τ)
t − r$

t = −λ>t
(
bL$λ(τ) ∗ b ∗ σ2

λ

)
+ λcpD Eνc

[
(e−γZct − 1)(1− eZct)

]
+ λcq

(
(1− pD)Eνcq

[
(e−γZcq,t − 1)(1− e−bL$q

(τ)Zcq,t)
]

+ pDEνcq

[
(e−γZcq,t − 1)(1− e(1−b

L$q
(τ))Zcq,t)

])
.
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A.2. Appendix for Rare Booms and Disasters in a Multi-sector Endowment Economy

A.2.1. Required conditions on the parameters

Assumption A.2.

(
κλj + β

)2 ≥ 2σ2
λj
Eν1

[
ebµjZj − 1

]
j = 1, 2.

Assumption A.3.

(bλ2σ
2
λ2
− κλ2)2 ≥ 2σ2

λ2
Eν2

[
ebµ2Z2

(
e
φ−1
κµ2

Z2 − 1

)]
.

Assumption A.4.

µ̄D − µ̄C − β + γσ2 (1− φ)−
∑
j

κλj λ̄j

σ2
λj

(
ζφj − κλj + bλjσ

2
λj

)
< 0,

where

ζφj =

√
(bλjσ

2
λj
− κλj )2 − 2Eνj

[
ebµjZj

(
e
φ−1
κµj

Zj − 1

)]
σ2
λj
.

Assumption A.2 is required for the solution for J(Wt, µt, λt) to be real-valued. Assump-

tion A.3 is required for bφλ2(τ) to converge as τ approaches infinity. Without this assump-

tion, the price-dividend ratio market does not have a finite solution. Note that the analogous

condition for j = 1 is satisfied automatically because Z1 < 0 and hence e
φ−1
κµ1

Z1 < 1. Further-

more, the analogous condition for the value claim is satisfied automatically; this condition

replaces e
φ−1
κµ2

Z2 with e
− 1
κµ2

Z2 which is less than one. Assumption A.4 states that the asymp-

totic slope of aφ(τ) is negative. This is required for convergence of the price-dividend ratio

on the market. If this condition is satisfied, the analogous condition for the value function

is satisfied automatically.1

1Specifically, define

ζvφ2
=

√
(bλ2σ

2
λ2

− κλ2)2 − 2Eν2

[
ebµ2Z2

(
e
− 1
κµ2

Z2 − 1
)]
σ2
λ2
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A.2.2. Detailed derivation of the model

This Appendix derives the results given in the main text. The derivations generalize those

in Wachter (2012), where there is a single disaster probability, and the shocks are to realized

consumption growth. In what follows, there are two time-varying jump probabilities, and,

more importantly, the jumps are in expected consumption growth. Like the results in the

earlier paper, the derivations here assume that the EIS parameter is equal to one, and, based

on this assumption, lead to solutions that are in closed-form up to a system of ordinary

differential equations.2

Notation

Let Xt be a pure diffusion process, and let µjt, j = 1, 2 be defined as above. Consider a

scalar, real-valued function h(µ1t, µ2t, Xt). Define

J1(h(µ1t, µ2t, Xt)) = h(µ1 + Z1, µ2, Xt)

J2(h(µ1t, µ2t, Xt)) = h(µ1, µ2 + Z2, Xt)

Further, define

J̄j(h(µ1t, µ2t, Xt)) = EνjJj(h(µ1t, µ2t, X))

for j = 1, 2, and

J̄ (h(µ1t, µ2t, Xt)) =
[
J̄1(h(µ1t, µ2t, Xt)), J̄2(h(µ1t, µ2t, Xt)

]>
.

In what follows, we will use the notation ∗ to denote element-by-element multiplication for

two vectors of equal length. We will use x2 notation for a vector x to denote the square of

each element in x. For example, σ2
λ will denote the vector [σ2

λ1
, σ2

λ2
]>.

Then ζvφ2
> ζφ2 .

2Using log-linearization, Eraker and Shaliastovich (2008) and Benzoni et al. (2011) find approximate
solutions to related continuous-time jump-diffusion models when the EIS is not equal to one.
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Finally, because the process λ are independent, the second cross-partial derivatives do not

enter into equations that determine the price. Given a function h(λ,X), we will will use

the notation ∂h/∂λ to denote the 1× 2 vector [∂2h/∂λ2
1, ∂

2h/∂λ2
2].

The value function

Proof of Theorem 2.1 Let S denote the value of a claim to aggregate consumption, and

conjecture that the price-dividend ratio for the consumption claim is constant:

St
Ct

= l,

for some constant l. This relation implies that St satisfies

dSt
St

=
dCt
Ct

= µCt dt+ σ dBCt. (A.33)

Consider an agent who allocates wealth between S and the risk-free asset. Let αt be the

fraction of wealth in the risky asset St, and let ct be the agent’s consumption. The wealth

process is then given by

dWt =
(
Wtαt

(
µCt − rt + l−1

)
+Wtrt − ct

)
dt+WtαtσdBct,

where rt denote the instantaneous risk-free rate. Optimal consumption and portfolio choice

must satisfy the following Hamilton-Jacobi-Bellman equation:

sup
αt,ct

{
∂J

∂W

(
Wtαt

(
µCt − rt + l−1

)
+Wtrt − ct

)
+
∂J

∂λ

(
κλ ∗

(
λ̄− λt

))
− ∂J

∂µ
(κµ ∗ µt)

+
1

2

∂2J

∂W 2
W 2
t α

2
tσ

2 +
1

2

(
∂2J

∂λ2

)>
(σ2
λ ∗ λt) + λ>t J̄ (J(Wt, µt, λt)) + f (ct, V )

}
= 0, (A.34)
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where, as defined in Appendix A.2.2,

∂2J

∂λ2
=

[
∂2J

∂λ2
1

,
∂2J

∂λ2
2

]>
σ2
λ =

[
σ2
λ1
, σ2

λ2

]>
.

In equilibrium, αt = 1 and ct = Ct = Wtl
−1. Substituting these policy functions into (A.34)

implies

∂J

∂W
WtµCt +

∂J

∂λ

(
κλ ∗

(
λ̄− λt

))
− ∂J

∂µ
(κµ ∗ µt) +

1

2

∂2J

∂W 2
W 2
t σ

2

+
1

2

(
∂2J

∂λ2

)>
(σ2
λ ∗ λt) + λ>t J̄ (J(Wt, µt, λt)) + f (Ct, V ) = 0. (A.35)

By the envelope condition ∂f/∂C = ∂J/∂W , we obtain β = l−1. Given that the consumption-

wealth ratio equals β−1, it follows that

f(Ct, Vt) = f
(
Wtl

−1, J (Wt, µt, λt)
)

= βW 1−γ
t I (µt, λt)

(
log β − log I (µt, λt)

1− γ

)
. (A.36)

Substituting (A.36) and (2.7) into (A.35)

µCt + (1− γ)−1I−1 ∂I

∂λ

(
κλ ∗

(
λ̄− λt

))
− (1− γ)−1I−1 ∂I

∂µ
(κµ ∗ µt)−

1

2
γσ2

+
1

2
(1− γ)−1I−1

(
∂2I

∂λ2

)>
(σ2
λ ∗ λt) + (1− γ)−1λ>t J̄ (I(µt, λt))

+ β

(
log β − log I (µt, λt)

1− γ

)
= 0.

Note that µCt = µ̄C + µ1t + µ2t.

Collecting coefficients on µjt results in the following equation for bµj :

1− (1− γ)−1bµjκµj − β(1− γ)−1bµ = 0,
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solving this equation yields

bµj =
1− γ
κµj + β

.

Collecting coefficients on λjt yields

bλj =
β + κλj
σ2
λj

−

√√√√√(β + κλj
σ2
λj

)2

−
2Eνj

[
ebµjZjt − 1

]
σ2
λj

.

Collecting the constant terms:

a =
1− γ
β

(
µ̄C −

1

2
γσ2

)
+ (1− γ) log β +

∑
j

bλj
κλj
β
λ̄j .

Proof of Corollary 2.2 The risk-free rate is obtained by taking the derivative of the

HJB (A.34) with respect to αt, evaluating at αt = 1 and setting it equal to 0. The result

immediately follows.

The state-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (A.37)

Note that the exponential term is deterministic. From (2.6), we obtain

∂

∂C
f (Ct, Vt) = β (1− γ)

Vt
Ct
.

The equilibrium condition Vt = J
(
β−1Ct, µt, λt

)
, together with the form of the value func-

tion (2.7), implies

∂

∂C
f (Ct, Vt) = βγC−γt I(µt, λt). (A.38)
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Applying Ito’s Lemma to (A.38) implies

dπt
πt−

= µπtdt+ σπtdBt +
∑
j

Jj(πt)
πt−

dNjt, (A.39)

where

σπt =
[
−γσ, bλ1σλ1

√
λ1t, bλ2σλ2

√
λ2t

]
, (A.40)

and

Jj(πt) = ebµjZjt − 1, (A.41)

for j = 1, 2. It also follows from no-arbitrage that

µπt = −rt − λ>t
J̄ (πt)

πt
(A.42)

= −rt −
∑
j

λjtEνj

[
ebµjZjt − 1

]
= −β − µCt + γσ2 −

∑
j

λjtEνj

[
ebµjZjt − 1

]
. (A.43)

In the event of a disaster, marginal utility (as represented by the state-price density) jumps

upward, and in the event of a boom the marginal utility jumps downward, as can be seen

by the term multiplying the Poisson process in (A.39). The first element of (A.40) implies

that the standard diffusion risk in consumption is priced; more interestingly, changes in λjt

are also priced as reflected by the new element of (A.40).

Pricing the general equity claim

We first consider the price of a general form of the dividend stream. The dividend stream

on the aggregate market and the dividend stream for value will be special cases. Suppose

dividends evolve according to

dDt

Dt
= µDt dt+ σD dBCt, (A.44)
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where

µDt = µ̄D + φD,1µ1t + φD,2µ2t,

φD,j denotes the jump multiplier for the type-j jump.

Lemma A.3. Let H (Dt, µt, λt, τ) denote the time t price of a single future dividend pay-

ment at time t+ τ :

H(Dt, µt, λt, τ) = Et

[
πt+τ
πt

Dt+τ

]
.

By Ito’s Lemma, we can write

dHt

Ht
= µH(τ),tdt+ σH(τ),tdBt +

∑
j

Jj(Ht)dNjt.

for a scalar process µH(τ),t and a vector process σH(τ),t, where Ht = H(Dt, µt, λt, τ). Then

no-arbitrage implies that

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt
λ>t J̄ (πtHt) = 0. (A.45)

Proof No-arbitrage implies that H(Ds, λs, µs, 0) = Ds and that

πtH(Dt, λt, µt, τ) = Et [πsH(Ds, λs, µs, 0)] .

For the remainder of the argument, we simplify notation by writing Ht = H(Dt, µt, λt, τ),

µH,t = µH(τ),t and σH,t = σH(τ),t. Ito’s Lemma applied to πtHt implies

πtHt = π0H0 +

∫ t

0
πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s

)
+

∫ t

0
πsHs(σH,s + σπ,s)dBs

+
∑
j

∑
0<sij≤t

(
πsijHsij − πs−ijHs−ij

)
, (A.46)

where sij = q{s : Njs = i} (namely, the time that the ith type j jump occurs). Adding and
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subtracting the jump compensation term from (A.46) yields:

πtHt = π0H0 +

∫ t

0
πsHs

µH,s + µπ,s + σπ,sσ
>
H,s +

∑
j

λj
J̄j(πsHs)

πsHs

 ds

+

∫ t

0
πsHs(σH,s + σπ,s)dBs

+
∑
j

 ∑
0<sij≤t

(
πsijHsij − πs−ijHs−ij

)
−
∫ t

0
πsHsλjJ̄j(πsHs)ds

 . (A.47)

Under regularity conditions analogous to those given in Duffie et al. (2000) the second and

the third integrals on the right hand side of (A.47) are martingales. Therefore the first

integral on the right hand side of (A.47) must also be a martingale, and it follows that the

integrand of this term must equal zero.

Theorem A.3. The function H takes an exponential form:

H(Dt, µt, λt, τ) = Dt exp
{
aφ(τ) + bφµ(τ)>µt + bφλ(τ)>λt

}
, (A.48)

where bφµ = [bφµ1 , bφµ2 ]> and bφλ = [bφλ1 , bφλ2 ]> and

dbφµj
dτ

= − κµjbφjµ + (φD,j − 1) , (A.49)

dbφλj
dτ

=
1

2
σ2
λj
bφλj (τ)2 +

(
bλjσ

2
λj
− κλj

)
bφλj (τ) + Eνj

[
ebµjZjt

(
e
bφµj (τ)Zjt − 1

)]
,

(A.50)

daφ
dτ

= µ̄D − µ̄C − β + γσ (σ − σD) + bφλ(τ)>(κλ ∗ λ̄). (A.51)

The boundary conditions are bφµj (0) = bφλj (0) = aφ (0) = 0.

Proof Let Ht = H(Dt, µt, λt, τ). It follows from Ito’s Lemma that

J̄j(πtHt)

πtHt
= Eνj

[
e

(
bµj+bµjφ(τ)

)
Zjt − 1

]
, (A.52)
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µH(τ),t =
1

H

(
∂H

∂D
µDt +

∂H

∂λ
(κλ ∗

(
λ̄− λt

)
)− ∂H

∂µ
(κµ ∗ µt)

− ∂H

∂τ
+

1

2

(
∂2H

∂λ2

)
(σ2
λ ∗ λt)

)
(A.53)

= µDt + bφλ(τ)>
(
κλ ∗

(
λ̄− λt

))
+ bφµ(τ)> (κµ ∗ µt)

−
(
daφ
dτ

+ λ>t
dbφλ
dτ

+ µ>t
dbφµ
dτ

)
+

1

2

(
bφλ(τ)2

)> (
σ2
λ ∗ λt

)
, (A.54)

and

σH(τ),t =
1

H

(
∂H

∂D
µD[σD, 0, 0] +

∂H

∂λ1
[0, σλ1

√
λ1t, 0] +

∂H

∂λ2
[0, 0, σλ2

√
λ2t]

)
=
[
σD, bφλ1(τ)σλ1

√
λ1t, bφλ2(τ)σλ2

√
λ2t

]
. (A.55)

Substituting (A.52), (A.54) and (A.55) along with (A.40) and (A.43) into the no-arbitrage

condition (A.45) implies

µDt + bφλ(τ)>
(
κλ ∗

(
λ̄− λt

))
+ bφµ(τ)> (κµ ∗ µt) +

(
bφλ(τ)2

)> (
σ2
λ ∗ λt

)
− β − µCt + γσ2 − γσσD +

∑
j

λjtEνj

[
e

(
bµj+bφµj (τ)

)
Zjt − ebµjZjt

]

−
(
daφ
dτ

+ λ>t
dbφλ
dτ

+ µ>t
dbφµ
dτ

)
= 0.

Notice that, by definition, µDt − µCt = (µ̄D − µ̄C) +
∑

j(φD,j − 1)µjt. Matching the terms

multiplying µj implies (A.49), matching the terms multiplying λj implies (A.50) and match-

ing the constant terms implies (A.51).

Let Ft = F (Dt, µt, λt) denote the time t price of the claim to the dividend stream defined

by (A.44).

Lemma A.4. No-arbitrage implies

µπ,t + µF,t +
Dt

Ft
+ σπ,tσ

>
F,t +

∑
j

λjt
J̄j(πtFt)
πtFt

= 0, (A.56)
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where µF,t and σF,t denote the drift and diffusion term of the Ft process, respectively.

Proof By definition,

F (Dt, µt, λt) =

∫ ∞
0

H(Dt, µt, λt, τ) dτ.

For notational simplicity, we abbreviate H(D,λ, µ, τ) as H(τ). It follows from Ito’s Lemma

applied to F (Dt, µt, λt) that

F (Dt, µt, λt)µF,t =

∫ ∞
0

H(τ)µDt +
∑
j

Hλj (τ)(λ̄j − λj) +
∑
j

Hµj (τ)µj +
1

2

∑
j

Hλjλj (τ)

 dτ,

where Hµj , Hλj and Hλjλj denote partial derivatives. It then follows from the equation for

µH(τ),t (A.53) that

F (Dt, µt, λt)µF,t =

∫ ∞
0

(
H(Dt, λt, µt, τ)µH(τ),t −

∂

∂τ
H(Dt, µtλt, τ)

)
dτ. (A.57)

In short, (A.57) holds because H is a function of τ but F is not.

Because limτ→∞H(Dt, µt, λt, τ) = 0,

−
∫ ∞

0

∂

∂τ
H(Dt, µt, λt, τ) dτ = H(Dt, µt, λt, 0) = Dt.

Ito’s Lemma also implies

F (Dt, µt, λt)σF,t =

∫ ∞
0

H(Dt, µt, λt, τ)σH(τ),t dτ

and

J̄ (πtF (Dt, µt, λt)) =

∫ ∞
0
J̄ (πtH(Dt, µt, λt, τ)) dτ

The result then follows from the no-arbitrage relation for H, (A.45).
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Given a stream of cash flows Dt and its price Ft, define the expected return on this claim

to be

ret = µF,t +
Dt

Ft
+

1

Ft
λ>t J̄ (Ft).

Theorem A.4. Let ret denote the instantaneous expected return on the general equity claim.

Then

ret − rt = −σπ,tσ>F,t −
∑
j

λjtEνj

[
Jj(Ft)
Ft

Jj(πt)
πt

]
. (A.58)

Proof It follows from the definition of ret (2.21) that

µF,t +
Dt

Ft
= ret −

1

Ft
λ>t J̄ (Ft).

Further, µπt can be written in terms of rt and a jump term as in (A.42). Finally,

Eνj

[
Jj(Ft)
Ft

Jj(πt)
πt

]
= J̄j(Ftπt)− J̄j(Ft)− J̄j(πt)

for j = 1, 2. The result that follows from rearranging (A.56) in Lemma A.4.

Further results on equity pricing

The following is an intermediate step in the proof of Corollary 2.4:

Lemma A.5.

lim
τ→∞

bφλj (τ) = − 1

σ2
λj

(
ζφj − κλj + bλjσ

2
λj

)
, (A.59)

where

ζφj =

√√√√(bλjσ
2
λj
− κλj )2 − 2Eνj

[
e

(
bµj+φ−1

κµj

)
Zj
− ebµjZj

]
σ2
λj
. (A.60)

Moreover, limτ→∞ bφλ1(τ) < 0 and limτ→∞ bφλ2(τ) > 0.

Proof Let b̄φλj denote the limit, should it exist. In the limit, small changes in τ do not

change bφλj (τ). Taking the limit of both sides of (2.17) implies that b̄φλj must satisfy the
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quadratic equation

0 =
1

2
σ2
λj
b̄2φλj + (bλjσ

2
λj
− κλj )b̄φλj + Eνj

[
e

(
bµj+φ−1

κµj

)
Zjt
− ebµjZjt

]

This equation has two solutions; as for the value function, the solution corresponding to

the negative root has the more reasonable economic properties and is given in (A.59).3

To prove that the limits have the signs given in the Lemma, note that Z1 < 0 implies that

Eν1

[
e

(
bµ1+φ−1

κµ1

)
Z1 − ebµ1Z1

]
< 0.

Therefore,

ζφ1 > |bλ1σ
2
λ1
− κλ1|.

Now, note that Z2 > 0 implies that

Eν1

[
e

(
bµ1+φ−1

κµ1

)
Z1 − ebµ1Z1

]
> 0.

The parameter assumptions imply that ζφ2 is real-valued. As shown in Corollary 2.1,

bλ2 < 0, and that

ζφ2 < |bλ2σ
2
λ2
− κλ2|

In both cases the result on the sign follows.

Proof of Corollary 2.4 The result for µjt follows immediately from the form of bφµj (τ).

For λ1t, first note that bφλ1(0) = 0 and limτ→∞ bφλ1(τ) < 0 by Lemma A.5. Therefore, it

suffices to show that bφλ1(τ) is a monotonic function of τ .

3We have verified that (A.59) does indeed correspond to the limit when the ordinary differential equation
(2.17) is solved numerically.
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Assume, by contradiction that dbφλ1(τ)/dτ = 0 for some τ , τ∗. Then, by (2.17),

bφλ1(τ∗) =
1

σ2
λ1

(√
(bλ1σ

2
λ1
− κλ1)2 − 2Eν1

[
e(bµ1+bφµ1

(τ∗))Z1 − ebµ1Z1

]
σ2
λ1
− κλ1 + bλ1σ

2
λ1

)
(A.61)

However, differentiating (A.61) with respect to τ implies dbφλ1(τ∗)/dτ 6= 0. Therefore,

dbφλ1(τ)/dτ must be nonzero for all finite τ , and, because (2.17) implies that the derivative

is a continuous function, it must be either (weakly) positive or negative. It follows that

bφλ1(τ) is monotonic, and, by the argument given above, it must be negative and decreasing

in τ . Analogous reasoning holds for j = 2.

Proof of Corollary 2.5 It follows from Ito’s Lemma and the definition of G that

σF,t =

[
φσD,

1

G

∂G

∂λ1
σλ1

√
λ1t, ,

1

G

∂G

∂λ2
σλ2

√
λ2t

]
.

Because dividends are not subject to jumps

Jj(Ft)
Ft

=
Jj(Gt)
Gt

for j = 1, 2. The result follows from substituting these expressions and the correspond-

ing expressions for the state-price density πt (given in (A.40) and (A.41)) into (A.58) of

Theorem A.4.

Note that the proof of Corollary 2.11 follows along similar lines.

A.2.3. Return simulation

For each asset, the realized return between time t and t+ ∆t is defined as

Rt+∆t =
Ft+∆t +

∫ t+∆t
t Ds ds

Ft
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see (Duffie, 2001, Chapter 6.L). For assets that pay a dividend in each period, namely the

aggregate market and the value sector, this return can be computed based on the series

of price-dividend ratios and payouts. Using the approximation Dt+∆t∆t ≈
∫ t+∆t
t Ds ds, it

follows that

Rt,t+∆t ≈
Ft+∆t +Dt+∆t∆t

Ft

=

Ft+∆t

Dt+∆t
+ ∆t

Ft
Dt

Dt+∆t

Dt

=
G(µt+∆t, λt+∆t) + ∆t

G(λt)

Dt+∆t

Dt
.

Computing the return on the growth sector requires a different approach. For u ≥ s ≥ t, let

Rgt,s,u denote the return between s and u on the growth sector formed at time t. Because

value and growth must add up to the aggregate market,

Rmt,t+∆t =
F vt,t
Ft

Rvt,t+∆t +

(
1−

F vt,t
Ft

)
Rgt,t,t+∆t.

Rearranging, it follows that one-period returns on the growth sector equal

Rgt,t,t+∆t =
1

1− F vt,t
Ft

(
Rmt,t+∆t −

F vt,t
Ft

Rvt,t+∆t

)
. (A.62)

Because the price of the value sector formed at time t relative to the aggregate market is

given by
F vt,t
Ft

=
Gv(µt, λt)

G(µt, λt)
,

it is straightforward to compute the return (A.62) on the growth sector.
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A.3. Appendix for Dynamic Asset Allocation with Learning

A.3.1. Feedforward Neural Network

This paper solves the portfolio choice problem by standard backward induction, and uses

a feedforward neural network to approximate the value function. This method is first

introduced to the portfolio choice literature by Skoulakis (2007). Theoretically, it has been

shown that one-hidden-layer feedforward neural networks can uniformly approximate any

continuous multivariate function to any desired degree of accuracy. In the empirical section,

I follow that paper and use two hidden layers to provide more flexibility.

A neural network with two hidden layer defined on Rd is of the form

F (x;α,B, θ, γ) =
M∑
m=1

αmg
(
β>x+ θm

)
+ γ

where x ∈ Rd, g(·) is the activation function, α ∈ RM , B = [β1, · · · , βM ]>, θ ∈ RM , and

γ ∈ R. M refers to the number of nodes in the hidden layer.

In this paper, MATLAB’s Neural Network Toolbox is used for all calculations. I choose two

hidden layers, fifty hidden nodes, Tan-Sigmoid function as the activation function g, and

gradient descent with adaptive learning rate back-propagation.

For more detail on implementing feedforward neural network methodology in this problem,

see the Appendix of Skoulakis (2007).

A.3.2. Bayesian Updating Framework

This Appendix follows Skoulakis (2007) to derive the state variables and their laws of

motion.

First recall that the posterior distribution can be characterized by Z>Z, Z>Y , and Y >Y .

Then follow the definition of Z and Y , they can be decomposed as:
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Z>Z =

 t
∑t−1

τ=0 xτ∑t−1
τ=0 xτ

∑t−1
τ=0 x

2
τ

 =

 t tm3 (t)

tm3 (t) tm4 (t)

 ,
Z>Y =

 ∑t
τ=1 rτ

∑t
τ=1 xτ∑t

τ=1 xτ−1rτ
∑t

τ=1 xτ−1xτ

 =

 tm1 (t) tm3 (t)− x0 +m8 (t)

tm7 (t) tm5(t)

 ,
Y >Y =

 ∑t
τ=1 r

2
τ

∑t
τ=1 rτxτ∑t

τ=1 rτxτ
∑t

τ=1 x
2
τ

 =

 tm2 (t) tm6 (t)

tm6(t) tm4 (t)− x2
0 +m8 (t)2

 ,
where m1(t) =

∑t
τ=1 rτ = r̄t, m2(t) = 1

t

∑t
τ=1 r

2
τ , m3(t) =

∑t−1
τ=0 xτ = x̄t, m4(t) =

1
t

∑t−1
τ=0 x

2
τ , m5(t) = 1

t

∑t
τ=1 xτ−1xτ , m6(t) = 1

t

∑t
τ=1 rτxτ , m7(t) = 1

t

∑t
τ=1 xτ−1rτ , m8(t) =

xt are all that is required to characterize the posterior distribution of the parameters. These

variables are updated according to the following:

m1(tk+1) =
tk
tk+1

m1(tk) +
1

tk+1
R1,k+1

m2(tk+1) =
tk
tk+1

m2(tk) +
1

tk+1
R2,k+1

m3(tk+1) =
tk
tk+1

m3(tk) +
1

tk+1
[m8(tk) +Q1,k+1]

m4(tk+1) =
tk
tk+1

m4(tk) +
1

tk+1

[
m8(tk)

2 +Q2,k+1

]
m5(tk+1) =

tk
tk+1

m5(tk) +
1

tk+1
[m8(tk)xtk+1 + Fk+1]

m6(tk+1) =
tk
tk+1

m6(tk) +
1

tk+1
Gk+1

m7(tk+1) =
tk
tk+1

m7(tk) +
1

tk+1
[m8(tk)rtk+1 +Hk+1]

m8(tk+1) = xtk+1
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where

Rm,k+1 = rmtk+1 + · · ·+ rmtk+1
, m = 1, 2

Qm,k+1 = xmtk+1 + · · ·+ xmtk+1
, m = 1, 2

Fk+1 = xtk+1xtk+2 + · · ·+ xtk+1−1xtk+1

Gk+1 = rtk+1xtk+1 + · · ·+ rtk+1
xtk+1

Hk+1 = xtk+1rtk+2 + · · ·+ xtk+1−1rtk+1
.

Following Skoulakis (2007), I work with a transformation of these variables m (t). Define

s1(t) = r̄t = m1(t)

s2(t) =
1

t

t∑
τ=1

(rτ − r̄t)2 = m2(t)−m1(t)2

s3(t) = x̄t = m3(t)

s4(t) =
1

t

t−1∑
τ=0

(xτ − x̄t)2 = m4(t)−m3(t)2

s5(t) =
1
t

∑t
τ=1 (xτ−1 − x̄t) (xτ − x̄t)

1
t

∑t
τ=0 (xτ − x̄t)2 =

m5(t)−m3(t)
[
m3(t)− x0−m8(t)

t

]
s4(t)

s6(t) =
1
t

∑t
τ=1 (rτ − r̄t) (xτ − x̄t)√

1
t

∑t
τ=1 (rτ − r̄t)2

√
1
t

∑t−1
τ=0 (xτ − x̄t)2

=
m6(t)−m1(t)

[
m3(t)− x0−m8(t)

t

]
√
s2(t)s4(t)

s7(t) =
1
t

∑t
τ=1 (rτ − r̄t) (xτ−1 − x̄t)√

1
t

∑t
τ=1 (rτ − r̄t)2

√
1
t

∑t−1
τ=0 (xτ − x̄t)2

=
m7(t)−m1(t)m3(t)√

s2(t)s4(t)

s8(t) = m8(t).
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Knowing s (t), one can then recover m (t)by

m1(t) = s1(t)

m2(t) = s2(t) + s1(t)2

m3(t) = s3(t)

m4(t) = s4(t) + s3(t)2

m5(t) = s4(t)s5(t) + s3(t)

[
s3(t)− x0 − s8(t)

t

]
m6(t) =

√
s2(t)s4(t)s6(t) + s1(t)

[
s3(t)− x0 − s8(t)

t

]
m7(t) =

√
s2(t)s4(t)s7(t) + s1(t)s3(t)

m8(t) = s8(t).

Thus the laws of motion of the state variables s(t) can be derived:

s1 (tk+1) =
tk
tk+1

s1(tk) +
1

tk+1
R1,k+1

s2 (tk+1) =
tk
tk+1

[
s2(tk) + s1(tk)2]+

1

tk+1
R2,k+1 − s1(tk+1)2

s3 (tk+1) =
tk
tk+1

s3(tk) +
1

tk+1
[s8(tk) +Q1,k+1]

s4 (tk+1) =
tk
tk+1

[
s4(tk) + s3(tk)2]+

1

tk+1

[
s8(tk)2 +Q2,k+1

]
− s3(tk+1)2

s5 (tk+1) =

tk
tk+1

[
s4 (tk) s5 (tk) + s3 (tk)

(
s3 (tk) − x0−s8(tk)

tk

)]
+ 1

tk+1

[
s8 (tk)xtk+1 + Fk+1

]
s4 (tk+1)

−
s3 (tk+1)

[
s3 (tk+1) −

x0−xtk+1

tk+1

]
s4 (tk+1)

s6 (tk+1) =

tk
tk+1

√
s2 (tk) s4 (tk)s6 (tk) + s1 (tk)

[
s3 (tk) − x0−s8(tk)

tk

]
+ 1

tk+1
Gk+1√

s2 (tk+1) s4 (tk+1)

−
s1 (tk+1)

[
s3 (tk+1) −

x0−xtk+1

tk+1

]
√
s2 (tk+1) s4 (tk+1)

s7 (tk+1) =

tk
tk+1

[√
s2 (tk) s4 (tk)s7 (tk) + s1 (tk) s3

]
+ 1

tk+1

[
s8 (tk) rtk+1 +Hk+1

]√
s2 (tk+1) s4 (tk+1)

− s1 (tk+1) s3 (tk+1)√
s2 (tk+1) s4 (tk+1)

s8 (tk+1) = xtk+1 .

168



A.3.3. Exact Likelihood

In this paper I assume that the first observation of predictor variable x0 is non-stochastic

and conveys no information about the parameters. This assumption discard potential in-

formation x0 may convey. Furthermore, the specification for the prior potentially allows for

a non-stationary process for the predictor as ρ could be greater than 1. In order to address

these issues, I consider the exact Bayesian model, following Stambaugh (1999).

In particular, I treat x0 as being drawn from the stationary distribution of Equation (4):

x0 ∼ N
(

θ

1− ρ
,

σ2
v

1− ρ2

)
.

The likelihood function becomes

L(b,Σ;D) = (2π|Σ|)−(T
2

) exp

{
−1

2
(z − Zb)>(Σ−1 ⊗ IT )(z − Zb)

}
×(

1− ρ2

2πσ2
v

) 1
2

exp

{
−1− ρ2

2σ2
v

(
x0 −

θ

1− ρ

)2
}
,

imposing the assumption that ρ is between −1 and 1 for stationarity, the prior becomes

p(b,Σ) ∝ |Σ|−
3
2 , ρ ∈ (−1, 1).

Combining the two equations yields the posterior

p (b,Σ|D) ∝ |Σ|−
T+3

2 exp

{
−1

2
(z − Zb)

′ (
Σ−1 ⊗ I

)
(z − Zb)

}
×

×
(

1− ρ2

σ2
v

)1/2

exp

{
−1

2

(
1− ρ2

σ2
v

)(
x0 −

θ

1− ρ

)2
}
.

To generate draws from this posterior, I implement the Metropolis-Hasting Algorithm (see

Chib and Greenberg (1995)).

For j = 1 : I
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1. Generate bj ∼MN
(
b̂, (Σj ⊗X ′X)−1

)
, accept this draw with probability

α = min

1,

(
1−ρ2

j

σ2
v

) 1
2

exp

{
−1

2

(
1−ρ2

j

σ2
v

)(
x0 − θj

1−ρj

)2
}

(
1−ρ2

j−1

σ2
v

) 1
2

exp

{
−1

2

(
1−ρ2

j−1

σ2
v

)(
x0 − θj−1

1−ρj

)2
}


2. Then generate

Σj ∼ IW
(
T + 1, S +

(
Bj + B̂

)′
X ′X

(
Bj + B̂

))
,

and accept this new draw with probability

α = min

1,

(
σ11
j

)− 1
2
exp

{
−1

2

(
1−ρ2

σ2
vj

)(
x0 − θ

1−ρ

)}
(
σ11
j−1

)− 1
2
exp

{
−1

2

(
1−ρ2

σ2
vj−1

)(
x0 − θ

1−ρ

)}
 ,

where σ2
v = σ11|Σ−1|−1.

With the exact likelihood specification, learning still introduces a large negative hedging

demand, and the results are similar to those obtained using the simpler specification.
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