4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

Active Networking: One View of
the Past, Present, and Future

Jonathan M. Smith, Fellow, IEEE, and Scott M. Nettles, Member, IEEE

Abstract—All distributed computing systems face the architec-
tural question of the location (and nature) of programmability in
the telecommunications networks, computers, and other periph-
eral devices comprising them. The perspective of this paper is that
network elements should be as programmable as possible, to en-
able the most flexible distributed computing systems.

There has been a persistent confluence among operating
systems, programming languages, networking and distributed
systems. We demonstrate how these interactions led to what is
called “active networking,” and in the spirit of “vox audita perit,
littera scripta manet” (the spoken word perishes, but the written
word remains), include an account of how it was made to happen.
Lessons are drawn both from the broader research agenda, and
the specific goals pursued in the SwitchWare project. We speculate
on likely futures for active networking.

Index Terms—Communication system software, communication
systems, programming operating systems, protocols.

1. INTRODUCTION

HE BASIC goals of active networking (AN) are to create

networking technologies that, in contrast to current net-
works, are easy to evolve and which allow application specific
customization. To achieve these goals, AN uses a simple idea,
that the network would be easier to change and customize if
it were programmable. Although there are a few pioneering ef-
forts [1]-[3] that predate it, AN became a vigorous research area
when DARPA began funding research in the mid-1990s.

This paper is an attempt to gain some insight into AN by
looking back at its origins and looking forward toward its future.
The paper’s form is a history of AN as seen from the authors’
point-of-view as part of the SwitchWare project. The paper is
idiosyncratic in style, offering in places history which might
not otherwise be recorded to illustrate the way in which a re-
search program evolves by fits and starts into a larger agenda.
Additional personal recollections can be found elsewhere [4].
We have focused on the issues we are best able to comment on
and omission of some event or piece of work says nothing about
its importance, only that it was not our focus.

Manuscript received August 29 2002; revised March 31, 2003. This
work was supported by DARPA under Contracts N66001-96-C-852 and
DABTG63-95-C-0073, and the National Science Foundation under CAREER
Grants CCR-9702107, ANI-9906855, ANI98-13875, ANI00-82386, and
ANI-0081360. This paper was recommended by Guest Editors W. Pedrycz and
A. Vasilakos.

J. M. Smith is with the CIS Department, University of Pennsylvania, Philadel-
phia, PA 19104-6314 USA (e-mail: jms @cis.upenn.edu).

S. M. Nettles is with The University of Texas at Austin, Austin, TX 78712
USA.

Digital Object Identifier 10.1109/TSMCC.2003.818493

A. Operating Systems, Programming Languages, Distributed
Systems, and Networks

One perspective we wish to develop is a view of AN as the
confluence of ideas from operating systems, programming lan-
guages, networks, and distributed systems. At a high level, this
is shown by the timeline in Fig. 1. At this point in the paper, this
figure is mostly suggestive, but as we proceed, we will explain
its pieces.

The reason that AN is a combination of ideas from each of
these areas is clear. First, the basic goal of AN is to build net-
working systems, as such networking is the core discipline that
is built upon. Further, AN focuses on how to build networks. But
we can view networks as low-level distributed systems. Thus,
building networks is building distributed systems, and thus, is-
sues and ideas from distributed systems come into play. Pro-
gramming languages research becomes important because we
wish to build these low-level distributed systems so that they
can be programmed and programming languages are the key to
expressing programs. PL plays a role not just in what we can
express, but also in what can not be expressed, thus giving us
control over the power of programmability. Finally, two critical
issues, security and resource allocation and control, motivate the
operating systems (OS) role, as the focus of OS has been the ab-
straction, protection, and management of system resources.

B. Further AN Concerns

Although AN has the high-level goals of improving evolv-
ability and customizabilty, there are a number of low-level con-
cerns that must be balanced to achieve these high-level goals.
The first of these concerns is flexibility. AN systems aim to
significantly improve the flexibility with which we can build
networks. The second concern is safety and security. It is cru-
cial that while adding flexibility, we not compromise the safety
or security of the resulting system. The third concern is per-
formance. If adding flexibility results in a system that can not
achieve its performance goals it will be pointless. The final con-
cern is usability. It is important that the resulting system not be
so complex as to be unusable. The other main perspective we
wish to develop is how the combination of disciplines discussed
above come together to help address these concerns.

C. Outline of the Paper

The paper begins in Section II by looking at the technologies
and challenges faced by distributed computing systems of the
1970s and 1980s. This frames much of the technological evolu-
tion (and research) which has gotten us to where we are today, in

1094-6977/04$20.00 © 2004 IEEE

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 5

0.S _Monolithic Threads + Externsible
Kernel Microkernel Kernel
pL CFORTRAN ™. Ci+ Scripting'. Strong Typing:.
Pascal, BASIC @ . Languages: . Java, Caml ' "
NW Telephony + _ \ IP Packet— , \l Broadband \l Active
LAN Switched WAN . WWW .. Networks
D.S _Remate A RPC * Webh Services \ P2P
Access NFS Mobile Code Overlays
Year 1975 1985 1995 2005

Fig. 1.

particular the improvements in distributed computing that could
follow from a more flexible network architecture. These con-
cerns about network architecture, discussed in Section III, led
to the “store-translate-and-forward” (STF) model of networking.
It is the STF model which led to the perspective of network ar-
chitecture as being driven by distributed computing rather than
being engineered in isolation. Two examples of this perspective
are the design of protocol boosters (Section IV) which stimulated
the DARPA effortin AN (Section V), and our contribution to that
effort, the SwitchWare project (Section VI). Section VII gives
our view of future work and Section VIII concludes the paper.

II. EARLY CODE MOVEMENT INFLUENCES

One of the basic techniques of AN is that code is moved to
the node at which it should execute. One place this idea first
arose was in distributed systems supporting process migration.
Another significant early influence was in generalization of re-
mote procedure call (RPC) to support remote evaluation (RE).

A. Process Migration

The earliest implementation of a process migration system
was in David Farber’s DCS system [5], [6] in the mid-1970s.
Over the course of the 1980s, a large number of researchers at-
tempted to realize process migration with varying degrees of
success (Smith [7] provides a survey). The basic motivation was
that in a distributed system, it was reasonable to allocate pro-
cesses to processors based on local resources such as capacity
or locally-stored data.

By the late 1980s, there was considerable progress on the de-
sign and implementation of these systems in the context of oper-
ating systems, but little application support and no real support
for heterogeneity. For example, in 1986, Smith implemented a
system in which a process could migrate itself by checkpointing,
transporting, and uncheckpointing. In the initial version of the
system the executable image was shipped directly to a server,
but in an enhanced version [8], NFS was used to save the image
while sending the image’s name with a single user datagram
protocol (UDP) datagram to a server. The server then used the
name to fetch the code and continue execution (the later is anal-
ogous in some ways to the approach pursued in active network
transport system (ANTS) [9]).

The system suffered from some fairly severe constraints,
e.g., that it needed a daemon, could not migrate active I/O

Cross-coupled influences: operating systems, programming languages, distributed systems, and networking.

such as pipes or sockets, had no support for heterogeneity,
etc. Its major technical contribution was its demonstration that
user-level process migration was possible, providing a new
avenue toward writing distributed applications.

B. Remote Evaluation

The introduction of RPC [10], [11] was the first major attempt
to combine ideas from programming languages and distributed
systems. RPC made distributed systems programming easier be-
cause it allows remote functionality to be dealt with using a fa-
miliar and convenient interface.

By the mid-1980s some of the most sophisticated uses of
RPC systems were to support distributed window systems. A
particularly notable system was the network extensible window
system (NeWS) [12] built by J. Gosling at Sun Microsystems.
NeWS took its graphics model and programming language from
Postscript. In Postscript, code to print a page was downloaded
into a printer and then executed, producing a printed page as a
side effect. In NeWS, Postscript for the user interface could be
downloaded into the graphics server. Besides giving great flex-
ibility, this allowed significant optimizations when the down-
loaded code could be used to eliminate round-trips between the
(remote) client and server. For example, grabbing a group of
lines and rubber-banding them could be done without going out
to the network.

In the late 1980s, researchers interested in distributed pro-
gramming languages began to explore the idea of generalizing
RPC along the directions seen in NeWS [13]-[16]. The resulting
remote evaluation systems had a simple model of computation,
code could be shipped to a remote node and then evaluated. RPC
is a special case where the code that is shipped is just a function
call and its arguments. Both Stamos [13]-[15] and Clamen [16]
used Lisp dialects as the basis for their remote evaluation sys-
tems because Lisp made representing programs (and most data)
in a format that could be sent from machine to machine (ASCII
byte streams) simple. Such representations also had the advan-
tage of support for heterogeneous machine types [17], a problem
for most process migration schemes.

In a very deep sense, mobile code schemes such as remote
evaluation models provide a general solution to “process migra-
tion” once appropriate language technologies became available.
Active networking is simply an application of these mobile code
techniques and technologies to the domain of networking.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

III. BROADBAND INTERNET

In the early 1990s [18], the Internet was coming into its
own. A collection of researchers were exploring methods for
increasing network throughputs by a factor of 100, using a
variety of technologies, such as synchronous optical network
(SONET) [19], [20], high-performance parallel interface
(HIPPI) [21]-[23] and asynchronous transfer mode (ATM)
[24], [25]. For example, research in the AURORA gigabit
testbed [26], [27] was centered around ATM technology. While
ATM signaling never quite matured, ATM link layers led to the
broadband Internet [28], both by providing an infrastructure
for high-speed Internet protocol (IP) overlays, and then later
evolving into the methodology for building high performance
IP switches [29]. Once ATM signaling was replaced in archi-
tectures such as multiprotocol label switching (MPLS) [30],
which provided virtual paths without heavyweight signaling,
the basic advantages of the technology became available to
Internet users.

Among the possibilities for a broadband Internet were those
of building wide area distributed computing infrastructures.
Low bandwidth in the core had inhibited access to remote data,
and the ability to migrate processing within the network had
really not been achieved. The notion was that the availability
of very high performance networking would allow large scale
distributed computations, such as distributed chemical analysis
and weather modeling, that were unachievable without access
to remote computational resources and data.

A. Interoperability

The Internet [31] provides a universal networking infrastruc-
ture [32] by providing an interoperability layer, the IP packet
format, which all network participants must use and accept. This
makes the problem of sending data from an arbitrary device to
an arbitrary device via an arbitrary network manageable. The
sender formats an IP packet and encapsulates it in one or more
frames of an attached network type. Intermediate IP-compliant
devices extract the packet from an incoming frame, interpret the
IP packet, and then again encapsulate the packet in a frame tar-
geted at the ultimate destination.

While ATM made an attractive subnetwork technology, it
did not solve the interoperability problem, and IP had an
implemented signaling infrastructure. ATM systems provided
fine-grained multiplexing in support of multimedia, and pro-
vided one solution to the link performance problem, but inad-
equately addressed the control plane represented by signaling
protocols.!

Sincoskie [37] observed that the telephone network achieved
interoperability with a circuit model based on a 20—mA copper
loop, and the IP network achieved interoperability with this
common packet format model. Each were reaching limits in

IThis later stimulated an energetic line of research [33]—[36] at the Uni-
versity of Cambridge, which developed virtual signaling stacks to allow cus-
tomization. The Cambridge work, “open signaling,” exploited the capability of
the virtual circuit identifier (VCI) in an ATM network to be used for early de-
multiplexing. Groups of VClIs can be associated with particular signaling soft-
ware implementations, essentially creating virtual switches, one per group of
addresses. Since the focus of flexibility and extensibility is the out-of-band sig-
naling software, open signaling can be viewed as an active networking approach
which is limited to the network control plane.

Programmable:
i Translator

k’acket |'—‘> IQuzkue Pl [|
k’acket |—>

Fig. 2. STF network model.

terms of the cost and ability to introduce new services info the
network.?

B. Store-Translate-and-Forward

How could one extract the best features of each solution,
apply the lessons learned, and apply them to a new architecture
in which service introduction could be accelerated?

This problem was originally framed as “interservice net-
working,” with goals including tying together services such
as voice, fax, and IP. While the performance challenges of
broadband networking were interesting, this larger architectural
question became increasingly intriguing.

Smith [4], [38] addressed this problem with a generaliza-
tion of store-and-forward packet-switching called store-trans-
late-and-forward (STF), where the effect of a translator “edits”
the packet data as it passes through the STF node, as is shown
in Fig. 2.

The STF networking model [38] provided a strong “computer
science” flavor to networking. Elementary computability relates
translation (or language recognition) to computing, and activi-
ties such as route lookup, label-switching and packet-filtering
were easy to represent in this model.

An experimental approach to investigate STF was not imme-
diately obvious, but it was clearly possible simply by inserting
a programmable general purpose computer into the network—a
Turing machine can support a large variety of interesting trans-
lations! Inserting translators into the network was therefore at
least possible, and there appeared to be interesting applications.

The question then became one of how to proceed, how to
make the vision happen, and how to enable new network ser-
vices.

IV. PROTOCOL BOOSTERS

The first outgrowth of the STF ideas was a DARPA proposal
on the topic of “Protocol Boosters for Distributed Computing
Systems.” The idea was to dynamically construct protocols
using protocol element insertion and deletion on an as-needed
basis, to respond to network dynamics. Protocols are con-
structed optimistically; that is, ideal operating conditions (no
errors, low delays, adequate throughput, etc.) were assumed,
and protocol elements (such as error detection and correction
mechanisms) were inserted into protocols on-demand, as con-
ditions were encountered that deviated from the best case where
the protocol element would not be needed. Such “boosters”

2The most successful approaches to introducing new services which later
emerged, such as the World Wide Web and peer-to-peer, avoided this issue by
operating as overlays.

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 7

Host A Host B
Application Application
Router R
Booster DeBooster

Boosted Link or Subnet

Fig. 3. Use of a protocol booster on a network link.

were a limited form of network translator. Ultimately, protocol
boosters support for on-the-fly protocol deployment was
adopted as a key aspect of AN.

This proposal was a significant break from convention in that
it dynamically altered the network stack in response to dynamic
network conditions. A major goal was the ability to accelerate
network evolution (e.g., with proprietary protocols; one pre-
diction was creation of a “marketplace” of protocols, where
users would select and deploy their own protocols, including
network-layer protocols. One important consequence of users
deploying their own network-layer protocols was that signifi-
cant attention had to be paid to issues of safety and security,
since the network fabric was shared. A marketplace that was
more likely to develop was one of proprietary protocols devel-
oped by protocol vendors, to be sold, or to be deployed in their
own networks to achieve a competitive advantage. However, the
Protocol Boosters research effort focused mainly on whether
protocols could be constructed using “as-needed” techniques,
and if so, what form these protocols would take.

A. Boosted Protocols

The canonical example of protocol boosters is forward error
correction (FEC). FEC is a technique that uses extra informa-
tion in a message to allow recovery of the message if a portion
of the message is lost or damaged. In the case of a data packet,
such information might include additional packets or extra in-
formation within the packet itself which might be used for re-
covery. Fig. 3 illustrates how the performance of a link might be
boosted by protocol elements augmenting the existing protocol
architecture.

FEC provides an attractive example for “as-needed” function-
ality, since it is in essence pessimistic. The extra bits are sent
under the assumption that things will go wrong, and the efficient
encoding and recovery of the message consumes processing cy-
cles as well. Thus, one would like to insert FEC when it was pro-
viding some benefit, but not otherwise use it. Of course, when
FEC will be needed is unpredictable, so a mechanism that de-
ploys it “on-the-fly” is needed, making Protocol Boosters an
ideal candidate.

B. Design Influences

The two most important influences on the initial implemen-
tation of protocol boosters were Hutchinson and Peterson’s
[39] z-Kernel system and Dennis Ritchie’s STREAMS [40]
architecture. Ritchie’s system provided an elegant architecture

Protocol Protocol Protocol
Layer n+1 Layer n+1 Layer n+1
Booster Stub) Booster Stub
‘ Booster
Booster Stub Booster Stub
Protocol Protocol Protocol
Layern Layer n Layer n

Fig. 4. Inserting a booster into a protocol stack.

for constructing protocols, later delivered with, and used
heavily in, the AT&T System V version of UNIX. The initial
notion had been one of stackable “line disciplines” for UNIX,
but was generalized into stackable protocol architectures for
streams of data. Stackable meant that code adhering to a
message-handling discipline shared by all such STREAMS
modules could be pushed onto, and subsequently popped from,
a logical stack of processing modules through which streams of
message data would pass. These modules could be dynamically
inserted and removed while the protocol was in operation.
This definitely had the right flavor for what was envisioned for
protocol boosters, but we felt the programming model was (no
doubt on purpose) too restrictive. The x-Kernel, on the other
hand, was almost completely flexible, and arbitrary protocols
could be constructed using the system as a basis. The z-Kernel
composed a protocol graph of protocol components together
into a system. This style of protocol composition was more
in keeping with the Protocol Booster ideas, but the existing
z-Kernel tools did not permit dynamic reconfiguration of the
protocol graph. Similar ideas were explored by Tschudin [41]
and Plagemann, e al. [42].

C. Infrastructures and Experimental Results

The first booster implementation [43] used a modified ver-
sion of the FreeBSD operating system. Boosters were injected
into and removed from the IP stack, accomplishing among
other things compression, encryption and keyword filtering.
The basic modification of the 4.4 BS-DLite stack is shown in
Fig. 4; further modifications (basically a small multithreading
system) were made to handle more complex boosters, as shown
in Fig. 5.

The initial prototype showed that a flexible and dynamically
modifiable system could be built, and led to a far more mature

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

Userlevel Booster 1

TCP

Linklevel Booster 2

Fig. 5. Multiplexing of boosters in the 4.4 BSDlite IP stack.

kernel infrastructure [44], [45] built in collaboration with Bell-
core. The Bellcore team developed a number of useful appli-
cations of the technique in the error detection and correction
domain; the Bellcore implementation was used in satellite and
wireless network trials.

D. High-Performance Boosters

Given that protocol boosters were used for many bit-intensive
tasks (FEC, compression and encryption) their implementation
in software presented performance challenges. This led to taking
the basic boosters ideas and building hardware support [46], in
the form of a switched pipeline of field programmable logic
called the “Programmable Protocol Processing Pipeline” or P4.
A photograph of the P4 is shown in Fig. 6.

The P4 was used standalone to demonstrate that boosters
could be run at OC-3c line rates of 155 Mb/s, and also in con-
cert with a PC used as a control element for inserting and re-
moving boosters from the protocol processing path. The hy-
brid hardware/software architecture of Hadzic’s [47] disserta-
tion demonstrated that an FEC booster could automatically de-
tect the need for insertion using failed AAL-5 cyclic redundancy
check (CRCs), insert itself, and enhance the performance of a
set of TCP/IP/ATM benchmarks, thus demonstrating the power
of the protocol architecture.

V. ACTIVE NETWORKS

In this section, we show how the ideas of the previous section
(Section IV) influenced research directions, and discuss the pro-
grammatic history of AN.

A. From Protocol Boosters to DARPA’s AN Program

The need for a general purpose infrastructure with which new
protocols could be developed was becoming clear, something
that was not a main focus of protocol boosters. The flavor of STF
in protocol boosters, and its implications for evolving network
infrastructures, had attracted the attention of DARPA managers
thinking about network/computer integration (NCI). Protocol
boosters offered a concrete proposal to achieve this. Protocol
boosters provided a concrete demonstration to DARPA that ap-
proaches to NCI were possible.

DARPA charged an Information Science and Technology
(ISAT) study group with defining a research agenda for NCI,
which led to the DARPA AN program.

Fig. 6. Programmable protocol processing pipeline.

B. Putting Together a Program

Simultaneously with the early Protocol Boosters work,
David Tennenhouse had begun to think about plans for a
programmable network infrastructure, which he called “Active
Networks.” He had also had been serving on the ISAT team that
was considering ideas involving programmable networks. Gary
Minden at DARPA was successful in using the results of the
ISAT study to create a “broad agency announcement” (BAA),
DARPA’s means for soliciting research proposals. This BAA,
BAA 96-06, “research topics in high performance distributed
services,” was the watershed event that lead to the explosion
of AN work in the late 1990s.

One group of researchers [48]-[53] generated a collaborative
set of responses to the BAA. Teleconferencing in the Fall of
1995 was used develop a “matrix” of contributions each labora-
tory could make to the overall goal of a programmable network
infrastructure. The matrix represented each lab’s contributions
as rows with varying degrees of contribution to each of the fol-
lowing six areas:

1) enabling technologies,

2) platform development,

3) programming models,

4) middleware services and applications;

5) active controls and algorithms;

6) network operations.

It was clear that all of these were needed, and so the goal was
to ensure that no necessary research was left out of the pro-
gram. Several groups agreed to include a representation of the
matrix in their proposals so that DARPA could see how partic-
ipants could fit together into an overall research agenda. This
research agenda was later captured in a paper by Tennenhouse
and Wetherall [52].

We should mention that the work that grew out of the
DARPA BAA was predated by several pieces of early work that
clearly foreshadow AN. First, there is the work done by Zander
and Forchheimer of the University of Linkoping, Sweden,
on a system called “Softnet.” The Softnet [2], [3] system
was a packet radio network where packets of multithreaded
M-FORTH code were interpreted by network elements con-
sisting of two-processor nodes; one serviced network events,

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 9

and the other ran user programs. The nodes were supported
by a small operating system, which protected the network
elements, e.g., to prevent buggy programs from destroying the
packet-switching fabric. The focus was proof-of-concept rather
than a wholesale change in network infrastructure, models and
run-time support. Nonetheless, this team should be given due
credit as the progenitors of what we now call AN.

Second, at around the same time, the progenitor of the “cap-
sules” [54] or “active packet” model [55] was being developed
by David Wall [1]. In his paper, Wall outlined a new approach
to networking. Quoting from the paper’s abstract:

“Network algorithms are usually stated from the view-
point of the network nodes, but they can often be stated
more clearly from the viewpoint of an active message, a
process that intentionally moves from node to node.”

While neither the softnet nor the active message systems cap-
tured the entire AN agenda, they had the basic foundations. The
advances then, would be from new technologies that had arisen
since, in particular new programming language [56], [57] and
security technologies [58] that could provide desirable sets of
tradeoffs amongst security, programmability, usability, and per-
formance.

VI. SWITCHWARE

Having examined some of the trends that led to the wide scale
development of AN, we now consider one specific project and
its exploitation of the interplay of operating systems, distributed
systems, programming languages, and networking. We place a
particular emphasis on how it addressed the tension between
flexibility, safety and security, performance, and usability.

We focus on the SwitchWare project [59], [60] for a
number of reasons. The most obvious is that it is the work
with which the authors are most familiar. However, there are
other significant reasons to examine SwitchWare as well.
First, SwitchWare has touched upon many of the key issues,
ranging from the development and use of modern programming
language technology to the development of new operating
systems technologies focused on resource control. In fact, a
specific initial goal of SwitchWare was exactly the application
of modern programming language (PL) techniques to AN.
Second, because SwitchWare is really many smaller projects, a
significant number of different flexibility/security/performance
tradeoffs have been explored. Finally, SwitchWare is the
only project to explore (and in fact, fuse) the two main AN
approaches of programming network nodes using downloaded
dynamically linked “active extensions” and programming
nodes by executing “active packets” that carry their code as
part of the packet.

Early in the SwitchWare work, it became clear that we were
interested in exploring both the active extension and active
packet approaches. As our work progressed, however, we came
to the conclusion that the two approaches are synergistic. This
led to the SwitchWare architecture [61], an abstract model of
which is presented in Fig. 7, upon which we will elaborate in
this section of the paper.

In this architecture, nodes are both extensible using Active
Extensions and programmable using active packets. Active

Active
Packet

Active
Packet

Ephemeral Functions and State
used by Individual Active Packets

Administrative Privitege

Active Extensions — Persistent State
and Functions used by Many Active Packets

Loader - for Persistent State + Functions
(Minimal Static Functionality)

Fig. 7. Abstract roles of SwitchWare subsystems.

packets provide light-weight, but very fined grained pro-
grammability. They basically serve as a scripting language
that glues together node-resident services. An important
advantage of this is that since node-resident services can now
be composed, it makes sense for them to comprise smaller,
more general, more reusable, pieces of functionality. Active
extensions complement this by giving the system builder the
ability to add new services dynamically and on-the-fly. Now,
deploying a new protocol or service is just a matter of writing
any new services that may be needed, while reusing existing
pieces, and writing the simple packet programs that glue
them together. This architecture has very significant flexibility
advantages, but, as we will see, it also has an important safety
and security benefit.

Despite the synergy between the two approaches in Switch-
Ware, much of the research focused on one approach or the
other. Thus it is easiest to consider each thrust in turn, begin-
ning with active extensions.

A. ALIEN

Active extensions allow the services of the network element
to be dynamically extended, and thus their support is a funda-
mental question in node architecture. As noted in Section I, there
is a design space with tradeoffs among flexibility, security, per-
formance and usability. Thus, any AN node architecture must
have a clear model of what regions of the design space it wishes
to occupy, and what requirements will be placed on program-
mers of active extensions. The research goal of engineering an
experimental system is to find desirable and perhaps unexpected
local optima in the design space.

Work on active extensions in SwitchWare took place mainly
in the context of the ALIEN system and its enhancements such
as the secure active network environment (SANE). ALIEN was
first prototyped in the Active Bridge [62], which showed that a
complete bridge could be constructed “on-the-fly” from exten-
sions that added buffered repeating, trivial local-area network
(LAN) extension, self-learning and spanning tree functionali-
ties. It also demonstrated that active extensions could be used to

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

evolve the bridge from one spanning tree protocol to another and
that, after failing a logical self-check, this evolution could be re-
versed. While the demonstration that active extensions could be
used to build a functioning bridge lent credibility to the case for
AN being useful, the more important architectural lesson was
the understanding of the relationship between flexibility and se-
curity (in the form of privilege). ALIEN layered unprivileged
programmable code over privileged programmable code, which
in turn was layered over an immutable loader which served to
load the privileged programmable code into the system.

A crucial design decision in ALIEN was its implementation
in CAML [63]. CAML was chosen for a number of reasons.
First, it was a strongly typed language with support for runtime
safety checks and garbage collection. These features were cru-
cial to our safety and security goals because they made it impos-
sible for an extension to crash the system due to a pointer error
or break security by using buffer overflow. Second, CAML was
one of the few existing systems (Java being the other) to sup-
port remote dynamic loading of machine independent byte-code
modules. This was crucial to our flexibility goals as it provided
basic support for active extensions. Third, in CAML, when mod-
ules were dynamically loaded, they could be linked against a
“thinned” module interface [64]. This allowed control of the
functionality extensions could access, further contributing to
our safety and security goals. Finally, we choose CAML over
the single existing Java implementation for three reasons. First,
CAML is an ML [65] family language. ML is a very well un-
derstood language from a PL theory point of view and our hope
(ultimately unrealized) was that this would facilitate the use of
formal methods to further assist with our safety and security
goals. Second, at the time the CAML implementation was sig-
nificantly faster than SUN’s Java implementation, which con-
tributed to our performance goals. Finally, there was consider-
able interest in the ML community [66] in networks as an area
of study.

The use of programming language protections has advan-
tages, as we have enumerated above, but extra mechanism is
needed to trust these protections when the language system: 1)
does not have exclusive access to the hardware; 2) must have
protected channels to other, similar nodes; and 3) must control
remote access to privileged resources. The diagram in Fig. 8 il-
lustrates the detailed features of our solution, other details of
which are described in Hicks, et al. [67].

The issue of exclusive access to the hardware has two impli-
cations. First, resource management of all types becomes chal-
lenging, as multiplexing of the hardware is carried out by an-
other system, usually an operating system [68], [69]. Second,
that system and all systems if in turn trusts must be trusted, re-
cursively. To address the second of these two points, a secure
bootstrap (AEGIS [70]) was developed to prevent subversion of
our privilege enforcement from below,> we called the resulting
system SANE [72], for “secure active network environment.”

As we have mentioned before, one of the central contributions
of the architecture was that we were able to define a privilege
boundary above the immutable code of the loader. This allowed

3This focus on top-to-bottom integrity led to the discovery of new classes of
security threats for programmable hardware [71].

Integrity

Loadable Modules .
.. Dependencies

Remote Authentication

Module Checking of Modules

Caml Runtime/Loader

o \.“_'.

Linux Process VM v .
. Memory Protection

Boundary

O.S. (e.g., Linux) v

Card ROMS, CMOS,... v Secure Bootstrap

and Recovery, via
AEGIS

BIOS Level 1 o

Fig. 8.
SANE.

Chaining layered integrity checks and node-node authen-tication in

| Caml I
IgLAN! ¥ [Caml |

Libraries

Unprivileged

Privileged
Active
Extensions

ALIEN Loader (mostly Caml,

+ native code for cryptography)
v [=) T 4

Node Operating System (Both
Linux and Nemesis were used)

AEGIS Secure Boot (Integrity
of BIOS, FLASH, O.S., etc.)

Fig. 9. SwitchWare system architecture.

the loader to be extremely “thin,” as hinted at in the illustration
in Fig. 9.

While we initially used Linux as a development platform, it
became clear that in the role of a network element operating
system, even with secure bootstrap, Linux had severe limita-
tions. In particular, it did not share the careful attention paid
to security issues that we demanded of ALIEN itself, and the
general Linux distributions had no support for metered resource
con-trols and limits of any type, preventing ALIEN from sup-
porting many applications which required timing and other re-
source guarantees.

The second thrust became resource guarantees, for resources
such as memory, bandwidth and computation time. We ad-
dressed the resource control issues, including denial-of-service
attacks [73] in one fashion in our secure quality of service

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 11

handling [74] (SQoSH) architecture, and in another fashion en-
tirely in the resource controlled active networking environment
[75] (RCANE).

SQoSH used a new operating system called Piglet [76]-[78].
In the configuration in SQoSH, Piglet ran on one processor
which managed networking activities, while Linux com-
municated data and control to and from Piglet via shared
memory. Piglet provided enforcement of network resource
allocation policies specified by the SANE system through
the Linux kernel. Resource management was controlled with
the same cryptographic credentialing system used to control
code-loading in SANE, but adapted to the resource manage-
ment interfaces offered by Piglet, thus integrating resource
management with the other elements of the security architec-
ture. However, SQoSH showed more that SANE could be used
as a secure front end to a resource management mechanism,
rather than the more crucial architectural result that SANE
could be integrated with a complete resource management
system, that included resources such as heap space.

The RCANE project protected active applications from
“QoS crosstalk,” where a lack of resource controls allowed
applications to interfere with resource allocations of other
active applications. RCANE was a collaboration with the
University of Cambridge’s Paul Menage, who melded the
SwitchWare programming environment with a new multimedia
operating system developed at the University of Cambridge
Computer Laboratory named Nemesis [79]. Menage’s work
[80] examined many resource management issues, including
garbage collection and CPU resources and developed a com-
plete resource management architecture for SANE, which
addressed quality of service (QoS) management, QoS crosstalk
and was completely integrated with SwitchWare [75], including
support for PLAN. This system demonstrated that with appro-
priate support, active extensions could operate with resource
guarantees, enabling a wider range of network services and
distributed applications.

B. Packet Language for Active Networks

Work on Active Packets in SwitchWare took place mainly
in the context of the Packet Language for Active Networks
(PLAN) system [81], [82]. PLAN is a domain-specific lan-
guage. PLAN was tailored specifically to the task of acting as
a “glue” language to compose operations provided by node
services.

A critical aim in the PLAN design was to make PLAN
packets fundamentally as lightweight as IP packets when per-
forming similar functions. To meet this goal required that
PLAN packets not be required to cryptographically authenti-
cate before execution. However, it was also a goal that au-
thentication be supported as an option, so that PLAN could
perform privileged operations. (Related work in ALIEN using
CAML for active packets showed that this was a good decision.
CAML required authentication and thus proved unsuitable for
light-weight operations.) To achieve this goal, PLAN’s design
drew explicitly from operating systems by creating a protec-
tion boundary between PLAN execution and invocations of
service routines. That is service invocation plays the same role

as a system call, service calls can be checked or even require
authentication as is needed for the particular operation. This
approach has proven to give the PLAN programmer a great
deal of control over the cost of PLAN programs, significantly
enhancing flexibility.

A number of other aspects of PLAN design drew from our
experience in programming languages. From PL, we took the
idea that PLAN should be strongly typed (it lacks dynamic
storage allocation and arrays, so array bounds checking and
garbage collection are unneeded). A novel aspect of the lan-
guage is that although PLAN programmers may statically type
check their programs before injecting them into the network,
thus improving usability, PLAN programs are also dynami-
cally type checked while being executed on a remote node.
This guarantees that the node is protected, but avoids the cost
of static checking when only a small part of the program is
executed. Also from PL, we were motivated to design PLAN
so that it might have a simple formal semantics. This required
that the language itself be very simple and led to the eventual
creation of an actual formal semantics [83]. In fact, Stehr and
Talcott [84] even created a second specification in Maude. An-
other reason we wanted a simple language is that we believed
that a simple restricted language would be easier to make se-
curity claims about and also make formal proofs of PLAN
programs easier. A notable restriction is that PLAN programs
are guaranteed to terminate and cannot loop infinitely. This
means proofs need not demonstrate termination and gives us
one useful bound on the resource usage of PLAN programs. It
also means that PLAN is not as general a programming lan-
guage as “Turing-complete” languages.

PLAN also drew from our experience in operating systems
and distributed systems. The use of protection boundaries has al-
ready been noted, but another aspect is that PLAN does not sup-
port mutable data. This is important from an OS view because,
if PLAN programs want to change the state of a node, they must
call a service routine. That means that all issues of concurrency
control become issues at the level of the service implementa-
tion (ALIEN in our case) and PLAN programs themselves are
independent and can be executed independently. This is an im-
portant property for high performance packet processing. This
immutable data property also played arole in the distributed sys-
tems nature of PLAN. By its very nature, PLAN is a distributed
systems programming language. It uses the remote evaluation
model for distributed computation, shipping both PLAN pro-
grams and data (in the form of function arguments) from node to
node. Having all data be immutable means that it can be copied
when it is transmitted and that the copied values have exactly the
same meaning as the original. This is in contrast to RPC systems
where copying a mutable value breaks the sharing relationship
and changes the semantics of operations on the data.

We wanted to use PLAN to build a significant networking
system, both to gain experience with our architecture and
PLAN and to find any “holes” in PLAN’s design. The system
we built, PLANet [85], is a fully functioning internetwork.
PLANet uses ALIEN to provide active extensions and PLAN
for active packets and all packets are active. We felt that
if we could implement internetworking, we could probably
implement almost all other networking systems. This choice

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

was fortuitous: we immediately recognized the need to support
encapsulation as well as to treat packets as data, for purposes
of fragmentation and encryption.

The solution we fixed upon [86], “chunks,” elegantly com-
bines the PL concept of “closure” and the remote-evaluation
constructs used in PLAN. The idea is simple. A chunk is the
function name to be called, the arguments to this function, and
the code needed by the function. Chunks are an abstraction that
captures the notion of “packet” in PLAN. Chunks can be sent to
remote nodes where they can be executed, they can be treated as
abstract data and passed as arguments to other chunks. This can
be used to create generalized encapsulation, with PLAN execu-
tion driving demultiplexing. Finally chunks can be treated as ar-
rays of bytes, allowing them to be encrypted, or split apart and
reassembled. Chunks make it easy to create protocol boosters
that are inserted and deleted even at a packet by packet level.
Chunks represent perhaps the first new abstraction in active
packets since Wall’s [1] work.

C. Further Developments

PLAN, PLANet, and ALIEN eventually led to work on sev-
eral “second generation” AN systems, which built on previous
SwitchWare experience.

The first such system is Michael Hick’s thesis work on dy-
namic updating [87], [88]. While experimenting with network
service level evolution in PLANet, it became clear that the
dynamic loading supported by CAML required that interfaces
would need to be designed for evolution, not just evolved
when the need arose. Dynamic updating addresses this issue by
allowing almost arbitrary updates to be made to running code,
including changing data representations on-the-fly. Dynamic
updating was implemented as part of the typed assembly lan-
guage (TAL) system [89]. TAL is one of the newest approaches
to providing safe, mobile code.

The second such system is Jon Moore’s thesis work on Safe
and nimble active packets (SNAP) [90], [91]. SNAP draws
lessons from many first-generation active packet systems,
including ANTS [9] and Smart Packets [51], but it is most
closely related to PLAN. The two major goals of SNAP were
to improve performance and to make active packets safer with
regards to resource allocation and use. To achieve better per-
formance, SNAP was designed to be a lower-level (byte-code)
language than PLAN and its design allows for much simpler
memory management and significant improvements in mar-
shaling and unmarshalling costs. SNAP was implemented in the
Linux kernel. SNAP meet its performance goal and just slightly
slower (a few percent) than the Linux IP implementation.
To address resource use, SNAP introduces a model in which
each packet can use only a linear amount of CPU, memory,
and bandwidth, each time it executes on a node. This is a
very severe restriction and to implement it required limiting
the byte-code language to making only forward branches.
Thus SNAP goes much further than PLAN in using language
restrictions to gain safety and security. Experiments with SNAP
and the PLAN-to-SNAP compiler [92] suggest that SNAP still
retains enough flexibility to be generally useful.

The architecture of the complete system is shown in Fig. 9.

622+ Mbits/sec
A
P4
Mbits/sec
120}
100—— SNAP SNAP+ALIEN PAN
80 |
601 PLAN PLAN+ALIEN
40| ALIEN
20
ANTS
0 | | l I |
l ! ! l I
Increasing Flexibility

Fig. 10. Flexibility versus measured performance tradeoffs.

D. Tradeoffs

Fig. 10 illustrates results in the active networking design
(sub)space of performance versus flexibility tradeoffs. The P4
alone, while operational at 155 Mb/s and workable to 622+
Mbits/s [47] with different component choices, is standalone
the least flexible of the systems, as it can only accommodate
“programs” which can be expressed within the constraints
of a field-programmable logic device. SNAP also has more
limited flexibility, but can operate at 100 Mb/s. PLAN is more
flexible than SNAP, while ANTS can support nonterminating
execution, making it more flexible than PLAN. ALIEN is
the only general-purpose Active extension system shown.
Its flexibility is high since almost arbitrary changes can be
made in the underlying node. ALIEN’s performance depends
on whether it is using CAML-based Active packets, or ones
based on PLAN or SNAP. There is no SNAP+ALIEN, but it
is reasonable to assume it would be similar to SNAP alone.
We also show practical active network (PAN). As essentially a
kernel module loader, PAN performs very well and is of course
quite flexible, but no better than SNAP+ALIEN.

What PAN lacks, of course, is any security. If we plotted an
additional dimension of the design space, we would find the
most secure combination would be the combination of ALIEN
and SNAP, following our experience with PLAN+ALIEN. This
gives resource bounds at the active packet level, and with the
addition of some operating system support, such as SQoSH’s
Piglet or RCANE’s Nemesis, at the active extension level as
well. Problems with the Java virtual machine security, plus the
lack of resource management and support for formal methods
suggests that ANTS is less secure than PLAN or SNAP, partic-
ularly in the latter case where SNAP’s resource usage is linear
in the size of the active packet.

E. Summary

The performance of AN systems is adequate for the network
edge, as discussed above in Section VI-D and compared against

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 13

Fig. 11.

Computation versus network performance tradeofts.

Fig. 11, which shows the number of programmed instructions
(P) that can be executed by a general purpose processor on a
small data unit such as a bit, byte or word without delaying the
data transmission, along with some design pressures that follow
from the value of P. Specifically, almost all access networks
have bandwidths less than 100 Mbits/s, a speed at which many
of the systems described in this paper operate at, or near to (see
Fig. 10). The P4 system described in Section IV can operate at
or near line rates since it is implemented using programmable
hardware; current components would allow operation above
1 Gbps for functions realizable in field programmable gate
array technology.

Additionally, new network processors [93]-[95] are of-
fering a path to wire-speed performance, with specialized
architectures suited to concurrent execution of networking
operations. The network processor technology is positioned
to provide powerful programming environments to network
element developers.

The SwitchWare node architecture addressed all of the fun-
damental problems of security [61], [72], [96], [97]: controlling
integrity, resource multiplexing and management, and authenti-
cation. The security solutions were portable and are useful today
in many contexts, from loading code onto phones to providing
support for multiple isolated execution environments.

VII. FUTURE DIRECTIONS

Active networking and AN-inspired approaches continue
their transformation of networking. In this section, we first
review three areas that both benefit from lessons learned
in active networking, and might well absorb more lessons
from the tradeoffs discovered among flexibility, performance,
usability and security. We then consider the implications of the
Internet Engineering Task Force’s (IETF) study of forwarding
and control element separation (ForCES) and opportunities it
creates for AN. Finally, we discuss active router control, an
approach to exploiting the role separation creates for AN-based
control elements in the Internet.

A. Middleboxes, Overlays, and Sensor Networks

Middleboxes: Our observations suggest that points at or near
the IP network’s “edge” (rather than the “core,” which seems

likely to evolve toward optical circuit-switching in any case
[98]) will be the deployment point for active networking tech-
nologies. Not surprisingly, this is already happening: domain-
specific “middleboxes” [99] are appearing there such as fire-
walls, network address translators (NATs) and intrusion detec-
tion systems (IDSs). To quote from the request for comments
(RFO),

.. .Instead of concentrating diversity and function at the
end systems, they spread diversity and function throughout
the network.

Examples given of such middleboxes include
e NATs [100]-[103];
* NAT with protocol translator (NAT-PT) [104];
* SOCKS gateway [105];
¢ Packet classifiers, markers and schedulers [106];
* Transmission control protocol (TCP) performance en-

hancing proxies [107];

o IP firewalls [108], [109];

» Gatekeepers/session control boxes [110], [111];
* Transcoders;

e Proxies [110], [112].

The opportunity here is clear; these various application-driven
“ad hoc” examples of STF functionality can be unified in a
common framework, and embedded in a common programming
model reinforced with the safety and security lessons learned
from active networking.

Overlay Networks: The current focus on peer-to-peer
systems [113] is a way to introduce new services using an
overlay, in the style of the World Wide Web. “Peers” use the
IP network layer as a “link;”each peer serves as a “router” in
the network. Since these peers are fully programmable nodes,
essentially arbitrary distributed computing architectures can
be constructed; the approach has mainly been applied to data
and file services (e.g., the music distribution of Napster and
Gnutella) as these are not particularly sensitive to latencies and
require restricted access to machine features. Of course, more
aggressive approaches are possible when considering network
services. Some early overlay work in active networking was
done by Crowcroft [114] and his collaborators at University
College, London, resulting in, for example, in an architecture
for application layer routing [115]. Other early systems such as
Emulab [116] and X-Bone [117] illustrated the design space,
stimulating larger-scale experiments* such as PlanetLab [118].
Perhaps most interestingly, some of these infrastructures [119]
are overlay equivalents of the STF model introduced earlier in
this paper.

The overlay approach avoids altering the behavior of the
network layer in introducing new services [120], at some cost
in ignorance of relevant network layer characteristics such
as topology, multiplexing and latency. As the network layer
has proven difficult to change (except through interposition
of middleboxes, as discussed above) this approach avoids the
difficulty and lets experimentation proceed. If peer-to-peer
systems become sufficiently successful, they may stimulate
selective reshaping of the network layer from above [118], in

“Interestingly, Crowcroft et al.’s ALAN software is was used with X-Bone
and is now used with PlanetLab.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

Ny

IP Router/
Forwarder

IP Router/

Forwarder [<<- -+
P

V

Fig. 12. Active router controller (ARC) managing a set of forwarder/routers.

the same way that IP, initially a software overlay, reshaped
router hardware.

Sensor Networks: The availability of cheap powerful sen-
sors with communications capability has stimulated interest in
access to, and organization of, groups of these sensors [121].
The networking issues are interesting, as the devices are often
low-powered, with limited communications capability (espe-
cially, low bandwidth) and limited processing capacity. They
may also be unreliable. Thus, they are typically organized as
“ad-hoc networks,” where the devices themselves self-organize
into a network. Applications which use these networks are often
more interested in the aggregate information from a group rather
than data from a particular sensor, and this aggregation of infor-
mation can result in reductions in data traffic.

B. ForCES Augmenting the Internet

The IETF’s forwarding and control element separation
(ForCES) working group [122] models router architectures in
a way that allows introduction of programmable and active
technologies into the Internet control plane, in the style of
BBN’s FIRE [123].

The principal observation we make is that forwarding and
routing are distinct activities. Routing is part of the “control
plane” of the IP Internet, while forwarding is the “transport
plane.” These activities were consolidated in traditional TP
routers, but are now recognized as logically separate (viz.
MPLS).

The separation permits more general network elements to re-
place IP routers in performing control plane activities, allowing
distributed routing with improved performance, slightly more
global optimization, and perhaps surprisingly, an increase in
security. In addition, the separation of routing and forwarding
functions permits decoupling their performance, allowing better
tracking of technology improvements in both forwarder me-
chanics and routing algorithms.

C. Active Router Control

Active router control uses fast forwarders as a virtual link
layer, managed by specialized active router controllers (ARCs).

I
|
I
I
1
1

-~Z) Controller

~

P Router/ | -2
outer/ | .-"
— IP
Forwarder <
P

An illustration of this idea is shown in Fig. 12. Using a set of
routers as a “router in a room’ is not uncommon; one could
simply reduce their autonomy and specialize them to IP for-
warding—making way for source routing over all-optical net-
works or routing/router control internal to the network. The use
of general purpose network elements permits this separation of
concerns, while offering the potential for improvement of the
Internet on a number of axes.

Fig. 12 illustrates an ARC, perhaps modeled after the active
bridge [62], colocated on a fast LAN with a set of router/for-
warders. In this configuration, choices of routes are made by
the ARC. This can be done with unmodified routers via com-
mand interfaces, or more easily if the routers are architected to
be dumb forwarders slaved to a local route controller. ARC in-
tercommunication is done via IP packets; both “in-band” and
“out-of-band” (private link) models can be used. ARC opera-
tions across the LAN will incur a delay relative to operations
internal to an integrated router/forwarder, but given the con-
trol/flow distinction between routing and forwarding, it is not
a major limitation of the design. A significant advantage is that
specialized forwarding tables can be loaded into each forwarder;
these tables can be small since entries must exist only for adja-
cent nodes.

A key advantage of the ARC model is that for computation-
ally-centered tasks (routing, or more general computations if
the programmability of ARCs is exploited), a computer which
tracks computer technology trend exponentials (faster CPU,
larger RAM) is used, while the forwarders independently track
networking technology trend exponentials such as bandwidth
improvements.> While a potential weakness of the scheme
is ARC failures, this is both unlikely and can be addressed
through classical techniques such as heartbeats, redundancy,
etc. An apparent risk is that a particular route carrying routing
information from an ARC to a forwarder may break, but this
risk is never worse than in the present Internet, and discovery
of link failures can fail forwarders over to a new ARC if
necessary. ARCs initialize by detecting adjacent forwarders,

SNot surprisingly, the highest performance IP routers have also adopted such
a distributed architecture, although with different goals and roles for the line
cards.

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 15

i

IP Router/

Forwarder <\h“\>

IP Router/ :
Forwarder |

~<p->| IP Router/
Forwarder

Update ' Router

! Controller;
/

IP Router/
Forwarder

f

ARG :s distributed throughout an Internet.

Fig. 13.

using IP packets to extend control to other forwarders. ARCs
intercommunicate using IP packets, essentially using IP as a
universal link layer.

The basic distributed control architecture of Fig. 12 can be
replicated throughout an Internetwork, with the active elements
using the managed Internet routes as link layers. This is shown
in Fig. 13, where a set of active nodes have been grafted into a
larger collection of forwarders to create an active Internet.

VIII. CONCLUSION

The AN research program has had effects on the field of net-
working, both broad and deep. Most all of the initial questions
raised about active networking, particular those of performance
and security risks, have been addressed. Further, technology
transfer and commercialization of AN or specializations of it
has been widespread and vibrant communities have developed
worldwide. Finally, we suggest, as we observed in Section VII,
that there is far more we can do.

Worldwide efforts in active and programmable networking
are underway, particularly in Europe (see, e.g., the “Future Ac-
tive IP Network™ project [124] or the ALPINE project [114]).
In addition to the network processor market, other efforts are
seeking to commercialize one or more aspects of active net-
working, and active networking inspired approaches such as
“packet-marking” [125], [126] are penetrating products.

The wireless industry is also absorbing active network ap-
proaches, ranging from mobile telephony industry’s use of mo-
bile code to the software definition of radio [127], [128].

The need for flexible network evolution remains, and in many
ways the needs of distributed computing are still not sufficiently
well met by the exclusion of computing application programmer
interface (APIs) from the dominant network infrastructure.

IP Router/
Forwarder

l
Active | Active

Pacléé'ts-._ ' Router
/71 Controller:
7
IP Router/ Route
Forwarder Update

IP Router/
Forwarder

t

The uptake on active networking has been slow, and its
near-term impact has not been sufficient, but the marketplace
is delivering network embedded programmability, albeit in an
ad-hoc and purpose-built fashion. For example, as we noted
in Section VII, NAT boxes are simple STF-style translators,
and firewalls are event-driven programs with simple actions
(pass, drop, or log) driven by complex rule specifications in
firewall-specific rule expression languages.

Perhaps we should just treat this as a case of “le mieux est
I’ennemi du bien” [129] and move on, but the difficulty with
the ad hoc approach is that these purpose-built systems cannot
absorb modules and programming styles from existing systems,
and are difficult to extend and compose. The active networking
approach provides a common infrastructure with which such
systems can be built in a robust and secure manner. The IETF
“middlebox” work [99] suggests that the value of a unified pro-
gramming model for network services is increasing, rather than
decreasing.

We pose three open questions.

* How can an operational network system evolve piece-
wise, so as not to incur negative economic effects on early
adopters of the technology?

* What knowledge about the network is necessary to diag-
nose problems, drive reconfiguration of the network archi-
tecture, etc.?

* How can one automate the process of choosing protocol
elements, such as protocol boosters, to compose an op-
timal protocol for a given application and network condi-
tions?

ANs offer an opportunity to build a truly flexible distributed
computing infrastructure, where the programmer is in command
of all aspects of their distributed computing model.

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

ACKNOWLEDGMENT

The authors wish to particularly thank D. Maughan of
DARPA for his energetic support and insightful guidance of the
DARPA AN program. W. D. Sincoskie’s questions stimulated
the “store-translate-and-forward” approach. Collaboration with
D. Feldmeier on Protocol Boosters provided some first insights
into how to get STF right, and we continued to work together
on Active Networking in the SwitchWare project. B. Lyles
pointed out the visionary work of Zander and Forchheimer in
the Softnet project, and B. Plattner pointed out the work done
by Wall in his analysis of messages as active agents.

D. S. Alexander led the development of our first prototype
active networking system, and suggested bridging as a con-
vincing application for on-the-fly construction of a software
element. M. Shaw contributed to this implementation and its
evaluation. W. Arbaugh and A. Keromytis figured out how
to secure the prototype system as it evolved into Alexander’s
ALIEN system. I. Hadzic designed and implemented the P4,
showing that programmable infrastructures could operate at line
speeds, and in many ways foresaw network processors. S. Muir
and J. Shapiro designed novel alternative operating systems
architectures (Piglet and EROS, respectively) to understand
the resource control and protection design space. M. Hicks,
P. Kakkar, and J. Moore were instrumental in the initial PLAN
design and implementation. M. Hicks and J. Moore also were
active in the design of PLANet and are the implementors
of that system. M. Hicks developed the dynamic software
updating system, for which he won the 2002 SIGPLAN Best
Programming Language Dissertation Award. Finally, J. Moore
developed the SNAP system.

Collaborators at Penn in the SwitchWare project, particularly
D. Farber and C. Gunter, helped crystallize design decisions
and C. Gunter was a principal contributor to PLAN and as-
sisted with the design of PLANet. W. Marcus, M. Segal and
A. Bogovic at Bellcore (now Telcordia Technologies) were
significant collaborators, implementing a substantial protocol
boosters infrastructure and a variety of applications for active
networks, including a powerful publish/subscribe information
distribution system.

G. Minden had the vision to see that Protocol Boosters were
a path to a new form of network/computer integration, enabling
an improved binding between networks and distributed appli-
cations. D. Tennenhouse, first at MIT and then at DARPA,
championed the DARPA Active Networks program into exis-
tence. The work of Tennenhouse, J. Guttag, and D. Wetherall,
resulted in the most widely used Active Networking system,
ANTS.

Many people have reviewed, and improved, earlier versions
of this paper with their comments on both history and the
description of it in this paper. These include W. D. Sincoskie,
D. Feldmeier, D. S. Alexander, B. Plattner, C. Partridge,
I. Hadzic, G. Minden, A. Keromytis, D. Farber, S. da Silva,
J. Crowcroft, M. Hicks, S. Denazis, W. Marcus, J. Davin,
D. Wetherall, S. Shenker, C. Tschudin, L. Peterson, D. Clark
and R. Braden. Any remaining inaccuracies are ours alone.

(1]
(2]

31
[4]
(51

(6]
(71
(8]

(91

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]

[32]
[33]

REFERENCES

D. W. Wall, “Messages as active agents,” in Proc. 9th Annu. POPL,
1982, pp. 34-39.

J. Zander and R. Forchheimer, “Preliminary Specification of a
Distributed Packet Radio System Using the Amateur Band,” Univ.
Linkoping, Linkoping, Sweden, Jan. 1980.

, “Softnet—An approach to higher level packet radio,” in Proc.
AMRAD Conf., 1983.

J. M. Smith, “Reflections on Active Networking,” Dept. Comput. In-
form. Sci., Univ. Pennsylvania, Tech. Rep. MS-CIS-03-05, 2003.

D. J. Farber and K. Larson, “The architecture of a distributed computer
system—An informal description,” Inform. Comput. Sci., Univ. Cali-
fornia, Irvine, Tech. Rep. 11, 1970.

D. J. Farber, “The distributed computing system,” in Proc. COMPCOM,
1973, pp. 31-34.

J. M. Smith, “A survey of process migration mechanisms,” in Proc. ACM
SIGOPS Oper. Syst. Rev., July 1988, pp. 28—40.

J. M. Smith and J. Ioannidis, “Implementing remote fork() with check-
point/restart,” IEEE Tech. Committee Oper. Syst. Newsletter, pp. 12-16,
Feb. 1989.

D.J. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: Atoolkit for
building and dynamically deploying network protocols,” in Proc. IEEE
OpenArch, 1998, pp. 117-129.

B. J. Nelson, “Remote Procedure Call,” Ph.D. dissertation, Carnegie
Mellon Univ., Pittsburgh, PA, 1981.

A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39-59, Feb. 1984.

J. Gosling, D. S. H. Rosenthal, and M. J. Arden, The NeWS Book: An
Introduction to the Network/Extensible Window System. New York:
Springer-Verlag, 1989.

J. W. Stamos, “Remote Evaluation,” Ph.D. dissertation, Mass. Inst.
Technol., Cambridge, Jan. 1986.

J. W. Stamos and D. K. Gifford, “Remote evaluation,” ACM Trans. Pro-
gram. Lang. Syst., vol. 12, no. 4, pp. 537-565, Oct. 1990.

, “Implementing remote evaluation,” IEEE Trans. Softw. Eng., vol.
16, pp. 710-722, July 1990.

S. M. Clamen, L. D. Leibengood, S. M. Nettles, and J. M. Wing, “Reli-
able distributed computing with avalon/common lisp,” in Proc. Int. Conf.
Computer Languages, 1990, pp. 169—179.

J. M. Smith, J. Gerald, and Q. Maguire, “Process migration: effects
on scientific computation,” ACM SIGPLAN Notices, vol. 23, no. 3, pp.
102-106, Mar. 1988.

“Gigabit network testbeds,” IEEE Comput., vol. 23, pp. 77-80, Sept.
1990.

J. Babcock, “SONET: A practical perspective,” Bus. Commun. Rev., vol.
20, no. 9, pp. 59-63, Sept. 1990.

“Synchronous Optical Network (SONET) Transport Systems: Common
Generic Criteria,” Bellcore, Red Bank, NJ, Report TR-NWT-000253,
Dec. 1991.

Gigabit Rate Transmit Receive Chip Set Technical Data, Hewlett-
Packard, 1992.

HP9000 Series 700 HIPPI Interface HP J2069A, Hewlett-Packard, 1994.
W. St. John and D. DuBois, “HiPPI-SONET gateway,” in CASA Gigabit
Testbed Annual Rep., 1993, pp. 47-52.

J. Giacopelli, J. Hickey, W. Marcus, W. D. Sincoskie, and M. Littlewood,
“Sunshine: A high-performance self-routing broadband packet switch
architecture,” IEEE J. Select. Areas Commun., vol. 9, pp. 1289-1298,
Oct. 1991.

T. Bogovic, B. Davie, J. Hickey, W. Marcus, V. Massa, L. Trajkovic,
and D. Wilson, “The architecture of the sunshine broadband testbed,” in
Proc. of X1V Internation Switching Symp., Oct. 1992, pp. 204-208.

D. Clark, B. Davie, D. Farber, I. Gopal, B. Kadaba, W. Sincoskie, J.
Smith, and D. Tennenhouse, “An overview of the AURORA gigabit
testbed,” in Proc. IEEE INFOCOM Conf., 1992, pp. 569-581.

D. D. Clark et al., “The AURORA gigabit testbed,” Computer Netw.
ISDN Syst., vol. 25, no. 6, pp. 599-621, Jan. 1993.

W. D. Sincoskie, “Broadband packet switching: a personal perspective,”
IEEE Commun. Mag., vol. 40, pp. 54-66, July 2002.

P. Newman, G. Minshall, and T. Lyon, “IP switching—ATM under IP,”
IEEE/ACM Trans. Networking, pp. 117-129, Apr. 1998.

T. Li, “MPLS and the evolving internet architecture,” IEEE Commun.
Mag., vol. 37, pp. 38-41, Dec. 1999.

D. D. Clark, “The design philosophy of the DARPA internet protocols,”
ACM Comput. Commun. Rev., vol. 18, no. 4, pp. 106-114, Aug. 1988.
A. S. Tanenbaum, Computer Networks, 2nd ed: Prentice-Hall, 1988.

J. E. van der Merwe and I. M. Leslie, “Switchlets and dynamic virtual
ATM networks,” in Proc. IFIP Integrated Network Management V, May
1997, pp. 355-368.

SMITH AND NETTLES: ACTIVE NETWORKING: ONE VIEW OF THE PAST, PRESENT, AND FUTURE 17

[34]

[35]

[36]
[37]
[38]

(391

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

S. Rooney, “Connection closures: adding application-defined behavior
to network connections,” ACM Comput. Commun. Rev., vol. 27, no. 2,
pp. 74-88, 1997.

D. A. Halls and S. G. Rooney, “Controlling the tempest: adaptive man-
agement in advanced ATM control architectures,” IEEE J. Select. Areas
Commun., vol. 16, Apr. 1998.

J. E. van der Merwe and I. M. Leslie, “Service-specific control architec-
tures for ATM,” IEEE J. Select. Areas Commun., vol. 16, Apr. 1998.
W.D. Sincoskie, Personal Communications on Interservice Networking,
1992.

J. M. Smith, “Store, Translate and Forward (STF) Networks,” unpub-
lished, 1993.

N. C. Hutchinson and L. L. Peterson, “The x-Kernel: an architecture for
implementing network protocols,” IEEE Trans. Softw. Eng., vol. 17, pp.
64-76, Jan. 1991.

D. Ritchie, “A stream input-output system,” AT&T Bell Lab. Tech. J., pt.
2, vol. 63, no. 8, pp. 1897-1910, Oct. 1984.

C. Tschudin, “Flexible protocol stacks,” in Proc. ACM SIGCOMM
Conf., Aug. 1991, pp. 197-204.

T. Plagemann, B. Plattner, M. Vogt, and T. Walter, “A model for dynamic
configuration of light-weight protocols,” in Proc. 3rd IEEE Workshop
Future Trends Distributed Systems, Apr. 1992, pp. 100-106.

A. Mallet, J. D. Chung, and J. M. Smith, “Operating systems support for
protocol boosters,” in Proc. HIPPARCH Workshop, June 1997.

W. S. Marcus, A. J. McAuley, and T. Raleigh, “Protocol boosters: a
kernel-level implementation,” in Proc. IEEE GLOBECOM, Nov. 1998,
pp. 1619-1623.

D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S. Bakin, W. S. Marcus,
and T. M. Raleigh, “Protocol boosters,” IEEE J. Select. Areas Commun.,
vol. 16, pp. 437-444, Apr. 1998.

1. Hadzi¢ and J. M. Smith, “P4: A platform for FPGA implementa-
tion of protocol boosters,” in Field Programmable Logic 1997. New
York: Springer-Verlag, 1997, ser. Lecture Notes in Computer Science,
no. 1304, pp. 438-447.

1. Hadzi¢, “Applying Reconfigurable Computing to Reconfigurable
Networks,” Ph.D. dissertation, Univ. Pennsylvania, Philadelphia, Sept.
1999.

Y. Yemini and S. daSilva, “Toward programmable networks,” in
IFIP/IEEE Int. Workshop Distributed Systems: Operations Manage-
ment, Oct. 1996.

J. Hartman, U. Manber, L. Peterson, and T. Proebsting, “Liquid
Software: A New Paradigm for Networked Systems,” Univ. Arizona,
Tuscon, AZ, Tech. Rep. 96-11, June 1996.

C. Partridge and A. Jackson. (1996) Smart Packets. BBN. [Online]
Available: http://www.net-tech.bbn.com/smtpkts/smtpkts-index.html
B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, D. Rockwell, and
C. Partridge, “Smart packets for active networks,” ACM Trans. Comput.
Syst., vol. 18, no. 1, pp. 67-88, Feb. 2000.

D. Tennenhouse and D. Wetherall, “Toward an active network architec-
ture,” Comput. Commun. Rev., vol. 26, no. 2, 1996.

J. M. Smith, D. J. Farber, C. A. Gunter, S. M. Nettles, D. C. Feld-
meier, and W. D. Sincoskie. (1996, June) SwitchWare: Accelerating Net-
work Evolution (White Paper). Univ. Pennsylvania, Philadelphia. [On-
line]Available: http//www.cis.upenn.edu/jms/white-paper.ps

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,” IEEE Commun.,
vol. 35, pp. 80-86, Jan. 1997.

M. Hicks, J. T. Moore, D. Wetherall, and S. Nettles, “Experiences with
capsule-based active networking,” in Proc. IEEE DARPA Active Net-
works Conference and Exposition (DANCE), May 2002, pp. 16-24.

R. Milner, M. Tofte, and R. Harper, The Definition of Standard ML.
Cambridge, MA: MIT Press, 1990.

J. Gosling, B. Joy, and G. Steele, The Java Language Specification.
Reading, MA: Addison-Wesley, 1996.

M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proc. 17th Symp. Security 17 Privacy. Los Alamitos, CA:
IEEE Comput. Soc. Press, 1996, pp. 164—-173.

Switchware Home Page. [Online] Available: http://www.cis.upenn.edu/
switchware

J. M. Smith, D. J. Farber, D. C. Feldmeier, C. A. Gunter, S. M. Nettles,
W.D. Sincoskie, and S. Alexander, “Switchware: Accelerating Network
Evolution,” Dept. Comput. Inform. Sci., Univ. Pennsylvania, Philadel-
phia, Tech. Rep. MS-CIS-96-38, 1996.

D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D.
Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith,
“The SwitchWare active network architecture,” IEEE Network, pp.
29-36, May/June 1998.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]1

(751

[76]

[(77]

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

D. S. Alexander, M. Shaw, S. Nettles, and J. Smith, “Active bridging,”
in Proc. ACM SIGCOMM Conf., 1997, pp. 101-111.

X. Leroy, The CAML Special Light System (Release 1.10).
court, France: INRIA, Nov. 1995.

F. Louaix, “A web navigator with applets in CAML,” in Proc. 5th WWW
Conf., 1996, pp. 1365-1371.

R. Milner, M. Tofte, and R. Harper, The Definition of Standard ML.
Cambridge, MA: MIT Press, 1990.

E. Biagioni, “A structured TCP in standard ML,” in Proc. 1994 SIG-
COMM Conf., 1994, pp. 36-45.

M. W. Hicks, A. D. Keromytis, and J. M. Smith, “A secure PLAN,”
IEEE Trans. Syst., Man, Cybern. C, vol. 33, pp. 413-426, Aug. 2003.
L. Peterson, Y. Gottlieb, M. Hibler, P. Tullman, J. Lepreau, S. Schwab,
H. Dandekar, A. Purtell, and J. Hartman, “An OS interface for active
routers,” IEEE J. Select. Areas Commun., vol. 19, pp. 473-487, Mar.
2001.

P. Tullmann, M. Hibler, and J. Lepreau, “Janos: A java-oriented OS for
active network nodes,” IEEE J. Select. Areas Commun., vol. 19, pp.
501-510, Mar. 2001.

W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture,” in Proc. IEEE Security Privacy Conf., May
1997, pp. 65-71.

1. HadZi¢, S. Udani, and J. M. Smith, “FPGA viruses,” in Proc. 9th
Int. Workshop Field-Programmable Logic Applications, FPL’99, Aug.
1999.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith, “A
secure active network environment architecture: Realization in switch-
Ware,” IEEE Network, pp. 37-45, May/June 1998.

R. M. Needham, “Denial of service: an example,” Commun. ACM, vol.
37, no. 11, pp. 42-46, Nov. 1994.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, S. Muir, and J. M.
Smith, “Secure quality of service handling (SQoSH),” IEEE Commun.,
vol. 38, pp. 106112, Apr. 2000.

D. Alexander, P. Menage, A. Keromytis, W. Arbaugh, K. Anagnostakis,
and J. Smith, “The price of safety in an active network,” J. Commun.,
vol. 3, no. 1, pp. 4-18, Mar. 2001.

S. J. Muir and J. M. Smith, “AsyMOS: An asymmetric multiprocessor
operating system,” in Proc. Ist OpenARCH Conf., Apr. 1998, pp.
25-34.

——, “Supporting continuous media in the piglet OS,” in Proc. 8th Int.
Workshop Network Operating Systems Support Digital Audio Video, July
1998, pp. 99-102.

S. J. Muir, “Piglet: An Operating System for Network Appliances,”
Ph.D. dissertation, CIS Dept., Univ. Pennsylvania, Philadelphia, 2001.
I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The design and implementation of an op-
erating system to support distributed multimedia applications,” IEEE J.
Select. Areas Commun., vol. 14, pp. 1280-1297, Sept. 1996.

P. B. Menage, “Resource Control of Untrusted Code in an Open Pro-
grammable Network,” Ph.D. dissertation, Univ. Cambridge, Cambridge,
U.K., 2000.

M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles, “PLAN:
A Packet Language for Active Networks,” in Proc. Int. Conf. Functional
Programming, 1998, pp. 86-93.

Plan Home Page. [Online] Available: http://www.cis.upenn.edu/switch-
ware/PLAN

P. Kakkar, M. Hicks, J. T. Moore, and C. A. Gunter, “Specifying the
PLAN network programming language,” Electron. Notes Theoret.
Comput. Sci., Sept. 1999.

M.-O. Stehr and C. Talcott, “Plan in maude: Specifying an active net-
work programming language,” in Proc. 4th Int. Workshop Rewriting
Logic Its Applications. New York: Elsevier, Sept. 19-21, 2002, vol.
71, ser. Electron. Notes Theoret. Comput. Sci..

M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and S. Nettles,
“PLANet: An active internetwork,” in Proc. 18th IEEE Computer Com-
munication Society INFOCOM Conf.: IEEE, 1999, pp. 1124-1133.

J. T. Moore, M. Hicks, and S. Nettles, “Chunks in PLAN: Language
support for programs as packets,” in Proc. 37th Annu. Allerton Conf.
Communication, Control, Computing, Sept. 1999.

M. W. Hicks, J. T. Moore, and S. Nettles, “Dynamic software updating,”
in SIGPLAN Conf. Programming Language Design Implementation,
2001, pp. 13-23.

M. Hicks, “Dynamic Software Updating,” Ph.D. dissertation, CIS Dept.,
Univ. Pennsylvania, Philadelphia, 2001.

G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F to typed
assembly language,” in Proc. 25th ACM Symp. Principles of Program-
ming Languages, Jan. 1998, pp. 85-97.

Rocquen-

[90]

[91]

[92]

[93]
[94]
[95]

[96]

[971

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable
packets,” in Proc. 20th IEEE Computer Communication Soc. IN-
FOCOM Conf.: IEEE, Apr. 2001, pp. 41-50.

J. T. Moore, “Practical Active Packets,” Ph.D. dissertation, Univ. Penn-
sylvania, Philadelphia, Sept. 2002.

M. Hicks, J. T. Moore, and S. Nettles, “Compiling PLAN to SNAP,”
in Proc. 3rd Int. Working Conf. Active Networks, vol. 2207, ser.
Lecture Notes in Computer Science, I. W. Marshall, S. Nettles, and N.
Wakamiya, Eds., Oct. 2001, pp. 134-151.

Intel IXP Architecture Network Processors. [Online].
http://www.intel.com/design/network/products/npfamily/
IBM PowerNP Network Processors. [Online]. Available: http:/www-
3.ibm.com/chips/products/wired/products/network processors.html
Agere Network Processors. [Online]. Available: http://www.agere.com/
enter-prise metro access/network processors.html

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith,
“Safety and security of programmable network infrastructures,” IEEE
Commun., vol. 36, pp. 84-92, 1998.

, “Security in active networks,” in Secure Internet Programming.
New York: Springer-Verlag, 1999, ser. Lecture Notes in Computer Sci-
ence, Berlin, Germany, pp. 433-451.

P. Molinero-Fernandez, N. McKeown, and H. Zhang, “Is IP going to take
over the world (of communications)?,” in Proc. ACMCC, Jan. 2003, pp.
113-117.

B. Carpenter and S. Brim, Middleboxes: Taxonomy and Issues, Internet
Engineering Task Force, RFC 3234, Available: [Online] www.iets.org,
Feb. 2002.

P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT)
Terminology and Considerations, Aug. 1999.

T. Hain, Architectural Implications of NAT, Internet RFC 2993, Avail-
able: [Online] www.iets.org, Nov. 2000.

P. Srisuresh and K. Egevang, Traditional IP Network Address Trans-
lator (Traditional NAT), Internet RFC 3022, [Online] Available:
www.iets.org, Jan. 2001.

M. Holdrege and P. Srisuresh, Protocol Complications With the IP
Network Address Translator, Internet RFC 3027, Available: [Online]
www.iets.org, Jan. 2001.

G. Tsirtsis and P. Srisuresh, Network Address Translation—Pro-
tocol Translation (NAT-PT), Internet RFC 2766, [Online] Available:
www.iets.org, Feb. 2000.

M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones,
SOCKS Protocol Version 5, Internet RFC 1928, [Online] Available:
www.iets.org, March 1996.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
An Architecture for Differentiated Service, Internet RFC 2475, [Online]
Available: www.iets.org, Dec. 1998.

J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions, Internet RFC 3135, [Online] Available: www.iets.org, June 2001.
N. Freed, Behavior of and Requirements for Internet Fire-Walls, Internet
RFC 2979, [Online] Available: www.iets.org, Oct. 2000.

B. Cheswick and S. Bellovin, Firewalls and Internet Security: Repelling
the Wily Hacker. Reading, MA: Addison-Wesley, 1994.

M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, SIP:
Session Initiation Protocol, Internet RFC 2543, [Online] Available:
www.iets.org, Mar. 1999.

F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J.
Segers, Megaco Protocol 1.0, Internet RFC 3015, [Online] Available:
www.iets.org, Nov. 2000.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, Hypertext Transfer Protocol—HTTP/1.1, Internet RFC
2616, [Online] Available: www.iets.org, June 1999.

I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: Ascalable peer-to-peer lookup protocol for internet applica-
tions,” in Proc. ACM SIGCOMM Conf., 2001, pp. 149-160.
Application Level Programmable Inter-Network Environment Project
Web Page, http://www.cs.ucl.ac.uk/alpine/. [Online]

A. Ghosh, M. Fry, and J. Crowcroft, “An architecture for application
layer routing,” in Proc. 2nd Int. Working Conf. Active Networks, vol.
1942, ser. Lecture Notes in Computer Science, H. Yashuda, Ed., Oct.
2000, pp. 71-86.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, and C. Barb, “An integrated experimental enviroment for
distributed systems and networks,” in Proc. USENIX OSDI Conf., Dec.
2002, pp. 255-270.

Available:

[117] J. Touch, “Dynamic internet overlay deployment and management using
the x-bone,” Comput. Networks, pp. 117-135, July 2001.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the internet,” in Proc. ACM CCR,
Jan. 2003, pp. 59-64.

1. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in ACM SIGCOMM Conf., 2002, pp. 10-20.
A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay ser-
vices,” in Proc. ACM SIGCOMM Conf., 2002, pp. 20-30.

Embedded, Everywhere: A Research Agenda for Networked Systems of
Embedded Computers. Washington, DC: Nat. Acad. Press, 2001.
IETF Forwarding Control Element Separation Working Group
Home Page. [Online]. Available: http://www.ietf.org/html.charters/
forces-charter.html

C. Partridge, A. Snoeren, T. Strayer, B. Schwartz, M. Condell, and 1.
Castineyra, “FIRE: Flexible intra-AS routing environment,” in Proc.
ACM SIGCOMM Conf., 2000, pp. 191-203.

A. Galis, B. Plattner, J. Smith, S. Denazis, E. Moeller, H. Guo, C. Klein,
J. Serrat, J. Laarhuis, G. Karetsos, and C. Todd, “A flexible IP active
networks architecture,” in Proc. 2nd IWAN, H. Yasuda, Ed., 2000, pp.
1-15.

S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson, “Practical
support for IP traceback,” in Proc. ACM SIGCOMM Conf., 2000, pp.
295-306.

A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakuontio,
S. T. Kent, and W. T. Strayer, “Hash-based IP traceback,” in Proc. ACM
SIGCOMM Conf., 2001, pp. 3-14.

J. Mitola III, “Software radios,” in Proc. IEEE National Telesystems
Conf., May 1992.

V. Bose, “Virtual Radios,” Ph.D. dissertation, Mass. Inst. Technol., Cam-
bridge, MA, 1999.

F-M. A. (Italian proverb ‘La meglio e I’inimico del bene’) Voltaire,
Contes, 1772.

[118]

[119]
[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]
[128]

[129]

Jonathan M. Smith (S’86-M’89-SM’93-F’01) received the Ph.D. degree in
computer science from Columbia University, New York, NY.

He is the Olga and Alberico Pompa Professor of Engineering and Applied
Science at the University of Pennsylvania, Philadelphia, and a Professor
in the Computer Information System Department. His research is centered
on advanced communication and computer networking systems. He was
previously at Bell Telephone Laboratories and Bellcore, Piscataway, NJ, where
he focused on UNIX internals, tools, and distributed computing technology,
and was a member of a technology transfer team for computer security. At
the University of Pennsylvania, he has worked on advanced communications
systems, such as gigabit networks, on which he has written extensively and has
several U.S. patents. His current research interest is programmable network
infrastructures: “Protocol Boosters” provide a methodology for using such
infrastructures and “SwitchWare” is an idealized programmable infrastructure.
He has consulted extensively for industry and government.

Dr. Smith is a member of ACM and Sigma Xi.

Scott M. Nettles (M’03) received the Ph.D. degree in computer science from
Carnegie Mellon University, Pittsburgh, PA, in 1996 for work on high perfor-
mance storage management and garbage collection for transaction systems.

He is an Assistant Professor of electrical and computer engineering at The
University of Texas (UT), Austin. His research concerns broad aspects of pro-
gramming languages, computer systems, and communication networks. He was
previously an Assistant Professor in the Computer Information Systems De-
partment at the University of Pennsylvania, Philadelphia, a Visting Assistant
Professor in the University of Arizona, Tuscon, Computer Science Department,
as well as a Member of the technical staff at Digital Equipment Corporations
Western Research Lab., Palo Alto, CA. Since going to the University of Penn-
sylvaniain 1995, his work has focused on applying programming language tech-
nologies to active networks. He joined UT in 1999, where in addition to active
networking, he is working on problems concerning the interaction of wireless
physical layer technologies with the link, network, and higher layers.

