
Approximating Longest Directed Paths and Cycles

Andreas Björklund1, Thore Husfeldt1, and Sanjeev Khanna2�

1 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.
thore@cs.lu.se

2 Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104.
sanjeev@cis.upenn.edu

Abstract. We investigate the hardness of approximating the longest path and the
longest cycle in directed graphs on n vertices. We show that neither of these two prob-
lems can be polynomial time approximated within n1−ε for any ε > 0 unless P = NP.
In particular, the result holds for digraphs of constant bounded outdegree that contain
a Hamiltonian cycle.
Assuming the stronger complexity conjecture that Satisfiability cannot be solved in
subexponential time, we show that there is no polynomial time algorithm that finds
a directed path of length Ω(f(n) log2 n), or a directed cycle of length Ω(f(n) log n),
for any nondecreasing, polynomial time computable function f in ω(1). With a recent
algorithm for undirected graphs by Gabow, this shows that long paths and cycles are
harder to find in directed graphs than in undirected graphs.
We also find a directed path of length Ω(log2 n/ log log n) in Hamiltonian digraphs
with bounded outdegree. With our hardness results, this shows that long directed
cycles are harder to find than a long directed paths. Furthermore, we present a simple
polynomial time algorithm that finds paths of length Ω(n) in directed expanders of
constant bounded outdegree.

1 Introduction

Given an unweighted graph or digraph G = (V, A) with n = |V |, the Longest
Path problem is to find the longest sequence of distinct vertices v1 · · · vk such
that vivi+1 ∈ A. This problem is notorious for the difficulty of understanding its
approximation hardness [4]. The present paper establishes a number of upper
and lower bounds for the directed case.

The best known polynomial time algorithms for directed graphs essentially
find such structures of logarithmic length. More precisely, Alon, Yuster, and
Zwick find [1] a dipath or dicycle of length exactly c log n for any constant c,
provided it exists, and Gabow and Nie [7] find a dicycle of length log n/ log log n,
provided it exists (such a cycle may be far longer than logarithmic).

In the present paper we show that this problem is hard to approximate.
Specifically, Theorem 1 states that in directed graphs the length of the longest
path cannot be polynomial time approximated within an approximation ratio of
n1−ε for any ε > 0 unless P = NP.

� Supported in part by an Alfred P. Sloan Research Fellowship and by an NSF Career
Award CCR-0093117.

We can claim a stronger bound if we make a stronger assumption called the
Exponential Time Hypothesis (ETH), namely that Satisfiability has no subexpo-
nential time algorithms [8]. Our Theorem 2 states that if we could find a dipath
of length f(n) log2 n efficiently (for some polynomial time computable and non-
decreasing f in ω(1)), then there would be an deterministic algorithm for 3-Sat
with s variables with running time 2o(s), violating ETH. This is relevant to the
remaining open question in [1]: “Is there a polynomial time algorithm for decid-
ing if a given graph G = (V, E) contains a path of length, say, log2 n?” Even
though this question remains open, Alon, Yuster, and Zwick’s choice of time
bound was not as capricious as their wording may suggest: any stronger algo-
rithm than log2 n for Longest Dipath would be at variance with the Exponential
Time Hypothesis.

Undirected Graphs versus Directed Graphs. Our hardness results under ETH
are of further interest in the light of a very recent result of Gabow [6] for the
undirected case, which shows how to find superpolylograthmic paths and cycles.
More precisely, if the graph contains a cycle of length l through a given vertex v,
then [6] finds a cycle through v of length at least (log l)c log log l for some constant
c > 0. (The same bound for Longest Path follows.)

This shows that paths and cycles in directed graphs are harder to find than
in undirected graphs, proving (under ETH) a widely held belief.

Algorithm for Hamiltonian Digraphs. Our lower bound holds even if the input
digraph is known to be Hamiltonian, which addresses the question to what ex-
tent knowledge of the presence of a long path helps in the search for one. We
complement this by an algorithm in Theorem 3 to efficiently find paths of length
Ω(log2 n/ log log n) in Hamiltonian digraphs of constant bounded outdegree; this
is close to our own f(n) log2 n lower bound. The best previous upper bound [1]
was O(log n).

Longest Path versus Longest Cycle. For the related longest cycle problem, where
we also require vkv1 ∈ A, we essentially show that one cannot efficiently find
a cycle of more than logarithmic length. To be precise, Theorem 2 shows that
(under ETH) no polynomial time can find a cycle of length ≥ f(n) log n, for
any nondecreasing, polynomial time computable function f in ω(1). This is no
more that a factor log log n short of the best known approximation algorithm:
Recently, Gabow and Nie [7] gave a polynomial time algorithm to find a directed
cycle of length ≥ log n/ log log n if one exists.

Moreover, together with the longest path guarantee Ω(log2 n/ log log n) from
Theorem 3, the lower bound separates the complexities of the Longest Path and
Longest Cycle problems, at least for the directed, bounded outdegree, Hamilto-
nian case, and assuming ETH.

Long Paths in Sparse Expanders. In contrast to our worst-case inapproximability
result, it is well known that almost every digraph contains a path of length Ω(n),
and that this path is easy to find [3, Chap. 8]. Thus it would be interesting
to understand which natural classes of digraphs admit efficient longest path
algorithms.

With Theorem 4 we observe that a very simple algorithm that always finds
a path of length Ω(n) in a bounded-outdegree directed expander. This provides
some insight into the structure of digraphs where long paths are hard to find:
The hard instances construct in our lower bound proof have bounded outdegree
as well, but can be seen to have very bad expansion properties (for any given
size there is a vertex subset of that size with constant size seperators).

Related work. Among the canonical NP-hard problems, the undirected version of
this problem has been identified as the one that is least understood [4]. However,
a number of recent papers have established increasingly good approximation
algorithms [14, 2], culminating in the very recent result by Gabow [6] cited above.
Even better bounds exist for restricted classes of graphs; for example, a recent
result [4] finds cycles of length O

(
lα) (α = log3 2) in graphs of maximum degree

3.
However, it remains fair to say that in undirected graphs, the approximation

hardness of Longest Path remains open. It has been conjectured [10] that the
length of a longest path in undirected graphs cannot be approximated within
nα for some α > 0 unless P = NP, a somewhat weaker bound than the one we
prove for digraphs, but this is far from being proved: the quoted reference shows
that the Longest Path is not in Apx, and that no polynomial time algorithm
can approximate the length of the longest path within 2log1−ε n for any ε > 0
unless Np ⊆ Dtime

(
2logO(1/ε) n

)
.

Our lower bound uses a reduction to the k Vertex Disjoint Paths problem in
digraphs. Thus there is no direct way to translate our argument to the undirected
case, because the problem is known to be polynomially solvable for undirected
graphs [12].

2 Preliminaries

We write uv for the arc (u, v). The vertex set V is sometimes identified with
{1, 2, . . . , n}. For a subset W ⊆ V of the vertices of a graph G, we denote by
G[W] the graph induced by W .

Our proof starts with a reduction from a problem known to be NP-complete
for over twenty years. In the k Vertex Disjoint Paths problem we are given a
digraph G of order n > 2k, and we are asked whether there exists a set of
k vertex disjoint paths in G such that the ith path connects vertex 2i − 1 to
vertex 2i, for i = 1, . . . k. This problem is NP-complete [5] even when k = 2.
We need to modify this result slightly to see that it is valid even if we restrict
the ‘yes’-instances to be partitionable into two disjoint paths. To be precise, we
define the Two Vertex Disjoint Paths problem (2VDP): given a digraph G of
order n ≥ 4, decide whether there exists a pair of vertex disjoint paths, one
from 1 to 2 and one from 3 to 4. We study the restricted version of this problem
(R2VDP), where the ‘yes’-instances are guaranteed to contain two such paths
that together exhaust all vertices of G. In other words, the graph G with the
additional arcs 23 and 41 contains a Hamiltonian cycle through these arcs.

G8•
3

•
2

•1
•4

G9•
3

•
2

•1
•4

G10•
3

•
2

•1
•4

G11•
3

•
2

•1
•4

G12•
3

•
2

•1
•4

G13•
3

•
2

•1
•4

G14•
3

•
2

•1
•4

G15•
3

•
2

•1
•4

G4

•1
•4

•2 •3

G5•1
•4

•2 •3

G6

•1
•4

•2 •3

G7•1
•4

•2 •3

G2

•1
•4

•
2

•
3

G3•1
•4

•
2

•
3

G1•
2

•
3

•1 •4

Fig. 1. T4[G].

Proposition 1 Restricted Two Vertex Disjoint Paths is NP-complete.

The proof is an extension of the construction in [5] and can be found in Sec. 7.
It replaces a reduction from 3-Sat by a reduction from Monotone 1-in-3-Sat, and
uses a more intricate clause gadget to guarantee the existence of two paths that
cover all vertices. The modification is necessary to prove the lower bound for
Longest Path even for Hamiltonian instances.

3 Long Paths Find Vertex Disjoint Paths

We will use instances of R2VDP to build graphs in which long paths must reveal
a solution to the original problem. Given an instance G = (V, A) of R2VDP,
define Td[G] as a graph made up out of m = 2d − 1 copies G1 · · ·Gm of G
arranged in a balanced binary tree structure. For all i < 2d−1, we say that the
copies G2i and G2i+1 are the left and right child of the copy Gi. The copy G1

is the root of the tree, and Gi for i ≥ 2d−1 are the leaves of the tree. The copies
of G in Td[G] are connected by additional arcs as follows. For every copy Gi

having children, three arcs are added (cf. Fig. 1): One arc from 2 in Gi to 1 in
G2i, one arc from 4 in G2i to 1 in G2i+1, and one arc from 4 in G2i+1 to 3 in Gi.
Moreover, in every leaf copy Gi (i ≥ 2d−1) we add the arc 23, and in the root
G1 we add the arc 41.

Lemma 1 Given an instance G = (V, A) of R2VDP on n = |V | vertices, and
any integers m = 2d − 1 > 3, consider Td[G] with N = mn vertices. Then

– If G has a solution then Td[G] contains a path of length N − 1.
– Given any path of length larger than (4d − 5)n in Td[G], we can in time

polynomial in N construct a solution to G.

Proof. For the first part of the lemma, consider a solution for G consisting of
two disjoint paths P and Q connecting 1 to 2 and 3 to 4, respectively, such that
P + 23 + Q + 41 is a Hamiltonian cycle in G. The copies of P and Q in all Gis
together with the added arcs constitute a Hamiltonian cycle in Td[G] of length
mn and thus a path of the claimed length.

For the second part, first consider an internal copy Gi and observe that if
a path traverses all of the four arcs connecting Gi to the rest of the structure
then this path constitutes a solution to R2VDP for G. Thus we can restrict our
attention to paths in Td[G] that avoid at least one the four external arcs of each
internal Gi; we call such paths avoiding.

Given Td[G] define ed[G] as the length of the longest avoiding path in Td[G]
ending in vertex 4 of its root copy, and sd[G] as the length of the longest avoiding
path starting in vertex 1 of the root copy. Consider a path P ending in vertex 4
of the root copy, for d > 1. At most n vertices of P are in G1. The path P has
entered G1 via vertex 3 from G3’s vertex 4. There are two possibilities. Either
the first part of P is entirely in the subtree rooted at G3, in which case P has
length at most n+ed−1[G]. Or it entered G3 via 1 from the subtree rooted at G2,
in which case it may pass through at most n vertices in G3, amounting to length
at most 2n+ed−1[G]. (Especially, P cannot leave via G3’s vertex 2, because then
it wouldn’t be avoiding). A symmetric argument for sd[G] for d > 1 shows an
equivalent relation. Thus we have that

e1[G] ≤ n, ed+1[G] ≤ 2n + ed[G],
s1[G] ≤ n, sd+1[G] ≤ 2n + sd[G].

Furthermore, note that a longest avoiding path in Td[G] connects a path
amounting to ed−1[G] in the right subtree, through a bridge consisting of as
many vertices as possible in the root, with a path amounting to sd−1[G] in the left
subtree. Consequently, a typical longest avoiding path starts in a leaf copy of the
right subtree, travels to its sister copy, goes up a level and over to the sister of that
copy, continues straight up in this zigzag manner to the root copy, and down in
the same fashion on the other side. Formally, the length of a longest avoiding path
in Td[G] for d > 1 is bounded from above by ed−1[G] + n + sd−1[G] ≤ (4d− 5)n.

��

Theorem 1 There can be no deterministic, polynomial time approximation algo-
rithm for Longest Path or Longest Cycle in a Hamiltonian directed graph on n
vertices with performance ratio n1−ε for any fixed ε > 0, unless P = NP.

Proof. First consider the path case. Given an instance G = (V, A) of R2VDP
with n = |V |, fix k = 1/ε and construct Td[G] for the smallest integers m =
2d − 1 ≥ (4dn)k. Note that the graph Td[G] has order N = nO(k). Assume there
is a deterministic algorithm finding a long path of length lapx in time polynomial
in N , and let lopt denote the length of a longest path. Return ‘yes’ if and only if
lapx > (4d − 5)n. To see that this works note that if G is a ‘yes’-instance and if
indeed lopt/lapx ≤ N1−ε then lapx > (4d − 5)n, so Lem. 1 gives a solution to G.

If on the other hand G is a ‘no’-instance then the longest path must be avoiding
as defined in the proof of Lem. 1, so its length is at most (4d − 5)n. Thus we
can solve the R2VDP problem in polynomial time, which by Prop. 1 requires
P = NP.

For the cycle case, we may use a simpler construction. Simply connect m
copies G1, · · · , Gm of G on a string, by adding arcs from vertex 2 in Gi to vertex
1 in Gi+1, and arcs from vertex 4 in Gi to vertex 3 in Gi−1. Finally, add the arc
41 in G1 and the arc 23 in Gm. The resulting graph has a cycle of length mn
whenever G is a ‘yes’-instance, but any cycle of size at least 2n + 1 must reveal
a solution to G. ��

4 Subexponential Algorithms for Satisfiability

In this section we show that good dipath and dicycle algorithms imply subex-
ponential time algorithms for Satisfiability.

We need the well-known reduction from Monotone 1-in-3-Sat to 3-Sat. It can
be verified that the number of variables in the construction (see also [11, Exerc.
9.5.3]) is not too large:

Lemma 2 ([13]) Given a 3-Sat instance ϕ with s variables and r clauses we can
construct an instance of Monotone 1-in-3-Sat with O(r) clauses and variables
that is satisfiable if and only if ϕ is.

Lemma 3 There is a deterministic algorithm for Monotone 1-in-3-Sat on r vari-
ables running in time 2o(r), if there is

1. a polynomial time deterministic approximation algorithm ALP for Longest
Path in N -node Hamiltonian digraphs with guarantee f(N) log2 N , or

2. a polynomial time deterministic approximation algorithm ALC for Longest
Cycle in N -node Hamiltonian digraphs with guarantee f(N) logN ,

where f is any polynomial time computable, nondecreasing function in ω(1).

Proof. We need to verify that our constructions obey the necessary size bounds.
The R2VDP instance G build from the instance to Monotone 1-in-3-Sat de-
scribed in Sec. 7 has size n = O(r).

For the path case, set d = 4n/f1/2(n) and construct Td[G] as in Sec. 3.
Observe that the entire construction will have (2d − 1)n = 2o(n) = 2o(r) nodes.
Running ALP on a ‘yes’ instance instance will reveal a cycle of length f

(
n(2d −

1)
)
log2

(
n(2d − 1)

) ≥ f(n) log2(2d/2) ≥ 4n2 > (4d − 5)n, so Lem. 1 tells us how
to use ALP to solve the R2VDP instance, and hence the 1-in-3-Sat instance.

For the cycle case, choose the number of copies m = 23n/f(n). Observe that
the entire construction has size mn = 2o(n) = 2o(r). Running ALC on this graph
will reveal a cycle of length f(mn) log(mn) ≥ f(n) log m = f(n) · 3n/f(n) =
3n > 2n+ 1, and the conclusion follows similarly to the proof of Theorem 1. ��

Theorem 2 There is a deterministic algorithm for 3-Sat on s variables running
in time 2o(s) if there is

1. a polynomial time deterministic approximation algorithm for Longest Path
in N -node Hamiltonian digraphs with guarantee f(N) log2 N , or

2. a polynomial time deterministic approximation algorithm for Longest Cycle
in N -node Hamiltonian digraphs with guarantee f(N) logN ,

where f is any polynomial time computable, nondecreasing function in ω(1).

Proof. The previous two lemmas give an algorithm that runs in time 2o(r), where
r is the number of clauses in the input instance. This implies a 2o(s)-algorithm
by the Sparsification Lemma of [9]. ��

5 Finding Long Paths in Hamiltonian Digraphs

Vishwanathan [14] presents a polynomial time algorithm that finds a path of
length Ω(log2 n/ log log n) in undirected Hamiltonian graphs of constant bounded
degree. We show in this section that with some modifications the algorithm and
its analysis apply to the directed case as well.

Theorem 3 There is a polynomial time algorithm always finding a path of length
Ω(log2 n/ log log n) in any Hamiltonian digraph of constant bounded outdegree
on n vertices.

To prove the theorem, we need some additional notation. Let G = (V, A) be
a digraph. We say that a vertex v ∈ V spans the subgraph Gv = G[Vv] where
Vv ⊆ V is the set of vertices reachable from v in G. Consider the algorithm
below. It takes a digraph G = (V, A) on n = |V | vertices and a specified vertex
v ∈ V as input, and returns a long path starting in v.

1. Enumerate all paths in G starting in v of length log n, if none return the
longest found.

2. For each such path P = (v, · · · , w), let Vw be the set of vertices reachable
from w in G[V − P + {w}].

3. Compute a depth first search tree rooted at w in G[Vw].
4. If the deepest path in the tree is longer than log2 n, return this path.
5. Otherwise, select the enumerated path P whose end vertex w spans as large

a subgraph as possible after removal of P − {w} from the vertex set, i.e the
path maximising |Vw|.

6. Search recursively for a long path R starting from w in G[Vw], and return
(P − {w}) + R.

First note that the algorithm indeed runs in polynomial time. The enumer-
ation of all paths of length log n takes no more than polynomial time since the
outdegree is bounded by a constant k, and thus there cannot be more than klog n

paths. Computing a depth first search tree is also a polynomial time task, and it

is seen to be performed a polynomial number of times, since the recursion does
not branch at all.

To prove that the length of the resulting path is indeed Ω(log2 n/ log log n),
we need to show that at each recursive call of the algorithm, there is still a long
enough path starting at the current root vertex.

Lemma 4 Let G = (V, A) be a Hamiltonian digraph. Let S ⊆ V, v ∈ V \ S.
Suppose that on removal of the vertices of S, v spans the subgraph Gv = (Vv, Av)
of size t. If each vertex w ∈ Vv is reachable from v on a path of length less than
d, then there is a path of length t/d|S| in Gv starting in v.

Proof. Consider a Hamiltonian cycle C in G. The removal of S cuts C into at
most |S| paths P1 · · ·P|S|. Since each vertex in V lies on C, the subgraph Gv

must contain at least t/|S| vertices W from one of the paths, say Pj . In fact, Gv

must contain a path of length t/|S|, since the vertex in W first encountered along
Pj implies the presence in Gv of all the subsequent vertices on Pj , and these are
at least |W |. Denote one such path by P = p0 · · · p|W |−1, and let R = r0 · · · rl−1

be a path from r0 = v to rl−1 = p0, of length l ≤ d. Set s = |P ∩ R| and
enumerate the vertices on P from 0 to |W |−1 and let i1 · · · is denote the indices
of vertices in P ∩R, in particular i1 = 0. Let is+1 = |W |. An averaging argument
shows that there exists j, such that ij+1 − ij ≥ |W |/s. Let q be the index for
which rq = pij . The path along R from r0 to rq and continuing along P from
pij+1 to pij+1−1 has the claimed length. ��

Observe that the algorithm removes no more than log n vertices from the
graph at each recursive call. Thus, at call i we have removed at most i logn
vertices from the original graph; the very same vertices constituting the begin-
ning of our long path. Lemma 4 tells us that we still are in a position were it
is possible to extend the path, as long as we can argue that the current end
vertex of the path we are building spans large enough a subgraph. Note that
whenever we stand at a vertex v starting a long path P of length > log n in
step 1 of the algorithm, the path consisting of the first log n vertices of P is one
of the paths of length log n being enumerated. This is our guarantee that the
subgraph investigated at the next recursive call is not all that smaller than the
graph considered during the previous one. It must consist of at least |P | − log n
vertices. Of course, we cannot be sure that exactly this path is chosen at step
5, but this is of no concern, since it is sufficient for our purposes to assure that
there are still enough vertices reachable.

Formally, let Vi denote the vertex set of the subgraph considered at the
recursive call i. In the beginning, we know that regardless of the choice of start
vertex v, we span the whole graph and thus V0 = V , and furthermore, that a
path of length n starts in v. Combining the preceding discussion with Lem. 4,
we establish the following inequality for the only non-trivial case that no path
of length log2 n is ever found during step 4 of the algorithm:

|Vi+1| >
|Vi|

i log3 n
− log n

It is readily verified that |Vi| > 0 for all i < c log n/ log log n for some constant
c, which completes the proof of Theorem. 3.

6 Finding Long Paths in Sparse Expanders

In this section we show that in a sparse expander graph, a relatively long path
is easily found.

A digraph G = (V, A) on n vertices is a c-expander if |δU | ≥ c(1 − |U|
n)|U |

for every subset U ⊂ V where δU = { v /∈ U | ∃u ∈ U : uv ∈ A }. A standard
probabilistic argument shows that with high probability a random digraphs with
outdegree k (k > 2), are ck-expanders for some constant ck, for large enough
n > nk.

We propose the following algorithm for finding a long path p0 · · · pl in a sparse
expander.

1. Pick an arbitrary start vertex p0, and set i = 0.
2. Let Gi = (Vi, Ai) be the subgraph spanned by pi in G[V \ (

⋃i−1
j=0 pj)].

3. If Gi consists only of pi, exit.
4. For each neighbour v of pi in Gi, evaluate the size of the subgraph spanned

by v in Gi[Vi \ pi].
5. Choose the neighbour who has the largest spanned subgraph as pi+1.
6. Set i = i + 1 and goto 2.

Theorem 4 The algorithm finds a path of length c
2(k+1)n in every c-expander

digraph G = (V, A) with maximum outdegree k.

Proof. Consider step i. Enumerate the neighbours of pi in Gi as r1 · · · rk′ . Let
Vi[rj] be the vertices reachable from rj in Gi[Vi − {pi}]. Now observe that the
Vi[rj] either are very small or really large for small i, since the set of vertices
outside Vi[rj] in G which are directly connected by an arc from a vertex in Vi[rj]
must lie on the prefix path p0 · · · pi by definition, and there must be a lot of
them because of the expander criterion. Specifically, when i is small, there must
be a j for which Vi[rj] is large, since k′ ≤ k and

⋃
Vi[rj] = Vi − {pi}. Observe

that Vi+1 is the largest Vi[rj], to obtain |Vi+1| ≥ n − 2(i+1)
c whenever at least

one Vi[rj] is too large to be a small subgraph, i.e. as long as c(|Vi|−1)
2k ≥ i + 1,

where we for the sake of simplicity have used the expansion factor c/2 which
holds for all set sizes. Observing that V0 = n, we may solve for the smallest i,
when the inequality above fails to hold. This will not happen unless i ≥ c

2(k+1)n,
as promised. ��

7 Proof of Proposition 1

We review the construction in [5], in which the switch gadget from Fig. 2 plays
a central role. Its key property is captured in the following statement.

(i) A

F H

C

D

B

E G

(ii) A

F H

C

D

B

E G

Fig. 2. (i) A switch. Only the labelled vertices are connected to the rest of the graph,
as indicated by the arrows. (ii) Three vertex-disjoint paths through a switch.

Lemma 5 ([5]) Consider the subgraph in Fig. 2. Suppose that are two vertex dis-
joint paths passing through the subgraph—one leaving at A and the other entering
at B. Then the path leaving A must have entered at C and the path entering at
B must leave at D. Furthermore, there is exactly one additional path through
the subgraph and it connects either E to F or G to H, depending on the actual
routing of the path leaving at A.

Also, if one of these additional paths is present, all vertices are traversed.

To prove Prop. 1 we reduce from Monotone 1-in-3-Satisfiability, rather than
3-Satisfiability as used in [5]. An instance of 1-in-3-Sat is a Boolean expression
in conjunctive normal form in which every clause has three literals. The question
is if there is a truth assignment such that in every clause, exactly one literal is
true. It is known that even when all literals are positive (Monotone 1-in-3-Sat)
the problem is NP-complete [13].

◦ci

x1

x2

x3

¬x2

¬x3

¬x1

¬x3

¬x1

¬x2

◦ ci+1

Fig. 3. A clause gadget consisting of
9 switches. Every incoming arc to a
switch enters the switch’s vertex E; ev-
ery outgoing arc leaves the switch’s ver-
tex F.

Given such an instance ϕ with
clauses t1, . . . , tm on variables x1, . . . ,
xn, we construct and instance Gϕ of
R2VDP as follows.

Clause gadgets. Every clause ti is rep-
resented by a gadget consisting of a
vertex ci and nine switches, three for
every literal in ti. Consider the clause
ti = (x1∨x2∨x3). The vertices ci, ci+1

and the E and F vertices in the nine
switches are connected as shown in
Fig. 3. Thus all clause gadgets are con-
nected on a string ending in a dummy
vertex cm+1.

The clause gadget has the following desirable properties: Call a path from ci

to ci+1 valid if it is consistent with a truth assignment to {x1, x2, x3} in the sense
that if it passes through a switch labelled with a literal (like ¬x2) then it cannot
pass through its negation (like x2). The following claims are easily verified:

Lemma 6 Consider the construction in Fig. 3.

1. Every valid path from ci to ci+1 corresponds to a truth assignment to {x1, x2,
x3} that sets exactly one variable to true.

2. If there is a truth assignment to {x1, x2, x3} that sets exactly one variable to
true then there is a valid path from ci to ci+1 corresponding to the assign-
ment. Moreover, there is such a valid path passing through all five switches
whose labels are consistent with the assignment.

Variable gadgets. Every variable xi is represented by a vertex vi. (Again, vertex
vn+1 is a dummy vertex.) All switches in the clause gadgets representing the
positive literal of the variable vi are connected in series (the ordering of the
switches on this string is not important): the vertex H in a switch is connected
to vertex G of the next switch with the same label. Furthermore, there is an
arc from vi to vertex G in the first switch on its literal path, and an arc from
vertex H in the last switch on the path to vertex vi+1.

Likewise, all switches labelled with negated literals of this variable are con-
nected. Thus there are two strings of switches leaving vi: one contains all the
positive literals, and one contains all the negated literals. Both end in vi+1.

Also, all the switches are arranged on a path and connected by added arcs
from vertex A in a switch to vertex C in the next one, and arcs back from
vertex D in a switch to vertex B of the preceding switch. The ordering of the
switches on this switch path is not important.

Finally, there is an arc from vn+1 to c1 and an arc from vertex D in the first
switch on the switch path to v1.

To finish the construction of an instance of R2VDP it remains to identify
the first four vertices. Vertex 1 is vertex B of the last switch on the switch path,
vertex 2 is cm+1, vertex 3 is vertex C of the first switch on the switch path, and
vertex 4 is vertex A of the last switch on the switch path.

Lemma 7 Gϕ has two vertex disjoint paths from 1 to 2 and from 3 to 4 if and
only if ϕ has a solution. Moreover, if Gϕ contains such paths then it contains
two such paths that together exhaust all its vertices.

Proof. Assume ϕ can be satisfied so that exactly one variable in every clause is
true. Walk through Gϕ starting in vertex 1. This path is forced to traverse all
switches until it reaches v1. In general, assume that we reached vi. To continue
to vi+1 traverse the G–H paths of the string of negative literal switches if xi is
true; otherwise take the string of positive literal switches. Note that this forces
us to avoid the E–F paths in these switches later.

Arriving at vn+1 continue to c1. To travel from ci to ci+1 we are forced to
traverse the clause gadget of Fig. 3. Note that the truth assignment has set

exactly one of the variables to true, blocking the E–F path in the two switches
labelled by its negative literal. Likewise, two of the variables are false, blocking
the (two) switches labelled by their positive literal. The remaining five switches
are labelled by the positive literal of the true variable or negative literals of
the falsified variables. The valid path ensured by Lem. 6 passes through exactly
these five switches.

Finally, the path arrives at vm+1 = 2. The path travelling from 3 to 4 is
now unique. Observe that the two paths exhaust all the vertices and thus form
a Hamiltonian cycle if we add 23 and 41.

Conversely, assume there are two paths from 1 to 2 and from 3 to 4. The
subpaths connecting vi to vi+1 ensure that all literal switches are consistent in
the sense that if the E–F path in a switch labelled xi is blocked then it is blocked
in all such switches, and not blocked in any switch labelled ¬xi. This forces the
subpaths from ci to ci+1 to be valid. Lem. 6 ensures that the corresponding truth
assignment is satisfying and sets exactly one variable in each clause. ��
Acknowledgements. The third author would like to express his thanks to Chan-
dra Chekuri for many useful discussions on this problem. Hal Gabow suggested
the formulation of the bound in Thm. 2.

References

1. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995.

2. A. Björklund and T. Husfeldt. Finding a path of superlogarithmic length. SIAM
Journal on Computing, 32(6):1395–1402, 2003.

3. Béla Bollobás. Random graphs. Cambridge University Press, 2nd edition, 2001.
4. T. Feder, R. Motwani, and C. Subi. Approximating the longest cycle problem in

sparse graphs. SIAM Journal on Computing, 31(5):1596–1607, 2002.
5. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism

problem. Theoretical Computer Science, 10:111–121, 1980.
6. H. N. Gabow. Finding paths and cycles of superlogarithmic length. In Proc. 36th

STOC, 2004.
7. H. N. Gabow and S. Nie. Finding a long directed cycle. In Proc. 15th SODA, 2004.
8. R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer

and Systems Sciences, 62(2):367–375, 2001.
9. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential

complexity? In Proc. 39th FOCS, pages 653–663, 1998.
10. D. Karger, R. Motwani, and G.D.S. Ramkumar. On approximating the longest

path in a graph. Algorithmica, 18(1):82–98, 1997.
11. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
12. N. Robertson and P. D. Seymour. Graph minors XIII: The disjoints paths problem.

J. Combinatorial Theory Ser. B, 35, 1983.
13. T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th STOC,

pages 216–226, 1978.
14. S. Vishwanathan. An approximation algorithm for finding a long path in Hamil-

tonian graphs. In Proc. 11th SODA, pages 680–685, 2000.

