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ABSTRACT 

MARKET HETEROGENEITY AND DRUG INNOVATION 

Rocky Lee 

Scott Harrington 

The Induced Innovation Hypothesis (IIH) describes the causal effect of market size (i.e., product 

demand) on innovation output – larger value markets offer larger profit potential which leads to 

higher rates of new product entry.  Empirical literature has supported the IIH but the estimated 

effects of market size on pharmaceutical innovation are curious in two respects: they are much 

higher than predicted and they vary across innovation measures (e.g., new molecules, new non-

generic drugs, new patents).  I propose and investigate an extended Induced Innovation 

Hypothesis (eIIH) which posits how non-size characteristics of markets or “market heterogeneity” 

(e.g., compositional structure, R&D riskiness) together with aggregate market size can influence 

the introduction rate of new drugs and associated outputs.  My empirical approach exploits a 

panel dataset constructed from publicly available data from the U.S. Food and Drug 

Administration, Agency for Healthcare Research and Quality, and World Health Organization that 

links market size and heterogeneity measures with innovation counts associated with New Drug 

Application (NDA) approvals.  Consistent with previously reported estimates, I find that a 1% 

increase in market size produces a 2%-6% increase in innovation entry under a traditional IIH 

setup.  However, in closer alignment with theoretical predictions, controlling for market population 

characteristics such as disease severity, physiology types, and treatment preferences lowers the 

estimated effect of market size to the 1%-4% range.  These results appear reasonably robust 

across different innovation count measures with significance levels sensitive to specification and 

variable construction choices.  Thus, initial evidence suggests that an extended IIH can provide a 

more informative model of induced drug innovation than the traditional IIH.  It also suggests how 

policy levers might be more effectively used to direct pharmaceutical innovation toward under-

served as well as un-served markets.  
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CHAPTER 1.  

INTRODUCTION AND MOTIVATION 

 

1.1 INTRODUCTION 

With health care spending reaching almost 18% of U.S. GDP in 2010 and prescription drugs 

accounting for approximately 10% of this, the demand for and supply of new medicines has been 

a hot topic for national discussion.1  But in fact the public’s strong interest in drug innovation for 

several decades now is what has motivated innovation-promoting policy interventions including 

the Orphan Drug Act of 1983, the Drug Price Competition and Patent Term Restoration Act 

(Waxman-Hatch) of 1984, the FDA Modernization Act of 1997, and the Medicare Modernization 

Act of 2003.  Yet despite any and all increases in new drug products attributed to these policy-

driven incentives, concerns over drug industry output are still being voiced.  For instance, the 

10% annual decline in the number of new molecular entities receiving FDA approval from 1996-

2006 has been reported as cause for alarm;2 despite the fact that the number of all products 

receiving FDA approval increased by 4% annually during that same time period (see Figure 1.1).  

While it turns out the 1996-2006 window is unrepresentative of longer-term industry dynamics, 

these statistics underscore the technical uncertainties spanning different stages of the drug 

innovation process as well as different drug product types; since understandably, the success 

probability of creating a dosing extension for an existing drug should be substantially less than 

the success probability of creating a new-to-the-world molecule.  Nevertheless, if drug firms have 

some ability to factor these uncertainties into their decision-making then innovation output ought 

to be influenced by the profit-maximizing behavior of industry.  In such a case, what would be key 

                                                      
1  Center for Medicare and Medicaid Services NHE Fact Sheet (www.cms.gov/Research-Statistics-Data-and-Systems 
accessed on July 10, 2013). 
2 Pharma Focus Asia, Issue 9, 2008. 
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explanatory variables involved in a drug firm’s profit-maximizing equation?  Identifying such 

variables, particularly those which are observable, could provide firms, policy-makers and other 

industry stakeholders with a more comprehensive set of tools to improve industry efficiency while 

also better aligning private incentives with public objectives. 

 

1.2 MOTIVATION 

The Induced Innovation Hypothesis (IIH) provides the natural first step for asking and addressing 

this key explanatory variables question.  The IIH describes the causal effect of market size on 

innovation output.3  Markets representing larger value (due to higher demand) offer larger profit 

potential thereby leading to higher rates of new product entry.  However, the IIH does not 

consider the influence of any other market characteristic beyond aggregate market size.  And 

while the empirical literature supports the IIH in the context of drug innovation, the IIH lacks in its 

ability to explain why the estimated coefficients of market size are of substantially greater 

magnitude than what IIH theory would predict and also why they vary across innovation measure 

types (e.g., new molecules versus new non-generics).4 

Hence, I am motivated to ask: can the Induced Innovation Hypothesis be extended to make finer 

predictions regarding new drug product entry?  Would such an “extended Induced Innovation 

Hypothesis” (eIIH) be able to better explain the empirical evidence on induced effects across 

innovation count measures associated with approved New Drug Applications (NDAs)?  

Traditional IIH setups ignore or, more precisely, implicitly assume markets are homogeneously 

composed relative to each other.  My point of departure is that potential markets are not all 

homogeneous or, equivalently, not all equally heterogeneous in their market composition.  Thus, 

perhaps such “market heterogeneity,” in conjunction with and/or separately from market size, can 

                                                      
3 See for instance Schmookler (1962); Ahmad (1966); Fellner (1971); Binswanger & Ruttan (1978). 
4 In particular, Acemoglu & Linn (2004) estimate the inducement effects of (potential) market size to be 4-6% for new non-
generic drugs and as high as 12% for new generic drugs. Their theoretically predicted inducement effect is 1%. 
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induce innovation via demand-side (e.g., different disease population needs) and/or supply-side 

(i.e., different R&D strategies) mechanisms. 

Elucidating the potential relationships between market characteristics and the rate of drug 

innovative output has important public and private sector implications. It can help shed light on 

whether perceived drug industry productivity issues are the rational result of weakening economic 

incentives.  It can help pave the way for both retrospective and prospective analyses of 

innovation incentives, e.g., drug reimbursement policies (Medicare, Medicaid.), drug approval 

regulatory policies (diversity requirements in clinical trials, market and patent exclusivity 

extensions), post-marketing regulatory policies (medical education allowances, direct-to-

consumer marketing rules), etc.  And it can improve market efficiency by helping industry 

stakeholders (firms, investors, brokers, regulators) to potentially conduct more accurate market 

forecasts and investment analyses. 



 
 

4 

 

Figure 1.1. FDA Approval Activity for 1986-2006 
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CHAPTER 2.  

OBJECTIVES AND BACKGROUND 

 

2.1 OBJECTIVES 

The traditional IIH posits the positive causal effect of market size on innovation rate.  This study 

aims to expand the IIH’s scope by examining the potential explanatory role of market 

characteristics other than aggregate market size.  In other words, can market characteristics, 

separately from and in concert with aggregate market size, have inducement effects on drug 

innovation entry?  I propose to investigate this matter via two specific research questions.  First, 

for a given market size, will the innovation rate – as reflected by outputs associated with drug 

approvals – be higher the more heterogeneously, or non-homogeneously, composed the 

population (Research Question #1)?  Second, does accounting for market heterogeneity produce 

market size estimates that are more consistent with theoretical predictions (Research Question 

#2)? 

At a conceptual level, besides being illuminating in cases when markets might have different 

innovation rates despite having the same aggregate sizes (i.e., dollar values), accounting for non-

size market characteristics in an eIIH can contribute to making the IIH more of a complete story.  

Further, recognizing the non-trivial role of market heterogeneity in influencing innovation rates 

provides complementary evidence to the IIH literature that drug innovation is not only an 

economically rational activity undertaken by firms but also a welfare-enhancing response to 

market-specified demands (e.g., matching product qualities to patient needs/preferences).5  This 

suggests that the market entry of “less innovative” drug products such as me-too drugs and drug 

                                                      
5 See references listed in footnote 3. 
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reformulations may have no less social value ex ante (on a cost-benefit weighted basis) than the 

discovery of new first-in-class drugs and new molecular entities. 

From an empirical perspective, the full impact of non-size market characteristics may have been 

mis-estimated in prior research due to market homogeneity assumptions and/or omitted variable 

bias (via unaddressed confounding and/or interaction term effects).  Consequently, traditional IIH 

methodologies may have estimated the coefficient on market size with error.6 

 

2.2 INTUITION 

Since my hypothesis has not been previously suggested or described in the literature to my 

knowledge, I present two illustrations – one simplified, one detailed – of the underlying intuition 

involved. 

The first example, outlined in Appendix 10.1, accounts for market heterogeneity in terms of 

exogenously given categorical measures and serves to illustrate how non-size market 

characteristics could affect entry from the supply side.  The intuition here is that the expected cost 

of a successful entry may be lower (or higher) by undertaking a second entry attempt within the 

current project than by undertaking a new project altogether.  So having the ability to make 

multiple entry attempts in a single project may allow the firm to increase (or decrease) innovation 

productivity.  Thus, the number of attempts per project, a, or “R&D riskiness” is a non-size market 

characteristic which could influence innovation product entry. 

The second example, outlined in Appendix 10.2, builds on the first example by accounting for 

market heterogeneity in terms of a quasi-categorical set of potentially endogenous measures.  It 

also accounts for a potential demand-side influence of market heterogeneity.  Specifically, it 

considers two disease categories ܩଵ  and ܩଶ  with respective sizes ܯଵ  and ܯଶ  (without loss of 
                                                      
6 For instance, if those markets with the largest value are also the most heterogeneous, not controlling for heterogeneity 
may bias upward the coefficient on market size, i.e., predicts too high a rate of entry. 
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generality, say ܯଵ ≥  ଶ as separatelyܩ ଵ andܩ ଶ).  When drug development projects can exploitܯ

homogeneous sub-groups rather than as one presumptively homogeneous group, the expected 

number of new product entries (e.g., new drug molecules) increases as does the expected 

number of new indication approvals. 

The concept of a product innovation attempt in these two illustrations is quite general.  While the 

ability of firms to make multiple product innovation attempts per project can depend on supply-

side (e.g., product R&D technology) and/or demand-side (e.g., sub- or specialized need) 

characteristics of the market in question, the number of innovation attempts per project is likely a 

function of the number of product attempt candidates per project and/or the number of “attempt 

success contexts” available for exploitation.7  Moreover, this latter metric can be some reflection 

of the variety of needs and/or preferences composing a given market.8  Attempt success contexts 

might be especially important when the number of product attempt candidates per project is 

structurally limited, as in the case of pharmaceuticals where there is usually only one attempt 

candidate per project.9  For example, consider a disease market with no sub-indication variety 

(say erectile dysfunction) and a disease market with some sub-indication variety (say diabetes 

which is composed of the Type I and Type II sub-indications).  Here, the diabetes market 

provides each project with two “attempt success contexts” in which to demonstrate clinical benefit 

(i.e., in Type I patients and Type II patients) whereas the erectile dysfunction market provides 

only one “attempt success context.”  Since entry in pharmaceuticals is correlated to the number of 

attempts possible, the availability of attempt success contexts is a potentially important driver of 

                                                      
7 My theoretical setup will account more fully for how the number of attempts affects both supply-side costs and demand-
side revenues. 
8 The firm’s incentive for pursuing FDA approval in more than one sub-indication within the same disease category (i.e.,. 
expanding the scope of the drug label) is to expand their drug’s scope of use (if physicians are assumed to prescribe 
drugs strictly for their labeled sub-indications) or at least improve their drug’s priority use position relative to other drugs in 
treatment protocols (if physicians are assumed to prescribe drugs “off-label”). 
9 Firms invest only in the best-in-project product candidate at any given point in the drug development process (i.e., firms 
only pursue one molecular candidate per project) because the conventional wisdom is that any problem associated with 
the best-in-project candidate will likely also be associated other within-project candidates.  In other words, the success 
probabilities of within-project candidates are seen to be very highly correlated (i.e., not i.i.d.). 
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drug innovation productivity.10  This illustrates how non-size market characteristics such as those 

associated with attempt success contexts can have inducement effects which operate distinctly 

from the traditional IIH mechanism. 

 

2.3 DEFINITIONS 

2.3.1 MARKET SIZE 

Determining market size depends on defining the market as well as its measurement units.  For 

this study, I am concerned with defining markets according to drug-use categories (e.g., disease 

population) and measuring them in terms of dollar value (e.g., drug spend) as these approaches 

are most relevant to the IIH setup.  Also important but unaddressed in prior studies is the 

question of what levels of market boundary granularity are most relevant for analyzing the effects 

of market size.  Figure 2.1 shows the plausible variations for calculating market size according to 

disease population categories (e.g., “treatment-active” versus “unsatisfied treated”).  However, 

given the scope of my study I only give empirical consideration to this issue and table theoretical 

considerations for future examination. 

2.3.2 MARKET HETEROGENEITY 

There are various ways in which to characterize market heterogeneity or a market’s non-

homogenous composition.  To help determine which/how characteristics enter my theoretical and 

empirical models, I propose an initial classification framework that considers whether an attribute 

impacts drug labeling and to what level of market granularity the attribute applies.11  I am thus 

able to distinguish between four attribute groups as shown in the quadrants of Figure 2.2: those 

having non-label impacts at the group-level (i.e., those associated with aggregative aspects such 

                                                      
10 Refer to footnote 72. 
11 This framework is described in specific reference to the drug industry but can easily be generalized to other contexts by 
changing the drug labeling impact dimension to another type of market barrier (regulatory, competitive, etc.). 
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as geographical location); those having label impacts at the group-level (i.e., associated with 

efficacy and safety); those having non-label impacts at the individual-level (i.e., associated with 

tolerability/compliance; and those having label impacts at the individual-level (i.e., associated with 

black-box warnings). 

In situations where an attribute produces a simple segmentation effect (i.e. the characteristic 

effectively partitions the market into a mutually-exclusive-collectively-exhaustive set of sub-

markets), ceteris paribus the characteristic in question exerts its potential inducement influence 

by basically changing the granularity of market boundaries.  In other words, a segmentation effect 

in practice reduces to a direct market size effect.  Since my research effort proposes to examine 

non-size market characteristics with innovation entry inducement effects which are not reducible 

to a direct “market size” effect, I am not interested in characteristics represented by the lower left-

hand quadrant in Figure 2.2.  Rather, I focus on characteristics classified in the other quadrants 

which may account for compositional differences across markets that can produce partitioned 

(additively separable) or non-partitioned (non-additively separable) subsets.12  As will be specified 

in later chapters, I derive these attributes of market heterogeneity from disease severity, 

physiology types, and treatment preference considerations. 

2.3.3 INNOVATION ENTRY 

I am interested in innovation entry as reflected by outputs associated with New Drug Applications 

approved by the U.S. Food and Drug Administration.  I refer to such innovation outputs as 

innovation count measures since for my research purposes they can be defined along two 

dimensions, measure type and count type. 

Measure type refers to the type of innovation output being counted.  Examples of measure types 

associated with drug innovation include new molecules, new formulations, and new labeling 

                                                      
12 The link between patient heterogeneities and drug responses has long been a recognized tenet of medical thinking.  
However, such a marker of market heterogeneity is rarely, if ever, explicitly reflected in conventionally defined measures 
of “market size.” 
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content.  A corollary issue to consider in this definitional process is the potentially ordered nature 

of categorizations based on degrees of “innovativeness.”  For instance, a new drug class is 

considered to be a more costly but also a more clinically meaningful entry than a new drug 

formulation.  Given the potential link of output innovativeness with both demand- and supply-side 

inducement mechanisms involved in innovation inducement, this issue is a core component of my 

theoretical treatment of the eIIH setup in Chapter 4. 

Count type refers to the type of count used to measure innovation output; in other words, the 

possible measurement units that can be used for counting entry.  Examples of count types 

relevant to drug innovation include number of NDAs filed and number of patents linked with 

NDAs.  I would also include here count types that quantify “new drug labeling content” – such as 

the number of new document filings associated with NDAs.  In other words, I expand the scope of 

drug innovation to encompass drug information generation in addition to drug compound 

generation.  This makes sense in three ways: (1) if drug development is indeed attrition-based, it 

would mean that innovation activity and innovation production are highly correlated and can share 

the same empirical measures; (2) once a lead drug compound is identified and ready for clinical 

trials, all of the value-added investment from that point forward is for the sake of generating a 

clinical data package that will support safety and efficacy claims for FDA approval, for 

provider/payor/patient marketing, and ultimately for its safe and effective use in clinical practice; 

and (3) even if a drug does not end up entering the market, the value of the new information 

generated during development has value that is explicitly acknowledged by the FDA’s 505(b)(2) 

approval process.13   

 

                                                      
13 “Section 505(b)(2) expressly permits FDA to rely, for approval of an NDA, on data not developed by the applicant - such 
as published literature or the agency's finding of safety and/or effectiveness of a previously approved drug product.” 
(Source: www.fda.gov/Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/ucm069943.htm, accessed July 
15, 2013). 
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2.4 CONTRIBUTION 

In proposing and testing an extended Induced Innovation Hypothesis, this study seeks to 

determine the importance of non-size market characteristics in influencing drug innovation entry 

and to explain how these inducement effects can vary across innovation count measures, As a 

result, my dissertation makes a number of contributions to the research literature.  First, I produce 

new empirical results confirming the Induced Innovation Hypothesis and consistent in magnitudes 

with – albeit distinct from, by definition and by construction – previously reported estimates.  

Second, these results are reasonably robust to some variations in the definitional scope and 

count units of drug innovation measures as well as market size measures.  In particular, I extend 

the concept of innovation output to include new drug “information.”  Third, I identify and test the 

effects of alternative definitions of market size prompted by my theoretical setup.  Empirically 

noteworthy is that I find a size construct based on the treatment-controlled portion of disease 

population that tracks well, and perhaps even better than aggregate market size, with IIH/eIIH 

predictions.  Finally, my findings have implications for the creation of new/refined policy levers 

and private-sector R&D strategies in drug innovation.  For instance, this study informs the public 

debate on the value of “me-too” drugs and various drug extensions by establishing how patient 

population compositional characteristics, rather than just simple cost-leveraging group-think by 

firms, can drive innovation output that may be valuable to less obvious patient sub-populations 

and their needs. 

 

2.5 OUTLINE 

The rest of this dissertation is composed of seven additional chapters.  In Chapter 3, I review the 

prior literature to point out what important questions have been addressed or remain to be 

answered relating to my research question scope.  In Chapter 4, I establish a new theoretical 

framework and its associated comparative statics for an extended Induced Innovation 
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Hypothesis.  In Chapter 5, I review the empirical strategy I exploit to confirm/refute my testable 

hypotheses.  In Chapter 6, I describe my public data sources and the dataset I assemble on 

disease population characteristics as well as drug innovation activity.  In Chapter 7, I review my 

results as well as their robustness to changes in specification, identification, variable construction, 

and measurement units.  In Chapter 8, I discuss my findings as well as the threats to validity and 

limitations of my research approach.  Finally, in Chapter 9, I identify several promising avenues 

for follow-up work and summarize with my conclusions.  
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Figure 2.1. Example of Framework for Disease-Based Market Definition 
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Figure 2.2. Example of Framework for Market Heterogeneity Characteristics 

Note: Dotted line denotes characteristic groups with non-trivial attributes of market heterogeneity. 
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CHAPTER 3.  

LITERATURE REVIEW 

 
While the Induced Innovation Hypothesis in its traditional form is intuitively accessible, empirical 

examinations of the role of market size (i.e., profit incentives) in engendering innovation have 

been limited.  Moreover, to my knowledge there has been no explicit examination – theoretical or 

empirical – of whether and how additional market characteristics may induce innovation.  

Nevertheless, there are three bodies of prior research that are related to and could inform my 

proposed undertaking. 

 

3.1 INDUCED INNOVATION 

The springboard reference for my research study is Acemoglu & Linn (2004).  Seeking to 

empirically test the Induced Innovation Hypothesis, the authors use markets defined according to 

FDA drug classification groupings to show that potential market size – constructed from the 

number of potential drug category patients and their incomes – influences new drug entry.  In 

order to demonstrate the causality of this relationship, Acemoglu & Linn exploit demographic 

shifts across income categories as an exogenous source of variation for their identification 

strategy.  With this approach they find potential market size has a significant effect on the entry of 

new drugs and that this result was consistent across innovation count measures (e.g., for both 

non-generic and generic molecules). However, an unexplained surprise is that their coefficients 

on market size were significantly higher than what was predicted by their model as well as 

conventional theory.  Specifically, the authors report that a 1% increase in potential market size 

produces a 12% increase in the entry rate of generics; a 4% increase in the entry rate of non-

generics; and a 4% increase in the entry rate of new chemical entities – all significantly higher 
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than the 1% increase in innovation rate predicted by their traditional IIH setup.14  The authors 

attribute this discrepancy to the pharmaceutical industry’s systematic errors in estimating 

potential market size but only provide weak substantiation for this claim. 

Further work in Acemoglu et al. (2006) finds no explicit evidence of demand-induced innovation in 

pharmaceuticals from the 1965 introduction of Medicare.  However, the authors do argue that 

their results are inconclusive because there appears to be no “first stage” of Medicare increasing 

the market size of drugs used by the elderly.  In addition to Acemoglu & Linn (2004) as well as 

Acemoglu et al. (2006), the only studies to explicitly measure the effect of changes in demand on 

pharmaceutical innovation outputs (rather than upstream or downstream surrogates such as R&D 

spend or health outcomes) are Cerda (2003), Finkelstein (2004), and Yin (2008).  Although using 

different methodologies and datasets, all three authors reach similar conclusions to Acemoglu & 

Linn (2004).  Cerda (2003) uses the same identification strategy (exogeneity of demographic 

changes) but follows a somewhat different empirical methodology to conclude that a 1% increase 

in potential market size causes a 1.42% increase in drug entry.  Finkelstein (2004) uses the 

natural experiment of three different policy changes to demonstrate that the policy changes 

affecting reimbursement of costs of vaccination were associated with a significant increase in the 

number of clinical trials (250% increase) to develop new vaccines against the relevant diseases.  

And most recently, Yin (2008)follows the methodology of Finkelstein (2004) by using the natural 

experiment of the 1983 Orphan Drug Act to show a significant increase in the number of clinical 

trials (69% increase overall, 232% increase for more prevalent orphan diseases) for new drugs 

against orphan diseases in response to the ODA’s market demand incentives. 

Other research to date that empirically examines demand-induced pharmaceutical innovation 

includes Grabowski & Vernon (2000), Kremer (2002), Lichtenberg & Waldfogel (2003), and 

DellaVigna & Pollet (2004).  Grabowski & Vernon (2000) examine the determinants of 

                                                      
14 It is interesting to note, however, that neither Acemoglu & Linn (2004) nor Finkelstein (2004) finds empirical evidence of 
induced innovation when innovation is measured by patent counts. 
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pharmaceutical R&D using pooled firm data from 1974-1994 to argue that expected returns and 

cash flows are important explanatory variables of firm research intensities.  Kremer (2002) argues 

that insufficient pharmaceutical industry research in third world diseases such as malaria are due 

to the lack of market potential incentives.  Lichtenberg & Waldfogel (2003) use the natural 

experiment of the 1983 Orphan Drug Act to argue a demand-induced innovation effect that can 

be tied to relative declines in mortality of individuals with rare diseases.  DellaVigna & Pollet 

(2004) investigates whether the stock market responds to demographics-driven changes in the 

size of the market for a number of products.  However, in contrast to the empirical studies 

mentioned previously, these additional research efforts only consider surrogate measures related 

to drug innovation rates. 

Induced innovation by innovation type (product vs. process) has been investigated by Adner & 

Levinthal (2001), Bandyopadhyay & Acharyya (2004), and by innovation degree (radical vs. 

incremental) by Fontana (2008).  In the pharmaceuticals industry, Scott Morton (1999) finds a 

positive relationship between generic drug entry and expected revenues in the target market, 

although she is not able to exploit a potentially exogenous source of variation in market size.  

DiMasi & Paquette (2004) analyze entry speed of second-in-class drugs to find that the vast 

majority were in development prior to the approval of the first-in-class drug, suggesting that a 

“development race” model better characterizes new drug development than does a model of post 

hoc imitation.  However, how market size influences product output (“induced innovation”) across 

different innovation measure types remains largely unaddressed by the literature. 

 

3.2 PRODUCT DIFFERENTIATION 

There are two basic microeconomic approaches to analyzing product differentiation.15  First is the 

Representative Consumer or Symmetric Aggregate Demand model where consumers have 

                                                      
15 Carlton & Perloff (1994), pp. 200-234. 



18 
 

preferences regarding commodities, e.g., dessert type (see Spence (1976), Dixit & Stiglitz (1977), 

Mussa & Rosen (1978)).  The second approach is the location/spatial model where consumers 

have preferences regarding attributes/characteristics of commodities (see Sutton (1991), Chen & 

Riordan (2007), Yin (2008)). 16   The latter’s setup is monopolistic competition where each 

consumer views him/herself and each firm’s product as occupying particular locations in some 

defined product characteristic space; products closer together are better substitutes and 

consumers receive more (less) pleasure from a product the closer (farther) away they are located 

from it.  Representative consumer models can follow either the product or characteristic approach 

while location models can only follow the characteristic approach.  

Another promising approach that deserves particular attention is the “spokes” spatial model 

employed by Chen & Riordan (2007) to study non-localised oligopoly competition with product 

variety and differentiation.  This model allows for market expansion effects and does not require 

incumbents to change locations as new firms enter the market.  However, the same variable (N) 

is used to represent both the extent of the market as well as the extent of consumer 

heterogeneity (number of preference “segments”). Additionally, the model lacks a separate 

market volume variable to reflect disease prevalence, such as the θ used by Yin (2008). 

Hybrid models have also been proposed such as the informative advertising model for a market 

of heterogeneous products established by Grossman and Shapiro (1984) which combines the 

monopolistic competition framework of Chamberlin (1931) to account for the product’s 

“information” dimension with the circular spatial competition model of Salop (1979) to account for 

a “location” dimension.  Similar results are obtained by the more generalized hybrid (or 

Probabilistic Discrete Choice/Random Utility) models proposed by Sattinger (1984), Perloff & 

Salop (1985) and Deneckere & Rothschild (1992). 

 

                                                      
16 e.g. chocolate flavor. 
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3.3 AGGREGATION-HETEROGENEITY 

Micro and market level models are linked in consumer demand estimations but this linkage has 

generally depended on relatively strong assumptions of individual behavior being valid at the 

market level (Deaton & Muellbauer (1980)).  Thus, such models are vulnerable to aggregation 

bias when aggregation factors have substantial heterogeneity and substantial nonlinearity in their 

effects. 

Lewbel (1985) notes the associated problem of changes in demographic characteristics being 

forced to be virtually equivalent to changes in prices. A common fix is to let some of the demand 

equation parameters vary demographically (e.g., Stoker (1979)) but while this procedure allows 

for interactive demographic and price effects, it is specific to the functional form of the starting 

model. 

Browning et al. (1999) document the empirical evidence for population variation or 

heterogeneities in tastes and preferences.17  In particular, they discuss the construction of the 

“mongrel” (aggregate representative) agent for which it can be necessary to apply different 

weighting schemes across the population.  They point out that accounting for entry and exit 

decisions can also force the introduction of heterogeneity among agents.  

Blundell & Stoker (2005) survey theoretical and empirical work in demand analysis and 

aggregation over individuals. 18  In particular, they review empirical evidence for how demand 

varies nonlinearly with heterogeneity in incomes (e.g., Engel’s Law with regard to food 

expenditures)19 and heterogeneity in needs/tastes (e.g., Barten (1964), Pollak & Wales (1981), 

Ray (1983), Browning (1992)), and suggest incorporating distributional information into aggregate 

                                                      
17  “Any careful reading of the empirical microeconomics literature… reveals [that]… accounting for heterogeneity is 
required to calibrate dynamic models to microeconomic evidence.” (Browning et al. (1999)) 
18 “Aggregation problems are among the most difficult problems faced in either the theoretical or empirical study of 
economics. Heterogeneity across individuals is extremely extensive…The conditions under which one can ignore a great 
deal of the evidence of individual heterogeneity are so severe as to make them patently unrealistic…Aggregation 
problems remain among the most vexing in all of applied economics.” (Blundell & Stoker (2005)) 
19 Foellmi & Zweimuller (2006) also examine the influence of income distribution on demand-induced innovations. 
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relationships in order to capture the effects of heterogeneity across individuals.  They interestingly 

note, “One typically considers sums or averages as reported in national income accounts as the 

relevant aggregates because they are usually the most interpretable and relevant for pricing or 

policy analysis. But one could consider many other kinds of aggregates or statistics from the 

population…The choice of aggregate may even be informed by empirical regularities in individual 

data. For example, if an individual model is best specified with the logarithm of observed income, 

the geometric mean of income might be a more natural aggregate than total income or average 

income.” 

 
In summary, innovation-inducing market characteristics may be implicitly addressed by prior IIH 

empirical research in the form of category fixed effect controls.  However, unaddressed by this 

literature is the possible role of non-aggregate size characteristics of “market heterogeneity” and 

the associated implications of omitted variable bias.  For example, characteristics that describe 

demand-side compositional heterogeneity could include income-based, needs-based, and/or 

preferences-based measures.  Correcting for the direction and extent of this bias could be further 

complicated in the event that market heterogeneity is a potential confounder of market size.  As 

noted by Huber (2008): “…[genetic] variations apparently explain significant differences in the 

efficacy of drugs…What were once inexplicable ‘side effects’ are now predictable interactions 

between the drug’s chemistry and healthy parts of the patient’s… That leaves drug companies in 

control of which patients — or make that biochemical profiles — the health-care system will help 

next, and companies are free to favor profiles that pay their bills.”  
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CHAPTER 4.  

THEORETICAL FRAMEWORK 

 
Since to my knowledge my research questions are novel, my theoretical setup establishes two 

new and complementary models of induced innovation which explicitly account for how market 

characteristics and sunk costs influence drug innovation output.20  The first approach develops a 

de novo model, Model I, incorporating market heterogeneity in terms of exogenously given 

categorical measures.  The second approach, producing Model II, follows the informative 

advertising model for heterogeneous products from Grossman and Shapiro (1984) and captures 

market heterogeneity as quasi-categorical (i.e., categorical, continuous, and mixed) measures 

some of which are endogenously determined. 

 

4.1 MODEL SETUP I: CATEGORICAL MARKET HETEROGENEITY 

Figure 4.1 provides an overview schematic of this theoretical set-up. 

I adopt the traditional assumption that physician prescribing closely follows drug labeling.21  This 

is what gives firms the commercial incentive to pursue regulatory-driven innovation efforts, 

regardless of how incremental the innovation might or might not be. 

4.1.1 SUPPLY-SIDE SETUP 

First, I assign the following ordinal values to drug innovation measure types to reflect the path-

dependent notion that an innovation of type ߠ is derived from a “parent” innovation of type (ߠ −1): 
                                                      
20 I was compelled to pursue more than one model with the aim of understanding whether/how inducement effects may 
vary according to the definitional variability of market heterogeneity. 
21 Therefore, I can equate “attempt success contexts” to “disease sub-indications.” 
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ߠ = ൞1, .݁)	݁ݒ݅ݐܽݒ݋݊݊݅	ݐݏ݋݉ ݃. , ,2(ݏݏ݈ܽܿ	݃ݑݎ݀	ݓ݁݊ .݁)	݁ݒ݅ݐܽݒ݋݊݊݅	݁ݎ݋݉ ݃. , ,3(݈݁ݑ݈ܿ݁݋݉	݃ݑݎ݀	ݓ݁݊ .݁)	݁ݒ݅ݐܽݒ݋݊݊݅	ݏݏ݈݁ ݃. , ,4(݊݋݅ݐܽܿ݅݀݊݅	݃ݑݎ݀	ݓ݁݊ .݁)	݁ݒ݅ݐܽݒ݋݊݊݅	ݐݏ݈ܽ݁ ݃. ,  .(݊݋݅ݐ݈ܽݑ݉ݎ݋݂	݃ݑݎ݀	ݓ݁݊
Next, I describe an innovation measure type ߠ project as a ߠ-step series of incremental product 

innovation attempts that cumulatively yields product innovations of types ݆ = 1,… ,  Thus, at  .ߠ

least one product innovation attempt must be successful at a given step in order for a product 

innovation attempt to occur at the next step.  The cumulative output of successful attempts at 

different steps across projects/firms is what defines market entry across different innovation 

measure types, ߠ. 

Now I specify the associated cost variables as follows: 

 type innovation-ߠ ఏ is the project’s exogenously given variable cost of pursuing eachܥ ;type innovation attempts-ߠ ఏ is the project’s exogenously given fixed cost of pursuingܨ

attempt; ܽఏ is the expected number of ߠ-type innovation attempts per project; ݏఏ is the expected number of successful ߠ-type innovation attempts per project; ݌ఏ is the exogenously given i.i.d. probability that any particular ߠ-type innovation attempt 

is successful; and ߬ఏ is the project’s expected probability of any successful ߠ-type innovation attempt. 

Since the expected cost of conducting the jth step of an innovation measure type ߠ project is 

௝ܨ  ∏ ߬௜௝ିଵଵ + )௝ܥ ௝ܽ ∏ ௜௝ିଵଵݏ ), 
then the firm’s total expected cost, ܧ[ܭ௝ஸఏ], for the innovation measure type ߠ project is 

 EൣK୨ஸ஘൧ = [F଴ + τ଴(Fଵ + τଵ(Fଶ + ⋯τ஘ିଵ(F஘). . )] + 	[s଴a଴(C଴ + sଵaଵ(Cଵ +⋯s஘ିଵa஘ିଵ(C஘). . )] 
  = ଴ܨ) + (଴ݏ଴ܽ଴ܥ + ∑ ቀܨ௝ ∏ ߬௜௝ିଵଵ + ௝൫ܥ ௝ܽ ∏ ௜௝ିଵଵݏ ൯ቁఏଵ . 
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Using industry-based assumptions for pharmaceuticals, we can simplify this expression to give 

for the two innovation measure types of particular interest, 

[ఏஸଶܭ]ܧ  = ଴ܨ + ቂܨଵ + ஼భ௣భቃ + [߬ଵܨଶ + ܽଶܥଶ], 
and 

[ఏஸଷܭ]ܧ  = ଴ܨ + ቂܨଵ + ஼భ௣భቃ + [߬ଵܨଶ + ܽଶܥଶ] + [߬ଵ߬ଶܨଷ + ܽଶܽଷ݌ଶܥଷ], 
which shows that ܽଶ and ܽଷ drive any cross-market variations in expected project costs.22  Note 

that since there is generally only one product innovation attempt candidate per pharmaceutical 

project, in effect ܽଶ represents the number of attempt success contexts.23 

For ease of notation, I rewrite the expected cost function for ܧ[ܭఏஸଶ] as 

[ܭ]ܧ  = ܨ + ܽ ∙ ܥ (**1) 

where ܽ = ܽଶ	(i.e. number of attempt success contexts), ܨ = ଴ܨ + ቂܨଵ + ஼భ௣భቃ + ߬ଵܨଶ, and ܥ =  .ଶܥ
4.1.2 DEMAND-SIDE SETUP 

To model the demand-side of firm entry decisions in the drug industry, consider a disease 

category C with total market size ܯ.  If C is composed of I distinct “sub-markets” (for example, 

disease sub-indications) exogenously defined and represented by the ordered partition {G૚|… |G۷} 
where G୨ has size ܯ௝ , then without loss of generality say that ܯଵ ≥ ⋯ ≥ ࢐ܯ ≥ ⋯ ≥ ࡵܯ .24  Firm 

entry into disease category C will be the determined by an I-stage game as follows.  Stage 1 

involves the set of firms (ࢌଵ in count) who attempt to enter into (i.e. receive FDA product approval 

for) all I sub-markets, Gଵ,…, G۷, and are successful in entering at least one sub-market.25  Stage 1 

                                                      
22 i.e., ܥ଴ = 0	ܽ݊݀	߬ఏ = ଴ݏ = ଴ݏ = 1, ܽଵ = ଵ௣భ , ଶݏ =  .ଶܽଶ݌
23 See footnote 9. 
24 i.e., mutually exclusive and collectively exhaustive. 
25 or projects, but in the drug industry the norm is one drug development project per firm per drug category. 
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concludes when G۷ can no longer support any new entrants.  Stage 2 then involves the set of 

firms (ࢌଶ in count) who attempt to enter into the I-1 remaining sub-markets Gଵ,…, G۷ି૚, and are 

successful in entering at least one sub-market.  Stage 2 continues until G۷ି૚  can no longer 

support new entrants.  By extension, stage j involves the set of firms (ࢌ௝ in count) who attempt to 

enter into the remaining I+1-j sub-markets Gଵ,…, G۷ା૚ିܒ, and are successful entering at least one 

sub-market.  Stage j continues until	G۷ା૚ିܒ can no longer support new entrants.  The final stage, 

stage I, involves the set of firms (ࢌூ in count) who attempt to enter the last remaining sub-market, Gଵ. 
Now define a partition of C that is based on the I stages of the firm entry game rather than the 

originally identified I sub-markets.  Let Vܒ  denote the market opportunity associated with 

attempt/entry stage j, where Vܒ  spans Gଵ ,…, G۷ା૚ିܒ.  Then {V۷|… |V۷} represents this alternative 

partition of C to {G۷|… |G۷}.  If the size of Vܒ is denoted by ܯ௏࢐ then ܯ = ∑ ௝୨୍ୀଵܯ = ∑ ୨୍ୀଵ࢐௏ܯ .  Figure 

4.2 shows an illustrative example of this alternative "V" partitioning. 

4.1.3 INNOVATION ENTRY 

Now the firm’s (project-specific) profit maximization function for conducting an innovation 

measure type ߠ = 3 project in disease category C is 

 EൣΠ஘ஸଶେ ൧ = ݌ ∙ (݉ଵ஼ + ݉ଶ஼ +⋯+݉ூ஼) − ஘ஸଶ஼ܭൣܧ ൧ = ൫݌∑ m୨஼୨୍ୀଵ ൯ − ܨ) + ܫ ∙  ,(ܥ
where ௝݉஼ is the equilibrium sales for a successful product entry in G୨, ݌ = ଵ݌ ∙  ଶ, and the cost݌

expression comes from (**1).  In equilibrium, we will have EൣΠ஘ஸଶ஼ ൧ = 0, which implies ∑ ௝݉஼୨୍ୀଵ =
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ிାூ∙஼௣ .  If costs do not vary across sub-markets, then entry will only be attempted at stage j if 

௝݉ ≥ ಷೕା஼௣   and ܯ௏࢐ ≥ ிା௝∙஼௣ . 26  So there are scale benefits to attempting entry when j>1. 

Please note, however, that to facilitate my comparative static analysis I will adjust the { ௝݉ ≥ ಷೕା஼௣  

for j>0} constraint to, 

 {݉ଵ ≥ ிା஼௣  and ௝݉ ≥ ஼௣ for j>1}. (**2) 

This reflects the stylistic fact that firms often initiate drug innovation projects by targeting a core 

disease sub-indication and, usually only if this is feasible, then also conducting clinical trials in 

other sub-indications.27, 28 

So in terms of market entry with respect to disease category C, I am interested in calculating two 

particular output metrics: the number of successful firms/projects (ࢌ) and successful product 

entries (ࢋ).  Note that ࢌ and ࢋ are equivalent to the number of new molecular entity approvals 

( ஘ܰୀଶେ ) and number of new drug indication approvals ( ஘ܰୀଷେ ), respectively, in disease category C. 

If e୨ is the expected number of successful product entries into sub-market G୨ then ࢋ௝ = ெೕ௠ೕ and we 

can calculate ࢋ as 

ࢋ  = ∑ ௝୨୍ୀଵࢋ = ∑ ெೕ௠ೕ୨୍ୀଵ = ௣∙ெభிା஼ + ∑ ௣∙ெೕ஼୨୍ୀଶ = ቀ௣∙ெభிା஼ − ௣∙ெభ஼ ቁ + ∑ ௣∙ெೕ஼୨୍ୀଵ , 

or 

 ஘ܰୀଷେ = ܥ݌ ቌܯ − ܨܥ1 + 1 ∙  ଵቍ (**3)ܯ

                                                      
26 I have dropped the C to simplify the notation. 
27 This has been traditionally presumed to be the largest or most lucrative sub-indication; designated here as ܯଵ. 
28 Drug research has conventionally held a “one-out” policy in compound testing, although the definition of “out” can vary. 
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I can then deduce the following non-trivial comparative statics for ࢋ, or equivalently, ஘ܰୀଷେ : 

 ஘ܰୀଷେ 		 ↑  ,ܯ		

஘ܰୀଷେ 		 ↓  ଵ; andܯ		

஘ܰୀଷେ  30 ,29	(4**) .ܫ		⏊		

From (**4) I can make three interesting observations.  First, since an increase in ܯଵ (for a given 

size, ܯ) means that the market is becoming more concentrated (less heterogeneous), my model 

shows that the number of new drug indication approvals increases as the market becomes more 

heterogeneously composed.  Second, only two factors with cross-market and cross-time variation 

have influence on the number of new drug indication approvals: total market size (ܯ) and the size 

of the largest sub-market (ܯଵ ).  A final observation is that another raw measure of market 

heterogeneity, the number of sub-groups (I), has no apparent influence on the number of new 

drug indication approvals.  The latter two observations, however, seem to be just straightforward 

consequences of my stylistic setup in (**2).31 

Next, determining the number of new molecular entity approvals, ஘ܰୀଶେ , or ࢌ = ∑ ௝୨୍ୀଵࢌ , can be a 

trickier exercise because calculating ࢌ௝, the expected number of firms successfully entering sub-

market M୨, requires the calculation of M୚ܒ which is sensitive to the particular sub-market structure 

of C. 32  So for completeness this would suggest I consider several sub-market structure scenarios 

(see Figure 4.3) in determining 33.ࢌ  However, to facilitate my analysis I take as standard the case 

where the sub-markets of a disease category are relatively heterogeneous in size (see Figure 

                                                      
29 డࢋడ஼ = ݌ ቆ− ଵ஼మ ∙ ܯ + ቆ ଵቀ಴ಷାଵቁమቇ (ଵி) ∙ ଵቇܯ = ௣஼మ ቆ−ܯ + భಷቀభಷାభ಴ቁమ ∙ డ஼ࢋଵቇ which implies  డܯ ≷ 0 iff ெభெ ≶ ቀభಷାభ಴ቁమభಷ .  For empirically relevant 

values of F and C, this means డࢋడ஼ < 0. 
30 As would be basically expected, ܰ	 ↑ 	ܰ while ݌	 ↑ ,ܨ	  .ܥ
31 However, in section 5.d.iii, I show that when the sub-market structure is unconcentrated then ࢋ ↓  .ܫ
32 This is also true for the size of ࢋଵ.  Recall our earlier assertion that ࢋଵ = ௣∙ெభிା஼  and ࢋ௝ = ௣∙ெೕ஼  for j>1.  From this it is 
straightforward to deduce from our ordering in {G۷| … |G۷} that ࢋଶ ≥ ⋯ ≥  ூ.  However, we still cannot deduce anythingࢋ
about the relative size of ࢋଵ! 
33 For now I set aside the “orphan disease” case where the total market size of a disease category is insufficient to 
support any product entry, i.e., M < ୊ାେ୮ . 
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4.3(a)).34  Quantitatively, I model this as occurring when there is a “large enough” size difference 

between the two largest sub-markets, ଵܯ	  and ܯଶ , i.e., ெభெమ ≥ 1 + ி஼ .  This right-hand absolute 

constraint can be seen to follow naturally from my stylistic setup in (**2). 

I then can calculate the size of Vܒ for 1<j<I to be, 

୚ౠܯ  = ቀ1 + ி஼ቁ ∙ ൫ܯ௝ − ௝ାଵ൯ܯ + (݆ − 1) ∙ ൫ܯ௝ − ௝ାଵ൯ܯ = ቀி஼ + ݆ቁ ∙ ൫ܯ௝ −  ,௝ାଵ൯ܯ
where the first term is the opportunity in Vܒ  offered by ܩଵ  and the second term is the total 

opportunity in Vܒ offered by ܩଶ,… ,  ,௝. For j=1, the size of V૚ is given byܩ

୚భܯ  = ଵܯ − ቀ1 + ி஼ቁ ∙  ,ଶܯ
while for j=I, the size of V۷ is given by, 

୚౅ܯ  = ቀ1 + ி஼ቁ ∙ ூܯ + ܫ) − 1) ∙ ூܯ = ቀி஼ + ቁܫ ∙  .ூܯ
Now I can also calculate the portion of ࢋ௜ (the number of successful product entries in sub-market ܩ௜) associated with Vܒ (i.e., occurring at stage j of the I-stage entry game) to be, 

࢐࢏ࢋ  = ۔ۖەۖ
ۓ ெೕିெೕశభ௠೔ = ௣஼ ∙ ൫ܯ௝ − 1	for																		௝ାଵ൯,ܯ < ݆ < ெ౒భ௠భ,ܫ = ௣஼ ∙ ቆ ଵಷ಴ାଵ ∙ ଵܯ − ଶቇܯ ,																								for	݆ = 1,ெ౒౅௠಺ = ௣஼ ∙ ൬ቀி஼ + ቁܫ ∙ ூ൰ܯ ,																																		for	݆ = I. 

We can also write ࢐࢏ࢋ = ݌ ∙ ௝ܽ, so we can determine that, 

                                                      
34 Other potential scenarios include an “under-sized” sub-market structure case (when one or more sub-markets are not 
attractive, initially or marginally, to potential entrants), i.e., when ஼௣ > I	where	௞ for some kܯ ≥ k ≥ 1; an “un-concentrated” 

sub-market structure case where sub-markets are relatively evenly balanced in size (see Figure 7.2.b), i.e. when there is 
“not enough” size difference between the largest and smallest sub-markets such that ெభெ಺ < 1 + ி஼.  Both of these scenarios 

severely limit the incentive to conduct innovation project attempts. 
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࢐ࢌ  = ௝߬ ∙ ௝ܽ = ఛೕ∙࢐࢏ࢋ௣ =
۔ۖەۖ
ఛೕ஼ۓ ∙ ൫ܯ௝ − 1	for																														௝ାଵ൯,ܯ < ݆ < ఛభ஼,ܫ ∙ ቆ ଵಷ಴ାଵ ∙ ଵܯ − ଶቇܯ ,																								for	݆ = 1,
ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙ ூ൰ܯ ,																																		for	݆ = I.  

Therefore, 

ࢌ  = ∑ ூ௝ୀଵ࢐ࢌ  

  = ఛభ஼ ∙ ቆ ଵಷ಴ାଵ ∙ ଵܯ ଶቇܯ− + ∑ ఛೕ஼ ∙ ൫ܯ௝ ௝ାଵ൯ூିଵ௝ୀଶܯ− + ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙   ூ൰ܯ
  = −ఛభ஼ ∙ ቆ ଵଵା಴ಷ ∙ ଵቇܯ + ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙ ூ൰ܯ + ∑ ఛೕ஼ ∙ ൫ܯ௝ − ௝ାଵ൯ூିଵ௝ୀଵܯ   

  = −௣஼ ∙ ቆ ଵଵା಴ಷ ∙ ଵቇܯ + ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙ ூ൰ܯ + ଵ஼ ∑ ൫ ௝߬ − ௝߬ିଵ൯ூ௝ୀଵ  ௝ܯ
  = ௣஼(ଵି௣) ܯൣ − ∑ ௝߬ூ௝ୀଵ ௝൧ܯ − ௣஼ ቈ ெభଵା಴ಷ቉ + ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙   ூ൰ܯ
  = ௣஼(ଵି௣) ൣ∑ (1 − ௝ூ௝ୀଵ(݌ ௝൧ܯ − ௣஼ ቈ ெభଵା಴ಷ቉ + ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙  .ூ൰ܯ
And since M୨ ≥ M୨ାଵ  and (1 − p)୨ ≥ (1 − p)୨ାଵ , I use Chebyshev’s Inequality 35  to provide the 

tractable approximation, 

ࢌ  ≳ ௣஼(ଵି௣) ቂெ(ଵି௣)௣ ∙ ఛ಺ூ ቃ − ௣஼ ቈ ெభଵା಴ಷ቉ + ఛ಺஼ ∙ ൬ቀி஼ + ቁܫ ∙  ,ூ൰ܯ
or 

 ஘ܰୀଶେ ≳= ଵ஼ ቈఛ಺ூ ∙ ܯ − ௣ଵା಴ಷ ∙ ଵܯ + ቀி஼ + ቁܫ ∙ ߬ூ ∙  .ூ቉ܯ
                                                      
35  Chebyshev’s Inequality states that if a୧ ≥ a୧ାଵ  and b୧ ≥ b୧ାଵ  then (∑ a୧b୧୬୧ୀଵ ) ≥ ଵ୬ (∑ a୧୬୧ୀଵ )(∑ b୧୬୧ୀଵ ) for all positive real 
numbers a୧ and b୧. 
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This yields the following non-trivial36 comparative statics for ࢌ, or equivalently, ஘ܰୀଵେ : 

 ஘ܰୀଶେ 	 ↑ ,ܯ	 ,ூܯ	  வ; andܫ

 ஘ܰୀଶେ 	 ↓  ழ,         (**5)ܫ	 ,ଵܯ	

where ܫவ	and ܫழ satisfy the conditions ܫ > ටெெ಺ and ܫ < ටெெ಺ respectively. 37 

Equivalently, I can restate these comparative statics as: 

 ஘ܰୀଶେ 	 ↑ ,ܯ	  (6**)        ,ܶܧܪ

where ܶܧܪ  is a composite measure of market heterogeneity. For example, this could be 

calculated in the form of a Herfindahl- Hirschman Index of sub-market shares, i.e., ܶܧܪ =∑ (ெ಺ெ )ଶூ୧ୀଵ . 

Until now we have examined attempt and entry dynamics for two drug innovation measure types, 

new molecular entities (θ = 2 ) and new indications (θ = 3 ). To say something about new 

formulations ( θ = 4 ) only requires further specifying the expected cost expressions in the 

previous section; in particular, to make explicit the presence of ܽଷ , the θ = 4  associated 

component of ܥଷ.  For ease of notation, following the simplification used in Sections 4.1.1 and 

4.1.2 above I will rewrite the expected cost function for ܧ[ܭఏஸସ]  as [ܭ]ܧ = ܨ + ݆ ∙ ܥ) + ℎ ∙ (ܦ , 

where ℎ = ܽଷ ܨ , = ଴ܨ + ቂܨଵ + ஼భ௣భቃ + ߬ଵܨଶ + ߬ଵ߬ଶܨଷ ܥ , = ଶܥ , and ܦ = ଷܥଶ݌ .  In essence, this will 

produce comparative statics for the θ = 4 relevant market characteristic H38 similar to what we 

have already derived for the market characteristic I under the θ = 3 analysis.  Note the presence 

                                                      
36 As would be basically expected (again as in footnote 29), ܰ	 ↑ 	ܰ while ݌	 ↑ ,ܨ	  .ܥ
37 డࢌడூ = ݊݃ݏ ቚ	ܫܯ + ܫ ∙ ܫ ூ, which is globally minimized atܯ = ටெெ಺ since the second derivative is 

3ܫܯ2 > 0. 
38 For example, this can be some count or metric reflecting the compositional heterogeneity of a disease market’s 
physiological sub-types. 
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now of an (݆ ∙ ℎ)  interaction term which we will want to keep in mind for our empirical 

specification. 

In summary, innovation product entry is increasing in market size and also in market 

heterogeneity as reflected by the number of sub-markets (ܫ), the size of the largest sub-market 

Specifically, ஘ܰୀଶେ  .(୍ܯ) and the size of the smallest sub-market ,(ଵܯ)  (the number of new drug 

molecules) and ஘ܰୀଷେ  (the number of new drug indications) are both increasing in ܯ  and ܯଵ .  

Further, ஘ܰୀଶେ  (the number of new drug molecules) is influenced by ୍ܯ and also -- if ୍ܯ is large 

enough relative to ܯ – by ܫ. 
 

4.2 MODEL SETUP II: QUASI-CATEGORICAL MARKET HETEROGENEITY 

I next consider a theoretical set-up in which I establish more detailed demand and supply 

equations that can capture the potential additional effects of non-categorical market 

characteristics.  This ultimately allows me to make more specific predictions about a broader 

range of innovation measure types.  Also advantageous to this model is that firm choices such as 

the number of clinical trials are treated as endogenous variables, whereas they were considered 

exogenously determined in the Model I setup. 

This alternative product innovation model presumes the flow of product innovation attempts (and 

as a result, innovation entry) is generated by an industry-specific sequence of R&D steps, each 

defined by one of four attrition step regimes.  I then solve for the non-cooperative Nash 

equilibrium in prices (P), phase II trials (rଶ), and product safety quality (߮), where firms select the 

profit-maximizing values of these endogenous variables taking as given the prices ( തܲ), phase II 

trials (r̅ଶ), and product safety quality ( ത߮) chosen by all other firms.  Specifically, my plan is to first 

calculate symmetric market equilibria under the oligopolistic competition condition which takes as 

given the number of innovation entries.  I next make innovation entry endogenous under the free-

entry condition of symmetric monopolistic competition.  Once I have expressed innovation entry in 
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terms of the exogenous variables defined by pharmaceutical industry-specific market 

characteristics and sunk costs, I can then deduce testable hypotheses concerning the causal 

relationship between market characteristics and new drug entry. 

In particular, I am concerned in this exercise with how market composition – defined by 

characteristics such as disease sub-types (e.g., determining drug need), physiological sub-types 

(e.g., determining drug response), and preference sub-types (e.g., determining drug formulation 

taste) – in addition to market size influences drug innovation entry.  Since I am interested in 

evaluating innovation inducement in terms of “output” rather than “location,” I choose to use the 

informative advertising model for a market of heterogeneous products established by Grossman 

and Shapiro (1984) as my starting point.  Their approach combines the monopolistic competition 

framework of Chamberlin (1931) to account for the product’s “information” dimension with the 

circular spatial competition model of Salop (1979) to account for a “location” dimension.  The 

corresponding model I derive cannot capture the market expansion effects of new product 

introductions (see Shaked & Sutton (1990)) and it limits patients to receiving at most one drug per 

disease.  Importantly, however, I am able to appropriately capture the “drug safety” (exclusionary 

information) dimension and the “drug efficacy/tolerability” (preference location) dimension.  Thus, 

I can investigate the potential innovation inducement effects of drug response/taste heterogeneity 

as well as cross-product competition.  

Figure 4.4 provides a visual overview of my theoretical Model II set-up. 

4.2.1 SUPPLY-SIDE SETUP 

I define product innovation as the firm’s effort to identify products for market launch (i.e. 

innovation entry) by undertaking R&D projects which are winnowed down through a sequence of 

attrition steps.  Each project consists of one or more product prototypes (denoted by the count 

variable, a).  Each attrition step consists of one or more tests (denoted by the count variable, r) 
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for each product prototype.  My setup completely describes any innovation step with two 

measures, the attrition step cost structure variable (κ) and the attrition step flow variable (λ). 

I calculate these two variables as follows: 

 κ	 = 	 େ౜	େ౜	ା	େౣ, 

where 

Cf = fixed cost incurred during the innovation step; 

Cm = marginal cost per test per innovation step; 

Cf and Cm cannot both be zero (so that κ always remains well-defined); and 

λ = 1 - (1 - p)ar, 

where 

p = exogenous probability of technical success of any product prototype in any test; 

a = number of product prototypes per innovation step; and 

r = number of tests per product prototype per innovation step, with 0 < p < 1 and n, r ≥ 1. 

My main assumption in employing this expression for λ is that all prototypes and tests have 

orthogonal relationships to one another. 

Note that κ holds two values of interest in my analysis39: 

 κ = ൜0, when	C୤ = 0, i. e. constant	returns	to	scale; 	or					≠ 0, when	C୤ ≠ 0, i. e. nonconstant	returns	to	scale. 
Further note that the flow variable, λ, also holds two values of interest in my analysis: 

 λ = ൜p,				when	a	 = 	r	 = 	1, i. e. hurdle	attrition	is	in	effect; 	or																														1	 − (1	 − 	p)ୟ୰,				when	a > ݎ	ݎ݋	1 > 1, i. e. quota	attrition	is	in	effect.						 

                                                      
39 This makes κ essentially a “returns-to-scale” variable. 
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The hurdle attrition criteria describes those R&D contexts when any prototype during a given 

attrition step can qualify (“qualified-in-class”) to pass-through to the next R&D stage.  The quota 

attrition criteria describes those R&D contexts when only a pre-specified number of product 

prototypes (“best-in-class” quota) can qualify to pass-through.  

In summary, I can categorize any product innovation attrition step as belonging to one of four 

possible regimes as shown in Figure 4.5. 

Now for the case of pharmaceutical innovation production, we assume and/or determine the 

following values and constraints for our particular variables of interest: 

ps is the exogenous probability of a compound (product prototype) succeeding in any 

Phase s trial for any mix of disease sub-conditions/-types; 

rs is the number of Phase s trials conducted per compound per firm; 

τs is the probability of a compound project reaching stage s and corresponds to attrition 

step flow variable, λ, described earlier; ߮ is the probability of the test compound causing a safety issue in any tested group of 

patients40; 

Fs is the cost of testing a specific prototype in a specific context at stage s; 

c is the marginal cost of a marketed product; 

as is the number of compounds (attempts) at stage s per firm; 

a is the number of marketed products (entries) per firm; 

ns is the number of compounds (attempts) at stage s for all firms; and 

n is the number of marketed products (entries) for all firms. 

Note the variables I consider to be endogenous are ݊, ݊௦, ܽ, ܽ௦, ଶݎ  and ߮ .  In particular, ݎଶ  is 

endogenous because there are two counter-acting incentives for firms in making their choice of ݎଶ .  The first incentive is for firms to justify an increase ݎଶ  in order to increase τଶ , i.e. the 

                                                      
40  New drug compounds are more often successfully developed by achieving differentiated safety profiles because 
researchers know what they want the molecule not to do and are in better position to make proactive design adjustments. 
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probability of getting the test compound into phase III and beyond.41  The second incentive is for 

firms to choose to decrease ݎଶ in order to limit R&D costs. 

Therefore, assuming that ܨଵ = ଶܨ = ଷܨ = 0  and ߮⏊ݎଶ , the representative firm’s expected cost 

function is expressed by 

[ݏݐݏ݋ܥ]ܧ  = ଴ܨ] + τଵܨଵ + τଵτଶܨଶ + τଵτଶτଷܨଷ] + [ܽଵݎଵܥଵ + ܽଶݎଶܥଶ + ܽଷݎଷܥଷ] 
  = ଴ܨ + ቀ ଵ௣భቁ ଵܥ(1) + ଶܥଶݎ(1) + τଷ(1)ܥଷ 
  = ଴ܨ + ஼భ௣భ + ଶܥଶݎ + τଷܥଷ. 
So if ௦݂ denotes the number of firms engaging in pharmaceutical R&D at stage ݏ (where ݂ = ସ݂) 
then I can further deduce the following: 

 ݂ = ௡௔ = ௡௣యதయ, 
 ݊ଷ = ଷ݂ܽଷ = ቀ ௡௣యதయቁ (τଷ) = ௡௣య, 
 ݊ଶ = ଶ݂ܽଶ = ቀ ௡௣యதయቁ (1) = ௡௣యதయ, and 

 ݊ଵ = ଵ݂ܽଵ = ቀ ௡௣యதయቁ ቀ ଵ௣యቁ = ௡௣యதయ௣భ. 
4.2.2 DEMAND-SIDE SETUP 

My aim is to accurately capture the product space and preference structure of the pharmaceutical 

market.  The pharmaceutical space is primarily defined by differentiated products known as new 

molecular entities (NMEs).  Preference structure is primarily defined by a mix of discrete (drug 

safety) and continuous (drug efficacy/tolerability) influences.  Since location models are useful in 

                                                      
41 This phenomenon can be readily observable in the real-world with drug licensing agreements where the “salami slicing” 
of development rights by sub-indication is standard practice.  
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capturing non-discrete effects while advertising models are useful in capturing non-discrete 

effects, I will follow the blended model proposed by Grossman & Shapiro (1984).  

I begin with a horizontal address model where the market for a given drug is a unit circle. 

Potential market size, or disease prevalence, is characterized by the density of consumers, d, 

who are uniformly distributed on the circle.  Patients sharing a disease sit on the same circle and 

consume one unit of the nearest drug if  

utility to consumption = u – tx – P > 0, 

where 

u = patient’s utility from consumption of a drug for disease treatment, 

P = the unit price of the drug, ݊ = the total number of drugs or firms (which we initially assume as given), 

x = consumer's distance to the nearest drug (maximum value of ଵ	ଶ௡ where n is the total 

number of drugs in that market), reflecting heterogeneous drug response, 

t = linear transport cost, reflecting a reduction in therapeutic benefit due to 

heterogeneous drug response or consumers’ drug choice preferences, and ߜ = the market size (volume of consumers). 

Now if I define ௞ܰ to be the set of consumers for whom the representative firm’s drug is their kth 

preferred choice, I can calculate the following expressions for each ௞ܰ: 

 ଵܰ = 	 ఋ	௡ + ఋ	(௉തି௉)௧ , 

 ௞ܰ = 	 (௉തି௉)ଶ௧ + ௞ଶ௡  for k = 2,…,n-1, and 

 ௡ܰ = 	 ఋ	௡ − ఋ	(௉തି௉)௧ . 

Aggregating these expressions gives the representative firm’s overall demand function as 

,ܲ)ݔ  ߮) = ଵܰ߮ଵ +⋯+ ௞ܰ߮௞ + ⋯ ௡ܰ߮௡, 
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where ߮௞ is the probability of not being ruled out due to a safety issue with the representative 

firm’s drug. 

If ߮ is the probability choice of the representative firm’s drug causing a safety issue in a patient 

while holding constant ത߮, the fixed probability choice of any other drug causing a safety issue, 

then I can calculate ߮௞ as 

 ߮௞ = (1 − ߮) ത߮௞ିଵ for k = 1,…,n. 

Thus, my fully specified expression for the representative firm’s demand is 

 

,ܲ)ݔ  ߮) 
 = ቀఋ	௡ + ఋ(௉തି௉)௧ ቁ (1 − ߮) + ∑ ቀ௉തି௉ଶ௧ + ௞ଶ௡ቁ (1 − ߮) ത߮௞ିଵ௡ିଵ௞ୀଶ + ቀఋ	௡ − ఋ(௉തି௉)௧ ቁ (1 − ߮) ത߮௡ିଵ  

 = (1 − ߮) ቂቀఋ	௡ + ఋ(௉തି௉)௧ ቁ + ௉തି௉ଶ௧ ∑ ത߮௞ିଵ௡ିଵ௞ୀଶ + ଵଶ௡ ∑ ݇ ത߮௞ିଵ௡ିଵ௞ୀଶ + ቀఋ	௡ − ఋ(௉തି௉)௧ ቁ ത߮௡ିଵቃ 
 = (1 − ߮) ቎ቀఋ	௡ + ఋ(௉തି௉)௧ ቁ + ௉തି௉ଶ௧ ቀଵିఝഥ೙షమ	ଵିఝഥ ቁ ത߮ + ଵଶ௡ ቀ ఝഥ	ଵିఝഥቁ ቀ1 − ݊ ത߮௡ିଶ + ଵିఝഥ೙షభ	ଵିఝഥ ቁ+ ቀఋ	௡ − ఋ(௉തି௉)௧ ቁ ത߮௡ିଵ ቏. 
Assuming ത߮ 	௡  is very small, I will use the following approximation for demand to facilitate 

calculations: 

,ܲ)ݔ  ߮; ݊, തܲ, ത߮) = (1 − ߮) ቂቀఋ	௡ + ఋ(௉തି௉)௧ ቁ + ௉തି௉ଶ௧ ቀ ଵ	ଵିఝഥቁ ത߮ + ଵଶ௡ ቀ ఝഥ	ଵିఝഥቁ ቀ1 + ଵ	ଵିఝഥቁቃ 
  = ఋ(ଵିఝ)	௡ ቈ1 + ݊ ቀ௉തି௉௧ ቁ ቆ1 + കഥమ	ఋ(ଵିఝഥ)ቇ + ఝഥ	ቀଵିകഥమቁఋ(ଵିఝഥ)మ቉.  
Therefore, the representative firm’s expected revenue function is expressed by 

[݁ݑ݊݁ݒܴ݁]ܧ  = pଷτଷ(ܲ − ,ܲ)ݔ(ܿ ߮; ݊, തܲ, ത߮) 
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  = pଷτଷ(ܲ − ܿ) ఋ(ଵିఝ)	௡ ቈ1 + ݊ ቀ௉തି௉௧ ቁ ቆ1 + കഥమ	ఋ(ଵିఝഥ)ቇ + ఝഥ	ቀଵିകഥమቁఋ(ଵିఝഥ)మ቉. 
Some of the assumptions I make so that I can more accurately capture the idiosyncrasies of the 

pharmaceutical industry while simplifying my calculations include: 

• physicians are fully informed and can immediately prescribe the optimal drug for 

every patient (who is not excluded from receiving any available drug because of 

safety reasons); 

• disease patient sub-populations for clinical trial testing are mutually-exclusive-and-

collectively-exhaustive; 

• drug safety/efficacy response is determined at the disease sub-population level;  

• drug safety/efficacy responses are determined at the disease patient level in an 

independently distributed manner (i.e. ߮⏊ݎଶ); and 

• off-label usage is negligible. 

4.2.3 SYMMETRIC OLIGOPOLY EQUILIBRIUM42 

For a given disease market of size d, the representative firm chooses ݔ, ܲ, τଷ and ߮, to solve 

max	ߨ(ܲ, τଷ, ߮; 	݊, ,ߜ ,ݐ ܿ, ,௜ܨ ,௜ܥ (௜݌ = [݁ݑ݊݁ݒܴ݁]ܧ − 	[ݏݐݏ݋ܥ]ܧ	
	 	 = pଷτଷ(ܲ − ,ܲ)ݔ(ܿ ߮; ݊, തܲ, ത߮) − ቂܨ଴ + ஼భ௣భ + ଶܥଶݎ + τଷܥଷቃ.	
One first-order condition (FOC#1) that can now be solved is 

 డగ(௉,தయ,ఝ)డ௉ = 0 = pଷτଷ[ݔ + (ܲ −  [′ݔ(ܿ
which implies 

 ܲ = ௉തା௖ଶ + ௧ଶ௡ ൥ଵା
കഥ	ቀభషകഥమቁഃ(భషകഥ)మ൩൥ଵା കഥమ	ഃ(భషകഥ)൩ . 

                                                      
42 Please refer to Appendix 10.4 for backup calculations. 
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Setting തܲ = ܲ  and ത߮ = ߮  for the symmetric oligopoly equilibrium case thus gives the profit-

maximizing solution for P, 

 ܲ = ܿ + ௧௡ ቈ1 + ଵ(ଵିఝ)[మഃ(భషക)ക ାଵ]቉ . (*1) 

Another first-order condition (FOC#2) that can be solved is 

 డగ(௉,தయ,ఝ)డ୰మ = 0 = pଷ(ܲ − τଷᇱݔ(ܿ − Cଶ − Cଷτଷᇱ . 

Now since  τଷᇱ = − (1 − pଶ)୰మln(1 − pଶ) = −(1 − τଷ)ln(1 − pଶ) and by setting തܲ = ܲ and ത߮ = ߮ for 

the symmetric oligopoly equilibrium case as well as substituting for (ܲ − ܿ)  from (*1), I can 

deduce the profit-maximizing solution for τଷ (and therefore rଶ) as being 

 τଷ = 1 + େమ୪୬(ଵି୮మ)ቈ ೟౦యൣ(మഃషభ)(భషക)మశభ൧మమ೙మ(భషക)మ[(మഃషభ)(భషക)శభ]ିେయ቉ . 
(*2) 

Note that τଷ < 1  which implies that ൤ ௧୮యൣ(ଶఋିଵ)(ଵିఝ)మାଵ൧మଶ௡మ(ଵିఝ)మ[(ଶఋିଵ)(ଵିఝ)ାଵ] − Cଷ൨ > 0.  Thus, I can derive the 

following hypotheses regarding τଷ: 
݊݃ݏ  ቚడதయడ௧ > 0; 

݊݃ݏ  ቚడதయడఋ = ݊݃ݏ డడఋ ฬൣ(ଶఋିଵ)(ଵିఝ)మାଵ൧మ[(ଶఋିଵ)(ଵିఝ)ାଵ] = ߜ2) − 1)(1 − ߮)ଶ + (1 − 2߮) ≷ 0. 

Since τଷ  is a function of rଶ  and డ୰మడதయ = ିଵ(ଵିதయ)୪୬(ଵି௣మ) > 0 , these comparative static for τଷ  hold 

correspondingly for rଶ. 
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4.2.4 MONOPOLISTICALLY COMPETITIVE EQUILIBRIUM43 

Building further on the equations derived under symmetric oligopolistic competition, we exploit the 

fact that firm profits goes to zero with the free entry-exit condition of monopolistic competition.  

This free-entry condition (FEC) is given by 

,ܲ)ߨ  τଷ, ߮, ݊) = 0  = pଷτଷ(ܲ − ,ܲ)ݔ(ܿ τଷ, ߮) − ቂܨ଴ + ஼భ௣భ + ଶܥଶݎ + τଷܥଷቃ  
= τଷ[pଷ(ܲ − ݔ(ܿ − [ଷܥ − ଶܥଶݎ − ቂܨ଴ + ஼భ௣భቃ. 

(*3) 

From FOC#2, 

 [pଷ(ܲ − ݔ(ܿ − Cଷ] = େమ(ങಜయങ౨మ) = େమି(ଵିதయ)୪୬(ଵି௣మ). (*4) 

Substituting rଶ = ୪୬(ଵିதయ)୪୬(ଵି௣మ) and (*4) into (*3) gives 

 0 = τଷ ቂ େమି(ଵିதయ)୪୬(ଵି௣మ)ቃ − ቂ୪୬(ଵିதయ)୪୬(ଵି௣మ)ቃ ଶܥ − ቂܨ଴ + ஼భ௣భቃ, 
which implies 

 ି୪୬(ଵି௣మ)େమ ቂܨ଴ + ஼భ௣భቃ = ln(1 − τଷ) + தయଵିதయ = ln(1 − τଷ) + ଵଵିதయ − 1. 

Setting ܭ = 1 − ୪୬(ଵି௣మ)େమ ቂܨ଴ + ஼భ௣భቃ and rearranging gives 

 ݁ି୪୬(ଵିதయ) = −ln(1 − τଷ) +  ,ܭ
which can then be solved44 to give 

                                                      
43 Please refer to Appendix 10.5 for backup calculations. 
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 τଷ = 1 − ݁ௐ൫ି௘ష಼൯ା௄. (*5) 

Therefore, rearranging (*2) and substituting from (*5) enables me to express innovation entry in 

terms of only exogenous variables: 

 ݊ଶ = ቎ ௧୮యൣ(ଶఋିଵ)(ଵିఝ)మାଵ൧మଶ(ଵିఝ)మ[(ଶఋିଵ)(ଵିఝ)ାଵ][େయି ిమ೐ೈ൫ష೐ష಼൯శ಼ౢ౤(భష౦మ)]቏, 
or equivalently, 

 ݊ = ቂቀߜ − ଵଶቁ (1 − ߮) + ଵଶ(ଵିఝ)ቃ ∙ ඨ ௧୮యቂቀఋିభమቁ(ଵିఝ)ାభమቃቂେయି ిమ(భషಜయ)ౢ౤(భష౦మ)ቃ , (*6) 

where τଷ is a function of ܨ଴, ܥଵ, ܥଶ, ݌ଵ, and ݌ଶ. 
4.2.5 INNOVATION ENTRY 

This setup yields the following set of comparative statics. Of particular note are those statics for 

explanatory variables reflecting market heterogeneity, i.e., t, ߮, and ݎଶ. 
݊݃ݏ  ቚడ௡డఋ = ݊݃ݏ ቚ డడఋ ቀఋିభమቁටቂቀఋିభమቁ(ଵିఝ)ାభమቃ = ݊݃ݏ ቮටቂቀߜ − ଵଶቁ (1 − ߮) + ଵଶቃ − భమቀఋିభమቁ(ଵିఝ)ටቂቀఋିభమቁ(ଵିఝ)ାభమቃ  

  = ݊݃ݏ	 ቚቀߜ − ଵଶቁ (1 − ߮) + 1 	> 0, 
i.e., innovation entry increases with population volume in a market; 

݊݃ݏ  ቚడ௡డ௥మ = ݊݃ݏ ቚ డ௡డதయ > 0,	
                                                                                                                                                              
44 This is done using the Lambert function.  Specifically, for ݌ୟ୷ାୠ = cy + d, where	p > 0	ܽ݊݀	ܽ, ܿ ≠ 0, y can be solved as 

y = −୛(ି౗	ౢ౤(౦)ౙ ௣್ష౗ౚౙ )ୟ	୪୬(୮) − ୡୢ, where W is the Lambert function. See http://mathworld.wolfram.com/LambertW-Function.html for 

more details. 
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  i.e., innovation entry increases with number of segments in a market; 

݊݃ݏ  ቚడ௡డ௧ > 0,	
  i.e., innovation entry increases with degree of a market’s need; 

and 

݊݃ݏ  ቚడ௡డఝ = ݊݃ݏ ቤ− ቂቀߜ − ଵଶቁ (1 − ߮) + ଵଶቃିభమ + ଵଶ ቀߜ − ଵଶቁ (1 − ߮) ቂቀߜ − ଵଶቁ (1 − ߮) + ଵଶቃିయమ		
	 	 = ݊݃ݏ ቤ−1 + ቀఋିభమቁ(ଵିఝ)ଶቂቀఋିభమቁ(ଵିఝ)ାభమቃ 	< 0	,	

i.e., innovation entry decreases in degree of a market’s negative drug response. 

Thus, I hypothesize a positive inducement effect with three of my measures of market 

heterogeneity and a negative inducement effect with one of my measures of market 

heterogeneity. 

All comparative dynamics with ݊௦ follow the corresponding predictions for ݊ except with respect to τଷ (i.e. ݎଶ). However, it is straightforward to deduce the following: 

݊݃ݏ  ቚడ௡యడதయ = ݊݃ݏ ቚ డ௡డதయ > 0, 

 డ௡మడதయ = డడதయ ௡௣యதయ = ቆ ങ೙ങಜయதయି௡௣యதయమ ቇ = ቀ ௡௣యதయమቁ ቆ− தయେమଶ (ଵିதయ)మ୪୬(ଵି୮మ)ቂେయି ిమ(భషಜయ)ౢ౤(భష౦మ)ቃ − 1ቇ > 0, 

݊݃ݏ  ቚడ௡భడதయ = ݊݃ݏ ቚడ௡మడதయ > 0. 

These results are promising because they give me the empirical flexibility to exploit a larger 

dataset (e.g., drugs in clinical development) that can enable a more statistically robust 

investigation of my testable hypotheses. 
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My reward for investing in complementary theoretical setups is that: (1) I can make predictions 

about the potential effects of non-size market characteristics whether they are exogenously given 

and/or endogenously determined; (2) I can make predictions by innovation measure type; and (3) 

I have a non-arbitrary framework for establishing model specification and constructing my 

empirical variables to achieve identification. 

 

4.3 COMPARATIVE STATICS AND TESTABLE HYPOTHESES 

4.3.1 COMPARATIVE STATICS 

The comparative statics from the previous section are illustratively summarized in Figure 4.6. 

4.3.2 TESTABLE HYPOTHESES 

Given the specific scope of my research questions as well as the limitations I expect from using 

publicly available data for this study, I will be unable to test the full prediction set directly taken 

from my comparative statics.  Rather I use these comparative statics to derive (as indicated in 

Figure 4.7) these two more modest testable hypotheses: 

Hypothesis #1: For a given market size, the number of new drug product entries 

increases in market heterogeneity; and 

Hypothesis #2: Adding one or more measures of market heterogeneity reduces the 

coefficient on market size. 

Although I do not test the predictions in Section 4.3.1 as they specifically relate to the degree of 

“innovativeness” of innovation output, I use these predictions from theory to inform my empirical 

strategy and my interpretation of why effects may vary with innovation measure type.  

Confirming these testable hypotheses of an extended Induced Innovation Hypothesis may allow 

for informative and novel predictions, for instance that the inducement effect of market size has 

been over-estimated in previous empirical studies; innovation output may be increasing in the 
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number of disease sub-indications; and innovation output may be also influenced by the sizes of 

the largest and smallest disease sub-indications.  
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Figure 4.1. Model I - Putative Inducement Mechanisms of Market 
Characteristics 
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Figure 4.2. Model I - Alternative Sub-Market Partitioning (Illustrative) 
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Figure 4.3. Sub-market partitioning scenarios 
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Figure 4.4. Model II - Putative Inducement Mechanisms of Market Characteristics 
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Figure 4.5. Product innovation step regimes 
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Figure 4.6. Comparative Statics from eIIH Theoretical Setup 
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Figure 4.7. Testable Setup for Empirical Testing 
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CHAPTER 5.  

EMPIRICAL STRATEGY 

 

5.1 SPECIFICATION 

To guide my model specification efforts, I can draw on the non-arbitrary framework established 

from my theoretical setup in (*6).  Namely, my starting point is a model following the general 

functional form, 

 ܰ = ,(݅ܶܧܪ,ܯ)݉,ܯ)݂  , (݀ܶܧܪ

where 

ܰ is an innovation count measure; ܯ is a size value of the aggregate market in question; ݅ܶܧܪ is a measure (or set of measures) of one or more non-size market characteristics 

that influence ܰ indirectly by interacting with ݀ܶܧܪ ;ܯ is a measure (or set of measures) of one or more non-size market characteristics 

that influence ܰ directly;  ݉ is a size function capturing the interaction between ܯ and ݅ܶܧܪ; and ݂ is a count function that calculates ܰ from ݀ܶܧܪ ,ܯ, and ݅ܶܧܪ. 
Thus, the base model I wish to estimate is composed as follows, presented in linear-form for 

expositional purposes: 

 log ௖ܰ௧ =݀௖௧ + ߙ ∙ logܯ௖௧ + ߛ ∙ log(ܯ ∗ ܧܪ ௖ܶ௧) + ߱ ∙ logܵܫܦ௖௧ + ߮∙ log ௖௧ܻܵܪܲ + ߨ ∙ log ௖௧ܨܧܴܲ + ܺ௖௧ᇱ ∙ ߚ + ௖ߪ + ௧ߤ +  ௖௧ߝ
 

, 

such that 
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௖ܰ௧  equals 1 when ௖ܰ௧  = 0 or equals ௖ܰ௧  otherwise (i.e. when ௖ܰ௧  ≥ 1), where ௖ܰ௧ 
measures the number of drug innovations in disease category c in time period t; ݀௖௧ is a dummy variable that equals 1 when ௖ܰ௧ = 0;45 ܯ௖௧ is the base market size for category c in time period t; (ܯ ∗  ௖௧) is some measure (income-based) of M interacting with one or more variablesܵܫܦ

from the set of non-size characteristics {ܵܫܦ, ,ܻܵܪܲ {ܨܧܴܲ  for category c in time 

period t; ܵܫܦ௖௧  is some measure (income-based) of the disease category’s compositional 

heterogeneity of sub-indications; ܻܲܵܪ௖௧  is some measure (income-based) of the disease category’s compositional 

heterogeneity of physiological sub-types; ܴܲܨܧ௖௧  is some measure (income-based) of the disease category’s compositional 

heterogeneity of adverse-event tolerability/sensitivity preferences; ܺ௖௧  is a vector of controls for insurance coverage and special drug status (e.g. orphan or 

pediatric designations); 

ζc are a full set of category fixed effects; ߤ௧ are a full set of time fixed effects; and ߝ௖௧ is the residual term. 

Thus, with respect to my testable hypotheses, I am looking for whether any of my coefficients of 

interest – ߙ ߛ , , ߱ , ߮ , and ߨ  – hold non-zero values with statistical significance (Research 

Question #1) and whether α decreases with one or more of these other coefficients being 

different than zero with statistical significance (Research Question #2). 

While I do obtain results with OLS estimation using the linear specification presented here, the 

empirical findings for my base specification are based on the standard Poisson approach for 

count regression. 

One final observation is that I have not included any explicit controls for drug stock or drug stock 

growth potential in market c at time t.  My rationale for this is that I want to avoid over-

                                                      
45 Follows the approach of Acemoglu & Linn (2004) as taken from Pakes and Griliches (1980) despite possible biases 
from dct and Ñct link. 
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specification given that my belief that the M*HET variable (discussed in greater detail in Section 

5.6) can sufficiently control for potential biases associated with drug stock. 

 

5.2 IDENTIFICATION 

My observation unit is market-year so I achieve identification by exploiting variations in the size 

(drug spend-based measures) and the non-size characteristics (income- based measures) of 

markets over time.  This strategy is facilitated by my use of the International Classification of 

Diseases ninth revision with Clinical Modification (ICD-9-CM).46  In contrast to the therapeutic-

based market categorizations (e.g., drug class) employed in prior empirical studies, using this 

disease-based categorization system is noteworthy for several reasons.  First, this categorization 

is demand-based which more closely aligns with the theoretical setup of IIH and eIIH.  Second, a 

disease-based definition can better capture the true demand potential for competing and/or 

complementary drug innovations because (e.g., it can capture the effects of off-label drug usage).  

And third, my market categorizations are defined and structured to aggregate/disaggregate in an 

a priori non-arbitrary manner. 

My additional strategies for facilitating identification include taking advantage of fixed effects 

estimation to exploit the count panel nature of my dataset; reporting Huber-White robust (and 

cluster-robust, when available) standard errors; using time periods based on three year intervals 

to improve result robustness; and. using lagged dependent variables to mitigate endogeneity 

concerns. 47,48 

 

                                                      
46 The National Center for Health Statistics (NCHS) and the Centers for Medicare and Medicaid Services (CMS) have 
created and officially used this system since 1979 for assigning codes to diagnoses and procedures associated with 
hospital utilization in the United States. 
47 Huber (1967); White (1980); (Wooldridge (1999). 
48 These time periods will be 3-years in length in my base scheme but in my sensitivity analyses I also consider 1-year 
and 5-year intervals. 
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5.3 DEPENDENT VARIABLE: INNOVATION ENTRY 

I measure innovation entry across disease market categories by counting outputs associated with 

New Drug Applications (NDAs) as well Biologic Licensing Applications (BLAs) approved by the 

Center for Drug Evaluation and Research (CDER).  As outlined earlier in Section 2.3.3, my 

measurement units for innovation entry vary according to count type (e.g., the number of new 

product codes) and measure type (e.g., for new molecular entities).  My concept of drug 

innovation covers a broad range of outputs from new drugs, new drug products, new drug product 

attributes, and new drug product information.  While public attention is understandably focused on 

the introduction of new medicines, the issue of whether a drug innovation is breakthrough 

(reflecting major productivity, say), incremental (reflecting minor productivity, say) or trivial (more 

reflective of activity rather than productivity) is not central to this study.49  Nonetheless, I use 

measure type to examine the variation in size effects according to output “innovativeness.”  In 

particular, I exploit the non-arbitrary chemical type codes that the FDA assigns to new drug 

applications (see  

                                                      
49 “[Charging FDA user fees]…increased patient access to new drugs and biologics (from FY 1993 to 2010, nearly 1500 
NDAs and BLAs [approved])...” (Source: CDER Small Business Webinar on PDUFA, December 19, 2011) 
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Table 5.1). 

Chemical type coding (a numerical code primarily from 1-8) indicates the newness of the 

compound forming the drug’s active ingredient (new molecular entity, or incrementally modified 

existing molecular entities).50  I use these codes to identify the three measure types I focus on in 

this study.  The first is “All Application Types” which simply includes all chemical type codes.  This 

is serves as my baseline measure for innovation entry.  Second is “New Drugs” which consists of 

new molecular entities (designated by chemical type code 1) and incrementally modified drugs 

(reflected by chemical type codes 2-4).  And last is “New Molecular Entities” (chemical type code 

1).  So although it is a secondary concern, the role of output innovativeness is still of interpretive 

interest. 

 

5.4 EXPLANATORY VARIABLE: MARKET SIZE 

5.4.1 CONSTRUCTION 

I define the aggregate market size as ܯ௖௧(ݒ) for market c with value basis ݒ at time t.51 

5.4.2 VALUE BASIS 

My base specification uses market size as valued by the total prescription drug expenses for a 

disease market and I am able to reference this measure directly from MEPS. 

I also consider the alternative value measure of total health care expenses for a disease market 

to observe whether market “potential” (e.g., substituting drugs for other interventional spend) is a 

relevant consideration in an eIIH context. 

                                                      
50 “Changing Patterns of Pharmaceutical Innovation,” The National Institute for Health Care Management Research and 
Education Foundation (May 2002). 
51 Whether this construct is better served as a lag or lead measurement is essentially an empirical question which has 
been previously examined by Acemoglu & Linn (2004) as well as others. 
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5.5 EXPLANATORY VARIABLES: MARKET HETEROGENEITY 

5.5.1 CONSTRUCTION 

Per Figure 2.2, my proposed framework for examining market characteristics breaks them down 

into four types: trivially additive (e.g. disease income/geographic profile); non-trivially additive 

(e.g. disease sub-indication profile); categorically non-additive (e.g. disease age/race/gender 

profiles); and non-categorically non-additive  (e.g. patient tolerability profiles).  Unfortunately, data 

considerations will limit my ability to test these categorizations separately.  Moreover, while I am 

conceptualizing heterogeneity as it applies to broadest possible set of market characteristics, 

empirically validating the utility of an eIIH does not require saying anything about specific market 

characteristics (and their resulting subgroups).  Rather I can be satisfied with finding evidence of 

the influence of market composition regardless of the specific subgroups involved.  For instance, 

say the total drug spend of seniors to non-seniors is 2-to-1 in disease market A and 1-to-2 in 

disease market B.  I describe markets A and B as having equivalent compositional structure (or 

alternatively, equivalent non-homogeneity) in terms of their age profiles.  My concern in this study 

then is how, if at all, this 2-to-1 compositional ratio (independent of the specific subgroup 

proportions) influences innovation.  I set aside any observation and interpretation of specific 

subgroup effects to be addressed in future follow-on research. 

To further clarify my empirical scope with market heterogeneity by way of example, imagine three 

disease markets having the same aggregate dollar value size with respect to total drug spend: 

Market A consists completely of senior men; Market B consists completely of senior women; and 

Market C consists of non-senior men and non-senior women equally.  If market heterogeneity is 

characterized by age – or more precisely, age grouping – then I would describe all three markets 

as being equally heterogeneous (or in this case, equally homogeneous) in age since all are 

composed 100% by a single age group.  Now if market heterogeneity is characterized by gender 
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instead of age, then Markets A and B would have equal heterogeneity (or equivalently, equal non-

homogeneity) because they are both composed 100% by a single gender while Market C would 

be unequally heterogeneous from Markets A and B.  Finally, if market heterogeneity is 

characterized by both age and gender, all three markets would be unequally heterogeneous to 

each other (i.e., pair-wise).   

So although the characterization of market heterogeneity is sensitive to the defining 

characteristic(s) of a market’s composition, what will suffice for this study’s objectives is a 

measure of composition that can capture the degree of a market’s heterogeneity regardless of the 

defining characteristic.  Fortunately, the usefulness of such subgroup-independent measures has 

already been established by well-known constructs of concentration and inequality including the 

Herfindahl-Hirschman Index52 and the Gini coefficient.53   

On this conceptual basis I employ two constructs for market heterogeneity.  The first is simply a 

direct HHI calculation, 

(ݒ)௛ܫܪܪ  =෍ ଶ௡௖ୀଵ[(ݒ)௖௛ݏ]   

where ݏ௖௩ is market ܿ‘s share of total market value based on some market characteristic, ℎ, that 

categorizes the market into ݊ additively separable sub-markets according to some value basis, ݒ. 

I also employ a second derivative construct, 

(ݒ)௛ܪ  = (ݒ)ଵ௛ݏ] −   ଶ[(ݒ)ଶ௛ݏ

that is specifically applicable to the case of ݊ = 2 .  It has the same interpretation (i.e., a 

“directionless” measure of concentration) as ܫܪܪ௛ but is effectively a scaled version that allows 

the difference in measure between full homogeneity and full heterogeneity to range from 0 to 1 

(whereas 2ܪ௛ ranges from 0.5 to 1).  I use this second construct to calculate my base measures 
                                                      
52 Stigler (1964) 
53 Gini (1912) 
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of heterogeneity both to minimize the arbitrariness with which ݊, the number of sub-markets, may 

be determined for market characteristic, ℎ , and to improve my ability to achieve statistical 

significance, 

To capture the degree of a market’s non-homogeneity based on market characteristics potentially 

relevant to profiling disease populations and their demand for drug innovation, I consider three 

categories of characteristics: “physiology” profiling; “preferences” profiling; and “disease” profiling. 

5.5.1.1 PHYSIOLOGY PROFILING CHARACTERISTICS 

For ℎ =  .for the disease subpopulation aged >=50 ݒ is the share of(ݒ)ଶ௔௚௘ݏ for the disease subpopulation of patients aged <50 and ݒ is the share of(ݒ)ଵ௔௚௘ݏ ,݁݃ܽ

For ℎ =  for the disease subpopulation of patients who are white ݒ is the share of(ݒ)ଵ௥௔௖௘ݏ ,݁ܿܽݎ

and ݏଶ௥௔௖௘(ݒ)is the share of ݒ for the disease subpopulation who are non-white.. 

For ℎ =  for the disease subpopulation of patients who are ݒ is the share of(ݒ)ଵ௚௘௡ௗ௘௥ݏ ,ݎ݁݀݊݁݃

male and ݏଶ௚௘௡ௗ௘௥(ݒ)is the share of ݒ for the disease subpopulation who are female. 

5.5.1.2 PREFERENCE PROFILING CHARACTERISTICS 

For ℎ = ܿℎ݁ܿ݇ݏ ,݌ݑଵ௖௛௘௖௞௨௣(ݒ)is the share of ݒ for the disease subpopulation of patients who are 

male and ݏଶ௖௛௘௖௞௨௣(ݒ)is the share of ݒ for the rest of the disease subpopulation. 

For ℎ =  for the disease subpopulation of patients who have ݒ is the share of(ݒ)ଵ௙௟௨௦௛௢௧ݏ ,ݐ݋ℎݏݑ݈݂

had a flu vaccination within the past year and ݏଶ௙௟௨௦௛௢௧(ݒ)is the share of ݒ for the rest of the 

disease subpopulation. 
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5.5.1.3 DISEASE PROFILING CHARACTERISTICS 

As suggested by the two theoretical approaches and resulting predictions I establish in Chapter 4, 

it appears empirically sensible to consider disease-associated characteristics of market 

heterogeneity as being either categorical or non-categorical. 

The most obvious categorical aspect of disease heterogeneity lies in a market’s categorization 

system of sub-diseases.  Thus, the disease heterogeneity measure I construct from this is ܯଵ௖(ݒ) 
which measures ݒ associated with the largest sub-disease market within disease market c. 

A non-categorical characteristic important for disease-based profiling of market heterogeneity 

would appear to be disease severity.  However, given that the market characteristic of disease 

severity is likely to directly influence market size, I consider this type of heterogeneity construct to 

be of the form represented by the M*HET term in my empirical specification.  I elaborate on this 

case further in Section 5.4.2. 

5.5.2 VALUE BASIS 

Given the eIIH context of my study, I use ݒ = ݁݉݋ܿ݊݅  as the underlying value basis for 

calculating my heterogeneity measures.  For sensitivity purposes, my empirical effort also 

considers the alternative bases of prescription drug spend and total health care spend.   

 

5.6 EXPLANATORY VARIABLES: SIZE*HETEROGENEITY 

5.6.1 CONSTRUCTION 

In considering the construction of my market size variable in an eIIH context, it is interesting to 

note that a second concept of market size besides simple aggregate market size emerges from 

my setup in (**3), (**5), and (**6).  Figure 5.1 provides a stylistic illustration of how such an 

alternative measure of market size can arise due to market heterogeneity associated with the 
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disease severity.  The practical interpretation of these M*HET constructs (which I anticipated and 

included in my base specification model earlier) is that they may offer some insight into how 

inducement effect can vary with the definition and measurement of market size, e.g., whether 

inducement is driven more by market need or market potential. 

Mechanically, my first step is to create two surrogate measures of disease severity based on data 

that is likely to be publicly available: 

 DSVNgct = PRDVISgct / DDNWRKgct 

and 

 DSVXgct = PRDVISgct / RXTOTgct, 

where PRDVIS is the number of visits to all providers, DDNWRK is the number of working days 

missed due to illness, and RXTOT is the number of prescription medicines.  This ratio of provider 

visits versus some illness measure aligns stylistically with disease severity.  A high ratio reflects a 

high intensity of physician consultation which seems reasonably reflective of “more severe” 

disease contexts whereas a lower rate of physician consultation would be reflective of “less 

severe” disease state conditions.  

Next, I define my disease-based M*HET constructs, (ݒ)ܥ and ܷ(ݒ), as follows: 

(ݒ)௫ܥ 	= 	 ݎܸܺܵܦ)	ℎݐ݅ݓ	݀݁ݐܽ݅ܿ݋ݏݏܽ	݊݋݅ݐ݈ܽݑ݌݋݌ܾݑݏ	ݎ݋݂	(ݒ)ܯ	݂݋	ݐ݊݁݊݋݌݉݋ܿ} < (ݒ)ேܥ ;{	(1.3 	= 	 ݎܸܰܵܦ)	ℎݐ݅ݓ	݀݁ݐܽ݅ܿ݋ݏݏܽ	݊݋݅ݐ݈ܽݑ݌݋݌ܾݑݏ	ݎ݋݂	(ݒ)ܯ	݂݋	ݐ݊݁݊݋݌݉݋ܿ} < 3.7)}; ܷ௫(ݒ) 	= 	 ݎܸܺܵܦ)	ℎݐ݅ݓ	݀݁ݐܽ݅ܿ݋ݏݏܽ	݊݋݅ݐ݈ܽݑ݌݋݌ܾݑݏ	ݎ݋݂	(ݒ)ܯ	݂݋	ݐ݊݁݊݋݌݉݋ܿ} > 0.6)}; ܷ௫(ݒ) 		= 	 ݎܸܰܵܦ)		ℎݐ݅ݓ	݀݁ݐܽ݅ܿ݋ݏݏܽ	݊݋݅ݐ݈ܽݑ݌݋݌ܾݑݏ	ݎ݋݂	(ݒ)ܯ	݂݋	ݐ݊݁݊݋݌݉݋ܿ} > 1.3)}; and 

where 

	ݎܸܺܵܦ = 	ܱܴܶܶܺ)	/	ܵܫܸܦܴܲ	 + 	ݎܸܰܵܦ ;(1	 = 	ܭܴܹܰܦܦ	/	ܵܫܸܦܴܲ	 +  ;ݒ	represent aggregate market size as measured by value basis (ݒ)ܯ ;(1	

DSV cutoff ranges were approximately set by 30th and 70th percentile DSV levels; and 
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 .ܯ is some value basis that will match the value basis for 	ݒ

In summary, the role of market size in induced innovation can be effectuated either through M 

alone, through M*HET alone, or through M and M*HET together.  For my base empirical 

specification, I calculate market size (for the “treated market”) as M or more precisely (ݒ)ܯ while I  

calculate M*HET using ܥே(ݒ). 
5.6.2 VALUE BASIS 

I use ݒ = ݀݊݁݌ݏ	݃ݑݎ݀	݊݋݅ݐ݌݅ݎܿݏ݁ݎ݌  as the value basis for (ݒ)ܥ	  and ܽ݊݀	ܷ(ݒ)  since my 

specification model employs M*HET as the only market size explanatory variable when HET is a 

non-categorical disease-based characteristic like disease severity. 

 

5.7 TEST STATISTICS 

For fitting and specification comparisons I rely most on two goodness-of-fit statistics current in 

research , Akaike’s information criterion (AIC)54 and the Bayesian information criterion (BIC). 

AIC is most commonly defined as AIC = -2 lnL + 2k, where lnL is the maximized log-likelihood of 

the model and k is the number of parameters estimated (number of predictors including the 

intercept). Table 5.2 presents some guidelines on determining AIC significance levels. 

BIC is a second measure of fit defined as BIC = -2 lnL + k lnN, where N is the sample size 

(number of observations).  In both cases a smaller statistic indicates the better fitting model.   

Addressing my Research Question #2 requires the comparison of size coefficients across 

specifications.  However, the challenge here is that different specifications will give rise to 

different interpretations for the same coefficient.  Nevertheless, I consider the indicative evidence 

that can be gleaned from two STATA commands, -suest- and –khb-.  The former is a post-

                                                      
54 Akaike [1974] 
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estimation command that compares the estimated coefficients between two nested non-linear 

probability  models in the context of GLM regression.55  The latter also tests coefficients across 

models of the GLM family but is only experimental for Poisson estimation.56  

                                                      
55 Weesie (1999). 
56Kohler et al (2011). 
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Table 5.1. Chemical Type Codes Associated with NDAs/BLAs 

Source: FDA Orange Book. 
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Table 5.2. AIC Statistic Significance Levels 

Source: Hilbe & Greene (2007) 
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Figure 5.1. Alternative Market Size Constructs 

 Notes: The pink-shaded boxes labeled under “M” and “M*HET” are possible constructs that are either directly 
sourced or indirectly derived from MEPS variables. Also shown are the potential links between constructs and the concept 
of innovativeness (denoted by θ) considered in my Theoretical Model II. 
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CHAPTER 6.  

DATA AND DESCRIPTIVE STATISTICS 

 

6.1 MARKET CATEGORIES 

Departing from the traditional IIH empirical approach of using drug-based market categories, I 

instead rely on the ninth revision of the World Health Organization’s International Classification of 

Diseases (ICD-9).  From the 913 disease codes represented at the 3-digit level, I create 128 

disease categories by aggregating subsets that derive naturally from the ICD9’s coding structure 

(see Tables 6.1-6.3). 

 

6.2 DEPENDENT VARIABLE: INNOVATION COUNTS 

My data on new drug approvals and associated entries (products, formulations, document filings, 

etc), come from three authoritative primary data sources all maintained by the U.S. FDA.  First, 

my approval-related information comes from the Orange Book which contains comprehensive 

information (company/brand and molecule names, ingredients, dosages, delivery forms, new drug 

application filing dates, FDA approval dates, patent expiration dates, market exclusivity dates, 

marketing discontinuation dates, etc.) on all approved drug products and product changes since 

1938.  Although annual detail is available starting with 1982, I confine my attention to the 1996-

2011 time period to match with the time series data available for my explanatory variables.  

Second, my drug characteristics information – chemical type, specifically – comes from the 
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Drugs@FDA datafiles.  And third, my NDA-number-to-NDC-code link comes from the National 

Drug Code Directory (July 2012 update version).57 

Establishing my dependent variable dataset from these three sources requires two linkage steps 

as illustrated in Figure 6.1 with NDA number (uniquely assigned to each NDA by the FDA) 

serving as the variable key.  

The final step is assembling my innovation count dataset is to create a disease category variable 

which associates each NDA with all of its relevant disease markets.  The seemingly most direct 

way of doing this would be to compile the approved indications from each drug’s product labels.  

However, there are several limitations with this approach.  For instance, it excludes any 

consideration of accounting for the common real-world practice of off-label drug use.  But the 

more pressing issue in using product labels in this manner is that there is no systematic way to 

match these disease categories (FDA drug structured product labels) with the disease 

categorization system used in my explanatory dataset (ICD9 codes).  Thus, I instead create a 

disease category variable in my dependent variable dataset by using NDC numbers as a variable 

key to match ICD9 codes sourced from MEPS to innovation data sourced from FDA.  In 

particular, I use the 9-digit version of NDC codes which identifies the drug maker and its drug (but 

drops any reference to the different drug products available for each drug). 

Now since I execute this matching without regard for time, each count item in my innovation data 

ends up being associated with all relevant ICD9 codes regardless of when the association is 

identified (through self-reported drug usage associated with illnesses) in MEPS.  As I will discuss 

in CHAPTER 7, this means that the same NDA can count as an innovation entry more than once 

(i.e., once for each associated disease market).  In order to distinguish my innovation entry count 

                                                      
57 While a “new” version was introduced this summer of 2012, I am using the final July 2012 update of the 
“old” NDC version because this is the version according to which MEPS data has been recorded.  
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from a straight count of approved NDAs, I refer to the measure unit of my dependent variable as 

approved “NDA-indication” counts.  

An associated issue that arises with my “NDA-indication” counting approach is determining the 

entry date of a drug innovation into a given market since my data generating process imputes 

NDA-indication relationships from MEPS self-reporting without any reference to time.  I make the 

simplifying assumption that firms are acting in full anticipation of all possible disease market 

opportunities for their drug candidate at the time of their drug’s initial market entry.  This then 

means the entry date for all NDA-indication counts associated with a drug would be the approval 

date for the firm’s first original NDA for that particular drug. 

The final version of my dependent variable dataset contains 2,731 (80.3%) of the 3,401 NDA 

numbers listed in EOB for my target time period.  However, my dataset coverage is somewhat 

weak for NMEs -- my LHS dataset only contains 491 (64.0%) of the 767 chemical type=1 drugs 

approved.  Also, due to the limited time window of my dataset, I lack sufficient data to examine 

efficacy supplements as an innovation measure type category.58  

 

6.3 EXPLANATORY VARIABLES: MARKET SIZE & MARKET 

HETEROGENEITY 

To establish estimates for demand volume or market size over time, I draw upon the well-known 

Medical Expenditure Panel Survey, a representative sample of U.S. households covering age, 

income, and drug spend data for ~28,000 individuals.  In particular, I draw data from the 13 

periods during 1996-2008.  The key measures from MEPS I use for my variable constructs 

include: 

                                                      
58 Efficacy supplements are drug approvals for additional uses or indications which are added to the approved labeling 
and can be promoted by the drug’s manufacturer. 
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RXEXP = total prescription drug expenditures for market population; 

DDNWRK = # of days missed from work due to illness/injury for market population; 

HELD = share of market population holding health insurance; 

TTLP = total income for market population; 

TOTEXP = total health care expenditures for market population; 

PRDVIS = total # of provider visits for market population; 

PRDEXP = total provider expenditures for market population; 

RXTOT = # of drug prescriptions filled (including refills) for market population; 

CHECK = share of market population having had last routine check-up within past year; 

FLUSHT = share of market population having had flu vaccination within past 5 years. 

As described in CHAPTER 5, my explanatory variables are expressed as income dollars of the 

market population delineated by each variable.  These dollar figures are adjusted to real 1996 

dollars using MEPS recommended price indices according to expense type. 59   Further, all 

population-based values have been scaled down by a factor of 10^6 to facilitate data dispersion 

and estimation management. 

My MEPS dataset includes 804 (88.1% ) of the 913 possible WHO ICD9 3-digit numeric codes. 

 

6.4 DATASET CONSTRUCTION 

As illustrated in Figure 6.1 which summarizes my dataset setup, I combine my new drug product 

entry sub-dataset from the electronic Orange Book – via the National Drug Code linking variable 

and supplemented by application attributes from Drugs@FDA – with my disease market 

characteristics sub-dataset from MEPS to create one integrated panel dataset where 

observations for each variable are across 126 disease markets and 3-year time periods between 

1996 and 2011.  The variable key I use to link these datasets is disease market code as 

determined by my categorization of ICD9 3-digit codes.  Of the 804 ICD9 3-digit numeric codes in 

                                                      
59  For time-pooling/-averaging expenditures, I follow the MEPS recommendation to use PCHE indices 
(www.cms.gov/NationalHealthExpendData) which differentiates conversion factors by expense category (e.g., provider 
versus drugs). 
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my explanatory variables dataset sourced from MEPS, I am able to match 800 (99.5%) of these 

disease codes during the linkage process to my dependent variables dataset. 

I take several steps to clean and further prepare my dataset for analysis.  First, to account for 

missing/unknown ICD9 codes associated with NDA numbers, I decide to drop observations that 

are only associated with such non-informative codes.60  And for remaining NDA numbers still 

associated with non-informative codes, I reallocate the associated market size values from the 

NDA number’s non-informative ICD9 codes to the NDA number’s valid codes.  Thus, I eliminate 

unviable codes while retaining as much “market size” credit to those codes associated with the 

same NDA. 

I make two additional modifications to finalize my baseline dataset. I exclude innovation entry 

associated with orphan drugs because of (1) the likely left-hand censoring issues (under-

reporting) associated with sample sizes in the MEPS surveys, and (2) the biases created by the 

unobserved drug development incentives created by the Orphan Drug Act.  Secondly, I drop 41 

disease groupings that are associated mainly with non-drug treatments (surgical or physiological) 

which leaves my final dataset consisting of 85 disease markets, 

Again, it is important to note that I associate ICD9 codes in a time-invariant manner (i.e., 

regardless of when the association first started) with each NDA number.  However, this 

challenges my ability to preserve the panel nature of my dataset by being able to track which 

drugs are associated with which disease markets at which points in time.  My fix is to give credit 

in the year that an NDA approval is recorded (regardless of the approval year of the original NDA) 

to each ICD9 code associated -- at any time during the study period -- with that therapeutic in 

MEPS.  So for example, if Drug X is associated with both hypertension and erectile dysfunction at 

some point in time my MEPS dataset, then my approach gives inducement credit to both 

diseases markets for any FDA activity related to Drug X.  Further, the “entry” date associated with 

                                                      
60 Coded in MEPS as -8 and -9, respectively, and which represent <1% of observations. 
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such credit is defined for both disease markets based on Drug X’s original New Drug Application 

approval date.  So if Drug X gets approved in 1999 for erectile dysfunction and in 2003 for 

hypertension, and also is associated with erectile dysfunction, hypertension and kidney protection 

as reported in the 2005 MEPS Survey, then I count Drug X as an innovation entry in 1999 for all 

three disease markets (erectile dysfunction, hypertension, kidney protection).  Furthermore, each 

market gets credited with innovation entry associated with Drug X for 1995 and again for 2005.  

Therefore, my innovation entry measures are built from approved “NDA-indication” counts and 

necessarily reflects some double-counting.  This construction relies on the implicit assumption 

that firms have pre-approval foresight of their drug’s potential market size.  In other words, firms 

approach the development of a particular drug as one big project commitment, regardless of 

registration (filing, labeling) histories and strategies, rather than undertaking it as a series of 

independently opportunistic projects. 

As a final check on the real-world validity of my empirical constructions, I have consulted and 

pressure-tested my various assumptions with a panel of industry experts.61  

                                                      
61 Experts were consulted from each step of the drug innovation value chain: drug discovery; preclinical development; 
clinical development; manufacturing; commercialization; pricing and reimbursement. The full list of experts I consulted is 
available upon request. 
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Table 6.1. Market Categorization Based on ICD9 3-Digit Code Groups (Part 1 of 2) 

 
 

 

  

roup code Disease category description 3-Digit Code Range
3.001 Intestinal infectious diseases 1 9
3.002 Tuberculosis 10 18
3.003 Zoonotic bacterial diseases 20 27
3.004 Other bacterial diseases 30 41
3.005 Human immunodeficiency virus 42 42
3.006 Poliomyelitis and other non-arthropod-borne viral diseases of central nervous system 45 49
3.007 Viral diseases accompanied by exanthem 50 59
3.008 Arthropod-borne viral diseases 60 66
3.009 Other diseases due to viruses and chlamydiae 70 79
3.010 Rickettsioses and other arthropod-borne diseases 80 88
3.011 Syphilis and other venereal diseases 90 99
3.012 Other spirochetal diseases 100 104
3.013 Mycoses 110 118
3.014 Helminthiases 120 129
3.015 Other infectious and parasitic diseases 130 136
3.016 Late effects of infectious and parasitic diseases 137 139
3.017 Malignant neoplasm of lip, oral cavity, and pharynx 140 149
3.018 Malignant neoplasm of digestive organs and peritoneum 150 159
3.019 Malignant neoplasm of Respiration (physiology)|respiratory and intrathoracic organs 160 165
3.020 Malignant neoplasm of bone, connective tissue, skin, and breast 170 175
3.021 Kaposi's sarcoma 176 176
3.022 Malignant neoplasm of genitourinary organs 179 189
3.023 Malignant neoplasm of other and unspecified sites 190 199
3.024 Malignant neoplasm of lymphatic and hematopoietic tissue 200 208
3.025 Neuroendocrine tumors 209 209
3.026 Benign neoplasms 210 229
3.027 Carcinoma in situ 230 234
3.028 Neoplasms of uncertain behavior 235 238
3.029 Neoplasms of unspecified nature 239 239
3.030 Disorders of thyroid gland 240 246
3.031 Diseases of other endocrine glands 249 259
3.032 Nutritional deficiencies 260 269
3.033 Other metabolic and immunity disorders 270 279
3.034 Diseases of the blood and blood-forming organs 280 289
3.035 Organic psychotic conditions 290 294
3.036 Other psychoses 295 299
3.037 Neurotic disorders 300 300
3.038 Personality disorders 301 301
3.039 Psychosexual disorders 302 302
3.040 Psychoactive substance 303 305
3.041 Other (primarily adult onset) 306 311
3.042 Mental disorders diagnosed in childhood 312 316
3.044 Inflammatory diseases of the central nervous system 320 327
3.045 Hereditary and degenerative diseases of the central nervous system 330 337
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Table 6.2. Market Categorization Based on ICD9 3-Digit Code Groups (Part 2 of 2) 

 
 

 

  

roup code Disease category description 3-Digit Code Range
3.046 Pain 338 338
3.047 Other headache syndromes 339 339
3.048 Other disorders of the central nervous system 340 349
3.049 Disorders of the peripheral nervous system 350 359
3.050 Disorders of the human eye|eye and adnexa 360 379
3.051 Diseases of the ear and mastoid process 380 389
3.052 Acute Rheumatic Fever 390 392
3.053 Chronic rheumatic heart disease 393 398
3.054 Hypertensive disease 401 405
3.055 Ischemic heart disease 410 414
3.056 Diseases of pulmonary circulation 415 417
3.057 Other forms of heart disease 420 429
3.058 Cerebrovascular disease 430 438
3.059 Diseases of arteries, arterioles, and capillaries 440 448
3.060 Diseases of veins and lymphatics, and other diseases of circulatory system 451 459
3.061 Acute respiratory infections 460 466
3.062 Other diseases of the upper respiratory tract 470 478
3.063 Pneumonia and influenza 480 488
3.064 Chronic obstructive pulmonary disease and allied conditions 490 496
3.065 Pneumoconioses and other lung diseases due to external agents 500 508
3.066 Other diseases of respiratory system 510 519
3.067 Diseases of oral cavity, salivary glands, and jaws 520 529
3.068 Diseases of esophagus, stomach, and duodenum 530 537
3.071 Noninfectious enteritis and colitis 555 558
3.072 Other diseases of intestines and peritoneum 560 569
3.073 Other diseases of digestive system 570 579
3.074 Nephritis, nephrotic syndrome, and nephrosis 580 589
3.075 Other diseases of urinary system 590 599
3.076 Diseases of male genital organs 600 608
3.077 Disorders of breast 610 611
3.078 Inflammatory disease of female pelvic organs 614 616
3.079 Other disorders of female genital tract 617 629
3.082 Complications mainly related to pregnancy 640 649
3.088 Infections of skin and subcutaneous tissue 680 686
3.089 Other inflammatory conditions of skin and subcutaneous tissue 690 698
3.090 Other diseases of skin and subcutaneous tissue 700 709
3.091 Arthropathies and related disorders 710 719
3.092 Dorsopathies 720 724
3.093 Rheumatism, excluding the back 725 729
3.114 Superficial injury 910 919
3.118 Burns 940 949
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Table 6.3. Excluded Markets From Baseline Categorization 

 
 

 

  

roup code Disease category description 3-Digit Code Range
3.069 Appendicitis 540 543
3.070 Hernia of abdominal cavity 550 553
3.080 Ectopic and molar pregnancy 630 633
3.081 Other pregnancy with abortive outcome 634 639
3.083 Normal delivery, and other indications for care in pregnancy, labor, and delivery 650 659
3.084 Complications occurring mainly in the course of labor and delivery 660 669
3.085 Complications of the puerperium 670 676
3.086 Late Effect of Complication of Pregnancy Childbirth 677 677
3.087 Other maternal and fetal complications 678 679
3.094 Osteopathies, chondropathies, and acquired musculoskeletal deformities 730 739
3.095 Congenital Anomalies 740 759
3.096 Maternal causes of perinatal morbidity and mortality 760 763
3.097 Other conditions originating in the perinatal period 764 779
3.098 Symptoms 780 789
3.099 Nonspecific abnormal findings 790 796
3.100 Ill-defined and unknown causes of morbidity and mortality 797 799
3.101 Fracture of skull 800 804
3.102 Fracture of neck and trunk 805 809
3.103 Fracture of upper limb 810 819
3.104 Fracture of lower limb 820 829
3.105 Joint dislocation|Dislocation 830 839
3.106 Sprains and strains of joints and adjacent muscles 840 848
3.107 Intracranial injury, excluding those with skull fracture 850 854
3.108 Internal injury of thorax, abdomen, and pelvis 860 869
3.109 Open wound of head, neck, and trunk 870 879
3.110 Open wound of upper limb 880 887
3.111 Open wound of lower limb 890 897
3.112 Injury to blood vessels 900 904
3.113 Late effects of injuries, poisonings, toxic effects, and other external causes 905 909
3.115 Contusion with intact skin surface 920 924
3.116 Crushing injury 925 929
3.117 Effects of foreign body entering through Body orifice 930 939
3.119 Injury to nerves and spinal cord 950 957
3.120 Certain traumatic Complication (medicine)|complications and unspecified injuries 958 959
3.121 Poisoning by drugs, medicinal and biological substances 960 979
3.122 Toxic effects of substances chiefly nonmedicinal as to source 980 989
3.123 Other and unspecified effects of external causes 990 995
3.124 Complications of surgical and medical care, not elsewhere classified 996 999
3.125 External Causes of Injury and Poisoning E
3.126 Supplemental Classification V
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Figure 6.1. Dataset Construction Schematic 
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CHAPTER 7.  

RESULTS 

 

7.1 BASELINE RESULTS 

Under my baseline conditions in Table 7.2 I find that a 1% increase in market size, as defined by 

my “treated market” construct, induces a 3.40% increase in total NDA-indication approvals in the 

absence of market heterogeneity controls (column I).  This result, with statistical significance at 

the 1% level, not only aligns with the traditional Induced Innovation Hypothesis but is also 

consistent in magnitude with the range of indirect estimates reported by Acemgolu and Linn 

(2004).  The inducement effect retains strong statistical significance (5% level) with only a slight 

decrease in magnitude to 3.27% (column V) when market size is defined by my “controlled 

market” construct.  When market heterogeneity variables are included in my model specification, 

my size estimates follow the predictions from both of my testable hypotheses.  Column IV shows 

that the coefficient on aggregate market size decreases from 3.40% to 1.98% (significant at 10% 

level) which is consistent with Testable Hypothesis #2.  I also observe a decrease when 

heterogeneity controls are included in the coefficient on controlled size, from 3.27% to 2.45% 

(significant at 5% level).  The statistically significant positive sign (at 5% level) on my RACE 

variable, which measures a disease market’s income concentration based on white/non-white 

sub-groupings, indicates that an increase in market heterogeneity along race characteristics 

positively influences NDA-indication entry counts.62  This is also true for my market preference 

heterogeneity variable, CHECKUP.  However, the positive sign on the coefficients for M1 (the 

largest submarket) is contrary to expectation.   

                                                      
62 I do not address the magnitudes of my heterogeneity estimates because interpretation is sensitive to the idiosyncrasies 
of my construction approach (favoring an unencumbered interpretation of the coefficient on my market size construct) and 
more generally because it is beyond the scope of my two main research questions for this study. 
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7.2 SENSITIVITY TESTING 

7.2.1 ALTERING INNOVATION MEASURE TYPES 

I examine whether inducement effects apply in some manner across innovation measure types.  

When I consider the count of approved NDA-indications associated with NDA applications for 

new drugs, I find that a 1% increase in market size (with disease market and time dummies) 

leads to a 2.85% increase in innovation entry (significant at 5% level).  This is lower but not 

inconsistent with the 4%-6% effect reported by Aceomglu and Linn (2004).  When my 

specification includes my full menu of market heterogeneity variables, the coefficient on market 

need size falls to 1.18%.  The corresponding coefficients in the case of new molecular entities 

(chemical type = 2) are 6.49% and 4.27%. 

As will be noted further along in this section, it appears that the inducement effects associated 

with new molecular entities is not quite always in sync with the effects associated with new drugs 

and all application types.  It is unclear whether this is due to a lack of power in the data given the 

relatively few New Molecular Entities that are submitted for FDA approval and/or whether the 

risky nature of NME development masks IIH effects, especially when small sample sizes are 

involved. 

7.2.2 ALTERING INNOVATION COUNT TYPES 

Since my theoretical setup does not restrict the output count type that is tied to NDA approvals, I 

also test my predictions with two additional measures – product number counts and document 

number counts –associated with approved NDA-indications.   

For all NDA application types, product number counts yield estimates that appear to confirm 

Hypothesis #1 but refute Hypothesis #2 under my baseline specification (Table 7.3).  Namely, the 

coefficient on size goes from 2.82% (at the 5% significance level) to 3.14% (also at the 5% 
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significance level) with RACE and CHECKUP appearing as non-zero coefficient heterogeneity 

variables.  This is also the case for NDA applications associated with NMEs (Table 7.9) but not 

with new drugs (Table 7.6).   

One last alternative I consider comes from taking the broadest possible perspective on drug 

innovation by defining it as information generation.  The measurement unit I use for this is the 

count of document numbers where the document code comes with an “N” prefix (i.e., documents 

associated with New Drug Applications).  Under my baseline of all NDA application types, the 

coefficient on treated market size (columns I and IV in Table 7.4) decreases from 6.49% to 4.58% 

(significant at 1% and 5% levels, respectively) with the coefficients of CHECK (significant at 1%) 

and RACE supporting Hypothesis #2.  This confirmatory result is even clearer for NDA 

applications associated with new drugs (Table 7.7).  Once again, the results from NME-

associated NDA applications (Table 7.10) are inconclusive. 

The eIIH-confirming nature of these estimates is more clearly observable from Table 7.23, Table 

7.24, Table 7.25.  This is also true for the estimates obtained by using the M*HET variable, 

controlled market size, instead of the M variable, treated market size (Table 7.26, Table 7.27, 

Table 7.28). 

7.2.3 ALTERING SPECIFIED VARIABLE SCOPE 

As further robustness checks, I test a number of variations in the scope of my variable measures.  

For instance, I examine estimates derived from 1-year and 5-year time periods in addition to my 

baseline 3-year periods;  0-year and 5-year lags in addition to my baseline 3-year lags; moving 

average annual measures rather than sequential time point measures; excluding antibiotics as a 

market category; including orphan drugs (see Table 7.11, Table 7.14, Table 7.17); and including 

all disease markets that I had excluded (see Table 6.3) due to their being associated with non-
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drug treatments and interventions.63, 64  The results obtained under all of these identification 

variations are either inconclusive or generally consistent with the findings I report in the previous 

section.  However, the inclusion of orphan drugs did have opposite effects on the coefficients of 

treated market size (decrease) and controlled market size (increase). 

7.2.4 ALTERING SIZE VARIABLE 

Given the possible constructs for market size that are conceptually suggested in Figure 5.1, I test ܥ௫௩, ܷே௩ , and, ܷ௫௩  as substitutes for ܥே௩ .  The empirical evidence for the traditional IIH setup is 

clear in all case but becomes generally mixed and inconclusive when heterogeneity variables are 

included. 

7.2.5 ALTERING SIZE VARIABLE VALUE BASIS 

In addition to drug spend, I test several additional value bases for market size, including. total 

healthcare spend (see Table 7.13, Table 7.16, Table 7.19), provider spend, provider + drug 

spend, and income.  The motivation for these additional value bases is to explore the more 

accurate quantification of “market need.”  And second, in the event that drug spend suffers from 

time series serial correlation despite the use of lagged variables, alternative size values may 

serve as relevant instruments. 

I do not observe any new or overwhelmingly unexpected results and in general my confirmatory 

baseline estimation results continue to hold under these alternatives with strongly significant 

results achieved with market size being measure by total healthcare spend. 

7.2.6 ALTERING HETEROGENEITY VARIABLES 

Next, I examine the sensitivity of my results to changes in variable construction and variable input 

choices.  This includes testing HHI-framed measures of heterogeneity and directly substituting 

                                                      
63 ICD9 group codes 3.001 to 3.016 covering ICD9 3-digit codes 001 to 139. 
64 This is motivated by A&L[2004] excluding antibiotics from their analysis in order to achieve reportable results. 
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alternative variables such as using FLUSHT (whether the survey respondent had received a flu 

shot within the past year) in place of CHECK.  Such alterations do not produce any noteworthy or 

compellingly different results from baseline with respect to my testable hypotheses. 

7.2.7 ALTERING HETEROGENEITY VARIABLE VALUE BASIS 

My base measurement unit for my heterogeneity variables is income dollars (or income dollars 

squared, depending on the construction).  So as a robustness check, I also test measurement 

units such as population headcount and total health care expenses.  These results remain 

consistent with baseline estimates. 

7.2.8 ALTERING ESTIMATION MODELS  

I also re-run my base specifications with OLS and negative binomial regression, the latter 

employing three different options: pooling with robust errors, pooling with cluster-robust errors, 

and fixed effects.65  Table 7.32, which provides a summery comparison of size coefficients across 

regression models, shows that my baseline results (coefficients and significance levels) are 

mostly preserved across regression models and innovation measure types.  The only notable 

exception is how all three negative binomial models perform when the innovation measure type is 

defined by new molecular entities. 

While the Negative Binomial, particularly with cluster-robust errors, appears to perform just as 

well if not better than Poisson fixed effects66 possibly due to its ability to handle data over-

dispersion, general fit statistics still favor the reporting and interpretation of Poisson results.  

  

                                                      
65 xtnbreg command in STATA 
66 xtpoisson, fe vce(robust) command in STATA 
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7.3 SUMMARY OF KEY FINDINGS 

1. The inducement effect of aggregate market size on approved NDA-indications for all 

chemical types with baseline controls is 3.40% (1% significance level) and ranges from 

2.21% (NDA-indication-product counts for new molecular entities) to 6.49% (NDA-

indication counts for new molecular entities) across different innovation measure types.. 

2. Inclusion of heterogeneity variables results in the size effect decreasing to 1.98% on all 

approved NDA-indications with baseline controls (10% significance level), which is 

confirmatory of my Research Question #2. 

3. The market heterogeneity characteristic, CHECK and RACE, appear to be the most 

consistently and statistically significant heterogeneity constructs exerting an inducement 

effect in an eIIH setup. 

4. The models with the best fit statistics appear to incorporate some measure of M*HET 

(“controlled market”) as the lone variable for market size, rather than rely on distinct size 

and non-size variables. 

5. The coefficient on size is consistently higher for “less innovative” drug innovations. 

6. The inducement effect of market size is still sensitive to market size construct and 

innovation measure type.  

7. The signs and significance of my heterogeneity coefficients vary widely according to 

specification and variable construction.   
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Table 7.1. Descriptive Statistics, Explanatory Variables 

Note: All size values have been scaled down by a factor of 10^6. 
 
 

 

  

Variable Obs Mean Std. Dev. Min Max
MEPS Dataset

Disease Market Categories 1612 3.076581 0.105719 3.001 3.9
Treated Market (Population) 1612 8057.2 13949.19 0 89126.23
Treated Market (Income) 1612 166213.6 289347.8 0 1719819
Treated Market (Drug Spend) 1612 7280.825 14362.37 0 109916.1
Treated Market (HC Spend) 1612 39368.79 70926.75 0 606045.5
Controlled Market (Population) 1612 3232.74 9951.238 0 89126.23
Controlled Market (Income) 1612 67203.74 208265.9 0 1685005
Controlled Market (Drug Spend) 1612 3197.415 10931.45 0 109916.1
Controlled Market (HC Spend) 1612 16413.74 51742.58 0 590039.8
Largest Treated Sub-market (Population) 1494 5222.531 9505.964 3.711748 69772.85
Largest Treated Sub-market (Income) 1494 106796.5 195516.8 0 1537021
Largest Treated Sub-market (Drug Spend) 1494 4619.556 9398.885 0 88928.77
Largest Treated Sub-market (HC Spend) 1494 23969.36 42571.15 0.8733848 361676
Largest Controlled Sub-market (Population) 1494 2112.76 6860.392 0 69772.85
Largest Controlled Sub-market (Income) 1494 43799.85 144091.2 0 1537021
Largest Controlled Sub-market (Drug Spend) 1494 2049.79 7282.117 0 88928.77
Largest Controlled Sub-market (HC Spend) 1494 10105.96 32142.83 0 361676
Heterogeneity (AGE) 1491 0.233894 0.296064 6.96E-09 1
Heterogeneity (RACE) 1491 0.637594 0.206717 3.96E-09 1
Heterogeneity (GENDER) 1491 0.208079 0.322358 2.04E-08 1
Heterogeneity (CHECKUP) 1488 0.405404 0.349963 3.69E-07 1
Year 1612 2002 3.742818 1996 2008

FDA Datatset
Approved NDA Applications 316927 25523.58 21642.27 552 202379
Year 316927 1995.472 8.997143 1982 2012
ICD9 Disease Codes 293294 471.1706 257.6547 1 999
NDA Applications Per Market-Year 316927 1.015439 0.123291 1 2
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Table 7.2. Poisson Fixed Effects, NDA-Indications Count for All Application Types 

Dependent Variable: Count of Approved NDA-Indications for All Application Types 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0340*** 0.0171* 0.0327*** 0.0198*
(0.00839) (0.00994) (0.00849) (0.0118)

Size*Heterogeneity
0.0327** 0.0245**
(0.0151) (0.0119)

0.0263 0.0201
(0.0196) (0.0211)

Heterogeneity
Age 0.00119 0.00102 0.00243

(0.00603) (0.00628) (0.00923)
Race 0.0421** 0.0421** 0.0509

(0.0189) (0.0195) (0.0482)
Gender -0.00511 -0.00499 -0.00462

(0.00495) (0.00494) (0.00840)
Checkup 0.0209* 0.0180 0.0394

(0.0117) (0.0120) (0.0256)

Observations 299 299 299 299 213 213

AIC 1321.4 1322.6 1326.9 1328.4 843.4 849.0

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.



84 
 

Table 7.3. Poisson Fixed Effects, NDA-Indication-Products Count for All Application Types 

Dependent Variable: Count of Approved NDA-Indication-Products for All Application Types 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0282** 0.0335** 0.0287* 0.0314**
(0.0141) (0.0149) (0.0149) (0.0153)

Size*Heterogeneity
0.0279 0.0286

(0.0193) (0.0194)
-0.00787 -0.00409
(0.0262) (0.0264)

Heterogeneity
Age 0.00200 0.00202 0.00201

(0.00806) (0.00803) (0.0113)
Race 0.0223 0.0223 0.00979

(0.0216) (0.0214) (0.0511)
Gender -0.000535 -0.000566 0.00843

(0.00967) (0.00967) (0.0123)
Checkup -0.0193 -0.0187 0.00682

(0.0174) (0.0177) (0.0321)

Observations 299 299 299 299 213 213

AIC 1564.1 1566.0 1570.7 1572.7 1005.1 1012.1

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on product codes associated w ith NDA-indication approvals by ICD9-defined 
disease market groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables 
are calculated as logs measures.  Market size variables are scaled measures of drug spending using three-year time periods 
and w ith a three-year lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications 
include disease market and time period dummies.  Details in Chapter 8.
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Table 7.4. Poisson Fixed Effects, NDA-Indication-Documents Count for All Application Types 

Dependent Variable: Count of Approved NDA-Indication-Documents for All Application Types 
Dependent Variable Basis: Drug Spend  
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0649*** 0.0399** 0.0634*** 0.0458**
(0.0150) (0.0156) (0.0163) (0.0195)

Size*Heterogeneity
0.0666** 0.0553***
(0.0259) (0.0190)

0.0363 0.0258
(0.0229) (0.0239)

Heterogeneity
Age -0.00436 -0.00451 0.000545

(0.00679) (0.00695) (0.00849)
Race 0.0195 0.0194 -0.00210

(0.0241) (0.0248) (0.0384)
Gender -0.00338 -0.00325 -0.00752

(0.00402) (0.00414) (0.00684)
Checkup 0.0442*** 0.0404*** 0.0734***

(0.0148) (0.0151) (0.0270)

Observations 299 299 299 299 213 213

AIC 1332.3 1332.9 1336.3 1337.6 853.3 855.9

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on N-type document codes associated w ith NDA-indication approvals by 
ICD9-defined disease market groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All 
explanatory variables are calculated as logs measures.  Market size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Heterogeneity constructs are unit-free concentration 
measures.  All specif ications include disease market and time period dummies.  Details in Chapter 8.
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Table 7.5. Poisson Fixed Effects, NDA-Indications Count for New Drugs 

Dependent Variable: Count of Approved NDA-Indications for New Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0285** 0.00645 0.0267** 0.0118
(0.0126) (0.0128) (0.0135) (0.0157)

Size*Heterogeneity
0.0358*** 0.0244**
(0.0138) (0.0103)

0.0342** 0.0233
(0.0156) (0.0163)

Heterogeneity
Age 0.000113 -0.0000878 0.00172

(0.00628) (0.00645) (0.0107)
Race 0.0118 0.0119 0.0336

(0.0165) (0.0170) (0.0438)
Gender -0.00271 -0.00256 -0.00169

(0.00476) (0.00476) (0.00859)
Checkup 0.0427*** 0.0394*** 0.0764**

(0.0147) (0.0147) (0.0324)

Observations 299 299 299 299 213 213

AIC 1292.9 1293.8 1297.4 1298.9 826.7 830.0

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.6. Poisson Fixed Effects, NDA-Indication-Products Count for New Drugs 

Dependent Variable: Count of Approved NDA-Indication-Products for New Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

  

  

(I) (II) (III) (IV) (V) (VI)
Size: disease spend

log M(disease-treated) 0.0264* 0.0147 0.0274 0.0198
(0.0158) (0.0191) (0.0171) (0.0220)

Size*Heterogeneity
0.0484*** 0.0439***
(0.0147) (0.0131)

0.0174 0.0113
(0.0209) (0.0220)

Heterogeneity
Age -0.000371 -0.000437 -0.00103

(0.00657) (0.00667) (0.0116)
Race 0.00486 0.00477 0.0121

(0.0185) (0.0185) (0.0465)
Gender 0.00226 0.00233 0.0152

(0.00904) (0.00900) (0.0132)
Checkup 0.0254 0.0239 0.0695**

(0.0161) (0.0163) (0.0328)

Observations 299 299 299 299 213 213
AIC 1479.1 1480.6 1485.3 1487.1 956.4 958.1

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on product codes associated w ith NDA-indication approvals by ICD9-defined 
disease market groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables 
are calculated as logs measures.  Market size variables are scaled measures of drug spending using three-year time periods 
and w ith a three-year lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications 
include disease market and time period dummies.  Details in Chapter 8.
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Table 7.7. Poisson Fixed Effects, NDA-Indication-Documents Count for New Drugs 

Dependent Variable: Count of Approved NDA-Indication-Documents for New Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0501** 0.0191 0.0478** 0.0274
(0.0207) (0.0177) (0.0234) (0.0229)

Size*Heterogeneity
0.0628*** 0.0474***
(0.0199) (0.0116)

0.0466*** 0.0311*
(0.0178) (0.0165)

Heterogeneity
Age -0.00224 -0.00245 0.00264

(0.00593) (0.00604) (0.00813)
Race 0.00653 0.00680 -0.00334

(0.0242) (0.0251) (0.0431)
Gender -0.00101 -0.000802 -0.00315

(0.00439) (0.00447) (0.00660)
Checkup 0.0650*** 0.0605*** 0.115***

(0.0191) (0.0191) (0.0332)

Observations 299 299 299 299 213 213

AIC 1270.3 1270.5 1272.2 1273.4 818.5 817.2

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on N-type document codes associated w ith NDA-indication approvals by 
ICD9-defined disease market groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All 
explanatory variables are calculated as logs measures.  Market size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Heterogeneity constructs are unit-free concentration 
measures.  All specif ications include disease market and time period dummies.  Details in Chapter 8.
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Table 7.8. Poisson Fixed Effects, NDA-Indications Count for New Molecular Entities 

Dependent Variable: Count of Approved NDA-Indications for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0649 0.0517 0.0467 0.0427
(0.0601) (0.0633) (0.0505) (0.0576)

Size*Heterogeneity
0.0517 0.0133

(0.0580) (0.0456)
0.0194 0.00631

(0.0383) (0.0393)
Heterogeneity

Age -0.00580 -0.00585 -0.0140
(0.0159) (0.0159) (0.0254)

Race 0.0829 0.0834 0.0788
(0.0545) (0.0548) (0.101)

Gender 0.00423 0.00425 -0.0118
(0.0157) (0.0157) (0.0195)

Checkup 0.0730* 0.0721 0.160
(0.0434) (0.0446) (0.107)

Observations 276 276 276 276 204 204

AIC 833.7 835.6 840.1 842.1 563.1 568.3

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.9. Poisson Fixed Effects, NDA-Indication-Products Count for New Molecular Entities 

Dependent Variable: Count of Approved NDA-Indication-Products for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0221 0.00657 0.0120 0.00331
(0.0655) (0.0753) (0.0616) (0.0720)

Size*Heterogeneity
0.0808 0.0420

(0.0543) (0.0502)
0.0208 0.0123

(0.0512) (0.0522)
Heterogeneity

Age -0.0177 -0.0178 -0.0268
(0.0162) (0.0162) (0.0233)

Race 0.0543 0.0550 0.0784
(0.0890) (0.0900) (0.131)

Gender 0.00840 0.00841 0.00756
(0.0135) (0.0135) (0.0203)

Checkup 0.0706 0.0691 0.220**
(0.0480) (0.0486) (0.0915)

Observations 276 276 276 276 204 204
AIC 1023.0 1024.9 1028.6 1030.6 706.3 706.3

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on product codes associated w ith NDA-indication approvals by ICD9-defined 
disease market groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables 
are calculated as logs measures.  Market size variables are scaled measures of drug spending using three-year time periods 
and w ith a three-year lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications 
include disease market and time period dummies.  Details in Chapter 8.
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Table 7.10. Poisson Fixed Effects, NDA-Indication-Documents Count for New Molecular Entities 

Dependent Variable: Count of Approved NDA-Indication-Documents for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market -0.0849 -0.124 -0.0870* -0.111
(0.0592) (0.0778) (0.0491) (0.0676)

Size*Heterogeneity
0.0375 0.0351

(0.0540) (0.0513)
0.0481 0.0307

(0.0449) (0.0447)
Heterogeneity

Age -0.00389 -0.00416 -0.0155
(0.0167) (0.0166) (0.0183)

Race 0.101 0.103 0.0468
(0.106) (0.105) (0.0929)

Gender 0.0413** 0.0411** 0.0169
(0.0197) (0.0199) (0.0199)

Checkup 0.0839 0.0804 0.0374
(0.0550) (0.0561) (0.0797)

Observations 262 262 262 262 193 193

AIC 768.2 770.0 772.0 773.9 512.0 519.4

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on N-type document codes associated w ith NDA-indication approvals by 
ICD9-defined disease market groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All 
explanatory variables are calculated as logs measures.  Market size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Heterogeneity constructs are unit-free concentration 
measures.  All specif ications include disease market and time period dummies.  Details in Chapter 8.
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Table 7.11. Poisson Fixed Effects, NDA-Indications Count for All Application Types, With Orphan 
Drugs 

Dependent Variable: Count of Approved NDA-Indications for All Application Types, With Orphan Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(VII) (VIII) (IX) (X) (XI) (XII)
Size

Treated Market 0.0344*** 0.0200** 0.0338*** 0.0231**
(0.00815) (0.00925) (0.00842) (0.0114)

Size*Heterogeneity
0.0310** 0.0230**
(0.0136) (0.0110)

0.0225 0.0168
(0.0205) (0.0224)

Heterogeneity
Age 0.000641 0.000497 0.00207

(0.00637) (0.00661) (0.00931)
Race 0.0427** 0.0428** 0.0619

(0.0192) (0.0197) (0.0491)
Gender -0.00381 -0.00370 -0.00339

(0.00474) (0.00472) (0.00805)
Checkup 0.0199* 0.0175 0.0380

(0.0110) (0.0115) (0.0250)

Observations 299 299 299 299 213 213
AIC 1325.5 1326.9 1331.2 1332.9 844.9 850.5
Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income
Orphan drugs include include include include include include

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.12. Poisson Fixed Effects, NDA-Indications Count for All Application Types, With Full 
ICD9 

Dependent Variable: Count of Approved NDA-Indications for All Application Types, With Full ICD9 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0352*** 0.0223** 0.0334*** 0.0237*
(0.00832) (0.0114) (0.00830) (0.0124)

Size*Heterogeneity
0.0307** 0.0210*
(0.0139) (0.0111)

0.0201 0.0154
(0.0196) (0.0207)

Heterogeneity
Age 0.00242 0.00228 0.00112

(0.00592) (0.00612) (0.00887)
Race 0.0429** 0.0434** 0.0598

(0.0177) (0.0181) (0.0411)
Gender -0.00413 -0.00404 -0.00417

(0.00503) (0.00502) (0.00824)
Checkup 0.0188* 0.0168 0.0414*

(0.0111) (0.0114) (0.0248)

Observations 339 339 339 339 243 243

AIC 1462.1 1463.6 1467.6 1469.3 934.9 940.2

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.13. Poisson Fixed Effects, NDA-Indications Count for All Application Types, HC Spend 

Dependent Variable: Count of Approved NDA-Indications for All Application Types 
Dependent Variable Basis: Health Care Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0448*** 0.0262* 0.0455*** 0.0327***
(0.0130) (0.0136) (0.0119) (0.0126)

Size*Heterogeneity
0.0376** 0.0264*
(0.0154) (0.0145)

0.0247 0.0171
(0.0172) (0.0170)

Heterogeneity
Age 0.000610 0.000589 0.00161

(0.00604) (0.00624) (0.00934)
Race 0.0467** 0.0456** 0.0517

(0.0200) (0.0203) (0.0484)
Gender -0.00664 -0.00601 -0.00558

(0.00507) (0.00505) (0.00835)
Checkup 0.0190 0.0171 0.0400

(0.0118) (0.0118) (0.0253)

Observations 299 299 299 299 213 213

AIC 1321.2 1322.4 1326.4 1328.0 843.7 849.2

Size basis health care 
spend

health care 
spend

health care 
spend

health care 
spend

Size*Het basis income income

health care 
spend, 
provider 

visits, non-
work days

health care 
spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.14. Poisson Fixed Effects, NDA-Indications Count for New Drugs, With Orphan Drugs 

Dependent Variable: Count of Approved NDA-Indications for Drugs, With Orphan Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(VII) (VIII) (IX) (X) (XI) (XII)
Size

Treated Market 0.0286*** 0.00885 0.0276** 0.0141
(0.0109) (0.0121) (0.0126) (0.0150)

Size*Heterogeneity
0.0322** 0.0211*
(0.0127) (0.0108)

0.0310* 0.0214
(0.0160) (0.0173)

Heterogeneity
Age -0.000381 -0.000571 0.00149

(0.00646) (0.00666) (0.0109)
Race 0.0133 0.0135 0.0457

(0.0172) (0.0176) (0.0441)
Gender -0.00171 -0.00157 -0.000850

(0.00456) (0.00455) (0.00822)
Checkup 0.0387*** 0.0357** 0.0734**

(0.0139) (0.0141) (0.0321)

Observations 299 299 299 299 213 213
AIC 1295.5 1296.6 1300.7 1302.2 827.5 830.9
Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income
Orphan drugs include include include include include include

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.15. Poisson Fixed Effects, NDA-Indications Count for New Drugs, With Full ICD9 

Dependent Variable: Count of Approved NDA-Indications for New Drugs, With Full ICD9 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0272** 0.0109 0.0245** 0.0142
(0.0118) (0.0136) (0.0125) (0.0156)

Size*Heterogeneity
0.0319** 0.0191*
(0.0131) (0.0115)

0.0256 0.0165
(0.0157) (0.0161)

Heterogeneity
Age 0.00148 0.00132 0.000353

(0.00617) (0.00630) (0.0103)
Race 0.0107 0.0112 0.0371

(0.0161) (0.0163) (0.0384)
Gender -0.00218 -0.00208 -0.00213

(0.00482) (0.00482) (0.00844)
Checkup 0.0389*** 0.0369*** 0.0737**

(0.0139) (0.0140) (0.0314)

Observations 339 339 339 339 243 243

AIC 1429.2 1430.5 1434.0 1435.7 915.2 918.6

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.16. Poisson Fixed Effects, NDA-Indications Count for New Drugs, HC Spend 

Dependent Variable: Count of Approved NDA-Indications for New Drugs, HC Spend 
Dependent Variable Basis: Health Care Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0393*** 0.0163 0.0363*** 0.0207
(0.0132) (0.0166) (0.0139) (0.0163)

Size*Heterogeneity
0.0490*** 0.0330**
(0.0175) (0.0163)

0.0307** 0.0210
(0.0154) (0.0144)

Heterogeneity
Age -0.000311 -0.000356 0.000739

(0.00629) (0.00644) (0.0108)
Race 0.0155 0.0142 0.0331

(0.0168) (0.0171) (0.0445)
Gender -0.00398 -0.00320 -0.00259

(0.00476) (0.00479) (0.00851)
Checkup 0.0411*** 0.0388*** 0.0759**

(0.0149) (0.0147) (0.0322)

Observations 299 299 299 299 213 213

AIC 1292.6 1293.6 1297.2 1298.8 826.4 829.9

Size basis health care 
spend

health care 
spend

health care 
spend

health care 
spend

Size*Het basis income income

health care 
spend, 
provider 

visits, non-
work days

health care 
spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.17. Poisson Fixed Effects, NDA-Indications Count for NMEs, With Orphan Drugs 

Dependent Variable: Count of Approved NDA-Indications for New Molecular Entities, With Orphan Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

 

  

(VII) (VIII) (IX) (X) (XI) (XII)
Size

Treated Market 0.0474 0.0385 0.0264 0.0281
(0.0597) (0.0631) (0.0499) (0.0570)

Size*Heterogeneity
0.0359 -0.000856

(0.0566) (0.0451)
0.0128 -0.00255

(0.0381) (0.0396)
Heterogeneity

Age -0.00613 -0.00610 -0.0159
(0.0165) (0.0165) (0.0247)

Race 0.0914 0.0912 0.115
(0.0608) (0.0610) (0.102)

Gender 0.00368 0.00367 -0.0110
(0.0151) (0.0151) (0.0192)

Checkup 0.0813* 0.0817* 0.163
(0.0441) (0.0453) (0.105)

Observations 276 276 276 276 204 204
AIC 838.9 840.9 844.9 846.9 564.7 569.6
Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income
Orphan drugs include include include include include include

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.18. Poisson Fixed Effects, NDA-Indications Count for NMEs, With Full ICD9 

Dependent Variable: Count of Approved NDA-Indications for New Molecular Entities, With Full ICD9 
Dependent Variable Basis: Drug Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0765 0.0582 0.0570 0.0467
(0.0557) (0.0585) (0.0464) (0.0536)

Size*Heterogeneity
0.0555 0.0152

(0.0541) (0.0420)
0.0274 0.0166

(0.0370) (0.0382)
Heterogeneity

Age -0.00532 -0.00549 -0.0116
(0.0153) (0.0154) (0.0249)

Race 0.0770 0.0787 0.0637
(0.0483) (0.0489) (0.0844)

Gender 0.00447 0.00451 -0.0119
(0.0157) (0.0158) (0.0195)

Checkup 0.0703* 0.0680 0.150
(0.0411) (0.0422) (0.1000)

Observations 304 304 304 304 226 226

AIC 893.0 894.9 899.5 901.4 604.3 609.7

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.19. Poisson Fixed Effects, NDA-Indications Count for New Molecular Entities, HC Spend 

Dependent Variable: Count of Approved NDA-Indications for New Molecular Entities 
Dependent Variable Basis: Health Care Spend 
Regression: Poisson with Fixed Effect Controls (1996-2011) 
 
 

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.135** 0.137** 0.121** 0.133**
(0.0621) (0.0665) (0.0579) (0.0641)

Size*Heterogeneity
0.101 0.0676

(0.0674) (0.0555)
-0.00262 -0.0173
(0.0407) (0.0388)

Heterogeneity
Age -0.00723 -0.00718 -0.0151

(0.0156) (0.0155) (0.0247)
Race 0.0975* 0.0975* 0.0896

(0.0551) (0.0551) (0.103)
Gender 0.00135 0.000759 -0.0119

(0.0155) (0.0151) (0.0198)
Checkup 0.0652 0.0679 0.147

(0.0436) (0.0448) (0.105)

Observations 276 276 276 276 204 204

AIC 832.7 834.7 839.2 841.2 562.4 567.9

Size basis health care 
spend

health care 
spend

health care 
spend

health care 
spend

Size*Het basis income income

health care 
spend, 
provider 

visits, non-
work days

health care 
spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Controlled Market

Largest Sub-Market

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith STATA xtpoisson 
w ith fe option.  Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  
Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs 
measures.  Market size variables are scaled measures of drug spending using three-year time periods and w ith a three-year 
lag of market size.  Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market 
and time period dummies.  Details in Chapter 8.
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Table 7.20. Negative Binomial Pooled, NDA-Indications Count for All Application Types 

Dependent Variable: Count of Approved NDA-Indications for All Application Types 
Dependent Variable Basis: Drug Spend 
Regression: Negative Binomial Pooled (1996-2011) 
 
 

 
  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0344*** 0.0200* 0.0338*** 0.0231*
(0.0101) (0.0115) (0.0103) (0.0128)

Size*Heterogeneity
0.0310*** 0.0230***
(0.0103) (0.00853)

0.0225 0.0168
(0.0168) (0.0179)

Heterogeneity
Age 0.000641 0.000497 0.00207

(0.00470) (0.00482) (0.00690)
Race 0.0427*** 0.0428*** 0.0619*

(0.0160) (0.0161) (0.0366)
Gender -0.00381 -0.00370 -0.00339

(0.00382) (0.00378) (0.00636)
Checkup 0.0199* 0.0175 0.0380*

(0.0105) (0.0109) (0.0208)
Observations 300 300 300 300 217 217

AIC 2054.9 2054.3 2060.5 2062.2 1522.0 1521.6

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Huber-White robust standard errors are reported in parentheses.  Model is estimated w ith STATA nbreg option.  
Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  Double-counting 
occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs measures.  Market 
size variables are scaled measures of drug spending using three-year time periods and w ith a three-year lag of market size.  
Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market and time period 
dummies.  Details in Chapter 7.

Controlled Market

Largest Sub-Market
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Table 7.21. Negative Binomial Pooled, NDA-Indications Count for New Drugs 

Dependent Variable: Count of Approved NDA-Indications for Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Negative Binomial Pooled (1996-2011) 
 
 

 
  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0286*** 0.00885 0.0276** 0.0141
(0.0107) (0.0105) (0.0110) (0.0127)

Size*Heterogeneity
0.0322*** 0.0211**
(0.0103) (0.00881)

0.0310** 0.0214
(0.0135) (0.0146)

Heterogeneity
Age -0.000381 -0.000574 0.00149

(0.00507) (0.00516) (0.00806)
Race 0.0133 0.0135 0.0457

(0.0165) (0.0167) (0.0353)
Gender -0.00171 -0.00157 -0.000851

(0.00376) (0.00374) (0.00646)
Checkup 0.0387*** 0.0357*** 0.0734***

(0.0120) (0.0121) (0.0259)
Observations 300 300 300 300 217 217

AIC 2011.1 2012.2 2018.3 2021.8 1489.4 1496.8

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Huber-White robust standard errors are reported in parentheses.  Model is estimated w ith STATA nbreg option.  
Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  Double-counting 
occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs measures.  Market 
size variables are scaled measures of drug spending using three-year time periods and w ith a three-year lag of market size.  
Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market and time period 
dummies.  Details in Chapter 7.

Controlled Market

Largest Sub-Market
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Table 7.22. Negative Binomial Pooled, NDA-Indications Count for New Molecular Entities 

Dependent Variable: Count of Approved NDA-Indications for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Negative Binomial Pooled (1996-2011) 
 
 

 
  

(I) (II) (III) (IV) (V) (VI)
Size

Treated Market 0.0474 0.0385 0.0265 0.0281
(0.0500) (0.0514) (0.0445) (0.0479)

Size*Heterogeneity
0.0359 -0.000856

(0.0450) (0.0383)
0.0128 -0.00255

(0.0347) (0.0360)
Heterogeneity

Age -0.00613 -0.00610 -0.0159
(0.0137) (0.0137) (0.0213)

Race 0.0914* 0.0912* 0.115
(0.0520) (0.0519) (0.0944)

Gender 0.00368 0.00367 -0.0110
(0.0119) (0.0119) (0.0148)

Checkup 0.0814* 0.0817* 0.163*
(0.0434) (0.0443) (0.0892)

Observations 276 276 276 276 205 205

AIC 1402.5 1404.5 1408.5 1410.5 1090.8 1097.7

Size basis drug spend drug spend drug spend drug spend

Size*Het basis income income

drug spend, 
provider 

visits, non-
work days

drug spend, 
provider 

visits, non-
work days

Het basis income income income

Orphan drugs exclude exclude exclude exclude exclude exclude

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Huber-White robust standard errors are reported in parentheses.  Model is estimated w ith STATA nbreg option.  
Dependent count variable is based on NDA-indication approvals by ICD9-defined disease market groupings.  Double-counting 
occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory variables are calculated as logs measures.  Market 
size variables are scaled measures of drug spending using three-year time periods and w ith a three-year lag of market size.  
Heterogeneity constructs are unit-free concentration measures.  All specif ications include disease market and time period 
dummies.  Details in Chapter 7.

Controlled Market

Largest Sub-Market
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Table 7.23. Summary of Poisson Fixed Effects, Base Specification for All Application Types 

Dependent Variable: Counts for All Application Types 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

(I) (IV) (I) (IV) (I) (IV)
Size

Treated Market 0.0340*** 0.0198* 0.0282** 0.0314** 0.0649*** 0.0458**
(0.00839) (0.0118) (0.0141) (0.0153) (0.0150) (0.0195)

Size*Heterogeneity
0.0201 -0.00409 0.0258

(0.0211) (0.0264) (0.0239)
Heterogeneity

0.00102 0.00202 -0.00451
(0.00628) (0.00803) (0.00695)

Race 0.0421** 0.0223 0.0194
(0.0195) (0.0214) (0.0248)

Gender -0.00499 -0.000566 -0.00325
(0.00494) (0.00967) (0.00414)

Checkup 0.0180 -0.0187 0.0404***
(0.0120) (0.0177) (0.0151)

Observations 299 299 299 299 299 299

AIC 1321.4 1328.4 1564.1 1572.7 1332.3 1337.6

Size basis
drug 
spend

drug 
spend

drug 
spend

drug 
spend

drug 
spend

drug 
spend

Size*Het basis income income income

Het basis income income income

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Age

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith 
STATA xtpoisson w ith fe option.  Dependent count variable is either based on raw  counts, product codes or 
N-type document codes associated w ith NDA-indication approvals by ICD9-defined disease market 
groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Size*Heterogeneity and Heterogeneity 
constructs are unit-free concentration measures based on income.  All specif ications include disease market 
and time period dummies.  Details in Chapter 7.

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents

Largest Sub-Market
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Table 7.24. Summary of Poisson Fixed Effects, Base Specification for New Drugs 

Dependent Variable: Counts for New Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

 

  

(I) (IV) (I) (IV) (I) (IV)
Size

Treated Market 0.0285** 0.0118 0.0264* 0.0198 0.0501** 0.0274
(0.0126) (0.0157) (0.0158) (0.0220) (0.0207) (0.0229)

Size*Heterogeneity
0.0233 0.0113 0.0311*

(0.0163) (0.0220) (0.0165)
Heterogeneity

-0.0000878 -0.000437 -0.00245
(0.00645) (0.00667) (0.00604)

Race 0.0119 0.00477 0.00680
(0.0170) (0.0185) (0.0251)

Gender -0.00256 0.00233 -0.000802
(0.00476) (0.00900) (0.00447)

Checkup 0.0394*** 0.0239 0.0605***
(0.0147) (0.0163) (0.0191)

Observations 299 299 299 299 299 299

AIC 1292.9 1298.9 1479.1 1487.1 1270.3 1273.4

Size basis drug 
spend

drug 
spend

drug 
spend

drug 
spend

drug 
spend

drug 
spend

Size*Het basis income income income

Het basis income income income

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Age

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith 
STATA xtpoisson w ith fe option.  Dependent count variable is either based on raw  counts, product codes or 
N-type document codes associated w ith NDA-indication approvals by ICD9-defined disease market 
groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Size*Heterogeneity and Heterogeneity 
constructs are unit-free concentration measures based on income.  All specif ications include disease market 
and time period dummies.  Details in Chapter 7.

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents

Largest Sub-Market



106 
 

Table 7.25. Summary of Poisson Fixed Effects, Base Specification for New Molecular Entities 

Dependent Variable: Counts for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

(I) (IV) (I) (IV) (I) (IV)
Size

Treated Market 0.0649 0.0427 0.0221 0.00331 -0.0849 -0.111
(0.0601) (0.0576) (0.0655) (0.0720) (0.0592) (0.0676)

Size*Heterogeneity
0.00631 0.0123 0.0307
(0.0393) (0.0522) (0.0447)

Heterogeneity
-0.00585 -0.0178 -0.00416
(0.0159) (0.0162) (0.0166)

Race 0.0834 0.0550 0.103
(0.0548) (0.0900) (0.105)

Gender 0.00425 0.00841 0.0411**
(0.0157) (0.0135) (0.0199)

Checkup 0.0721 0.0691 0.0804
(0.0446) (0.0486) (0.0561)

Observations 276 276 276 276 262 262

AIC 833.7 842.1 1023.0 1030.6 768.2 773.9

Size basis
drug 
spend

drug 
spend

drug 
spend

drug 
spend

drug 
spend

drug 
spend

Size*Het basis income income income

Het basis income income income

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001

Age

Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith 
STATA xtpoisson w ith fe option.  Dependent count variable is either based on raw  counts, product codes or 
N-type document codes associated w ith NDA-indication approvals by ICD9-defined disease market 
groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Size*Heterogeneity and Heterogeneity 
constructs are unit-free concentration measures based on income.  All specif ications include disease market 
and time period dummies.  Details in Chapter 7.

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents

Largest Sub-Market
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Table 7.26. Summary of Poisson Fixed Effects, Alternative Specification for All Application Types 

Dependent Variable: Counts for All Application Types 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

(V) (VI) (V) (VI) (V) (VI)
Size*Heterogeneity

0.0327** 0.0245** 0.0279 0.0286 0.0666** 0.0553***
(0.0151) (0.0119) (0.0193) (0.0194) (0.0259) (0.0190)

Heterogeneity
0.00243 0.00201 0.000545

(0.00923) (0.0113) (0.00849)
Race 0.0509 0.00979 -0.00210

(0.0482) (0.0511) (0.0384)
Gender -0.00462 0.00843 -0.00752

(0.00840) (0.0123) (0.00684)
Checkup 0.0394 0.00682 0.0734***

(0.0256) (0.0321) (0.0270)

Observations 213 213 213 213 213 213
AIC 843.4 849.0 1005.1 1012.1 853.3 855.9

Size*Het basis

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

Het basis income income income

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith 
STATA xtpoisson w ith fe option.  Dependent count variable is either based on raw  counts, product codes or 
N-type document codes associated w ith NDA-indication approvals by ICD9-defined disease market 
groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Size*Heterogeneity constructs are based 
on drug spend, provider visits, and missed w ork days.  Heterogeneity constructs are unit-free concentration 
measures based on income.  All specif ications include disease market and time period dummies.  Details in 
Chapter 7.

Controlled Market

Age

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents
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Table 7.27. Summary of Poisson Fixed Effects, Alternative Specification for New Drugs 

Dependent Variable: Counts for New Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

 

(V) (VI) (V) (VI) (V) (VI)
Size*Heterogeneity

0.0358*** 0.0244** 0.0484*** 0.0439*** 0.0628*** 0.0474***
(0.0138) (0.0103) (0.0147) (0.0131) (0.0199) (0.0116)

Heterogeneity
0.00172 -0.00103 0.00264
(0.0107) (0.0116) (0.00813)

Race 0.0336 0.0121 -0.00334
(0.0438) (0.0465) (0.0431)

Gender -0.00169 0.0152 -0.00315
(0.00859) (0.0132) (0.00660)

Checkup 0.0764** 0.0695** 0.115***
(0.0324) (0.0328) (0.0332)

Observations 213 213 213 213 213 213
AIC 826.7 830.0 956.4 958.1 818.5 817.2

Size*Het basis

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

Het basis income income income

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith 
STATA xtpoisson w ith fe option.  Dependent count variable is either based on raw  counts, product codes or 
N-type document codes associated w ith NDA-indication approvals by ICD9-defined disease market 
groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Size*Heterogeneity constructs are based 
on drug spend, provider visits, and missed w ork days.  Heterogeneity constructs are unit-free concentration 
measures based on income.  All specif ications include disease market and time period dummies.  Details in 
Chapter 7.

Controlled Market

Age

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents
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Table 7.28. Summary of Poisson Fixed Effects, Alternative Specification for NMEs 

Dependent Variable: Counts for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

(V) (VI) (V) (VI) (V) (VI)
Size*Heterogeneity

0.0517 0.0133 0.0808 0.0420 0.0375 0.0351
(0.0580) (0.0456) (0.0543) (0.0502) (0.0540) (0.0513)

Heterogeneity
-0.0140 -0.0268 -0.0155
(0.0254) (0.0233) (0.0183)

Race 0.0788 0.0784 0.0468
(0.101) (0.131) (0.0929)

Gender -0.0118 0.00756 0.0169
(0.0195) (0.0203) (0.0199)

Checkup 0.160 0.220** 0.0374
(0.107) (0.0915) (0.0797)

Observations 204 204 204 204 193 193
AIC 563.1 568.3 706.3 706.3 512.0 519.4

Size*Het basis

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

drug 
spend, 
provider 

visits, non-
work days

Het basis income income income

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Huber-White cluster-robust standard errors are reported in parentheses.  Model is estimated w ith 
STATA xtpoisson w ith fe option.  Dependent count variable is either based on raw  counts, product codes or 
N-type document codes associated w ith NDA-indication approvals by ICD9-defined disease market 
groupings.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size variables are scaled measures of drug spending using 
three-year time periods and w ith a three-year lag of market size.  Size*Heterogeneity constructs are based 
on drug spend, provider visits, and missed w ork days.  Heterogeneity constructs are unit-free concentration 
measures based on income.  All specif ications include disease market and time period dummies.  Details in 
Chapter 7.

Controlled Market

Age

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents
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Table 7.29. Summary of Size Coefficients for All Application Types, Poisson Fixed Effects 

Dependent Variable: Counts for All Application Types 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

Regression Dataset
Size = "Treated Market"

(I) (IV) (I) (IV) (I) (IV)
A.  Drug Spend 0.0340*** 0.0198* 0.0282** 0.0314** 0.0649*** 0.0458**

(0.00839) (0.0118) (0.0141) (0.0153) (0.0150) (0.0195)
0.0352*** 0.0258** 0.0298** 0.0381** 0.0610*** 0.0445**
(0.00803) (0.0115) (0.0146) (0.0156) (0.0133) (0.0176)
0.0352*** 0.0237* 0.0294** 0.0351** 0.0630*** 0.0445**
(0.00832) (0.0124) (0.0137) (0.0162) (0.0140) (0.0176)

D.  Health Care Spend 0.0448*** 0.0327*** 0.0430*** 0.0533** 0.0730*** 0.0480***
(0.0130) (0.0126) (0.0167) (0.0219) (0.0159) (0.0169)

Size*Heterogeneity = "Controlled Market"
(V) (VI) (V) (VI) (V) (VI)

A.  Drug Spend 0.0327** 0.0245** 0.0279 0.0286 0.0666** 0.0553***
(0.0151) (0.0119) (0.0193) (0.0194) (0.0259) (0.0190)
0.0282** 0.0188* 0.0246 0.0242 0.0588***0.0468***
(0.0127) (0.0104) (0.0173) (0.0175) (0.0208) (0.0155)
0.0307** 0.0210* 0.0251 0.0248 0.0608*** 0.0482***
(0.0139) (0.0111) (0.0174) (0.0175) (0.0221) (0.0163)

D.  Health Care Spend 0.0376** 0.0264* 0.0438** 0.0429* 0.0788*** 0.0649***
(0.0154) (0.0145) (0.0213) (0.0222) (0.0204) (0.0162)

* significant at p=0.1; ** at p=0.05; *** at p=0.001

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents

Notes:  Cluster-robust standard errors are reported in parentheses.  The four regression datasets refer to: (a) 
baseline; (b) baseline including orphan drugs; (c) baseline including full set of ICD9 groupings; (d) baseline w ith size 
measured by health care spend.  "Treated market" represents total drug or health care spend.  "Controlled market" 
represents spend for patients w hose condition appears controlled as indicated by provider visits and missed w ork 
days.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  Details in Chapter 7.

B.  Drug Spend + Orphans

C.  Drug Spend + Full ICD9

B.  Drug Spend + Orphans

C.  Drug Spend + Full ICD9
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Table 7.30. Summary of Size Coefficients for New Drugs, Poisson Fixed Effects 

Dependent Variable: Counts for New Drugs 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

Regression Dataset
Size = "Treated Market"

(I) (IV) (I) (IV) (I) (IV)
A.  Drug Spend 0.0285** 0.0118 0.0264* 0.0198 0.0501** 0.0274

(0.0126) (0.0157) (0.0158) (0.0220) (0.0207) (0.0229)
0.0286*** 0.0141 0.0251* 0.0207 0.0491** 0.0294
(0.0109) (0.0150) (0.0141) (0.0201) (0.0200) (0.0236)
0.0272** 0.0142 0.0234 0.0211 0.0470** 0.0280
(0.0118) (0.0156) (0.0145) (0.0209) (0.0191) (0.0219)

D.  Health Care Spend 0.0393*** 0.0207 0.0347** 0.0251 0.0513** 0.0159
(0.0132) (0.0163) (0.0161) (0.0208) (0.0203) (0.0209)

Size*Heterogeneity = "Controlled Market"
(V) (VI) (V) (VI) (V) (VI)

A.  Drug Spend 0.0358*** 0.0244** 0.0484*** 0.0439*** 0.0628*** 0.0474***
(0.0138) (0.0103) (0.0147) (0.0131) (0.0199) (0.0116)
0.0322** 0.0211* 0.0454***0.0408*** 0.0602***0.0451***
(0.0127) (0.0108) (0.0142) (0.0132) (0.0188) (0.0113)
0.0319** 0.0191* 0.0407*** 0.0346** 0.0564***0.0399***
(0.0131) (0.0115) (0.0140) (0.0142) (0.0172) (0.0120)

D.  Health Care Spend 0.0490*** 0.0330** 0.0693*** 0.0597*** 0.0793*** 0.0578***
(0.0175) (0.0163) (0.0192) (0.0191) (0.0189) (0.0170)

* significant at p=0.1; ** at p=0.05; *** at p=0.001

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents

Notes:  Cluster-robust standard errors are reported in parentheses.  The four regression datasets refer to: (a) 
baseline; (b) baseline including orphan drugs; (c) baseline including full set of ICD9 groupings; (d) baseline w ith size 
measured by health care spend.  "Treated market" represents total drug or health care spend.  "Controlled market" 
represents spend for patients w hose condition appears controlled as indicated by provider visits and missed w ork 
days.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  Details in Chapter 7.

B.  Drug Spend + Orphans

C.  Drug Spend + Full ICD9

B.  Drug Spend + Orphans

C.  Drug Spend + Full ICD9



112 
 

Table 7.31. Summary of Size Coefficients for New Molecular Entities, Poisson Fixed Effects 

Dependent Variable: Counts for New Molecular Entities 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

Regression Dataset
Size = "Treated Market"

(I) (IV) (I) (IV) (I) (IV)
A.  Drug Spend 0.0649 0.0427 0.0221 0.00331 -0.0849 -0.111

(0.0601) (0.0576) (0.0655) (0.0720) (0.0592) (0.0676)
0.0474 0.0281 0.00247 -0.00734 -0.128* -0.168**

(0.0597) (0.0570) (0.0643) (0.0697) (0.0682) (0.0788)
0.0765 0.0467 0.0358 0.0147 -0.0711 -0.0985*

(0.0557) (0.0536) (0.0601) (0.0667) (0.0534) (0.0584)
D.  Health Care Spend 0.135** 0.133** 0.0395 0.0243 -0.0450 -0.0872

(0.0621) (0.0641) (0.0626) (0.0628) (0.0674) (0.0606)
Size*Heterogeneity = "Controlled Market"

(V) (VI) (V) (VI) (V) (VI)
A.  Drug Spend 0.0517 0.0133 0.0808 0.0420 0.0375 0.0351

(0.0580) (0.0456) (0.0543) (0.0502) (0.0540) (0.0513)
0.0359 -0.000856 0.0656 0.0279 -0.0237 -0.0225

(0.0566) (0.0451) (0.0542) (0.0502) (0.0576) (0.0549)
0.0555 0.0152 0.0838* 0.0429 0.0302 0.0265

(0.0541) (0.0420) (0.0504) (0.0471) (0.0489) (0.0472)
D.  Health Care Spend 0.101 0.0676 0.105 0.0665 0.0185 0.0124

(0.0674) (0.0555) (0.0650) (0.0593) (0.0496) (0.0460)

* significant at p=0.1; ** at p=0.05; *** at p=0.001

NDA-Indications NDA-Indication-
Products

NDA-Indication-
Documents

Notes:  Cluster-robust standard errors are reported in parentheses.  The four regression datasets refer to: (a) 
baseline; (b) baseline including orphan drugs; (c) baseline including full set of ICD9 groupings; (d) baseline w ith size 
measured by health care spend.  "Treated market" represents total drug or health care spend.  "Controlled market" 
represents spend for patients w hose condition appears controlled as indicated by provider visits and missed w ork 
days.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  Details in Chapter 7.

B.  Drug Spend + Orphans

C.  Drug Spend + Full ICD9

B.  Drug Spend + Orphans

C.  Drug Spend + Full ICD9
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Table 7.32. Summary of Size Coefficients, Base Specification Across Regression Models 

Dependent Variable: Counts of NDA-Indications 
Dependent Variable Basis: Drug Spend 
Regression: Poisson Fixed Effects (1996-2011) 
 
 

Regression Model

Treated Market (I) (IV) (I) (IV) (I) (IV)
Poisson FE, cluster 0.0340*** 0.0198* 0.0649 0.0427 0.0285** 0.0118

(0.00839) (0.0118) (0.0601) (0.0576) (0.0126) (0.0157)
Neg Bin, robust 0.0344*** 0.0231* 0.0474 0.0281 0.0286*** 0.0141

(0.0101) (0.0128) (0.0500) (0.0479) (0.0107) (0.0127)
Neg Bin, cluster 0.0344*** 0.0231** 0.0474 0.0281 0.0286*** 0.0141

(0.00820) (0.0115) (0.0601) (0.0574) (0.0110) (0.0151)
Neg Bin FE 0.0365 0.0242 0.0366 0.0308 0.0310 0.0162

(0.0233) (0.0303) (0.0927) (0.111) (0.0259) (0.0331)

Controlled Market (V) (VI) (V) (VI) (V) (VI)
Poisson FE, cluster 0.0327** 0.0245** 0.0517 0.0133 0.0358*** 0.0244**

(0.0151) (0.0119) (0.0580) (0.0456) (0.0138) (0.0103)
Neg Bin, robust 0.0310*** 0.0230*** 0.0359 -0.000856 0.0322*** 0.0211**

(0.0103) (0.00853) (0.0450) (0.0383) (0.0103) (0.00881)
Neg Bin, cluster 0.0310** 0.0230** 0.0359 -0.000856 0.0322** 0.0211*

(0.0137) (0.0111) (0.0570) (0.0454) (0.0128) (0.0109)
Neg Bin FE 0.0345 0.0257 0.0490 -0.0169 0.0347 0.0240

(0.0254) (0.0259) (0.0847) (0.0868) (0.0282) (0.0282)

* signif icant at p=0.1; ** at p=0.05; *** at p=0.001
Notes:  Standard errors are reported in parentheses.  Model estimates are presented according to STATA 
regression commands in far-left column.  Columns are labeled by dependent count measure associated w ith 
NDA approvals (including CDER-approved BLAs).  Treated market represents drug spend by ICD9-defined 
disease market groupings.  Controlled market represents drug spend for that portion of patients w hose 
disease appear clinically controlled by drug treatment as defined by provider visits and missed w ork days 
cutoff statistics.  Double-counting occurs for NDAs linked w ith multiple ICD9 codes in MEPS.  All explanatory 
variables are calculated as logs measures.  Size and Size*Heterogeneity variables are scaled measures of 
drug spending using three-year time periods and w ith a three-year lag of market size.  All specif ications 
include disease market and time period dummies.  Details in Chapter 7.

For All Application 
Types

For New Molecular 
Entities

For New Drugs
NDA-Indication Counts
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CHAPTER 8.  

DISCUSSION 

 

8.1 DISCUSSION OF HYPOTHESES AND PREDICTIONS 

Using Poisson count panel regression with a traditional IIH setup I find with strong statistical 

significance that a 1% increase in market size generally produces a 2%-6% increase in drug 

innovation output which is consistent with previously reported estimates.  With an extended 

“Induced Innovation Hypothesis” (eIIH) setup where I attempt to account for market composition 

characteristics, I find preliminary but still confirmatory empirical evidence of the influence of both 

market size and market heterogeneity on innovation introduction rates.  Specifically, I obtain 

coefficient estimates (with mixed statistical significance) in the 1%-4% range across innovation 

measure and innovation count types.  Of note, the CHECKUP and RACE heterogeneity variables 

achieve statistical significance most consistently and with a positive sign supporting theoretical 

predictions.  My results are relatively robust to changes in specification (e.g., choice of market 

heterogeneity variables and their constructs) and identification.  While I was unable to 

convincingly show that inducement increases with heterogeneity but my evidence still suggests 

that non-size characteristics of market heterogeneity are possible omitted variables from prior IIH 

studies.   

There are several additional observations of note.  First, I observe that my size coefficients are 

generally significant when estimated alone and then lose some/all significance with addition of 

heterogeneity variables.67  This may be indicative that there is a correlation between size and 

heterogeneity that could be confounding estimates.  

                                                      
67 (despite an increase in R-squared with my OLS results and decrease in AIC/BIC goodness-of-fit test statistics with my 
Poisson results) 
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With regard to the reduction in the coefficient of market size with market heterogeneity included in 

model specification (Research Question #2), I am unable to test directly for significance given my 

maximum-likelihood identification strategy based on the Stata regression command xtpoisson.  

However, for indicative purposes, I employ two approaches based on using the -suest- and -khb-  

commands in Stata.  The former is a post-estimation command which combines estimation 

results and allows for coefficient testing across models.  However, -suest- could only work in the 

context of GLM regression (with log link and Poisson distribution).  The latter command, -khb-, 

applies the KHB method68 to compare the estimated coefficients between two nested non-linear 

probability models.  As with -suest-, -khb- tests models of the GLM family but unfortunately is only 

experimental for Poisson estimation.  By employing altered specification and identification 

strategies, I am able to use these commands to provide somewhat indicative evidence of the 

reduction in market size coefficient with the addition of market heterogeneity variables.  I am 

cautious in trying to interpret this result as anything more than the fact that the specification with 

market heterogeneity generates empirical estimates that are more theoretically consistent than 

specifications without market heterogeneity. 

Another observation of interest are the coefficient signs I obtain when using document count as 

my innovation entry measurement unit.  My theoretical setup does not differentiate between 

innovation production and innovation activity.  Instead, I follow the traditional IIH setup of relying 

on the presumption that attrition rates do not vary systematically by disease markets/sub-

markets.  This is why getting negative estimates for size with the document count measure is 

unexpected.  It is inconsistent with innovation productivity being a proportionate downstream 

result of innovation activity.  However, the negative coefficients on size in the full specification 

model may simply be reflecting the large extent to which innovation productivity (new entry) and 

innovation activity ( “N” prefix documents) are correlated. 

                                                      
68 Karlson et al. (2011) 
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It is noteworthy that alternative M*HET variables, particularly my controlled market construct, ܥே(ݒ), support an eIIH setup as well as, if not better than, total drug spend.  As alluded to earlier, 

this could be an indication that health care spend may be useful as an instrument in this context 

for drug spend if there are potential endogeneity issues between drug spend and innovation 

output have been under-addressed.  The usefulness of the health care spend measure could also 

be indicating the merits of distinguishing market “unmet need” from market need size.  This latter 

concept is also supported by the significant results I achieve with my M*HET variables. 

 

8.2 THREATS TO VALIDITY 

There are multiple possible threats to validity to consider.   

From a simple data sourcing perspective, my results are susceptible to the weaknesses of the 

data generating process within MEPS such as the biases in how ICD9 codes are matched to 

survey answers on disease conditions, and the associated under-reporting issues likely with 

household representative self-reporting.  Also, there is some unfortunate information loss in 

MEPS reporting its ICD9 variable as a 3-digit code instead of the 5-digit code that was originally 

recorded. 

My research is also sensitive to data sufficiency concerns.  My dataset examines a 15-year time 

period but given that it can take firms 5-10 years or longer to bring a drug compound to market, 

my dataset may not have enough longitudinal observations to distinguish inducement effects 

beyond that of basic market size.  In future extensions of this research, I hope to increase my 

statistical power by adding surrogate observations such as pre-approval innovation rate data 

(e.g., drug compound counts in clinical trials). 

Another set of validity threats involve my approach to dataset construction.  First, the 

idiosyncrasies of my NDA-indication construct for measuring innovation counts may have 

confounding effects.  Second, my reliance on using NDC 9-digit codes as my linking variable to 
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assign disease categories to my dependent variable dataset assumes there is no significant bias 

towards bigger (i.e., better-selling) drugs in the completeness of NDC coding in MEPS.  Third, 

there is some arbitrariness in creating and using disease categorization based on ICD9 3-digit 

(versus 4-digit or 5-digit) codes to define my market categories. 

A further set of threats to my results is the idiosyncrasies of how disease market categories get to 

be associated with my dependent and explanatory variables in my dataset.  As mentioned earlier 

in this section, ambiguity can arise because of how disease conditions are reported by survey 

respondents and then coded by survey administrators.  Further ambiguity arises when a single 

disease may have different ways of being reported/recorded  as one or more 3-digit ICD9 codes.  

Also causing possible ambiguity is the practice of off-label prescribing which would explain how a 

drug that has only ever been approved for a single disease indication could be associated with 

multiple ICD9 disease codes in MEPS reporting.   

Threats are also presented by the identification assumptions I make which may not rest on 

sufficient grounding.  For example, my independence assumption between my DIS and PHYS 

heterogeneity variables may be more plausible for some disease conditions (e.g. infectious 

diseases) than for others (e.g. hereditary diseases).  Also, I may inadvertently invoke endogeneity 

issues with my inclusion of DIS heterogeneity variables. 

It is still possible that not controlling for number of compounds already in the market means that 

my use of lagged sales to measure market size is potentially biased since the more drugs already 

serving the market, the less the potential for new drugs.69 

Additional threats include insufficient management of data dispersion; sub-optimally 

parameterized market heterogeneity measures; time-sensitive or disease market-sensitive 

probability of R&D success. 

                                                      
69  Controls could include the number of on-patent compounds/formulations and number of generics with some 
consideration of their age, e.g., limiting to molecules approved since say 1960. 
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Finally, there may be merit to considering the role of market size growth instead of or in addition 

to absolute market size. 

 

8.3 STUDY LIMITATIONS 

There are several study limitations deserving of mention.  First is my reliance on the MEPS data.  

As a result, my research period could only cover the specific 16-year time period from 1996 to 

2011.  Also, the MEPS data is left censored because the limited survey sample sizes results in 

the under-reporting of less prevalent and orphan diseases and drugs. 

Next, I encountered substantive matching attrition in constructing my dataset.  For instance, 

13,848 out of 18,066 NDA applications were not associated with any chemical type coding in the 

Drugs@FDA database.  I further encountered not insignificant attrition when linking NDC product 

codes with NDA numbers, especially for new molecular entities (my dataset contained 491 out of 

the 767 NMEs available for my time period).  
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CHAPTER 9.  

FUTURE RESEARCH AND CONCLUSION 

 

9.1 FUTURE RESEARCH 

There are a number of ways to further refine and investigate the merits of an eIIH.  For instance, 

a more comprehensive understanding of drug innovation entry may eventually require a fuller 

specification that includes for each market some measure(s) of drug stock quality (e.g., number of 

non-generic drugs, number of generic drugs, number of on-patent molecules/formulations, 

number of non-generic drugs approved since 1960, average age of drugs available) as well as of 

potential growth in a market (e.g., using a proxy such as the inverse of the number of drugs 

already in the market) since the more drugs (and/or drug products) already in the marke the 

greater the incremental benefit a new drug (and/or drug product) will have to provide to justify 

reimbursement and use.70 

My research may also benefit from testing additional empirical constructs of market 

heterogeneity, including “directional” measures (especially for inherently ordered characteristics 

such as age) that could provide interpretative value in understanding and identifying those 

subpopulations that are under- (or over-) served.  

Since the policy implications of my expected results are potentially quite broad-ranging, another 

extension of my research effort here would be to test how well an eIIH model can explain 

historical exogenous changes in market exclusivity (e.g. Waxman-Hatch), R&D tax credits (e.g. 

Orphan Drug Act), technology transfer restrictions (e.g. Bayh-Dole), etc.  A particularly interesting 

policy initiative to study surrounds the effort to better address the biopharmaceutical needs of 

diverse sub-populations.  For example, Section 115 of The Food and Drug Modernization Act of 
                                                      
70 Special thanks to Patricia Danzon for raising these issues. 
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1997 requires the inclusion of women and minorities in clinical drug trials.  In theory, this policy 

intervention could have either dis-incentivized drug innovation (e.g. by raising clinical 

development costs), incentivized drug innovation (e.g. by allowing firms to better differentiate their 

drugs for FDA approval and payer acceptance) or had no net impact (e.g. due to offsetting 

effects).  Whether and how this FDA intervention and other diversity-driven regulatory measures 

have affected drug innovation are empirically addressable questions. 

Also worthy of investigation for its policy implications might be my testing of additional 

measurement units of innovation entry such as counts of product strengths and counts of dosage 

forms.  Furthermore, prospectively understanding the role of market preference characteristics in 

drug innovation could inform current debate in both investment and health care communities on 

the coming “revolution” in pharmacaogenomics and personalized medicines.  The promise of 

pharmacogenomics, which studies the relationship between a patient’s genetic makeup and 

his/her pharmacological response to a drug, is to eventually enable person-specific drug therapy.  

To provide a more precise foundation for analyzing these policy issues, it may be worthwhile to 

revisit my theoretical setup to better understand the explanatory power of the levels of market 

size and market heterogeneity in inducing innovation versus the change in levels of market size 

and market heterogeneity.71 

Finally, it would not be unreasonable to consider that my model setup and methodology may be 

generalized to examine demand-side determinants of new product innovation and innovativeness 

in technology markets beyond pharmaceuticals. 

  

                                                      
71 Special thanks to Mark Pauly for raising this issue as food for thought. 
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9.2 CONCLUSIONS 

1. Research Question #1: For a given market size, will the number of new drugs (and/or 

products associated with drug approvals) introduced be higher the more 

heterogeneously, or non-homogeneously, composed the population?  I find evidence, 

with varying statistical significance, that output rates associated with drug innovation are 

influenced by market heterogeneity but not always in line with theoretical predictions. 

2. Research Question #2: Does accounting for market heterogeneity produce market size 

estimates that are more consistent with theoretical predictions?  I confirm that drug 

innovation rates are increasing in market size (with strong statistical significance) when 

controlling for market heterogeneity.  The available statistical evidence also indicates that 

the magnitude of this size effect is more consistent with theoretical predictions.  Thus, by 

overlooking market composition heterogeneity, prior empirical research likely over-

estimated the effect of market size due to omitted variable bias. 

3. My research results suggest an extended IIH may be able to provide a more theoretically 

consistent and informative inducement model than the traditional IIH across different 

innovation count measures.  This could provide policy-makers with improved levers and 

strategies (e.g., setting FDA resourcing priorities) to incentivize drug innovation that 

targets under-served as well as un-served populations. 

4. This study provides further empirical evidence that new drug product introductions across 

innovation measures and count types (e.g., me-too drugs) are economic responses of 

firms to market need/demand. 

5. Given the sensitivity of my results to variations in specification as well as measurement 

constructs, follow-on research is warranted to better understand which market 

characteristics can induce which innovation count measures.  
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CHAPTER 10.  

APPENDIX 

 

10.1 INTUITION FOR SUPPLY-SIDE INDUCEMENT 

Let ܯ denote the size of a given market and let K௔ denote the expected cost of a successful 

product innovation project where ܽ is the number of product innovation attempts per project and a 

successful project produces one new product entry.  If the nature of the product innovation 

process is such that product innovation attempts are independently and identically distributed – 

the probability of success for an attempt being denoted by ݌ – then we can calculate E[K௔] =ிା௔∙஼ఛೌ , where ܨ is the fixed cost of the project, ܥ is the marginal cost of each attempt, and ߬௔ = 1 −
(1 − ௔(݌ .  So successful product innovation (i.e. product entry) is given by N௔ = ெ୉[୏ೌ] = ெ∙ఛೌிା௔∙஼.  

Now consider two markets with equal market size, ܯ , where the structural attributes of one 

market only allow for ܽ = 1  projects (one product innovation attempt per project) while the 

structural attributes of the other market only allow for ܽ = 2 projects (two product innovation 

attempts per project).  Then  ୒మ୒భ = ୉[୏భ]୉[୏మ] = ಷశ಴ഓభಷశమ∙಴ഓమ = ௣(ଶି௣)௣ ∙ ிା஼ிାଶ∙஼ = (2 − (݌ ∙ ቆ1 − ଵಷ಴ାଶቇ, which implies 

that Nଶ ≷ Nଵ if and only if ி௖ ≷ ௣ଵି௣.  In other words, entry may increase or decrease in ܽ depending 

on the relationship between the project’s fixed-to-variable-cost ratio ( ி௖) and the attempt success 

odds ቀ ௣ଵି௣ቁ.72 

                                                      
72 Referring to DiMasi et al. (2004) to estimate that F=$366M, C=$170M, p=0.125, and so deduce that the FVCR (2.15) is 
greater than the success odds (0.14), our prediction is that entry increases with the number of attempts in the case of 
pharmaceuticals.  If the number of attempts possible per project is correlated with market size, this result suggests that 
prior empirical studies of induced pharmaceutical innovation (e.g. Acemoglu & Linn (2004)) predicated on a simple flow-
through model of innovation (equivalent to the one-attempt-per-project case) may have yielded biased results by not 
controlling for number of attempts. 
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10.2 INTUITION FOR GENERAL INDUCEMENT 

Consider two disease categories ܩଵ  and ܩଶ  with respective sizes ܯଵ  and ܯଶ  (without loss of 

generality, say ܯଵ ≥  ଶ are sufficiently independent in their characteristics mixes, Iܩ ଵ andܩ ଶ).  Ifܯ

describe them as being two differently homogeneous markets.  If ܩଵ  and ܩଶ  share sufficient 

commonalities or dependencies in their characteristics mixes, I describe them as being two 

differently homogeneous or additively separable sub-markets of one larger heterogeneous 

market.73  Figure 10.1 visually represents ܯଵ and ܯଶ on the x-axis and y-axis, respectively. 

 

 

Figure 10.1: Intuition for General Inducement Effects 

 

                                                      
73  Within this context, by “additively separable” I have the more strict definition of MECE (mutually exclusive and 
collectively exhaustive) in mind. 
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Figure 10.2. Potential inducement effects of heterogeneity (from Figure 10.1) 

Notes: Strategy A is the base scenario posited by the traditional Induced Innovation Hypothesis. E[#  NMEs] refers to the 
expected number of new molecular entities; IDC refers to new approved indications 

 
Consider the case where ܯଵ < ிା஼௣ , which refers to the region bounded on the right side by 

constraint line A.  This region is in fact also bounded above by the constraint line ܯଵ =  ଶܯ
because our setup assumes ܯଵ ≥ ଶܯ .  Now when ܩଵ  and ܩଶ  are separately homogeneous 

groups, neither is large enough to incent or support innovation product entry.  In other words, 

there is no new drug product entry when {ܯଵ,ܯଶ} are located within the general triangular area 

composed by regions ܋ ,′܊ ,ܠ, and ܌૚′ . 

However, when ܩଵ and ܩଶ are approached as differently homogeneous sub-groups of one larger 

heterogeneous group, they together can incent or support innovation product entry due to the 

possible sharing of fixed costs of entry for intra-firm projects.  There are three such fixed-cost 

sharing strategies for the firm and these can give rise to the constraint lines C, D, and W in Figure 

10.1.  The first strategy – applicable to projects at market size combinations to the right of 

constraint line C (i.e., for  ܯଵ ଶܯ+ ≥ ிାଶ஼௣ ) – is when simultaneous attempts are made with 
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each drug development project (i.e., for each new drug molecule candidate) to enter ܩଵ and ܩଶ.74  

The second strategy – applicable to projects at market size combinations to the right of constraint 

line D (i.e., for  ܯଵ + ଶܯ݌ ≥ ிା(ଵା௣)஼௣ ) – is when sequential attempts are made with each drug 

development project to enter ܩଵ  and ܩଶ  (i.e., an initial clinical trial is conducted for ܩଵ  and, if 

successful, then an additional clinical is conducted for ܩଶ).  The third strategy – applicable to 

projects at market size combinations to the right of constraint line W (i.e., for  ܯଵ ଶܯ+ ≥ ிା஼௣ ) – 

is when attempts are made with each drug development project to enter ܩଵ and ܩଶ but where ܩଵ 
and ܩଶ are treated as one joint group by firms and regulators, perhaps intentionally to create a 

market of sufficient size to offset the expected costs of entry.  For completeness, it is worth noting 

that this last strategy is dominated – either partially or wholly – by the more dominant strategy 

applicable to drug development projects at market size combinations to the right of constraint line 

B (i.e., for  ܯଵ ଶܯ+ ≥ ிାଶ஼௣(ଶି௣) ).  This occurs when attempts are made with each drug 

development project to simultaneously enter ܩଵ and ܩଶ but where labeling approval in only one of 

the sub-groups ensures off-label use in (and therefore sales from) the other sub-group.  The 

rationale here is that physicians are willing to use the closest alternative(s) in a situation where 

there are limited drug options.  While the intercept of constraint line B may vary, note that the 

configuration shown in Figure 10.1 – where B appears as a lower bound relative to W – is 

reflective of empirical observation.75  Also note that region ܌૚′  is representatively distinct from 

region ܋ because strategy D dominates strategy C – while both strategies yield the equivalent 

                                                      
74 This is the same scenario as described in section 2a above. 
75 If the intercepts for B are greater than the intercepts for W depending on the values of ܨ ,݌, and ܥ, then ܟ and ܊′ will 
actually be distinct regions rather than ܟ being a subset of ܊′.  This occurs when ௣ଵି௣ > ி஼ but as already mentioned this is 

not empirically consistent with real-world observations. 
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inducement result with respect to new product entry, strategy D’s effect on the number of 

indication approvals (1 + ) is greater than strategy C’s effect (݌ ௣ଶି௣).76 

Therefore, for the case of ܯଵ < ிା஼௣ , when drug development projects can exploit ܩଵ and ܩଶ as 

separately homogeneous sub-groups rather than as one joint homogeneous group, the expected 

number of new product entries (i.e., new drug molecules) in the region composed of ܊′ (inclusive 

of ܋ ,(ܟ, and ܌૚′  increases from 0 to 1, while the expected number of new indication approvals 

increases from 0 to either ( ௣ଶି௣) or (1 +  .(݌
Next, consider the alternative case of  ிା஼௣ ≤ ଵܯ < ிାଶ஼௣ , which is shown in Figure 10.1 as the 

region bounded on the left side by constraint line A and from above by the setup constraint of ܯଶ < ிା஼௣ .77  When ܩଵ and ܩଶ are separately homogeneous groups, the expected number of new 

product entries for projects targeting both groups is 1 because ܩଵ – and only ܩଵ – is large enough 

to incent or support innovation product entry regardless of firm strategy.  However, when ܩଵ and ܩଶ are approached as differently homogeneous sub-groups, firms can pursue strategy D (as is 

described in the preceding sub-case of ܯଵ < ிା஼௣  and which dominates strategy C in the currently 

considered region) in order to exploit intra-project sharing of the fixed costs of entering ܩଵ and ܩଶ.  
This then allows for incremental product entry in terms of both the expected number (i.e., 1) of 

new product entries as well as the expected number (i.e., 1) of new approved indications. In fact, 

the two additional threshold constraints, represented by ܯଵ ଶܯ+ ≥ 2 ቀிା஼௣ ቁ and ܯଵ ଶܯ+ ≥

                                                      
76 This holds because ௣ଶି௣ < (1 +  .if and only if, which is true (݌
77 It is straightforward to see that all cases of the form ிା௝∙஼௣ ≤ ଵܯ < ிା(௝ାଵ)∙஼௣  and  ிା௚∙஼௣ ≤ ଶܯ < ிା(௚ାଵ)∙஼௣  reduce to this case 

of j=1, g=0. 
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2 ቀிାଶ஼௣ ቁ, enable greater leverage in the cost sharing and thus produce greater inducement 

effects on new product entry on ܌૝ versus ܌૜ and on ܌૜ versus ܌૛′ .78 

So for the alternative case of ிା஼௣ ≤ ଵܯ < ிାଶ஼௣ , when drug development projects can exploit ܩଵ 
and ܩଶ as separately homogeneous sub-groups rather than as one joint homogeneous group, the 

expected number of new product entries (i.e., new drug molecules) in the region composed of ܌૜ 

and ܌૝ increases from 1 to 2, while the expected number of new indication approvals increases 

from 1 to either (1 + or 2(1 ,2 ,(݌ + ′૛܌ for regions (݌  .૝, respectively܌ ૜, and܌ ,

 

10.3 DRUG DEVELOPMENT PHASES 

Preclinical (“Phase 0”): Preclinical research programs have separate setup costs for different 

pharmacological mechanism-of-action strategies and since the number of potential compounds to 

be generated and tested can vary across programs, so this phase exhibits a non-CRS cost 

structure.  And since only a specified number of compounds (“leads”) will become candidates for 

phase I trials, this phase exhibits quota flow attrition. 

Phase I: Phase I trials serve to test the basic safety of new compounds in man.  Since results are 

binary (safe or not safe), any drug compound entering and passing any test during this phase will 

move into Phase II.  Also, in general, compounds only need to be tested once. This describes a 

hurdle attrition flow and constant returns-to-scale structure. 

Phase II: When a compound enters this phase, the firm conducts one or more trials in order to 

determine a trial design which will maximize the compound's chance of both passing-through to 

Phase III testing and achieving FDA approvable results in Phase III testing.  Given the costs 

involved at this stage, generally only one compound is selected for Phase III. 
                                                      
78 Real-world cases of such inducement effects include R&D phenomena known as “indication expansion” and “drug re-
purposing.” 
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Phase III: Any drug compound entering and passing any test during this phase will be presented 

for FDA approval.  This means hurdle flow attrition is in effect.  Each trial can be (and often is) 

designed to test multiple clinical endpoints in multiple subpopulations based on Phase II 

outcomes, so the non-CRS cost structure applies. 

Market (“Phase IV”): Drug compounds are launched into the marketplace once they have 

received FDA approval.  Drug prescription choice is determined by treatment need along the 

three dimensions of safety, (i.e. no severe adverse events), efficacy, and tolerability (i.e. mild-or-

moderate adverse events acceptable to patient). 

 

10.4 BACKUP CALCULATIONS FOR SYMMETRIC OLIGOPOLY EQUILIBRIUM 

MODEL 

For a given disease market of size d, the representative firm chooses ݔ, ܲ, τଷ and ߮, to solve 

max ߨ(ܲ, τଷ, ߮; 	݊, ,ߜ ,ݐ ܿ, ,௜ܨ ,௜ܥ (௜݌ = [݁ݑ݊݁ݒܴ݁]ܧ −  [ݏݐݏ݋ܥ]ܧ	
= pଷτଷ(ܲ − ,ܲ)ݔ(ܿ ߮; ݊, തܲ, ത߮) − ቂܨ଴ + ஼భ௣భ + ଶܥଶݎ + τଷܥଷቃ. 

One first-order condition (FOC#1) that can now be solved is 

,ܲ)ߨ߲ τଷ, ߮)߲ܲ = 0 

= pଷτଷ[ݔ + (ܲ −  [′ݔ(ܿ
= pଷτଷ ቊఋ(ଵିఝ)	௡ ቈ1 + ݊ ቀ௉തି௉௧ ቁ ቆ1 + കഥమ	ఋ(ଵିఝഥ)ቇ + ఝഥ	ቀଵିകഥమቁఋ(ଵିఝഥ)మ቉ + (ܲ − ܿ) ቂ(1 −
߮) ቀିଵ௧ ቁ ቀߜ + ఝഥ	ଶ(ଵିఝഥ)ቁቃቋ  
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= pଷτଷ(1 − ߮) ఋ	௡ ቈ1 + ݊ ቀ௉തା௖ିଶ௉௧ ቁ ቆ1 + കഥమ	ఋ(ଵିఝഥ)ቇ + ఝഥ	ቀଵିകഥమቁఋ(ଵିఝഥ)మ቉, 
which implies 

ܲ = ௉തା௖ଶ + ௧ଶ௡ ൥ଵା
കഥ	ቀభషകഥమቁഃ(భషകഥ)మ൩൥ଵା കഥమ	ഃ(భషകഥ)൩ = ௉തା௖ଶ + ௧ଶ௡ ቈ1 + ଵ(ଵିఝഥ)[మഃ(భషകഥ)കഥ ାଵ]቉. 

Setting തܲ = ܲ  and ത߮ = ߮  for the symmetric oligopoly equilibrium case thus gives the profit-

maximizing solution for P, 

 ܲ = ܿ + ௧௡ ቈ1 + ଵ(ଵିఝ)[మഃ(భషക)ക ାଵ]቉ 	.     (*1) 

Note I can derive the following hypotheses regarding P, all of which are consistent with basic 

economic intuition: 

డ௉డ௖ = 1 > 0; 

	డ௉డ௧ = ଵ௡ ቈ1 + ଵ(ଵିఝ)[మഃ(భషക)ക ାଵ]቉ > 0; 

 	డ௉డఝ = ଶ(1߮	|݊݃ݏ − (ߜ2 + ߜ2 = ଶ߮	|݊݃ݏ	 + 1)ߜ2 − ߮ଶ) > 0; 

 డ௉డ௡ = − ௧௡మ ቈ1 + ଵ(ଵିఝ)[మഃ(భషക)ക ାଵ]቉ 	< 0; and 

 	డ௉డఋ = ௧௡(ଵିఝ) ିమ(భషക)കቂమഃ(భషക)ക ାଵቃమ = − ଶ௧௡ఝቂమഃ(భషക)ക ାଵቃమ 	< 0. 

Another first-order condition (FOC#2) that can be solved is 
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డగ(௉,தయ,ఝ)డ୰మ = 0  

  = pଷ(ܲ − τଷᇱݔ(ܿ − Cଶ − Cଷτଷᇱ  

  = τଷᇱ [pଷ(ܲ − ݔ(ܿ − Cଷ] − Cଶ. 

Now since  τଷᇱ = − (1 − pଶ)୰మln(1 − pଶ) = −(1 − τଷ)ln(1 − pଶ) and by setting തܲ = ܲ and ത߮ = ߮ for 

the symmetric oligopoly equilibrium case as well as substituting for (ܲ − ܿ) from (*1), I get 

 0 = τଷᇱ [pଷ(ܲ − ݔ(ܿ − Cଷ] − Cଶ 

 = −(1 − τଷ)ln(1 − pଶ) ቊpଷ ௧௡ ቈ1 + ଵ(ଵିఝ)ቂమഃ(భషക)ക ାଵቃ቉ ఋ(ଵିఝ)	௡ ቈ1 + ఝ	ቀଵିകమቁఋ(ଵିఝ)మ቉ − Cଷቋ − Cଶ. 

This allows me to deduce the profit-maximizing solution for τଷ (and therefore rଶ) as being 

τଷ = 1 + େమ୪୬(ଵି୮మ) ଵഃ೟౦య(భషക)	೙మ ቎ଵା భ(భషക)൤మഃ(భషക)ക శభ൨቏ቈଵାക	ቀభషകమቁഃ(భషക)మ቉ିେయ  

  = 1 + େమ୪୬(ଵି୮మ)ቈ ೟౦యൣ(మഃషభ)(భషക)మశభ൧మమ೙మ(భషക)మ[(మഃషభ)(భషക)శభ]ିେయ቉ .   (*2) 

Note that τଷ < 1  which implies that ൤ ௧୮యൣ(ଶఋିଵ)(ଵିఝ)మାଵ൧మଶ௡మ(ଵିఝ)మ[(ଶఋିଵ)(ଵିఝ)ାଵ] − Cଷ൨ > 0 .  Thus, I can derive the 

following hypotheses regarding τଷ, all of which are consistent with basic economic intuition: 

 డதయడେమ = ଵ୪୬(ଵି୮మ)ቈ ೟౦యൣ(మഃషభ)(భషക)మశభ൧మమ೙మ(భషക)మ[(మഃషభ)(భషക)శభ]ିେయ቉ < 0; 

 డதయడେయ = ିେమ(ି ୪୬(ଵି୮మ))ቊ୪୬(ଵି୮మ)ቈ ೟౦యൣ(మഃషభ)(భషക)మశభ൧మమ೙మ(భషക)మ[(మഃషభ)(భషക)శభ]ିେయ቉ቋమ < 0; 
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 డதయడ୮మ = େమቈ ೟౦యൣ(మഃషభ)(భషക)మశభ൧మమ೙మ(భషക)మ[(మഃషభ)(భషക)శభ]ିେయ቉
ିଵ(ଵି୮మ)[୪୬(ଵି୮మ)]మ < 0; 

݊݃ݏ  ቚడதయడ୮య = ݊݃ݏ ቚడதయడ௧ > 0; 

݊݃ݏ  ቚడதయడఋ = ݊݃ݏ డడఋ ฬൣ(ଶఋିଵ)(ଵିఝ)మାଵ൧మ[(ଶఋିଵ)(ଵିఝ)ାଵ] = ߜ2) − 1)(1 − ߮)ଶ + (1 − 2߮) ≷ 0. 

Furthermore, since τଷ is a function of rଶ and డ୰మడதయ = ିଵ(ଵିதయ)୪୬(ଵି௣మ) > 0, these comparative static for τଷ hold correspondingly for rଶ. 
 

10.5 BACKUP CALCULATIONS FOR MONOPOLISTICALLY COMPETITIVE 

EQUILIBRIUM MODEL 

Building further on the equations derived under symmetric oligopolistic competition, we exploit the 

fact that firm profits goes to zero with the free entry-exit condition of monopolistic competition. 

This free-entry condition (FEC) is given by 

,ܲ)ߨ τଷ, ߮, ݊) = 0 

= pଷτଷ(ܲ − ,ܲ)ݔ(ܿ τଷ, ߮) − ቂܨ଴ + ஼భ௣భ + ଶܥଶݎ + τଷܥଷቃ  
= τଷ[pଷ(ܲ − ݔ(ܿ − [ଷܥ − ଶܥଶݎ − ቂܨ଴ + ஼భ௣భቃ.    (*3) 

From FOC#2, 

[pଷ(ܲ − ݔ(ܿ − Cଷ] = େమ(ങಜయങ౨మ) = େమି(ଵିதయ)୪୬(ଵି௣మ).     (*4) 

Substituting rଶ = ୪୬(ଵିதయ)୪୬(ଵି௣మ) and (*4) into (*3) gives 



132 
 

0 = τଷ ቂ େమି(ଵିதయ)୪୬(ଵି௣మ)ቃ − ቂ୪୬(ଵିதయ)୪୬(ଵି௣మ)ቃ ଶܥ − ቂܨ଴ + ஼భ௣భቃ  
= େమି୪୬(ଵି௣మ) ቂln(1 − τଷ) + தయଵିதయቃ − ቂܨ଴ + ஼భ௣భቃ, 

which implies 

ି୪୬(ଵି௣మ)େమ ቂܨ଴ + ஼భ௣భቃ = ln(1 − τଷ) + தయଵିதయ = ln(1 − τଷ) + ଵଵିதయ − 1.  
Setting ܭ = 1 − ୪୬(ଵି௣మ)େమ ቂܨ଴ + ஼భ௣భቃ and rearranging gives 

݁ି୪୬(ଵିதయ) = −ln(1 − τଷ) +  ,ܭ
which can then be solved using the Lambert function79 to give 

ln(1 − τଷ) = ܹ(−݁ି௄) +  ,ܭ

or 

τଷ = 1 − ݁ௐ൫ି௘ష಼൯ା௄.      . (*5) 

Therefore, rearranging (*2) and substituting from (*5) enables me to express innovation entry in 

terms of only exogenous variables: 

݊ଶ = ቎ ௧୮యൣ(ଶఋିଵ)(ଵିఝ)మାଵ൧మଶ(ଵିఝ)మ[(ଶఋିଵ)(ଵିఝ)ାଵ][େయି ిమ೐ೈ൫ష೐ష಼൯శ಼ౢ౤(భష౦మ)]቏,  
or equivalently, 

                                                      
79 For ݌ୟ୷ାୠ = cy + d, where	p > 0	ܽ݊݀	ܽ, ܿ ≠ 0, then y can be solved as y = −୛(ି౗	ౢ౤(౦)ౙ ௣್ష౗ౚౙ )ୟ	୪୬(୮) − ୡୢ, where W is the Lambert 

function. 
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݊ = ቂቀߜ − ଵଶቁ (1 − ߮) + ଵଶ(ଵିఝ)ቃඨ ௧୮యቂቀఋିభమቁ(ଵିఝ)ାభమቃቂେయି ిమ(భషಜయ)ౢ౤(భష౦మ)ቃ , (*6)  

where τଷ is a function of ܨ଴, ܥଵ, ܥଶ, ݌ଵ, and ݌ଶ.  
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CHAPTER 11.  
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