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We consider the inverse scattering problem that arises in two-photon quantum imaging with interferometric mea-
surements. We show that the two-point correlation function of the field contains information about the scattering
medium at a spatial frequency of twice the Rayleigh bandwidth. The linearized inverse problem, however, yields
reconstructions with a resolution of λ=2, where λ is the wavelength of light. © 2010 Optical Society of America
OCIS codes: 290.3200, 270.0270.

The development of methods for optical imaging using
nonclassical states of light is a topic of fundamental inter-
est and considerable applied importance. Such so-called
quantum imaging methods exploit quantum interference
effects (correlations) to improve the performance of litho-
graphy [1,2], spectroscopy [3], and microscopy [4,5]. For
instance, in imaging using two-photon entangled states, it
is possible to break the Rayleigh diffraction-limit of λ=2,
where λ is the wavelength of light [1,6–9]. This technique
takes advantage of the fact that a two-photon state has
twice the energy of the corresponding single-photon state,
which leads to a twofold increase in resolution. Alterna-
tively, it is possible to utilize entanglement due to post-
detection selection to realize a comparable enhancement
in resolution [10–17]. In either case, the superresolution
that is achieved is due to visualization of quantum correla-
tions of the electromagnetic field via interferometry.
Thus, the resulting images contain information about
the medium under investigation. However, they are not
tomographic nor are they directly related to the optical
properties of the medium.
In this Letter, we consider the inverse scattering pro-

blem that arises in two-photon quantum imaging with
interferometric measurements. We show that quantum
multipoint correlation functions contain information
about the dielectric susceptibility of a scattering medium
at spatial frequencies that exceed theRayleighbandwidth.
The linearized inverse problem, however, yields recon-
structions with a resolution of λ=2.
We begin by considering the experiment illustrated in

Fig. 1, where two single-photon sources at the positions
y1 and y2 illuminate a medium of interest. The resulting
scattered photons are registered by point detectors at the
positions x1 and x2 (such that only one photon is regis-
tered by each detector), and the outputs of the detectors

are correlated. The sources are assumed to be noninter-
acting two-level atoms with ground and excited states
j0ii and j1ii, respectively, where i ¼ 1, 2. We further as-
sume that the atoms are initially in their excited states
and that they radiate single photons by spontaneous
emission. Thus, the positive-frequency part of the
electric-field operator contains contributions from each
of the sources and is of the form

EðþÞðxÞ ¼ 1ffiffiffi
2

p ½Gðx; y1Þj01ih11j þ Gðx; y2Þj02ih12j�: ð1Þ

Here j0iih1ij is the lowering operator for the ith atom and
Gðx; yÞ is the Green’s function, which corresponds to the
field at the point x due to a unit amplitude point source at
y. The Green’s function obeys the equation

∇2Gðx; yÞ þ k20ð1þ 4πηðxÞÞGðx; yÞ ¼ −4πδðx − yÞ; ð2Þ

where η is the generally complex dielectric susceptibility
of the medium and, for simplicity, we ignore the vector
properties of the optical field.

We recall that the correlation functions of the field are
given by expectations of normally ordered products of
field operators [18]:

Γð1ÞðxÞ ¼ hψ jEð−ÞðxÞEðþÞðxÞjψi; ð3Þ

Γð2Þðx1; x2Þ ¼ hψ jEð−Þðx1ÞEð−Þðx2ÞEðþÞðx2ÞEðþÞðx1Þjψi;
ð4Þ

where jψi ¼ j11; 12i and Eð−Þ denotes the negative-
frequency part of the electric-field operator that is given
by Eð−Þ ¼ ½EðþÞ�†. We note that Γð2Þðx1; x2Þ is proportional
to the probability of detecting one photon at x1 and a sec-
ond photon at x2, which can be measured by correlating
the outputs of the detectors. Making use of Eq. (1), we
obtain

Γð1ÞðxÞ ¼ 1
2
½jGðx; y1Þj2 þ jGðx; y2Þj2�; ð5Þ

where we have utilized the assumption that the atoms are
noninteracting, which corresponds to putting h01j02i ¼ 0.
We also find thatFig. 1. Illustrating the experiment.
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Γð2Þðx1; x2Þ ¼
1
4
jGðx1; y1ÞGðx2; y2Þ þ Gðx1; y2ÞGðx2; y1Þj2:

ð6Þ

We note that, when y1 ¼ y2 ¼ y, Γð1ÞðxÞ ¼ jGðx; yÞj2 is
proportional to the intensity measured by a point detec-
tor at x due to a point source at y and is thus a classical
quantity. Finally, we introduce the connected correlation
function, which is defined by

Γð2Þ
c ðx1; x2Þ ¼ Γð2Þðx1; x2Þ − Γð1Þðx1ÞΓð1Þðx2Þ: ð7Þ

By using Eqs. (5) and (6), we obtain

Γð2Þ
c ðx1; x2Þ ¼

1
4
Gðx1; y1ÞG�ðx1; y2ÞG�ðx2; y1ÞGðx2; y2Þ

þ c:c:: ð8Þ

We now compute the correlation functions for the case
of a small spherical scatterer of radius a ≪ λ, which we
treat as a point scatterer. The susceptibility is then given
by ηðxÞ ¼ α0δðx − x0Þ, where α0 is the polarizability of the
sphere and x0 is its center. The Green’s function G obeys
the integral equation

Gðx; yÞ ¼ G0ðx; yÞ þ k20

Z
G0ðx; zÞηðzÞGðz; yÞd3z; ð9Þ

where G0 is the free-space Green’s function, which is
given by

G0ðx; yÞ ¼
eik0jx−yj

jx − yj : ð10Þ

It can be seen that the solution to Eq. (9) is of the form

Gðx; yÞ ¼ G0ðx; yÞ þ αk20G0ðx; x0ÞG0ðx0; yÞ; ð11Þ

a result which is obtained by resummation of the pertur-
bation series derived from Eq. (9) [19]. The renormalized
polarizability α is given by the expression

α ¼ α0
1 − α0k20=ðπaÞ þ iα0k30

; ð12Þ

which includes radiative corrections to the Lorentz–
Lorenz form of the polarizability.
First, we calculate Γð1Þ for the case of illumination by a

single-photon source at y. If the source and the detector
are in the far field of the scatterer, then, by using the
asymptotic form of the Green’s function

G0ðx; yÞ∼
eik0r

r
e−ik0x̂·y; jxj ≫ jyj; ð13Þ

where r ¼ jxj, we find that

Γð1ÞðxÞ ∝ cos½k0ðx̂þ ŷÞ · x0 − k0R� þ � � � : ð14Þ

Here R ¼ jxj þ jyj, and the ellipsis denotes lower-
frequency terms. We thus see that a direct imaging

experiment, in which the spatial dependence of Γð1Þ
is mapped, can detect spatial frequencies of 2k0, which
corresponds to a resolution of λ=2, consistent with the
Rayleigh limit of classical optics. Next, we calculate the
connected correlation function Γð2Þ

c . By making use of
Eqs. (8) and (11), we obtain in the far-field limit

Γð2Þ
c ðx1; x2Þ ∝ cos½k0ðx̂1 þ x̂2 þ ŷ1 þ ŷ2Þ · x0� þ � � � : ð15Þ

Evidently, direct imaging of Γð2Þ
c provides access to spa-

tial frequencies of size 4k0 from measured data, which
leads to an enhancement in resolution by a factor of 2
in comparison to the Rayleigh limit. That is, there is suf-
ficient information to characterize the scatterer, even if
only half of the spatial frequencies required for classical
imaging are employed. Although the above calculation
was carried out for the case of point scatterers, it can
be seen that the result applies, more generally, to scatter-
ing by an extended object.

We now consider the inverse problem of recovering
η from far-field measurements of Γð2Þ

c . To proceed, we in-
troduce a complex phase ϕ defined so that

Gðx; yÞ ¼ G0ðx; yÞeϕðx;yÞ: ð16Þ

Within the accuracy of the first Rytov approximation
[20], ϕ is given by

ϕðx; yÞ ¼ k20
G0ðx; yÞ

Z
G0ðx; zÞηðzÞG0ðz; yÞd3z: ð17Þ

In the far-field limit, ϕ becomes

ϕðx; yÞ ¼ Aðx; yÞ~ηðk0ðx̂þ ŷÞÞ; ð18Þ

where ~ηðkÞ ¼ R
expð−ik · xÞηðxÞd3x is the Fourier trans-

form of η and

Aðx; yÞ ¼ k20
G0ðx; yÞ

eik0ðjxjþjyjÞ

jxjjyj : ð19Þ

Using the above results and Eq. (8), we find that

Γð2Þ
c ðx1; x2Þ ¼ Γ0ðx1; x2ÞeΦðx1;x2Þ þ c:c:; ð20Þ

where

Γ0ðx1; x2Þ ¼
1
4
G0ðx1; y1ÞG�

0ðx1; y2ÞG�
0ðx2; y1ÞG0ðx2; y2Þ;

ð21Þ

Φðx1; x2Þ ¼ Aðx1; y1Þ~ηðk0ðx̂1 þ ŷ1ÞÞ
þ A�ðx1; y2Þ~η�ðk0ðx̂1 þ ŷ2ÞÞ
þ A�ðx2; y1Þ~η�ðk0ðx̂2 þ ŷ1ÞÞ
þ Aðx2; y2Þ~ηðk0ðx̂2 þ ŷ2ÞÞ: ð22Þ

Evidently, by varying the directions x̂1, x̂2, ŷ1, ŷ2 for
different values of the radii jx1j and jx2j, we can deter-
mine ~ηðkÞ for jkj ≤ 2k0. That is, it is possible to recover
a band-limited approximation to η with bandwidth 2k0
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from measurements of Γð2Þ
c . This bandwidth corresponds

to a spatial resolution of λ=2, which is the same as would
be obtained by solving the inverse problem using as data
measurements of Γð1Þ or, equivalently, intensity measure-
ments of the scattered field [21,22].
It is important to emphasize that the above result de-

pends upon the use of the first Rytov approximation,
which leads to a linearization of the inverse problem.
We conjecture that resolution beyond the Rayleigh limit
is unlikely to be obtained by solving the nonlinear inverse
problem.
We close with a few remarks. (i) The requirement that

precisely one photon is registered by each detector is an
essential aspect of our method. This postdetection selec-
tion mechanism forces the entanglement of the initially
uncorrelated photons and is responsible for the quantum
mechanical nature of the measurement. (ii) We also note
that calculations along the same lines as presented here-
in, indicate that access to frequencies of size 2Nk0 can be
obtained from experiments carried out with N single-
photon sources and N detectors. (iii) Although in our
model the electromagnetic field is quantized, the interac-
tion of the field with the scattering medium is treated
classically. It would be of interest to extend our results
to the case in which the medium consists of a collection
of two-level atoms. In this context, the inverse problem
would consist of recovering the position-dependent num-
ber density of the atoms.
In conclusion, we have studied the inverse scattering

problem that arises in two-photon imaging with interfero-
metric measurements. We have found that the quantum
two-point correlation function of the field contains infor-
mation about the scatteringmedium at a spatial frequency
of twice the Rayleigh bandwidth. The corresponding lin-
earized inverse problem, however, yields reconstructions
with a resolution of λ=2.
Discussions with Lucia Florescu are gratefully ac-

knowledged. This work was supported by the United
States Air ForceOffice of Scientific Research (USAFOSR)
under grant FA9550-07-1-0096.

References

1. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733
(2000).

2. M. D’Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev. Lett.
87, 013602 (2001).

3. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Phys. Rev. A 54, R4649 (1996).

4. E. J. S. Fonseca, C. H. Monken, and S. Padua, Phys. Rev.
Lett. 82, 2868 (1999).

5. A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, J. Opt. B
6, S575 (2004).

6. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin,
A. Browaeys, and P. Grangier, Nature 440, 779 (2006).

7. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell,
Phys. Rev. Lett. 92, 033601 (2004).

8. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S.
J. van Enk, and H. J. Kimble, Nature 438, 828 (2005).

9. M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208
(1982).

10. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, Phys. Rev.
Lett. 83, 5158 (1999).

11. C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller,
Phys. Rev. A 59, 1025 (1999).

12. F. Dubin, D. Rotter, M. Mukherjee, C. Russo, J. Eschner,
and R. Blatt, Phys. Rev. Lett. 98, 183003 (2007).

13. K. Edamatsu, R. Shimizu, and T. Itoh, Phys. Rev. Lett. 89,
213601 (2002).

14. A. V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro,
Phys. Rev. A 79, 013827 (2009).

15. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature
429, 161 (2004).

16. T. Thiel, J. Bastin, E. Martin, J. Solano, J. von Zanthier, and
G. S. Agarwal, Phys. Rev. Lett. 99, 133603 (2007).

17. P.Walther, J. W. Pan,M. Aspelmeyer, R. Ursin, S. Gasparoni,
and A. Zeilinger, Nature 429, 158 (2004).

18. L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge U. Press, 1995).

19. P. de Vries, D. V. van Coevorden, and A. Lagendijk, Rev.
Mod. Phys. 70, 447 (1998).

20. M.BornandE.Wolf,PrinciplesofOptics, 7thed. (Cambridge
U. Press, 1999).

21. A. J. Devaney, Phys. Rev. Lett. 62, 2385 (1989).
22. G. Gbur and E. Wolf, Opt. Lett. 27, 1890 (2002).

October 15, 2010 / Vol. 35, No. 20 / OPTICS LETTERS 3311


