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Abstract—Peak power consumption of buildings in large facil-
ities like hospitals and universities becomes a big issue because
peak prices are much higher than normal rates. During a power
demand surge an automated power controller of a building may
need to schedule ON and OFF different environment actuators
such as heaters and air quality control while maintaining the
state variables such as temperature or air quality of any room
within comfortable ranges. The green scheduling problem asks
whether a scheduling policy is possible for a system and what is
the necessary and sufficient condition for systems to be feasible.
In this paper we study the feasibility of the green scheduling
problem for HVAC(Heating, Ventilating, and Air Conditioning)
systems which are approximated by a discrete-time model with
constant increasing and decreasing rates of the state variables.
We first investigate the systems consisting of two tasks and find
the analytical form of the necessary and sufficient conditions for
such systems to be feasible under certain assumptions. Then we
present our algorithmic solution for general systems of more than
2 tasks. Given the increasing and decreasing rates of the tasks,
our algorithm returns a subset of the state space such that the
system is feasible if and only if the initial state is in this subset.
With the knowledge of that subset, a scheduling policy can be
computed on the fly as the system runs, with the flexibility to
add power-saving, priority-based or fair sub-policies.
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I. INTRODUCTION

Peak power consumption of buildings in large facilities like
hospitals and universities becomes a big issue because peak
prices are much higher than normal rates. Thus peak power
consumption is directly related to the energy bill. [1]’s study
on the power market data in the Pennsylvania-New Jersey-
Maryland territory in 2006 suggests that if the peak load is
reduced by 4.8% on average then the total expense would be
cut by 3.5% or $1.2 billion. During a power demand surge
an automated power controller of a building may need to
schedule ON and OFF different environment actuators such
as heaters and air quality control while maintaining the state
variables such as temperature or air quality of any room within
comfortable ranges.

However, some systems may not be feasible by any schedul-
ing policy. For instance, consider the scenario where a con-
troller in a building can power ON at most one heater any
time and there are two rooms (with two separate heaters)
whose temperatures are so low that both will drop below
their lower thresholds in one time unit if the rooms are not
heated. In this scenario the system is deemed to fail after one

time unit. [2] formularizes this kind of scheduling problems,
referred to green scheduling, and it presents a necessary and
sufficient condition in continuous time domain for any system
to be feasible. However, when time is discretized additional
conditions are required.

In this paper, we present our research on linear discrete-time
green scheduling systems. We built our work on the previous
problem formulation by [2]–[4] and the geometric interpreta-
tion of the problem by [2], [3]. We derive an analytical form
of the necessary and sufficient conditions for 2D systems to
be feasible under certain assumptions. We also designed an
algorithmic solution for general systems of n tasks (n ≥ 2).
Given the increasing and decreasing rates of the tasks, our
algorithm returns a subset of state space such that the system is
feasible if and only if its initial state is in this subset. With the
knowledge of that subset, a scheduling policy can be computed
on the fly as the system runs, with the flexibility to add power-
saving, priority-based or fair sub-policies.

The paper is organized as follows. Section (II) gives the
formulation of the green scheduling problem. In Section (III)
we explain our work on systems of two tasks and introduce
some key concepts and ideas for solving general systems of
n tasks. In Section (IV) we present our algorithm for general
systems of n tasks. Our simulation results are shown in Section
(V). In Section (VI) we note the related work. In the last
section, we conclude.

II. TASK SYSTEM

In this section we rephrase the formulation of the green
scheduling problem by [2]–[4] and the state space (or geomet-
ric) interpretation of the problem given by [2], [3].

A. Task Model

Consider a control system that controls temperature of a
room within a certain range [l, h) with a heater. Temperature
is called the state variable of the control system. The control
system could switch the heater ON or OFF. When the heater is
ON, the temperature would change according to the dynamics
of the system. For simplicity, here we assume the temperature
increases linearly with rate a. Similarly, the temperature de-
creases linearly with rate b when the heater is OFF. In this
paper a “linear” system means the state variable increases or
decreases linearly (constant slope) with respect to time. It is
different from a “linear” system in control theory, where a state



Figure 1. Example: scheduling of two tasks.

variable’s dynamics is characterized by a linear differential
equation.

We construct the task model for such a control system as
follows. A task T consists of a tuple of attributes (x, l, h,
x(0), M , a, b).
• x: the state variable; x ∈ <.
• l, h: the lower and upper threshold of the state variable;
l, h ∈ < and l < h.

• x(0): the initial state; x(0) ∈ [l, h).
• M : the mode of the task; M ∈ {ON,OFF}.
• a, b: the increasing (decreasing) rate of the state variable

when the mode is ON (OFF); a, b ∈ (0,+∞).
We assume that the attributes l, h, a and b of a task are fixed

with respect to time. The mode of a task can be either ON or
OFF at any time. The dynamic equation of the state variable
is given by:

ẋ(t) =

{
a if M(t) = ON
−b if M(t) = OFF

.

In [2] a more general dynamic equation is given, in which
the rates are not necessarily constant. In this paper we only
consider linear trajectories.

A task is safe if and only if ∀t ≥ 0, x(t) ∈ [l, h). A task
fails if ∃t ≥ 0, x(t) /∈ [l, h).

B. Scheduling Problem

A task system S is a set of n (n ≥ 1) tasks {Ti} (i =
1, 2, · · · , n). A scheduling policy π on S assigns the mode of
each task in S for all t ≥ 0. S is schedulable by a policy π
if and only if under π every task in S is safe and at most one
task is ON at any time. S is feasible if and only if there exists
at least one scheduling policy under which S is schedulable. S
is infeasible if and only if there is no scheduling policy under
which S is schedulable. S fails at time t if at least one task
in S fails at time t.

Fig. 1 shows an example of scheduling a task system of two
tasks. For simplicity, l1 = l2 = l and h1 = h2 = h.

For a task system S, we want to find the necessary and
sufficient condition on its feasibility.

C. System State Space

For a task Ti, define its normalized state variable x̂i(t) =
xi(t)−li
hi−li . It follows that Ti is safe if and only if x̂i(t) ∈ [0, 1)

for all t ≥ 0. Similarly, define normalized increasing and
decreasing rates as âi = ai

hi−li and b̂i = bi
hi−li , respectively.

The dynamics of Ti becomes

˙̂xi(t) =

{
âi if Mi(t) = ON
−b̂i if Mi(t) = OFF

.

Consider a task system S of size n (n > 1). Define system
state X =

[
x̂1 x̂2 · · · x̂n

]T
, where T denotes transpose

of matrix. Let Xi denote the i-th component of X , i.e.,
Xi = x̂i. The dynamics of all task states can be reduced to the
dynamics of the system state in a n-dimensional state space.
For example, suppose during the time interval [t, t + ∆t], T1
is ON while other tasks are OFF. The dynamics during the
interval is given by ˙̂x1 = â1 and ˙̂xi = −b̂i (2 ≤ i ≤ n). It is
equivalent to Ẋ =

[
â1 −b̂2 · · · − b̂n

]T
. In other words, the

system state X moves in the direction
[
â1 −b̂2 · · · − b̂n

]T
in the state space during the interval. In the following context
we also refer a system of n tasks as a n-dimensional system.

It follows that the system is safe if and only if the movement
of the system state is restricted to a n-dimensional box in the
state space for all time t ≥ 0. We call this n-dimensional
box safety box, denoted as SafetyBox. We use the notation
Interval11× Interval22×· · ·× Intervalnn to denote the set of
states {X|∀i(1 ≤ i ≤ n), Xi ∈ Intervali}. Thus,

SafetyBox = [0, 1)1 × [0, 1)2 × · · · × [0, 1)n.

D. Discrete Time Systems

Since practical systems are mostly scheduled and controlled
by digital computers, we focus on discrete-time systems from
now on. Let the unit time interval be δt, and let ãi = âi ∗ δt
and b̃i = b̂i ∗ δt. Then the normalized task state x̂i either
increases by ãi (ON) or decreases by b̃i (OFF) during a unit
time interval. In other words,

x̂i(k + 1) =

{
x̂i(k) + ãi if Mi(k) = ON
x̂i(k)− b̃i if Mi(k) = OFF

.

Let

g(0) =
[
−b̃1 −b̃2 · · · −b̃n

]T
(1)

g(i) =
[
−b̃1 · · · ãi · · · −b̃n

]T
(1 ≤ i ≤ n) (2)

The dynamic equation of a discrete time task system is given
by

X(k + 1) = X(k) + g(k), (3)

where g(k) ∈ {g(0), g(1), · · · , g(n)} and

g(k) =

{
g(0) iff all tasks are OFF
g(i) iff Ti(1 ≤ i ≤ n) is ON while others are OFF

.

(4)
Fig. 2 illustrates the dynamics of a system state in the 2D

safety box. We say that the system takes movement g(i) at time
k if g(k) = g(i) (0 ≤ i ≤ n).

By (4), a scheduling policy on a task system thus corre-
sponds to a unique infinite sequence of movements the system
takes at each time step: g(0)g(1) · · · . The feasibility of the



Figure 2. Safety box of a discrete time system consisting of two tasks. g(0),
g(1) and g(2) are the possible movements.

scheduling problem thus reduces to the restricted movement
problem of the system state within the n-dimensional safety
box.

Theorem 1. A n-dimensional discrete-time task system S
is feasible if and only if given its initial system state
X(0) ∈ SafetyBox and the set of possible movements G =
{g(0), g(1), · · · , g(n)}, there is an infinite sequence of move-
ments g(0)g(1) · · · such that ∀k ≥ 0, X(k) ∈ SafetyBox,
provided that the dynamics of X is given by (3).

A benefit of this state space framework is that it frees us
from considering the size of hi − li for each task when ad-
dressing the feasibility of a system. The only things mattering
are the initial system state and the possible movements. The
reason is that from the scheduling point of view a task of larger
or smaller h− l is always equivalent to a task of the original
h− l but with a scaled initial state and scaled increasing and
decreasing rates.

E. Necessary and Sufficient Condition Problem

Because a particular task system with a given scheduling
policy and given X(0) and G can be modeled as a timed
automaton, timed automata tools such as UPPAAL [5] might
be used to verify its safety property. However, our goal in
this paper is to find the necessary and sufficient conditions
on X(0) for a task system to be feasible, and to synthesize a
scheduling policy for it. We first investigate 2-dimensional task
systems and introduce some key concepts and ideas that can
be applicable to more general n-dimensional task systems. For
2-dimensional task systems we obtain necessary and sufficient
conditions on both X(0) and G under certain assumptions.
For n-dimensional task systems we design and implement an
algorithm that given G computes a set of system states such
that the system is feasible if and only if its initial state is in
that set.

III. 2D SYSTEMS

Consider a 2-dimensional task system. The safety box
is shown in Fig. 3. Define the critical zone of Ti as
[0, b̃i)i × [0, 1)j (j 6= i), denoted as CriticalZonei. Thus,
CriticalZone1 = [0, b̃1)1 × [0, 1)2 and CriticalZone2 =
[0, 1)1 × [0, b̃2)2. Once X(k) ∈ CriticalZonei, for X(k +

(a) ã1 + b̃1 ≤ 1 and ã2 + b̃2 ≤ 1 (b) ã1 + b̃1 ≤ 1 and ã2 + b̃2 > 1

Figure 3. Dead region and critical zones of 2D systems.

1) ∈ SafetyBox we must have g(k) = g(i), otherwise
Xi(k + 1) = Xi(k) − b̃i < 0. In other words, Ti must be
turned ON in its critical zone, otherwise it will fail at next
time step. However, there are some region in the safety box
that once the system state is inside the region at time k the
system must fail at time k+1 no matter what g(k) is. We call
such region dead region, denoted as DeadRegion. Note that
we use the word region to denote a subset of the safety box.

One obvious dead region for any 2D system is the intersec-
tion of the two critical zones, shown in Fig. 3a. We call these
dead regions Type 1 dead regions. That is,

DeadRegion(Type 1) = [0, b̃1)1 × [0, b̃2)2. (5)

However, if ãi+b̃i > 1, other parts of CriticalZonei would
also form a dead region, namely, [1− ãi, b̃i)i× [0, 1)j , because
task Ti cannot be turned ON in that region due to its upper
threshold limitation (Fig. 3b). We group these dead regions
into Type 2 dead regions. That is,

DeadRegion(Type 2) = [1−ãi, b̃i)i×[0, 1)j for i, ãi+b̃i > 1.

In the following discussion on 2D systems, we make the
following assumption:

Assumption 1. ∀i(1 ≤ i ≤ 2), ãi + b̃i ≤ 1.

This assumption guarantees that if Ti is turned ON anywhere
in its critical zone at time k, the task itself will not fail at time
k + 1, although it does not guarantee that the whole system
will not fail at time k + 1. The assumption also implies that
we would only consider Type 1 dead region in our 2D systems
discussion.

[2] has shown that a necessary condition for a n-
dimensional system to be feasible is

n∑
i=1

b̃i

ãi + b̃i
≤ 1. (6)

In 2D system, this is equivalent to

ã1

b̃1

ã2

b̃2
≥ 1. (7)

We will show that this condition plus the condition that the
initial state is in certain region would form the necessary and
sufficient condition for a 2D system to be feasible.



(a) Decomposition of safety box.
u1 ≥ 1 ∧ u2 ≥ 1.

(b) Scheduling policy. u1 ≥ 1 ∧
u2 ≥ 1.

(c) Decomposition of safety box.
u1 < 1 ∧ u2 ≥ b 1

u1
c+ 1.

(d) Scheduling policy. u1 < 1 ∧
u2 ≥ b 1

u1
c+ 1.

(e) Decomposition of safety box.
u1 < 1 ∧ 1

u1
≤ u2 < b 1

u1
c+ 1.

(f) Scheduling policy. u1 < 1 ∧
1
u1
≤ u2 < b 1

u1
c+ 1.

Figure 4. Decomposition of safety box and scheduling policy of 2D systems.

Let u1 = ã1
b̃1

and u2 = ã2
b̃2

. (7) translates to three possible
cases: (a) u1 ≥ 1 ∧ u2 ≥ 1 (b) u1 < 1 ∧ u2 ≥ 1

u1
(c) u1 ≥

1
u2
∧ u2 < 1 . Without loss of generality, we discuss the first

two cases only. We also split the second case into two subcases:
u2 ≥ b 1

u1
c+ 1 and 1

u1
≤ u2 < b 1

u1
c+ 1.

A. Case u1 ≥ 1 ∧ u2 ≥ 1

Define PredeadRegion as

PredeadRegion = {X|X ∈ SafetyBox
and X + g(0) ∈ DeadRegion} (8)

Thus, if X(k) ∈ PredeadRegion and all tasks are OFF
at time k, then X(k + 1) ∈ DeadRegion. See Fig. 4a for
illustration.

Let ub(R, i) denote the tight upper bound of a region in
direction x̂i. For example, ub(DeadRegion, 1) = b̃1 and
ub(PredeadRegion, 1) = 2b̃1.

Assumption 2. ∃σ(1 ≤ σ ≤ 2), ub(PredeadRegion, σ) +
ãσ < 1.

This assumption guarantees that if X(k) ∈ PredeadRegion
we can always turn ON Tσ and the system will still stay in
the SafetyBox at time k + 1 without surpassing the upper
threshold of Tσ .

Define the following regions:

DangerRegioni = CriticalZonei \DeadRegion (i = 1, 2)

RelaxRegion = SafetyBox\
(CriticalZone1 ∪ CriticalZone2
∪ PredeadRegion) (9)

Fig. 4a illustrates these regions. It can be shown that the
safety box is the union of the following 5 disjoint regions:

SafetyBox = DeadRegion ∪ PredeadRegion
∪DangerRegion1 ∪DangerRegion2

∪RelaxRegion. (10)

We refer to this fact as decomposition of the safety box.
We now present our premier 2D scheduling policy.
Premier 2D Scheduling Policy: for all k ≥ 0

g(k) =


g(i) if X(k) ∈ DangerRegioni
g(σ) if X(k) ∈ PredeadRegion
g(0) if X(k) ∈ RelaxRegion

Fig. 4b illustrates the premier 2D scheduling policy by
assuming σ = 1. Scheduling on DeadRegion is omitted
because it fails at time k + 1 anyway.

Proposition 1. Suppose Assumption 1 and Assumption 2 hold.
If X(k) ∈ SafetyBox \ DeadRegion (k ≥ 0), then under
the premier 2D scheduling policy, X(k + 1) ∈ SafetyBox \
DeadRegion.

Proof: X(k) must be in one of the other 4 disjoint
regions in SafetyBox by the decomposition of the safety
box. We now prove the proposition holds for X(k) ∈
DangerRegion1. Proofs for other regions are similar. By
definition DangerRegion1 = [0, b̃1)1 × [b̃2, 1)2. Under the
premier 2D scheduling policy, g(k) = g(1) =

[
ã1 −b̃2

]T
.

X(k + 1) = X(k) + g(1) ∈ [ã1, b̃1 + ã1)1 × [0, 1− b̃2)2 ≡ D.
Obviously D ⊂ SafetyBox, and D∩DeadRegion = ∅ since
ã1 ≥ b̃1. Thus, X(k + 1) ∈ SafetyBox \DeadRegion.

Lemma 1. Suppose Assumption 1 and Assumption 2 hold. A
system satisfying (u1 ≥ 1 ∧ u2 ≥ 1) is feasible if and only if
X(0) ∈ SafetyBox \DeadRegion.

Proof: The “only if” part is trivial. For the “if” part, we
can apply Proposition 1 to prove the system is schedulable
under the premier 2D scheduling policy.

B. Case u1 < 1 ∧ u2 ≥ b 1
u1
c+ 1

Since ã1 < b̃1, some states in DangerRegion1 can reach
DeadRegion in one time step by taking g(1), namely the
states in [0, b̃1 − ã1)1 × [b̃2, 2b̃2)2 ≡ R0,1 ≡ {X|X ∈



SafetyBox and X+g(1) ∈ DeadRegion}. Suppose X(k) ∈
R0,1, then the system must fail by time k + 2: it either fails
at time k + 1 by taking g(k) 6= g(1) or fails at time k + 2 by
taking g(k) = g(1) and an arbitrary g(k + 1).

Let α = b 1
u1
c. Define

R0,j = [0, b̃1− jã1)1× [jb̃2, (j+ 1)b̃2)2 (0 ≤ j ≤ α), (11)

shown in Fig. 4c. Note that R0,0 ≡ DeadRegion and
∀j(1 ≤ j ≤ α), R0,j ≡ {X|X ∈ SafetyBox and X + g(1) ∈
R0,j−1}. Note also that R0,α does not exist if b 1

u1
c = 1

u1
.

This special case does not affect our discussion below, where
we consider the more general case where b 1

u1
c 6= 1

u1
.

By induction, we can show that if X(k) ∈ R0,j , then
the system must fail by time k + j + 1. Now we introduce
the concept of unsafe region. Unsafe region is defined as a
region that once the system state is in the region at time
k (k ≥ 0) there exists a finite time step k′ > k such
that the system must fail by time k′ no matter what the
sequence of movements g(k)g(k + 1) · · · g(k′ − 1) is. We
denote the unsafe region as UnsafeRegion. By definition,
DeadRegion ⊆ UnsafeRegion and k′ = k+ 1 for the dead
region. In the previous case, UnsafeRegion = DeadRegion.
In this case,

UnsafeRegion =
⋃

0≤j≤α

R0,j . (12)

Accordingly, define pre-unsafe region as

PreUnsafeRegion = {X|X ∈ SafetyBox
and X + g(0) ∈ UnsafeRegion}.

(13)

We slightly modify Assumption 2 to get

Assumption 3. ∃σ(1 ≤ σ ≤ 2), ub(PreUnsafeRegion,
σ) + ãσ < 1.

Redefine the following regions:

DangerRegioni = CriticalZonei \ UnsafeRegion (i = 1, 2)

RelaxRegion = SafetyBox \ (CriticalZone1 ∪ CriticalZone2
∪ PreUnsafeRegion) (14)

Again the safety box can be decomposed into the following
5 disjoint regions (Fig. 4c):

SafetyBox = UnsafeRegion ∪ PreUnsafeRegion
∪DangerRegion1 ∪DangerRegion2
∪RelaxRegion. (15)

We get a more general 2D scheduling policy (Fig. 4d).
General 2D Scheduling Policy: for all k ≥ 0

g(k) =


g(i) if X(k) ∈ DangerRegioni
g(σ) if X(k) ∈ PreUnsafeRegion
g(0) if X(k) ∈ RelaxRegion

Lemma 2. Suppose Assumption 1 and Assumption 3 hold.
A system satisfying (u1 < 1 ∧ u2 ≥ b 1

u1
c + 1) is feasi-

ble if and only if X(0) ∈ SafetyBox \ UnsafeRegion.
UnsafeRegion is given by (12).

Proof: Similar to proof of Lemma 1, using the general
2D scheduling policy. The policy is shown in Fig. 4d.

C. Case u1 < 1 and 1
u1
≤ u2 < b 1

u1
c+ 1

Given a rectangular region D = [θ1, θ2)1 × [τ1, τ2)2, define
its width as width(D) = θ2−θ1 and its height as height(D) =
τ2 − τ1.

This case is more complicated than the previous case,
because unless R0,α does not exist, some states in
DangerRegion2 can reach R0,α in one time step by taking
g(2), namely the states in [b̃1, b̃1+(b̃1−αã1))1× [0, b̃2−(ã2−
αb̃2))2 ≡ R1,0. Thus once X(k) ∈ R1,0, the system must fail
by time k + α+ 2. This will in turn bring a series of regions
R1,j (1 ≤ j ≤ α) into the unsafe region like in the previous
case. Another series of regions R2,j would in turn be inducted
from R1,α. The process goes on. However, the process must
terminate. To see this, let us define these regions first. Define

Ri,j = [b̃1 + (i− 1)(b̃1 − αã1)− jã1,
b̃1 + i(b̃1 − αã1)− jã1)1

× [jb̃2, jb̃2 + b̃2 − i(ã2 − αb̃2))2

for (1 ≤ i ≤ β, 0 ≤ j ≤ α), where β = b b̃2
ã2−αb̃2

c.
Note that the above definitions and the definitions of R0,j

in (11) enforce that ∀i(1 ≤ i ≤ β), Ri,0 ≡ {X|X ∈
SafetyBox and X + g(2) ∈ Ri−1,α}, and ∀j(1 ≤ j ≤
α), Ri,j ≡ {X|X ∈ SafetyBox and X + g(1) ∈ Ri,j−1}.
It can be seen that height(Ri,j) = b̃2 − i(ã2 − αb̃2). Thus,
height(Ri+1,j) < height(Ri,j). But since height(Ri,j) must
be positive, the process must terminate at i = β. Note also
that ∀i, j(1 ≤ i ≤ β, 1 ≤ j ≤ α), Ri,j ∈ CriticalZone1. To
show that, we only need to show ub(Rβ,1, 1) ≤ b̃1.

ub(Rβ,1, 1) = b̃1 + β(b̃1 − αã1)− ã1

= b̃1 + ã1b
1

u2 − α
c( 1

u1
− α)− ã1

≤ b̃1.

Together with the definition of R0,j by (11), we get the
unsafe region in this case:

UnsafeRegion =
⋃

0≤i≤β,0≤j≤α

Ri,j . (16)

Define other regions by (13) and (14) as before. We can still
decompose the safety box as given by (15).

Lemma 3. Suppose Assumption 1 and Assumption 3 hold. A
system satisfying ( 1

u1
≤ u2 < b 1

u1
c+ 1) is feasible if and only

if X(0) ∈ SafetyBox \ UnsafeRegion. UnsafeRegion is
given by (16).

Proof: Similar to proof of Lemma 1, using the general
2D scheduling policy. The policy is shown in Fig. 4f.

Combining the three lemmas, we obtain the following
theorem.

Theorem 2. For all 2D systems that satisfy the condition (7), if
Assumption 1 holds, then the unsafe region can be analytically
determined by (16) and the safety box can be decomposed into



5 disjoint regions by (15). If further Assumption 3 holds, then
the system is feasible if and only if X(0) ∈ SafetyBox \
UnsafeRegion, and the system is schedulable by the general
2D scheduling policy.

IV. ALGORITHMIC SOLUTION TO GENERAL
n-DIMENSIONAL SYSTEM

For general n-dimensional systems, analytical forms of
necessary and sufficient conditions on X(0) and G for systems
to be feasible are difficult to get. However, based on the
observation of 2D systems, we design and implement an
algorithm that given any G (i.e., {ãi, b̃i}) returns a region
UnsafeRegion such that the system is feasible if and only if
X(0) ∈ SafetyBox\UnsafeRegion. We will first show how
to construct UnsafeRegion algorithmically and then prove it
indeed has the above property.

Let OutSafetyBox denote the set of states out of the safety
box. That is,

OutSafetyBox = {X|X /∈ SafetyBox}.

A. Construct UnsafeRegion

For the simplicity of the following discussion, we use the
word rectangle to refer to any set of the states of the form
[r10, r11)1 × [r20, r21)2 × · · · × [rn0, rn1)n. The intersection
between two rectangles R1∩R2 is the empty set φ or another
rectangle, while the set difference R2 \ R1 returns the empty
set (when R2 ⊆ R1) or a set of rectangles. Note that we
enforce R2 \ R1 = {R2} if R1

⋂
R2 = ∅. Define a function

shift(R, v), which returns a rectangle as shifting rectangle R
by a vector v. That is,

shift(R, v) ≡ {X + v|X ∈ R}
= [r10 + v1, r11 + v1)1 × [r20 + v2, r21 + v2)2

× · · · × [rn0 + vn, rn1 + vn)n.

Based on the observation on 2D systems, define the dead
region of a n-dimensional system as

Definition 1. DeadRegion ≡ {X|X ∈ SafetyBox
and ∀i(0 ≤ i ≤ n), X + g(i) ∈ OutSafetyBox}.

Accordingly, define DeadRect as a rectangle such that

DeadRect ⊂ SafetyBox and

∀i(0 ≤ i ≤ n), shift(DeadRect, g(i)) ⊂ OutSafetyBox

There are two types of dead rectangles. Type 1 dead
rectangle

DeadRect(Type 1) = [0, 1)1 × · · · × [0, b̃i)i × · · ·
× [0, b̃j)j × · · · × [0, 1)n

for (1 ≤ i 6= j ≤ n). Type 2 rectangle

DeadRect(Type 2) = [0, 1)1 × · · · × [1− ãi, b̃i)i
× · · · × [0, 1)n

for any i such that ãi + b̃i > 1. Let DeadRectSet denote the
set of all dead rectangles of both Type 1 and Type 2 of the
system. Then the dead region of the whole system is

DeadRegion =
⋃

R∈DeadRectSet

R. (17)

From the discussion of 2D systems, we have learned that we
can reduce the safety problem of individual system states to
that of a rectangle: if all systems in a rectangle R are unsafe,
then we say the rectangle is unsafe.

We denote the set of unsafe rectangles of a system as
UnsafeRectSet. We initialize the UnsafeRectSet to be
DeadRectSet. If there exists a rectangle R such that

1) R ∈ SafetyBox
2) ∀Runsafe ∈ UnsafeRectSet, R

⋂
Runsafe = ∅

3) ∀i(0 ≤ i ≤ n), shift(R, g(i)) ⊂ OutSafetyBox ∨
(∃Runsafe ∈ UnsafeRectSet, shift(R, g(i)) ⊆
Runsafe), that is, once X(k) ∈ R, then X(k + 1) is
either out of the safety box or inside of a known unsafe
rectangle,

then by induction R is also a unsafe rectangle, and so we
append it into the UnsafeRectSet. We call the above criteria
unsafety criteria.

Beginning with DeadRectSet, we expand the
UnsafeRectSet by looking for R that satisfies the
unsafety criteria. Let Runsafe ∈ UnsafeRectSet. Consider
the rectangle

Rback = shift(Runsafe,−g(i))
⋂
SafetyBox

for some (0 ≤ i ≤ n). It satisfies that Rback ⊂ SafetyBox
and shift(Rback, g(i)) ⊆ Runsafe. However, it may intersect
with other known unsafe rectangles. Thus let

workingSet = ∅

and

∀R′unsafe ∈ UnsafeRectSet,

workingSet = workingSet
⋃

(Rback \R′unsafe).

So ∀Rinwork ∈ workingSet, Rinwork satisfies the unsafety
criteria (1) and (2). Then find any rectangle RnewUnsafe ⊆
Rinwork that satisfies unsafety criteria (3).

By that end, let

OutSafetyBoxSet(Rinwork, j) =

{shift(R′,−g(j))|∀R′ ∈ shift(Rinwork, g(j)) \ SafetyBox}.

It denotes the set of rectangles {R′′} such that R′′ ⊆ Rinwork
and shift(R′′, g(j)) ⊂ OutSafetyBox.

Let

UnsafetySet(Rinwork, j) = {shift(R′,−g(j))|

∀R′ s.t. R′ = shift(Rinwork, g
(j))

⋂
R′unsafe,

where R′unsafe ∈ UnsafeRectSet, and R′ 6= ∅}

It denotes the set of rectangles {R′′} such that R′′ ⊆ Rinwork
and shift(R′′, g(j)) ⊆ R′unsafe, where R′unsafe is a known
unsafe rectangle.



So the set

SuspiciousSet(Rinwork, j) =

OutSafetyBoxSet(Rinwork, j)
⋃
UnsafetySet(Rinwork, j)

is the set of rectangles {R′′} containing all R′′ ⊆ Rinwork
and shift(R′′, g(j)) is unsafe.

Let

SuspiciousSet(Rinwork, j, j
′) =⋃

R′∈SuspiciousSet(Rinwork,j)

SuspiciousSet(R′, j′)

It denotes the set of rectangles {R′′} containing all
R′′ ⊆ Rinwork, and shift(R′′, g(j)) and shift(R′′, g(j

′))
are both unsafe. Thus, we can compute the set
SuspiciousSet(Rinwork, 0, 1, · · · , n), which is the set
of rectangles {R′′} containing all R′′ ⊆ Rinwork and
shift(R′′, g(j)) is unsafe for all (0 ≤ j ≤ n). Therefore,
∀RnewUnsafe ∈ SuspiciousSet(Rinwork, 0, 1, 2, · · · , n),
RnewUnsafe satisfies the whole unsafety criteria. We
thus attach them into the UnsafeRectSet. Then starting
with a RnewUnsafe, repeat the process and find more
unsafe rectangles. The process must terminate because
shift(Runsafe,−g(j)) would shift the rectangle in at least
n − 1 positive directions. Finally the process must terminate
when Rback = ∅.

Fig. 5 shows an example illustrating how the algorithm
works, although it may not correspond to any real 2D system.
Algorithm 1, 2 and 3 show the pseudocode of our algorithm
of constructing the UnsafeRectSet. Once UnsafeRectSet
is constructed, the UnsafeRegion is given by:

UnsafeRegion =
⋃

R∈UnsafeRectSet

R

Algorithm 1 construct_UnsafeRectSet

UnsafeRectSet = DeadRectSet
for Rdead ∈ DeadRectSet do
recur_sur(Rdead)

end for

Algorithm 2 recur_sur(Runsafe)
for i = 0 to n do
s = sur(Runsafe, i)
if s 6= ∅ then

for R ∈ s do
UnsafeRectSet.append(R)
recur_sur(R)

end for
end if

end for

Algorithm 3 sur(Runsafe, i)

Rback = shift(Runsafe,−g(i))
⋂
SafetyBox

if Rback == ∅ then
return ∅

end if
workingSet = ∅
for R′unsafe ∈ UnsafeRectSet do
workingSet = workingSet

⋃
(Rback \R′unsafe)

end for
for j = 0 to n do

if j == i then
continue

end if
newWorkingSet = ∅
for Rinwork ∈ workingSet do

newWorkingSet = newWorkingSet⋃
SuspiciousSet(Rinwork, j)

end for
workingSet = newWorkingSet

end for
return workingSet

B. Properties of UnsafeRegion

Lemma 4. Any state in UnsafeRegion is infeasible.

Proof: By definition, ∀X ∈ UnsafeRegion, ∃R ∈
UnsafeRectSet,X ∈ R. If R ∈ DeadRectSet,
then the system must fail in next time step. If R /∈
DeadRectSet, then from the unsafety criteria (3) ∃R′ ∈
UnsafeRectSet and corresponding j(0 ≤ j ≤ n) such that
shift(R, g(j)) ⊆ R′. Suppose in the process of construct-
ing UnsafeRectSet, we attach an incrementing ID to each
rectangle added to the UnsafeRectSet starting from those
rectanges in DeadRectSet. Then R′ must have a smaller ID
than R. So any states in R must fall into a rectangle that has a
smaller ID than R or out of the safety box. Thus by induction
those states must eventually reach one of the DeadRects or
fail before that. In any case, those states will fail.

Let SafeRegion = SafetyBox \ UnsafeRegion.

Lemma 5. Any state in SafeRegion is feasible.

Proof: ∀X ∈ SafeRegion, since the state space is
continuous, there must exist a rectangle R such that X ∈ R.
Then R must neither be in UnsafeRectSet nor a part
of a rectangle that is in UnsafeRectSet. So ∃j(0 ≤
j ≤ n), shift(R, g(j)) ⊂ SafeRegion. Thus X + g(j) ∈
SafeRegion. So by induction there is an infinite sequence
g(j)g(j

′) · · · such that X + g(j) + g(j
′) + · · · ∈ SafeRegion.

Thus X is feasible.

Theorem 3. A system is feasible if and only if its initial state
X(0) ∈ SafeRegion.



(a) workingSet = {R1
inwork, R

2
inwork}. (b) Consider R1

inwork now.
SuspiciousSet(R1

inwork, 0) = {R
0,0
suspect, R

0,1
suspect},

because OutSafetyBox(R1
inwork, 0) = {R

0,0
suspect}

and UnsafetySet(R1
inwork, 0) = {R

0,1
suspect}.

(c) SuspiciousSet(R1
inwork, 0, 1) = SuspiciousSet(R1

inwork, 0),
because ∀R ∈ SuspiciousSet(R1

inwork, 0), shift(R, g(1)) ∈ R1
unsafe.

SuspiciousSet(R1
inwork, 0, 1, 2) = {R

2,0
suspect, R

2,1
suspect, R

2,2
suspect},

becuase OutSafetyBox(R0,0
suspect, 2) = {R

0,0
suspect},

UnsafetySet(R0,0
suspect, 2) = ∅,

OutSafetyBox(R0,1
suspect, 2) = {R

2,1
suspect} and

UnsafetySet(R0,1
suspect, 2) = {R

2,2
suspect}

Figure 5. R1
unsafe, R2

unsafe and R3
unsafe are known unsafe rectangles. Find more unsafe rectangles by examining Rback =

shift(R1
unsafe,−g

(1))
⋂

SafetyBox. Two sub-rectangles of Rback are put into the working set: R1
inwork and R2

inwork , whereas others are discarded
because they are already included in known unsafe rectangles. Three unsafe rectangles are found in R1

inwork: R2,0
suspect, R2,1

suspect and R2,2
suspect. Note

that there are different ways of partitioning the space of R1
inwork ∪ R2

inwork into a workingSet. However they are equivalent in producing the
final result:

⋃
Rinwork∈workingSet

⋃
RnewUnsafe∈SuspiciousSet(Rinwork,0,1,2)

RnewUnsafe. The reason is that the operations on Rinwork to compute

SuspiciousSet(Rinwork, 0, 1, 2) are shifting, set difference, intersection and union, and all these operations are distributive over set union: shifting is obviously
distributive over set union: shift(A ∪B, v) = shift(A, v) ∪ shift(B, v), and so is set union itself; set difference and intersection are also distributive over
set union [6].

C. Complexity of the algorithm

The recursive call of recur_sur resembles a tree struc-
ture. From a rectangle Rdead, each g(i)(1 ≤ i ≤ n) may lead to
a set of unsafe rectangles. From every one of those rectangles,
other unsafe rectangles are found in the same fashion. The
third case of 2D system is a good example (Fig. 6), although
in this case any finite set of unsafe rectangles returned by sur
call contains only one element.

Our algorithm performs a depth first search on the tree.
The search must terminate because every child rectangle
is closer than its parent in at least n − 1 directions to
the point

[
1 1 · · · 1

]T
in the state space. Eventually,

a child R would be too close such that ∀i(0 ≤ i ≤

n), shift(R,−g(i)) ⊂ OutSafetyBox. Consider the sum of
the lower bounds of a rectangle R in the tree in all directions.
That is, for R = [r10, r11)1 × [r20, r21)2 × · · · × [rn0, rn1)n,
let S =

∑n
i=1 ri0. Also let b̃min = min(b̃1, b̃2, · · · , b̃n).

From a parent to a child in the tree, S is increased by at
least (n − 1)b̃min. But S < n. So the height of the tree
treeHeight < n

(n−1)b̃min
. However the number of unsafe

rectangles may be exponential to n. Note that from a parent to
a child, the size of the rectangle must be decreasing. So there
must be a rectangle of the smallest size λ. Since the length of
the rectangle in every direction is less than 1, λ is exponential
to −n. The total number of unsafe rectangles N is in the order
of 1

λ , thus N is exponential to n. Indeed, if b̃min is very small
compared to 1, not only the tree could be tall but also the



Figure 6. Tree structure of recur_sur call on the third case 2D system.

unsafe rectangles tend to be smaller. The double effects may
bring a big performance issue to our algorithm.

Let us determine the time complexity of our algorithm more
formally. λ should be in the order of (b̃min)n, so N is in the
order of ( 1

b̃min
)n. To find a unsafe rectangle, it takes O(N)

time to compute the workingSet and the workingSet is of
size O(N). For each Rinwork ∈ workingSet, it takes O(nN)
time to compute the SuspiciousSet for all directions. So it
may take O(nN2) time to find a unsafe rectangle. The total
time is thus O(nN3) or O(n( 1

b̃min
)3n).

D. Scheduling policy

The proof of Lemma 5 suggests a method by the controller
that computes the next scheduling decision on the fly: ∀k ≥ 0,
search for g(j) such that X(k) + g(j) ∈ SafeRegion. The
searching method may incorporate some priority policy or
integrate some optimal decision algorithm chosen by the
controller. For example, if g(0) has the highest priority, then
the controller always seeks to turn OFF all the tasks whenever
possible (power-saving). In fact, the General 2D Scheduling
Policy is such a policy. The controller may also maintain
frequency counts for all tasks to implement a fair policy.

E. Extensions

Although in the paper we assume at most one task could be
ON at any time, our algorithm can be extended to deal with
the situation where at most k(k < n) tasks can be ON at any
time. By that end, the set of possible movements G must be
enlarged to add

∑k
j=2

(
n
j

)
directions. Meanwhile, the Type 1

dead rectangles reduce to

DeadRect(Type 1) = [0, 1)1 × · · · × [0, b̃j1)j1 × · · ·
× [0, b̃jk+1

)jk+1
× · · · × [0, 1)n

for (1 ≤ j1 6= j2 6= · · · 6= jk+1 ≤ n). Although the increase on
the number of possible movements might blow up the problem,

the second for loop in the algorithm 3 can be parallelized. Also
note that this algorithm is only run once to get the safe regions
and the subsequent scheduling policy is computed on-the-fly
(the choosing of g(i) at any time t can be parallelized too). The
computation of safe regions is only needed when the system
gets reconfigured.

The state space trajectories considered in this paper are
linear. However, our algorithm can be extended to deal with
more complex tasks’ dynamics as well, for example those char-
acterized by affine differential equations, which are considered
in [2]. This extension is beyond the scope of this paper and
will be addressed in future papers.

V. SIMULATION AND RESULTS

We perform simulations on different systems. Fig. 7 shows
the results on some 2D and 3D systems. The rectangles in
gray are the unsafe rectangles. Fig. 7a shows a 2D system that
does not satisfy the necessary condition given by (7). All the
states in the system are infeasible. The system in Fig. 7b just
satisfies the necessary condition. It belongs to the third case
of 2D systems we discussed. Fig. 7c shows a 2D system of
the second case, while in Fig. 7d a system of the first case
is shown. The system in Fig. 7e is not discussed because we
assume ã1 + b̃1 ≤ 1 and ã2 + b̃2 ≤ 1 in order to get an
analytical form of necessary and sufficient conditions. But our
algorithm does not make any assumption on {ãi, b̃i} thus it
can correctly find the unsafe rectangles.

Fig. 7f shows an example of 3D systems that do not satisfy
the necessary condition (6). All states are infeasible there. The
system in Fig.7g just satisfy the condition, so the system is
feasible if and only if the initial state is not in the unsafe
region, shown in gray in the figure. The algorithm suggests
the safe region is the following:

[0.3,1.0) X [0.1,1.0) X [0.0,1.0) U
[0.15,0.3) X [0.2,1.0) X [0.0,1.0) U
[0.15,0.3) X [0.1,0.2) X [0.4,1.0) U
[0.3,1.0) X [0.0,0.1) X [0.2,1.0) U
[0.15,0.3) X [0.0,0.1) X [0.4,1.0) U
[0.0,0.15) X [0.2,1.0) X [0.2,1.0) U
[0.0,0.15) X [0.1,0.2) X [0.4,1.0)

VI. RELATED WORK

As mentioned, [2] presents a necessary and sufficient condi-
tion in continuous time domain for any system to be feasible.
However, when time is discretized additional conditions are
required. [2] also mentions that systems in the intersection of
two critical zones are infeasible but those infeasible regions
are not complete. Other regions may also be infeasible. In this
paper we present an algorithm to find all the infeasible regions
for the discrete-time linear case.

Work has been done towards energy efficient CPU schedul-
ing using Dynamic Voltage Scaling (DVS) and energy aware
task allocation ( [7], [8] and [9]). The integration of control and
scheduling has been covered by [10], [11] and [12], where real-
time scheduling approaches are extended to incorporate control
task specifications. Our approach and the approach in [2], [3] is
focused on energy consuming control systems with a system-
wide resource constraint and departs from a CPU-centric view



(a) ã1 = 0.3, b̃1 =
0.4, ã2 = 0.2, b̃2 = 0.3

(b) ã1 = 0.3, b̃1 =
0.4, ã2 = 0.4, b̃2 = 0.3

(c) ã1 = 0.3, b̃1 =
0.4, ã2 = 0.4, b̃2 = 0.2

(d) ã1 = 0.3, b̃1 =
0.2, ã2 = 0.4, b̃2 = 0.3

(e) ã1 = 0.6, b̃1 =
0.6, ã2 = 0.6, b̃2 = 0.6

(f) ã1 = 0.3, b̃1 =
0.2, ã2 = 0.2, b̃2 =
0.1, ã3 = 0.4, b̃3 = 0.2

(g) ã1 = 0.3, b̃1 =
0.15, ã2 = 0.2, b̃2 =
0.1, ã3 = 0.4, b̃3 = 0.2

Figure 7. UnsafeRegion (in gray) of different systems.

to a PSU-centric (Power Supply Unit) resource allocation. The
extension of traditional real time scheduling algorithms like
EDF and RMS, for activation of electrical loads is used in [13]
and [4] by assuming a periodic task activation model for the
physical system. Although the periodic task model allows for
the use of traditional scheduling algorithms but the underlying
assumption that electrical loads need to switch periodically
(and not based on state feedback) makes the system overly
constrained and less flexible to changes in system dynamics.

VII. CONCLUSION

We have studied the feasibility of the discrete-time linear
green scheduling problem. For a system of two tasks, if certain
assumptions hold, we can determine analytically the necessary
and sufficient conditions for the system to be feasible. For more
general n-dimensional systems, we design and implement an

algorithm which, given the increasing and decreasing rates of
the tasks of a system, returns a subset of the state space such
that the system is feasible if and only if the initial state is
in the subset. Given the subset, a scheduling policy can be
computed on the fly as the system runs, with the flexibility to
add any power-saving, priority based or fair sub-policies.
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